
The present work was submitted to
the Research Group
Software Construction

of the Faculty of Mathematics,
Computer Science, and
Natural Sciences

Bachelor Thesis

Reproducibility of
Computational Environments

for Software Development

presented by

Marvin Strangfeld

Aachen, August 01, 2022

Examiner

Prof. Dr. rer. nat. Horst Lichter

Prof. Dr. rer. nat. Bernhard Rumpe

Supervisor

Christian Plewnia, M.Sc.

Alex Sabau, M.Sc.

Abstract

A computational environment is a representation of everything that can influence com-
putations done inside them. This includes computer hardware, operating systems and
software libraries. Computational Environments are being used in every step of the
software development process. On the workstations of developers for performing de-
velopment tasks, the CI pipeline that builds and tests the software and on production
servers or customer’s machines that run the released product.

These environments can be heterogeneous and change over time. This can cause
problems, for example when the software application depends on a certain version of
a software library to be available. Therefore it is possible that the application runs
properly in one computational environment but does not work in another. To solve this
problem, computational environments can be made reproducible to a certain degree.

In my thesis I provide a theoretical definition of computational environments that is
more precise than preceding ones and can be used to create descriptions of real-world
computational environments. I also provide a definition of reproducibility of computa-
tional environments that helps to argue about the degrees to which an environment can
be made reproducible.

Following these theoretical foundations I present a catalogue with various approaches
to create reproducible computational environments and compare their use cases. These
approaches can be used like building blocks to meet different requirements for repro-
ducible computational environments.

In the end I present an explorative case study of how a reproducible computational
environment can be implemented using a real-world software project at my industry
partner Open-Xchange. In this case study I use a subset of the presented approaches that
has been selected by leveraging the theoretical definitions to analyze the requirements
for this environment.

Contents

1 Introduction 1
1.1 Reproducibility in Scientific Computing 2
1.2 Software Development as a Scientific Experiment 3
1.3 Research Questions . 4

2 Defining Computational Environments and Reproducibility of Computa-
tional Environments 7
2.1 Defining Computational Environments . 8
2.2 Defining Reproducibility of Computational Environments 11
2.3 Dependencies of Reproducibility . 13

3 Approaches for implementing Reproducibility 17
3.1 Hardware Requirements . 17
3.2 Disk Images . 18
3.3 Container Images . 20
3.4 Package Management Systems . 21
3.5 Reproducible Build Systems . 22
3.6 Building Blocks . 23

4 Case Study: Reproducible Environment for Cross-Project Integration Testing 25
4.1 Project Requirements . 25
4.2 Choice of Technologies . 28
4.3 Implementing the Reproducible Environment 32

5 Evaluation 37
5.1 Evaluation of the Case Study . 37
5.2 Evaluation of the Theoretical Concepts . 39

6 Conclusion 41
6.1 Future Work . 41

Bibliography 43

i

List of Figures

2.1 Dependencies of the Python interpreter in a Linux environment 15

3.1 Overview of the available approaches to create a reproducible computa-
tional environment . 23

4.1 An abstract overview of the implementation of the reproducible environment 33

iii

List of Listings

1 A simple computational experiment written in Python 2
2 Alternative version of the experiement for Python 3 3

3 A simple Python program to illustrate various sources of inputs 9
4 A JSON representation of a computational environment 10
5 The same computational environment with the additional property “python.ver-

sions” . 11
6 A computational environment with Python 3 and the requests library . 12
7 A computational environment with Python 3 13
8 A requirements.txt file for pip . 13

9 The computational environment for the integration project 27
10 A simple Nix expression for an example package 31
11 Nix environment configuration . 34

v

1 Introduction

Contents

1.1 Reproducibility in Scientific Computing 2
1.2 Software Development as a Scientific Experiment 3
1.3 Research Questions . 4

A computational environment is a representation of everything that can influence com-
putations done inside them. This includes computer hardware, operating systems and
software libraries. When developing a software application, there are often multiple
computational environments that are used to perform various tasks. Each developer for
example has a workstation to write and test code on. A continuous integration (CI)
pipeline might run on some kind of server. The deployed application might run on a
customer’s machine or on some production servers. In any case, there is often more than
one environment where the developed software application is required to run on. These
environments can be heterogeneous and also change over time.

As an example, consider two developers, Alice and Bob, each working on the same
software application with their own workstation. Alice has the software library libEx-
ample in version 1.0 installed on her machine. Bob has the same library in version 2.0
installed on his machine. Now it might happen that the application under development
works on Alice’s workstation but due to some changes of the libExample library in the
version 2.0, it does not work on Bob’s workstation. This problem is also known as the
“It works on my machine” problem [6]. To mitigate this problem, the two developers
would need to reproduce the same library version on each of their systems to guarantee
that this particular problem does not occur again.

This example describes just one manifestation of the many problems of diverging
computational environments. The software development process could benefit in many
ways from reproducible environments.

To illustrate this, let us assume there was a way to perfectly and automatically repro-
duce the computational environment needed for every task in the development lifecycle.
If every developer had exactly the same computational environment available, every bug
occurring in one environment could be easily reproduced in another environment. Thus
it can ease the synchronization across the development team. It also enables developers
to quickly reproduce any failure that occurred in a production environment, making
the debugging process much more simple. CI pipelines and local workstations could
share the same environment as the deployment servers, reducing the need to go back
and fourth between these environments to debug a new feature. Having an environment

1

1 Introduction

that is truly reproducible can also provide a way to revisit older projects because the
development environment could just be recreated. Additionally, the onboarding process
for new developers could be simplified as setting up the development environment on a
new machine is an automated and reproducible process. Of course, in practice there are
no perfectly reproducible computational environments, but it is likely that even some
form of reproducibility can improve the development process in some way.

The same problems occurring in software development due to diverging environments
can also be found in scientific computing where researchers try to reproduce computa-
tional experiments in order to verify published results.

1.1 Reproducibility in Scientific Computing

“Reproducibility is widely considered to be an essential requirement of the scientific
process.” [19] It enables independent researchers to recreate an experiment and verify
or disprove the experimental findings. This characteristic of making an experiment
reproducible is therefore desirable for all scientific fields, including scientific computing
where experiments are carried out by using computations that analyze digital data.
At first glance, reproducing a computational experiment seems to be a straightforward
task, as only the program instructions and the input data for the computation need to
be exchanged. Every researcher should then be able to “just run” these instructions on
their own computer and verify the results. But in practice, there are more barriers that
prevent this easy sharing of computational experimental setups.

To illustrate this, let us have a look at very simplistic example. In this example
we use a program that we have written ourselves and that performs its analysis steps
deterministically, meaning the same input to the program should always produce the
same output. One might therefore assume that sharing the source code of the program
or a precompiled binary file along with the original input dataset should allow anyone
to repeat the analysis steps themselves. However, even if these artifacts are provided, it
is not guaranteed that the execution of the program behaves the same when executed
in different environments. To give a very simplistic example of such a computational
experiment, here is the source code of a program written in the Python programming
language:

print "Some reproducible result: 42"

Listing 1: A simple computational experiment written in Python

While this program will run fine with the Python 2 interpreter, it will not run with
a version 3 interpreter because there have been breaking changes between those two
versions. In this case, changing print, which was a statement in version 2, to a function
in version 3, breaks the code for the newer Python versions [42]. To be able to run with
Python 3, the code would have to be changed like this:

2

1.2 Software Development as a Scientific Experiment

print("Some reproducible result: 42")

Listing 2: Alternative version of the experiement for Python 3

This admittedly trivial example gets to the heart of the problem, namely: in order to
reproduce the execution of a program, we must have at least some information about
the requirements of the computational environment [35]. In this case it would have been
sufficient to write down the intended Python version alongside with the source code.
Then the correct Python version could have been installed manually before trying to run
the program. However, for more complex experimental setups, it might be beneficial to
use other techniques to capture and share the computational environment.

1.2 Software Development as a Scientific Experiment

The expectations in developing software are no different in their basic assumptions from
those in conducting a scientific computing experiment. The difference is that instead of
running a single deterministic program to generate a result, there are multiple programs
for each task of the development lifecycle.

Let us take the process of source code compilation as an example. In this process the
input data is the source code of the application under development. The analysis steps
are performed by the compiler, which generates a result in form of one or more binary
files. If other developers can recreate the same result using the same input with the
same compiler, the experiment of compiling the source code can be called reproducible.
It should be noted that we are free to define what exactly we consider to be “the same
result”. In some cases it may be sufficient to obtain a working binary file, in other cases
we may want to achieve bit-by-bit binary reproducibility.

In addition to the development lifecycle tasks, the execution of the application under
development can also be interpreted as an experiment. The input data is the input to the
application. This might be user input from the command line, files from the file system
or network packets from a network card. The application then performs its analysis steps
and generates output in form of, for example, writing to the standard output (stdout),
writing to the file system, or sending network packets. Also note that the application
does not have to terminate and the stream of output data can be seen as the result of
the analysis. When attempting to reproduce the behavior of the application, it is again
possible to freely define what is considered to be the “same result” as well as the “same
input data”.

To achieve reproducibility of application behavior in different environments, the same
principles apply as in scientific computing experiments. We need to share the dataset,
which in the case of software development tasks could be the source code and in opera-
tional tasks such as deployments it could be compiled binaries. Additionally, we need to
share the relevant information about the computational environment needed to execute
the applications. Therefore, the computational environment itself becomes the subject

3

1 Introduction

of reproducibility.
Let us illustrate this again with the previous example of a Python program that is

compatible with version 2 of the interpreter but incompatible with version 3. To be
able to execute the program, the intended Python version has to be reproduced by the
end-user and every developer. To be able to perform other tasks of the development
lifecycle such as testing the code, the required tools to test the code also have to be
reproduced. Therefore each task in the development lifecycle requires a reproducible
environment [24].

1.3 Research Questions
While reproducibility in the scientific context has already been researched, the topic
of reproducibility specifically in the context of software development has not yet been
covered. There are already existing definitions of “reproducibility” and “reproducible
research” as well as practical proposals on how to implement reproducibility for scientific
computing. Although the basic assumptions are the same, both fields have different
requirements when it comes to implementing reproducibility.

For example, the requirement for accurately reproducing the same results are neces-
sary in scientific computing, where as they might be optional in software development.
Developers might choose speed and convenience of their workflow over accuracy when
it comes to reproducing some results. This also has to do with the different workflows.
Scientific papers are usually published once and being reproduced by few individuals,
where as software development is an ongoing and highly distributed process where speed
is essential.

These somewhat contradicting goals for reproducibility open the following research
questions that I will address in this thesis:

1. What is a definition of reproducibility of computational environments beyond the
context of scientific experiments that also covers environments for software devel-
opment?
I provide a fundamental theoretical definition of computational environments and
reproducibility of computational environments. The definitions are compatible to
the definition of reproducibility in scientific computing but provide a new level
of formalism that help us to describe the overall mechanism. The definitions will
further be used to describe the requirements of reproducible computational envi-
ronments.

2. What are the available approaches to achieve reproducibility and how do they
compare?
I create a catalogue of approaches to reproduce different categories of computa-
tional environmental properties. The approaches are building blocks that can be
used to systematically create a reproducible computational environment based on
the individual needs of an application.

4

1.3 Research Questions

3. How can a reproducible computational environment be implemented in a software
development project?
I provide an illustration of an explorative transformation to create a reproducible
computational environment for a real-world software project at my industry part-
ner Open-Xchange.

5

2 Defining Computational Environments
and Reproducibility of Computational
Environments

Contents

2.1 Defining Computational Environments 8
2.2 Defining Reproducibility of Computational Environments 11
2.3 Dependencies of Reproducibility . 13

There is some ongoing debate on how to define “reproducibility” and “reproducible
research” with sometimes contradicting definitions. Efforts have been made to collect and
compare these definitions by Heroux et al. [18] and Barba [2]. What all these definitions
have in common is, that the subject of reproducibility is a scientific experiment with a
certain result. While this could be translated to the context of software development as
explained before, it is rather impractical. Additionally, the subject of interest shifts in
software development from reproducing the same static end-result to a more dynamic
reproducibility of the development environment. This is due to the fact that the software
under development continuously evolves by adding new features or fixing bugs.

Therefore, I will provide a new definition for reproducibility of computational envi-
ronments that can be used to describe reproducible software development environments.
In addition to this, the definition should also be able to describe experimental setups
for scientific computing including the reproduction of scientific results. Due to the con-
tradicting definitions of reproducibility in scientific computing I will adopt a condensed
definition by Barba [2] which is based on the most widely used definition of “reproducible
research” in the field of computer science by Claerbout and Karrenbach [7]:

“Reproducible research: Authors provide all the necessary data and the computer
codes to run the analysis again, re-creating the results.” [2]

The Turing Way, a project focused to promote reproducible research, furthermore
defines a reproducible scientific result: “A result is reproducible when the same analysis
steps performed on the same dataset consistently produces the same answer.” [8] It differs
from the term replication which means that an equivalent result has been obtained by
collecting new data and using other experimental setups. Replication also plays an
important role in science but in this thesis I will solely focus on reproducibility.

A precise definition of a concept can be used as a basis for communication. Therefore,
I will define computational environments and reproducibility of them as precisely as
possible. The goal is not only to give an intuition of the concept but also to create formal

7

2 Defining Computational Environments and Reproducibility of Computational
Environments

representations that can be used to describe a specific computational environment and
whether or not it is reproducible. While there are existing definitions, they mostly lack
the precision and formalism needed.

2.1 Defining Computational Environments

The Alan Turing Institute defines computational environment in its project The Turing
Way as the “Features of a computer which can impact the behaviour of work done on
it, such as its operating system, what software it has installed, and what versions of
software packages are installed.” [8] Other definitions of computational environments
do not only include software artifacts and system configurations but also the computer
hardware, network and other peripherals [34, 39, 19, 24]. While these definitions give an
intuition of what a computational environment might include, they all do not claim to
be exhaustive. The definitions are built in this way because it is impossible to generalize
which properties are part of a computational environment and which are not.

To explain this, let us have a look at what might influence a computation. System
architecture, operating system (OS) and version of software libraries are obvious proper-
ties that can influence the behavior of a program executed in the environment. But also
properties like current system time, specific hardware, and network status could impact
the behavior of computations. Every program might have different inputs which again
can depend on arbitrary other variables.

One could even argue that the only way to describe a computational environment
accurately enough to capture anything that might affect the computations performed
within, it would be to take a snapshot of the entire universe. To illustrate this, let
us assume a program that uses a specific hardware to count photons of the physical
surroundings. Not only would the hardware affect the behavior of the program, but
all the photons in the surroundings have a direct impact on the computation. Another
example would be an hurricane rolling over your server location causing the destruction of
all your servers. Surely, it will have an impact on the computations in this environment.
For the sake of creating a usable definition and not to drift too much into philosophical
details about whether the universe behaves deterministically or not, I will focus on a
more practical example in the following.

Let us have a look at the Python program in listing 3 that uses multiple inputs for
its computation. The program gets the current year of the system time in line 6 using
the datetime module which comes with the Python standard library. In line 8 it sends
an HTTP GET request to an external web server using the requests library. The current
year is embedded in the URL of the request. After that, it outputs the HTTP status
code of the web server’s response.

The result of the execution of this program depends on several characteristics of the
computational environment. To be able to even execute the program, Python 3 and the
requests library have to be present on the system. The URL of the HTTP request
changes based on the current year of the system time, so the environment’s system time
directly influences the computation. The external web server to which the request is send

8

2.1 Defining Computational Environments

1 #! /usr/bin/env python3
2 import requests
3 from datetime import datetime
4

5 # Get the current year
6 year = datetime.now().year
7 # Execute an HTTP GET request
8 response = requests.get(f"https://swc.rwth-aachen.de/{year}")
9

10 print(response.status_code)

Listing 3: A simple Python program to illustrate various sources of inputs

can reply with any HTTP status code based on numerous other inputs that therefore
also influence our computation. Furthermore, the entire Internet infrastructure used to
communicate with the server (DNS, router, …) decide what the output of the program
will look like. If the network fails and the web server cannot be reached, the result will
be different than if the connection is working.

Based on this example we could start trying to describe the computational environ-
ment of this program. But based on the existing definitions of computational environ-
ments it is not clear what description would be sufficient. Do we have to include every
little detail of the network infrastructure between our machine and the web server? Or
is it sufficient to just state: “A working connection to the web server”? Do we also need
to specify every input that might influence the web server’s computation? And what
about if these inputs are programs themselves with other inputs?

Due to this lack of precision the need for the following more formal and therefore more
precise definition emerges.

2.1.1 Definition (Computational Environment)

A set of ordered tuples where each tuple (x, y) describes a specific property of
the environment using its unique id x ∈ N and a specification with the matching
domain y ∈ Dx.

{(x, y) | x ∈ N, y ∈ Dx}

I will name the class of all computational environments CE where each description of
a computational environment is c ∈ CE.

Using this definition we can describe any computational environment on any abstrac-
tion level independent from the programs executed inside the environment. A computa-
tional environment according to this definition is just a collection of tuples of arbitrary
properties. A property is identified by its unique id x and a qualitative or quantitative
specification y. The id is just a natural number but for readability any string can be
used and encoded into a unique natural number. The domain of the specification can be

9

2 Defining Computational Environments and Reproducibility of Computational
Environments

freely chosen. It could be booleans, integers, strings or any other data type, including
nested computational environments.

To illustrate this concept let us describe a computational environment where the
CPU architecture is x86, the OS is Linux and the year of the system time is 2022. We
name the ids of the properties: “cpu.arch”, “system.os” and “system.time.year”. For the
domains we choose sensible options like strings for the first two properties and natural
numbers for the year. We could also define the domain based on an enumeration like
Dcpu.arch = {x86,AArch64,MIPS}. A valid description of our environment could then
look like this:

{(“cpu.arch”, x86), (“system.os”, “Linux”), (“system.time.year”, 2022)}

Alternatively we could even encode this into a more readable JSON format [5] as shown
in listing 4.

{
"cpu.arch": "x86",
"system": {

"os": "Linux",
"time.year": 2022

}
}

Listing 4: A JSON representation of a computational environment

Using this definition enables us to compare two environments and their relation to
another. First, two computational environments A,B ∈ CE are equal when all of their
properties are equal:

A = B ⇐⇒ (A \B) = (B \A) = ∅

We can also form equivalence relations on CE. Two environments A,B ∈ CE are
C-equivalent (∼C) to another, when C ∈ CE is a subset of both of the environments.

A ∼C B ⇐⇒ (C ⊆ A) ∧ (C ⊆ B)

The relation ∼C creates an equivalence class [C] ∈ CE/ ∼C containing all computational
environments that are equivalent to another in the context of C.

For example, let C = {(“cpu.arch”, “x86”)}, then all computational environments
with a x86 CPU architecture would be C-equivalent to another, regardless of any other
properties they might have.

To avoid always having to define a new equivalence relation when just comparing two
computational environments with each other, I suggest that the term: “A is equivalent
to B” means the same as A ∼B B. Or put differently, the computational environment
described with the properties A could also be described with the properties B. Keep in

10

2.2 Defining Reproducibility of Computational Environments

mind, that these sets of properties are just descriptions of a real-world computational
environment that can be described with an infinite amount of properties in theory.

To illustrate this equivalence in a more practical example, let us take the compu-
tational environment from listing 4 and add an additional property “python.versions”
which represents all available python versions on that system. A representation of this
environment can be seen in listing 5.

{
"cpu.arch": "x86",
"system": {

"os": "Linux",
"time.year": 2022

},
"python.versions": ["3.8.8", "2.7.18"]

}

Listing 5: The same computational environment with the additional property
“python.versions”

This second description of a computational environment is different from the first one
because not every environment that could be described with the first one could also
be described with the second one. They are therefore not equal. On the other hand,
every computational environment that could be described with the second description
could also be described with the first one, as we could choose to ignore the installed
Python versions. Therefore, the description of the second environment is equivalent to
the description of first environment but not equal.

These characteristics of the definition enable us to specify an environment with an
infinite amount of equivalent environments possible. The description abstracts from any
particular technology or physical location where the environment lives in. The descrip-
tion can match to a server, a developer’s workstation, a virtual machine, a container,
or any other possible instantiation. Furthermore, we can describe any real physical
environment with as much detail as we need.

2.2 Defining Reproducibility of Computational Environments
A reproducible computational environment is an environment that can be recreated in
different contexts. Existing definitions of reproducibility either focus on scientific com-
putational experiments [7, 4] or define reproducibility in terms of computational results
[27]. But I want to examine what it means to reproduce a computational environment,
independent from experiments or program executions. This gives us the freedom to
use the definition for more dynamic scenarios such as the software development lifecy-
cle. Therefore I propose the following definition for reproducibility of computational
environments:

11

2 Defining Computational Environments and Reproducibility of Computational
Environments

2.2.1 Definition (Reproducibility of a Computational Environment)

A computational environment c ∈ CE is reproducible, if there is a determin-
istic function fc,r that can derive c-equivalent environments cb ∈ [c] from an
r-equivalent input environment b ∈ [r] and a recipe x ∈ N.

fc,r : CE× N → CE, (b, x) 7→ cb

If we can find such a deterministic function fc,r, we can reproduce c-equivalent envi-
ronments from any environment that is equivalent to a minimal requirement r using the
recipe x. The parameters c and r define the main characteristics of the function. The
properties that are defined in c determine what properties we are able to reproduce with
this function. The properties that are defined in the minimal requirement r determine
how portable to other environments this function is.

To give an intuitive example, let us look at the two extremes of portability. The
function fc,c(b, ∅) = cb expects as a minimal requirement an input environment b that
is equivalent to c and it reproduces an output environment cb that is also equivalent to
c. It is the least portable function, as to reproduce the environment, it already requires
the environment to exist. Therefore it can only be applied to environments that are
already equivalent to the environment we want to reproduce. Note, that we do not need
the recipe here, as no additional information is necessary on how to derive the output
environment.

In contrast to this would be a function fc,∅(b, x) = cb. In this case the environment can
be created in the context of any other environment b, as there are no minimal require-
ments. It is therefore as portable as it gets because every computational environment b
is equivalent to a computational environment ∅. But in this case all information on how
the environment cb is derived from b has to be encoded in the recipe x.

In a real-world scenario we would probably try to find a function fc,r to reproduce our
environment c as portable as possible, with as little information as necessary encoded
in the recipe x. In detail this means that we try to minimize the amount of properties
specified in the requirements while also minimizing the amount of information encoded
in the recipe.

Let us implement this definition in a short example. Assume we need to reproduce an
environment c as seen in listing 6.

{
"python.versions": ["3.8"],
"python.3.libraries": [

{ "name": "requests", "version": "2.27" }
]

}

Listing 6: A computational environment with Python 3 and the requests library

12

2.3 Dependencies of Reproducibility

{
"python.versions": ["3.8"],

}

Listing 7: A computational environment with Python 3

For now it is sufficient for us to reproduce this environment from any other environ-
ment that has already Python 3.8.8 installed. This is our minimal requirement r to the
input environment and could be described like in listing 7. Now we need to find a deter-
ministic function fc,r and a recipe x, such that we can derive c-equivalent environments
from any input environment b that is equivalent to r.

A possible implementation of such a function could be provided by the package man-
ager pip for the Python ecosystem. Pip can manage python software libraries in an
environment. We can specify the required packages in a requirements.txt file like in
listing 8.

requests==2.27.1

Listing 8: A requirements.txt file for pip

Running the command pip install -r requirements.txt will install the requests
library in the version 2.27.1 into the current environment. Thus pip install can be
interpreted as our function fc,r with the recipe x = encode(requirements.txt).

However, the command to install a library may fail due to various reasons. To get the
Python packages, pip uses a repository that is accessible via the internet. If there is a
problem with the internet connection to the server hosting the repository, the installation
of the package fails. Furthermore, it might be that the packages are simply not available
anymore, or at least not in the specified version. Also other things like running out of
disk space can make the installation fail. This is a direct violation of calling the function
fc,r deterministic. To mitigate this, we have to set up further requirements for the input
environment to account for the availability of repositories and disk space for example.

Another approach would be to define the function fc,r as quasi-deterministic [21],
allowing the function to either fail or to create a deterministic result. This means of
course that we cannot guarantee that the environment c can always be reproduced, as the
function can just output an error. It is a trade-off between the guarantee of always being
able to reproduce an environment and more portability, as we just “rely” on properties
that we do not list explicitly in the minimal requirements for the input environment.

2.3 Dependencies of Reproducibility

The previous sections discussed how computational environments can be described by a
set of properties and how such properties can be reproduced from other environments.

13

2 Defining Computational Environments and Reproducibility of Computational
Environments

But what is the actual meaning of a property like system.os = "Linux" ? The semantic
that we established is that the computational environment has a Linux OS installed.
But this leaves several details unspecified. For example, there are various distributions
of Linux available such as Debian, Arch or openSUSE. Additionally, all those Linux
distributions have multiple versions available.

So, when specifying a property like system.os, we are actually specifying an abstrac-
tion or an interface that can be implemented in various ways. This also means that
we can interpret two computational environments with two different Linux distributions
installed as equal. While this may seem counterintuitive at first glance, it can help us
avoid over-specifying environments to the point where they are no longer portable.

The question is: How much do we need to specify to achieve our initial goal of making
development tasks reproducible? To understand this we need to look at what is necessary
to reproduce a task in the first place. Every task of the development process uses
programs that need to execute reproducibly. We are now assuming that we do not use
any programs that intentionally behave irreproducibly by using random numbers for
example. To create the same output of the program over and over, we need to give the
program the same input. But a program has more inputs than just the user input it
processes. It may also have dependencies on other programs or other properties of the
computational environment it is executed in.

For example, the Python interpreter depends on the glibc library when used on a Linux
OS. But when it is used on Windows it uses the MSVC runtime library instead. While
both of these libraries are an implementation of the C standard library, they may behave
differently. The expectation of the Python interpreter is, of course, that it abstracts
these two different implementations and provides a single abstraction that behaves the
same on all operating systems. But this unified behavior across different dependencies
may also fail [10].

So, to ensure a program behaves exactly the same on all environments we would need
to reproduce not only the program itself but all of it’s dependencies. Those dependen-
cies itself can also depend on other dependencies that can modify the behavior of our
program. In figure 2.1 we can see a directed acyclic graph (DAG) that illustrates all the
software library dependencies of the Python interpreter on a Linux system. All those
libraries can be used during the runtime of a Python program that is executed with the
Python interpreter. Therefore all of these libraries can also change the behavior of our
program.

But software libraries and user inputs are not the only inputs to our program. For
example, the thread scheduler of our operating system is responsible to manage the
execution of threads. In some cases it might be possible that our program behaves
differently when the threads are executed in a different order. Another example are
semantic dependencies in our program such as file system paths. When referencing a
path like /usr/bin we implicitly require a UNIX file system hierarchy which is not
present on a Windows OS.

To identify all of the inputs that may change the behavior of our program is very
complex. Even more complex would it be to reproduce all of these inputs in a compu-

14

2.3 Dependencies of Reproducibility

Figure 2.1: Dependencies of the Python interpreter in a Linux environment

tational environment, up to the point of loosing portability to other environments. So,
for practical reasons we need to choose which sources of non-determinism we are willing
to accept and which we want to cover. This is a decision that needs to be evaluated by
each individual software project depending on the requirements as well as the trust one
is willing to give an abstraction in behaving the same across different implementations.

15

3 Approaches for implementing
Reproducibility

Contents

3.1 Hardware Requirements . 17
3.2 Disk Images . 18
3.3 Container Images . 20
3.4 Package Management Systems . 21
3.5 Reproducible Build Systems . 22
3.6 Building Blocks . 23

There are multiple approaches available that can be used to create reproducible computa-
tional environments on different abstraction levels. Each of these approaches introduces
a different set of features and trade-offs regarding the properties that can be reproduced.
The usage of one approach does not exclude the usage of another one, so rather than
seeing them as competitors they can bee seen as possible building-blocks to combine. In
this chapter I will describe the conceptual mechanics of each technique as well as the
gains and costs regarding the goal of creating reproducible environments for software
development purposes.

3.1 Hardware Requirements

Some properties of computational environments cannot be reproduced by a program
that implements a deterministic function. This includes hardware related properties, as
the hardware needs to be physically available and cannot be created by just running a
program. However, for some software development projects we might want to enforce
that every reproduced computational environment satisfies a certain set of hardware
properties. This can be implemented by specifying a certain set of hardware properties
that are required for the computational input environment. In this case the function fc,r
is more of a check that fails if the input environment is not equivalent to the require-
ments. The requirement can for example be as simple as the specification of the CPU
architecture or a minimum amount of RAM capacity. But the requirement can also be
much more restrictive up to the point of specifying one physical machine that has to be
used.

This approach provides multiple gains depending on the field of software development.
In the field of embedded software it is necessary to define certain properties of the hard-

17

3 Approaches for implementing Reproducibility

ware, as the applications are often tightly coupled with the electronics. The applications
therefore directly depend on some properties of the physical hardware environment. For
development and deployment purposes it therefore makes sense to restrict the hardware
as much as possible to avoid unexpected behavior.

However, this restriction comes at the cost of portability because every developer
needs access to a certain piece of hardware. Although it is possible to abstract from the
physical level by emulating hardware, the emulator can behave differently compared to
the physical hardware. [20] It therefore is a question of whether one is willing to trust
the emulator to gain more flexibility and portability across different environments. For
development purposes this can be a good trade-off where all development environments
can be reproducible by using emulators, avoiding the need of giving access to the phys-
ical hardware to each developer. It is furthermore possible to create dedicated testing
environments using exactly the same hardware that is being used in deployments. This
way development can happen on the emulated hardware but the software is additionally
tested on the real hardware before it gets released. [15]

To illustrate this, let us assume we are trying to develop an application for an AVR 1

based microcontroller like the Arduino 2. For developers to be able to write and test their
code we would need to distribute a microcontroller to each developer. Alternatively, we
could also setup a single microcontroller on which each developer has to test their code.
Either solution is not very flexible because either we have to distribute a lot of hardware
or developers need to coordinate access to the single hardware. As an alternative we
could use a system emulator like QEMU [36], so every developer can test code on their
machine. QEMU can run on almost any system architecture and all major operating
systems as host and is able to create a virtual AVR hardware that can execute code
written for it. The portability and flexibility is therefore much better than using real
hardware. On the other hand, the cost is that we have to assume that the emulation
might be inaccurate or behaves differently to the real hardware. Therefore we still test
the developed code on a real microcontroller before it gets released. The access to this
test device still needs to be coordinated but because it is just needed in the end of a
development cycle, the amount of access requests is decreased.

3.2 Disk Images
A disk image is a file containing all the contents of a data storage medium. In this case
I want to look at disk images that contain all necessary data like the operating system
(OS) and kernel to boot and use a computer. They can additionally contain all other
kinds of data like software applications and configuration files. Disk images can therefore
be used to capture and reproduce a lot of software related properties of a computational
environment.

There are two main ways to use a disk image. First, it can be transferred to a physical
device like a hard disk to enable a computer to boot from it. While this provides the

1AVR is is a family of microcontrollers developed by Atmel.
2Arduino is an open source single-board microcontroller project.

18

3.2 Disk Images

best computational performance of the two alternatives, it is not practical for developers
to constantly change the boot device and reboot the computer when the environment
changes. Additionally it can be necessary to restrict the physical hardware because the
OS on the image might be configured to expect a certain hardware like a x86 CPU for
example.

The second alternative is to create a virtual machine (VM). “A Virtual Machine (VM)
is a compute resource that uses software instead of a physical computer to run programs
and deploy apps.” [41] A VM runs on a physical computer (host) but uses its own
operating system independent from the host. VMs can abstract from the underlying
hardware of the host by creating virtual devices such as displays, hard disks and other
peripherals. Additionally, they can be combined with hardware emulators like described
in section 3.1. Using disk images with a VM instead of using them directly with hardware
therefore provides a better portability.

Apart from the dependency on hardware, disk images offer great portability, as they
place hardly any requirements on the input environment b. This is because all of the
software related information about the target environment c is encoded in the disk image
itself. The disk image can be interpreted as our recipe x. A deterministic function fc,r
can be provided by a hypervisor that creates and hosts virtual machines using disk
images.

However, using disk images for software development comes at a cost. As described
before in section 2.2, having almost no requirements to the input environment does mean
that x has to encode all necessary information on how to build the target environment.
This encoded information needs space, in our case disk space at rest and bandwidth when
transferred. Because the disk image needs to include the complete OS with all its con-
figurations, it can get very large. This can be problematic when trying to distribute the
file among developers as it can be slow. Especially for fast changing environments where
dependencies get frequently updated the size of disk images can be a major drawback.
Using disk images also does not allow multiple environments to share common software
components because each image ships its own copy which further increases bandwidth
to download and disk space to store the images. [9] Additionally, it is not possible to
easily merge two disk images. So for example, if Alice changes a file in her copy of the
disk image and Bob changes another file in his copy, it is not a trivial task to combine
these two changes into a new disk image containing both changes.

To tackle some of these problems there are tools that can create disk images and VMs
based on programmatic descriptions of the desired environment c. So instead of seeing
the image itself as the recipe x for our function fc,r we use another function fbuild with
input xbuild such that fc,r(b, fbuild(b, xbuild)) = c. This way fc,r is still the hypervisor
creating the VM but the disk image is created by fbuild.

One example of a tool providing a function fbuild is Packer by HashiCorp [33]. It can
create disk images based on a configuration where one can define which OS alongside
which software applications and configurations should be installed inside the disk image.
In theory this can reduce the bandwidth needed to share disk images as it is only
necessary to share the programmatic description alongside with a base image to build

19

3 Approaches for implementing Reproducibility

upon. Every developer can then build a disk image equivalent to the environment c
based on this base image and the description. The base image can be shared among
multiple environments which further decreases bandwidth. When a developer wants to
make a change to the environment, they put it in the description and rebuild the image.
The description can then be shared in a version control system and easily merged with
changes from other developers.

However, this approach does come with a caveat. Because the final disk image is
dynamically build on top of the base image, it either cannot reproduce as many properties
as a static disk image do or it needs to add more requirements to the input environment.
For example, we need the software library libExample in version 1.0 installed in our final
environment c. When working only with static disk images the library is included in
the image and the environment can be easily reproduced. But when we need to create
this image dynamically, the library somehow needs to be installed from somewhere.
Therefore it either needs to come encoded in the programmatic description xbuild of the
image or we need to add a requirement to the input environment that we can download
the library in this exact version from somewhere.

So, the trade-off of using these intermediate tools like Packer compared to just us-
ing disk images is gained ease of synchronization of the environments for the cost of
less reproducible properties and/or more input environment restrictions meaning less
portability.

3.3 Container Images

Another approach to reproduce computational environments are container images. Con-
tainer images are essentially like disk images as it is possible to put arbitrary files and
executable programs inside a container image. But unlike disk images they can only
include one file system and not an entire disk with all its partitions. A running com-
putational environment that is created from a container image is called a container. To
create a container, a container image has to be loaded by a container runtime on a host
system. This is similar to VMs but instead of using a separated kernel to interact with
the hardware, containers use the kernel of the host’s OS. “To put it simply, containers
virtualize at the operating system level, whereas hypervisor-based solutions virtualize at
the hardware level.” [25]

The advantages of using containers over VMs are that they are more lightweight, as
they do not require to run their own operating system with kernel, system services, etc.
Containers have isolated user spaces from the host’s OS and therefore cannot see other
processes or files outside their own container. So for a process inside a container it looks
like there are only the container’s processes on the system. This enables us to create
multiple containers on a host that do not interfere with each other, similar to VMs.
Additionally, container images can be much smaller than bootable disk images for VMs.
Container images can even just include one single binary that gets executed.

The disadvantages of using container images to reproduce computational environments
are mainly the same as using disk images. Although the image sizes can be significantly

20

3.4 Package Management Systems

smaller compared to images for VMs, the synchronization issues of the images are the
same.

To tackle this issue there is a similar approach to the one building disk images. Instead
of modifying and distributing container images directly, we can build container images
based on descriptions. A popular tool that implements this approach is called Docker
[12]. Docker can be used to build, run and manage containers and container images. But
it comes with the same limitations regarding reproducibility as Packer for disk images.
Namely, we either need to reduce the amount of properties in c that can be reproduced
or increase the requirements to the input environment. This is also because the recipes
to build container images can execute arbitrary non-deterministic commands depending
on various inputs such as package repositories to install software into the image.

Compared to VMs, containers have another drawback. Because they depend on the
host’s kernel they can only run on hosts with similar kernels. [19] This means that a
container image containing binaries that were compiled for a Linux kernel cannot run
on macOS, which uses the XNU kernel for example. To use the same containers across
different operating systems it is therefore necessary to run the containers in a VM when
the host’s OS does not provide the necessary kernel.

3.4 Package Management Systems

A package management system (alternative: package manager) is a tool that manages
the state of software installed on an OS. Package managers can be used to reproduce the
available applications and software libraries in a computational environment. Software
artifacts that form a coherent component are bundled in so called software packages.
A software package can require the installation of other software packages in order to
guarantee that the included applications and libraries can be used correctly. These
dependencies between software packages can then be resolved by the package manager.

Let us have a look at a simple example. We want to have the software package Python
3 installed in our reproducible environment c. The software package itself includes mul-
tiple files, such as the binary executable for the interpreter but also the Python standard
library as source files for example. In section 2.3 we have already seen the software de-
pendencies of Python 3. The direct dependencies are attached to the Python 3 package
as some kind of meta information. The packages that provide the direct dependencies
can also have their own dependencies. When we install the Python 3 package with our
package manager of choice, it will go through the dependencies recursively, trying to
resolve and install all software artifacts that are necessary to use Python 3.

While this eases the management of software packages, there are multiple challenges
to ensure reproducibility of the software installed by a package manager on a system.
First, the software packages and their dependencies have to be available to the package
manager. This is in practice often achieved by using repositories of software packages
that are hosted online. Using these online repositories makes installing new packages
very accessible as we do not need to manually collect all information about a package to
install it. However, this also means that the reproducibility of the environment directly

21

3 Approaches for implementing Reproducibility

depends on their availability and whether they still host the software package we wish to
install. Depending on the granularity to which we define our reproducible environment
c this can be a problem. Package repositories often update the packages they host so
you can only get the latest version of the package. But if we define our environment
with an older version of a package, it might not be available anymore.

3.5 Reproducible Build Systems

Build systems (aka build-tools) are general purpose task execution managers. [26] A
common use case for build systems is the building of software from its source. This
process can include multiple tasks like the compilation of source code, the linking to
libraries and the creation of software packages for package managers. All these tasks
and their dependencies on each other can be defined and get automatically executed in
the right order by the build system.

A reproducible build system is designed to do the same thing with the additional
feature of guaranteeing the exact same result for each build. This means for example,
that a build process for the same source code executed in two different environments
will result in two bit-by-bit identical binaries. This quality is also known under the term
reproducible builds [38]. The reproducible build system achieves this by eliminating all
sources of non-determinism that may cause differences in the result of the build. This
includes environment variables, system time and timestamps of the source files. Also
things like ensuring that all dependencies that get downloaded during the build process
are always the same and do not change.

An example of a reproducible build system is the open source build-tool Bazel [3]
which is developed by Google.

Having reproducible builds can be very useful as it is ensured that every developer can
always recreate exactly the same binary to check for bugs for example. It can also act as
a building block for a chain of trust because third parties can verify that a distributed
binary is in fact the result of a build process with given input [22]. Additionally, repro-
ducible builds can make caching of build artifacts more reliable because it is guaranteed
that a build process with a certain input will always generate the same output. When
a build artifact for the input is already present in the cache it can therefore be used
without running the build process again. This can improve the speed of incremental
builds because only the source code modules that have been changed need to be rebuild.

On the other hand, using a reproducible build system can result in a lot of operational
overhead. This is because every input to the build process as well as every dependency
need to be exactly defined in order to guarantee that the result will be the same. This
overhead even led big projects like Kubernetes to delete their reproducible build system
as it was too hard to maintain. [14]

22

3.6 Building Blocks

Hardware
Requirements Emulators

Reproducible
Build Systems

Container
Images

Disk Images

Package
Managers

Build
Results

Software
Packages

OS

Kernel

Hardware

Figure 3.1: Overview of the available approaches to create a reproducible computational
environment

3.6 Building Blocks
All the presented approaches to reproducible environments provide their own set of
properties they can reproduce in exchange for portability. In figure 4.1 we can see an
overview of all the approaches with the category of properties they are able to reproduce.
The approaches can be freely combined with another like building blocks to create the
best solution for a given software development project.

For example, if the project includes the development of OS kernel drivers for a custom
hardware, it might be beneficial to use disk images on VMs together with hardware
emulators. The disk images can reproduce the same kernel version for every developer
and the hardware emulators eliminate the need of equipping every developer with a real
piece of the custom hardware.

In case of developing a C++ web server you might decide that a container image is
sufficient to provide the same software dependencies to every environment.

When developing an application in a high-level language like JavaScript and the end
result that is shipped to the customer needs to be bit-by-bit reproducible for compliance
reasons, you might combine a package manager with a reproducible build system.

23

4 Case Study: Reproducible Environment
for Cross-Project Integration Testing

Contents

4.1 Project Requirements . 25
4.2 Choice of Technologies . 28
4.3 Implementing the Reproducible Environment 32

4.3.1 Creating the Nix Environment 32
4.3.2 Direnv for Automatic Loading of the Nix Shell 35
4.3.3 Using the Nix Environment in the CI Pipeline 35
4.3.4 Binary Caching . 36

Up to this point I have defined what a reproducible computational environment is and
described several approaches to create reproducibility of such environments. But for the
task of writing software we also need to know how well these concepts apply to the real
world. Therefore I transformed a real-world development project at my industry partner
Open-Xchange to use a reproducible computational environment.

In this chapter I will describe the different phases of how I implemented this environ-
ment. First I will go over the project’s requirements and the goals I try to achieve with
the reproducible environment. Then I will explain which technologies I chose to use and
how they fit the requirements. After this I will go into more details about the actual
implementation and what steps were necessary to transform the project. In the end I
will evaluate whether I could achieve the goals for the project and what problems still
need to be solved.

4.1 Project Requirements

Open-Xchange is a company that creates open source software products. One of the main
products is the OX App Suite [32] which is a web-based communication, collaboration
and office productivity software suite with groupware features.

The backend of this software is written in Java using the OSGi framework [40]. OSGi
enables Java applications to be modularized into components that can be developed
and deployed independently from each other. The components for the backend are
developed by different teams each with their own Git repository for version control.
For the development process we use a simple GitHub flow [16] branching strategy in
the repositories, where a feature gets implemented in a short lived feature branch and

25

4 Case Study: Reproducible Environment for Cross-Project Integration Testing

merged back into the main branch when ready.
While this separation allows the development teams to develop their component inde-

pendent from each other, it can also lead to problems when APIs change. For example,
there is a core component which encapsulates all the base features of the backend and
another component handling interactions with documents. The documents component
uses the API of the core component, so when the team of the core component changes
their API, they might not notice that they are also breaking functionality of the docu-
ments component. While the core team does not notice any problem when they build
their component, the build process of the documents team might fail with the new core
API as dependency. To avoid this problem there is a central integration project that can
be used to collect all components from their Git repositories and build them together.
This way one can check if a change in one component causes an error in the build process
of another component. This testing is also automated in a CI pipeline such that the
teams are only allowed to merge their changes back into the main branch if this pipeline
succeeds.

The integration project is therefore a crucial part of the daily development workflow.
A lot of developers depend on it to work properly and fast. If there was an error in
the CI pipeline of the integration project, it would stop many developers from working.
Additionally, the project needs to run in different environments like the mentioned CI
pipeline but also on a lot of developer’s workstations. These environments need to
behave the same, so when an error occurs in the CI pipeline we are able to reproduce it
on another machine to fix the problem.

This already gives us some objectives for the reproducible environment:

1. Portability - across different workstations and the CI pipeline

2. Developer Experience - as a lot of developers interact with the environment, it
should be as easily usable as possible and integrate with the individual development
workflows of each developer

3. Reliability - because it gets used for every merge on every component and errors
might delay the release of features and bug-fixes

4. Performance - because otherwise it can be a bottleneck for the whole development
process

Let us examine a little bit further the process that gets executed when the CI pipeline
runs and what properties of the environment are necessary to reproduce. First, the
components are cloned from their Git repository. Therefore we need a Git client to
be installed. All components and their dependencies will occupy around 3Gb of disk
space, so it is a requirement to have enough free space. Next, the build process for the
components gets executed. As a build system we use Gradle [17] and Apache Ant [1]
both of which also require a Java runtime environment (JRE) to run. Because we want
to regularly update the versions of these build tools to benefit from continuous speed
improvements, we chose to run them with the newest Java runtime in version 17. The

26

4.1 Project Requirements

build system is configured to run different tasks such as compiling the Java source code.
For the compilation of the source code we also need another Java runtime including
the development source files and the Java compiler. This collection of runtime, source
files and development tools is called the Java development kit (JDK). The backend
components do not use the newest version of Java, instead they need a JDK in version
8. After the compilation of the source code, the compiled artifacts need to be bundled
using a tar archive. Additionally, user manual files are automatically created using a
tool named pandoc [23]. In the end a container image should be build to deploy the
backend with all components. For this purpose we chose to use the tool Docker [12].

{
"freeDiskSpace": ">3Gb",
"accessible": [

"Git repositories of all components"
],
"system.os": "Linux OR macOS",
"software": [

{ "name": "coreutils", "version": "9.1" },
{ "name": "git", "version": "2.36.1" },
{ "name": "jre", "version": "17.0.3" },
{ "name": "jdk", "version": "8.0.322" },
{ "name": "gradle", "version": "7.5.0" },
{ "name": "ant", "version": "1.10.11" },
{ "name": "pandoc", "version": "2.17.1.1" },
{ "name": "gnutar", "version": "1.34" },
{ "name": "gzip", "version": "1.12" },
{ "name": "docker", "version": "20.10.17" }

]
}

Listing 9: The computational environment for the integration project

In listing 9 you see a representation of the final environment c we need to reproduce.
It includes all properties that are necessary to start the build process. Of course, having
such an environment does not imply that the build process will produce a working result
as this also depends on the source code. Furthermore, these properties are not complete
in the sense that every error that occurs on one machine can be reproduced on another
machine. It is more a baseline which can be expanded in the future when we notice
irreproducible behavior across implementations of this environment.

27

4 Case Study: Reproducible Environment for Cross-Project Integration Testing

4.2 Choice of Technologies

To implement the environment there are multiple approaches available as we have seen
in chapter 3. Each of these approaches also offers multiple implementations in the form
of software applications. While it is possible to create the reproducible computational
environment in many different ways, each one comes with its own trade-offs.

First of all we have two dependencies that are directly related to the hardware and
which cannot be reproduced any other than to require them from the input environment.
This is of course for one the available disk space. The other one is the accessibility of
the Git repositories of the components. The environment needs a network connection to
the servers hosting the Git repositories. For the sake of having a lightweight solution we
will just require that all these servers hosting the Git repositories do work as expected
and are reachable via the available network.

Other requirements to the used hardware only arise from the availability of the needed
software for different CPU architectures. However, we only use x86-64 and AArch64
CPUs in all our servers and workstations. All the required software applications are
available or can at least be cross-compiled for both architectures. Of course, running
the applications on different architectures could potentially introduce irreproducible be-
havior but for the first iteration of this implementation I will accept this calculated risk
and mitigate it if I feel it becomes necessary in the future.

When it comes to the OS we do require a UNIX like OS such as Linux or macOS. All
the servers for the CI pipelines run on Linux and most of the developers at Open-Xchange
run Linux or macOS on their workstations. However, there are some developers that use
a Windows OS. For these developers it is necessary to create a UNIX like environment
on their workstation. As we have seen, VMs can be a useful approach to do this.
Because this step is only necessary for machines that run on Windows, we can rely on
the Windows Subsystem for Linux (WSL) [43]. It is a feature of recent Windows versions
that lets you run a very lightweight VM with a Linux kernel that is highly integrated
with the host’s OS. This way the computational performance overhead is minimal and
developers can easily integrate the environment into their development workflows.

Up until now the selected approaches can be used to reproduce everything of our
environment except for the installed software. To achieve having the same software in
exactly the same version installed in all environments there are multiple approaches we
could use.

We could use disk images to create VMs with all the software applications pre-installed.
But this has multiple drawbacks such as reduced computational performance for the
build process. Additionally, the environment is frequently updated to benefit from im-
proved speed and stability of the newer application versions. Nevertheless, we still want
to keep the ability to quickly rollback to older versions of software if an update intro-
duced a bug. These updates and eventual rollbacks would mean that developers need to
download new images frequently which is time and disk space consuming.

Alternatively, we could use container images to give every developer access to the
needed applications. This would have the advantage that the image sizes would be

28

4.2 Choice of Technologies

smaller and the computational overhead would be more lightweight.
However, there might be a different approach that is even better than using container

images. Let us step a bit back and think about how we would create these container
images. The most forward approach would be to take a base image of a Linux distribution
like Debian and use the package manager of that distribution to install the necessary
software on top of the base image. The newly created image would then be used by the
developers and the CI servers. But when someone wants to change the environment, they
would need to create a new container image, upload it to a central server where every
developer and CI server can access it and then inform everyone that this uploaded image
is the new environment for the project. This can get confusing, especially when multiple
developers would like to change properties of the environment in separate branches that
later get merged back into the main branch. Each of the container images from the
feature branches would then be incorrect to further base the development on as they
only contain one of the two changes to the environment. A new container image which
contains both changes would need to be created and published.

The other option for using containers would be to let every developer and CI system
build the container image themselves from a recipe like a Dockerfile. The downside
to this approach is that for using a package manager to install the necessary software
packages into the image, we need to use a package repository. There are two options for
this. Either we use a public repository that is managed by the maintainers of the Linux
distribution for example, or we need to run our own package repository. The first option
does imply a dependency on an external service and we cannot verify that the needed
software packages are still available in the specified version when we need them. So for
example, when Alice creates a container image from the Dockerfile and Bob creates a
container image an hour later, the two images might have completely different versions
of packages installed. Running our own package repository could solve this issue as we
would be able to keep all versions of packages that we have ever used. But it imposes a
lot of additional operational overhead to run the package repository hosting all necessary
packages in all the needed versions with all the transitive dependencies for every version.

Fortunately, there is a solution to this problem. I chose to implement the reproducibil-
ity of the software packages with Nix. Nix is an open source, purely functional package
manager and reproducible build system [28]. It emerged from the work of Dolstra, de
Jonge, and Visser [13] and was first released in 2003.

But what exactly does a purely functional package manager do? “Functional package
management is a discipline that transcribes the functional programming paradigm to
software deployment: build and installation processes are viewed as pure functions in
the mathematical sense – whose result depends exclusively on the inputs –, and their
result is a value – that is, an immutable directory.” [9] So instead of installing software
packages like other package managers do, by placing and replacing the contents of the
package directly into the file system of the OS, in Nix each package has its own dedicated
path and it cannot overwrite any files outside this path. The directory holding all the
software packages is called the nix store and by default it is located at /nix/store. For
example, the Java development kit (JDK) could be installed into this directory:

29

4 Case Study: Reproducible Environment for Cross-Project Integration Testing

/nix/store/y9h42qm7mn9x29awfzfzga16diilb7a1-openjdk-17.0.3+7
Inside this directory are all the contents of the package like the Java compiler in this

example. The name of the directory consists of two elements. A hash value that is
derived from all inputs to this package and an human readable name of the package.
The inputs to a package consist of the source code of the application as well as all
dependencies for the package. Therefore even changing the version of a dependency,
changes the hash of the final package. This way we can pin the entire dependency
tree of the software package with just one hash value, as every change of a transitive
dependency would change the hash value of a direct dependency, which would result in
a different hash value of our software package.

This approach gives us the ability to install multiple versions of a package on the
same system because even if the version number of the software did not change but
the source files from which the package is build did, it would result in a different hash
value thus a different directory where it gets installed to. This is different from more
traditional package managers where all executable binaries for example are installed into
one directory like /usr/bin. When two packages provide binaries with the same name
they cannot be installed together without a conflict in this case.

To make the contents of the nix store accessible to the user, nix uses so called profiles.
A profile is basically just a collection of symbolic links that construct an environment
with a subset of the packages in the nix store. Therefore it is possible for two users
of a system to use completely different versions of a software package. These profiles
can also be created on a per-project basis. This feature is called nix-shell. It enables
the developer to quickly instantiate and load a predefined profile with all the necessary
software packages for a development project. Each project can also use different versions
of packages and once the packages are present in the nix store, the switching to a different
profile is just a matter of creating some symbolic links and loading some environment
variables. Additionally, unlike other approaches to create software environments, it does
not use any virtualization and can therefore integrate with other software running on
the system like the IDE for example.

Software packages do need to be defined using Nix’s own expression language which
is also called Nix. In listing 10 we can see such a definition of an example package.
It is essentially a single function with input arguments and one output. The input
arguments provide the nix stdenv, which is used to pull in basic tools such as the GNU
core utilities. The other arguments provide the fetchurl function to download artifacts
from the internet as well as the software packages ghc, which is the Glasgow Haskell
compiler and a library zlib. The output of the function is a derivation which is basically
a standardized build script that describes how exactly the package has to be build. In
the definition of the derivation we can see that we are defining the name and the version
of our package. The source code is downloaded from an external server. Note, that the
hash value of the file has to be specified in order to guarantee that the downloaded file
is always the same. There is a build and an install phase to build the software from the
downloaded source code and install it into the $out directory which is a variable for the
final directory in the nix store.

30

4.2 Choice of Technologies

1 { stdenv, fetchurl, ghc, zlib }:
2 stdenv.mkDerivation rec {
3 pname = "myPackage";
4 version = "1.0.0";
5

6 src = fetchurl {
7 url = "http://git.rwth-aachen.de/${pname}-${version}.tar.gz";
8 sha256 = "010b25bb234f747973351e6..."
9 };

10

11 buildInputs = [ghc zlib];
12

13 buildPhase = ''
14 ./Setup build
15 '';
16

17 installPhase = ''
18 mkdir -p $out/bin
19 cp build_output/${pname} $out/bin
20 '';
21

22 meta = {
23 description = "My super awesome package";
24 };
25 }

Listing 10: A simple Nix expression for an example package

31

4 Case Study: Reproducible Environment for Cross-Project Integration Testing

When the derivation of the nix expression is build, the result is called a realisation.
These realisations can then be cached and even shared, so other users do not have to
execute the build steps again.

The Nix package manager also has an official repository called Nixpkgs [30] which has
such derivations for a lot of software packages. Different from other package repositories,
the Nixpkgs are just a Git repository hosting only the Nix expressions to build the
packages. This way the repository can be pinned to a specific Git commit, making it
always available. But note, that most derivations depend on external inputs such as the
Git repositories of the source code. So in order to build these derivations it is necessary
that the source is still available under the specified location.

Because we are only using well established open source software applications in our
environment, we will assume that these source code repositories will be available and
continue to host the specified commits in the nix expression files.

Using the Nix package manager rather than using virtualization techniques such as
container images has the big advantage that there is no barrier between applications
executed inside and outside a nix-shell. Developers can use the IDEs they have installed
on their OS along with other tools and configurations in their system. Process isolation
might be a useful feature when using software on a server to avoid certain clashes in the
namespace but when it comes to tasks such as debugging on a workstation it is more a
barrier than being a help.

Nevertheless, our CI pipeline is build on containers to enable restricted and controlled
environments for the builds and tests of software. Additionally it provides a good ab-
straction to freely distribute the CI pipeline workload across multiple heterogeneous
servers using Kubernetes. To be able to use the same Nix environment as developers
do with the nix-shell in the CI, we have to instantiate the nix-shell inside a container.
For this case I am using the official NixOS container image, as it has already the Nix
package manager pre-installed.

To sum up the choice of technologies that are being used, figure 4.1 shows an overview
of the used building blocks and how they build upon each other. Linux and macOS
workstations can use the nix-shell directly. Developers using Windows have to use the
WSL to create a Linux VM. The CI runs on Linux servers, that run a Kubernetes that
orchestrates NixOS containers running the nix-shell.

4.3 Implementing the Reproducible Environment

Now that we have decided which technologies we should use, we need to actually imple-
ment them for our project’s environment.

4.3.1 Creating the Nix Environment

The first task is to install Nix on our workstation. Nix can be easily installed on any
Linux or macOS system including the WSL for Windows by executing a simple bash

32

4.3 Implementing the Reproducible Environment

x86_64 / AArch64
Hardware

Linux macOS

Windows

WSL

Kubernetes

NixOS
Container

Nix Shell Environment

JDK 8 Gradle Pandoc ...

Linux

Figure 4.1: An abstract overview of the implementation of the reproducible environment

script as installer. After the installation we can use the nix command line utilities to
interact with the system.

The next task is to define an environment for our project. It should be noted that
there are multiple ways to do this. In the past there have been some competing solutions
on how to define a Nix environment for a project. In our case we will use the new API
called flakes [29] that has been recently released and provides a more unified and officially
supported approach. To create an environment for our project using the flakes API we
need to create a flake.nix file in the root directory of our project.

In listing 11 you can see a simplified version of this flake.nix file. A flake.nix file
consists of an input and an output section. In the input section every input that gets
used to create the environment must be declared. In our case we are using the official Nix
package repository Nixpkgs as well as an utility library to help us write the expression
more concise. In line 3 you can see that the Nixpkgs get declared as an input from their
official GitHub repository. We are referencing the Git branch nixpkgs-unstable as it
includes the newest versions of the needed software packages. In line 4 you can see the
same thing for the utility library flake-utils where by default the main branch is used.

Declaring the inputs like this does not pin the applications to a fixed version as the
branches are constantly updated. To use one specific commit of the Git repository we
could either use the commit’s hash value in the input section of the flake.nix file or
we use another file called flake.lock. The advantage of using this lock file is that the
update process can be automated by simply running the command nix flake update.
This automatically creates or updates the lock file which then contains the hash value
of the commit where the branch points at. When the environment is build, only the
commit referenced in this lock file will be used to get the derivations from the Nixpkgs.
This means that as long as this lock file stays the same, the versions of the applications

33

4 Case Study: Reproducible Environment for Cross-Project Integration Testing

1 {
2 inputs = {
3 nixpkgs.url = "github:NixOS/nixpkgs/nixpkgs-unstable";
4 flake-utils.url = "github:numtide/flake-utils";
5 };
6

7 outputs = { self, nixpkgs, flake-utils, ... }:
8 flake-utils.lib.eachDefaultSystem
9 (system:

10 let
11 pkgs = nixpkgs.legacyPackages.${system};
12 in
13 {
14 devShell = pkgs.mkShell {
15 packages = with pkgs; [
16 coreutils
17 git
18 jdk8
19 gradle
20 ant
21 pandoc
22 gnutar
23 gzip
24 docker
25];
26 };
27 }
28);
29 }

Listing 11: Nix environment configuration

34

4.3 Implementing the Reproducible Environment

in the environment stay the same.
In the output section we define a devShell which defines a standard nix-shell of this

project. It would also be possible to define multiple named nix-shells each with a different
set of applications for different use cases. From line 15 to line 25 you can see that we
are specifying all the needed applications for creating the environment. Note, that we
do not need to specify the JDK 17 version as the Gradle package already includes it to
by default.

The rest of the file is just the necessary boilerplate to use the same flake file across
different environments. For example, in line 8 the same outputs get created for “each
default system”. By looking into the source code of the flake-utils library we can see
that the list of default systems include AArch64 and x86_64 architectures with Linux
and macOS / Darwin as OS.

4.3.2 Direnv for Automatic Loading of the Nix Shell

To be able to interact with the specified environment developers can checkout the Git
repository of the integration project and execute the command nix develop inside the
project’s directory. This will build and install all the necessary derivations into the
nix store of the workstation and create a shell environment with the specified packages
available using symbolic links. This process can even be automated using a tool called
direnv [11]. It is an extension for the shell that automatically looks for .envrc files in
directories and evaluates them when entering a directory containing such a file. This
.envrc file can contain a simple instruction to automatically load the nix shell when
entering the directory and when exiting the directory it will exit the environment. This
makes interacting with the project very simple as the environment is automatically
available anytime the developer interacts with the project.

4.3.3 Using the Nix Environment in the CI Pipeline

While using the nix-shell feature of Nix is great for local development, it is not as simple
for using the environment in our CI pipelines. Our CI system is based on the Jenkins
automation server which executes all the workload in containers running on a Kubernetes
cluster. Therefore we also need to instantiate our environment inside a container. To do
this there are several options.

First, we could simply build a container image from the definition of our environment.
Nix includes a feature called dockertools that does exactly this. The problem with
this approach is that the image needs to be available in the beginning of CI pipeline’s
execution. But when the environment changes the image needs to be build at first.

A very simple solution that I chose to implement is to use the official NixOS container
image that can be downloaded from public container repositories like DockerHub. NixOS
is a Linux distribution that builds upon the concepts of the Nix package manager to
configure the entire system. It ships with the Nix package manager by default which
enables us to instantiate the nix-shell inside the container.

35

4 Case Study: Reproducible Environment for Cross-Project Integration Testing

Another more complex solution would be to run a meta pipeline on every execution
of the pipeline which checks first if the environment has changed and then rebuilds the
container image and triggers the main pipeline with the correct image. This approach
would have the advantage that the complete environment could be cached by the con-
tainer runtimes of the CI servers which would probably result in faster startup times of
the environment.

4.3.4 Binary Caching
Until now there is one major drawback to this setup. Every time someone instantiates
the environment on a new workstation and every time the CI pipeline runs, all the
derivations of our environment need to be build from their source code. This of course is
not very efficient and therefore the Nix package manager has a mechanism called binary
substitution. It enables us to build derivations once and upload them to a binary cache
server. Then every time we would need to build the derivation again Nix first checks
the cache server for a substitution and downloads it when available. The Nix project
hosts a public binary cache providing prebuilt binaries for the derivations in the Nixpkgs
repository. However, we would like to have a caching server that is inside our network
and can therefore serve the substitutions at much higher speeds.

To implement a caching server there are again multiple solutions available. The most
simplest of all would be to dedicate one host to run a program called nix-serve that
makes all the contents of the host’s nix store available via HTTP. To populate the cache
all the built derivations have to be copied to the host using SSH for example. This
approach has the drawback that it has a single point of failure and bottleneck relying
on one single host.

Another approach that I chose to use is an object storage through a S3 API. The
advantage of this is that we can use our already existing highly available storage cluster
and do not need to run any other dedicated machine or server program. To automat-
ically populate the cache I configured the CI pipeline to upload all derivations of the
environment after it has been instantiated. This way new derivations are only build
once in the CI environment and can then be used through the binary cache by following
pipeline runs and also other developers.

36

5 Evaluation

In this chapter, I will discuss the results of my case study and evaluate whether I suc-
ceeded in answering my research questions. I will go through the research questions in
descending order starting with the evaluation of the case study.

5.1 Evaluation of the Case Study

My third research question was: “How can a reproducible computational environment
be implemented in a software development project?” To give an illustration of how this
might be possible, I implemented a reproducible environment for a real-world software
development project at Open-Xchange. For the implementation of the reproducible
environment I had multiple goals in the beginning. I will go through each of the goals and
evaluate whether I could achieve it with the current implementation of the reproducible
environment and what improvements are possible for the future.

5.1.1 Portability

I tested the Nix environment across all the supported operating systems: Linux, macOS
and Windows.

In the case of Linux and macOS I installed Nix directly to the system with the official
installer. The Linux distribution I used for the testing were Manjaro and NixOS with a
Linux kernel in version 5.15. The macOS version was macOS Monterey 12.4.

In the case of the Windows OS I used Windows 10, enabled the WSL in version 2 and
used an Ubuntu 22.04 Linux distribution as the OS of the WSL. Then I installed Nix
into the WSL like on the other Linux distributions.

The CI system uses the Nix shell in NixOS 22.05 containers that run on a Kubernetes.
Due to lack of access to AArch64 hardware, I could only test the implementation on

x86_64 hardware.
I assume that an environment successfully instantiated by Nix always contains software

packages with exactly one version of the source code. This assumption is due to the fact
that Nix compares the hashes of every input to the build process, including the source
code. The only divergence in the binary files of the packages is due to different CPU
architectures and either a Linux or Darwin kernel.

Executing the build process of the project works across all tested environments. I could
not observe any irreproducible behavior although the binary applications provided by
Nix are not identical in every environment, as explained before. If irreproducible be-
havior occurs in the future, I would have to reconsider if the environment needs further

37

5 Evaluation

restrictions to a certain CPU architecture or OS. But these restrictions would mean of
course, that more developers would need to run a VM and CPU architecture emulator.
This makes it harder for these developers to integrate the environment into their typical
development workflow or use other tools on their system in combination with the repro-
ducible environment. I will therefore first wait to evaluate the amount of issues due to
divergence of the environments in contrast to the cost of convenience for developers.

5.1.2 Developer Experience

The environment integrates well with other tools like IDEs on the host system. I tested
using the environment in Visual Studio Code and emacs. Both IDEs have plugins avail-
able that make it possible to load .envrc files from direnv. This way they have access to
exactly the same applications as when you manually load the environment in the termi-
nal. Nevertheless, other tools from the system are still available and can be used in the
development process. This is due to the fact that no process isolation is necessary for
creating the environment and programs outside the Nix environment can easily access
the programs Nix is providing. Furthermore, the CI environment now has the identical
packages installed as the local development environments, making it easier to fix bugs
in the CI pipeline.

A possible problem for future maintenance could be the Nix expression language as
it is rather unintuitive for developers not familiar with the concept of functional pro-
gramming. There is already an approach to abstract this language for the nix-shell
called devshell [31]. Instead of using the flake.nix file to change the environment it
uses a very simple TOML file. Using this could therefore make the maintenance of the
environment more accessible.

To further evaluate the developer experience, surveys among the developers at Open-
Xchange who are using this environment could be conducted.

5.1.3 Reliability

Due to the fact that the current solution only uses Nix, the WSL and container images for
the environment, it is fairly stable. This is because Nix has been around since 2003 and
has an active community of maintainers that work on making the system more stable.
The official Nixpkgs repository is also at the time of writing the largest most up-to-date
package repository of all Linux package distributions. [37] Nevertheless, there have been
some issues with broken packages after an update of the environment, since we are using
the unstable channel to always get the newest versions of the packages. But this is not
really an issue as a rollback to an old version of the environment just requires to restore
the old lock file from the version control.

The reliability of the WSL and container runtimes have not been further explored by
me.

38

5.2 Evaluation of the Theoretical Concepts

5.1.4 Performance

The performance of the instantiation of the environment depends on multiple factors.
First, the initial building of the environment on a developer’s workstation can be rather
slow. In most cases the official binary caches of the Nixpkgs are already populated with
the needed derivations eliminating the need to build the software from its source code.
Nevertheless, the derivations need to be downloaded from the binary cache server over the
internet which can be slow depending on the internet connection. Once the environment
has been build on one workstation, the next instantiation of the environment on the
same workstation is very fast as it only needs to create some symbolic links to the nix
store.

For the CI pipelines it is very similar. The first run with an updated environment
needs to use the official binary caches over the internet. After this initial run the internal
S3 binary cache is populated which makes the next instantiation faster as the derivations
can be loaded from the company-internal network storage. However, it still is not as fast
as using pre-build container images which can be completely cached on the hosts that
run the containers. Therefore I will create a meta-pipeline in the future that creates the
container images when the nix environment changes. This is likely to increase the speed
of instantiation for following CI pipeline runs as the nix environment can be completely
cached by the hosts that run the containers.

The computational runtime performance is not affected by the Nix approach as the
binaries are directly executed on the underlying system as if they were installed as normal
packages by the OS. For developers using a Windows OS there is the additional runtime
overhead of running the applications on the WSL which I did not benchmark.

5.2 Evaluation of the Theoretical Concepts

My second research question was: “What are the available approaches to achieve repro-
ducibility and how do they compare?”

I created a catalogue of different approaches that can be used as building-blocks to
implement reproducible environments. All the approaches can reproduce different prop-
erties of the environment, while having different requirements for the input environment.
Using these characteristics as trade-offs I was able to compare them in my case study to
find a matching solution to my requirements. I combined the approach of reproducible
package management with Nix to install the required software packages reproducibly. I
used virtual machines in form of the WSL to be able to use Nix on a Windows host.
Additionally, I used containers to be able to use Nix in the CI environment.

My first research question was: “What is a definition of reproducibility of computa-
tional environments beyond the context of scientific experiments that also covers envi-
ronments for software development?”

I provided a definition based on mathematical models to describe computational en-
vironments as well as reproducibility of computational environments. In the catalogue
of approaches I was able to argue about the properties that can be reproduced by an

39

5 Evaluation

approach using the definition of computational environments. Additionally, I was able
to argue about trade-offs between the properties of the output environment, the com-
plexity of the recipe and the requirements to the input environment using the definition
of reproducibility of computational environments. In the case study I was also able to
use the JSON representation of the expected environment to argue about possible ap-
proaches. Therefore I can conclude that the provided definitions were sufficient to specify
and argue about the reproducibility of computational environments in this thesis.

40

6 Conclusion

In this thesis I explained what a reproducible computational environment is and what
benefits it can provide in the context of software development. The main argument
for having reproducible environments is to reduce “it works on my machine” problems
and unify the computational environments of developers and other systems like the CI
pipeline.

I presented a definition of computational environments that can be used to describe
any computational environment in various details. The definition uses a structure that
can be visualized in a JSON syntax with arbitrary nested attributes. With this defini-
tion, two computational environments can be compared with each other in equivalence.
The definition also refines other existing definitions of computational environments while
still being compatible with them. I also presented a definition of reproducibility of com-
putational environments. It uses a deterministic function that, applied to an input
environment and a recipe, produces an output environment that is equivalent to the
desired reproducible environment. The definition can be used to help arguing about the
different approaches to reproducibility.

I created a catalogue of approaches to reproducible computational environments. The
different approaches each have their own set of properties they are able to reproduce
under certain conditions. Each approach therefore has its own trad-offs regarding the
portability of environments and the amount of properties one can reproduce. The ap-
proaches can be combined like building-blocks in different ways to fit the needs of a
project.

In the case study I implemented a reproducible environment for a real-world software
project. I compared the trade-offs of the different approaches in the context of the given
project and decided on a subset of approaches to use. I showed how it is possible to
reproduce software packages across different environments using Nix.

6.1 Future Work

My definition of computational environments creates a framework for describing com-
putational environments with arbitrarily named properties. However, there is no stan-
dardization of identifiers for these properties. Therefore, anyone can use their own
identifiers to refer to a particular property of their environment. In order to use the def-
inition for more practical implementations, it might be interesting to define a standard
set of identifiers. This schema could then be used to automatically create descriptions
of environments and share them with others. This allows for other use cases such as
automatically selecting the “best” approaches to reproducing the environment.

41

6 Conclusion

As discussed in section 2.3, software applications always have dependencies on the
environment. These dependencies can be for example other software packages or the
CPU architecture to run on. It is already possible to automatically scan for these
dependencies and create a dependency graph. However, as already mentioned there can
also be other more semantic dependencies like the structure of the file system that is
expected or the dependency on a certain input device. To be able to automatically detect
these dependencies would require a deep understanding of the semantics of the source
code. It could be interesting to explore this further in order to create fully automated
and complete scans of the dependencies of a program.

In this thesis I implied that using reproducible environments for software development
might improve the development workflow. While I showed that the divergence of en-
vironments can be minimized, it is not yet clear if the benefit actually outweighs the
effort. It might be possible that maintaining the reproducible environments imposes a
bigger workload than “just dealing with diverging environments”. To be able to explore
this further, long-term studies are needed that compare development teams that use
some form of reproducible environments with development teams not using reproducible
environments.

As for using Nix in a containerized CI pipeline, the best approach for doing so has yet
to be evaluated. The mentioned meta-pipeline to dynamically create container images
might be one possible solution that performs better than the current one in this case
study. However, there might be other more elegant solutions out there.

42

Bibliography

[1] Apache Ant. Apache Software Foundation. url: https://ant.apache.org/ (cit.
on p. 26).

[2] L. A. Barba. Terminologies for Reproducible Research. Feb. 9, 2018. arXiv: 1802.
03311 [cs]. url: http://arxiv.org/abs/1802.03311 (visited on 07/03/2022)
(cit. on p. 7).

[3] Bazel. Google. url: https://bazel.build/ (cit. on p. 22).
[4] F. C. Y. Benureau and N. P. Rougier. “Re-Run, Repeat, Reproduce, Reuse, Repli-

cate: Transforming Code into Scientific Contributions.” In: Frontiers in Neuroinfor-
matics 11 (Jan. 4, 2018), p. 69. issn: 1662-5196. doi: 10.3389/fninf.2017.00069.
url: http : / / journal . frontiersin . org / article / 10 . 3389 / fninf . 2017 .
00069/full (visited on 07/06/2022) (cit. on p. 11).

[5] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format. Dec.
2017. doi: 10.17487/RFC8259. url: https://www.rfc-editor.org/info/
rfc8259 (cit. on p. 10).

[6] G. Brown. “It Works on My Machine! How Container Technologies Like Docker
Can Revolutionize Continuous Integration.” 2014. url: https://www.usenix.
org/conference/ures14/technical-sessions/presentation/it-works-my-
machine-how-container-technologies (cit. on p. 1).

[7] J. F. Claerbout and M. Karrenbach. “Electronic Documents Give Reproducible
Research a New Meaning.” In: SEG Technical Program Expanded Abstracts 1992.
SEG Technical Program Expanded Abstracts 1992. Society of Exploration Geo-
physicists, Jan. 1992, pp. 601–604. doi: 10 . 1190 / 1 . 1822162. url: http : / /
library.seg.org/doi/abs/10.1190/1.1822162 (visited on 07/03/2022) (cit. on
pp. 7, 11).

[8] T. T. W. Community. The Turing Way: A Handbook for Reproducible, Ethi-
cal and Collaborative Research. Version 1.0.1. Zenodo, Nov. 10, 2021. doi: 10.
5281/ZENODO.5671094. url: https://zenodo.org/record/5671094 (visited on
05/04/2022) (cit. on pp. 7, 8).

[9] L. Courtès and R. Wurmus. “Reproducible and User-Controlled Software Environ-
ments in HPC with Guix.” In: Euro-Par 2015: Parallel Processing Workshops. Ed.
by S. Hunold et al. Vol. 9523. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2015, pp. 579–591. isbn: 978-3-319-27307-5 978-3-319-
27308-2. doi: 10.1007/978-3-319-27308-2_47. url: http://link.springer.

43

https://ant.apache.org/
https://arxiv.org/abs/1802.03311
https://arxiv.org/abs/1802.03311
http://arxiv.org/abs/1802.03311
https://bazel.build/
https://doi.org/10.3389/fninf.2017.00069
http://journal.frontiersin.org/article/10.3389/fninf.2017.00069/full
http://journal.frontiersin.org/article/10.3389/fninf.2017.00069/full
https://doi.org/10.17487/RFC8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.usenix.org/conference/ures14/technical-sessions/presentation/it-works-my-machine-how-container-technologies
https://www.usenix.org/conference/ures14/technical-sessions/presentation/it-works-my-machine-how-container-technologies
https://www.usenix.org/conference/ures14/technical-sessions/presentation/it-works-my-machine-how-container-technologies
https://doi.org/10.1190/1.1822162
http://library.seg.org/doi/abs/10.1190/1.1822162
http://library.seg.org/doi/abs/10.1190/1.1822162
https://doi.org/10.5281/ZENODO.5671094
https://doi.org/10.5281/ZENODO.5671094
https://zenodo.org/record/5671094
https://doi.org/10.1007/978-3-319-27308-2_47
http://link.springer.com/10.1007/978-3-319-27308-2_47
http://link.springer.com/10.1007/978-3-319-27308-2_47

Bibliography

com/10.1007/978-3-319-27308-2_47 (visited on 05/03/2022) (cit. on pp. 19,
29).

[10] CPython Bug Report on Windows. GitHub. Mar. 10, 2015. url: https://github.
com/python/cpython/issues/67822 (visited on 07/31/2022) (cit. on p. 14).

[11] Direnv. url: https://direnv.net/ (cit. on p. 35).
[12] Docker. Docker, Inc. url: https://www.docker.com/ (cit. on pp. 21, 27).
[13] E. Dolstra, M. de Jonge, and E. Visser. “Nix: A Safe and Policy-Free System for

Software Deployment.” In: Proceedings of the 18th USENIX Conference on System
Administration (Atlanta, GA). LISA ’04. USA: USENIX Association, 2004, pp. 79–
92 (cit. on p. 29).

[14] B. Elder. Kubernetes Pull Request: Remove Bazel. GitHub. Mar. 1, 2021. url:
https://github.com/kubernetes/kubernetes/pull/99561 (visited on 07/31/2022)
(cit. on p. 22).

[15] J. Engblom. “Continuous Integration for Embedded Systems Using Simulation.”
In: Embedded World 2015 Congress. 2015 (cit. on p. 18).

[16] GitHub Flow. url: https://docs.github.com/en/get-started/quickstart/
github-flow (visited on 07/16/2022) (cit. on p. 25).

[17] Gradle. Gradle Inc. url: https://gradle.org/ (cit. on p. 26).
[18] M. A. Heroux et al. Toward a Compatible Reproducibility Taxonomy for Com-

putational and Computing Sciences. SAND2018-11186, 1481626. Oct. 1, 2018,
SAND2018–11186, 1481626. doi: 10.2172/1481626. url: http://www.osti.
gov/servlets/purl/1481626/ (visited on 07/03/2022) (cit. on p. 7).

[19] P. Ivie and D. Thain. “Reproducibility in Scientific Computing.” In: ACM Com-
puting Surveys 51.3 (May 31, 2019), pp. 1–36. issn: 0360-0300, 1557-7341. doi:
10.1145/3186266. url: https://dl.acm.org/doi/10.1145/3186266 (visited on
07/03/2022) (cit. on pp. 2, 8, 21).

[20] M. Jiang et al. Automatically Locating ARM Instructions Deviation between Real
Devices and CPU Emulators. Aug. 12, 2021. arXiv: 2105.14273 [cs]. url: http:
//arxiv.org/abs/2105.14273 (visited on 07/31/2022) (cit. on p. 18).

[21] L. Kuper et al. “Freeze after Writing: Quasi-Deterministic Parallel Programming
with LVars.” In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’14: The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. San
Diego California USA: ACM, Jan. 8, 2014, pp. 257–270. isbn: 978-1-4503-2544-8.
doi: 10.1145/2535838.2535842. url: https://dl.acm.org/doi/10.1145/
2535838.2535842 (visited on 07/06/2022) (cit. on p. 13).

[22] C. Lamb and S. Zacchiroli. “Reproducible Builds: Increasing the Integrity of Soft-
ware Supply Chains.” In: IEEE Software 39.2 (Mar. 2022), pp. 62–70. issn: 0740-
7459, 1937-4194. doi: 10.1109/MS.2021.3073045. url: https://ieeexplore.
ieee.org/document/9403390/ (visited on 08/01/2022) (cit. on p. 22).

44

http://link.springer.com/10.1007/978-3-319-27308-2_47
http://link.springer.com/10.1007/978-3-319-27308-2_47
http://link.springer.com/10.1007/978-3-319-27308-2_47
http://link.springer.com/10.1007/978-3-319-27308-2_47
https://github.com/python/cpython/issues/67822
https://github.com/python/cpython/issues/67822
https://direnv.net/
https://www.docker.com/
https://github.com/kubernetes/kubernetes/pull/99561
https://docs.github.com/en/get-started/quickstart/github-flow
https://docs.github.com/en/get-started/quickstart/github-flow
https://gradle.org/
https://doi.org/10.2172/1481626
http://www.osti.gov/servlets/purl/1481626/
http://www.osti.gov/servlets/purl/1481626/
https://doi.org/10.1145/3186266
https://dl.acm.org/doi/10.1145/3186266
https://arxiv.org/abs/2105.14273
http://arxiv.org/abs/2105.14273
http://arxiv.org/abs/2105.14273
https://doi.org/10.1145/2535838.2535842
https://dl.acm.org/doi/10.1145/2535838.2535842
https://dl.acm.org/doi/10.1145/2535838.2535842
https://doi.org/10.1109/MS.2021.3073045
https://ieeexplore.ieee.org/document/9403390/
https://ieeexplore.ieee.org/document/9403390/

Bibliography

[23] J. MacFarlane. Pandoc. url: https://pandoc.org/ (cit. on p. 27).
[24] M. Mercier, A. Faure, and O. Richard. “Considering the Development Workflow to

Achieve Reproducibility with Variation.” In: SC 2018 - Workshop: ResCuE-HPC.
Dallas, United States, Nov. 2018, pp. 1–5. url: https://hal.inria.fr/hal-
01891084 (cit. on pp. 4, 8).

[25] D. Merkel. “Docker: Lightweight Linux Containers for Consistent Development and
Deployment.” In: Linux J. 2014.239 (Mar. 2014). issn: 1075-3583 (cit. on p. 20).

[26] A. Mokhov, N. Mitchell, and S. Peyton Jones. “Build Systems à La Carte.” In:
Proceedings of the ACM on Programming Languages 2 (ICFP July 30, 2018),
pp. 1–29. issn: 2475-1421. doi: 10.1145/3236774. url: https://dl.acm.org/
doi/10.1145/3236774 (visited on 07/16/2022) (cit. on p. 22).

[27] O. S. Navarro Leija et al. “Reproducible Containers.” In: Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. ASPLOS ’20: Architectural Support for Program-
ming Languages and Operating Systems. Lausanne Switzerland: ACM, Mar. 9,
2020, pp. 167–182. isbn: 978-1-4503-7102-5. doi: 10.1145/3373376.3378519. url:
https://dl.acm.org/doi/10.1145/3373376.3378519 (visited on 05/03/2022)
(cit. on p. 11).

[28] NixOS / Nix Package Manager. url: https://nixos.org/ (cit. on p. 29).
[29] NixOS RFC 0049 - Flakes. url: https://github.com/NixOS/rfcs/pull/49

(cit. on p. 33).
[30] Nixpkgs. url: https://github.com/NixOS/nixpkgs (cit. on p. 32).
[31] Numtide Devshell. Numtide. url: https://github.com/numtide/devshell (cit.

on p. 38).
[32] OX AppSuite. url: https://www.open-xchange.com/products/ox-app-suite/

(visited on 07/16/2022) (cit. on p. 25).
[33] Packer. HashiCorp. url: https://www.packer.io/ (cit. on p. 19).
[34] C. Paulsen and R. Byers. Glossary of Key Information Security Terms. NIST IR

7298r3. Gaithersburg, MD: National Institute of Standards and Technology, July
2019, NIST IR 7298r3. doi: 10.6028/NIST.IR.7298r3. url: https://nvlpubs.
nist.gov/nistpubs/ir/2019/NIST.IR.7298r3.pdf (visited on 05/04/2022)
(cit. on p. 8).

[35] R. D. Peng. “Reproducible Research in Computational Science.” In: Science 334.6060
(Dec. 2, 2011), pp. 1226–1227. issn: 0036-8075, 1095-9203. doi: 10.1126/science.
1213847. url: https://www.science.org/doi/10.1126/science.1213847 (vis-
ited on 07/03/2022) (cit. on p. 3).

[36] QEMU. Version 7.0.0. url: https://www.qemu.org/ (cit. on p. 18).
[37] Repology: Repository Statistics. url: https://repology.org/repositories/

statistics/newest (visited on 07/27/2022) (cit. on p. 38).

45

https://pandoc.org/
https://hal.inria.fr/hal-01891084
https://hal.inria.fr/hal-01891084
https://doi.org/10.1145/3236774
https://dl.acm.org/doi/10.1145/3236774
https://dl.acm.org/doi/10.1145/3236774
https://doi.org/10.1145/3373376.3378519
https://dl.acm.org/doi/10.1145/3373376.3378519
https://nixos.org/
https://github.com/NixOS/rfcs/pull/49
https://github.com/NixOS/nixpkgs
https://github.com/numtide/devshell
https://www.open-xchange.com/products/ox-app-suite/
https://www.packer.io/
https://doi.org/10.6028/NIST.IR.7298r3
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.7298r3.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.7298r3.pdf
https://doi.org/10.1126/science.1213847
https://doi.org/10.1126/science.1213847
https://www.science.org/doi/10.1126/science.1213847
https://www.qemu.org/
https://repology.org/repositories/statistics/newest
https://repology.org/repositories/statistics/newest

Bibliography

[38] Reproducible Builds. url: https://reproducible-builds.org/ (cit. on p. 22).
[39] R. F. Schmidt. “Software Architecture.” In: Software Engineering. Elsevier, 2013,

pp. 43–54. isbn: 978-0-12-407768-3. doi: 10.1016/B978-0-12-407768-3.00003-3.
url: https://linkinghub.elsevier.com/retrieve/pii/B9780124077683000033
(visited on 05/04/2022) (cit. on p. 8).

[40] A. L. Tavares and M. T. Valente. “A Gentle Introduction to OSGi.” In: ACM
SIGSOFT Software Engineering Notes 33.5 (Aug. 31, 2008), pp. 1–5. issn: 0163-
5948. doi: 10.1145/1402521.1402526. url: https://dl.acm.org/doi/10.
1145/1402521.1402526 (visited on 07/16/2022) (cit. on p. 25).

[41] VMware. What Is a Virtual Machine? url: https://www.vmware.com/topics/
glossary / content / virtual - machine . html (visited on 06/13/2022) (cit. on
p. 19).

[42] What’s New In Python 3.0. Python 3 Documentation. url: https : / / docs .
python.org/3/whatsnew/3.0.html (visited on 07/30/2022) (cit. on p. 2).

[43] Windows Subsystem for Linux (WSL). Microsoft. url: https://docs.microsoft.
com/en-us/windows/wsl/ (cit. on p. 28).

46

https://reproducible-builds.org/
https://doi.org/10.1016/B978-0-12-407768-3.00003-3
https://linkinghub.elsevier.com/retrieve/pii/B9780124077683000033
https://doi.org/10.1145/1402521.1402526
https://dl.acm.org/doi/10.1145/1402521.1402526
https://dl.acm.org/doi/10.1145/1402521.1402526
https://www.vmware.com/topics/glossary/content/virtual-machine.html
https://www.vmware.com/topics/glossary/content/virtual-machine.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.microsoft.com/en-us/windows/wsl/
https://docs.microsoft.com/en-us/windows/wsl/

Bibliography

47

	Introduction
	Reproducibility in Scientific Computing
	Software Development as a Scientific Experiment
	Research Questions

	Defining Computational Environments and Reproducibility of Computational Environments
	Defining Computational Environments
	Defining Reproducibility of Computational Environments
	Dependencies of Reproducibility

	Approaches for implementing Reproducibility
	Hardware Requirements
	Disk Images
	Container Images
	Package Management Systems
	Reproducible Build Systems
	Building Blocks

	Case Study: Reproducible Environment for Cross-Project Integration Testing
	Project Requirements
	Choice of Technologies
	Implementing the Reproducible Environment

	Evaluation
	Evaluation of the Case Study
	Evaluation of the Theoretical Concepts

	Conclusion
	Future Work

	Bibliography

