
The present work was submitted to
the Research Group
Software Construction

of the Faculty of Mathematics,
Computer Science, and
Natural Sciences

Bachelor Thesis

Human–enabled management
of software quality ontologies

presented by

Moritz Konstantin Rickert

Aachen, September 30, 2022

Examiner

Prof. Dr. rer. nat. Horst Lichter

Prof. Dr. rer. nat. Bernhard Rumpe

Supervisor

Alex Sabau, M. Sc.

Eidesstattliche Versicherung
Statutory Declaration in Lieu of an Oath

___________________________ ___________________________

Name, Vorname/Last Name, First Name Matrikelnummer (freiwillige Angabe)
Matriculation No. (optional)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/

Masterarbeit* mit dem Titel
I hereby declare in lieu of an oath that I have completed the present paper/Bachelor thesis/Master thesis* entitled

__

__

__

selbstständig und ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting)

erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt.

Für den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich,

dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in

gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
independently and without illegitimate assistance from third parties (such as academic ghostwriters). I have used no other than

the specified sources and aids. In case that the thesis is additionally submitted in an electronic format, I declare that the written

and electronic versions are fully identical. The thesis has not been submitted to any examination body in this, or similar, form.

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

*Nichtzutreffendes bitte streichen

*Please delete as appropriate

Belehrung:
Official Notification:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung

falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei

Jahren oder mit Geldstrafe bestraft.

Para. 156 StGB (German Criminal Code): False Statutory Declarations

Whoever before a public authority competent to administer statutory declarations falsely makes such a declaration or falsely

testifies while referring to such a declaration shall be liable to imprisonment not exceeding three years or a fine.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so

tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158

Abs. 2 und 3 gelten entsprechend.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to Negligence

(1) If a person commits one of the offences listed in sections 154 through 156 negligently the penalty shall be imprisonment not
exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time. The provisions of section 158 (2)
and (3) shall apply accordingly.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:
I have read and understood the above official notification:

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

Rickert, Moritz Konstantin 407755

Human–enabled management of software quality ontologies

Aachen, September 30, 2022

Aachen, September 30, 2022

Acknowledgment
First and foremost, I would like to thank Prof. Dr. rer. nat. Horst Lichter for the
opportunity to write my thesis at his chair and Prof. Dr. rer. nat. Bernhard Rumpe for
reviewing my thesis.

For their part in my evaluation, I would also like to thank all participants for taking their
time to evaluate the concepts of my thesis and for the feedback they provided. Without
their participation, I would not have been able to validate my concepts statistically.

In addition, I would like to thank my family and friends for their constant support and
proofreading of my thesis.

Last but not least, a special thank you goes to my supervisor M. Sc. Alex Sabau, for
his guidance with direction and a great deal of engagement. His constructive criticism
challenged my assumptions and understanding.

Moritz Konstantin Rickert

Abstract
Software quality is crucial in many areas of application. Therefore, asserting software
quality is an essential activity of software engineering and research in this domain. Soft-
ware Quality Ontologies (SQOs) formalize the complex and abstract components and
semantic relationships of software quality for knowledge sharing by modeling semantic
relationships between software quality concepts. However, due to the high complexity of
SQOs, visual representation is beneficial. Up to our knowledge there does not exist an
ontology management tool supporting the unique needs to represent the characteristics
of SQOs.

This thesis introduces a new approach for the visual representation and maintenance
of SQOs by reconciling different representation techniques. We evaluate our approach by
conducting a user survey with the System Usability Scale. The quantitative analysis of
our concepts concludes that the presented approach statistically significantly improves
the user experience. In addition, the qualitative analysis of the user survey reveals a
better understanding of software quality.

Utilizing our concepts in SoQOnto, we are able to support researchers in their under-
standing and maintenance of SQOs. Additionally, the extendability and replaceability
of SoQOnto allows for the implementation of new concepts not considered in this thesis.

Contents

1. Introduction 1
1.1. Structure of This Thesis . 2

2. Background 3
2.1. Ontologies . 3
2.2. Software Quality Ontologies . 4
2.3. Resource Description Framework . 4

3. Motivation and Problem Statement 7
3.1. Research Method . 8

4. Related Work 11
4.1. Sub-Ontology Extraction . 11
4.2. Related Tools . 13

5. Concept 15
5.1. Conceptual Background . 15
5.2. Component Definitions . 17
5.3. Algorithms . 19
5.4. Ontology Representation Concepts . 22

6. Design 27
6.1. Data Persistence . 27
6.2. Data Model . 28
6.3. Architectural Design . 29
6.4. Discussion . 30

7. Realization 31
7.1. Realization Background . 31
7.2. Ontology Realization . 33
7.3. Base Application Realization . 35
7.4. Basic Visualization . 37
7.5. Advanced Visualization . 37

8. Evaluation 39
8.1. Quantitative Evaluation – User Survey . 39
8.2. Answers to the Research Questions . 47
8.3. Limitations . 48

i

9. Conclusion and Future Work 49
9.1. Conclusion . 49
9.2. Future Work . 50

A. Evaluation Tasks 51

B. Evaluation Questionnaire 57
B.1. Demographics . 57
B.2. Basic Visualization . 57
B.3. Advanced Visualization . 58
B.4. Additional Feedback . 59

C. Evaluation Feedback 61

Bibliography 69

List of Tables
3.1. Amount of Measures jointly used for Quality Attributes based on [HP16;

11] . 8

5.1. Treetable visualization of an ontology . 24

iii

List of Figures
3.1. Last iteration of the “Car” ontology before development of SoQOnto . . . 10

5.1. An abstract example of the value calculation algorithm. 20
5.2. A real-world example of the value calculation algorithm. 21
5.3. An abstract view on the round-based value calculation triggered by a

value change of Tactic1. 22
5.4. Overview view of an ontology . 24
5.5. Before and after of selection filter application for focus on Correlations

(Subclass relation disabled, not showing isolated Nodes) on overview view 25
5.6. Effect of depth limited to two . 26

6.1. Classes used to represent all parts of an SQO 28
6.2. VisualizationManager implementing the strategy pattern 30

7.1. qa ontology class and property definitions not representing solutions to
technical limitations. Arrows in the color of a box show a relation of all
concepts in the box. “a” relations of classes to rdf:class are omitted. . . . 34

7.2. Parts of the real–world ontology are visualized using the basic visualization 37
7.3. Views of the Advanced Visualization . 38
7.4. Comparison of Node selection . 38

8.1. Case–study ontology based on SQuaRE, extended with research con-
ducted at our chair [iso] . 41

8.2. Gender and age of participants . 43
8.3. Familiarity of participants with graphs and software quality (attributes) . 43
8.4. Total System Usability Scale score (normalized to 100) 44
8.5. System Usability Scale ratings comparison by question 45
8.6. Additional questions ratings comparison by question 46

v

List of Source Codes
2.1. Turtle definition of this thesis without prefix usage 5
2.2. Turtle definition of this thesis with prefix usage 6

7.1. Circumventing the triple’s limitation with an unnamed artifact 34
7.2. Problem when exporting ontology containing unnamed artifacts from neo4j 35
7.3. Adding a weighted Correlation with a named Correlation artifact 35
7.4. Constructor for a visualization with all optional functionality 36

vii

1. Introduction

We depend on software in nearly every aspect of our lives, e.g., at our workplace or
even in life-threatening situations at a hospital. Even if we only consider the economic
fallout of non–reliable software, the costs are enormous. In 2020, in the United States
alone, software failing in operation cost companies an estimated $1.56 trillion [Kra21].
Therefore, we need reliable software to reduce costs and ease our everyday lives.

As a result, software quality is an important research field of software engineer-
ing [KLR16]. Assuring software quality means taking actions necessary to comply with
given quality requirements [90]. Defining these requirements needs an understanding of
software quality and its measures [Bøe08]. Measurability and comparability of software
quality are described and structured by software quality models. The most used soft-
ware quality model is SQuaRE (ISO/IEC 25010) [11; HP16]. Understanding the effects
of measures contained in software quality models on each other is an essential aspect of
understanding software quality [Bøe08].

To formalize these correlations, complementing the taxonomy of software quality mod-
els allows for knowledge sharing [SBF98]. Software Quality Ontologies (SQOs) extend
the taxonomy of software quality found in software quality models with a formalization
of semantic relations, including correlations [Sun+20]. As software quality is an exten-
sive, abstract domain, numerous components and relations are included [MD06; HP16].
Grasping information at this scale is a hard–to–solve problem, since humans have a lim-
ited ability to fathom complex problems [LL13]. Even on problems with comparatively
low complexity, we draw unsound conclusions. Visualizations aid the human perception
and exploration of data, allowing us to understand more complex problems [Reu+90].
Therefore, to complement the researchers’ skills in SQO management, we aim to intro-
duce a visual representation of the complex field of software quality.

In this thesis, we aim to enhance the human–enabled management of SQOs through the
introduction and combination of representation and management methods. We utilize
well–proven ontology representation methods and newly introduced methods for the
representation and management of SQOs. Using an ontology task classification [NSL18],
we subdivide our effort into representations targeted at each task class. For decreased
abstractness, we create a real–world ontology incorporating characteristics of SQOs. The
real–world ontology is based on the field of a car as an everyday item for the familiarity
of the artifacts contained. With this easier–to–understand ontology, the focus can be
laid on the before–mentioned methods implemented in our web application SoQOnto.
In the next section, we outline the structure of this thesis.

1

1. Introduction

1.1. Structure of This Thesis
We begin by introducing background information vital to understanding our research in
chapter 2. In chapter 3, we provide the motivation and problem statement, including
our research questions and the research method for this thesis. Then, in chapter 4, we
introduce related work and argue their relation to SQOs. Beginning with our work, we
describe the backgrounds of, and the concepts for SQO representation and management
in chapter 5. Following our concepts, we outline our application’s design in chapter 6.
Then, in chapter 7, we introduce our realization and evaluate, and discuss the results of
our evaluation conducted as a user survey in chapter 8. Finally, we conclude this thesis
by summarizing our research findings and outlining possible future work in chapter 9.

2

2. Background

Contents

2.1. Ontologies . 3
2.2. Software Quality Ontologies . 4
2.3. Resource Description Framework . 4

2.3.1. Web Ontology Language . 5
2.3.2. Turtle . 5

In this chapter, we introduce background knowledge needed in the course of this thesis.
We begin by introducing ontologies and SQOs as the data source of our visual represen-
tation. In the following section, we introduce the Resource Description Framework as
the data exchange model for ontologies, the Web Ontology Language as a vocabulary ex-
tension, and the textual syntax for Resource Description Framework (RDF) definitions
Turtle, which we use in this thesis.

2.1. Ontologies

The word “ontology” has its roots in the philosophical sense of the research of attributes
belonging to something because of its existence [GOS09]. Philosophically, ontologies
emerged in the field of nature and its structure. In this context, the physical existence
of the concept to be represented is of no concern.

With the emergence of knowledge engineering, ontologies found their way into com-
puter science. In the knowledge engineering community, ontologies define computational
artifacts [GOS09]. We utilize Studer et al.’s definition of ontologies in the field of com-
puter science as “a formal, explicit specification of a shared conceptualization” [SBF98].
This definition is based on both Gruber’s definition as an “explicit specification of a
conceptualization” [Gru93] and Borst’s definition as a “formal specification of a shared
conceptualization” [BAT97]. All definitions refer to a conceptualization, underlining that
ontologies are abstract models of reality. Additionally, Studer’s definition includes the
aspect of a shared conceptualization, hinting at the important use case for knowledge
sharing. Ontologies structure this shared knowledge through concepts and relations. An
ontology combines the hierarchical structure (a taxonomy) with non-hierarchical rela-
tions. [GOS09]

3

2. Background

2.2. Software Quality Ontologies
Essential instruments in describing and structuring software quality are software quality
models. The included structural concepts and relations start from the top down with
Quality Attributes, which subdivide software quality into clearly defined parts. These
Quality Attributes are abstract and are subdivided into Quality Factors. Quality Fac-
tors are measured with Metrics. Thus, in order to evaluate compliance with Quality
Attributes, the Metrics of Quality Attributes must be determined and measured. The
collected values can then be indirectly assigned to the Quality Attributes via its Quality
Factors.

When researching software quality, we need a well–formalized representation of the
software quality model’s concepts. To address not only the structure of software quality
but also the semantical relations, including correlations, software quality models need
an extension. Therefore, we define SQOs as follows:

Definition. A Software Quality Ontology formalizes the concepts and relations of soft-
ware quality for shared conceptualization. It complements the concepts and hierarchy
found in software quality models with additional semantically associated relations.

In this thesis, the semantically associated relations are restricted to measure–to–
measure correlations and correlations in parallel to hierarchical relations.

2.3. Resource Description Framework
To formally define the concepts contained in SQOs, we use the Resource Description
Framework. The RDF [GS14] is a web standard first defined by the World Wide Web
Consortium (W3) in 1996, outlining a standardized model for data exchange on the world
wide web. Although the W3 designed the RDF for describing web content, resources do
not need to be accessible on the web. This design allows describing nearly everything1

in a standardized way. [McB04]
Resource descriptions in the RDF consist of named properties and their values [Bec14].

The predefined vocabulary in RDF Schema (RDFS) [BG14] can be used to define prop-
erties, classes, and relationships. Many ontologies use aspects of RDFS. Used aspects
include classes (rdfs:Class) and subclass relationships (rdfs:subClassOf). Additionally,
when defining a property, constraints on the subject’s and object’s class membership are
defined using rdfs:domain and rdfs:range, respectively.

To uniquely identify the resources defined, a URI is used. The components of a
URI are the prefix, identifying the resource as part of a vocabulary (e.g., for rdfs:
“http://www.w3.org/2000/01/rdf-schema#”)2, and a name in that vocabulary. How-
ever, some resources named blank Nodes or b-Nodes do not have a URI. Vocabularies
may include blank Nodes since RDF statements can only formalize relationships between

1RDF does not include negations and universal quantifiers
2For simplicity in the course of this chapter, we abbreviate the URI with the short-form “prefix:name”

(e.g., using “rdfs” as a prefix rather than the absolute URI).

4

2.3. Resource Description Framework

two Nodes. Blank Nodes provide a possibility of structuring data. However, as RDF’s
background does not lie in the space of ontologies, essential components of ontologies
are not defined. [McB04]

2.3.1. Web Ontology Language
The Web Ontology Language (OWL)1 [MH04], also defined by the W3, extends the RDF
with additional ontology–specific vocabulary, allowing for simpler ontology definitions.
Since the OWL’s background lies in the field of ontologies, it provides vocabulary de-
pended on in many ontologies defined using the RDF. The OWL’s vocabulary targets
the representation of knowledge divided into concepts, groups of concepts, and their
relations (e.g., domain-dependent range definitions for properties). Therefore, the OWL
allows the definition of entire ontologies in the RDF. [AH04; MH04]

2.3.2. Turtle
To define concepts and relations of SQOs in the RDF, we use the Terse RDF Triple
Language (Turtle). Turtle is a compact form of writing RDF syntax and creating an
RDF graph in natural text form, compatible with the N-Triples format published with
the RDF [Bec14]. Turtle introduces abbreviations for datatypes and commonly used
patterns, significantly shortening the document size of ontologies and increasing read-
ability. One abbreviation significantly improving the readability of an ontology is the
prefix definition previously used in this chapter for readability. A comparison of the
readability using prefixes and the a abbreviation (rdf:type) is shown in source code 2.1
and source code 2.2. For this reason, we use Turtle when referencing RDF definitions in
this thesis.
1 <http://example.com/#HumanEnabledMgmtOfSQOs > rdf:type <http://example.

com/#Thesis > ;
2 <http://example.com/#ThesisTitle > "Human -enabled management of

software quality ontologies" ;
3 <http://example.com/#ThesisStudent > "Moritz Konstantin Rickert" ;
4 <http://example.com/#ThesisChair > <http://example.com/#SWC> ;
5 <http://example.com/#ThesisSupervisor > <http://example.com/#

AlexSabau > ;
6 <http://example.com/#ThesisExaminer > <http://example.com/#

HorstLichter > ;
7 <http://example.com/#ThesisExaminer > <http://example.com/#

BernhardRumpe > .

Source Code 2.1: Turtle definition of this thesis without prefix usage

1http://www.w3.org/2002/07/owl

5

2. Background

1 @prefix ex: <http://example.com/#> .
2

3 ex:HumanEnabledMgmtOfSQOs a ex:Thesis ;
4 ex:ThesisTitle "Human -enabled management of software quality

ontologies" ;
5 ex:ThesisStudent "Moritz Konstantin Rickert" ;
6 ex:ThesisChair ex:SWC ;
7 ex:ThesisSupervisor ex:AlexSabau ;
8 ex:ThesisExaminer ex:HorstLichter ;
9 ex:ThesisExaminer ex:BernhardRumpe .

Source Code 2.2: Turtle definition of this thesis with prefix usage

6

3. Motivation and Problem Statement

Software quality is a much–researched area of software engineering [Boe+07]. As a re-
sult, structured knowledge about the characteristics contained in software quality mod-
els is constantly being extended [11; HP16]. To formalize these characteristics and their
semantical relations and allow for knowledge sharing, SQOs are employed [Sun+20;
SBF98]. However, quality attributes have an influence on other quality attributes [HP16],
therefore, increasing the complexity of already complex and abstract characteristics of
SQOs [MD06]. In our view, because of these correlations and the static nature of repre-
sentation, existing solutions, like Protégé1, offer insufficient support for understanding
software quality. Therefore, the need for dedicated representation concepts focused on
the specific characteristics of SQOs arises.

The abstract nature of software quality prohibits a focus on the concepts of ontology
management and representation, as the complex data contained needs understanding.
To enable the introduction of concepts, we formalize a domain of an everyday item
with reduced abstractness in a real–world ontology. This leads us to our first research
question:

RQ1: How can a real–world ontology, incorporating all relevant aspects of a Soft-
ware Quality Ontology, look like?

Even with a real–world ontology providing reduced abstractness, a software–based
visualization needs concepts to represent a large amount of information. However, since,
to our knowledge, no tool targeting the representation of SQOs exists, most concepts
employed must prove themselves in practice, leading us to our second research question:

RQ2: How can a visual representation support the understanding of the compo-
nents and relations of SQOs?

We can differentiate the ontology representation concepts into two groups. Firstly,
concepts that represent the effect of correlations between two attributes and, secondly,
concepts that distinguish between different characteristics of SQOs. The importance of
understandability of correlations in SQOs is underlined through the amount of jointly
used measures in software quality models (See table 3.1). To reflect the groups of con-
cepts needed, we also divide our research question:

RQ2.1: How can the effects of Correlations between Measures and Metrics be
visualized?

1https://protege.stanford.edu/

7

3. Motivation and Problem Statement

RQ2.2: How can the aspects of quality be represented in an understandable way?

With the use of these two groups of concepts for a better understanding of software
quality, the second principle of ontologies, the shareability of knowledge, and additionally
management, still need to be implemented:

RQ3: How can the modification and sharing of a represented ontology be simplified?

In order to answer these questions, we introduce our research method and real–world
ontology in the next section.

Com
patib

ility

Port
ability

Main
tain

ability

Perfo
rmance Efficien

cy

Secu
rity
Usab

ility

Relia
bility

Functional Suitability 3 3 3 2 2 2 2
Reliability 3 3 5 2 3 2
Usability 2 2 2 2 1
Security 2 2 3 2
Performance Efficiency 3 2 3
Maintainability 4 3
Portability 3

Table 3.1.: Amount of Measures jointly used for Quality Attributes based on [HP16; 11]

3.1. Research Method
This section introduces our real–world ontology as the research method we apply during
the development of our concepts and SoQOnto. To generate results faster and extend
our ontology and tool simultaneously as needed, we opt for an iterative approach, utiliz-
ing the concept of rapid prototyping [Gra94]. Our first prototypes are developed using a
top–down approach [Cha91], enabling us to divide–and–conquer the characteristics we
see and suspect in SQOs. For later prototypes incorporating additional characteristics,
the approach is changed to a bottom–up approach [Jør04]. Using the bottom–up ap-
proach allows us to sharpen both the prototypes of ontology and software by gaining
an increased understanding of the project’s execution and planning [Jør04]. We then
evaluate the effectiveness of newly introduced prototypes and only adopt concepts that
effectively support the users with their tasks. Prototyping is a perfect fit for our needs
since not all concept requirements can be determined prior to development [LL13]. Gor-
don et al. [GB95] also found the rapid prototyping method to help create software that is

8

3.1. Research Method

easier to use and better tailored to the users’ needs, therefore, enabling humans to man-
age SQOs. Meanwhile, the effort needed for a working product decreases. Based on this
approach, we introduce the specifics of our real–world ontology used during development
in the remainder of this section.

3.1.1. Real–World Ontology
In order to begin the process of prototyping visualization concepts for SQOs, we need an
ontology incorporating all characteristics expected in SQOs. We introduce a real–world
ontology for developing representation concepts to avoid the need for time–consuming
familiarization with the topic of software quality. Therefore, we base our real–world on-
tology around an everyday item: the “Car.” Using car vocabulary in our ontology allows
us to implement the characteristics of SQOs, while not worrying about technicalities and
abstractness of software quality attributes. In the spirit of rapid prototyping, we create
a small basic ontology framework with only a few Attributes, which we extend as we
develop further concepts as needed.

Since the “Car” ontology development starts before the implementation of SoQOnto
– needing a visualization – we develop the first iterations using the online tool draw.io.1
We begin by defining a taxonomy containing only Attributes (not Quality Attributes)
and Metrics. Afterwards, amending a minimal amount of Correlations incorporating
Attributes, and Metrics as classes and Subclasses (See chapter 2.3), and Correlations
as relationships (figure 3.1), concluding the development conducted using a top–down
approach. For the incorporation of additional concepts, the first prototype of SoQOnto
is available. Therefore, this iteration concludes the ontology development conducted
outside of SoQOnto.

During the implementation using SoQOnto and the bottom–up approach, it becomes
apparent that while all characteristics of SQOs are found within the domain of a car,
as it can contain the aspect of car quality, it differs structurally from SQOs through its
broad domain and many independent parts. To narrow the represented field and gain a
structurally more similar real–world ontology, a car quality ontology could be used.

1https://app.diagrams.net/

9

3. Motivation and Problem Statement

C
ar

Body
Engine

D
oor

M
irror

W
indshield

G
lass

D
oor handle

Storage

W
indshield w

iper

C
ontrol

D
riving C

ontrol

Infotainm
ent

C
ontrol

Additional C
ontrol

G
as Pedal

Brake Pedal

Pedal

C
lutch Pedal

D
riving

Assistant

AC
C

Lane Keep

W
indshield

W

iper

control

Volum
e

C
ontrol

Infotainm
ent

Electric M
otor

G
as Engine

R
PM

W
indshield W

iper

Speed

Light

Brake light

Left
brake light

M
iddle

brake light
R

ight
brake light

D
ipped

headlight

Full beam

headlight Fog light

Indicator

Indicator
control

H
azard lights

control

Light
control

Parking

light

Infotainm
ent

screenSpeaker

Steering

w

heel

H
and brake

Brake U
ndercarriage

W
heel

Trunk lid

R
ear w

indow
R

ear w
indow

W
iper

Fuel tank

Fuel tank lid

Application

N
avigation

M
usic

R
adio

Phone

O
uter

door handle
Inner

door handle

positiveC
orrelation

pressed (%
)

pressure

negativeC
orrelation

Speed
Velocity

positiveC
orrelation

W
eight

filling state

positiveC
orrelation

Figure
3.1.:Last

iteration
ofthe

“C
ar”

ontology
before

developm
ent

ofSoQ
O

nto

10

4. Related Work

Contents
4.1. Sub-Ontology Extraction . 11

4.1.1. Extracting Superclass-Based Sub-Ontologies 11
4.1.2. Clustering . 12
4.1.3. Sub-Ontology Extraction by Hierarchical Traversal 12
4.1.4. Sub-Ontology Extraction Using Hyponym and Hypernym Closure 12
4.1.5. Conclusion . 12

4.2. Related Tools . 13
4.2.1. draw.io . 13
4.2.2. Neo4j . 13
4.2.3. Protégé . 13
4.2.4. Conclusion . 13

In the previous chapter, we considered the motivation and questions we want to answer
with our concepts. This chapter outlays the related work regarding the extraction of
smaller, more manageable sub-ontologies of SQOs, then introduces existing tools usable
for SQOs visualization and management.

4.1. Sub-Ontology Extraction

Ontologies often reach sizes that are no longer manageable. Hence, it is essential to
be able to compute and display sub-ontologies. In this section, we describe approaches
to compute sub-ontologies of target Nodes. Finally, we distinguish our work from the
presented approaches.

4.1.1. Extracting Superclass-Based Sub-Ontologies

A simple, reasoner-based, sub-ontology extraction is introduced in [El +20]. In their
paper, El Bolock et al. extract an ontology’s sub-ontologies by computing all super-
classes contained in the ontology with a reasoner. The reasoner then adds all subclasses
and properties of the superclasses’ entities to a new ontology. This sub-ontology ex-
traction method introduces one sub-ontology for each superclass and overview ontology
referencing all sub-ontologies.

11

4. Related Work

4.1.2. Clustering

Clustering introduces a lower-dimensional representation of high-dimensional ontologies.
In their work, Shaik et al. [Sha+06] apply clustering on relations to achieve represen-
tation in a three-dimensional space. The clustering process decides which relations it
combines into a cluster using explicitly defined semantics of the relations. The Re-
lation Semantics Elicitation Prototype [KRT06] introduces the semantics used. Once
computed, the clustering method returns its result in textual format since no appealing
visual representation of a 32-dimensional space exists.

4.1.3. Sub-Ontology Extraction by Hierarchical Traversal

Another method of extracting sub-ontologies is traversing the target Node’s hierarchy.
This process includes the target Node’s superclass and their superclass until reaching the
topmost Node. Similarly, the same process computes all subclasses. Additionally, the
result includes linked (by non-hierarchical relations) Nodes and their superclasses. [SR06]

4.1.4. Sub-Ontology Extraction Using Hyponym and Hypernym Closure

The approach of extracting a sub-ontology by hyponym and hypernym closure, as intro-
duced by Ranwez et al. in [RRJ11], differs from the hierarchical traversal approach as
it stops traversal at the greatest common descendant (gcd) and least common ancestor
(lca). In order to use gcd and lca, the examined sub-graph must be acyclic. Therefore,
the set of relations considered is limited to is-a or Subclass relations as these are acyclic.
The approach extends the set of relevant concepts with non-hierarchical relationships.
It only considers transitive relations. Connecting Nodes in between are no part of the
relevant concepts.

4.1.5. Conclusion

None of the sub-ontology extraction methods are suitable for Software Quality Ontolo-
gies. Some restrict the types of ontology they can handle. Others cannot be displayed
visually appealing. Without visual support, human-enabled management is impossible.
Alternatively, they introduce rigid boundaries around ontology parts. These restrictions
reduce the possibilities for users to track interrelations between Quality Attributes and
Metrics. Lastly, Seidenberg et al.’s approach does not include subclasses of linked Nodes
because otherwise, it would include the whole ontology. However, in Software Qual-
ity Ontologies, most linked Nodes not already included (correlations from measure to
measure) are the bottom-most Nodes of the taxonomy. Hence, this results in a large
sub-ontology. In this thesis, we will address the identified gaps through our concepts
introduced for SQOs. In the next section, we discuss the limitations for SQOs of existing
tools usable for ontology management.

12

4.2. Related Tools

4.2. Related Tools
Due to the graph-based nature of ontologies, there are a variety of tools that could
be used to develop and manage SQOs. In this section, we address tools in order from
generic graph creation tools to ontology management tools. We conclude this section by
summarizing the common limitations of the tools presented.

4.2.1. draw.io
Draw.io is a free, open-source web application for the generation of graphs and diagrams.
Through its extensive scope, it is used for many different requirements [JGr22]. For
example, flowcharts, UML diagrams, and network diagrams can be realized. Figure 3.1
shows an iteration of our real–world ontology consisting of hierarchically structured
Attributes and Correlations. Every graph realized in draw.io is static. Hence, the user
has to adjust the graph’s layout when amending the SQOs manually, and the effects of
correlations cannot be represented reactively.

4.2.2. Neo4j
As a graph database, Neo4j solves draw.io’s issue of graph layouting. Through the Neo4j
browser, users can visualize and interact with the ontology in a graph format [neob]. In
contrast to draw.io, Neo4j does not offer UI–supported creation, editing, or removal
of Nodes and relations. To modify a SQO, users have to learn Cypher, Neo4j’s query
language, offering detailed ontology part selection possibilities [neoa]. Like draw.io,
Neo4j does not offer a reactive visual representation of the effects of correlations.

4.2.3. Protégé
As the last tool introduced, Protégé is the most widely used software for ontology edit-
ing [Mus15]. It offers an extensive UI for creating, editing or removing Nodes and rela-
tions. As it stands, we do not know of any visualization for Protégé visually supporting
the effects of correlations.

4.2.4. Conclusion
All presented tools, from generic graph to ontology editor, have their background in
the applicability for a large domain of use-cases, all based on static data. As a result,
no tool supports the visual representation of the effects of correlations crucial for the
understanding of interdependencies in SQOs. In the next chapter, we introduce our
concepts to support the understanding of these interdependencies.

13

5. Concept

Contents
5.1. Conceptual Background . 15

5.1.1. Software Quality Model . 16
5.1.2. Multivariate Graph Visualization Techniques 16
5.1.3. Classification of Ontology Tasks 17

5.2. Component Definitions . 17
5.3. Algorithms . 19

5.3.1. Value Calculation . 19
5.3.2. Finding the Ontology’s Root Node 21

5.4. Ontology Representation Concepts 22
5.4.1. Task-Focused Ontology Representation 23
5.4.2. Filters . 25
5.4.3. View-Supported Ontology Management 25

With this chapter, we want to introduce concepts solving the difficulties users face
when trying to understand and manage the components of SQOs. To achieve this goal,
we begin with the introduction of the most used software quality model and research
extending it. This allows us to outline and contextualize the components of SQOs,
which we also need to incorporate in the iterations of our real–world ontology. As
discussed in chapter 3, representation is needed to support the understanding of SQOs.
We then introduce existing methods of multivariate graph representation. Later, we
adapt these for the representation of SQO components. This adaption process is led
by the differentiation between two classes of ontology tasks: overview and focus tasks.
Hence, as the last part of our concept’s background, an ontology task classification is
introduced.

Using the insights provided by this chapter’s background, we define the components
of SQOs, aiming at a shared understanding. Only then do we turn to introducing our
concepts for representing and managing SQO components.

5.1. Conceptual Background
In this section, we use the ISO/IEC 25010 software quality model and research based
on it to outline the components commonly found in SQOs. We then introduce multi-
variate graph representation techniques. In the last part of this section, ontology tasks
are classified into focus and overview tasks. Our concepts, introduced in the next sec-
tion, accommodate for the components and task requirements of SQOs by adapting and

15

5. Concept

extending the representation techniques outlined in this section.

5.1.1. Software Quality Model

SQuaRE (ISO/IEC 25010)

The ISO/IEC 25010 standard is the most used software quality model and forms the
basis of many SQOs [HP16]. It provides an overview of components of software product
quality, containing eight top-level components (Quality Attributes) divided into second-
level components (Quality Factors). For example, the Quality Attribute “Security”
is divided into the Quality Factors “Confidentiality,” “Integrity,” “Non-repudiation,”
“Authenticity,” and “Accountability.” A combination of Quality Factors defines the
degree of fulfillment to the Quality Attribute. Each Quality Factor’s degree of fulfillment
is, in turn, a composition of several Measures’ values [HP16]. In the following research,
an extension of the ISO/IEC 25010 taxonomy to an ontology is motivated. [11]

Mutual Influences in ISO/IEC 25010

In ISO/IEC 25010, various Measures’ effects influence multiple Quality Attributes’ val-
ues. In their paper, Hovorushchenko et al. [HP16] discuss this mutual influence of
Measures on Quality Attributes. With their introduction of weights for each Measure,
they differentiate Measures whose value affects multiple Quality Attributes from others,
extending the ISO/IEC 25010 taxonomy to an ontology. They deduce that the presence
of values of Measures that affect more Quality Attributes is more critical when deriving
software quality. These effects motivate the need for specialized SQO representation.
In combination, the research introduced outlines most SQO components we want to
visually represent.

5.1.2. Multivariate Graph Visualization Techniques

We use multivariate graph visualization techniques to represent the SQO components ex-
tracted in the previous section. As in ontologies, a crucial defining factor of multivariate
graphs is the presence of additional data on both Nodes and relations [KPW14]. Using
these techniques, SQO component information and differentiation can be visually rep-
resented. In their paper, Partl et al. [Par+12] introduce four different techniques used
in multivariate graph visualization. In the following, we outline the three techniques
applicable for SQO representation we adapt, combine, and extend in our concepts.

Layout Adaption

Layout adaption introduces the ability to change the layout based on the amount and
types of Attributes to be visualized. The wide range of layout adaption visualizations
begins with scatter plots that visualize the relation between two Attributes [Bez+10] to
a table-based visualization containing a column for each Attribute contained. [Par+12]

16

5.2. Component Definitions

Separate Linked Views

The visualization technique of linking multiple separate views introduces multiple view-
ing points on the same Nodes and Attributes, as used for multivariate graph drawing
in [SHQ08]. Applying this technique allows combining the different advantages of mul-
tiple views. However, linking information between views requires high user interaction,
increasing the complexity of the information representation. [Par+12]

On-Node Mapping

On-Node mapping is a widely used method of showcasing information on Nodes in a
graph-based environment using visual clues on the Nodes themselves. Visual clues can
include color, form, glyphs, and scaling. Combining the visual clues with the informa-
tion they represent requires user interaction. Therefore, on-Node mapping is best used
with tasks requiring a topological view of the graph. Which tasks require topological
information is classified in the next section. [Par+12]

5.1.3. Classification of Ontology Tasks

As introduced by Nobre et al. in [NSL18] working with ontologies can be divided into
two classes of tasks: focus and overview tasks. To support human–enabled management,
the selected representation concepts need to focus on the different tasks researchers
perform on SQOs. For example, gaining an overview or finding all correlated measures
affecting the value of a measure. For a more detailed classification, consult the work of
Lee et al. [Lee+06].

The term focus task relates to tasks in which the details and relations of a focussed
Node are essential. For focus tasks, the global structure of the ontology is incidental.
Examples of focus tasks include analyzing a Node’s neighborhood and its details, the
relation type, accessing information of related Nodes, and more. [NSL18]

Overview tasks are complementary to focus tasks. To complete given overview tasks,
the user needs information about an ontology’s global structure and topology [NSL18].

We now have possible partial representations for the introduced SQO components to
be targeted at the task classification. For a shared understanding, we formally define
the components of SQOs in the next section.

5.2. Component Definitions

As we will discuss the different aspects of SQOs both in the context of our implementation
as well as the data structure itself in the further course of this thesis, we find it essential
to distinguish and formally define the different terms used in those separate contexts.
For comprehensible examples, we choose artifacts from our car ontology in this section.

17

5. Concept

Node

A Node is an entity representing a specific part of an ontology, e.g., an “engine.” It can
contain additional information associated with it by Arcs as defined in the RDF1 [GS14].
Node is the hypernym for components extending the Node term. These components are
mutually exclusive subsets.

Arc

An Arc defines a predicate relation between two Nodes (N), e.g., a subclass Arc between
“Infotainment” and “Navigation,” resulting in the triples used to define an ontology in
the RDF [GS14].

A = {(n,m) | exists an Arc from n to m, n ∈ N,m ∈ N}

Attribute

In the context of SQOs, we refer to the most basic subset of Nodes as Attributes. Most
Nodes defining the ontology’s taxonomy are Attributes as they define the main concepts
and part relations.

Measure

We refer to a Node as a Measure when it represents raw data that can be directly
consumed (e.g., “tire diameter”) [Tea21]. The affiliation of each Measure is marked by
a specific Arc (the “measureOf” Arc).

Metric

A Node is referred to as a Metric if it combines one or more Measures [Tea21]. The
output of a Metric again is defined as a Measure. For example, by combining the
Measure “tire diameter” with the Measure “rotations per minute,” we can compute the
Metric “current speed.”

Quality Attribute

Quality Attributes are properties of a system or a system’s behavior as perceived by the
user, measured by Measures and Metrics, and described by their output (a Measure).
The value of how well a Quality Attribute is satisfied in a given system is entirely
subjective to each user’s needs, based on trade-offs between different Measures. For
example, a trade-off between “BHP” and “Miles per gallon.” [Bar+95]

1https://www.w3.org/RDF/

18

5.3. Algorithms

Correlation

A Correlation is an Arc defining the impact of value changes in-between Measures. It
can either be positive (a value increase increases the value of the connected Node) or
negative (a value increase decreases the value of the connected Node). Each Correlation
has an associated weight (weight(n,m)) defaulting to 1 describing the impact severity
on the associated Node’s value. Correlations also apply to Quality Attributes because
they inherently influence each other as perceived by the user. However, because of the
subjective nature of a Quality Attribute’s value, only the existence of a Correlation can
be indicated, not a specific value change.

corr+ = {(n,m) | (n,m) ∈ E, Arc is a positive Correlation}

corr− = {(n,m) | (n,m) ∈ E, Arc is a negative Correlation}

Improvement Tactic

Improvement Tactics are closely related to Quality Attributes and Measures and aim
at increasing the Quality Attribute’s degree of fulfillment by enhancing its Measures’
values. Enhancing means increasing a value (e.g., “miles per gallon”) or decreasing a
value (e.g., “fuel consumption”) based on the current context. Therefore, Improvement
Tactics also correlate to Measures, suggesting whether an improvement is an increase
or decrease in value. In this scenario, Improvement Tactics can be applied on a scale.
Therefore, they need to have a value that represents their degree of fulfillment. This
value closely depends on the correlated Measures’ values, e.g., increasing the Metric “fuel
consumption” would lead to a decrease in the value of an “efficient driving” Improvement
Tactic.

5.3. Algorithms
This section uses the definition of SQO components to introduce algorithms essential for
our representation concepts. To address the core defining characteristic of SQOs, a value
calculation algorithm based on correlated Nodes is introduced. This algorithm lays the
groundwork for a visual representation of the effects of interdependencies in SQOs. To
address not only the characteristics of SQOs but also the specifics of the task class, we
introduce a root node calculation algorithm. Focus tasks depend on a focused node.
This algorithm provides the root node as a focused node, if otherwise none is set.

5.3.1. Value Calculation
We calculate the value of correlated Nodes on value change to be able to visually rep-
resent dependencies. When representing this value, users are enabled to understand the
connections between artifacts of the ontology. Our value calculation algorithm respects

19

5. Concept

the given constraints and, most importantly, the weights of Correlations. Figure 5.1
outlines the value calculation algorithm on an abstract example. We explain the exact
calculation depicted in the following.

Metric4

Metric1 Metric2 Metric3

Measure1 Measure2 Measure3

Measure4

positiveCorrelation

weight: 4

negativeCorrelation

weight: 4

positiveCorrelation

weight: 2

40% * (1- value2)40% * value1 20% * value3

Figure 5.1.: An abstract example of the value calculation algorithm.

To explain the functionality of the value calculation algorithm, we introduce a set of
source Measures (Sn) and a target Measure (t), where the target Measure is the Measure
of which we are currently calculating the value. Source Measures are all Nodes correlated
to the target Measure.

Sn =
{
s | (s, t) ∈ corr+ ∨ (t, s) ∈ corr+ ∨ (s, t) ∈ corr− ∨ (t, s) ∈ corr−

}
The target Measure’s value (val(t)) then consists of a combination of all source Mea-

sures’ values based on the type of Correlation (valt(s)) and weight divided by the total
weight of all correlated source Nodes.

val(t) =

∑
s∈Sn

weight(s, t)/(
∑
l∈Sn

weight(l, t))

 ∗ valt(s)

A source Node’s value on the target is adopted unchanged if the Correlation is positive.
Suppose the Correlation is, however, negative. In that case, we use the remaining value
of the target Node by calculating the difference between the maximum and current value
of the source Node.

valt(s) =

{
val(s) if the Correlation is positive
1− val(s) else

In our calculations, all Node values are a float between 0 and 1. Values displayed in
the representation are either shown as a percentage, if no minimal value (vmin), maxi-
mal value (vmax), and unit (u) are specified, or are calculated based on the previously
mentioned values:

20

5.3. Algorithms

unitval(s) = vmin + (vmax − vmin) ∗ val(s)

In figure 5.2, we show an illustrative example of this algorithm. It illustrates the
water temperature of a pot, influenced by the amount of cold and hot water added.
In both depicted cases, both cold and hot water have a correlation weight of 1 to the
pot temperature. Hence, each is effectively responsible for half of the resulting pot
temperature. As the correlation between hot water and pot temperature is positive, the
amount’s value is directly adopted (illustrated in red). The cold water’s correlation is,
however, a negative one. Therefore, the difference between the maximal and the actual
values is adopted. This difference is represented through blue stripes as the “Remaining
Cold Water amount.”

0 ml 1000 ml

0 ml 1000 ml

0 °C 100 °C

Amount of

Cold Water (0 °C)

Amount of

Hot Water (100 °C)

Pot temperature (°C)

negativeCorrelation

weight: 1

positiveCorrelation

weight: 1

calculated value:

87.5 °C

Cold Water amount

Remaining Cold Water amount

Hot Water amount

Remaining Hot Water amount

0 ml 1000 ml

0 ml 1000 ml

0 °C 100 °C

Amount of

Cold Water (0 °C)

Amount of

Hot Water (100 °C)

Pot temperature (°C)

negativeCorrelation

weight: 1

positiveCorrelation

weight: 1

calculated value:

50 °C

Figure 5.2.: A real-world example of the value calculation algorithm.

When one Node’s value is changed, the value calculation algorithm is run for all Nodes
directly or indirectly correlated to this Node. We opt for a round-based model to prevent
infinite loops of value adjustments, as seen in figure 5.3. Starting with the triggering
Node in the first round, the algorithm continues with all correlated nodes not part of
previous rounds. Nodes part of previous rounds are ignored. When no new Node is
added, the algorithm has calculated the new values for each Node exactly once.

5.3.2. Finding the Ontology’s Root Node
Some methods of representing SQOs need a starting point. Whenever the user does
not set this starting point, we use the ontology’s root Node (r) calculated using the
ontology’s Nodes (N) set. However, parts of the ontology might not be connected (yet)
in some cases. Unconnectedness can be due to the ontology being in the creation phase
or by design. In this case, we want to find the root Node of the biggest subgraph.

Our calculation starts by finding the set of Nodes without an outgoing subclass relation
R. If only one Node exists, the ontology has no unconnected parts, and we return the
only possible root Node. Otherwise, we iteratively add all Nodes connected by a subclass

21

5. Concept

Tactic1

Metric4

Metric2 Metric3

Metric1

Tactic2

Round 1

Round 2

Round 3

Figure 5.3.: An abstract view on the round-based value calculation triggered by a value
change of Tactic1.

relation to the possible root Nodes. We call these Nodes accessible Nodes. We return
the Node n (n ∈ R), with the most extensive set of accessible Nodes (A).

R =
{
n | ∀m ∈ N : ¬subclass(n,m)

}

r =

{
n if |N | == 1, n ∈ N
argmax

{
|accessible(n)| | n ∈ N

}
else

accessible(n) =
{
m | subclass(m,n) ∨ ∃ l : subclass(m, l) ∧ l ∈ accessible(n)

}
5.4. Ontology Representation Concepts
With the algorithms outlined in the previous section, the groundwork for human-enabled
SQO representation is laid. In this section, we introduce our overall approach to rep-
resentation concepts in the form of task-focused ontology representation. It divides the
introduced concepts into concepts for overview and focus tasks. Two separate views in-
clude the corresponding concepts, addressing the different prerequisites of the classified
tasks. Therefore, a view is a combination of concepts to create a combined representa-

22

5.4. Ontology Representation Concepts

tion. In order to not always display the complete ontology in the two views, we introduce
filters extending the views. Filters remove further complexity from the represented on-
tology by hiding distant Nodes or components as a whole. We conclude this chapter
with a concept to simplify the management by use of the human-enabled representation.

5.4.1. Task-Focused Ontology Representation
Based on the previous definition of overview and focus tasks described in chapter 5.1.3,
we aim to introduce two different views based on the different needs resulting from these
classes. The overview view incorporates representation concepts into a graph aimed at
support for overview tasks. Meanwhile, the treetable view focuses on support for focus
tasks, combining hierarchical information in the form of a tree (similar to a file tree)
with additional attributes of the Node in columns of a table. This view is loosely based
on the tree+ table view introduced in [NSL18].

To avoid tying users to one view, we use the concept of multiple linked views so that
users can switch back and forth between views without having to replicate the context
currently represented.

Overview View

To represent and distinguish SQO components in the overview view, we use on-Node
mapping, introducing Node, and relation type differentiation by color and value differ-
entiation of Measures, Metrics, and Improvement Tactics based on Node size.

As the overview view’s purpose includes showcasing the topology of the complete
ontology, a graph representation allows a complete view of the ontology and its Node
and relation types. However, this approach requires the user to interact with the view
(Nodes) to gain additional information on single Nodes or change a Node’s value due
to the limited space available [NSL18]. In figure 5.4, a small ontology is shown using
on–Node mapping.

These representation components do not allow data modification on their own. To
allow data modification, we provide a modal containing the Node’s data in detail (Node
info modal). Through navigation, the Node info modal allows for manipulating the
values of related nodes. This modal is also available in the treetable view, which we
introduce in the following.

Treetable View

The treetable view introduces a representation of the ontology, providing detailed infor-
mation about each Node to support focus tasks. This view’s representation combines a
hierarchical tree representation, e.g., used to represent file trees, with a table-based rep-
resentation of additional Node information. This representation style allows for a quick
understanding of each entry’s data and interdependencies. The data in columns can be
modifiable, showcasing existing interdependencies and the effects of value changes on
other Nodes. Table 5.1 showcases a treetable representation of the same small ontology

23

5. Concept

Attribute1

Quality Attribute1 Quality Attribute2

Metric1Measure1 Metric1

Subclass measureOf metricOf

positive Correlation negative Correlation

Figure 5.4.: Overview view of an ontology

seen in figure 5.4. The first column includes the hierarchy and Node name, allowing
for quick Node identification and ontology traversal. In the second column, the current
value is displayed with plus and minus symbols representing the modifiability of the
value. The last column includes the positive and negative correlations, with horizontally
aligned symbols representing a common correlation. The correlations weight is attached
in brackets.

To quickly distinguish the different components of SQOs, we incorporate on-Node
mapping, relation, and Correlation coloring. Furthermore, the treetable view allows for
future expansion as additional columns can add more data to the view.

However, understanding the ontology’s topology is more difficult since only a limited
amount of entries can be seen at once, requiring the user to scroll for information about
additional entries. The missing topological information results in the treetable view not
being adequate for overview tasks.

Node Value Correlation
Attribute1 (selected)
∖ (Subclass) Quality Attribute1
∖ (measureOf) Measure1 - ■■■■ + p(1)
∖ (metricOf) Metric1 - ■■■■ + p(1),n(1)

∖ (Subclass) Quality Attribute2
∖ (metricOf) Metric2 - ■■■■ + p(1),n(1)

Table 5.1.: Treetable visualization of an ontology

24

5.4. Ontology Representation Concepts

5.4.2. Filters

One key concept of understanding the different aspects of software quality is grasping
the effects a change towards one Measure has on other Measures. The selection filter
allows users to disable every Node and Arc type, supporting users in focussing their
attention on specific, selected components of the SQO. Exemplary usage of the selection
filter for focusing on Correlations in a small ontology can be seen in figure 5.5. This
figure shows how the selection filter can reduce the displayed relations to not include
Subclass relations. The resulting Nodes without any relations are then hidden. Focus
can now be laid on the Correlations only.

Quality Attribute

Measure

Attribute

Attribute Attribute

Metric

Subclass Subclass Subclass

measureOf metricOf

positiveCorrelation

Measure MetricpositiveCorrelation

Figure 5.5.: Before and after of selection filter application for focus on Correlations (Sub-
class relation disabled, not showing isolated Nodes) on overview view

However, some tasks require the visibility of all Node and Arc types around a spe-
cific part of the ontology. As numerous Nodes and relations can hinder user focus, an
additional depth filter is introduced, limiting each shown Node’s distance to the center
of attention (the currently selected Node or calculated root Node as described in chap-
ter 5.3). An exemplary ontology with a depth limited to two can be seen in figure 5.6.

This combination of specialized representations for overview and focus tasks with
selection and depth filters allows users to create their own ontology chunk representation,
selecting only the components related to the current task or goal of understanding.

To extend the support provided by the representation concepts into SQO management,
we now introduce our concept for view-supported ontology management.

5.4.3. View-Supported Ontology Management

The views introduced in the previous parts of this chapter incorporate methods to ease
understanding through task–focused SQO representation in combination with filters. To
further improve the support of ontology management, we introduce a method of Node
selection using the represented SQO components in the two views. Currently selected

25

5. Concept

<selected>

Attribute

Attribute

Measure

measureOf

Subclass

Attribute Subclass

Metric

positiveCorrelation

Depth 1 Depth 2

Figure 5.6.: Effect of depth limited to two

Nodes are specially marked using on-Node mapping. Only the task of adding a Node
does not use previously represented Nodes. For all other tasks, this concept is applicable
and bridges the gap between representation and management.

26

6. Design

Contents
6.1. Data Persistence . 27
6.2. Data Model . 28

6.2.1. Ontology Data Model . 28
6.2.2. Extendability . 29

6.3. Architectural Design . 29
6.4. Discussion . 30

In order to allow usage of the concepts developed in the previous chapter, a software
design is needed. A core component of our design is the replaceability and extendability
of the concepts we implement in a visualization.

We begin this chapter with the data storage connection for data persistence. Then, we
outline the components of our design model needed for Ontology implementation, with
all persisted data included in the models. Additionally, we elaborate on the replaceability
and extendability of visualizations incorporating representation concepts. To incorporate
new concepts, our work can be reused. Following the ontology class model, we outline
the architectural design in the form of our choice to use the MVC pattern. Lastly, we
discuss a design decision that, in hindsight, would better suit the modeling of ontologies.

6.1. Data Persistence
Since the research of SQOs is a long-term process, we want SoQOnto to be able to store
ontology data for repeated access. Therefore, one crucial aspect of our software design
is the Database class, bridging the gap between the database server and SoQOnto.

To the Database class, we add three types of methods besides the constructor and
database connection methods:

1. methods for database management (e.g., create_db(database: str))

2. methods for ontology specific database setup (e.g., set_graphconfig(database: str))

3. methods for ontology management

The data accessed by the Database class is made accessible by our ontology data
model, which we introduce in the next section.

27

6. Design

6.2. Data Model

We begin this section about our data modeling by introducing the class structure needed
to represent ontologies. To enable additional concepts to use this structure, we then
describe the design of our extendability and replaceability of visualizations.

6.2.1. Ontology Data Model

To describe the data model of ontologies, we begin with the Ontology class containing all
of the ontology’s data and management methods. An overview of the classes contained
can be seen in figure 6.1. In this chapter, we do not describe all classes in detail.

Node

_name: str

_uri: str

_labels: []str

_type: str = "Attribute"

+ Node(name: str, uri: str, labels: []str = [])

+ get_name(): str

+ get_uri(): str

+ get_type(): str

QualityAttribute

+ QualityAttribute(name: str, uri: str, labels: []str = [])

ValueNode

_value: float = 0.5

_minimal_value: int

_maximal_value: int

_unit: str

+ ValueNode(name: str, uri: str,
 labels: []str = [], minimal_value: int = 0,
 maximal_value: int = 100, unit: str = "%")

+ set_value(value: float): void

+ get_value(): float

+ get_unit_value(): str

+ get_unit(): str

+ get_minimal_value(): int

+ get_maximal_value(): int

Measure

+ Measure(name: str, uri: str,
 labels: []str = [], minimal_value: int = 0,
 maximal_value: int = 100, unit: str = "%")

Metric

+ Metric(name: str, uri: str,
 labels: []str = [], minimal_value: int = 0,
 maximal_value: int = 100, unit: str = "%")

Tactic

+ Tactic(name: str, uri: str,
 labels: []str = [], minimal_value: int = 0,
 maximal_value: int = 100, unit: str = "%")

Relation

_from_node: Node

_to_node: Node

_type: RelationType

+ Relation(from_node: Node, to_node: Node,
 type: RelationType = RelationType.SUBCLASS)

<<enumeration>>
RelationType

SUBCLASS = 1

MEASURE_OF = 2

METRIC_OF = 3

POSITIVE_CORRELATION = 4

POSITIVE_CORRELATION = 4

NEGATIVE_CORRELATION = 5

0..*

Correlation

_weight: int

_weighted: bool

_type: RelationType

+ Correlation(from_node: Node, to_node: Node,
 weight: int = 1,
 type: RelationType = RelationType.POSITIVE_CORRELATION,
 weighted: bool = False)

+ get_weight(): int

+ is_weighted(): bool

Ontology

_db: str

_nodes: []Node

_relations: []Relation

+ Ontology(db: str)

+ load_from_db(): void

+ get_nsprefixes(): List

+ get_nodes(): []Node

+ get_node_from_uri(uri: str): Node

+ add_node(name: str, type: str, uri: str): void

+ remove_node(node: Node): void

+ get_metrics(): []Metric

+ get_relations(): []Relation

+ add_relation(from_node: Node,
 to_node: Node, type: int): void
+ remove_relation(relation: Relation): void

+ add_weighted_correlation(from_node: Node,
 to_node: Node, type: int, weight: int): void
+ remove_weighted_correlation(correlation: Correlation): void

+ get_outgoing_relations(node: node,
 filter_fct: Callable): []Relation
+ get_incoming_relations(node: node,
 filter_fct: Callable): []Relation
+ get_node_descendants(node: Node): []Node

+ get_associated_node(node: Node): Node

+ set_value(node: Node, value: float): void

+ find_root_node(): Node

+ get_nodes_relations_depth(depth: int,
 node: Node = None): []Node, []Relation

+ export(): str

0..*0..*

Figure 6.1.: Classes used to represent all parts of an SQO

Ontology Class

The Ontology class is the center of our ontology data model. It combines a list of Nodes
and relations of different types to an ontology. Therefore, we use this class to implement
all ontology management methods.

28

6.3. Architectural Design

Node Class

The Ontology class utilizes the Node class to store all Nodes contained. Besides its
purpose to serve as the most basic Node type (Attribute), it also serves as a starting
point for additional Node types, providing essential functionality which can be inherited.

ValueNode Class

To provide a starting point that is inherited by the Measure, Metric, and Quality At-
tribute classes, we incorporate the ValueNode class centrally implementing value–focused
methods and attributes. As its sole purpose is to be inherited, we do not instantiate a
ValueNode. However, since it inherits from a non-abstract class, it cannot be abstract
itself in our development stack.

Relation Class

The Relation class stores a relation’s two end Nodes as well as the relation’s type con-
tained in the RelationType enum. The Correlation class inherits this class’s properties
and extends them with a weight used in the value calculation algorithm.

6.2.2. Extendability
To allow the groundwork introduced in the previous sections to be used with additional
concepts introduced in the future, which can then be compared to the concepts of this
thesis, SoQOnto’s implementation of visualizations is focused on extendability and re-
placeability. We achieve extendability using the VisualizationManager class. This class
manages the visualization that is shown in the user interface of SoQOnto utilizing the
strategy pattern [Gam+95]. For all visualizations registered with the VisualizationMan-
ager, SoQOnto provides the data source and methods to change components of the SQO
represented. To introduce a new visualization, only two methods have to be defined (see
figure 6.2). This simple starting point is deliberately chosen so that further functionali-
ties can optionally be implemented. Similar to the template method pattern [Gam+95],
visualizations can indicate via a variable that a method provided by SoQOnto shall be
overridden. The usage of this pattern allows for the fast implementation of new repre-
sentation concepts. We apply this pattern for the view-supported ontology management
concept, of which implementation is optional (see chapter 5.4.3). If the visualization
supports view-supported ontology management, it interrupts the ontology management
method (e.g., adding a relation) and can resume the process once Nodes are selected.

6.3. Architectural Design
With SoQOnto’s data model in place, in this section, we lay our focus on the user inter-
face. For our architectural design, we choose the Model-View-Controller (MVC) pattern,
allowing for easy maintainability through the separation of concerns between the three

29

6. Design

VisualizationManager

- app: Dash

- active_visualization: Visualization

- available_visualizations: Visualization[]

+ get_active_visualization(): Visualization

+ set_active_visualization(v: Visualization): void

+ register_visualization(v: Visualization): void

+ get_available_visualizations(): Visualization[]

MyVisualization

<<Abstract>>

Visualization

+ get_visualization(onto: Ontology): html[]
+ get_name(): string

Figure 6.2.: VisualizationManager implementing the strategy pattern

parts. According to Leff et al. [LR01], a hard–to–solve problem is the partitioning of web
applications between clients and servers. As we will introduce in the next chapter (See
chapter 7.1.1), we develop SoQOnto using a web application framework that combines
code for client and server (plotly Dash). Therefore, we do not have to consider this
problem. However, a separation of view and controller is only partly possible in this
framework. [LR01]

6.4. Discussion
Having introduced this thesis’s design components, we discuss a design improvement
in this section. When analyzing the components outlined in chapter 6.2.1, to model
the different aspects of SQOs, a composite pattern [Gam+95] would improve the overall
design. However, since we do not utilize this pattern, an anti–pattern in the form of
a God Class [Del+03] (the Ontology class) is gradually created with each extension of
functionality. Therefore, we recommend that future work replace the God Class with a
composite pattern, not further increasing the technical debt inflicted.

30

7. Realization

Contents
7.1. Realization Background . 31

7.1.1. Choice of Development Stack 31
7.1.2. Choice of Data Storage . 32
7.1.3. Deployment . 33

7.2. Ontology Realization . 33
7.2.1. Metaclass Ontology (qa) . 33
7.2.2. Technical Limitations . 33

7.3. Base Application Realization . 35
7.3.1. Exchanging Data with Visualizations 36
7.3.2. Optional Visualization Functionality 36

7.4. Basic Visualization . 37
7.5. Advanced Visualization . 37

To obtain a proof of concept that is usable for and supports research on SQOs, we
implement our concepts (chapter 5) and design (chapter 6) in a web–based application
we call SoQOnto. Additionally, we utilize the resulting realization in our evaluation in
chapter 8. In order to benefit from faster development times and less overhead, we use
an agile process for our realization [Han10]. Using this process, we switch back and forth
between implementation and conceptualization. This process is especially suitable for
us since we create an application based on concepts that are predominantly (on their
own or in combination) not verified in practice [BNO13].

This chapter outlines our decision on a development stack, including data storage,
then continues with the technical limitations we need to circumvent in our ontology re-
alization. We conclude this chapter with the implementation details of our visualizations
incorporating the concepts for human–enabled management.

7.1. Realization Background
7.1.1. Choice of Development Stack
With our concepts and SoQOnto, we want to support the user in efficiently managing
SQOs. One prominent focus in the development stack choice is creating an easy–to–
access, collaborative tool for research. Therefore, we opt for a web–based rather than
a desktop–based application [Jaz07]. When implementing a software tool as a web–
based application, increased complexity is commonly introduced through the separa-
tion of backend and frontend, written in different programming languages [LR01]. One

31

7. Realization

web framework bridging this gap between web and desktop–based applications is Plotly
Dash1, introduced by the makers of the widely used plotly.js JavaScript framework.

Plotly Dash combines the popular frontend JavaScript frameworks React.js2 and
plotly.js3 into a web framework completely accessible in Python. With Plotly Dash,
all communication between the flask4 web server and the frontend is abstracted. There-
fore, we do not need to implement API endpoints for each communication task, such
that we require comparatively little code. By the use of custom React.js components, the
development of ontology representation is not restricted, however, introducing a second
programming language. We do not implement such custom components in our realiza-
tion. The incorporation of plotly.js into Plotly Dash is another driving factor for our
decision to use Plotly Dash. Plotly.js provides a suite of graph visualization components
we can use for ontology representation since ontologies are graphs conceptually.

7.1.2. Choice of Data Storage

As research on software quality is a long–term process, we need data storage to save and
provide the data contained in SQOs. Graph–based data storage is a natural choice, as
ontologies are, fundamentally speaking, graphs. In this section, we introduce Neo4j as
our choice of a graph database and its plugin neosemantics for ontology data storage.

Neo4j

Neo4j5 is the most popular graph database according to DB-Engines’ graph database
market share analysis, thus being the obvious choice for any development project incor-
porating the need for storing data naturally in graph form [DB-22]. Since Neo4j does not
natively support ontologies’ import, export, and modification, its plugin support allows
us to extend Neo4j’s functionality for our needs.

Neosemantics

Neosemantics6 is Neo4j’s toolkit for support of RDF, and semantics, introducing support
for namespaces, mappings, and many more specifically for ontologies. Most importantly,
Neosemantics introduces Graph validation, ensuring the correctness of imported and
created ontologies natively, removing the need for additional verification of correctness.
[neoc]

1https://plotly.com/dash/
2https://reactjs.org/
3https://github.com/plotly/plotly.js/
4https://github.com/pallets/flask
5https://neo4j.com/
6https://neo4j.com/labs/neosemantics/

32

7.2. Ontology Realization

7.1.3. Deployment
Our choice to develop SoQOnto as a web application should not interfere with the ease of
installation. To introduce a controlled environment, we choose docker for deployment1.
Additionally, with Docker compose2, the application’s installation itself, the database,
and its networking are simplified into a single command [RBA17]. With docker’s use of
a standardized image format [ope], we can also use a kubernetes deployment3 [Bur+22].

7.2. Ontology Realization
For our ontology realization, we use the Turtle format supported by neosemantics. All
vocabulary contained in our ontologies extends the RDFS, OWL, and qa ontologies. In
this section, we outline our metaclass ontology qa defining all components of SQOs, and
describe the technical limitations introduced by RDF through its use of triples. We then
introduce our solutions to accommodate for these limitations.

7.2.1. Metaclass Ontology (qa)
To use and formalize the components defined in chapter 5.2 in the RDF, we create
the qa Metaclass Ontology4, defining the classes present in SQOs. The qa ontology
is used by us to define our real–world ontology and represents the ontology format
understood by SoQOnto. Figure 7.1 includes all classes and properties found in SQOs.
The CanCorrelate class combines all classes that allow for correlations. Outside the “qa”
labeled box, used vocabulary from RDF, RDFS, and xsd for data types is shown.

7.2.2. Technical Limitations
In the realization of weighted Correlations, we encountered our only technical limitation
in realizing SQOs in the RDF. As discussed in chapter 5.2, some Correlations in SQOs
have a more significant impact on the related artifacts’ value than others, indicated by
a weight. However, turtle definitions consist of triples [Bec14], therefore, not allowing
weight to be added to a property, as both end Nodes and the Correlation’s type need
to be stored as well. These already exhaust the limit of three values that can be stored.
In general, one would circumvent this limitation in Turtle by introducing an unnamed
artifact (blank Node, see chapter 2.3) and storing the additional information needed. See
source code 7.1, where the unnamed artifact is contained in lines 5-8. Nevertheless, as
neo4j is a graph database, the technical limitation to three values stored per property
also applies. Therefore, it cannot store this additional information on the relation itself.
To store unnamed artifacts, neo4j generates a unique identifier for the unnamed artifact,
allowing for storage in the same way as named artifacts.

1https://www.docker.com/
2https://docs.docker.com/compose/
3https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
4https://thesis.moritzrickert.de/2022/qa

33

7. Realization

rdfs:Class rdf:Property

qa:QualityAttribute

subClassOf

qa:Metric

subClassOf

qa:Measure

subClassOf

qa:ImprovementTactic

subClassOf

qa:CanCorrelate

qasubClassOf

qa:measureOf

qa:metricOf

qa:positiveCorrelation

qa:negativeCorrelation

qa:minimalValue

qa:maximalValue

qa:valueUnit

rdfs:range

a

a
a

xsd:integer

xsd:string
rdfs:domain

rdfs:domain

rdfs:domain

rdfs:domain

rdfs:domain

rdfs:range

rdfs:range

Figure 7.1.: qa ontology class and property definitions not representing solutions to tech-
nical limitations. Arrows in the color of a box show a relation of all concepts
in the box. “a” relations of classes to rdf:class are omitted.

1 car:RPM
2 a qa:Metric ;
3 qa:metricOf car:Engine ;
4 qa:correlated [
5 a qa:Correlation ;
6 qa:correlationTo car:Speed ;
7 qa:correlationType "positive" ;
8 qa:correlationWeight 3 ;
9] ;

10 rdfs:label "RPM" .

Source Code 7.1: Circumventing the triple’s limitation with an unnamed artifact

When exporting the SQO in Turtle format, neo4j now cannot differentiate between
previously named and unnamed artifacts. Therefore, it does not add the unnamed
Correlation artifact to the corresponding artifact (source code 7.1) but as a new artifact
with its generated unique identifier (see source code 7.2). The resulting exported file
differs content-wise from the imported file, making use of an ontology exported from
SoQOnto in other tools cumbersome.

34

7.3. Base Application Realization

1 car:RPM
2 a qa:Metric ;
3 qa:metricOf car:Engine ;
4 qa:correlated b_25876 ;
5 rdfs:label "RPM" .
6

7 <bnode://node1gctlkt0nx3 >
8 a qa:Correlation ;
9 qa:correlationTo car:Speed ;

10 qa:correlationType "positive" ;
11 qa:correlationWeight 3 .

Source Code 7.2: Problem when exporting ontology containing unnamed artifacts from
neo4j

We opt for named, weighted Correlations to circumvent a renaming of artifacts and
prevent content-wise changes on export. This solution provides both the ability to set
a Correlation’s weight and export with unchanged artifacts (source code 7.3), still pro-
viding a basic definition of Correlations (qa:positiveCorrelation, qa:negativeCorrelation)
initialized in SoQOnto with a weight of 1. Since this differentiation is only based on the
limitation of the RDF, we treat both correlation types the same.

1 car:RPM
2 a qa:Metric ;
3 qa:metricOf car:Engine ;
4 rdfs:label "RPM" .
5

6 car:RPMSpeedCorrelation
7 a qa:Correlation ;
8 qa:correlationType "positive" ;
9 qa:correlationWeight 3 ;

10 qa:correlationFrom car:RPM ;
11 qa:correlationTo car:Speed .

Source Code 7.3: Adding a weighted Correlation with a named Correlation artifact

7.3. Base Application Realization

In this section, we outline the realization of the functionality SoQOnto provides to each
visualization (the base application). Besides the ontology modification methods, which
are interceptable by visualizations as described in chapter 6.2.2, the export and import
of ontologies are handled using the Turtle file format. In this section, we outline the
exchange of data between the base application (SoQOnto) and visualization. Then, we
describe how visualizations indicate their support for optional functionality, e.g., view–
supported ontology management (chapter 5.4.3).

35

7. Realization

7.3.1. Exchanging Data with Visualizations

When implementing a visualization, retrieving data from the base application is easy.
The base applications data structure is previously defined and known at the implemen-
tation and design stages. However, providing data to the base application is a more
complex issue, as the base application cannot and should not have to be modified to suit
every visualization.

To achieve data exchange from the visualization to the base application, we use
pattern–matching callbacks, which listen to changes of HTML elements matching a
given pattern. For example, to open the new relation modal from the visualization,
it only has to register a dcc.Store element1 for data storage with an id in the form of
{"open_new_relation_modal": "my_visualization_p1"}. The pattern–matching callback will
then open the modal using the data provided. To prevent the base application from
opening the modal before the data (e.g., end Nodes) is available, the visualization must
indicate the implementation of optional functionality. We explain this process in the
next section.

7.3.2. Optional Visualization Functionality

To achieve a low bar for the implementation of new visualization concepts, a simple,
working visualization in SoQOnto does not require the implementation of many methods.
However, if a visualization implements more functionality than required, this has to be
indicated.
1 def __init__(self) -> None:
2 """
3 __init__ extends 'Visualization' constructor with optional functionality
4 """
5 super().__init__()
6 self._name = "My Visualization"
7 self._supports_custom = {
8 'add-relation': True,
9 'remove -relation': True,

10 'remove -node': True
11 }
12 self._supports_ontology_change_callbacks = True
13

Source Code 7.4: Constructor for a visualization with all optional functionality

To only reload visualization parts affected by ontology changes, the parameter _sup-
ports_ontology_change_callbacks defines whether the visualization listens for ontology
changes. Otherwise, SoQOnto reloads the visualization to adapt it to the changes. Addi-
tionally, a visualization can implement view-supported ontology management, indicated
through the _supports_custom set. If a visualization indicates usage of, e.g., a custom
end Node selection for new relations (the “add-relation” key), standard end Node selec-

1https://dash.plotly.com/dash-core-components/store

36

7.4. Basic Visualization

tion is canceled, and the visualization must provide the end Nodes selected by the user.
An exemplary indication of the implementation of all optional functionality is shown in
source code 7.4.

7.4. Basic Visualization
As a reference for evaluating our concepts in chapter 8, we implement a basic visualiza-
tion, providing only a graph of the ontology with on–Node mapping of both the names
and types of Nodes and relations as seen in figure 7.2. This visualization does not pro-
vide any optional visualization functionality and does not claim to be better suited for
the management of SQOs than other existing tools. Rather, it represents a minimal,
running visualization prototype in SoQOnto. Through comparison with the Advanced
Visualization, containing all concepts of chapter 5, introduced in the next section, we
evaluate the concepts’ support in human–enabled management of SQOs.

Figure 7.2.: Parts of the real–world ontology are visualized using the basic visualization

7.5. Advanced Visualization
In contrast to the Basic Visualization, the Advanced Visualization implements all con-
cepts and optional functionality introduced in chapter 5. For task–focussed ontology
representation, it provides the overview and treetable views, complemented with filters.
A comparison of the two views, filtered for focus on correlations through the hiding of
subclass relations and isolated nodes, is shown in figure 7.3. The figure also displays
the concept of on–Node mapping of component types through the coloring of Nodes and
relations. It can be seen that the modification of a Node’s value is a central part of the
treetable view for focus tasks, as exact values and an input for modification are visible
at all times. In contrast, the overview view focuses on the topology of the represented
artifacts. On ontology change, the visualization reloads only the affected component

37

7. Realization

(e.g., the graph in the overview view), such that the set filters are not reset by reloading
the page itself.

(a) Overview view (b) Treetable view

Figure 7.3.: Overview and treetable view of the Advanced Visualization

The Advanced Visualization additionally implements the concept of view–supported
ontology management. To select end nodes, e.g., for adding a new relation, nodes in
the graph or tree can be selected by clicking them. Figure 7.4 shows a comparison of
the complexity of node selection using the view–supported method and base application
method. With the view–supported method, modifications are possible while staying
focused on the view.

(a) Base application Node selection mecha-
nism

(b) View–supported Node selection mecha-
nism in the Advanced Visualization’s
overview view

Figure 7.4.: A comparison of view–supported Node selection vs. an html select element

38

8. Evaluation

Contents
8.1. Quantitative Evaluation – User Survey 39

8.1.1. Setup . 39
8.1.2. Analysis . 42
8.1.3. Results . 42
8.1.4. Discussion . 46

8.2. Answers to the Research Questions 47
8.3. Limitations . 48

To prove the support of our concepts in the human–enabled management of SQOs,
we conduct a quantitative evaluation in the form of a user survey. We choose a user
survey over interviews, as user surveys allow for asynchronous participation and better
comparison of the answers given [Sch13]. In the user survey, we compare the Basic
Visualization with our Advanced Visualization, incorporating all concepts outlined in
chapter 5, and have users rate both the usability of the system and the visualization’s
support in the given tasks. Subsequently, we discuss the results of the evaluation. We
then answer our research questions previously outlined in chapter 3. Lastly, we consider
the limitations of our research.

8.1. Quantitative Evaluation – User Survey
In this section, we describe the setup of our evaluation, including a case–study ontology
of the field of software quality, the tasks, and the questionnaire. Then, we outline our
analysis method, followed by the user survey’s results, and conclude with a discussion
of the results. In section 8.1.3, we present the answers to our evaluation questionnaire.
We discuss the presented results in the following section.

8.1.1. Setup
To enable participants to complete our user survey on their own time, we construct
it as an at-home, non-live user survey. All resources needed for the completion of the
evaluation are provided by us online: (1) a short introductory presentation in pdf and
video format outlining SoQOnto and the visualizations, (2) a task sheet (Appendix A)
describes the tasks we ask the participants to complete with (3) SoQOnto on a given
case–study ontology, and (4) an evaluation questionnaire. To exclude the factor of
order, we use a crossover AB/BA design [MK18]. Hence, half of the participants start

39

8. Evaluation

with the Basic Visualization (Task sheet A). The other half starts with the Advanced
Visualization (Task sheet B).

In the following, we introduce a case–study ontology on the field of software quality,
which we then use to evaluate our concepts.

Case–Study Software Quality Ontology

To evaluate our concepts for human–enabled management of SQOs, we provide an on-
tology incorporating all components described in chapter 5.2. Our real–world ontology
incorporates these components and removes the abstractness and complexity of soft-
ware quality. However, it differs structurally from ontologies on the domain of quality.
Therefore, for the evaluation, we create a case–study ontology on the field of software
quality based on the SQuaRE software quality model and additional research conducted
at our chair for software construction, modeling correlations of the Quality Attributes
Maintainability and Portability in Microservice Architectures [iso]. We do not claim
complete coverage of software quality in this ontology. Instead, we aim to implement all
core components while not going beyond this thesis’s focus and allowing the participants
of our evaluation to gain an overview in the limited time available to them.

We center our SQO around the SQuaRE software quality model, incorporating all
Quality Attributes and Factors for a hierarchical core ontology with 40 nodes [iso]. As
SQuaRE only contains taxonomical aspects, to obtain a SQO incorporating all com-
ponents, we extend this groundwork with Correlations and Metrics substantiated in a
systematic literature review at our chair. The resulting case–study ontology is shown
in figure 8.1, consisting of the eight Quality Attributes described in SQuaRE, subdi-
vided into their respective Quality Factors. For the Quality Attributes portability and
maintainability, we include Measures and Metrics. Metrics that are calculated using
multiplication and division are approximated using addition and subtraction where pos-
sible.

Tasks and Questionnaire

The participants are asked to complete the following tasks to evaluate our concepts for
support in the modification and representation of SQOs:

Ontology management: to evaluate view–supported ontology management and the
import method of SoQOnto, the participants have to import the case–study ontology,
remove, and add a Node and multiple relations.

Understanding of correlations: to evaluate the visualization’s support in under-
standing the effects of correlations, the participants are asked to find all Nodes increasing
the Metric “Effort of Package Construction.”

After completing the tasks, the participants fill out an online questionnaire on a
LimeSurvey instance1. The questionnaire starts with demographic questions about
gender, age, and previous knowledge about graphs and software quality (attributes).

1https://www.limesurvey.org/

40

8.1. Quantitative Evaluation – User Survey

Fi
gu

re
8.

1.
:C

as
e–

st
ud

y
on

to
lo

gy
ba

se
d

on
SQ

ua
R

E,
ex

te
nd

ed
w

ith
re

se
ar

ch
co

nd
uc

te
d

at
ou

r
ch

ai
r

[is
o]

41

8. Evaluation

The following questionnaire section is based on the widely used System Usability Scale
(SUS) [Bro95], consisting of 10 questions. The SUS offers an easy–to–use questionnaire,
rigorously validated and widely adopted for evaluation of user experience [BKM08]. It
measures the three essential aspects of system usability: system effectiveness, system
efficiency, and system satisfaction [18]. We extend the SUS with four rating questions
targeting towards the visualization’s support in task completion and three free text
questions to gain insights into positive and negative user experiences as well as possible
improvements. All rating questions are rated on a 10–point Likert scale from “strongly
disagree” to “strongly agree.” The complete questionnaire can be found in Appendix B.
To provide help with questions and problems encountered by the participants, we sched-
ule two video meetings.

8.1.2. Analysis

According to the study design of the evaluation, in the following sections, we describe
the results of our quantitative evaluation both textually and visually using figures. We
start by checking the demographics of our participants for bias. Then, we check the
differences in results for statistical significance using Student’s t–tests for connected
samples. If the data is not normally distributed, we use the Wilcoxon signed–rank test
to test for statistical significance. The normality of the distribution of our results is
determined using the Shapiro–Wilk normality test. For all statistical tests, we use a
confidence level of 95 % (α = .05).

8.1.3. Results

In this section, we introduce the quantitative evaluation’s results. The total number
of participants is 15, with 7 participants using task sheet A and 8 using task sheet B.
We begin by outlining the demographics of the participating students, then inspecting
the usability. We then continue with the additional questions, answered on a scale,
too, concerning the support in task completion, and conclude with free text answers to
questions concerning the visualizations.

Demographics

All participants identify themselves as male (see Figure 8.2a). Most participants are
between 21 and 30 years old, with 20 % younger at ages 15 to 20 (see Figure 8.2b).

We conclude the demographics question group with the participants’ familiarity with
graphs and software quality. The answers to these three statements are visualized in
Figure 8.3.

The first statement, “I am familiar with graphs,” is rated by the participants with
an average of 7.87 (SD = 2.17), transferring to agree, as does the median of 8. The
minimum is strongly disagree, and the maximum strongly agree. The answers’ first
quartile corresponds to agree, and the third quartile is between agree and strongly agree.

42

8.1. Quantitative Evaluation – User Survey

Male (100 %)

(a) Gender

15−20 (20 %)

21−30 (80 %)

(b) Age

Figure 8.2.: Gender and age of participants (N = 15)

I am familiar with the terms
of software quality attributes.

I am familiar with the terms
of software quality.

I am familiar with graphs.

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8.3.: Familiarity of participants with graphs and software quality (attributes),
10-point Likert scale, darker is better (N = 15)

The average of the second statement, “I am familiar with the terms of software quality,”
is 5.4 (SD = 2.44) with a median of 6 (both neutral). The participants answered with
a minimum of strongly disagree and a maximum between agree and strongly agree, with
the first quartile of disagree and the third quartile between neutral and agree.

The third statement’s answers (“I am familiar with the terms of software quality
attributes”) average at 4.6 (SD = 2.06) between disagree and neutral, and a median of
neutral. The minimum is strongly disagree, and the maximum agree. The first quartile
corresponds to disagree, and the third quartile to neutral.

System Usability Scale

For easy comparison, the questions in the SUS are grouped by questions rather than
visualizations. A visual comparison can be seen in Figure 8.5.

In the SUS score rescaled to a minimum of 0 and a maximum of 100, the Basic Visu-
alization achieves a score of 49.8, significantly lower than the Advanced Visualization’s

43

8. Evaluation

score of 78.9. According to Bangor et al., this results in the Advanced Visualization’s
score being above average for Web-based interfaces (68.05) and the Basic Visualization
being below average [BKM08]. In further research, Bangor et al. couple adjectives with
SUS scores [BKM09]. Using this connection, we can describe the Advanced Visualization
as between good and excellent, while the Basic Visualization is best described as ok.

Without any exception, the average score of each SUS question is higher for the
Advanced Visualization than for the Basic Visualization (See Figure 8.5). The lowest
difference in average score is found for the questions 6 “I thought there was too much
inconsistency in this system” (Difference: 1.0, see Figure 8.5f), 4 “I think that I would
need the support of a technical person to be able to use this system.” (Difference: 1.3,
see Figure 8.5d), and 10 “I needed to learn a lot of things before I could get going with
this system” (Difference: 1.4, see Figure 8.5j). All other response averages differed by
at least 2.2.

To determine the statistical significance of the differences described, we calculate the
SUS for each participant and check the resulting data set for normality. The Shapiro–
Wilk normality test tests our null hypothesis that the data set is normally distributed.
It returns a p-value of .199. Therefore, our data set can be assumed to be normally
distributed, allowing us to use Student’s t–test. Using Student’s t–test, we receive a
p-value of .0003, below our confidence level of .05. Therefore, the difference between the
Basic and Advanced Visualization is statistically significant.

Basic

Advanced

0 20 40 60 80 100

49.8

78.9

49.8

Figure 8.4.: Total System Usability Scale score (normalized to 100) (N = 15)

Further Questions on the Understanding of Software Quality and Task Support

As with the SUS questions, the additional questions on the understanding of software
quality and task support of the visualizations are rated higher for the Advanced Vi-
sualization than for the Basic Visualization (See Figure 8.6). For these questions, the
lowest difference in average scores is 2.5 (See Figure 8.6a), and the highest is 4.1 (See
Figure 8.6d).

In addition to the already described questions rated on a scale, we ask the participants
which aspects of each visualization they like, do not like, and what could be improved.
A complete list of all answers can be found in Appendix C.

44

8.1. Quantitative Evaluation – User Survey

Basic

Advanced

0.0 0.2 0.4 0.6 0.8 1.0

(a) “I think that I would like to use this sys-
tem frequently.”

Basic

Advanced

0.0 0.2 0.4 0.6 0.8 1.0

(b) “I found the system unnecessarily com-
plex.”

Basic

Advanced

0.0 0.2 0.4 0.6 0.8 1.0

(c) “I thought the system was easy to use.”

Basic

Advanced

0.0 0.2 0.4 0.6 0.8 1.0

(d) “I think that I would need the support of
a technical person to be able to use this
system.”

Basic

Advanced

0.0 0.2 0.4 0.6 0.8 1.0

(e) “I found the various functions in this sys-
tem were well integrated.”

Basic

Advanced

0.0 0.2 0.4 0.6 0.8 1.0

(f) “I thought there was too much inconsis-
tency in this system.”

Basic

Advanced

0.0 0.2 0.4 0.6 0.8 1.0

(g) “I would imagine that most people would
learn to use this system very quickly.”

Basic

Advanced

0.0 0.2 0.4 0.6 0.8 1.0

(h) “I found the system very cumbersome to
use.”

Basic

Advanced

0.0 0.2 0.4 0.6 0.8 1.0

(i) “I felt very confident using the system.”

Basic

Advanced

0.0 0.2 0.4 0.6 0.8 1.0

(j) “I needed to learn a lot of things before I
could get going with this system.”

Figure 8.5.: System Usability Scale ratings comparison by question, 10-point Likert scale,
from strongly disagree (red) to strongly agree (green)

45

8. Evaluation

For the Basic Visualization, positively described aspects included 1. simple Node
selection, 2. explicitly stated Node types, and 3. representation as a graph. The
participants do not like 1. too many (overlapping) labels, 2. lack of color, and 3. text
color. As described by the participants, improvements could be 1. spreading the graph
more, 2. adding color and removing some text, and 3. a search function.

The participants’ positive feedback on the Advanced Visualization includes 1. colored
Nodes, 2. filters, and 3. the legend. They do not like 1. the restriction of the Node
selection, 2. the unintuitive zoom function, and 3. the hardness of finding a specific Node.
Therefore, the proposed improvements include 1. a search function, 2. a combination of
both visualizations’ Node selection, and 3. better graph interaction.

Basic

Advanced

0.0 0.2 0.4 0.6 0.8 1.0

(a) “I feel that my understanding of software
quality and its interdependencies increased
by using this visualization.”

Basic

Advanced

0.0 0.2 0.4 0.6 0.8 1.0

(b) “I feel that the visualization elements of
this visualization supported me in my
tasks.”

Basic

Advanced

0.0 0.2 0.4 0.6 0.8 1.0

(c) “I feel that the visualization elements of
this visualization supported me in my un-
derstanding of software quality.”

Basic

Advanced

0.0 0.2 0.4 0.6 0.8 1.0

(d) “I feel that the visualization elements of
this visualization work well together and
complement each other.”

Figure 8.6.: Additional questions ratings comparison by question, 10-point Likert scale,
from left (strongly disagree, red) to right (strongly agree, green)

8.1.4. Discussion
It has to be mentioned that the gender composition of the participants is not represen-
tative of the general population. Additionally, our participants are all younger than 30
years old and already have high knowledge of graphs and some knowledge about soft-
ware quality. While this might not be the case for the general population, as researchers
and other interested parties, consisting of developers and product owners, primarily con-
duct SQO management, some knowledge about graphs and software quality should be
assumed.

The stark difference in scores achieved by the Basic and Advanced Visualization in this

46

8.2. Answers to the Research Questions

evaluation underlines the effectiveness of the concepts introduced in this thesis and used
in the Advanced Visualization. Additionally, as a surplus, it must be noted that SoQOnto
allows for ontology management with little to no help from a technical person, as shown
in the good scores for both visualizations in the related questions. This supports our
impression while conducting the evaluation, as only one participant is using the support
video meetings.

8.2. Answers to the Research Questions

In this section, we present the contribution of our work to the research questions we
extracted from our problem statement in chapter 3.

RQ1: How can a real–world ontology, incorporating all relevant aspects of a Soft-
ware Quality Ontology, look like?

Following the introduction of our real–world ontology in chapter 3.1.1, we conclude that
our car ontology covers all aspects of SQOs. Through the familiarity of the car domain,
it is easy to understand and allows for focus on the representation concepts. However, to
create a structurally more similar ontology to SQOs, we suggest to narrow the domain
towards car quality while preserving this domain’s less abstract and more familiar nature.

RQ2: How can a visual representation support the understanding of the compo-
nents and relations of SQOs?

RQ2.1: How can the effects of Correlations between Measures and Metrics
be visualized?

RQ2.2: How can the aspects of quality be represented in an understandable
way?

The answer to RQ2 consists of the answers to both RQ2.1 and RQ2.2.
To visualize the effects of Correlations between Measures and Metrics, we utilize on–

Node mapping with differing Node sizes and layout adaption. For the visualization of
Node values, we need to compute values taking weight and correlations into account.

To represent the aspects of quality in an understandable way, we differentiate between
two classes of ontology tasks and incorporate both a graph–based overview view using
on–Node mapping and a treetable view combining the hierarchical structure of a tree
with a table for additional Node data.

Combined, these concepts increase the participants understanding of software quality
and provide a statistically significantly better user experience of 78.9 versus 49.8 in the
SUS score.

RQ3: How can the modification and sharing of a represented ontology be simplified?

47

8. Evaluation

For ontology modification, we integrate the concept of view–supported ontology man-
agement, allowing for Node selection using the visualization’s representation of Nodes.
We are able to show that the textual RDF syntax of Turtle is suitable for the ex-
port and import of SQOs in SoQOnto, therefore, allowing for sharing of knowledge.
Participants of the evaluation positively mentioned the intuitiveness of view–supported
ontology management. They do not feel the necessity to consult a technical person when
using SoQOnto and its Advanced Visualization.

8.3. Limitations
While the overall development and evaluation of our visualizations and SoQOnto con-
firms the concept, design, and realization, some limitations came to light.

Dependence on Graph Visualization in the Advanced Visualization

A commonly raised topic in the free text part of the evaluation is that users would like
to select the end Nodes from a dropdown – like in the Basic Visualization – or at least
have the option to do so, stating the difficulty of finding Nodes in large ontologies. In
the current version of the Advanced Visualization, it is the user’s choice to select end
Nodes in the graph representation or the dropdown.

Correlations do not Support Multiplication or Division

When creating the case–study ontology for the field of software product quality, some
Metrics introduced in the research used are a product or quotient. Due to the current
value calculation algorithm (Chapter 5.3.1), allowing for only addition and subtraction,
we can only approximate the value of these Metrics.

48

9. Conclusion and Future Work

Contents
9.1. Conclusion . 49
9.2. Future Work . 50

9.1. Conclusion

This thesis aims at enhancing the understanding of software quality with the help of
well–known and new concepts for the representation of SQOs. To provide researchers
with a supportive environment for understanding and maintaining SQOs, we focus on
the representation of fundamental components and the effects of Correlations between
the different aspects of software quality. In the following, we summarize our findings:

• To reduce abstractness and complexity found in software quality and increase fa-
miliarity, we define a real–world ontology on the field of a car as an everyday item.
The usage of our real–world ontology allows for a focus on the representation and
visualization concepts. We learn that for a structurally more similar ontology to
SQOs, our real–world ontology needs a narrowing of domain towards a car quality
ontology.

• To achieve a goal–oriented representation of the components of SQOs, we incor-
porate an ontology task classification, allowing us to complement the different
requirements of both overview and focus tasks. We represent these task classes in
our visualization through an overview and treetable view, combining a tree struc-
ture with a table for the representation of additional Node data. In both views,
we use on–Node mapping to represent the Node data, including the artifact’s type
(Measure, Metric, ...).

• In a third step, we focus on the representation of the effects of Correlations. To
represent the Correlations found in software quality, we calculate the values of cor-
related Nodes on value change. We represent the calculated value in the overview
view through on–Node mapping, increasing or decreasing the Node’s size. In the
treetable view, as we represent the Node’s definite value at all times, its value is
updated.

49

9. Conclusion and Future Work

• With our concepts for the representation of SQOs introduced, we then focus
on maintaining SQOs. To achieve effective maintainability, we introduce view–
supported ontology management, utilizing the SQO’s representation for mainte-
nance.

• Finally, we evaluate our concepts for representing and maintaining SQOs through
comparison with a minimal, running visualization in a user survey. We imple-
ment both visualizations in SoQOnto, a usable proof–of–concept web application
we provide in the evaluation. Using the widely adopted System Usability Scale
(SUS), we conclude that the increase in usability for both the maintenance and
representation concepts is statistically significant. Extending the SUS, we find
that the participants’ understanding of software quality increases more with than
without the application of our concepts. Nevertheless, we find that in practice,
the computation of a Node’s value sometimes requires multiplication or division,
which our value calculation algorithm does not support so far.

Overall, our concepts contribute to both the understanding and maintenance of SQOs.
Together, the visualization, including our concepts, and their realization in SoQOnto
provide good to excellent usability.

9.2. Future Work
While implementing SoQOnto, the visualizations, and ontologies, we found opportunities
to improve the versatility of SoQOnto and the SQO metaclass ontology (qa). Addition-
ally, the feedback of the participants of our user survey indicates possible improvements
for the Advanced Visualization. Concluding this thesis, we want to outline possible
improvements that can, in our view, enhance our web application and concepts.

Allowing for Different SQO Metaclasses: In the current implementation of So-
QOnto, the names of metaclasses to be expected from any ontology imported are pre–
defined. To allow for more versatility, it might be useful to allow users to specify Node
and relation classes corresponding to the concepts contained in SQOs. An implementa-
tion of this kind would allow ontologies with similar characteristics that are not defined
using the qa metaclass ontology to profit from the methods and representations included
in SoQOnto’s visualizations.

Implementing Additional Correlation Types and Custom Value Composi-
tion: The qa metaclass ontology’s vocabulary incorporates two Correlation types (posi-
tive and negative Correlations). Currently, the sum of their (adjusted) values comprises
the value of a correlated Node. In the late stages of this thesis work, we implement an
ontology for software quality, of which some Metrics could not be precisely represented.
As these Metrics’ values are calculated using multiplication and division, positive and
negative Correlations are not suitable for precise representation. Further research on
different compositions of a Metric’s value and correspondingly into a value calculation
algorithm that incorporates the found composition types is, in our view, justified.

50

A. Evaluation Tasks
See next pages for evaluation task sheet. The task sheet of group B only differs in the
order of tasks 1 and 2.

51

Evaluation Group A:
Human–enabled management of software quality

ontologies
Moritz Rickert

moritz.rickert@rwth-aachen.de

September 5, 2022

Thank you for taking your time to participate in the evaluation of my thesis
titled ”Human–enabled management of software quality ontologies.”

The evaluation consists of two parts: a series of basic tasks to be conducted
on both the basic and advanced visualization of the tool and a survey about
your experience prior to using the tool as well as after your usage.

If you have any questions regarding the tool or evaluation, feel free to par-
ticipate in one of the zoom meetings or simply write me an email. I’ll be happy
to answer your questions.

Zoom meetings
Thursday, September 8, 2022 18:00 – 19:00
Sunday, September 11, 2022 18:00 – 19:00

1

1 Basic visualization
You can find the basic visualization of SoQOnto at https://soqonto-basic.
moritzrickert.de. Please take a minute to make yourself comfortable with the
user interface.

1.1 Import an ontology
Click on the “import ontology” button and follow the steps in the modal to
import the ontology found at https://thesis.moritzrickert.de/2022/eval.

Note: Please use a name of your choosing (e.g. your initials etc.) as the
ontology’s name has to be unique.

1.2 Gain an overview
You are now presented with a graph representation of the ontology. Take a
moment to gain a broad understanding of the ontology.

Note: You do not have to understand the ontology in detail.

1.3 Manage the ontology
The Quality Attribute “Replaceability” (here: “Replacability”) has a spelling
mistake and is connected to the Quality Attribute “Compatibility”. However, it
should be connected to the Quality Attribute “Portability”.

• Remove the Quality Attribute “Replacability”

• Again add the Quality Attribute with its correct name

• Connect the Quality Attribute as a subclass to “Portability”

• Add a positive correlation from “Replaceability” to “Portability”

1.4 Effects of value changes
Find the Metric “Effort of Package Construction”. Try to understand whether
an increase or decrease of the value of this Metric is needed to increase software
quality. Which values would have to increase in order to increase the Metric
“Effort of Package Construction”.

Note: a positive correlation implies that an increase in value of one con-
nected node leads to an increase in value of the other. A negative correlation
implies that an increase of value of one node leads to a decrease of value of the
other.

2

2 Advanced visualization
You can find the advanced visualization of SoQOnto at https://soqonto-
advanced.moritzrickert.de. Please take a second to make yourself comfort-
able with the user interface. You are free to use either view contained in the
advanced visualization to complete the tasks.

2.1 Import an ontology
Click on the “import ontology” button and follow the instructions to import the
ontology found at https://thesis.moritzrickert.de/2022/eval.

Note: Please use a name of your choosing (e.g. your initials etc.) as the
ontology’s name has to be unique.

2.2 Gain an overview
You are now presented with a graph representation of the ontology. Take your
time to understand the ontology’s aspects.

2.3 Manage the ontology
The Quality Attribute “Replaceability” (here: “Replacability”) has a spelling
mistake and is connected to the Quality Attribute “Compatibility”. However, it
should be connected to the Quality Attribute “Portability”.

• Remove the Quality Attribute “Replacability”

• Again add the Quality Attribute with its correct name

• Connect the Quality Attribute as a subclass to “Portability”

• Add a positive correlation from “Replaceability” to “Portability”

2.4 Effects of value changes
Find the Metric “Effort of Package Construction”. Try to understand whether
an increase or decrease of the value of this Metric is needed to increase software
quality. Which values would have to increase in order to increase the Metric
“Effort of Package Construction”.

Note: a positive correlation implies that an increase in value of one con-
nected node leads to an increase in value of the other. A negative correlation
implies that an increase of value of one node leads to a decrease of value of the
other.

3

3 Survey
Please open the survey found at https://survey.moritzrickert.de/index.php/
642519 and answer all given questions.

Thank you again for your participation.

4

B. Evaluation Questionnaire

All questions are answered in a range of 1–10 if not stated otherwise.

B.1. Demographics
1. Gender (male, female, diverse)

2. Age (15-20, 21-30, 31-40, 41-50, 51-60, ...)

3. I am familiar with Graphs.

4. I am familiar with the terms of software quality.

5. I am familiar with the terms of software quality attributes.

B.2. Basic Visualization

B.2.1. System Usability Survey

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use this
system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

57

B. Evaluation Questionnaire

B.2.2. Additional Questions

1. I feel that my understanding of software quality and its interdependencies increased
by using this visualization.

2. I feel that the visualization elements of this visualization supported me in my tasks.

3. I feel that the visualization elements of this visualization supported me in my
understanding of software quality.

4. I feel that the visualization elements of this visualization work well together and
complement each other.

5. What did you like about the basic visualization? (free text)

6. What did you not like about the basic visualization? (free text)

7. What could be improved with the basic visualization? (free text)

B.3. Advanced Visualization

B.3.1. System Usability Survey

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use this
system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

58

B.4. Additional Feedback

B.3.2. Additional Questions
1. I feel that my understanding of software quality and its interdependencies increased

by using this visualization.

2. I feel that the visualization elements of this visualization supported me in my tasks.

3. I feel that the visualization elements of this visualization supported me in my
understanding of software quality.

4. I feel that the visualization elements of this visualization work well together and
complement each other.

5. What did you like about the advanced visualization? (free text)

6. What did you not like about the advanced visualization? (free text)

7. What could be improved with the advanced visualization? (free text)

B.4. Additional Feedback
Free text answers.

59

C. Evaluation Feedback

Question: What did you like about the basic visualization?

• “The navigation elements e.g. the Zoom”

• “Graph drawing is always nice to locate clusters etc. and transitive relationships”

• “Simple input methods”

• “It is very good to see the different abstract software quality aspects in a graphic
way”

• “It’s simplicity and that it is very easy to add/delete nodes/relations ”

• “Import interface and flow”

• “See what type a Node has”

• “-”

• “The color scheme was nice to look at.”

• “fast overview, the type of the nodes is explicitly stated(metric, measure...)”

• “The function of zooming in made it clearer. Editing was user-friendly.”

• “easy to understand”, “Intuitive operation”

• “The ability to add relations to nodes by entering their names and not searching
their visual representation in the graph”

• “that you only worked with the buttons on the top side and no double klicking on
the nodes”

• “No disadvantage for color-blind people.”

Question: What did you not like about the basic visualization?

• “”Descriptors” like <Metric> lead to an unnecessary complication of the graph
making it hard to find certain elements.”

• “Overlapping labels, overall graph visibility due to label size not adapting to prox-
imity of other nodes, makes locating nodes very tricky”

61

C. Evaluation Feedback

• “Hard to comprehend graph on small screen (14”)”

• “There are to many labels that make it difficult to see through. It is hard to
diferenciate between different software aspects. It is hard to find the root node and
subclasses are not marked different than their parents. You cant see correlations”

• “For me it was very hard to read the titles and descriptions of the nodes because
the titles would overlap, due to the complexicity of the graph. For that reason it
took some time to find the correct nodes. (Maybe this was because I was using an
IPad).”

• “Overlapping labels, very little use of colour, node clustering”

• “The orange text was not really visible
No distinction between positive and negative besides text
Hard to find Nodes”

• “It is visually cluttered.
No scroll to zoom.”

• “There is text everywhere, making it very hard to read or to find nodes. It was
also hard to understand just by looking at the graph, what text belongs to which
node. Adding relations also took rather long, since you have to select both nodes
out of a long alphabetically ordered list. It is also incredibly difficult to understand
correlations.”

• “no color coded elements, lots of overlapping text, no search function”

• “Generally very confusing view. The text sometimes overlapped, making it un-
readable. Without zooming in, it would be hard to understand.”

• “zoom function is a bit confusing at the beginning
 sometimes difficult to find a specific node”

• “The Label of the nodes where to big to be displayed in the graph. Everything
ovelaps, nothing can be seen.”

• “yellow text sometimes hard to read, to much text on one note”

• “The visualization was very confusing and unclear. I was not able to get an
overview. Distinguishing between different aspects like correlations and types of
nodes was very hard. It was an information overload.”

Question: What could be improved with the basic visualization?

• “Visual elements or features to improve the overview and navigation of the system
”

62

• “Maybe force the graph drawing to spread out the labels more and select other
colors/opacities for edges and labels, or overall improve the spacing on the entire
web page (like using the full screen, flexbox + flex-grow + flex-col ;))
also a search would be nice.
Effect edges could be separated from relation edges, e.g. by colors, or the weight
with edge thickness”

• “Put nodes more appart, labels should not overlap”

• “-Choose a smarer way to sort the nodes.
- Mark different quality aspects (expl. colors)”

• “Maybe add a search feature, where the node that you are searching for, is for
example highlighted.”

• “Add colour, increase node spacing”

• “More Colours for negative and positive correlation
Labeling without <> and with spaces
Find Nodes easily via search, not only through F5”

• “Less text overlap for better readability.
Implement zoom by scrolling.”

• “Moving text, so that it doesn’t overlap and removing some of the text in favour
of symbols. Improving the usability of adding and removing relations and nodes.”

• “a search function, colors, no overlapping text”

• “Less text in the overall view. Maybe comprehend details in every node itself, so
by clicking on it u get more information.”

• “add search function for nodes”

• “make the graph visualization like in the advanced visualization :D”

• “give the tree branches more room so the nodes are not that cramped.”

• “Making it easier to understand by adding visual help to distinguish different types
of nodes and relations.”

Question: What did you like about the advanced visualization?

• “I really liked the improvement of visualization and understanding by the graphical
elements (e.g. colors and elements). Also the legend helped me understand and
navigate the graph fast”

• “Colors! And overall visibility in the graph way better than in the basic mode.”

63

C. Evaluation Feedback

• “Manipulation of the graph without input masks”

• “The visualization gives a much better idea of which characteristics of the abstract
quality aspects are related. Its good that you can see what aspects are corralated.
By using colors you can distinguish very well different aspect.”

• “I liked that the graph was using colored nodes and realtions to make the graph
easier to read and understand.
I liked the tree overview, because it gave you a clear list of all the elements and
Relations.
Filter was also very practical.”

• “Coloured edges to indicate correlations, well–spaced nodes with useful colouring
and clearly legible labels, a legend explaining their meaning, tree–table pop-up
clearly showing the negative influence of the ”effort of package construction””

• “Less Text for a better overview”

• “Colours for easy identification.”

• “The color coding of nodes and relationships helped with understanding the graph.
The text was easy to read. The Treetable especially was very helpful in under-
standing the relationships and being able to adjust values easily was also a good
feature to understand the correlations. Adding relations just by klicking on the
nodes is very intuitive.”

• “the overview, the filter and the color coding, the sliders and adapting the values”

• “The legend on the side was very useful. In general, better overview, easier to
understand and very user-friendly. The different colors helped with the clarity of
the relations between nodes.”

• “easy to understand
Intuitive operation”

• “colors, readability, tree view”

• “more colors to see the different branches of the tree better, ”

• “This visualization gave a clear overview without being distracted. Especially
correlations were very easy to see and quick to understand.”

Question: What did you not like about the advanced visualization?

• “To add a relation you need to select given nodes. In basic visualization you could
just start off with the interface.”

• “Still though quite synthetic visuals, and Bootstrap :((”

64

• “Sometimes hard to click on nodes”

• “-It is hard to use it without some expertise in the topic
- the graph visualization is still a bit messy
- interface does not always work
- treetable view
- top bar is not fixed to the top and made with bootstrap”

• “The „add Relation“ Button did not open a window where i could select the nodes
from a list. Instead I had to look for the nodes in the graph and click on them. I
found the first option more easy to use.”

• “Navigation (especially zooming) is cumbersome”

• “Too colour reliant”

• “No scroll to zoom.”

• “The node that I added was hidden behind the Legend, so it took me a little to find
it. As someone who never used a software like this before, it was not immediately
clear in which order I had to klick on the nodes to make one a subclass of the
other.”

• “searching has to be done manually”

• “That you would have to click on the nodes to connect them, and that there were
no other options. This will get very hard in bigger projects to even find the nodes.”

• “zoom function is a bit confusing at the beginning
sometimes difficult to find a specific node”

• “Adding relations is only possible by clicking on the graphical represenation of the
node, not by entering their names”

• “.”

• “Metric and measure seem to be similar to positive and negative correlation because
only the color differed.”

Question: What could be improved with the advanced visualization?

• “The ability to search for elements”

• “More spaceous graph drawing would be benefitial, and user interaction with the
graph still lacks some intuition”

• “Node selection”

65

C. Evaluation Feedback

• “- bug fixing
- simpler GUI
- usability”

• “Maybe do the add relation button the same as it is in the basic visualization.”

• “Gesture–based navigation (like a maps application) with scrolling holding down
a key or pinching on the trackpad”

• “Find Nodes easily via search, not only through F5
List all relations of a node in a table
correlations not with colour, but with patterns like broken lines / bigger lines etc.”

• “Implement zoom by scrolling.”

• “In the overview, there are some cases where it is hard to differentiate if a relation
is just a corrlation or a correlation and a subclass at the same time. Maybe arrows
could be used to signify subclasses.
With many nodes on screen, the difference between the highlighted node and the
other nodes can be hard to see. A possible improvement for example could be
having the pop up, that appears when hovering over a node, be displayed perma-
nently, while a node is highlighted. It would also be nice if a node that was just
added is automatically highlighted to make it easier to find it.”

• “add a search function”

• “Maybe also add the option, from the basic visualization, to connect nodes by their
names.”

• “search function for nodes”

• “adding relations should be possible in the graphical way AND in the way it is
possible in the basic visualization”

• “give the nodes a bit more room because some branches from different previous
branches are overlapping. Give the opportunity to select one specific branch, eg.
Usability and only see all branches going to usability and going from usability.”

• “Adding a version for colorblind people like different colors or shapes for nodes
and relations.”

Additional feedback:

• “Bootstrap UI :(but otherwise nice job”

• “It is forgivable that certain aspects are not perfect, because at the time of cre-
ation no such software quality visualization existed and the development was more
difficult :)”

66

• “Also, when I wanted A to be the subclass of B, I didn’t know whether I would
have to put A first of B first. But apart from that I liked it!”

• “The difference in usability of the basic version compared to the advanced version
is very stark. ”

• “A very good system that helps in getting an overview on others/your projects
and maybe even get a better understanding.”

• “All in all the Advances version was better by a margin as getting an overview of
the project is important, which the advanced version managed to do in contrast
to the basic version. While working with the basic version seemed like a burden,
working with the advanced visualization seemed comfortable.”

67

Bibliography
[11] Systems and software engineering – Systems and software Quality Require-

ments and Evaluation (SQuaRE) – System and software quality models.
Standard. Geneva, CH: International Organization for Standardization, 2011
(cit. on pp. 1, 7, 8, 16).

[18] Ergonomics of human-system interaction — Part 11: Usability: Definitions
and concepts. Standard. Geneva, CH: International Organization for Stan-
dardization, 2018 (cit. on p. 42).

[90] “IEEE Standard Glossary of Software Engineering Terminology.” In: IEEE
Std 610.12-1990 (1990), pp. 1–84. doi: 10.1109/IEEESTD.1990.101064
(cit. on p. 1).

[AH04] G. Antoniou and F. van Harmelen. “Web Ontology Language: OWL.” In:
Handbook on Ontologies. Ed. by S. Steffen and R. Studer. International
Handbooks on Information Systems. Springer-Verlag, 2004, pp. 67–92. isbn:
978-3-540-24750-0. doi: https://doi.org/10.1007/978-3-540-24750-0
(cit. on p. 5).

[Bar+95] M. Barbacci et al. Quality Attributes. Tech. rep. CARNEGIE-MELLON
UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST, 1995 (cit.
on p. 18).

[BAT97] P. Borst, H. Akkermans, and J. Top. “Engineering ontologies.” In: Interna-
tional Journal of Human-Computer Studies 46.2 (1997), pp. 365–406. issn:
1071-5819. doi: https://doi.org/10.1006/ijhc.1996.0096. url: https:
//www.sciencedirect.com/science/article/pii/S1071581996900968
(cit. on p. 3).

[Bec14] D. Becket. RDF 1.1 N-Triples. 2014. url: https://www.w3.org/TR/2014/
REC-n-triples-20140225/ (visited on 08/24/2022) (cit. on pp. 4, 5, 33).

[Bez+10] A. Bezerianos et al. “Graphdice: A system for exploring multivariate social
networks.” In: Computer graphics forum. Vol. 29. 3. Wiley Online Library.
2010, pp. 863–872 (cit. on p. 16).

[BG14] D. Brickley and R. Guha. RDF Schema 1.1. 2014. url: https://www.
w3.org/TR/2014/REC-rdf-schema-20140225/ (visited on 09/02/2022)
(cit. on p. 4).

[BKM08] A. Bangor, P. T. Kortum, and J. T. Miller. “An empirical evaluation of the
system usability scale.” In: Intl. Journal of Human–Computer Interaction
24.6 (2008), pp. 574–594 (cit. on pp. 42, 44).

69

https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/https://doi.org/10.1007/978-3-540-24750-0
https://doi.org/https://doi.org/10.1006/ijhc.1996.0096
https://www.sciencedirect.com/science/article/pii/S1071581996900968
https://www.sciencedirect.com/science/article/pii/S1071581996900968
https://www.w3.org/TR/2014/REC-n-triples-20140225/
https://www.w3.org/TR/2014/REC-n-triples-20140225/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/

Bibliography

[BKM09] A. Bangor, P. Kortum, and J. Miller. “Determining what individual SUS
scores mean: Adding an adjective rating scale.” In: Journal of usability stud-
ies 4.3 (2009), pp. 114–123 (cit. on p. 44).

[BNO13] S. Bellomo, R. L. Nord, and I. Ozkaya. “A study of enabling factors for
rapid fielding combined practices to balance speed and stability.” In: 2013
35th International Conference on Software Engineering (ICSE). IEEE. 2013,
pp. 982–991 (cit. on p. 31).

[Boe+07] B. Boehm et al. “Fifth workshop on software quality.” In: Companion of the
29th International Conference on Software Engineering. 2007 (cit. on p. 7).

[Bøe08] J. Bøegh. “A new standard for quality requirements.” In: IEEE software
25.2 (2008), pp. 57–63 (cit. on p. 1).

[Bro95] J. Brooke. “SUS: A quick and dirty usability scale.” In: Usability Eval. Ind.
189 (Nov. 1995) (cit. on p. 42).

[Bur+22] B. Burns et al. Kubernetes: up and running. ” O’Reilly Media, Inc.”, 2022
(cit. on p. 33).

[Cha91] D. de Champeaux. “Object-oriented analysis and top-down software devel-
opment.” In: ECOOP’91 European Conference on Object-Oriented Program-
ming. Ed. by P. America. Berlin, Heidelberg: Springer Berlin Heidelberg,
1991, pp. 360–376. isbn: 978-3-540-47537-8 (cit. on p. 8).

[DB-22] DB-Engines. DB-Engines Ranking of Graph DBMS. 2022. url: https://
db-engines.com/en/ranking/graph+dbms (visited on 08/18/2022) (cit. on
p. 32).

[Del+03] I. Deligiannis et al. “An empirical investigation of an object-oriented design
heuristic for maintainability.” In: Journal of Systems and Software 65 (Feb.
2003), pp. 127–139. doi: 10.1016/S0164-1212(02)00054-7 (cit. on p. 30).

[El +20] A. El Bolock et al. “Visualizing Complex Ontologies Through Sub-Ontology
Extraction.” In: 2020 24th International Conference Information Visualisa-
tion (IV). IEEE, 2020, pp. 509–514. isbn: 1728191343 (cit. on p. 11).

[Gam+95] E. Gamma et al. Design patterns elements of reusable object oriented soft-
ware. Addison-Wesley professional computing series. Addison-Wesley, 1995.
isbn: 0201633612 (cit. on pp. 29, 30).

[GB95] V. S. Gordon and J. M. Bieman. “Rapid prototyping: lessons learned.” In:
IEEE software 12.1 (1995), pp. 85–95 (cit. on p. 8).

[GOS09] N. Guarino, D. Oberle, and S. Staab. “What Is an Ontology?” In: Handbook
on Ontologies. Ed. by S. Staab and R. Studer. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 1–17. isbn: 978-3-540-92673-3. doi: 10.1007/
978-3-540-92673-3_0. url: https://doi.org/10.1007/978-3-540-
92673-3_0 (cit. on p. 3).

70

https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://doi.org/10.1016/S0164-1212(02)00054-7
https://doi.org/10.1007/978-3-540-92673-3_0
https://doi.org/10.1007/978-3-540-92673-3_0
https://doi.org/10.1007/978-3-540-92673-3_0
https://doi.org/10.1007/978-3-540-92673-3_0

Bibliography

[Gra94] A. Grazebrook. “Rapid prototyping of software and hybrid systems.” In:
Concurrent Engineering: Concepts, implementation and practice. Ed. by
C. S. Syan and U. Menon. Dordrecht: Springer Netherlands, 1994, pp. 151–
159. isbn: 978-94-011-1298-7. doi: 10.1007/978-94-011-1298-7_9. url:
https://doi.org/10.1007/978-94-011-1298-7_9 (cit. on p. 8).

[Gru93] T. R. Gruber. “A translation approach to portable ontology specifications.”
In: Knowledge Acquisition 5.2 (1993), pp. 199–220. issn: 1042-8143. doi:
https : / / doi . org / 10 . 1006 / knac . 1993 . 1008. url: https : / / www .
sciencedirect.com/science/article/pii/S1042814383710083 (cit. on
p. 3).

[GS14] F. Gandon and G. Schreiber. RDF 1.1 XML Syntax. 2014. url: https:
//www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/ (visited
on 08/18/2020) (cit. on pp. 4, 18).

[Han10] E. Hanser. Agile Prozesse: Von XP über Scrum bis MAP. 1. Springer-Verlag,
2010. isbn: 978-3-642-12313-9. doi: https://doi.org/10.1007/978-3-
642-12313-9 (cit. on p. 31).

[HP16] T. Hovorushchenko and O. Pomorova. “Evaluation of mutual influences of
software quality characteristics based ISO 25010:2011.” In: 2016 XIth In-
ternational Scientific and Technical Conference Computer Sciences and
Information Technologies (CSIT). 2016, pp. 80–83. doi: 10.1109/STC-
CSIT.2016.7589874 (cit. on pp. 1, 7, 8, 16).

[iso] iso25000.com. ISO/IEC 25010. url: https://iso25000.com/index.php/
en/iso- 25000- standards/iso- 25010 (visited on 08/22/2022) (cit. on
pp. 40, 41).

[Jaz07] M. Jazayeri. “Some trends in web application development.” In: Future of
Software Engineering (FOSE’07). IEEE. 2007, pp. 199–213 (cit. on p. 31).

[JGr22] JGraph Ltd. jgraph/drawio. 2022. url: https://github.com/jgraph/
drawio (visited on 09/23/2022) (cit. on p. 13).

[Jør04] M. Jørgensen. “A review of studies on expert estimation of software devel-
opment effort.” In: Journal of Systems and Software 70.1-2 (2004), pp. 37–60
(cit. on p. 8).

[KLR16] M. Kara, O. Lamouchi, and A. Ramdane-Cherif. “Ontology software quality
model for fuzzy logic evaluation approach.” In: Procedia Computer Science
83 (2016), pp. 637–641 (cit. on p. 1).

[KPW14] A. Kerren, H. C. Purchase, and M. O. Ward. “Introduction to multivari-
ate network visualization.” In: Multivariate Network Visualization. Springer,
2014, pp. 1–9 (cit. on p. 16).

[Kra21] H. Krasner. The Cost of Poor Software Quality in the US: A 2020 Report.
Report. Consortium for Information & Software Quality™ (CISQ™), 2021
(cit. on p. 1).

71

https://doi.org/10.1007/978-94-011-1298-7_9
https://doi.org/10.1007/978-94-011-1298-7_9
https://doi.org/https://doi.org/10.1006/knac.1993.1008
https://www.sciencedirect.com/science/article/pii/S1042814383710083
https://www.sciencedirect.com/science/article/pii/S1042814383710083
https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
https://doi.org/https://doi.org/10.1007/978-3-642-12313-9
https://doi.org/https://doi.org/10.1007/978-3-642-12313-9
https://doi.org/10.1109/STC-CSIT.2016.7589874
https://doi.org/10.1109/STC-CSIT.2016.7589874
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://github.com/jgraph/drawio
https://github.com/jgraph/drawio

Bibliography

[KRT06] C. R. Kothari, D. J. Russomanno, and P. N. Tran. “Interactive Elicitation of
Relation Semantics for the Semantic Web.” In: Advances in Systems, Com-
puting Sciences and Software Engineering. Ed. by T. Sobh and K. Elleithy.
Dordrecht: Springer Netherlands, 2006, pp. 47–52. isbn: 978-1-4020-5263-7
(cit. on p. 12).

[Lee+06] B. Lee et al. “Task taxonomy for graph visualization.” In: Proceedings of the
2006 AVI workshop on BEyond time and errors: novel evaluation methods
for information visualization. 2006, pp. 1–5 (cit. on p. 17).

[LL13] J. Ludewig and H. Lichter. Software Engineering: Grundlagen, Menschen,
Prozesse, Techniken. dpunkt.verlag, 2013 (cit. on pp. 1, 8).

[LR01] A. Leff and J. T. Rayfield. “Web-application development using the mod-
el/view/controller design pattern.” In: Proceedings fifth ieee international
enterprise distributed object computing conference. IEEE. 2001, pp. 118–
127 (cit. on pp. 30, 31).

[McB04] B. McBride. “The Resource Description Framework (RDF) and its Vocab-
ulary Description Language RDFS.” In: Handbook on Ontologies. Ed. by S.
Steffen and R. Studer. International Handbooks on Information Systems.
Springer-Verlag, 2004, pp. 51–66. isbn: 978-3-540-24750-0. doi: https://
doi.org/10.1007/978-3-540-24750-0 (cit. on pp. 4, 5).

[MD06] E. Mnkandla and B. Dwolatzky. “Defining agile software quality assurance.”
In: 2006 International Conference on Software Engineering Advances (IC-
SEA’06). IEEE. 2006, pp. 36–36 (cit. on pp. 1, 7).

[MH04] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language
Overview. 2004. url: https://www.w3.org/TR/2004/REC-owl-features-
20040210/ (visited on 08/24/2022) (cit. on p. 5).

[MK18] L. Madeyski and B. Kitchenham. “Effect sizes and their variance for AB/BA
crossover design studies.” In: Empirical Software Engineering 23.4 (2018)
(cit. on p. 39).

[Mus15] M. A. Musen. “The Protégé Project: A Look Back and a Look Forward.”
In: AI Matters 1.4 (June 2015), pp. 4–12. doi: 10.1145/2757001.2757003.
url: https://doi.org/10.1145/2757001.2757003 (cit. on p. 13).

[neoa] neo4j. Cypher Query Language. url: https://neo4j.com/developer/
cypher/ (visited on 09/23/2022) (cit. on p. 13).

[neob] neo4j. Neo4j Browser. url: https : / / neo4j . com / docs / operations -
manual/current/installation/neo4j-browser/ (visited on 09/23/2022)
(cit. on p. 13).

[neoc] neo4j Labs. neosemantics (n10s): Neo4j RDF & Semantics toolkit. url:
https://neo4j.com/labs/neosemantics/ (visited on 09/14/2022) (cit.
on p. 32).

72

https://doi.org/https://doi.org/10.1007/978-3-540-24750-0
https://doi.org/https://doi.org/10.1007/978-3-540-24750-0
https://www.w3.org/TR/2004/REC-owl-features-20040210/
https://www.w3.org/TR/2004/REC-owl-features-20040210/
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1145/2757001.2757003
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
https://neo4j.com/docs/operations-manual/current/installation/neo4j-browser/
https://neo4j.com/docs/operations-manual/current/installation/neo4j-browser/
https://neo4j.com/labs/neosemantics/

Bibliography

[NSL18] C. Nobre, M. Streit, and A. Lex. “Juniper: A tree+ table approach to mul-
tivariate graph visualization.” In: IEEE transactions on visualization and
computer graphics 25.1 (2018), pp. 544–554. issn: 1077-2626 (cit. on pp. 1,
17, 23).

[ope] opencontainers. OCI Image Format Specification. url: https://github.
com/opencontainers/image-spec (visited on 08/22/2022) (cit. on p. 33).

[Par+12] C. Partl et al. “enRoute: Dynamic path extraction from biological pathway
maps for in-depth experimental data analysis.” In: 2012 IEEE Symposium
on Biological Data Visualization (BioVis). IEEE. 2012, pp. 107–114 (cit. on
pp. 16, 17).

[RBA17] B. B. Rad, H. J. Bhatti, and M. Ahmadi. “An introduction to docker and
analysis of its performance.” In: International Journal of Computer Science
and Network Security (IJCSNS) 17.3 (2017), p. 228 (cit. on p. 33).

[Reu+90] L. H. Reuter et al. “Human perception and visualization.” In: Proceedings
of the 1st conference on Visualization’90. 1990, pp. 401–406 (cit. on p. 1).

[RRJ11] V. Ranwez, S. Ranwez, and S. Janaqi. “Subontology extraction using hy-
ponym and hypernym closure on is-a directed acyclic graphs.” In: IEEE
Transactions on Knowledge and Data Engineering 24.12 (2011), pp. 2288–
2300. issn: 1041-4347 (cit. on p. 12).

[SBF98] R. Studer, V. R. Benjamins, and D. Fensel. “Knowledge engineering: princi-
ples and methods.” In: Data & knowledge engineering 25.1-2 (1998), pp. 161–
197 (cit. on pp. 1, 3, 7).

[Sch13] N. Schilling. “Surveys and interviews.” In: Research methods in linguistics
(2013), pp. 96–115 (cit. on p. 39).

[Sha+06] J. S. Shaik et al. “3D Visualization of Relation Clusters from OWL Ontolo-
gies.” In: SWWS. Citeseer, 2006, pp. 17–23 (cit. on p. 12).

[SHQ08] R. Shannon, T. Holland, and A. Quigley. “Multivariate graph drawing using
parallel coordinate visualisations.” In: University College Dublin, School of
Computer Science and Informatics, Tech. Rep 6 (2008), p. 2008 (cit. on
p. 17).

[SR06] J. Seidenberg and A. Rector. “Web ontology segmentation: analysis, clas-
sification and use.” In: Proceedings of the 15th international conference on
World Wide Web. 2006, pp. 13–22 (cit. on p. 12).

[Sun+20] Z. Sun et al. “Domain ontology construction and evaluation for the entire
process of software testing.” In: IEEE Access 8 (2020), pp. 205374–205385
(cit. on pp. 1, 7).

[Tea21] Team SimpleKPI. What are Metrics and Measures – Explanation and Ex-
amples. 2021. url: https://www.simplekpi.com/Blog/metrics-and-
meassures-a-definitive-guide (visited on 08/02/2022) (cit. on p. 18).

73

https://github.com/opencontainers/image-spec
https://github.com/opencontainers/image-spec
https://www.simplekpi.com/Blog/metrics-and-meassures-a-definitive-guide
https://www.simplekpi.com/Blog/metrics-and-meassures-a-definitive-guide

	Introduction
	Structure of This Thesis

	Background
	Ontologies
	Software Quality Ontologies
	Resource Description Framework

	Motivation and Problem Statement
	Research Method

	Related Work
	Sub-Ontology Extraction
	Related Tools

	Concept
	Conceptual Background
	Component Definitions
	Algorithms
	Ontology Representation Concepts

	Design
	Data Persistence
	Data Model
	Architectural Design
	Discussion

	Realization
	Realization Background
	Ontology Realization
	Base Application Realization
	Basic Visualization
	Advanced Visualization

	Evaluation
	Quantitative Evaluation – User Survey
	Answers to the Research Questions
	Limitations

	Conclusion and Future Work
	Conclusion
	Future Work

	Evaluation Tasks
	Evaluation Questionnaire
	Demographics
	Basic Visualization
	Advanced Visualization
	Additional Feedback

	Evaluation Feedback
	Bibliography

