
The present work was submitted to
the Research Group
Software Construction

of the Faculty of Mathematics,
Computer Science, and
Natural Sciences

Master Thesis

Towards a software
engineering view of security

for microservice-based
applications

presented by

Brian Sinkovec

Aachen, November 25, 2022

Examiner

Prof. Dr. rer. nat. Horst Lichter

Prof. Dr.-Ing. Ulrike Meyer

Supervisor

Alex Sabau, M.Sc.

Danksagung
Zunächst bedanke ich mich aufrichtig bei meinem Betreuer und Mentor, Alex Sabau.
Du hast es mir ermöglicht, an diesem spannenden und fesselnden Thema zu forschen.
Ich schätze und bedanke mich sehr für die gemeinsame Zeit und das Engagement, das
du für diese Thesis aufgebracht hast. Die lehrreichen und humorvollen Diskussionen mit
dir werde ich sehr vermissen.

Ich möchte mich ebenfalls bei meinen beiden betreuenden Professoren bedanken.
Durch Prof. Dr. rer. nat. Horst Lichter erhielt ich wertvolles Feedback sowie die
Anerkennung des wissenschaftlichen Beitrags dieser Arbeit. Bei Prof. Dr.-Ing. Ul-
rike Meyer bedanke ich mich für die interessanten Gespräche zu ihren Vorlesungen und
ihre Untersützung während meiner Thesis. Beiden Professoren möchte ich danken, dass
sie meine Leidenschaft für die Informatik, konkret in der IT-Sicherheit und Software-
entwicklung, gefestigt haben.

Weiterhin möchte ich mich bei allen Teilnehmern der Evaluation für ihre gespendete
Zeit und Mühen bedanken. Durch ihr Feedback erhielt ich wertvolle Einsichten und
Verbesserungsvorschläge, die ich gerne in zukünftigen Arbeiten realisieren möchte.

Schließlich, und von ganzem Herzen, bedanke ich mich bei meiner Familie und meinen
Freunden. Auf eure Untersützung konnte ich mich, auch in schwierigen Zeiten, immer
verlassen. Besonders bedanke ich mich bei Elena, Robin, Christian, Björn, Manuel,
Max, Florian und Marc. Die gemeinsame Zeit während unseres Studiums werde ich nie
vergessen und die wahren Freunschaften, die dadurch entstanden sind. Meinen größten
Dank richte ich an meine Eltern und meine Geschwister. Robin und Jacqueline, ihr habt
mir stets euer offenes Ohr geschenkt und mich immer unterstützt. Papa, du hast mir
gezeigt, was im Leben wichtig ist woran ich festhalten kann. Leider wurdest du uns zu
früh genommen, ich vermisse dich sehr. Mama, durch dich konnte ich meine Leidenschaft
für die Informatik entdecken und zu meiner Aufgabe machen. Du bist immer für mich
da und hast mich in allen Lebensphasen unterstützt. Ich bin dankbar, dass ich durch
dich meinen Weg gefunden habe. Danke.

Brian Sinkovec

Abstract
Nowadays, security is one of the most important minimum requirements of software
applications. In order to meet these requirements, a deep understanding of the software
architecture, the security mechanisms the architecture contains, and the effect of these
solutions on security and other quality attributes is required. Thus, modeling security
in software architectures is a central component of the software development lifecycle.

Modeling approaches so far illuminate the security of a software system only from
an attacker’s perspective. Threat modeling techniques identify the existing threats and
risks of a system. However, software architects and engineers need tools and methods
to express and ensure the security of a software system from a constructive side.

In this thesis, we explore which security mechanisms exist for microservice-based ap-
plications and how modeling these techniques is possible. For the identification and
collection of security mechanisms, we conduct a Systematic Literature Review (SLR).
From the gathered information we compile a set of catalogs that classify and describe the
security mechanisms based on different properties. Based on the insights of the SLR and
other related work, we propose a security metamodel for the creation of architectural
documentation. This metamodel divides the description of security into six different
views, each of which defines its own set of requirements that must be addressed by the
respective models. To validate our contributions, we performed semi-structured inter-
views with research and industry experts who reviewed the modeling approach using
security views.

With these efforts, we propose a methodology for modeling and describing security in
software architectures. We show how a software engineering perspective can be employed
to conclude the effectiveness of security controls in a software architecture. Through the
proposed definitions and models, we create a basis for a new research direction targeting
the analysis of the security quality attribute from a software development point of view.

Contents

1. Introduction 1
1.1. Research questions . 3
1.2. Goals and contributions . 3
1.3. Structure of this thesis . 4

2. Foundations 7
2.1. Software architecture modeling . 7
2.2. Microservice architectural style . 11
2.3. Security in software engineering . 12
2.4. Security design concept . 14

3. Related work 17
3.1. Systematic Literature Reviews and Mapping Studies on MSA security . . 18
3.2. Views of security in software engineering 20

4. Catalog of security design concepts for microservices 27
4.1. Systematic Literature Review report . 29
4.2. Review result . 40

5. Defining and modeling a software engineering view of security 51
5.1. Research method . 52
5.2. Software engineering security metamodel 52
5.3. Security views and concerns for microservices 55
5.4. Definition of security . 62

6. Evaluation 65
6.1. Evaluation method . 65
6.2. Evaluation results . 72

7. Discussion 79
7.1. Research question findings . 79
7.2. Evaluation discussion . 81
7.3. Threats to validity . 82

8. Conclusion and future work 85
8.1. Summary . 85
8.2. Future work . 86

i

A. Results of SLR trial searches 89

B. Catalog of security design concepts 91
B.1. Catalog of security design principles . 91
B.2. Catalog of security activities . 94
B.3. Catalog of security tactics . 98
B.4. Catalog of architectural security patterns 105
B.5. Catalog of security protocols . 113
B.6. Catalog of IDS/IPS approaches . 118

C. Case study materials 121

D. Evaluation transcription 125

Bibliography 139

Acronyms 157

List of Definitions
2.1. Software architecture [ISO11b] . 8
2.2. Concern [ISO11b] . 9
2.3. Architecture view [ISO11b] . 9
2.4. Architecture viewpoint [ISO11b] . 9
2.5. Quality attribute (QA) . 10
2.6. Quality model . 10
2.7. Architectural style [GS94; Cle+10] . 11
2.8. Microservice architecture (MSA) [FL14; New15] 11
2.9. Asset . 12
2.10. Threat [Shi07] . 12
2.11. Security goals [ISO11a; Shi07; CH13; SB15] 13
2.12. Security design concept [KK21] . 15
4.1. Security design principle [Kan03] . 41
4.2. Security activity . 42
4.3. Security tactic [BCK21] . 44
4.4. Architectural security pattern [BCK21] 46
4.5. Security protocol . 47
4.6. Intrusion Detection/Prevention System (IDS/IPS) 49
5.1. Security (in Software Engineering) . 63

iii

List of Tables
4.1. The list of candidate scientific databases that were considered during the

trial searches. 31
4.2. The results of the SLR’s final search. 33
4.3. The exclusion criteria considered during the SLR’s study selection phase. 34
4.4. The data extraction form used during the data extraction phase of the SLR. 36

6.1. Evaluation questionnaire. 66

A.1. The results of SLR trial searches. Each row depicts the number of publi-
cations retrieved from the selected scientific databases. 89

D.1. Interview transcriptions, participants 1-4. 126
D.2. Interview transcriptions, participants 5-7. 134

v

List of Figures
2.1. A conceptual model of the definitions proposed in the ISO/IEC/IEEE

42010 standard for architecture descriptions [ISO11b]. 8

4.1. An overview of our applied SLR method. 28
4.2. The applied data synthesis procedure of the SLR. 37

5.1. The metamodel for software architecture security. 53

6.1. The authentication view case study, including the initial Spring Petclinic
architecture (a), frontend (b) and backend (c) authentication models. . . . 69

C.1. The initial Spring Petclinic architecture model. 121
C.2. Illustration of trust and unauthenticated communication paths in the MSA.121
C.3. First architectural context, the frontend. 122
C.4. The frontend authentication model. 122
C.5. Sequence diagram indicating authentication method of clients. 123
C.6. Second architectural context, the backend. 124
C.7. The backend authentication model. 124

vii

1. Introduction
The journey of a thousand miles
begins with a single step.

Lao Tzu

Contents
1.1. Research questions . 3
1.2. Goals and contributions . 3
1.3. Structure of this thesis . 4

In a world that is becoming increasingly digital, complex and interconnected, software
applications are playing an ever more important role. The trend of the last decades
shows that software applications have gained indisputable relevance in almost every field
[Sim05; Sch06; Szo+20]. Furthermore, it is an essential part of software applications that
they are resilient and maintainable [BDP06], manage complexity effectively [DD09], and
meet constantly changing requirements [YZ10].

To meet these requirements, the discipline of software engineering emerged many years
ago [Ham18]. At its core, software engineering deals with the systematic development
of software applications. Among others, this discipline is confronted with questions like:
how to effectively design maintainable software? How to test whether the application
meets its requirements and works as expected? How to ship software products seamlessly
to the customer? Is our application secure?

A concept that was established early in software engineering is the development of
software architectures [SC06]. Software architectures are representations of systems.
Similar to the blueprints of a building, software architectures represent the elements,
structures, relations, and dependencies from different angles by creating multiple views
of the software system [Kru95; PW92; BCK21]. In addition to describing a system, the
architecture also serves to evaluate its quality.

Just as buildings can have different construction styles - such as that of a bungalow or a
semi-detached house - software architectures can follow different architectural styles. One
architectural style that has become popular in recent years, especially at large companies
such as Amazon, eBay or Netflix [Hof15; Ngu20], is the Microservice Architecture (MSA)
pattern. MSAs are characterized by the fact that the business logic of the application is
divided into many small services. Each of these microservices is an isolated instance that
runs in its process and communicates with other microservices over network interfaces to
execute its functionality. In this way, complex business processes can be broken down into
small units that are quickly developed and can be combined to form larger business logic.

1

1. Introduction

The advantage of this architectural style lies in maintainability - since small modular
services can be implemented more quickly - and in scalability - since corresponding
microservices can be added easily when the load increases [FL14; Dra+16]. The spread
of this style has been reinforced by trends such as DevOps, containerization and the shift
to the cloud [Ham19]. DevOps is a set of practices and principles that promotes cross-
functional collaboration of traditional development and operation teams to accelerate
software development and provide increased quality [Kim+21].

Although it seems like the microservice pattern tackles many problems, it also intro-
duces new challenges [STH18]. Designing and orchestrating hundreds or thousands of
microservices quickly becomes a problem. Furthermore, evaluating the quality of such
architectures has not been explored in-depth, neither in research nor in industry [Li+21].
In particular, it is unclear to what extent this style affects the security and other quality
attributes of such applications, as well as what implications and constraints arise from
it. There are quality models such as the ISO/IEC 25010 standard [ISO11a] which also
cover security as a quality attribute. However, these models define security only on a
rather abstract level and do not consider the choice of architectural style. For instance,
various security-related techniques, such as secret management, tend to be more diffi-
cult in microservice-based applications than in their monolithic counterparts [Bil+22;
KMM18]. We argue that this goes hand in hand with the high degree of distribution
in MSAs. This perceived impact on the increased complexity of such activities is not
reflected in the quality model of the ISO/IEC 25010 standard.

Besides the fact that existing quality models do not capture the influence of the mi-
croservice architectural style on several quality attributes, measuring and systematically
describing security in such architectures is difficult. Different aspects of security that
need to be satisfied are commonly known in terms of security goals, e.g., confidentiality
[Shi07; Sta10]. However, the proposal of techniques to be used in such architectures
rarely defines or evaluates how they influence these security goals, nor how it affects
other quality attributes such as performance, maintainability, or complexity. Often the
knowledge that is available to software architects in terms of available security measures
is unstructured and thus makes it difficult to reason about the various techniques and
how these affect the system.

Additionally, we perceive a gap when it comes to modeling security in software ar-
chitectures. Modeling approaches and tools exist to describe the security of such an
architecture from the attacker’s perspective, e.g., threat modeling [Sho14]. These views
clarify to what extent software applications are vulnerable, which weaknesses can be
exploited, and what consequences this has on the security goals of the application. How-
ever, there is a lack of modeling concepts and notations that represent the security of
an architecture from a software engineering perspective. A software engineering perspec-
tive of security takes into account the established design of the architecture to secure
its assets, i.e., what design patterns and tactics are employed, what components are
used for authentication and authorization, and how the system monitors and controls
security-related events, among other things. Such a perspective is intended to support
software architects and engineers to better understand and communicate the enforced

2

1.1. Research questions

design decisions regarding the security of the application. Furthermore, with such a
perspective we take a step towards a better understanding of security mechanisms and
design decisions and their influence on the quality attribute security.

1.1. Research questions
In this work, we want to investigate what are the key aspects of security in software
architectures and microservice-based applications, specifically. In particular, we aim to
explore which security-related techniques and methods are used in such applications
and to what extent they influence the quality attribute security as well as other quality
attributes. Our goal is to identify and analyze the perceived gap and try to create a
security model which takes the architectural and engineering point of view into account.
Furthermore, we provide a clear definition of what security is and what it is not in this
context. Thus, the core research question which drives this thesis is the following.

(RQ0) How can we model the security of software architectures from a software engi-
neering perspective?

We pose the following research questions that need to be answered in this work to
reason about our central question. First, we identify which security-related design con-
cepts exist for microservice-based applications. In short, security design concepts are
modeling building blocks embeddable into the architecture. We propose a clear defi-
nition of this term in Chapter 2. Furthermore, we restrict ourselves to this particular
architectural style to limit the possible solution space of design concepts and to provide
more precise results in this regard. The results we aim for are a structured description
and classification scheme of these design concepts. These goals are formulated in our
first research question.

(RQ1) How can we describe and classify security-related design concepts for software
applications in microservice architectures?

With the former research question, we want to answer what solutions exist for a
particular architectural style that can be modeled in the respective software architecture.
The following research question tackles the modeling aspect of security, i.e., how can we
model the requirements and solutions in an expressive and meaningful way. Specifically,
we aim to identify which modeling building blocks are required to achieve this goal and
to ultimately define security in the software engineering context.

(RQ2) Which modeling building blocks can be used to describe and define the security of
software architectures?

1.2. Goals and contributions
The primary goal of this thesis is to shed light on the quality attribute security of software
applications. We pursue to create a security model and, correspondingly, a new definition

3

1. Introduction

of security to be used when creating, modeling, and evaluating the security of software
architecture. This work is intended to provide developers and software architects with
a guide to understanding which aspects of security are relevant to the development of
their systems and to present the broad knowledge of security techniques in a structured
format. The model and definition shall also serve as a basis for future research working
towards a quality model in terms of security.

In this thesis, we provide three main contributions. Our first contribution is a catalog
of security design concepts that apply to microservice-based applications. The purpose
of this catalog is to structure the available measures that exist to harden such a software
application from an architectural viewpoint, as well as to provide a first approach to-
ward a searchable and navigable knowledge database to be used by software architects.
To accomplish this, we perform an adapted version of Kitchenham et al.’s Systematic
Literature Review (SLR) methodology [KC07]. In particular, we create a review pro-
tocol and define a search and selection strategy to identify and select the appropriate
research studies to create such a catalog. Using this approach ensures that our results
are transparent and reproducible.

Based on the insights from the conducted SLR as well as other related work, we
propose a security metamodel for the description, modeling, and assessment of security in
software architectures. The security metamodel illustrates the most important concepts
and relationships when modeling the security of such an architecture. The core of this
metamodel defines the notion of a security view. In short, a security view provides
the link between related security concerns and requirements and corresponding security
design concepts, as well as their influence on the security quality attribute. We consider
a partition into different security views as necessary to cope with the complexity of the
security-relevant design. Furthermore, we present six of those security views and describe
what these views encompass and which security concerns each view needs to consider.
These security views are supposed to be created during the design and engineering
of an architecture and should capture certain security aspects of such a system, e.g.,
authentication.

Lastly, we contribute a new definition of security in the context of software engi-
neering. This definition shall provide security researchers and architects a means of
communicating the boundaries of what security in this context entails.

1.3. Structure of this thesis
The structure of the remaining thesis is as follows. Chapter 2 introduces the foundations
of software architectures, architecture modeling, the microservice architecture pattern
and security in software engineering in order to establish a common understanding of
these concepts. In this chapter, we provide definitions for the terms that are relevant
to this thesis. To get a clear picture of already existing approaches and contributions
to MSA security, we review related work on this topic in Chapter 3. In particular,
we cover other systematic reviews and mapping studies, as well as other models that
provide a view of the security of software applications. In Chapter 4, we tackle our

4

1.3. Structure of this thesis

first research question (RQ1) by describing the procedure of our adapted Systematic
Literature Review method. We depict the individual steps of our SLR and the results
of each step. Afterward, we present the final result of the SLR, namely the catalog of
security design concepts for microservice-based applications. Specifically, in this chap-
ter, we explain the rationale and the schematics of each security design catalog and
refer to the corresponding catalog tables in Appendix B. In Chapter 5 we address our
second research question (RQ2) by presenting and explaining the security metamodel
as well as the six security views for MSAs we identified in this thesis. We also derive a
definition of security to be used in the context of software engineering. To evaluate the
developed security metamodel and the modeling approach based on security views, we
performed semi-structured interviews with research and industry experts who reviewed
our proposed model based on a case study. Chapter 6 describes the method and results
of our evaluation. Chapter 7 discusses the various methods and results of this thesis.
Concretely, we discuss to what extent we answered our three research questions as well
as the limitations of our work. The definitions as well as the presented models shall serve
as a basis for further development and research on modeling security in software archi-
tectures. Therefore, we summarize and conclude this thesis in Chapter 8 and provide a
brief outlook for future work.

5

2. Foundations
The beginning of wisdom is the
definition of terms.

Socrates

Contents
2.1. Software architecture modeling . 7

2.1.1. Quality of software applications 10
2.2. Microservice architectural style . 11
2.3. Security in software engineering . 12

2.3.1. Security in microservice architectures 14
2.4. Security design concept . 14

In this chapter, we introduce essential definitions and terms for modeling software archi-
tectures and specifically for the security of MSAs. First, we define the term software ar-
chitecture in general. The basis of definitions we choose is taken from the ISO/IEC/IEEE
42010 standard [ISO11b], a standard for the development of architecture descriptions.
We introduce the substantial concepts of an architecture view, an architecture viewpoint
and the associated concerns as well as the quality of a software application. We then
discuss and define the core aspect of the microservice architectural style. Afterward, we
review the relationship of security in software engineering, define the essential concepts
and then give a brief overview of the security challenges that typically occur in MSAs.
Finally, we propose a definition of security design concepts to frame building blocks of
security design for software architectures.

2.1. Software architecture modeling
Software applications are used in certain application domains to solve domain-specific
problems. Each of these software applications consists of many software elements, e.g.,
software components, which are related to each other in a certain way. The struc-
ture, which is formed by such a software application, is called software architecture. In
addition to software architectures, there exist further architecture types, like hardware
architectures, network architectures, or also enterprise architectures [PW92]. In the con-
text of software architectures, software elements form the structure of these architectures
[GS94; Cle+10].

Many definitions exist that describe what a software architecture is composed of
[SEI10]. In this thesis, we define the software architecture term and its related con-

7

2. Foundations

Figure 2.1.: A conceptual model of the definitions proposed in the ISO/IEC/IEEE 42010
standard for architecture descriptions [ISO11b].

cepts like architecture view and viewpoint as in the ISO/IEC/IEEE 42010 standard
[ISO11b]. Figure 2.1 captures the essential concepts of a software architecture and its
relationships according to this standard.

Definition 2.1: Software architecture [ISO11b]

A software architecture consists of the fundamental concepts and properties of a
system in its environment embodied in its software elements, relationships, and
in the principles of its design and evolution.

Thus, a software architecture describes not only the software elements and the in-
teractions between them but also the collection of design decisions and principles that
underlie the architecture. The form of the architecture is significantly influenced by the

8

2.1. Software architecture modeling

decisions and developments of the software architect, but also by the concerns of other
stakeholders. They represent the interest of several stakeholders, including the software
architect, developers, and project managers but also customers and end-users.

Definition 2.2: Concern [ISO11b]

A concern is any form of interest of one or more stakeholders. They are stated
as questions, functional or non-functional requirements to be addressed in the
software architecture.

Many different types of concerns exist in many software architectures, e.g., functional,
performance and security concerns. In order to formalize these decisions and concerns,
architectural descriptions are used. An architecture description is formed by a collection
of diverse views, which describe the architecture in each case from different perspectives.
This subdivision into views is necessary since it is not possible to seize the complexity of
software architectures in one model. Each view considers therefore the concerns relevant
to the view.

Definition 2.3: Architecture view [ISO11b]

An architecture view expresses the software architecture from a specific perspective
addressing related concerns of one or more stakeholders, using the conventions
established by its viewpoint.

In order to address these concerns, an architecture view is composed of architecture
models. These models are the concrete representations of a system, e.g., UML [OMG17]
diagrams, tables, or instances of a domain-specific language. Architecture models are
typically reusable across multiple views. Viewpoints are employed to specify exactly
which concerns are considered and which modeling techniques are used to illustrate and
address these concerns in such a view, thus being the perspective of an architecture view.

Definition 2.4: Architecture viewpoint [ISO11b]

An architecture viewpoint governs an architecture view. It sets conventions to
create, interpret, and analyze one type of architectural view.

A viewpoint consists of several model kinds, each describing notations, modeling meth-
ods and languages and analyzing techniques to define architecture models. As an exam-
ple, the UML meta-model [OMG17] is a model kind, as it defines the essential concepts
and relationships of UML diagrams and how to create and interpret them. Concrete
instances of this meta-model, such as class diagrams or sequence diagrams, are mod-
els that describe the architecture from a specific perspective. UML class diagrams are
thus suitable, for example, for structural-related concerns, e.g., of a software engineer
interested in building the application.

9

2. Foundations

2.1.1. Quality of software applications

The quality of software applications is, among others, one of the reasons why it is
important to design good software architectures [BM99]. The quality of a software
application is measured by the system’s fulfillment of its quality requirements. Quality
requirements arise from the concerns of various stakeholders the software architect must
consider. For instance, customers may require that the application performs its tasks in
a reasonable amount of time, thus expressing their concerns regarding the performance
of a system. Quality is measured based on various quality characteristics, or Quality
Attributes (QAs). Each QA describes under which aspect a software application is to be
evaluated. For example, maintainability is one of the most important QAs of a software
application [BWZ17]. The degree of maintainability expresses the effort required to
adapt the architecture to new requirements. Maintainability influences the complexity
and how comprehensible an architecture ultimately is.

Definition 2.5: Quality attribute (QA)

A quality attribute is a property of a software application. Quality attributes
capture the quality of a software application from different perspectives.

Examples for QAs are, among others, maintainability as mentioned earlier, but also
functional stability, performance, usability, and security [OMB07]. Quality models cap-
ture the various QAs that are of interest for software applications [SWC10; MMR14].
They define each QA, the sub-characteristics they are composed of and, if the correspond-
ing QA is measurable, how it can be measured. Thus, most quality models hierarchically
define the quality aspects of a software application.

Definition 2.6: Quality model

A quality model defines the QAs comprised in a software application. Each QA
may be refined in terms of sub-characteristics. If applicable, a quality model may
also define how to measure certain QAs and which measurements are required.

Many quality models have been proposed in the last decades [MMR14]. The most
prominent quality model for software products is the ISO/IEC 25010 standard [ISO11a],
which defines eight QAs with corresponding sub-characteristics. Although the standard
also provides a quality measurement framework [ISO19], it does not provide specific
measurements to assess the quality of each attribute quantitatively.

Security was not recognized as a QA until modern quality models. In older models,
as in the software quality models of McCall [CM78] or Boehm [BBL76], this was not
considered. The aspects, or sub-characteristics respectively, which belong to the security
QA, are frequently framed in the literature under the term of security goals [Sta10;
SB15; WM11]. The security goals which we consider in this work are further defined in
Definition 2.11.

10

2.2. Microservice architectural style

2.2. Microservice architectural style
Software architectures enable engineers and architects to build software applications to
address the stakeholders’ concerns and to structure the software elements to achieve
business and quality goals. Nevertheless, making the right design decisions to create a
good software architecture is difficult. Thus, software architects often embody sets of
(proven) design decisions in architectural styles [BM99; Cle+10]. An architectural style
defines a family of systems that follow a specific structural organization [GS94]. It is
also used to compile a vocabulary for software architects to compare and reason about
certain principles and design decisions embodied in those architectural styles.

Definition 2.7: Architectural style [GS94; Cle+10]

An architectural style is a collection of design decisions imposing certain structural
or behavioral organization in the architecture. It specifies the elements, relation
types, and constraints on how they can be used.

The microservice architectural style is a style that emerged in recent years [RS16;
Dra+16; STH18; Bog+19]. Many sources cite the article by Fowler and Lewis [FL14]
as one of the first to establish the concept of MSAs. At its core, the design approach
of MSAs follows the idea that the software application is divided into a collection of
microservices. Each microservice represents an independent unit in the architecture
that can be developed and deployed in isolation from other microservices. In most
cases, microservices implement a single business function. The entire business logic of
the application is then composed of microservices that work together via lightweight
communication protocols such as HTTP [Fie+99].

Definition 2.8: Microservice architecture (MSA) [FL14; New15]

Microservice architecture is an architectural style that is characterized by dividing
the application into several, small, and autonomous software units called microser-
vices. Each microservice runs independently on its own and communicates with
other microservices using lightweight communication protocols.

The microservice style of architecture brings some benefits, but also some drawbacks.
Microservices are scalable and resilient, as individual services can be replicated as needed
and only parts of the application are affected when errors occur. Furthermore, they
simplify and accelerate the deployment process due to their size and independence. An-
other capability of MSAs is that this architectural style enables polyglot architectures,
i.e., each microservice can be implemented with different technologies and programming
languages, depending on which tools are best suited for the use case. Thus, microservices
seem to have a positive effect on certain QAs like scalability, resilience, and maintain-
ability, among others. One of the primary disadvantages of MSAs is the organizational
complexity introduced by this style. Managing hundreds or thousands of microservices

11

2. Foundations

and their orchestration quickly becomes cumbersome. Microservices, due to their dy-
namic nature, can change their location and need to be located by other microservices
accordingly. Maintaining data consistency across microservices becomes difficult when
each microservice handles a database on its own [New15; STH18].

Nevertheless, the adoption and interest of the MSA style gained momentum in research
and industry since Fowler and Lewis coined this term [FL14]. In particular, recent
studies, as depicted in the next chapter, (including this one) explore how and to what
extent MSAs affect the security of software applications employing this architectural
style.

2.3. Security in software engineering
A software application consists of various software and hardware units. In a MSA, the
primary software units are microservices, but databases, communication paths between
microservices, and containers also appear. Data is processed, stored and exchanged in
the software units of an application. Data is then either processed by business func-
tions in order to fulfill the functionality of the software application or is required for
application-specific purposes, e.g., dependency versions. Software units make use of
hardware resources, e.g., by consuming computing power or memory for storing data.
All these units, which occur in a software application, are called assets.

Definition 2.9: Asset

An asset is a resource of a system, either a software unit, business or application
data, or a hardware resource such as CPU, memory, or bandwidth.

One primary factor affecting the security in a software application is threats. There
are many types of threats, e.g., social engineering (phishing), threats that arise when
internal employees purposefully want to cause damage or threats from natural disasters
[WM11]. In this thesis, we limit the notion of threat to the kind of threats that arise
from flaws in the design and implementation in an asset of a software application. Thus,
each threat targets one or more assets specifically. Once a threat is exploited, it is
referred to as an attack [Mie+10]. Such a realization eventually leads to an impact,
e.g., that unauthorized actors get access to sensitive data or that the system has been
compromised and is controlled by attackers.

Definition 2.10: Threat [Shi07]

A threat is a potential violation of security that can cause harm to one or more
assets of a system when exploited.

Threats, therefore, arise from design or implementation flaws, also called weaknesses
and vulnerabilities [McG06]. Since such flaws may always exist, the responsibility, there-
fore, lies with the software engineer to identify potential threats as early as possible and

12

2.3. Security in software engineering

to take appropriate countermeasures to detect or also prevent them [DJS19]. Threat
modeling is a common modeling technique used to identify threats [Sho14]. Threat
modeling is a process that is typically performed at the requirements or design phase
of the Software Development Life-cycle (SDLC). Threat modeling looks at the system
from an attacker’s perspective to determine what can go wrong. Threat models are the
result of threat modeling that show which vulnerabilities exist in which assets in the sys-
tem. There are various threat modeling approaches, including STRIDE [KG99], PASTA
[MU15], and attack trees [Sch99]. We present some of these threat modeling views in
more detail in Section 3.2.3. Threat models thus form a fundamental security view of
the software architecture. They identify and describe the attack vectors that can be
exploited by a potential attacker. This view thus addresses concerns that emanate from
the perspective of an attacker, e.g., which threats and weaknesses exist in the system?
How can these weaknesses be exploited? Which assets are affected by these threats?

The existence of a threat imposes a risk that potentially when realized by an attack
leads to damage. Damage can occur in the form of stolen user data, damaged infras-
tructure, or even lost reputation of the company, to name a few. The existence of a
threat, therefore, compromises the security of a software application. It is important to
distinguish to what extent the security is impaired. For this reason, the security QA is
divided into different sub-characteristics, also called security goals [Shi07; CH13; SB15].
In some quality models, e.g., the aforementioned ISO/IEC 25010 standard [ISO11a],
security goals are represented as quality factors.

Definition 2.11: Security goals [ISO11a; Shi07; CH13; SB15]

A security goal is a sub-characteristic of the security QA which describes one
aspect of the security of the overall system.

Confidentiality The ability of a system to protect its assets, especially its data,
from unauthorized access.

Integrity The ability of a system to prevent unauthorized modifications to the
assets of a system.

Availability The ability of a system to provide legitimate stakeholders access to
its data and services.

Authenticity The ability of a system to successfully identify legitimate and un-
privileged stakeholders.

Authorization The ability of a system to successfully determine the permissions
of a stakeholder.

Accountability The ability of a system to trace the actions performed by a stake-
holder or system component uniquely to that entity.

Non-repudiation The ability of a system to prove that actions have taken place
so that these actions cannot be repudiated later.

13

2. Foundations

Both threats and countermeasures can have an impact on certain security goals.
Threats arise from software weaknesses. For instance, the storage of user passwords in
plaintext is a software weakness, and thus the existence of the threat that the identity of
these users could be compromised in the event of a data breach would negatively impact
the security goal confidentiality. Countermeasures such as encrypting user passwords,
on the other hand, would strengthen the confidentiality of a system.

2.3.1. Security in microservice architectures

Security in MSAs is a research and industry field that has become increasingly important
in recent years, probably due to the trend created by microservices per se. In the
following chapter, we will review some related work on this. Now, we discuss roughly
what challenges can arise concerning the security in a MSA.

In principle, the increased degree of distribution and the use of different technologies,
i.e., the polyglot architecture, create a broader attack surface in MSAs [Bil+22] than in
monolithic applications. Overall, the risk and the amount of possible threats in an MSA
increases, since each microservice is potentially vulnerable to individual attacks [HY20].
In addition to client-server communication, each service-to-service communication inter-
face in a MSA must be considered in terms of its security [Per+21]. Furthermore, it
may be necessary for each microservice to authenticate each other [YB18a; MCF21a].
Also, fine-granular rules about which microservice is allowed to access which Application
Programming Interface (API) may increase the complexity of authorization [Per+19].
Finally, the overhead of monitoring each microservice individually and reacting to irreg-
ular events increases [Was+21a].

For this reason, security in an MSA must be carefully modeled to avoid potential
weaknesses and design flaws and the resulting threats. One way to model this is through
threat modeling, as described in the previous section. To the best of our knowledge, no
specific threat modeling frameworks exist for MSAs. Furthermore, while threat modeling
supports the software engineer in identifying threats, we claim that it is necessary to
be able to create additional views and models that adequately reflect security-relevant
design elements and decisions made in a software architecture.

2.4. Security design concept
In order to sharpen the view on security, we need a more precise understanding of
methods and techniques related to the assurance of software security. A clear definition
of the concepts we want to present is essential to be able to effectively discuss the design
decisions made in a software architecture. For this reason, we now define the term
security design concept.

The notion of a design concept was introduced by Kotov and Klein [KK21]. We adapt
the definition in three ways. First, we apply the notion of a security design concept
to the initial definition, to make the scope and purpose of these design concepts clear.
Second, we rename the externally developed components to integratable components, since

14

2.4. Security design concept

we claim that these design concepts are not limited to being externally developed, but
share the property to be integratable into the architecture. Third, we introduce the
protocol design concept to the set of integratable components, since they represent a
substantial role in the software architecture, especially in MSAs.

Definition 2.12: Security design concept [KK21]

A security design concept is an abstract building block from which the design of
security of the software architecture is created. We refer to these categories of
design concepts:

• Security design principles
• Security activities
• Security tactics
• Architectural security patterns
• Integratable component

– Software products
– Application frameworks
– Technology families
– Protocols
– Platforms

Thus a security design concept forms the fundamental building block to model secu-
rity in software architectures. Concrete design concepts represent the software elements
or a set of software elements that are embodied in an architecture. Further, we differ-
entiate between different categories of security design concepts. The difference lies in
the application and the characteristics of the individual categories. This distinction is
necessary to establish a clear separation of concepts, an effective description, and the
possibility for comparative analysis.

15

3. Related work

Any fool can write code that a
computer can understand. Good
programmers write code that
humans can understand.

Martin Fowler

Contents

3.1. Systematic Literature Reviews and Mapping Studies on MSA security . . 18
3.2. Views of security in software engineering 20

3.2.1. Quality models . 21
3.2.2. Maturity models . 22
3.2.3. Threat models . 23

In this chapter, we survey related work in microservice security. More specifically, in
the first part of this chapter, we look at what systematic literature search works exist
on MSA security, i.e., Systematic Literature Reviews (SLRs) and Systematic Mapping
Studies (SMSs). Most of these studies investigated primary studies published between
2014 and 2021. We explore studies that deal exclusively with scientific articles, i.e.,
white literature, but also some that analyzed gray literature, i.e., professional articles,
blogs, and white papers in more detail. Most of the papers either give an overview of the
advantages and disadvantages of MSAs or examine which security-relevant techniques
are used in MSAs. However, in contrast to this thesis, none of the SLRs and SMSs
presented have created a catalog from the design concepts obtained. To the best of our
knowledge, this work is the first attempt to propose such a catalog.

In the second part of this chapter, we examine existing views of security in software
engineering. In the previous chapter, we set the fundamentals and defined what belongs
to an architectural view. Existing views, which we introduce briefly in the context
of this work, are, among others, quality models, maturity models, as well as threat
models. Quality models and maturity models provide a view of the architecture that
includes the quality and continuous improvement of a product or an organization. The
concern of these views is primarily quality assurance itself. Threat models, on the other
hand, provide a view of the architecture from the perspective of an attacker. A threat
model is intended to help identify threats and risks in a software product in order to
determine appropriate countermeasures. The concern of threat models is therefore the
identification, and if necessary also the prevention, of threats.

17

3. Related work

3.1. Systematic Literature Reviews and Mapping Studies on
MSA security

Pahl and Jamshidi [PJ16] performed one of the first SMSs on MSAs. In their study, they
focused on finding the primary motivation behind using microservices, which techniques,
tools, and methods enable the development of this style, as well as exploring the main
research issues that need to be tackled in future work. The mapping study selected
21 publications including non-peer-reviewed work such as books and theses. The study
revealed a lack of research at that time, with only conceptual work available. The
authors described this as a sign of immaturity, which is not surprising since this work
could only give a temporal overview of studies published between 2014 and 2015. They
also provided a reference model for MSAs based on patterns and principles, as well
as a characterization framework to classify the identified primary studies according to
methodological support, architectural support, platform/tool support, and application.

Alshuqayran et al. [AAE16] also conducted a SMS on the microservice architectural
style. In contrast to Pahl and Jamshidi, they investigated what the architectural chal-
lenges of this style are, which diagrams and views are used to model microservices, and
which QAs are related to MSAs in the literature. The study included 33 peer-reviewed
publications from 2014 to 2016. Although security was identified as relevant QA, it
received little attention compared to QAs like scalability and maintainability. Only 5
publications of the investigated population in the SMS mentioned security as an impor-
tant QA.

Soldani et al. [STH18] performed a gray literature SLR to investigate the gains and
pains of microservices in the industry. They collected 51 industrial studies published be-
tween 2014 and 2017. Pains and gains were categorized into different stages, e.g., design,
development and operation, and into concerns, e.g., architecture, security, monitoring
and others. The primary pains of developing microservice applications according to this
paper are the size and complexity of MSAs, dealing with fine-grained access control
policies and data consistency. However, microservices bring also gains such as bounded
contexts (that are easier to develop), firewalling, loose coupling, and technology freedom.

Hannousse and Yahiouche [HY20] conducted a SMS on the security of MSAs. The
study selected 46 peer-reviewed publications as primary studies from 2011 and onwards.
The focus of their study was to explore and classify the security threats and risks specific
to MSAs as well as mitigation techniques and methods and at which level of the archi-
tecture these techniques are applicable. The selected techniques were classified based on
four aspects, namely the application layer at which the technique applies, the purpose
of the technique, the threat it mitigates, and the target platform. Furthermore, the
authors concluded the paper by proposing an ontology for securing MSAs. The ontol-
ogy captures the various aspects of a security technique according to their classification
scheme. However, it fails to establish the relations and dependencies between these as-
pects, e.g., that the purpose of a technique (for instance, authentication) is related to
spoofing attacks.

18

3.1. Systematic Literature Reviews and Mapping Studies on MSA security

Pereira-Vale et al. [Per+19] performed a SMS to explore security mechanisms used
in microservice-based applications. The study obtained 26 primary studies which were
published between 2015 and 2018. The authors reported that authentication, authoriza-
tion and credentials were the primary security mechanisms proposed. Other security
mechanisms they identified were TLS, access control, Infrastructure-as-a-Service (IaaS),
Role-based Access Control (RBAC), and others. Further results of this study were that
(1) most publications consider detecting or mitigating attacks, but not recovering from
them, (2) most security mechanisms are validated by performing case studies and ex-
periments, and (3) security patterns for microservice-based systems were not found.

The same authors [Per+21] also conducted a multivocal literature review on security
in microservice-based systems, i.e., a SLR including white and gray literature articles.
34 white literature studies and 36 gray literature publications were selected in this study.
The purpose of this study was to investigate and classify security mechanisms, the se-
curity scope, and the security context of studies in microservice-based systems. The
authors explained that the rationale behind this was to explore whether some mecha-
nisms were mature and to find potential research gaps in this area. A list of security
mechanisms grouped according to their purpose, i.e., authorization, identity manage-
ment, access control, secure communication, logging & monitoring, filtering, execution
control, and their scope, i.e., application security, implementation security, security
evaluation, threat modeling, and general security architecture, was provided. The re-
searchers also pointed out that there is little work toward a systematic methodology
to develop secure applications. Also, new proposals of security techniques need to be
systematically categorized to prevent the re-publication of already proposed solutions.

Li et al. [Li+21] performed a SLR addressing the QAs of MSAs, selecting 72 peer-
reviewed publications published until 2018. In contrast to earlier studies, this work
identified that security is indeed a primary concern of microservice systems due to its
distributed nature. The increasing complexity that is introduced by this style may
be exploited by attackers. Establishing trust between microservices is another major
concern that is not tackled in depth. In total, 8 of the 72 publications addressed security
as QA of MSAs by proposing three security tactics that address the aforementioned
problems. The security tactics proposed were Security Monitor, Authentication and
Authorization, and Intrusion defender. Each of these tactics was described in terms
of motivation for its purpose, a description, as well as constraints and dependencies
introduced by this tactic.

Billawa et al. [Bil+22] conducted a gray literature SMS with 57 selected publica-
tions between 2011 and 2021 to explore MSA security challenges and recommendations
or technologies to address these challenges. The main challenges they identified were
trust between microservices, a larger attack surface, testing, container management, low
visibility, secret management, and the polyglot architecture of MSAs. The proposed
security solutions were classified into the categories best practices (defense in-depth, De-
vSecOps), methods (authorization frameworks like OAuth 2.0), deployment (real-time
monitoring, certificate & configuration management), development (orchestration, static
and dynamic security testing), and patterns (API gateway, circuit breaker).

19

3. Related work

A recent SLR on MSA security was performed by Berardi et al. [Ber+22]. In their
work, the authors considered a large corpus of 290 peer-reviewed publications. Unlike
most other SLRs in this research area, this work compiled a catalog of dichotomous
research questions, i.e., with yes-or-no answers. Each of these research questions was
categorized into one of four macro groups: threat model, security approach, infrastruc-
ture, and development. The threat model group addressed the adoption of STRIDE or
other threat modeling approaches. Only a portion of the publications mentioned the
usage of a threat model, and if they did, it was used tailored to the specific use case of
their proposed solution. The authors claim that a possible explanation is that there is
no common threat modeling approach for microservices, due to its difficulty in making
it specific for microservices while avoiding the problem threat explosion, i.e. when the
effort of considering and prioritizing all threats exceeds the benefits of managing them
[Wuy+18]. The security approach group considered specific security solutions, e.g., In-
trusion Detection System/Intrusion Prevention System (IDS/IPS) solutions, and the
role that microservices play from a security perspective. The most common approach
is to address specific problems, e.g., dealing with authentication, rather than following
a general approach considering the whole application stack. The infrastructure group
asked about infrastructure configurations considered, e.g., IaaS. The study found out
that most orchestrating and monitoring solutions are centralized, and that IaaS and
service discovery are emerging topics in the context of MSA security. The development
group investigated established development practices and processes for security purposes.
Agile approaches, such as DevOps or DevSecOps, Continuous Integration/Continuous
Delivery (CI/CD), as well as domain-driven or model-driven methods are primarily used
to address MSA security concerns. Furthermore, the authors created a correlation ma-
trix among the research questions to understand which aspects of MSA security most
commonly appear together and which are mutually exclusive.

3.2. Views of security in software engineering
In addition to the presented secondary studies, a large number of different views of
security in software engineering exist. In the following, we will discuss three of these
different types of views, namely quality models, maturity models, and threat models.

Quality models serve the purpose of defining and quantifying quality in a software
system. The quality of a system is often subdivided into several quality attributes,
which in turn are composed of further sub-characteristics in a hierarchical structure. In
this thesis, we present the standardized product quality model ISO/IEC 25010 [ISO11a],
as well as the more recent Quamoco approach [Wag+12; Wag+16]. Before that, however,
we briefly discuss the SQUID approach by Kitchenham et al. [Kit+97] which describes
a method for defining quality models. Many other quality models have been developed
so far. For further information, Miguel et al. [MMR14] provided an overview of the
timeline and differences between developed quality models.

We then describe one established maturity model for assessing an organization’s ma-
turity in security. Maturity models offer companies the possibility to measure their

20

3.2. Views of security in software engineering

progress and possible improvement potential in a certain discipline by employing a ma-
turity level. We briefly introduce the maturity model OWASP Software Assurance Ma-
turity Model (OWASP SAMM) [OWASP20].

Finally, we describe some threat models. In contrast to the previous models, threat
models take the perspective of the attacker on a software system. This should help
software engineers to better identify and classify threats to their developed products.
We describe in this work the threat models STRIDE [KG99] and attack trees [Sch99],
as well as some established attack libraries.

3.2.1. Quality models
The SQUID approach proposed by Kitchenham et al. [Kit+97] is not a quality model
per se but describes a method to define quality models. The authors claim, after evalu-
ating existing quality models such as the McCall quality model [CM78] or the ISO/IEC
9126 [ISO91], that a quality model consists of a structural model and a content model.
The structural model describes the essential aspects of a quality model: quality charac-
teristics and sub-characteristics, as well as internal software properties and measurable
properties. Content models, on the other hand, must be specifically adapted according
to the products and quality requirements of a company. The authors, therefore, claim
that a general one-size-fits-all quality model is not suitable for direct use. For this rea-
son, companies and software developers themselves are responsible for designing suitable
content models for their application purposes and products. Although we agree with
the assertion that quality models must be customized according to the quality require-
ments of specific products, the lack of quality reference models for security is a problem.
This makes it difficult for software developers to effectively measure the security of their
products, especially if they lack expertise in software security.

As the successor to the aforementioned ISO/IEC 9216 standard, ISO/IEC 25010
[ISO11a] defines an international standard for software product quality. The standard
consists of a hierarchical model, i.e., the quality of a software system is composed of
several QAs which in turn consists of several sub-characteristics each, forming a tree-
like structure. QAs defined in the standard include, among others, functional stability,
performance, reliability, maintainability, compatibility, and security. The standard de-
fines the security QA as the degree to which a system protects data and information
so that users and other systems have access according to their authorization rights.
The sub-characteristics the security QA is composed of are confidentiality, integrity,
non-repudiation, accountability, and authenticity. The definitions of the individual sub-
characteristics are similar to ours in Definition 2.11, although the standard assumes in
each case the degree to which the product or system fulfills the security goal. In contrast
to our definition, the QA availability in the ISO/IEC 25010 standard is not considered
under the quality characteristic security, but under reliability. However, the standard
mentions that availability, in the event of an attack, must also be considered under the
aspect of security. In addition, there is the ISO/IEC 25020 [ISO19] standard which de-
fines a reference model for the creation of quality measurements for software products.
In order to measure quality characteristics or sub-characteristics, quality measurements

21

3. Related work

are necessary to determine the fulfillment of the QA. Nevertheless, it is also mentioned
in the standard that not every QA is suitable to be measured. Instead, in this case, the
quality model serves to define and communicate quality requirements more clearly. We
also recognize, due to a lack of scientific or industrial work, that a gap exists when it
comes to quality measurements in terms of security. We believe that the lack of quality
metrics for security also leads to an inaccurate understanding of security in software
applications. The lack of empirical data makes it difficult for software architects to
determine how secure their architecture actually is.

The lack of an operationalized quality assessment method in the ISO/IEC 25010 stan-
dard was addressed by Wagner et al. [Wag+12; Wag+16] in their Quamoco approach.
They identified the existing gap between abstract quality attributes in the ISO/IEC
25010 standard and concrete measurements. Reasons for this are the lack of a meta-
model for quality models and a clearly defined, integrated quality assessment method.
Furthermore, it is necessary to modularize a quality model, since a single quality model
is too large and confusing. For this reason, the authors have created such a metamodel
and the Quamoco base model. The metamodel describes the general concepts that such
a quality model must contain. At the core of the model is the factor, which is an ab-
stract property of an entity. The concept of the factor is reused in different levels of
abstraction. Quality aspects, for example, are specializations of the factor and represent
abstract quality goals. These quality objectives are comparable to the QAs from the
ISO/IEC 25010 standard. Product factors are another, more fine-granular specialization
of a factor. These types of factors represent the attributes of a part of the product.
Quality aspects as well as product factors can be further refined by appropriate hierar-
chies. In addition, product factors have an impact on certain factors of quality aspects.
Product factors in the leaf nodes of the hierarchy must then be quantified by appro-
priate measures. Measures in turn can be refined by other measures, with the most
concrete measures using instruments to determine their value. The main difference to
the ISO/IEC 25010 quality model is therefore the finer granular division of QAs into
product factors, which form a hierarchy. The basic model presented by the authors
primarily considers the quality aspects maintainability, functional suitability, and re-
liability. Security was also taken into account in the basic model as a quality aspect.
However, there were only 17 product factors for this aspect. The authors justified this
with the problem that a quality aspect such as security is based more on dynamic checks
than other quality aspects. Furthermore, the Quamoco model was designed to be ex-
tended accordingly. Nevertheless, to the best of our knowledge, there are no established
extensions of the Quamoco model that consider security in-depth.

3.2.2. Maturity models
OWASP SAMM [OWASP20] is a model that focuses on the maturity level of the secu-
rity discipline. At its core, this model also defines a hierarchical structure of business
functions, security practices, and streams. Each stream defines activities that are nec-
essary to achieve the corresponding maturity level in this discipline. The framework
also provides questions and quality criteria for an organization to measure its maturity

22

3.2. Views of security in software engineering

level itself. For example, the design business function captures security practices such
as threat assessment, among others. One stream under the threat assessment security
practice is threat modeling. An organization reaches maturity level 3 in this stream when
it can continuously improve and automate the threat modeling methodology. Through
such a model, companies can capture which security disciplines and activities are neces-
sary for their software development lifecycle.

3.2.3. Threat models
STRIDE [KG99] is a threat modeling approach developed by Microsoft in 1999. The
acronym stands for spoofing, tampering, repudiation, information disclosure, denial of
service, and elevation of privilege. Each of these threat classes covers a set of threats
that harm the same security goal. Threats may be classified into one or more threat
classes.

Spoofing includes all those attacks in which the attacker obtained any stakeholder’s
personal information to impersonate that person. This enables the attacker to
perform actions on the user’s behalf. This class of threats directly harms the
authenticity of a system.

Tampering attacks modify the system or data by an unauthorized entity. An attacker
stores malicious data or programs, inserts undetectable network packets, or makes
changes to sensitive user information. This class of threats harms the integrity of
a system.

Repudiability is the ability of an untrusted user to deny that he performed an illegal
operation. This class of threats harms the accountability of a system.

Information disclosure threats deal with the leakage of personal or business information
to those who are not supposed to have access to it. This class of threats harms
the confidentiality of a system.

Denial of service attacks make the system temporarily or permanently unavailable to
legitimate users. This class of threats harms the availability of a system.

Elevation of privilege deals with attacks that allow an unprivileged user to gain privi-
leged access to certain assets or operations. This threat class harms the authoriza-
tion capabilities of a system.

Dependencies or implications between these threat classes may exist, e.g., an attacker
who successfully spoofed the identity of a system administrator also has gained an ele-
vation of privilege, and may be able to tamper with privileged information. The model
does not prescribe concretely how to identify threats in a system. It should rather help
software engineers and architects view their software applications from an attacker’s
perspective and find and understand general sets of threats without expert knowledge.
Typically, STRIDE is used in conjunction with Data Flow Diagrams (DFDs). For

23

3. Related work

instance, various threat modeling tools like OWASP Threat Dragon [wwwg] or the Mi-
crosoft Threat Modeling Tool [wwwe] enable the modeling of DFDs with the STRIDE
methodology as their basis.

Attack trees [Sch99] provide a formal yet simple approach to model threats in a soft-
ware system. As the name indicates, this methodology suggests representing attacks
against a system in a tree-like structure. The root node of the attack tree represents the
goal of an attacker, e.g., gaining access to a user’s personal information stored in a sys-
tem. Then, sub-nodes are created that indicate how an attacker accomplishes that goal.
Sub-nodes are AND nodes or OR nodes, i.e., either all of the AND nodes are required
to accomplish the goal, or only one alternative of the OR nodes is required. This way,
the attack tree is created iteratively where the attacker’s goals and how to reach each
goal are indicated by nodes and their sub-trees. Further steps using this methodology
can be to label each node with a likelihood or impact or the costs of ignoring that risk.
This can be used to calculate the overall risk or impact when such a threat is exploited.
Another advantage of attack trees is that they can be composed to build attack tree
libraries. Furthermore, STRIDE and DFDs are compatible with attack trees, i.e., they
can be used in conjunction to find threats in an application.

STRIDE and attack trees provide software engineers with modeling tools to view their
applications from the attacker’s perspective. However, these approaches provide only an
abstract view that may not cover all threats. For this reason, detailed lists and catalogs
of vulnerabilities, weaknesses, and attack patterns have been created and maintained.
The purpose of these catalogs is to provide a detailed and fine-grained, schematic view
of software weaknesses and vulnerabilities in a searchable and navigable way. The most
popular attack libraries are the following.

The Common Attack Pattern Enumeration and Classification (CAPEC) [wwwa] cat-
alogs known attack patterns that are exploitable by adversaries. The concept for this
catalog is derived from the paradigms of software design patterns [Gam+94]. Thus,
”attack patterns are design patterns for attackers” [wwwb]. Each attack pattern in this
catalog is described in terms of the execution flow, the likelihood and severity, miti-
gation techniques as well as relationships to other attack patterns. The perspective of
an attack pattern is always from an attacker’s point of view describing the exploration,
experimentation and exploitation phases that an attacker performs which comprises the
attack pattern. An example of a well-known attack pattern is Cross-Site Scripting (XSS),
uniquely identified as CAPEC-631.

Each attack pattern is also related to a set of weaknesses which are cataloged in
the Common Weakness Enumeration (CWE). The CWE [STM17; wwwd] lists common
software and hardware weakness types. In contrast to CAPEC, this view takes the
perspective of the software engineer in terms of design or implementation faults that
may be introduced by him. Each weakness is composed of a description, how and at
which development stage it is typically introduced, consequences in terms of impacted
security goals, and demonstrative examples. Potential mitigation techniques and when to
apply these techniques are also provided. Attack patterns rely on an underlying software

1https://capec.mitre.org/data/definitions/63.html

24

https://capec.mitre.org/data/definitions/63.html

3.2. Views of security in software engineering

weakness that is exploitable, thus causing a threat to the system. In the aforementioned
example, the XSS attack pattern is related to the improper neutralization of input during
web page generation weakness (CWE-79)2.

Concrete instances of a weakness made public are vulnerability disclosures, which are
cataloged in the Common Vulnerabilities and Exposures (CVE) database. The CVE
[wwwc] is probably the most prominent list of software vulnerabilities. Each disclosed
vulnerability is assigned a CVE-ID, a short description, a reference to the software and
version in which the vulnerability is contained as well as a score that indicates the severity
of the vulnerability. Following our example, an instance of the CWE-79 weakness would
be the vulnerability CVE-2021-18793.

CAPEC, CWE and CVE together form a set of related databases that help developers
to assess the security of their software application from an attacker’s and defender’s point
of view. In short, CWEs explains the root cause of a vulnerability, CAPEC describes
how the weakness can be exploited by an attacker, and CVEs demonstrates specific
instances of a weakness that are exploitable in existing software products.

Adversarial Tactics, Techniques & Common Knowledge (ATT&CK) [wwwf] is another
attack library that lists specific tactics, techniques, and procedures that adversaries
use. The techniques are categorized according to the technology domain, i.e., enterprise
or mobile with domain-specific platforms, and the tactic representing the attacker’s
objective, i.e., the reason for acting. Gaining initial access, persisting access to a system,
or privilege escalation are a few examples of these tactics. Similar to CAPEC, the
ATT&CK library offers another view from the viewpoint of an attacker. However, they
differ in their use cases. CAPEC focuses on application security, associates with CWEs,
and is used for threat modeling and penetration testing. On the other hand, ATT&CK
focuses on network defenses and defense against advanced persistent threats. It is rather
used to compare defense capabilities and to find new threats.

Each of these attack libraries is a comprehensive and detailed database in itself. For
instance, CAPEC lists 546 attack patterns, CWE contains 927 weaknesses, the CVE
database covers 183528 vulnerabilities, and the ATT&CK library contains 191 tech-
niques with 385 sub-techniques for the enterprise technology domain, with additional
techniques for the mobile domain4. Although these fine-grained views are required to
grasp the whole picture that entails security, knowing every entry of these databases
is an impossible task for software engineers and architects. Thus, besides several ”Top
25” views that these databases provide, the OWASP Top Ten [wwwh] list is a popular,
”standard awareness document” for web application security. This view breaks the com-
prehensive catalogs that the aforementioned databases provide down to a graspable set
of important risks and threats to be considered by every software engineer.

2https://cwe.mitre.org/data/definitions/79.html
3https://nvd.nist.gov/vuln/detail/CVE-2021-1879
4Numbers accessed on 2022-08-31

25

https://cwe.mitre.org/data/definitions/79.html
https://nvd.nist.gov/vuln/detail/CVE-2021-1879

4. Catalog of security design concepts for
microservices

When we learn something new,
we don’t go from ’wrong’ to
’right’, rather we go from wrong
to slightly less wrong.

Mark Manson

Contents
4.1. Systematic Literature Review report 29

4.1.1. Need for a review . 29
4.1.2. Research question . 30
4.1.3. Developing and evaluating the review protocol 30
4.1.4. Identification of research . 30
4.1.5. Study selection . 33
4.1.6. Data extraction . 35
4.1.7. Data synthesis . 37
4.1.8. Conflict of interest . 38
4.1.9. Excluded SLR steps . 39

4.2. Review result . 40
4.2.1. Security design principle . 41
4.2.2. Security activity . 42
4.2.3. Security tactic . 43
4.2.4. Architectural security pattern 45
4.2.5. Security protocol . 47
4.2.6. Intrusion Detection/Prevention Systems 48

One aspect of this thesis is to understand to what extent the microservice architecture
pattern influences the security of software applications. An architecture pattern reflects
a specific structural and behavioral composition of software elements of a software appli-
cation. Software architectures are significantly shaped by design decisions and applied
design concepts by the software architect and other stakeholders. To understand the
impact of the MSA pattern on the security of a software application, we need to under-
stand which design concepts exist for these applications and how they work. Therefore,
we develop a catalog of security design concepts for microservices as a central research
artifact in this thesis. The catalog provides a detailed and schematic description of
the different design concepts. With the description and cataloging of security design
concepts, we can evaluate the effect of microservices on the architecture’s security.

27

4. Catalog of security design concepts for microservices

Figure 4.1.: An overview of our applied SLR method. Each step illustrates how many
publications were identified/selected, and how many security design concepts
were extracted and synthesized.

28

4.1. Systematic Literature Review report

To create such a catalog, we decide to conduct a Systematic Literature Review (SLR)
based on the methodology presented by Kitchenham et al. [KC07]. In the first part
of this chapter, we first present the method of our work. We describe the procedure of
our adapted SLR approach and present the results of each phase. In doing so, we first
motivate the need for the review and introduce the research question we aim to answer
with this SLR. We then describe how we identified research and selected the relevant
studies. Last, we describe the process of data extraction and how we synthesized catalogs
from the extracted data. Figure 4.1 illustrates an overview of the whole SLR method
we applied.

In the second part of the chapter, we present the results of the SLR we conducted.
Specifically, we address the schemas of each of the catalogs of security design concepts
that we identified and also provide a definition and an example of each category of
security design concept. The specific catalogs that emerged from this SLR can be found
in Appendix B.

4.1. Systematic Literature Review report
In the following section, we report the process of our conducted SLR approach. A sys-
tematic review is a common method for ”[…] identifying, evaluating and interpreting all
available research relevant to a particular research question, or topic area […]” [KC07].
Although often conducted in the context of medical and healthcare sciences, Kitchenham
et al. [KC07] proposed guidelines to pursue this approach in the context of software en-
gineering research to gather and analyze given evidence according to a specific research
topic. A SLR is characterized by the fact that its motivation and process are precisely
specified and all (intermediate) results are presented. The reasons for conducting a SLR
are that they are transparent, reproducible, and fair. Transparent, since we provide a
detailed explanation of each conducted step, the reasoning behind this, and the corre-
sponding results. Reproducible, since the well-defined method is documented such that
other researchers can assess and repeat the process to validate its results. Fair, since all
available research within the search strategy is considered and reviewed to minimize the
selection bias.

4.1.1. Need for a review

As presented in Section 3.1, there are already several systematic reviews that have exam-
ined security threats and design concepts in microservice-based applications. In these
papers, white literature and partly gray literature were investigated to identify these
concepts and threats. However, none of these SLRs have yet performed a qualitative
analysis of the design concepts explored. Classifications have been made, e.g., based
on the security scope. However, we see a lack of contributions that try to describe the
researched security design concepts in a detailed and schematic way. Cataloging security
design concepts, similar to the existing attack libraries, is an essential tool for software
engineers and architects to effectively design the architecture of a system. Only through

29

4. Catalog of security design concepts for microservices

a detailed description of the applied design concepts is it possible to make statements
about the quality and functionality of a system. Furthermore, a schematization of the
design concepts offers the possibility of comparing the effectiveness of these design con-
cepts with one another more clearly. Finally, we claim that such a knowledge base can
help to improve the comprehensibility of security in software architectures.

4.1.2. Research question
Thus, we aim to clarify which security design concepts exist, how they can be described
and to which criteria they can be classified, specifically for microservice-based applica-
tions. Our goal is to propose a first draft of a navigable knowledge database for security
design concepts applicable to software architectures. These catalogs should support
software architects and engineers when creating new software architectures or reviewing
existing ones. In terms of granularity, these catalogs are meant to be similar in detail
to the presented attack libraries such as CAPEC [wwwa] and CWE [wwwd]. The goal
of the described and applied SLR method is reflected in our first research question.

(RQ1) How can we describe and classify security-related design concepts for software
applications in microservice architectures?

4.1.3. Developing and evaluating the review protocol
The review protocol was developed and evaluated as part of this master thesis. In doing
so, we elaborated an adapted, lightweight version of the SLR presented by Kitchenham
et al. [KC07]. The following sections explain the steps performed and the results ob-
tained from each phase. Furthermore, we describe at which points we deviated from
Kitchenham’s original SLR approach or omitted certain steps and provide reasoning for
this. The results of this SLR, i.e., the security design catalog and corresponding catalog
schemas, are presented in Section 4.2 and Appendix B. The review protocol was devel-
oped in collaboration with the supervisor of this thesis and continuously evaluated by
the author and the supervisor.

4.1.4. Identification of research
After we determined the need for a review and the research question we wanted to
investigate, we began the search for relevant publications. We needed to select a suitable
search strategy in order to exclude as many irrelevant papers as possible in advance. The
search strategy determined which sources we used, as well as the search strings and filters
we applied to each source. In specifying our search strategy, we oriented ourselves to the
search strategies of related SLRs (cf. Section 3.1). Compared to these studies, however,
our search needed to reduce the corpus of publications we wanted to sift through to
a size that could be handled within the scope of this thesis. To determine a search
strategy that meets these requirements, we first conducted a series of trial searches. In
the following, we describe how we conducted the trial searches, which search strategy
we finally chose, and present its results.

30

4.1. Systematic Literature Review report

Table 4.1.: The list of candidate scientific databases that were considered during the trial
searches.

DB# Database Included? Exclusion reason

DB1 Web of Science 3

DB2 IEEExplore 3

DB3 ACM Digital Library 3

DB4 Science Direct 3

DB5 Inspec 7 Not accessible
DB6 SpringerLink 7 Too many results
DB7 Scopus 3

DB8 CiteSeerx 7 Limited filter capabilities
DB9 Wiley InterScience 7 Limited filter capabilities
DB10 Ei Compendex 7 Not accessible
DB11 IET Digital Library 7 Limited filter capabilities
DB12 dblp 7 Limited filter capabilities
DB13 Google Scholar 7 Too many results

Selection of scientific databases

First, we determined which sources to be included. Kitchenham et al. [KC07] suggest
prospecting different sources for this, including journals, proceedings, as well as scientific
databases. For this thesis, we limited ourselves to a few scientific databases. Table 4.1
lists the candidate databases that we initially considered. This list of candidates was
generated by reviewing related SLRs as well as based on the recommendation of the su-
pervisor of this thesis. In each of these scientific databases, a large number of scientific
publications can be identified using a search string and, if necessary, a set of filters. In
advance, we were able to exclude the Inspec (DB5) and Ei Compendex (DB10) databases
for further use because we did not have access to search these databases. Furthermore,
SpringerLink (DB6) and Google Scholar (DB13) were excluded due to their high num-
ber of search results. CiteSeerx (DB8), Wiley Interscience (DB9), IET Digital Library
(DB11), and dblp (DB12) were excluded because of their limited filtering capabilities.
Thus, the remaining scientific databases that we included for further trial searches and
the final search were Web of Science (DB1), IEEExplore (DB2), ACM Digital Library
(DB3), ScienceDirect (DB4), and Scopus (DB7).

Trial searches

After selecting the sources for this SLR, we began some trial searches. We first ex-
amined the search strategies of related works. Some studies developed rather generic
search strings to find all relevant publications regarding MSA security. For instance,
Pereira-Vale et al. [Per+19] retrieved 990 white and gray literature articles using the
search string (“secure” OR “security”) AND (“microservi”* OR “micro servi”*

31

4. Catalog of security design concepts for microservices

OR “micro-servi”*). Berardi et al. [Ber+22] gathered 1,704 publications in total in
their initial dataset with the search string Microservice AND Security using a sim-
ilar set of scientific databases that we chose. There were two reasons for us to refine
these search strategies for our SLR. First, these amounts of publications are too large
to handle in the scope of this thesis, since we are limited by time and capacity con-
straints. Second, and more importantly, to investigate our stated research question, we
are only interested in finding specific software elements that are applicable to software
architecture, i.e., security design concepts. Thus, we further refined the search string
by adding specific security design concept terms. In our trial searches, we investigated
which combination of terms yields an appropriately manageable set of publications.
Furthermore, we additionally considered different spellings of the term microservice,
since no generally accepted spelling exists for this term. The terms of categories for
security design concepts that we considered in the trial searches were T = { technique,
pattern, best practice, tool, technology, design principle, activity, process,
mechanism, service, design, development, tactic, protocol }. This list of terms was
compiled based on discussions with the supervisor as well as our own experience. We
then combined each of these terms, i.e., for each term t ∈ T , with the generic base search
string and applied them to the selected databases. The corresponding search string is
depicted below.

(security OR secure) AND (microservice OR microservices OR
"micro-service" OR "micro-services" OR "micro service" OR "micro

services") AND t

We examined how many results each database returned, and then determined a match-
ing subset of terms. We applied the same filters to each trial search as we did to the
final search (cf. Table 4.2, Applied filters). We also specified in the corresponding search
strings of the databases that the terms may only appear in the title, abstract or keywords
in order to filter for relevant papers as precisely as possible. The results of these trial
searches are depicted in Appendix A.

Final search

From the previously mentioned trial searches, the following search string was selected
for the final search of the SLR.

(security OR secure) AND
(microservice OR microservices OR "micro-service" OR "micro-services" OR

"micro service" OR "micro services") AND
(technique OR pattern OR "best practice" OR "design principle" OR

activity OR mechanism OR development OR tactic OR protocol)

As in the trial searches, the terms in this search string were searched for exclusively in
the title, abstract and keywords of the publications. Table 4.2 lists the filters applied in

32

4.1. Systematic Literature Review report

Table 4.2.: The results of the SLR’s final search, including the selected scientific
databases, the applied filters, and the number of publications retrieved per
database.

DB# Applied filters Number of
publications

DB1
• Languages: English
• Document Types: Proceeding Paper or Article
• Research Areas: Computer Science

148

DB2 • Filters Applied: Conferences or Journals 111

DB3 • All Publications: Proceedings or Journals1

• Content Type: Research Article 37

DB4 • Article type: Research articles
• Subject areas: Computer Science 31

DB7

• Source type: Conference Proceeding or Journal
• Document type: Conference Paper or Article
• Publication stage: Final
• Subject area: Computer Science
• Language: English

211

∑
538

each of the selected databases and the number of publications each database returned.
We restricted ourselves to peer-reviewed publications, i.e. only those that were published
in research articles, e.g., in a proceeding or journal. If possible, we restricted the subject
area to computer science only. Furthermore, the publications were restricted to be in
English only, if possible. With this search string and the presented filters, we obtained
a set of 538 peer-reviewed publications. The final search was performed on June 10,
2022.

4.1.5. Study selection
After conducting the final search, we began with the selection of relevant studies. In this
phase, irrelevant studies were sorted out using a defined set of exclusion criteria. In this
SLR, we divided the study selection into two screening phases. In the first phase, we
only screened the title, abstract, and conclusion of the paper for relevance. This already
allowed us to exclude many publications based on simple criteria. In the second phase,
we then considered the full text of each remaining publication. The exclusion criteria
we considered in each of the two phases are shown in Table 4.3.

In the first phase, we first removed all duplicates (EC-1). A publication could occur
more than once in the corpus according to our final search since the same publication can

1Only one publication type could be selected per query, so we performed two separate queries each with
one corresponding publication type and merged the publication results.

33

4. Catalog of security design concepts for microservices

Table 4.3.: The exclusion criteria considered during the SLR’s study selection phase,
including the number of papers removed and remaining per criterion.

ID Exclusion
criteria

Removed
papers

Remaining
papers

First screening (title, abstract, conclusion)
Initial publication set 538

EC-1 Duplicate removal -266 272
EC-2 False positive -23 249
EC-3 Not English -2 247
EC-4 Full text not available -5 242
EC-5 Short paper, tutorial, etc. -12 230

EC-6 Paper not discussing MSA
security as their primary topic -116 114

EC-7 Paper not discussing any design
concept related to MSA security -4 110

Second screening (full text)

EC-8 Paper not discussing MSA
security as their primary topic -21 89

EC-9 Paper not discussing any design
concept related to MSA security -12 77

EC-10 Insufficient description of proposed
security design concept -10 67

EC-11 Proposed design concept is
not security-related -6 61

EC-12 Proposed design concept is
platform or technology dependent -7 54

EC-13 Proposed design concept is
not applicable to MSAs -2 52

34

4.1. Systematic Literature Review report

exist in multiple sources. The removal of duplicates was automated using a literature
management program and then checked for correctness afterward. False positives are
those that incorrectly did not contain the necessary search terms in the title, abstract,
or keywords and were excluded (EC-2). As in the applied filters in the final search, we
also excluded non-English publications (EC-3). In addition, we sorted out publications
for which we either could not access the full text (EC-4), or whose full text was a short
paper of 2 pages or less, tutorial, video, editorial, book, or book chapter (EC-5). In
terms of content, we excluded all publications that either did not primarily examine MSA
security (EC-6) or it was already clear in the abstract or conclusion that no concrete
design concept was proposed in this publication (EC-7). After the first screening phase,
we excluded a total of 428 publications.

Subsequently, we considered the full text of the remaining publications in the second
screening phase. As in the previous phase, we excluded all publications that did not
address MSA security as a primary topic (EC-8) or did not present a concrete secu-
rity design concept (EC-9). The reason for applying these exclusion criteria again in
the second screening phase was that it was partly not clear from the abstract and the
conclusion that the publication did not fulfill these requirements. Since we based our
SLR on a qualitative analysis of the data used to create the catalog, we also excluded
publications that had presented a concrete security design concept but either did not
describe it sufficiently (EC-10) or it was not security relevant (EC-11). In addition, we
are interested in general design concepts, and therefore excluded solutions that rely on a
specific platform or technology (EC-12). Finally, we eliminated publications whose pre-
sented solutions were not applicable to our selected architecture style, i.e., microservices
(EC-13). Through the second screening phase, we were able to exclude a total of 58
additional publications. Thus, a total of 52 studies were selected for further processing
in this SLR.

4.1.6. Data extraction
In the following, we describe the data extraction performed. In this phase, we reviewed
the full texts of the selected publications and extracted the relevant information of the
presented security design concepts using a predefined data extraction form. Table 4.4
captures the data extraction form used.

Specifically, we wanted to identify a unique name for each security design concept to
establish a corresponding vocabulary of these concepts. Furthermore, we identified the
type of each design concept, which represents its category. The type or category of the
security design concept subsequently established the basis for creating different catalogs
of concepts depending on the type. For each security design concept, we extracted a de-
scription that captures in prose form how the design concept functions. Furthermore, we
were interested in the motivation and purpose of the security design concept. Therefore,
we extracted for which security requirements the concept is applied and which threats
are possibly mitigated by it. In addition to the influence on other QAs, we also wanted
to find out how the security design concept is applied in concrete terms by determining
the security scope, i.e., whether it detects, prevents, reacts to or recovers from concrete

35

4. Catalog of security design concepts for microservices

Table 4.4.: The data extraction form used during the data extraction phase of the SLR.
Property Description

Name The name of the security design concept

Type
The type or category of the security design concept.
Possible values: activity, best practice, design principle,
pattern, process, security service, tool, mechanism, tactic, protocol

Description A text description of the corresponding security design concept
Security
requirement

A requirement statement that motivates
the security design concept

Security goals The security goals (cf. Definition 2.11) the security
design concept targets

Security scope The security scope of this design concept.
Possible values: detect, prevent, react to, recover from

QA influenced A list of QAs that the design concept influences,
positively or negatively

Threats A list of threats that the design concept mitigates, e.g., DDoS,
code injection, lateral movement, remote code execution

Software scope The scope where the design concept is applied, e.g., design,
testing, CI/CD, development, network, API, container

Software
components

A list of software components, if any,
that the design concept either employs or depends on

Technologies A list of technologies that the design concept uses,
e.g., blockchain, machine learning

Domain The application domain the security design concept was used in,
e.g., IoT, cloud-native, healthcare

Publication The publication, selected in the SLR process, the security design
concept was established in

36

4.1. Systematic Literature Review report

Figure 4.2.: The applied data synthesis procedure of the SLR.

attacks, the software scope, i.e., whether it is a design concept for APIs or on the network
and communication level or others, and possible technologies, domains, or dependencies
in the form of software components.

Through the data extraction phase, we identified a total of 119 security design con-
cepts. However, it should be noted that this set of security design concepts also contained
duplicates, e.g., if the same design concept has been described in multiple publications.
Although Kitchenham et al. [KC07] explicitly advise against this practice, as that se-
riously biases the results, we chose to include duplicates in order to obtain a broad
qualitative basis of data. This allows us to include details that have only been presented
in single publications in the resulting catalog.

4.1.7. Data synthesis
In the data synthesis phase, the task was to compile the corresponding catalogs of se-
curity design concepts from the raw data obtained in the data extraction phase. The
procedure for the data synthesis was developed and discussed together with the super-
visor and is described in more detail in the following. The activities of this procedure
are depicted in Figure 4.2.

We first identified and merged duplicates of security design concepts. The identifica-
tion of duplicates was primarily based on the names of the considered security design
concepts, but also the description as well as the type and other properties from the data
extraction form were used for this purpose. Conflicts such as conflicting types or ambigu-
ous design concept names were also resolved in this step. After duplicates were merged,

37

4. Catalog of security design concepts for microservices

we grouped each security design concept by its type. A separate catalog schema was
then created for each security design concept using the attributes from the data extrac-
tion form. For each type of security design concept, we then proceeded as follows. First,
we removed irrelevant attributes from the data extraction form for the corresponding
security design concept type, e.g., if no or very little information was available for that
attribute. Then, the descriptions, as well as the full texts and remaining attributes, were
re-read and analyzed. Based on this, we tried to identify new common properties for this
type. Furthermore, we added additional properties if necessary based on our assertions
and experiences, if this information was not explicitly mentioned in the publications of
the respective design concepts. The newly selected properties were then evaluated and
discussed with the supervisor. After the relevant properties were identified, the catalog
schema of the corresponding security design concept type was adapted and filled in. This
procedure was performed for each type of security design concept.

Nevertheless, some types of security design concepts that were considered during the
data extraction phase were removed. These include the types best practice, mechanism,
process, and tool. These types were removed during the data synthesis procedure because
either we could not establish a clear definition for them, or the concrete security design
concepts of these types may also represent instances of other types. For instance, best
practices can be employed as a design pattern, a tactic or as an activity. Security
mechanism, on the other hand, is an established term in the security literature. However,
we claim that its definition, ”A method or process […] that can be used in a system
to implement a security service [...].” [Shi07], is rather unprecise. Such definitions
apply to many design concept types, and rather increase ambiguity than clarification.
Thus, we wanted to avoid those imprecise definitions and ambiguous design concepts
reducing the quality of the catalogs. Furthermore, we included a new category of security
design concepts, namely Intrusion Detection/Prevention Systems (IDS/IPS), as many
publications propose different methods and algorithms for this type of design concept.
Regarding Definition 2.12, we refer to the IDS/IPS category as technology family and
therefore as integratable component. Finally, we incorporated our understanding and
definition of security services into the concept of security views which are presented and
explained in detail in Section 5.3. We argue that this concept should not be placed on
the same abstraction level as their security design concept counterparts. Instead, the
identified security views play a fundamental and central role in the process of security
modeling in software architectures and should be treated as such.

The results of the data synthesis phase, i.e., the definition and schemas of each security
design concept type, are explained in detail in Section 4.2. The specific catalogs of
security design concepts can be found in Appendix B.

4.1.8. Conflict of interest
There are no conflicts of interest and no secondary interests of the authors of this SLR.
All opinions presented are those of the author alone. No third-party organization or
institution was involved. The results and progress of this work were reviewed and dis-
cussed with the supervisor at regular intervals. The supervisor of the master thesis and

38

4.1. Systematic Literature Review report

SLR works as a research assistant at RWTH Aachen University. Neither the author
nor the supervisor influenced the results of this thesis through other engagements. The
thesis and the associated SLR was completed exclusively for scientific purposes as a
requirement for the examination of the master’s degree. The author declares having
no financial conflicts of interest, not using the company’s (RWTH Aachen University)
resources, time, or any other resources for this thesis (excluding having the thesis su-
pervised by an RWTH Aachen University employee), not presenting patents, copyrights
or royalties without an indicated citation, and finally not holding shares in any company
that might benefit or be otherwise influenced by the paper.

4.1.9. Excluded SLR steps
We discussed our adapted SLR approach and the performed phases and steps of each
phase. In the following, we discuss and reason about the steps that were omitted in
this SLR but are typically performed in other SLRs as proposed by Kitchenham et al.
[KC07].

Commissioning a review

An organization that requires information about a specific topic but that has neither
the capacity nor the time to perform an investigative SLR commissions researchers to
perform a SLR on this topic. In this case, a corresponding commissioning document
should be created according to Kitchenham et al. [KC07]. However, since this SLR was
performed on the researcher’s own needs, as it was undertaken as part of the author’s
master studies, no third-party organization or institution was involved. Thus, this step
was not required and therefore not included in this SLR.

Snowballing

Although not proposed by Kitchenham et al. [KC07] as a required step, snowballing
is an activity that is often performed in similar SLRs [Woh14]. This phase is typically
performed after the study selection phase. Snowballing indicates that from the set of
selected studies, further research may be gathered by investigating the references of the
corresponding selected study, i.e., backward snowballing, or by searching for studies that
cite the study being examined, i.e., forward snowballing. As such, snowballing may
serve as a good alternative to using scientific databases [Woh14], and is also often used
in addition to that. However, the study selection phase of this SLR already yielded
a considerable amount of publications to be examined. Further research gathering by
snowballing would contradict our requirements to limit the set of publications to a
manageable amount.

Study quality assessment

The study quality assessment phase is performed to analyze the systematic error of the
selected publications, as well as their internal and external validity. It also provides a

39

4. Catalog of security design concepts for microservices

means to weigh the importance of individual studies and to investigate quality differences
between those [KC07]. Typically, quality assessments are conducted in the form of
checklists that need to be evaluated for each selected study. Quality items may be
assigned numerical scales, if applicable, for more comparative quality assessments. On
the one hand, time and capacity constraints prevented conducting an in-depth quality
assessment of the selected studies in this SLR. Thus, we assumed to retrieve little value
or insights in performing an immature quality assessment of these studies. On the other
hand, due to the heterogeneous group of security design concepts found, it was difficult
to create a quality assessment checklist that was uniformly meaningful for all design
concepts. Nevertheless, we recognize the value that an in-depth quality assessment
strategy might add, and we consider preparing such a strategy in further planned SLRs.

Dissemination strategy

This SLR will be evaluated as part of the corresponding master thesis by other re-
searchers and practitioners. The reported SLR was not assessed in form of a formal
peer review at the time of writing. The thesis and the SLR were reviewed by the su-
pervisor who is a research assistant at RWTH Aachen University and is qualified to
supervise bachelor and master theses. Furthermore, the final paper will be assessed by
the examiners of the thesis, who are two professors of RWTH Aachen University. Most
publications cited in this paper were retrieved from scientific databases and as such
mostly peer-reviewed.

4.2. Review result
In the following section, we now present the results of this SLR. As already depicted in
the report, we created several catalogs of security design concepts as part of this thesis.
For each category, we first provide a description of the category and what purpose they
serve in the context of software architectures. Furthermore, we propose for each of these
categories a clear definition of what constitutes the category and to create an appropriate
vocabulary. The provided definitions are compatible with the notion of a security design
concept as defined in Definition 2.12. Then, we present the schemas of the developed
catalogs in the context of this SLR by describing each property. Finally, we depict and
explain briefly one element of the respective catalogs as an example.

Each of the presented catalogs of security design concepts contains the following three
properties at minimum, namely a name, a list of security views, and a list of publications.
We argue that clear naming is essential for the development of these design concepts.
This facilitates the communication and description of an architecture. The concept of
security views is another part of the contributions of this master thesis. In essence,
security views represent different perspectives of security on the software architecture.
A detailed description and definition of security views for microservices are given in
Chapter 5. We argue that a separation of security views is necessary because the security
of a software architecture is too multi-layered and complex to be represented in a single

40

4.2. Review result

view. The security views covered in this thesis are authentication, authorization, secure
communication, secure storage, monitoring, and secure build & deployment. Each of
these views is intended to help model one aspect of security at a time. As part of this
SLR, we have developed a mapping that maps the concrete security design concepts to
the corresponding security views in which they can be applied. This mapping should
help to decide which security design concepts are useful in which context. For instance,
Token-based Authentication is a security tactic that can be established as a modeling
element in an authentication view but hardly makes sense as part of a monitoring view.
Finally, we reference the publications in which the security design concept was presented
and described.

4.2.1. Security design principle
In software engineering, the quality of an architecture is significantly influenced by its
design decisions. To establish a basic direction of good design, design principles are often
employed in software engineering. A design principle establishes a concise guideline that
can be used to guide design decisions based on an intent that motivates the principle.
Deviations or violations of these design principles often lead to a reduction in software
quality. However, some design principles might decrease specific aspects of the quality of
a software architecture by nature. Principles may also be related to other principles, e.g.,
when they are commonly used in conjunction. Design principles are often recognized
and identified by assigning a name or acronym to them, thus creating a vocabulary of
commonly known principles. Among the best-known design principles in object-oriented
software design are the SOLID principles [Mar08] which contribute to making software
more modular and decoupled. Security design principles provide guidance towards more
secure software design and help software engineers to make design decisions that improve
the application’s overall security.

Definition 4.1: Security design principle [Kan03]

A security design principle is a comprehensive and fundamental doctrine or rule
that governs the creation of secure software design.

The catalog for security design principles is presented in Appendix B.1. The security
design principles schema in our catalog is structured as follows.

Name The name of the security design principle.

Security view The security views the security design principle can be modeled in.

Summary A short description of what the security design principle entails.

Intent A motivation for following this principle.

QA enhanced QAs that this principle is about to improve.

QA worsened QAs that this principle is about to worsen.

41

4. Catalog of security design concepts for microservices

Related principles A self-relation to principles that are related or commonly used in
conjunction.

Publications A list of publications that mention or propose the security design principle.

As an example, Zero Trust Networking is a security design principle that guides the ar-
chitecture towards a system where no implicit trust is granted between services or clients.
When following this principle, it is always assumed that the microservice network is in-
filtrated and compromised. Thus, trust must be established explicitly by authentication
and authorization techniques, and communication channels must be secured to prevent
eavesdropping.

Name Zero Trust Networking

Security view Authentication, Authorization, Secure Communication

Summary All actions must be verified and all data transfers should be encrypted. There is no implicit trust
between services, and trust must be evaluated continuously.

Intent Always assume that the microservice network is already compromised.

QA enhanced

QA worsened

Related principles Deny access by default, Principle of least privilege

Publications [Mel21]

4.2.2. Security activity
When developing a software system, we typically follow a process model or SDLC. Within
this SDLC, the development of the application goes through different phases. For in-
stance, fundamental architectural decisions are made at the beginning during the re-
quirements engineering and design phase. In the implementation phase, the application
is then developed in concrete terms, and its functionality and quality are subsequently
checked in a testing phase. Finally, applications are distributed and rolled out during the
deployment phase. During each of these phases, activities are performed, either auto-
matically or manually by one or more stakeholders. An activity can also be specified by
a concrete sequence of steps to achieve a certain goal or target state. Security activities
are therefore activities that model or audit the security or security processes in a soft-
ware architecture. Typical examples of security activities are Static Application Security
Testing (SAST) and Dynamic Application Security Testing (DAST), which check the
software application for vulnerabilities, either statically or dynamically at runtime. De-
pendency scanning analyzes the Software Bill of Materiels (SBOM) of software included
as dependencies within the software application for existing vulnerabilities. Another
central security activity in the design phase is threat modeling, which identifies threats
through architectural flaws.

Definition 4.2: Security activity

A security activity is an activity within the SDLC, either executed once or repeti-
tively, manually or automatically, by any stakeholder to model or audit security-
relevant properties of a software architecture.

42

4.2. Review result

The catalog for security activities is presented in Appendix B.2. The security activity
schema in our catalog is structured as follows.

Name The name of the security activity.
Security view The security views this security activity can be modeled in.
Goal A description of the motivation or target state this activity tries to achieve.
Steps A list of actionable steps that this activity is composed of.
Automaticity Whether the activity is performed manually or automatically.
Stakeholders A list of stakeholders who perform the given activity.
Assets A list of assets that are affected by this activity.
SDLC phase A list of SDLC phases in which the activity is performed. Possible values:

Planning, Requirements Engineering, Design, Development, Testing, Deployment,
and Operations.

Publications A list of publications that mention or propose the security activity.

Dependency scanning is a security activity usually performed automatically during the
Testing and Deployment phases (CI/CD). This technique gathers software dependencies
to identify existing vulnerabilities by comparing the software versions with the entries in
a vulnerability database, e.g. CVE [wwwc]. Findings are reported in a human-readable
format to the operators or developers for patching.

Name Dependency scanning

Security view Secure Build & Deployment

Goal Due to the high mass of packages and cumulative dependencies that occur when using package man-
agers, dependencies should be scanned for vulnerabilities in an automated way.

Stakeholders CI/CD pipeline, Operator, Software engineer

SDLC Phase Testing (CI), Deployment (CD)

Automaticity Automated

Assets Container, Source code

Steps Upon code changes, the CI/CD pipeline pulls the repository changes and applies the usual integration
and deployment steps. In addition, a new pipeline step, the Vulnerability Scan, scans dependencies
in container images and application BOMs. If the vulnerability scanner identifies any active vulner-
abilities, a report is created in a human-readable format and sent to the operator or developers.

Publications [Thr+21; NL21]

4.2.3. Security tactic
A tactic [BCK21; KK21] is an atomic design decision to positively influence a specific QA.
For this reason, specific sets of tactics can be defined for each QA. In particular, security
tactics define design decisions that aim to strengthen an aspect of security. However,
in addition to its primary QA, tactics can have side effects, both positive and negative,
on other QAs. They are atomic because they represent the basic building blocks of
the design. From their composition, structural patterns and architectural styles can be
designed. They can also be used to augment existing design patterns. Tactics in general
consist of three components, a stimulus, an environment, and a response. The stimulus

43

4. Catalog of security design concepts for microservices

defines the action or event that derives the motivation to apply the specific tactic. In
security tactics, the stimulus is often defined by one or a set of threats. The environment
defines the context, e.g., involved assets, in which the tactic is to be applied. Finally,
the response defines how the software application reacts to the stimulus in the context
of the environment.

Definition 4.3: Security tactic [BCK21]

A security tactic is an atomic design decision that influences the achievement of
a security quality response.

The catalog for security tactics is presented in Appendix B.3. The security tactic
schema in our catalog is structured as follows.

Name The name of the security tactic.
Security view The security views this security tactic can be modeled in.
Stimulus An action or event that incites this tactic to be employed.
Threat A specific stimulus in which the action or event is a threat.
Environment The architectural context in which the tactic is employed.
Response An action or event that is performed in response to the given stimulus and

environment.
Depends on A self-relation to dependent tactics.
Implies usage A self-relation to implied tactics.
Patterns A list of architectural design patterns that this security tactic can augment.
Publications A list of publications that mention or propose the security tactic.

Token-based authentication is an example of a security tactic. The stimulus of this
tactic is that a user wants to access a protected resource. Additionally, there is a
threat that an unauthorized user will gain access to data that is not intended for them.
Thus, the environment of this tactic is authentication, specifically when an external
client requests access to a resource. The response of token-based authentication is now
that the system uses a cryptographic token to determine the identity of the user. The
access token contains the relevant information to identify the user and a cryptographic
signature to verify the validity of the token. Overall, the security tactic is employed
to prevent the threat of spoofing and elevation of privilege. This token may contain
sensitive information about the personal information of the owner, and may also be
misused for impersonation when stolen. Therefore, the token needs to be exchanged
over a secure communication channel. This requirement is represented in the security
tactic dependency Encrypted Communication.

44

4.2. Review result

Name Token-based authentication

Security view Authentication

Security context prevent

Stimulus A service or client performs a request to a restricted microservice. In order to process the request,
the microservice needs to determine the identity and permissions of the requestor.

Threat (Security
Stimulus)

A (malicious) client wants to have access to a service/data, which it is not allowed to have.

Environment Authentication

Response Cryptographic identity tokens are used to authenticate the requestor. The access token contains all
relevant authentication and authorization information, as well as a cryptographic signature to verify
its integrity.

Depends on Encrypted Communication

Implies usage

QA enhanced

QA worsened

Patterns Access token

Publications [JLE18; PS19; Zdu+22]

4.2.4. Architectural security pattern
Software patterns are one of the most widely used design constructs in software engi-
neering. The notion of design patterns was significantly established by the Gang of
Four (GoF) who presented one of the first contributions in form of a catalog of different
structural, behavioral, and creational design patterns [Gam+94]. In essence, software
patterns provide concrete solutions to recurring problems in software development. They
thus form a fundamental aspect in software engineering, since they encourage reusability
and thus prevent the wheel from being reinvented over and over again for already known
problems. Thus, software patterns form a relation between a problem, the context in
which the problem occurs, and a solution. Cataloging software patterns is a substan-
tial contribution of the last decades. The adoption and common acceptance of certain
catalogs lead to the fact that we developed today a vocabulary for effective communica-
tion. Patterns are described in specific formats, also called pattern languages. Several
different pattern languages have been developed so far [Fow06]. In this work, we fol-
low the Alexandrian pattern language [Chr77] developed by Alexander Christopher in
1977. The Alexandrian form captures the most important aspects of a software pattern
that forms the common ground and is contained in each pattern language, namely the
problem, context and solution. Furthermore, it describes the solution of the pattern by
providing a structure and instructions so the software engineer knows what is required
to build the pattern. More exhaustive pattern languages like the one presented by the
GoF [Gam+94] might be helpful to perform a comparative analysis of these patterns.
However, it was rather difficult to create such a rich pattern catalog from the extracted
data of our SLR, as most publications did not describe their patterns in such detail.
In this work, we distinguish between design patterns and architectural patterns. The
difference between these two types of patterns lies in the level of abstraction to which
they are applied. While solutions of design patterns are concrete structures on the code
level in the form of classes within a module or across modules, architectural patterns
focus on the organization and composition on the component level. Thus, architectural
patterns are more abstract than design patterns. Architectural security patterns focus
specifically on security problems to solve.

45

4. Catalog of security design concepts for microservices

Definition 4.4: Architectural security pattern [BCK21]

An architectural security pattern is a general, reusable solution to a common
security problem. It commonly provides a structural or behavioral composition
of components in a software architecture.

The catalog for architectural security patterns is presented in Appendix B.4. The
architectural security pattern schema in our catalog is structured as follows.

Name The name of the architectural security pattern.

Security view The security views this architectural security pattern can be modeled in.

Also known as An alias or synonym of the architectural security pattern.

Context A description of the circumstances under which the pattern is applied.

Problem A description of relevant problems, constraints and issues that the pattern
resolves.

Solution A description of how the pattern works, describing the static and dynamic
relationships between components.

Structure A diagram that presents the structure or behavior of the architectural security
pattern (if applicable).

Related patterns A self-relation to patterns that are related.

Publications A list of publications that mention or propose the architectural security
pattern.

The Security Gateway pattern addresses the problem of ensuring and enforcing security
policies of microservices on startup. It prevents microservices that violate any of these
policies from registering with the Service Registry, a service that provides the dynamic
location of microservices. On startup and before registration of the microservice, the
Security Gateway probes the respective microservice by performing several security tests.
The results of these security tests are reported and accessible through the Security Health
Endpoints pattern. Failed security tests due to existing vulnerabilities are reported and
the Security Gateway prevents the microservice from registration. The Security Gateway
thus participates as a Security Enforcement Point (SEP) by enforcing the security policies
in place.

46

4.2. Review result

Name Security Gateway

Security view Monitoring

Also known as

Context Within the microservice system, a Service Registry component handles the registration or de-
registration of several microservices. This component provides information about the location (IP
address and port) of the microservice as well as a description of the API the microservice offers. Before
the registration of a new microservice instance, a collection of security tests, e.g., Dynamic Security
Application Tests (DASTs), should be performed on the newly registered microservice instance.

Problem How to effectively perform security tests before the startup and enrollment of a new microservice
instance before its registration? A set of security policies should be enforced that satisfy the require-
ments that, for instance, a registrating microservice might not be deployed if certain vulnerabilities
are detected. How to deal with the discoverability problem, i.e., the capability to constantly detect
the location of new microservices.

Solution Before registering a new instance of a microservice, perform a set of security tests against it via a
Security Gateway. In contrast to the API Gateway which is concerned with API composition and
efficient routing of incoming and outgoing requests, the Security Gateway is a Security Enforcement
Point (SEP), i.e., it is concerned with the enforcement of the employed security policies, e.g., that
no microservice which contain a specific vulnerability or reach a vulnerability score is allowed to
run in a productive environment. The Security Gateway is invoked by a Service Registry before
the registration of the microservice instance begins. If the security tests fail, a test report is made
accessible to the development team or other service, for instance by leveraging the Security Health
Endpoints pattern for consumable security test results.

Structure

Related patterns Security Manager, Security Health Endpoints, Service Registry

Publications [TSM17; Yan+22]

4.2.5. Security protocol
In MSAs, communication between microservices forms one of the most central building
blocks. Only through lightweight communication interfaces, the modularity of such an
architecture is ensured. Microservices, therefore, use communication protocols to ex-
change data and request services. A protocol defines a concrete sequence of messages
that are exchanged between two or more communication partners. Each protocol pur-
sues a goal or target state, which is reached after the successful execution of the protocol.
In the case of security protocols, the target state is typically the protection of the com-
munication interface itself, e.g., through encryption, authenticating or authorizing the
requesting entity, or any combination of these. Security protocols thus form part of the
integratable components, since implementations are typically available for standardized
protocols that can be incorporated directly into the architecture.

Definition 4.5: Security protocol

A security protocol is a procedure for components or services to communicate with
each other with a specific security goal in mind.

47

4. Catalog of security design concepts for microservices

The catalog for security protocols is presented in Appendix B.5. The security protocol
schema in our catalog is structured as follows.

Name The name of the security protocol.

Security view The security views this security protocol can be modeled in.

Standard/RFC A standard or RFC that defines this protocol.

Goal A description of what this protocol wants to achieve.

Components A list of components that are usually involved in this protocol.

Message flow A diagram (usually a sequence diagram) that shows the messages ex-
changed between the components.

Publications A list of publications that mention or propose the security protocol.

Security Assertion Markup Language (SAML) is a security protocol and framework
for the authentication and authorization of clients and microservices. The protocol
assumes that a centralized identity provider holds the identity information of the re-
questing party. Whenever an unauthenticated client requests a protected resource, the
microservice redirects the client to the identity provider to authenticate. After successful
authentication, the client receives a SAML response with a SAML token. This access
token is then used upon resource requests and validated by the microservice.

Name SAML

Security view Authentication, Authorization

Standard/RFC RFC 7522

Goal Authenticate and authorize clients using a centralized identity provider across multiple services.

Components Client, Identity Provider, Microservice

Required assets Access token

Protocol flow

Publications [AC22]

4.2.6. Intrusion Detection/Prevention Systems

Especially in microservice-based software applications, the availability of individual mi-
croservices must be ensured. To check the availability, the architecture must take observ-
ability controls into account. Distributed logging systems and aggregators of runtime

48

4.2. Review result

metrics are typical techniques used for observability to check errors or the state of mi-
croservices. In the case of security, security-relevant events, such as actively executed
attacks, must be detected and prevented or reacted to if necessary. One technology
that is used to monitor security events is an IDS/IPS. These systems evaluate corre-
sponding data at runtime. While network-based IDS/IPS monitor traffic into or within
a microservice network, host-based systems check activities within a microservice or
the container, e.g., system calls. A further distinction is made between signature-based
and machine-learning-based IDS/IPS. While signature-based IDS/IPS look for concrete
patterns, e.g., in messages or system calls, machine-learning-based approaches use data-
driven algorithms like neural networks to detect anomalies. When a malicious activity
or message is detected, IDS/IPS respond by reporting the incident to appropriate ad-
ministrators. If necessary, these systems can also try to prevent attacks automatically,
e.g., by blocking IP addresses in case of a denial of service attack.

Definition 4.6: Intrusion Detection/Prevention System (IDS/IPS)

An Intrusion Detection/Prevention System (IDS/IPS) is a family of technologies
that monitors and/or prevents irregular or malicious behavior (intrusions) in a
network or a system.

The catalog for IDS/IPSs is presented in Appendix B.6. The IDS/IPS schema in our
catalog is structured as follows.

Name The name of the IDS/IPS approach.

Security view The security views this IDS/IPS approach can be modeled in.

Algorithm approach A description of the underlying algorithm, e.g., a machine learning-
based approach or signature-based approach

Evaluation asset A list of assets that the IDS/IPS approach analyzes, e.g., traffic, mes-
sage content, etc.

Scope Whether the IDS/IPS approach employs a network-based or host-based solu-
tion, whether internal or external content is monitored, i.e., within a microservice
network or between the client and the microservice network.

Placement A list of assets where the IDS/IPS is placed on, e.g., microservice, network,
API gateway etc.

Threat A list of threats the IDS/IPS approach detects or prevents, e.g., DDoS, code
injection etc.

Prevention A description of how IDS/IPS approach responds to the intrusion (if any),
e.g., block traffic, relocate microservice etc.

Publications A list of publications that mention or propose the IDS/IPS approach.

49

4. Catalog of security design concepts for microservices

Anomaly detection of distributed traffic is an IDS/IPS approach proposed by Jacob
et al. [JQL21; Jac+22]. Based on distributed traffic data, this approach uses a ma-
chine learning algorithm, namely Diffusion Convolutional Recurrent Neural Network
(DCRNN), to identify anomalies in RPC traffic into a microservice network. Using
this method, the authors were able to successfully identify several attacks performed on
an experimental application such as password guessing brute force attacks and batch
registration of bot accounts.

Name Anomaly detection of distributed traffic

Security view Monitoring

Capability Detect

Algorithm approach Diffusion Convolutional Recurrent Neural Network (DCRNN), machine learning

Evaluation asset Distributed trace, Network traffic, RPC

Scope External, Network-based

Placement Per microservice

Threat Batch registration attack, DDoS, Password Brute Forcing

Prevention

Publications [JQL21; Jac+22]

50

5. Defining and modeling a software
engineering view of security

All models are wrong, but some
are useful.

George Box

Contents
5.1. Research method . 52
5.2. Software engineering security metamodel 52
5.3. Security views and concerns for microservices 55

5.3.1. Authentication view . 55
5.3.2. Authorization view . 57
5.3.3. Secure communication view 58
5.3.4. Secure storage view . 59
5.3.5. Secure build & deployment view 60
5.3.6. Monitoring view . 61

5.4. Definition of security . 62

In the previous chapter, we performed a SLR based on the guidelines of Kitchenham et
al. [KC07] to identify different security design concepts. These are the building blocks
that can be used to design software architectures. From the findings of the SLR and the
knowledge of existing related work, which we presented in Chapters 2 and 3, we now
propose a modeling approach in order to be able to describe the security of software
architectures from both, the software engineering and the attacker’s perspectives. We
aim to unite the bases of software architecture modeling with the aspects of security in
software applications.

Specifically, we now present the following models. First, we discuss the metamodel
for software engineering security, which we developed in the context of this thesis. This
metamodel is intended to represent and relate the most important elements between
software architecture modeling and security in software applications. At the core of the
model stands the concept of security views. In this work we have identified, from the
findings of the SLR, six different security views for MSAs, which we specify in Section 5.3
concretely. We reason about the purpose of each view, and which concerns they should
consider. Finally, we propose a new definition of security in the context of software
engineering. This definition is intended to provide a basis for software engineers and
researchers who want to explore and refer to these and potentially more security views
in more detail.

51

5. Defining and modeling a software engineering view of security

5.1. Research method

In the following, we describe our research method for creating the proposed security
model and security views. Essentially, we extract the findings from the SLR (cf. Chap-
ter 4), related work (cf. Chapter 3) and the foundations presented (cf. Chapter 2) to
create the model. Specifically, we draw on the ISO/IEC/IEEE 42010 standard [ISO11b]
as the basis of our security model to define the fundamental concepts around security
views (cf. Section 2.1). We then extend this model to include the aspects that we can
retrieve from existing models for threat modeling. We see threat modeling as a type
of security view that describes the security of an architecture from the attacker’s per-
spective. As a basis for the offensive part of our metamodel, we refer to the models
proposed by Miede et al. [Mie+10] and Uzunov et al. [UF14]. These models concretely
describe and model attack patterns in distributed systems. However, we argue that the
defined concepts in these models also reflect the essential aspects of threat modeling.
Finally, we extend our model to include aspects of the software engineering perspective.
Specifically, there is a lack of concepts and methods to describe and model the defensive
or constructive side of security. Based on the findings, we then develop the six con-
crete security views from the defensive, i.e., software engineering perspective. As a basis
for this, the previously discussed mapping of security design concepts to the security
views is developed (cf. Section 4.2). We create these mappings from the information
and findings of the concrete security design concepts. Together with the supervisor of
this thesis, these six security views are identified, discussed, and selected in an iterative
process. Then, based on the SLR results and from our assertions and experiences, we
develop the security concerns of the individual security views.

5.2. Software engineering security metamodel

In this thesis, a metamodel of software engineering security is developed which is depicted
in Figure 5.1. The metamodel captures the most important concepts and their relations
when modeling security in software architectures. It combines the efforts from existing
models, i.e., the software engineering aspect from the ISO/IEC/IEEE 42010 standard
[ISO11b], which we presented briefly in Chapter 2, and integrates the offensive security
part developed by Miede et al. [Mie+10] and Uzunov et al. [UF14]. However, we do
not claim that the model is complete, as further concepts may be introduced by future
studies. The metamodel is structured hierarchically, with the most abstract concepts
depicted on the top and increasing concreteness towards the bottom of the figure.

At the core of the model is the security QA which is composed of several security goals.
The security goals (cf. Definition 2.11) define the different facets of security in a software
architecture that need to be considered. Together they determine the degree of security
a software application ultimately has. Each security goal is influenced by two forces,
namely threats and security design concepts. Modeling those forces is key to describing
and assessing the overall security of the software application successfully. Security goals
are formulated by security concerns which are questions or specific security requirements

52

5.2. Software engineering security metamodel

Figure 5.1.: The metamodel for software architecture security, capturing the essential
concepts when architecting security in a software application, i.e., security
views that describe one security aspect from a software engineering security
perspective and its relations to other concepts such as security design con-
cepts and security concerns, among others.

that need to be addressed in the software architecture. Related security concerns can be
grouped to be addressed by a specific security view. The security views for microservices
that are established in this thesis are the following: an authentication view (cf. Sec-
tion 5.3.1), an authorization view (cf. Section 5.3.2), a secure communication view (cf.
Section 5.3.3), a secure storage view (cf. Section 5.3.4), a secure build & deployment
view (cf. Section 5.3.5), and a monitoring view (cf. Section 5.3.6). Each security view
thus describes one aspect regarding the security of the software application and what it
encompasses. We claim that the separation of these security views is necessary in order
to analyze the impact that certain security design concepts have on these aspects and the

53

5. Defining and modeling a software engineering view of security

security goals. Furthermore, it follows the fundamental design principle of separation
of concerns. Lastly, separating these views decreases the complexity of the architecture
description as it establishes abstractions to reason about the architecture in a defined
scope [LL13]. Otherwise, the increased complexity would hinder the understandability
and maintainability of the model. Further, it enables us to view certain security con-
cepts from different perspectives and within different scopes. For instance, the concept
of an authenticated user may serve different purposes in an authentication view and an
authorization view, respectively. Security views are governed by corresponding security
viewpoints. A security viewpoint defines which modeling languages and techniques are
used within its related security view, and how those models are created and to be in-
terpreted. The modeling languages and techniques are specified by the security model
kind. Concrete instances of the security model kinds are security models which comprise
the specific security view. Therefore, one security view consists of several security mod-
els. We distinguish between offensive models, i.e., threat models, and defensive models.
While both types of models consider the security of a software application, they differ
in their perspective and their purpose.

Threat models, as discussed in Section 3.2.3, view the security of a system from the
perspective of an attacker, and its goal is to identify which parts of the application
are vulnerable and can be exploited to cause harm or gain some sort of advantage.
Thus, the purpose of threat models is to identify threats. Threats (cf. Definition 2.10)
represent potential violations of security in a software application. Each threat can
be further classified according to its impact following the STRIDE methodology, as
discussed in Section 3.2.3. Each such threat class poses a negative impact on one security
goal. For instance, spoofing threats, i.e., whenever an attacker successfully claims the
identity of another person, impact the security goal authenticity, as the attacker can
successfully bypass the authentication mechanisms of the system. The threat term needs
to be differentiated from other offensive-related terms such as attack, weakness, and
vulnerability. While a threat is only a potential violation of security, this violation
is realized by an attack that exploits an existing vulnerability in one of the system’s
assets. A weakness is a common design or implementation flaw that can appear in a
software system. Concrete instances of those weaknesses are vulnerabilities. As discussed
in Section 3.2.3, weaknesses and vulnerabilities are collected in the CWE and CVE
databases. In total, we can leverage several threat models to identify those threats, e.g.,
data flow diagrams, process flow diagrams, attack trees, attack libraries [Sho14], as well
as threat modeling methodologies like STRIDE [KG99] or PASTA [MU15].

On the other hand, defensive models shall be used to communicate which security
controls and countermeasures are established. Although not standardized like UML
[OMG17], defensive models exist for various purposes, e.g., to model security controls in
network or cloud infrastructures [Chi+01; Vys12]. However, to the best of our knowl-
edge, there exist no established or standardized modeling techniques or languages to
create defensive models which capture the software engineering perspective. From a
software engineering perspective, defensive models shall illustrate concrete principles
and practices, i.e., security design concepts, employed by the software engineer in or-

54

5.3. Security views and concerns for microservices

der to enhance the security goals of the application. Within this thesis, we propose a
first draft of this methodology as we provide exemplary security views and a catalog of
security design concepts. Security design concepts (cf. Definition 2.12) are the design
building blocks that can be integrated into the architecture model. They can be catego-
rized according to several aspects, the most important ones are to which security view
they can be applied, i.e., their use case, and which type of design concept they repre-
sent, i.e., how they can be applied. The types of design concepts that we consider in
this thesis were defined in Section 4.2. Further investigations and studies could explore
which existing modeling languages can be used for defensive modeling, or create new
languages to be used in the corresponding security views.

Each security model also sets an architectural context which defines which parts of the
architecture in terms of assets are considered in this model. An asset (cf. Definition 2.9)
is any resource of a system, either a software unit, data or hardware resources. Soft-
ware units can be further divided into product unit and development units. A product
unit is any software unit that is directly employed in the final software product, e.g,
microservices, communication paths between microservices, databases, containers, and
clusters, among others. Development units are those software units that contribute to
the software architecture, but are used in the development process, e.g., to build and
deploy microservices or to version control the source code. We further distinguish data
into business data and application data. Business data is the set of information primar-
ily used to achieve business goals or to provide customers with business services. For
instance, an online banking application might store business data such as customer in-
formation, banking accounts, as well as transaction data. On the other hand, application
data is the set of data that is required by software units to function properly. Examples
of application data are secrets, application configuration files and the source code itself.
Typical hardware resources in a software application are computing power, bandwidth,
and memory. For threat modeling and defensive modeling, it is crucial to identify the
assets the corresponding models consider to determine which threats might occur and
which security design concepts can be applied.

5.3. Security views and concerns for microservices
In the following section, we cover each of the aforementioned security views. Each view
is described in terms of its functionality, what it encompasses, and what needs to be
considered when modeling this view for MSAs. We provide an exemplary list of security
concerns per view that need to be addressed in such models and explain why models
need to address these sets of concerns.

5.3.1. Authentication view

Authentication is the process of verifying whether the requesting entity is the one it
claims to be, thus determining the identity of the requesting entity [Shi07]. The au-
thentication process, therefore, consists of two steps: (1) an identification step in which

55

5. Defining and modeling a software engineering view of security

the requesting entity presents the verifier with an identifier, and (2) a verification step
in which the verifier checks whether the identity claim is legitimate [SB15]. In MSAs,
the challenge is that authenticated user details need to be shared securely between mi-
croservices over network or communication protocols [NC19b], e.g., HTTP [Fie+99],
AMQP [Vin06], gRPC1. This is, in contrast to other architectural styles such as mono-
liths, more complex and error-prone. Thus, the architect needs to decide, among others,
whether the authentication process becomes centralized or decentralized, using an inter-
nal or external identity provider, and employing single- or multi-factor authentication
[Che+19]. Furthermore, due to its distributed nature, it may be necessary that microser-
vices authenticate each other [MCF21b]. Especially in environments where the attack
surface of the microservices is more ”open”, e.g., in IoT or fog-computing environments,
proper authentication between those services becomes crucial. This distinction needs
to be addressed in an authentication view, and different design concepts are required.
Many publications reviewed in the SLR proposed to use concrete protocols and stan-
dards like OAuth 2.0 [Har12], OpenID Connect [FKS17], SAML [CMJ15], JSON Web
Tokens [JBS15], and mTLS [RD08], among others [NC19b; MCF21b; Cha+22; Mel21].

Authentication concerns

An authentication view needs to address, among others, the following authentication
concerns:

SC-AN1 Which services/clients can be trusted?
SC-AN2 Which communication paths exist that need to be authenticated?
SC-AN3 Which authentication method is used?
SC-AN4 Which assets (secrets) are required to perform the authentication method?
SC-AN5 Does the authentication method need to be secured?
SC-AN6 Who validates the identity claim?
SC-AN7 Who manages the identity information of services/clients?

An authentication view needs to model which entities can trust each other, and which
entities need to authenticate to whom (SC-AN1). The trust relationship between ser-
vices and clients reveals where authentication is needed and where it can be omitted.
In order to determine which entities are required to authenticate each other, the model
must clarify which entities provide and/or consume services, thus identifying the commu-
nication paths between entities that need to be authenticated (SC-AN2). Furthermore,
the view must expose how services and clients authenticate, i.e., which authentication
method is used (SC-AN3). Since some authentication methods require additional as-
sets, e.g., mTLS requires client and server certificates, the view needs to illustrate which
of those assets are required by which entity (SC-AN4). On the other hand, some

1https://grpc.io/

56

https://grpc.io/

5.3. Security views and concerns for microservices

authentication methods, e.g., password-based authentication, require that the commu-
nication is already secured. Such premises must be modeled by the view (SC-AN5).
Ultimately, the view needs to address which entity in the authentication process acts
as authenticator, thus verifying the identity claim (SC-AN6). Especially in more com-
plex authentication scenarios that are introduced with authentication frameworks like
OpenID Connect/OAuth 2.0, this becomes crucial. Although the authenticator usually
stores identity information, the model needs to illustrate the responsible entity, if it
deviates from this (SC-AN7).

5.3.2. Authorization view
Authorization is the process of granting approval to a system entity, i.e., microservice
or client, to access a system resource. [Shi07]. Microservices and clients are assigned
certain permissions, i.e., a service/client can only access the resources or functionality of
another service if it has the appropriate rights to do so. Authorization is often used in
conjunction with authentication: to determine the permissions someone has, that entity
must first be identified. There exist several access control models that can be used to
model the assignment of permissions, the best known being Role-based Access Control
(RBAC) [FK92] and Attribute-based Access Control (ABAC) [Hu+19]. In RBAC, each
service/client is assigned a set of roles and each role is assigned a set of permissions. It is
then determined whether the entity that wants to access a resource has the appropriate
role to do so. In ABAC, attributes, entities, and environments are the central building
blocks for defining access rights. In contrast to RBAC, ABAC allows more fine-grained
access models to be developed, but this also increases the complexity. In the context of
MSAs, authorization forms a central aspect. It may be required to restrict access on cer-
tain APIs a microservice provides. Authorization protocols like OAuth 2.0, SAML, and
XACML [SW13] are primarily used to implement authorization policies [Cha+22; PJ19;
AC22]. Furthermore, each microservice needs restricted access to the infrastructure it
runs on, e.g., in a container.

Authorization concerns

An authorization view needs to consider, among others, the following authorization
concerns:

SC-AZ1 Which authorization model is used?

SC-AZ2 Which roles/attributes need to be considered?

SC-AZ3 How are roles/attributes assigned to services/clients?

SC-AZ4 Which permissions are assigned to each role? / Which access rules exist and
on which attributes do they depend?

SC-AZ5 Who determines the permissions of the entity?

SC-AZ6 Who validates whether the requested action is allowed?

57

5. Defining and modeling a software engineering view of security

An authorization view must first represent which authorization model is used, e.g.,
RBAC or ABAC SC-AZ1. After an authorization model has been selected, correspond-
ing roles or attributes must be determined that are used to decide on access SC-AZ2.
Then the view must show which roles or attributes are assigned to each client or service
SC-AZ3. It must be determined which access rights are assigned to each role or which
rules should exist and on which attributes these are based SC-AZ4. Furthermore, the
view must show by whom the access rights of a microservice are defined and where they
are stored SC-AZ5. Finally, it must be modeled which component validates the ac-
cess rights for a new request and determines whether the request may be executed or is
rejected SC-AZ6.

5.3.3. Secure communication view
In MSAs, secure communication deals with the protection of data transmitted over com-
munication channels between clients and microservices, but also between microservices
themselves, and is an important aspect that needs to be considered [Zdu+22; YB18b].
Communication paths between clients and microservices need to be secured because these
communication paths usually appear over the internet, and thus are more prone to be
targeted by attackers. On the other hand, communication between microservices might
need to be secured as well [AC22], depending on the environment. For instance, more
distributed MSAs like IoT or fog-computing environments left the communication paths
between microservices more open to attacks, but also cloud-native applications need to
consider hardening their communication paths due to possible compromises in the MSA
[Mel21]. Thus, it is required to identify the communication paths in a microservice-based
application and which of those communication paths need to be secured. This includes
all communication paths between microservices and microservice consumers, as well as
those communication paths that are introduced by consuming third-party services. Fur-
thermore, the extent to which the communication paths need to be secured must be
taken into account as well. To do this, it is first necessary to analyze which information
is transported via which communication paths and what level of confidentiality this data
has. In addition, the extent to which the data is processed at the corresponding recipient
must be analyzed. Consequently, it must be decided whether the communication path
must be encrypted, whether it must be protected against modification, and whether
message replay should be prevented.

Secure communication concerns

A secure communication view needs to consider, among others, the following secure
communication concerns:

SC-SC1 Which communication paths exist in the microservice architecture?

SC-SC2 What type of information is transported on these communication paths?

SC-SC3 Which communication paths need to be secured?

58

5.3. Security views and concerns for microservices

SC-SC4 How do communication paths need to be secured?
SC-SC5 Which assets are required to secure the communication path?

A secure communication view must first identify all communication paths that exist
in the MSA (SC-SC1). Then it is required to identify what type of information is
transmitted through those communication paths (SC-SC2). In particular, one needs
to determine the level of confidentiality of the transmitted data. For instance, personal
user information might require more security considerations than other types of data.
The next step is to identify the set of communication paths that are generally required
to be secured (SC-SC3). Not all communication paths might require to use encrypted
protocols to be secured. Then, for each of those communication paths that need to be se-
cured, one needs to determine how the respective communication path should be secured
(SC-SC4). In particular, it must be decided whether the transmitted data must be en-
crypted to protect it from eavesdropping, whether the data must be protected against
modification and whether message replay is a concern. Lastly, further assets might be
required to employ respective security design concepts to establish a secure communi-
cation path, and those assets are required to be identified (SC-SC5). For instance, the
mTLS protocol, i.e., TLS where both the server and the client also mutually authenticate
themselves, is a possible security design concept to secure communication paths between
microservice for confidentiality and integrity but requires that those microservices own
respective certificates.

5.3.4. Secure storage view
Secure storage deals with the custody of data in a MSA. Through architecture patterns
like shared database or database per service [FL14; Ric19] there are different scenarios
in MSAs where data can be stored. In principle, it is important to analyze which
data is stored at which locations. A distinction must be made between business and
application data. Business data is all the data that is processed in the microservice
to execute the business functions. Application data, on the other hand, is information
that a microservice requires in order to fulfill its technical functionalities. This includes
configuration data in the microservice or the cluster, e.g., CPU and memory limits, but
also secrets, keys, and certificates.

Secure storage concerns

A secure storage view needs to consider, among others, the following secure storage
concerns:

SC-SS1 Which storage assets exist?
SC-SS2 Which storage assets need to be secured?
SC-SS3 How do storage assets need to be secured?
SC-SS4 Which assets are required to secure the storage asset?

59

5. Defining and modeling a software engineering view of security

A secure storage view must be able to show which data is stored in which locations
(SC-SS1). Similar to the secure communication view, the secure storage view needs to
determine for each asset whether it needs to be secured (SC-SS2) and to what extent the
storage asset needs protection (SC-SS3). Furthermore, securing the storage asset might
introduce further assets (SC-SS4), e.g., encryption keys that are required to protect a
storage database.

5.3.5. Secure build & deployment view

The development of microservices was accompanied by the trend towards DevOps and
DevSecOps methodologies and the automation of the build and deployment processes
[Bas17]. Enhanced automation enables the build and deployment process to be triggered
with every code change, i.e. commit, and the application is thus updated with every
change. In the build process, the microservice application is integrated, i.e., necessary
dependencies are drawn, the code is compiled if necessary, and then unit and integration
tests are performed. Once the build process has been completed, the deployment of the
application into the development or production environment begins. If the application
is to be packaged in a container image, the image is also published to an image reg-
istry, e.g., Docker Hub2. Then, the published image is used to create a new container
of the application, which is deployed to the target system, such as a Kubernetes3 clus-
ter. Unlike most other views, the secure build & deployment view represents a view in
the development context, rather than seeing the microservice application in the product
context. Nevertheless, this view forms an essential aspect of security in MSAs, since ele-
mentary processes take place in this view which has a significant impact on the security
[KG20]. Besides unit and integration tests, which check the functionality of the applica-
tion, SAST and DAST can detect security implementation bugs [TSM17; Tor+19], such
as XSS or SQL injection threats. SASTs scan the code of the microservice application
for potential errors, while DASTs test the application at runtime. Furthermore, depen-
dency scanning or Software Component Analysis (SCA) can be used to find existing
vulnerabilities in dependencies. It should be noted that in addition to the application
dependencies, there are often dependencies in other software parts, for example in the
containers in which the microservice application is executed [Tor+18]. Furthermore,
the runtime of the microservice application must be configured securely. This includes,
among other things, restricting the ingress and egress, i.e., incoming and outgoing traffic,
of the microservices based on network policies and restricting the permissions of appli-
cations that are executed in the containers [Thr+21]. Lastly, the build pipeline itself is
another potential vulnerability that needs to be secured accordingly. However, securing
the build pipeline is outside the scope of this view and will not be listed in detail in the
following course of the work but should be addressed in future work (cf. Section 8.2).

2https://hub.docker.com/
3https://kubernetes.io/

60

https://hub.docker.com/
https://kubernetes.io/

5.3. Security views and concerns for microservices

Secure build & deployment concerns

A secure build & deployment view needs to consider, among others, the following secure
build & deployment concerns:

SC-SB1 How is the build & deployment process set up, i.e., which phases are executed
during this process?

SC-SB2 Which application and container dependencies exist in each microservice?
SC-SB3 Which vulnerabilities exist in those dependencies and how severe are they?
SC-SB4 Which threats or weaknesses are tested automatically against which microser-

vices?
SC-SB5 On which machines or deployment units are microservices deployed?
SC-SB6 How are microservices configured?
SC-SB7 Which capabilities and actions do microservices have permissions for?

A secure build & deployment view must first establish an overview of the build process
and how microservices are deployed (SC-SB1). This overview must identify all activities
and tasks that are executed during this process, e.g., compile, testing, and deployment
tasks. The view must be able to identify all dependencies that are included in all software
components of the microservice, i.e., any application and container dependencies that
are fetched during the build process (SC-SB2). Based on this SBOM, the view must
list all existing vulnerabilities in those dependencies (SC-SB3). Furthermore, this view
needs to illustrate which security tests are executed, which threats and weaknesses they
cover, and against which microservices they are executed (SC-SB4). Lastly, the view
should establish an overview of the infrastructure (SC-SB5), the configuration of each
microservice in detail (SC-SB6), and which permissions each microservice ultimately
has (SC-SB7). Optimally, the view identifies any configuration smells [Rah+21], e.g.,
microservices that run with root permissions in their container.

5.3.6. Monitoring view
Monitoring is the process of observing actions and resources in a MSA, evaluating them,
and reacting accordingly if necessary [Shi07]. Observable actions can be, among others,
requests from clients or microservices, access and exchange of data, and, on a very fine-
granular level, system calls on a host. Resources whose demand is typically observed
are CPU, memory, and bandwidth. In particular, in a MSA, due to the high degree of
distribution, the difficulty is to adequately collect and, in a centralized or decentralized
manner, evaluate all relevant information. Typical monitoring practices include logging,
exception tracking, health checks APIs, and distributed tracing [Was+21b]. In the
context of security, monitoring is essential to detect and possibly prevent attacks towards
the MSA. For instance, IDS/IPSs can be integrated into the MSA to detect denial of
service attacks [JQL21; Jac+22; Alm+22] on the network layer or observe when an

61

5. Defining and modeling a software engineering view of security

intruder performs irregular actions and lateral movement in the microservice network
[OY17; YO18; Tor+19; Osm+19]. Thus, security design concepts for monitoring can be
placed at different layers of the MSA. On the one hand, IDS/IPS systems can be placed at
the border leading into the MSA [Bay+21], e.g., at API gateways, but also monitoring
solutions that observe the entire internal microservice network and distributed traces
may be applicable [CHC19; JQL21; Jac+22]. Therefore, a distinction must be made
between external and internal monitoring. Furthermore, monitoring can be performed
at each microservice at different layers. For instance, each request can be checked for
harmful content, e.g., code injection attacks, using appropriate input validation [Che+19;
NC19b], but monitoring of microservice resources may also be necessary in order to
detect potential attacks.

Monitoring concerns

A monitoring view needs to consider, among others, the following monitoring concerns:

SC-MT1 Which entities need to be monitored?
SC-MT2 Which actions need to be traced?
SC-MT3 How and by whom are traced actions evaluated?
SC-MT4 How are irregular actions reported?
SC-MT5 Which prevention measures are executed (if any) on an irregular action and

by whom?

A monitoring view must first identify the set of entities, i.e., microservices, clients,
communication paths, among others, that need to be continuously monitored (SC-
MT1). The view must be able to represent which actions and resources exist in the
architecture and which of these are being observed (SC-MT2). It must be able to rep-
resent which components perform the monitoring and which components evaluate the
observed actions and resources (SC-MT3). Furthermore, this view must illustrate what
actions are taken when a conspicuous action or overused resource is detected (SC-MT4
& SC-MT5).

5.4. Definition of security
In the previous chapters, it was shown that security, from a software engineering per-
spective, is usually regarded as a QA. The security QA is composed of several sub-
characteristics or security goals (cf. Definition 2.11). Each of these security goals de-
scribes the ability of a system to protect data, services and availability from unautho-
rized access. As described in Section 5.2, security goals are essentially influenced by
two forces: threats harm security goals, while security design concepts enhance them.
The task of the software engineer is therefore to mitigate potential threats and to in-
crease the security of the software architecture by employing suitable security design

62

5.4. Definition of security

concepts. Achieving these goals ultimately leads to a positive impact on security QA.
To describe this, we claim, it is necessary to apply appropriate modeling techniques.
In Section 3.2, we presented some modeling techniques available to a software engineer,
including quality models, maturity models, and threat models. However, these models
lack the software engineering perspective. From a software engineer’s perspective, an
appropriate view and associated models must communicate which design concepts are
embodied in the architecture. This includes which design patterns and tactics are used,
which design principles the architecture follows, and, on a technical level, which pro-
tocols, frameworks, and other technologies such as IDS/IPS are used. Furthermore, it
is important to assign one or more views to these design concepts. Only then can one
effectively analyze whether the established security design concepts achieve the desired
effect.

We argue that existing definitions of security, such as those found in ISO/IEC 25010
[ISO11a] do not adequately reflect this software engineering perspective. Although
the definition of security architecture provided in the NIST special publication 800-
160 [RMO18] employs security-relevant views that convey information about security-
relevant elements, it does not specify concrete views and elements that need to be tackled
in such an architecture and the impact on the security goals. For this reason, we propose
the following definition of security in the context of software engineering, which anchors
the aforementioned essential building blocks.

Definition 5.1: Security (in Software Engineering)

Security in the context of software engineering is a QA that is improved by achiev-
ing security goals. It defines the ability of a software application to adequately
protect its assets. Each security goal is formulated by a set of security concerns
that embody the interest and requirements stated by the architecture’s stake-
holders. The effects of security design concepts and threats are described and
evaluated by modeling security views.

63

6. Evaluation
Security is a process, not a
product.

Bruce Schneier

Contents
6.1. Evaluation method . 65

6.1.1. Case study . 68
6.2. Evaluation results . 72

6.2.1. General questions . 72
6.2.2. Authentication view case study 73
6.2.3. Modeling security views . 76

In order to validate the contributions of this thesis, we decided to conduct an evaluation.
Specifically, we wanted to find out whether the modeling approach presented in this
thesis helps software engineers and architects to better communicate the security of their
architectures. For this purpose, we evaluated whether the metamodel and the principle
of security views, as well as the collection of security concerns per view, are useful.
To conduct the evaluation, we performed semi-structured interviews with research and
industry experts. In this evaluation, we specifically discussed the notation and modeling
of one security view, namely the authentication view, with the participants using an
exemplary case study. In doing so, we wanted to find out how effective this approach is,
find its weaknesses, and what research directions can be addressed in future work.

In the first part of this chapter, we present the method of our evaluation, as well as the
questionnaire and case study that was prepared before conducting the interviews. Then,
in the second part, we present the results of the evaluation. In doing so, we elaborate
on, interpret, and analyze the responses of the participants.

6.1. Evaluation method
Semi-structured interviews are characterized by a flexible interview style that is never-
theless oriented toward specific questions or topics [RM16]. In contrast to structured
interviews, the interviewer has the opportunity to ask follow-up questions and dig into
details. In contrast to unstructured interviews, an interview structure provides a frame-
work to which the interview partners can orient themselves. This ensures that the focus
of the interview is not lost.

65

6. Evaluation

Table 6.1.: Evaluation questionnaire.
General questions

What is your current role?
Do you have experience in modeling security in a software architecture?
How much experience do you have with microservice architectures?
What comprises security in the context of software architecture in your opinion?

Authentication view case study

What does authentication entail in your opinion?
Do you agree with this set of authentication concerns?
Are there any missing authentication concerns that should be added?
Does this model address the aforementioned authentication concerns appropriately?
Does this model effectively communicate the established security design concepts re-
garding authentication?
Which modeling elements should be added or removed to enhance this model?
Does such a model enhance common understanding and communication about au-
thentication in a software architecture?

Modeling security views

How would you assess the distinction of security modeling into the set of security views
established in this thesis, i.e., authentication, authorization, secure communication,
secure storage, monitoring, secure build & deployment?
Which views of security need to be considered in a software architecture?
Which concerns would need to be addressed in these security views?
Which modeling notations and languages would you suggest for these views?
To what extent would special-purpose modeling notations and languages for the re-
spective views, as presented in the case study, be helpful in answering the concerns
of this view?
Can we study the influence of established security design concepts using security views
and corresponding models?
Do such views and models describe security from a software engineering perspective
appropriately?
Overall, how would you assess the worth of our approach for modeling security in
software architectures and microservice architectures specifically?

66

6.1. Evaluation method

In preparation for the interviews, an introductory slide set was prepared which briefly
presented the motivation and background as well as the notion of security views and se-
curity concerns. In this introductory slide set, the participant was also informed about
the structure and procedure of the interviews, as described in this chapter. Each partic-
ipant received an invitation email including the introductory slide set to subsequently
schedule a time to conduct the interviews.

The interviews were structured as follows. Each interview was conducted online via
Zoom1 and was divided into four sections, namely an introduction, general questions,
the authentication view case study, and modeling security views. An accompanying set
of slides was also created for the interview, which included the key organizational notes,
as well as the questions from Table 6.1 and the case study materials.

First, the participant was informed about the motivation and purpose of this thesis
and the evaluation in the introduction. The participants were allowed to ask questions
about the organization of the evaluation or questions about the content of the thesis,
which were then clarified. Each participant was guaranteed the confidentiality of their
personal information, that this data would not be processed, published, or passed on
to third parties. Subsequently, permission to record the interview for transcription was
asked for and, again, the confidentiality of the audio material was guaranteed that it
would only be used for this purpose and subsequently deleted.

After that, the second part of the interview began. First, we asked some general
questions regarding the specific role the participant is currently performing in their
job as well as previous experience with modeling security in software architectures and
microservices in general. These questions served as a warm-up for the participant to feel
comfortable and slowly introduce the topic of conversation. Furthermore, we wanted
to know whether the participant already has experience in security modeling, which
modeling approach was followed and whether specific modeling languages and tools were
used.

In the third part of the interview, the case study was presented and discussed. First,
the participant was asked about his or her understanding of authentication. In this way,
we wanted to find out whether there is a general understanding of this security aspect and
where the differences lie. Then the participant was introduced to the modeling approach
based on the case study. To do this, we first presented the set of authentication concerns
that were developed in the context of this thesis (cf. SC-AN1 to SC-AN7) and asked
the participant for feedback. Afterward, the models of the case study were presented
to the participant. The general architecture model of the Spring Petclinic project was
shown and explained as presented in the following section. Consequently, the models
of the authentication view were shown, as well as the justification of the individual
modeling elements given and which concerns are concretely addressed by it. Details
of the case study architecture and authentication models are given in Section 6.1.1.
In case of ambiguities, the participant could ask questions subsequently. Finally, the
remaining questions about the authentication view case study were asked and discussed.
In doing so, we wanted to get feedback from the participant, specifically whether this

1https://zoom.us/

67

https://zoom.us/

6. Evaluation

modeling was helpful and assisted in communicating and understanding design concepts
for authentication. The purpose of the case study was to demonstrate the modeling
approach concretely to the participant using an example. In this way, we wanted to
bring the concepts that we had captured in the metamodel closer to the participant in
order to evaluate them in detail in the fourth part of the interview.

In the fourth and final part of the interview, the modeling approach, i.e., modeling
with security views, was evaluated overall. This included the concepts and relationships
established in the metamodel as well as the terminology used for the various security
views. We first had the participant evaluate whether he or she generally considered the
division of security into different perspectives to be useful. Subsequently, the participant
was asked to name further views and corresponding concerns that we may not have
considered in this thesis. Furthermore, we wanted to find out whether we can model
these views more effectively using specific modeling languages and tools and to what
extent we can thereby evaluate the influence of the security design concepts involved.
Finally, we asked the participant if we had achieved our goal of modeling security from
a software engineering perspective through this modeling approach and how he or she
would evaluate the approach. By doing so, we wanted to learn specific directions for
further research and improvements to our model.

6.1.1. Case study

Since the metamodel and the concept of security views are rather abstract artifacts,
we decided to evaluate these results utilizing an exemplary case study. This means
that each participant in the evaluation was presented with this case study in order to
discuss it afterward. The case study includes a fictitious microservice architecture, more
specifically an adapted version of the Spring Petclinic microservices project2, as well as
a set of models intended to represent an authentication view of this architecture. The
models were created solely for the purpose of the evaluation in this thesis.

Spring Petclinic microservices

The Spring Petclinic project is an open-source project that is intended to exemplify
various technologies for microservices development based on the Spring Framework3.
The application is used to manage customer data and information about veterinarians
and to create visits to them. For the evaluation, we used a slightly adapted version of
this architecture as the basis for the case study.

The architecture diagram for the project is shown in Figure 6.1a. The MSA consists
of several microservices that implement either a business function or a utility function.
The business microservices Customers Service, Vets Service, and Visits Service
provide APIs to manage the corresponding data, i.e., create, read, update, and delete
(CRUD operations). Each of these microservices is equipped with its own database for

2https://github.com/spring-petclinic/spring-petclinic-microservices
3https://spring.io/projects/spring-framework

68

https://github.com/spring-petclinic/spring-petclinic-microservices
https://spring.io/projects/spring-framework

6.1. Evaluation method

(a) The initial Spring Petclinic architecture model.

(b) Authentication model for external clients. Clients authenticate themselves towards the API
Gateway using the Keycloak Identity Provider instance as authenticator.

(c) Authentication model for service-to-service communication. Microservices use the mTLS
protocol with client certificates to authenticate each other.

Figure 6.1.: The authentication view case study, including the initial Spring Petclinic
architecture (a), frontend (b) and backend (c) authentication models.

69

6. Evaluation

managing its data. The microservices can be scaled as needed and thus have a dy-
namic location, i.e., their IP addresses are not static. The frontend consists of a Mobile
Client and a Browser Client. In order for these clients to access the corresponding mi-
croservices, requests are routed through an API Gateway. The API Gateway serves as a
separation between the external clients and the internal microservice network. To ensure
that the API Gateway is informed about the dynamic addresses of the microservices, a
Eureka Service Discovery4 microservice is embedded in the architecture. As soon as
a microservice is newly instantiated, it registers with the service discovery microservice.
The API Gateway can then request the address of the requested microservices from the
service discovery. Furthermore, there are two other utility microservices, namely the
Admin Service and the Logging Service. The Admin Service is used to configure
and monitor the individual business microservices. Business microservices send their log
information to the Logging Service, thus acting as a centralized logging system. The
Admin Service can query the Logging Service for corresponding log information from
the business microservices.

Authentication view

In this case study, we created an authentication view for the Spring Petclinic MSA.
This security view is intended to address the authentication concerns we presented in
Section 5.3.1 through appropriate models and specific modeling elements, respectively.
To create these models, we proceeded as follows. First, for a closer look and clarity, we
have chosen two architectural contexts, respectively for the authentication of external
clients, depicted in Figure 6.1b, and the authentication between the microservices in-
ternally, depicted in Figure 6.1c. In the following, we now explain these models, which
authentication concerns they address in the process, and the modeling elements which
illustrate the established security design concepts. Note that Figure 6.1 only depicts the
final authentication models. The authentication models shown during the interviews
were explained and evolved incrementally, cf. Appendix C for a complete overview of
all presented models.

In general, the models must be able to represent the extent to which the entities, i.e.,
clients and microservices, trust each other (cf. SC-AN1). For this purpose, we use
the modeling element of trust boundaries, represented in each case by the red dashed
boundary lines in both models. The concept and notion of trust boundaries are often
used in DFDs [Sho14]. All elements that are together in one of those boundaries trust
each other and do not require authentication. The overlap between trust boundaries and
communication paths also addresses the concern of which communication paths need to
be authenticated (cf. SC-AN2). For the Spring Petclinic architecture, we decided to
establish the security design principle Zero Trust Networking [Mel21], i.e., no other client
or service is trusted overall and thus authentication is required in all cases.

For the authentication of external Clients, a combination of Username/Password
should be used. To ensure a lightweight session for Clients, an Access Token should

4https://github.com/spring-cloud/spring-cloud-netflix

70

https://github.com/spring-cloud/spring-cloud-netflix

6.1. Evaluation method

be used that has to be sent and validated with every request of the Client, thus em-
ploying the architectural security pattern Access Token [Sto+18; JLE18; Was+21b].
Furthermore, we employ the security tactics Password-based Authentication [Zdu+22]
and Token-based Authentication [JLE18; PS19; Zdu+22], respectively (cf. SC-AN3
and SC-AN4).

However, the management of user information and access tokens is outside the re-
sponsibility of the API Gateway. For this reason, an additional microservice is to be
integrated for the creation and verification of the token, namely the Keycloak Identity
Provider (IdP)5, which acts as an authenticator. The Keycloak IdP manages the rel-
evant identity information (cf. SC-AN7) and is responsible for authenticating external
clients (cf. SC-AN6).

The Client first authenticate themselves by sending the Username/Password combi-
nation for identity verification to the Keycloak IdP. If authentication is successful, the
Keycloak IdP generates a new Access Token and sends it to the Client as a response.
The Client uses the Access Token to authenticate itself to the API Gateway. The API
Gateway, together with the Keycloak IdP, verifies the validity of the Access Token.

The communication between Clients and the Keycloak IdP or API Gateway is an
open communication path over the internet. However, the employed security tactics
depend on the security tactic Encrypted Communication [NC19b; Zdu+22]. For this
reason, additional protection of these communication paths in the form of encryption
is necessary (cf. SC-AN5), e.g., by using the security protocol TLS [RD08; YB18b;
AC22]. From the Client’s perspective, the communication between Keycloak IdP and
the API Gateway does not require any additional protection, since this communication
path takes place in the internal network. Thus, the inclusion of the Keycloak IdP in
the architecture implied that the trust boundaries were required to be redrawn so that
now the Keycloak IdP and the API Gateway each trust each other. However, this leads
to a violation of the security design principle of Zero Trust Networking that we follow.
Since the Keycloak IdP is another microservice in the internal microservice network,
this problem is now solved in the second architectural context, the backend.

Although we assume in this case study that the microservices of the architecture
have been deployed in an internal network, we will still establish an authentication
method between microservices. This is done for two reasons. First, attackers might be
able to inject a malicious microservice into the network. Microservice authentication
should prevent unknown microservices from being accepted and used in the network.
Other forms of compromises may apply as well. Second, the Zero Trust Networking
[Mel21] security design principle requires that no other service is trusted without first
authenticating itself. For this reason, we have also established the modeling element of
trust boundaries in the architectural context of the backend (cf. SC-AN1). We now
correct the violation that the API Gateway and the Keycloak IdP co-exist in a common
trust boundary.

We recognize that authentication is required between each communicating pair of
microservices (cf. SC-AN2). For authentication between microservices, we now want

5https://github.com/keycloak/keycloak

71

https://github.com/keycloak/keycloak

6. Evaluation

to employ the security tactic Protocol-based Authentication (cf. SC-AN3). For the
concrete implementation, we use the security protocol mTLS, which stands for mutual
TLS [RD08; YB18b; AC22]. This protocol requires that each microservice has a digital
Certificate (cf. SC-AN4) to identify itself. Furthermore, this authentication method
does not require any further protection in the form of encryption or similar (cf. SC-
AN5), and each microservice manages its identity information independently (cf. SC-
AN7) and authenticates itself through the protocol (cf. SC-AN6).

6.2. Evaluation results

The following section presents the results of the evaluation. We provide a summary
and an interpretation of the given answers by the participants of the interviews. The
interviews were conducted between October 24 and November 14, 2022. The evaluation
transcriptions can be found in Appendix D.

6.2.1. General questions

The first part of the interview focuses on the participants. They were asked about their
current role and how much experience they have in security modeling and MSAs.

What is your current role?

In total, 7 research and industry experts participated in the evaluation from different
companies and research facilities. Participants P1 and P7 are researchers for IT security
and secure software development. Participant P2 is a data scientist with background
knowledge in software development. Participants P3, P4, and P6 are software engineers
and architects each employed by an IT consulting company. Participant P5 is an IT
security consultant with a focus on secure software development and secure coding.

Do you have experience in modeling security in a software architecture?

Due to the different backgrounds, each participant has a different level of experience
regarding security modeling in software architectures. Participant P1 mentioned work-
ing on several projects in which a model-based development approach for security was
followed using standards like IEC 62443 [IEC21] and ISO/IEC 27001 [ISO13] in conjunc-
tion with modeling tools and languages like SysML [OMG19] and Enterprise Architect6.
Participant P5 has experience in threat modeling specifically with STRIDE [KG99] and
PASTA [MU15]. The other participants either have some experience with attack li-
braries like OWASP Top Ten [wwwh] or knowledge gained by university courses and
self-studying.

6https://www.sparxsystems.de/newedition/enterprise-architect-16

72

https://www.sparxsystems.de/newedition/enterprise-architect-16

6.2. Evaluation results

How much experience do you have with microservice architectures?

All participants have at least some experience with MSAs either by hands-on experience
or knowing the concepts and ideas behind this architectural style. MSA experience or
knowledge of distributed architectures similar to MSAs of the participants ranges from
1 to 5 years.

What comprises security in the context of software architecture in your opinion?

This question focuses on the concepts and relations we formed in the security metamodel
(cf. Section 5.2). Without introducing the metamodel to the participants, we wanted
the participants to identify potential gaps and missing concepts in the metamodel, that
should be incorporated in an augmented version. According to the participants, the pri-
mary focus of security comprises the secure management of assets, i.e., securing data at
rest and in transit as well as hardening infrastructure, monitoring and tracing security
events, and considering security in development processes. Participant P5 highlighted
the importance of threat modeling in the secure software development process. Par-
ticipant P1 provided a thorough answer depicting how security must be considered in
each development phase. This ranges from gathering security requirements in the initial
phases, to secure design and implementation best practices, and finally reaching the
deployment, monitoring, and verification phase in which security requirements and their
fulfillment need to be verified. The information gathered during these phases must also
serve as a basis for further iterations in the feedback loop, as certain insights become
clearer later in the development process.

6.2.2. Authentication view case study

In this part of the interview, the authentication view case study was presented and
discussed. In particular, the participants were asked whether the authentication models
answer the presented authentication concerns and whether these models clarify aspects
of authentication in the architecture.

What does authentication entail in your opinion?

This question focuses on whether there is a common understanding of authentication
and what it entails. 6 out of 7 participants explained that authentication deals with
the identification of individual users and other services and that different authentication
methods exist to perform the identification and verification phases. 3 participants recog-
nized that authentication needs to be differentiated from authorization, although both
concepts appear in conjunction in most cases. Participant P5 additionally differentiated
authentication, i.e., presenting the identity claim to some system, from authentification,
i.e., the verification of the claimed identity.

73

6. Evaluation

Do you agree with this set of authentication concerns?

The authentication concerns SC-AN1 to SC-AN7 were presented to the participants
and the reasoning behind these concerns. The participants were asked whether they
agree with these concerns or rather see some concerns as redundant or would refor-
mulate them. 4 participants generally agreed with the set of authentication concerns.
Participant P1 mentioned that due to the trend towards Zero trust architectures nowa-
days, concern SC-AN1 becomes rather redundant, but it makes sense to model trust
explicitly. On the same concern, participant P3 mentioned that the necessity of au-
thentication and trust depends on the value of the assets to be protected which should
be considered additionally in this concern. Participant P7 noted that this concern also
needs to reflect on how to deal with external clients unknown beforehand to prevent
spoofing. Participant P7 also suggested rephrasing SC-AN2 and SC-AN3 to only
include secure communication protocols and authentication methods. Deprecated cryp-
tographic algorithms should be excluded by this concern. Lastly, participant P4 noted
that SC-AN7 might indicate that there always exists a central service that manages
the identity information about all services and clients, thus leading to a potential single
point of failure.

Are there any missing authentication concerns that should be added?

This question focuses on the completeness of authentication concerns identified in this
thesis. Participants P6 and P7 indicated that in addition to SC-AN4 they would add
a concern about the secure storage of these introduced assets, specifically where they
are stored and how they are secured. Participant P2 would add one concern about the
secure introduction of secrets, e.g., API keys and passwords needed by the microservices,
into the system. An additional concern about the concrete procedure after successful
and failed authentication was suggested. Finally, participant P1 missed a concern about
authentication trail logs, i.e., how successful and failed authentication requests are logged
by the system, who can access this information, and how are they protected.

Does this model address the aforementioned authentication concerns appropriately?

Before this question was asked, we presented and explained the Spring Petclinic ar-
chitecture model (cf. Figure 6.1a) and subsequently the authentication models of this
architecture. More specifically, we explained which sets of concerns each authentication
model addresses and provided reasoning on how these concerns were addressed by the
corresponding security design concepts. All authentication models presented to the par-
ticipants are depicted in Appendix C. In general, all participants agreed that the authen-
tication concerns were addressed by these models. However, 2 participants were confused
by the Zero trust violation in the frontend authentication model (cf. Figure 6.1b). After
clarification that this model takes the perspective of the client and does not concern with
backend authentication, participant P2 suggested to rather anticipating these details in
the frontend authentication model. Otherwise, without a supporting explanation, such

74

6.2. Evaluation results

violations rather lead to confusion than clarification. In the same model, participant P7
missed modeling elements regarding the verification of the validity of a session, i.e., how
long can a client use an access token for identification until it expires. Participants P2
and P4 also missed an authentication model that provides an overview of the employed
authentication techniques in the whole architecture. Participant P1 also noted that
understanding these authentication models would probably require security knowledge
to some extent. However, it is useful for reviews performed by security experts. For
completeness, participant P3 would additionally sift through security documents and
catalogs like the OWASP Application Security Verification Standard [OWASP19].

Does this model effectively communicate the established security design concepts
regarding authentication?

Effective security models require that they present which security design concepts are
employed in the software architecture. Thus, we asked the participants whether they
gained a clear picture of the employed security design concepts from these models. For
this question, we received mixed answers. While 6 out of 7 participants agreed that
the security design concepts Zero trust, OAuth 2.0/OpenID Connect, mTLS, password-
based, token-based, and protocol-based authentication are represented in the models,
it was noted that either further security knowledge is required to understand these
techniques or additional models should detail implementation aspects of certain security
design concepts, e.g., protocols like OAuth 2.0 or mTLS. Participant P2 disagreed that
the employed security design concepts were clarified by the authentication models due
to the lack of knowledge about which security design concepts exist in the first place.

Which modeling elements should be added or removed to enhance this model?

With this question, we wanted to discover whether other modeling elements would in-
crease the understanding of how certain security design concepts are tackled. Partici-
pant P2 mentioned that violating the Zero trust design principle in Figure 6.1b should
be avoided, thus anticipating the trust boundaries as in Figure 6.1c instead. Another
solution suggested was to indicate such information in additional notes in the diagrams.
Participants P3 and P7 both indicated that network segments and details about the
employed communication protocols form essential information about the security in the
architecture, and thus should be included. Participant P5 would also not remove the
arrows from the original architecture model. These arrows are little information that
supports the reader in understanding the model, without adding too much complexity
to the model.

Does such a model enhance common understanding and communication about
authentication in a software architecture?

All participants agreed that these models enhance the understanding and communication
in a team about this security aspect. The importance of visual representations and their

75

6. Evaluation

superiority over textual models was noted by several participants. Participant P4 noted
that a premise for understanding these models is foundational knowledge of certain
security concepts. Participant P6 mentioned that another requirement for the effective
use of these models is that the team agrees to a common set of modeling notations and
conventions. Participant P2 highlighted the importance of the models’ property of being
self-explanatory. When additional security experts are required to further describe and
explain these models, they fail in their purpose.

6.2.3. Modeling security views

In the final part of the interview, the participants were asked to provide feedback about
the general modeling approach with security views. They were asked to identify weak-
nesses and further directions for research.

How would you assess the distinction of security modeling into the set of security
views established in this thesis, i.e., authentication, authorization, secure
communication, secure storage, monitoring, secure build & deployment?

This question targets the distinction of the established security views in this thesis.
Concretely, the participants were asked whether this set of security views represents
a complete overview of required security aspects needed for software architecture and
whether some of these views are too dependent to distinguish them. Participants P3,
P4, and P5 said that authentication and authorization share too many concerns and
responsibilities to treat them separately. In particular, authentication does not make
much sense without proper restrictions to certain data and services, and authorization
requires preceding authentication in most cases. Participant P7 further argued that
authentication and secure communication should be merged since in order to perform
certain authentication methods, e.g., password-based authentication, a secure commu-
nication channel needs to be established beforehand. Finally, participant P1 suggested
splitting the secure build & deployment view into more specific views, e.g. with an ad-
ditional security testing view. Otherwise, this view has too many responsibilities since
it covers a large set of concerns.

Which views of security need to be considered in a software architecture?

We asked the participants to provide additional security views that they think should be
considered as well, targeting the completeness of our established set of security views.
Participant P2 suggested including an additional data security view focusing on data
processing and further hardening measures outside of the architecture. Participant P4
would add a developer view focusing on access rights and capabilities of developers and
development environments, as the security views of this thesis solely focus on the software
product. Participant P3 suggested several security views. First, an input validation view
should be considered additionally and separately from the monitoring view. A secret
management view needs to depict how secrets are introduced and managed through their

76

6.2. Evaluation results

whole lifecycle in the application. A backup strategy view should indicate how backups
are created how as well as measures and processes on data losses. Lastly, company
policies and how they are enforced in the software architecture should be illustrated
in a policy view, which was also suggested by participant P7. Participant P7 also
identified an incident-response view, i.e., how certain security incidents like attacks are
responded to. Participant P1 did not mention general views but suggested maintaining
more specific views for certain areas of the application, e.g., different views for frontend,
backend, and database security. The reasoning for this was that each of these areas has
different security needs and corresponding security measures to implement. Additional
abstraction layers should be incorporated in different views.

Which concerns would need to be addressed in these security views?

We asked the participants to suggest concrete security concerns that would need to be
addressed in their provided security views from the preceding question. The data se-
curity view should address how and where data is processed, whether the implemented
measures conform to data protection and privacy laws, who has accessed which informa-
tion, and which data confidentiality levels apply, as noted by participant P2. The secret
management view needs to illustrate how secrets are protected and how applications can
securely access them. The input validation view needs to show how the system alerts on
events and how anomalies are detected. The policy view should indicate which policies
exist and which are relevant to the architecture. Lastly, the developer view needs to
address access rights and capabilities of developers to certain development infrastructure
elements, e.g., a Jenkins7 pipeline.

Which modeling notations and languages would you suggest for these views?

With this question, we want to identify whether certain modeling languages already
exist that can be used for modeling these security views. Apart from UML [OMG17], no
further modeling languages or notations were suggested. The advantage of UML is that
it is a widely known and commonly accepted modeling standard used by many software
developers. Complex languages with completely new syntax would prevent the adoption
of these notations, as noted by participants P1, P4, and P6.

To what extent would special-purpose modeling notations and languages for the
respective views, as presented in the case study, be helpful in answering the
concerns of this view?

Nevertheless, all participants agreed that special-purpose modeling languages and no-
tations would be helpful for these views to better address their concerns. The primary
requirements that these languages need to fulfill are simplicity, unique semantics of mod-
eling elements to avoid ambiguities, and similarity to UML syntax for better recognition

7https://www.jenkins.io/

77

https://www.jenkins.io/

6. Evaluation

and adoption. Development teams also need to cultivate security modeling in their pro-
cesses and use a commonly agreed modeling notation. Participants P1, P2, and P5 also
indicated that instead of having separate modeling languages for each view, a single
notation for all views with sharable modeling elements is preferred as it would lower the
learning curve of understanding and effectively employing such a modeling language.

Can we study the influence of established security design concepts using security
views and corresponding models?

Assessing or even quantifying the influence of security design concepts, e.g., on certain
security goals, seems to be difficult. Participant P1 mentioned that it might be possible
to track and compare different projects which employ different security design concepts
and models by the number of found security bugs and flaws. Participant P2 argued that
the influence of such security design concepts comes down to the extent they address
and fulfill their security requirements. Since such an approach is heavily process-oriented
and needs to be adopted and lived by the team, it is still a difficult endeavor to quantify
security with our methods.

Do such views and models describe security from a software engineering
perspective appropriately?

We aim to create a new perspective on security in contrast to the existing offensive
perspective. All participants agreed that these security views and corresponding models
capture the software engineering aspect of security appropriately. Participant P3 men-
tioned that further models that detail certain information are still necessary though.
Participant P7 further argued that security views like secure build & deployment can
not be modeled with existing threat modeling approaches and tools, but our approach
enables this.

Overall, how would you assess the worth of our approach for modeling security in
software architectures and microservice architectures specifically?

With our final question, we want to explore whether our modeling approach is fruitful
and gather issues that need to be tackled in future research. All participants recognized
and assessed our approach as valuable, but also mentioned premises that need to hold
to be successful. Participants P2 and P4 highlighted the importance of a team adopting
standard and formalized modeling notations and languages. This approach enforces the
team to think more about security problems and explicitly model those and their solu-
tions. Also, treating security concerns as a checklist that the architecture model needs
to address serves as a discussion foundation, as noted by participant P7. Furthermore,
participants P5 and P6 highlighted the advantage of visual representations over textual
models. However, the true value of this approach is revealed when applied to a concrete
project, as indicated by participants P3 and P4.

78

7. Discussion
Yesterday is history, tomorrow is
a mystery, but today is a gift.
That’s why it is called the
present.

Master Oogway

Contents
7.1. Research question findings . 79
7.2. Evaluation discussion . 81
7.3. Threats to validity . 82

7.3.1. Internal validity . 83
7.3.2. External validity . 84

In the following, we discuss the methods and results of our work. First, we elaborate
on the impact of the results on the research questions posed at the beginning, and to
what extent our results provide answers to them. Through the evaluation, we received
valuable feedback about the presented modeling approach. We assess the results of the
evaluation and present the weaknesses and proposed improvements of the security model
and how to address them. Finally, we discuss the threats to the validity of our research
methods to clarify the limitations of our work.

7.1. Research question findings
Security is an essential aspect of software systems and must therefore be carefully taken
into account in the modeling and creation of the software architecture. However, mod-
eling approaches and methods lack that capture the software engineering perspective.
Our central research question addresses this gap.

(RQ0) How can we model the security of software architectures from a software engi-
neering perspective?

To answer this question, we pose two additional, more specific research questions.
First, we aim to clarify what exists in terms of security design concepts to be modeled
in software architectures. We restrict ourselves to the MSA style to limit the possible
solution space. Thus, a description and classification of the security design concepts for
MSAs are necessary. Only through a concrete and systematic, comparable description

79

7. Discussion

of security design concepts we claim that it is possible to assess the security of such an
architecture.

(RQ1) How can we describe and classify security-related design concepts for software
applications in microservice architectures?

To answer (RQ1), we conduct a Systematic Literature Review following the approach
of Kitchenham et al. [KC07] (cf. Chapter 4). Based on our search and selection strategy,
we select 52 publications from the 538 publications initially received, from which we
extract a total of 77 security design concepts. We classify this set of security design
concepts based on their category and created specific catalogs. Furthermore, we create
a mapping that maps the security design concepts to the specific security views to which
they can be applied. With these catalogs and the mapping to security views, we propose
a systematic approach to describe and classify future security design concepts. However,
we do not claim completeness or correctness of the catalogs, their schemes and each
catalog entry. Instead, our proposal consists of a first draft of such catalogs and shows
the effectiveness of our method. The catalog schemes are primarily based on the author’s
interpretations of the reviewed publications and our claims and experiences. An in-depth
evaluation of the catalogs and their schemes is pending and planned for future studies.

The application of these security design concepts further requires a methodology for
modeling security in software architectures. Therefore, our second concrete research
question addresses how the modeling of security is enabled, focusing on the modeling
building blocks that are required to capture the important security aspects in a software
architecture modeling.

(RQ2) Which modeling building blocks can be used to describe and define the security of
software architectures?

To answer (RQ2), we propose a security metamodel on basis of the ISO/IEC/IEEE
42010 standard [ISO11b] (cf. Chapter 5). This metamodel partitions the modeling of
security into different views, where each view models a separate aspect of the security
of an architecture. Furthermore, the metamodel enables us to differentiate between
defensive models depicting security from a software engineering perspective and threat
models depicting the attacker’s perspective. We define the concrete modeling building
blocks around a security view and put them in relation to each other. Furthermore, we
identify and describe a total of six different security views and their security concerns
through literature research and based on our claims and experiences. Lastly, we present
a new definition of security in the context of software engineering to capture the essential
concepts concisely, and to set the boundaries for what security in this context entails.
The security metamodel, the six concrete security views, and the security definition en-
able software engineers and architects to concretely model the cataloged security design
concepts and thus to more precisely examine the effect of their design decisions. Again,
we do not claim completeness or correctness of the metamodel, the set of security views
and their concerns. Our metamodel proposal sets a foundation of terms and definitions
to be refined and evaluated in-depth in further studies.

80

7.2. Evaluation discussion

In the following, we discuss to what extent these results impact our central research
question (RQ0). With the security design concept catalogs, we create a basic building
block for modeling security. The concepts and utility of these catalogs are similar to the
attack libraries we presented in Section 3.2.3. They provide detailed information and a
schema for classifying and comparing different techniques. These catalogs can thus be
used as basic tools for software architects and engineers.

Through the security metamodel, we set the foundation for differentiating security
from both the attacker’s perspective and the software engineering perspective. The
metamodel captures the key impacts that are relevant for influencing security QA. The
distinction between these two perspectives is based on their objectives and the results
they achieve. While threat modeling identifies the threats and their severity and risk of a
software application, defensive modeling and the corresponding security views describe
the software engineering constructs employed in an architecture, i.e., the design patterns,
protocols, components, and design principles. The subdivision into the different security
views enables us to differentiate security from different perspectives and focus on certain
aspects at a time. The established security concerns of this thesis bridge the gap between
the security QA and the techniques that improve it.

Nevertheless, we recognize a gap in this connection. Specifically, there is a lack of mod-
eling languages and notations that we can use to represent the security design concepts
and how they address security concerns. In the case study of our evaluation, we made an
immature attempt at this, primarily to explain the concepts of the security metamodel
to the participants. Although we have shown how to model security from a software
engineering perspective, there is still a lack of tools to implement this methodology in
practice.

7.2. Evaluation discussion
We now discuss the feedback we received in the evaluation interviews. In doing so, we
address and analyze the answers from each of the three parts of the interview.

In the last question of the first part of the interview, we roughly analyzed to what
extent our security metamodel is complete and which concepts are not yet included in it.
Overall, the metamodel covers the most important concepts of security from a software
engineering perspective. As also mentioned by one participant, we see threat modeling
as an essential part of modeling security in software architectures. Nevertheless, we also
see some points of improvement. Specifically, our model does not yet cover the different
development phases, as explained by participant P1. The focus of the security views in
this thesis is on product security, yet development views and the associated processes are
a fundamental part of the architecture. These aspects need to be considered in future
extensions of the model.

In the second part of the interview, the authentication view was presented and dis-
cussed as a case study. We received positive feedback regarding the authentication
concerns and the associated models. The set of authentication concerns was overall ac-
cepted by the participants. Some additional concerns were mentioned as additions to our

81

7. Discussion

list. The models also addressed the established authentication concerns in a meaningful
way. Weaknesses of the models were partial ambiguity and the resulting confusion, es-
pecially regarding trust boundaries in Figure 6.1b. Other models that went deeper into
details about protocols and infrastructure and network landscapes were also missing.
We agree with these criticisms, but for the scope of the evaluation, more detailed mod-
els were not possible due to the limited time available during the interview. However,
communication and understanding of such models and this approach is encouraged and
provides clarity on security measures in an architecture.

In the last part of the interview, we evaluated the subdivision of security views and
the value of this modeling approach. All participants considered the set of security views
to be useful. Dependencies between different security views were identified and it was
suggested that these views should not be separated. We contend that this separation is
nonetheless essential to preserve the separation of concerns. However, we also recognize
that a mechanism is needed in the metamodel to account for these dependencies between
security views and resolve them in a meaningful way. 5 out of 7 participants also provided
further guidance on additional security views that can be explored in more detail in
future work. So far, however, concrete security concerns for these new views are missing.
Therefore, these would also need to be explored in future work as well.

An essential ingredient for the success of this modeling approach is the establishment
of appropriate modeling languages and notations. Through the evaluation, we did not
gain insight into existing modeling languages that we can use to model these security
views. Here we see a gap that needs to be addressed in future work. Requirements
for these modeling languages are simplicity and uniqueness of the resulting models, and
preservation of similarity to UML [OMG17]. New modeling languages must be easy
to learn and understand by developers and architects. Finally, it is desired that a
single modeling language is developed with the capability to model all security views.
Modeling elements and dependencies must be representable consistently across views
and the complexity of the language must be minimized.

Finally, all participants rated the modeling approach with security views as very useful.
It was confirmed that no comparable techniques exist to date to describe security from a
constructive software engineering perspective. The adoption of such an approach would,
according to the participants, lead to a deeper involvement with security in the team
and the project and a better understanding of the security of the architecture. Due to
the broad population of our interview participants, i.e., from research and industry, with
IT security and software development backgrounds, and different levels of experience,
we have thus received confirmation of the value of our work from various disciplines.

7.3. Threats to validity
In the following, we discuss the validity threats of the methods and results of this thesis.
We rely on the notion of internal validity and external validity based on definitions
proposed by Wohlin et al. [Woh+12] and Feldt et al. [FM10]. Internal validity questions
the trustworthiness of the study conducted and whether the observations can establish a

82

7.3. Threats to validity

causal relationship between the treatment and the effect within the context of the study.
External validity ensures that the results of the conducted study are generalizable, i.e.,
whether they can be transferred to other contexts.

7.3.1. Internal validity
In a study that collects existing knowledge from academic literature to observe a phe-
nomenon and transfer it into a model, there is a risk of selection bias, i.e., selecting only
those studies that support the hypothesis [KC07]. To minimize this bias, we adopted
the SLR approach for collecting and selecting research. By doing so, we evaluated and
selected all possible research we received within our search strategy according to our
selection strategy. Nevertheless, our research design and results have some limitations.
Due to time and capacity constraints, the generated search strategy obtains only a lim-
ited set of publications. The search strategy explicitly targets specific categories of
security design concepts. This leads to a fixed set of possible design concepts that we
could consider in the context of this SLR. Other categories may therefore have been
excluded. This limitation further leads to the fact that the security model may not fully
represent reality, e.g., since other security views or concepts and relations could not be
considered in the model. This is a clear limitation of the internal validity of our con-
ducted study. However, the completeness of our catalog and the security model is not
the goal of this work, but to explore and demonstrate whether it is possible to gather
and structure security design knowledge using this methodology.

Another limitation of our qualitative research is that the selection of studies and data
extracted are biased to a certain extent based on the author’s interpretations. A neutral
and objective evaluation of the studies is difficult to achieve. Therefore, we cannot
completely exclude bias based on the researchers’ interpretations. To address this issue,
weekly discussions were held between the author and the supervisor of this thesis. These
discussions aimed to clarify any ambiguities and minimize interpretive bias.

Another problem of our research design is the exclusive selection of peer-reviewed
publications, i.e. academic articles published in proceedings or journals. The solutions
presented in these articles are often experimental and not bulletproof concepts. However,
the industry often relies on established standards or de facto standards as well as best
practices. These are often presented in gray literature, i.e. white papers, blog articles,
videos, etc. Considering gray literature can thus better reflect reality, i.e., which concrete
design concepts are used in real-world software architectures. To address this issue,
we conducted an evaluation of the security model with research and industry experts
in secure software development. An in-depth evaluation of the SLR results, i.e., the
catalogs of security design concepts, with research and industry experts was not possible
due to time constraints. However, we are aware of and plan to conduct an extensive
assessment and evaluation that will further consider the catalogs and model.

Regarding the evaluation, specifically the authentication view case study, we see a lim-
itation that potentially biases the evaluation results. In particular, the authentication
models were each presented and explained to every participant. We discussed the rea-
soning behind each security design concept and how they address certain authentication

83

7. Discussion

concerns. Since these models were explained in addition, we can not provide a definite
statement about the influence on the understanding of authentication by these models
alone due to a potential framing bias, i.e., the decisions and answers of the participants
may be influenced by the way the information is presented. Nevertheless, we argue that
due to the topic’s abstractness and the limited time we had, this method is the preferred
way to present and illustrate the modeling approach and its concepts. Further in-depth
studies need to consider that these sorts of biases are prevented by the chosen evaluation
method.

7.3.2. External validity
External validity ensures that the results of our SLRs and the security model are trans-
ferable, i.e., that they can be reused in other contexts [FM10]. We claim that the
security design concepts we identify reveal that these design concepts are not exclusively
applicable to MSAs. We argue that many of these design concepts, if not all, are also
applicable to other architectural styles. Furthermore, the created schemas do not in-
dicate that MSAs benefit exclusively from certain categories of design concepts. Thus,
we argue that MSAs do not significantly restrict or withhold security design concepts
exclusively that can be applied in such an architecture. The results of our SLR are,
therefore, generalizable. However, further investigations, e.g., by exploring and compar-
ing the security design concepts of other architectural styles, are necessary to validate
these claims.

Likewise, we claim that the security views we capture in the security metamodel can
be found in other architectural styles in the same way and are therefore not exclusive
for MSAs. The identified security concerns of each security view address issues that
we can also see in other architectural styles. The key difference in the MSA style is
that because they are partitioned into many small services, they require a more fine-
grained view of each microservice respectively and especially on the communication
infrastructure. Although this fine-granular perspective is represented in the security
concerns we propose, we argue that these concerns mostly apply to other architectural
styles as well. Thus, we claim that the established security concerns are likewise generally
valid, however, they are to be weighted in individual cases depending upon software
architecture differently in their importance. Again, in-depth investigations tackling these
claims are required.

Our methodology can also be utilized to identify security design concepts for other
architectural styles. Even though our design concepts are applicable to a large set of
architectures, more specific and exclusive design concepts may exist for other architec-
tural styles. In addition, it is possible to conduct research using our methodology for
other QAs, e.g., to determine and study design concepts for performance in software
architectures.

84

8. Conclusion and future work
Life is very simple, but we insist
on making it complicated.

Confucius

Contents
8.1. Summary . 85
8.2. Future work . 86

8.2.1. Security design concept catalogs 86
8.2.2. Security model . 87

Taking a step towards modeling a security view of software architectures, and microser-
vices, in particular, means creating foundational knowledge and understanding as well
as a precise notion of what security in this context encompasses that is recognized and
accepted by researchers and practitioners alike. With this exploratory work, we aim to
establish such a building block that can guide future work. In the following chapter,
we briefly summarize the research method and contributions of this thesis. Through
the knowledge gained during our work, we have discovered many potential avenues for
further development and research. We provide a brief outlook on what directions future
work can tackle to extend the contributions and knowledge established in this thesis.

8.1. Summary
The primary goal of this thesis is to shed light on the security quality attribute of software
architectures. We want to find out which aspects of security have to be considered
when modeling software architectures and especially for microservices by establishing a
scientific basis for more formal modeling, description of security mechanisms and their
assessment. We aim to close the perceived gap of modeling security from a software
engineering perspective.

Focusing on the security design concepts that can be employed in a software ar-
chitecture, we conduct a Systematic Literature Review based on the methodology of
Kitchenham et al. [KC07] (cf. Chapter 4). In doing so, we create a search and selection
strategy to find certain security design concepts from academia. With this strategy,
we selected 52 peer-reviewed publications out of 538 publications initially received from
5 scientific databases. The result of this SLR is a set of 6 different catalogs based on
different schemes depending on the category of security design concept, containing 77
security design concepts in total.

85

8. Conclusion and future work

Based on these findings and previous notations and definitions (cf. Chapters 2 and 3),
we create a security metamodel in Chapter 5 that defines the most important modeling
building blocks regarding a security view and highlights the differences in modeling be-
tween the attacker and software engineering perspectives. To provide concrete direction
for modeling software engineering security views, we further introduced six such security
views, namely an authentication view, an authorization view, a secure communication
view, a secure storage view, a secure build & deployment view, and a monitoring view.
For each of these views, we highlighted what these views need to model and what specific
security concerns, i.e., questions and requirements, they need to address.

We conduct an evaluation to assess the security metamodel and the modeling approach
with security views (cf. Chapter 6). As the evaluation method, we perform semi-
structured interviews with research and industry experts. From a set of questions and
a case study, we demonstrate the presented modeling approach to the participants and
determine to what extent this approach is suitable for modeling security and which
weaknesses need to be addressed in future work. Finally, in Chapter 7, we discuss the
extent to which we answered the research questions of this thesis and the impact of the
results on those questions as well as the limitations of our work.

8.2. Future work
The applied research method and the results of this thesis provide a starting point for
future work toward systematic modeling of security in software architectures. In the
following sections, we propose several research directions that can be tackled in future
studies, regarding the security design catalogs and the security model, respectively.

8.2.1. Security design concept catalogs

Regarding the results of our conducted SLR, i.e., the security design concept catalogs, we
propose the following further research directions. Due to time and capacity constraints,
we were not able to perform an in-depth systematic review of all available research on
this topic. Further refinement of these catalogs can be achieved by performing additional
SLRs similar to our proposed method. In particular, there are two different approaches
to how this can be tackled in further research. First, SLRs that follow a more general
search and selection strategy may work towards completing the set of possible categories
of design concepts. Our search strategy limits us to a defined set of design concepts, thus
leading to a possible incomplete set. Second, more fine-granular SLRs can investigate
specific design concepts, either by category or by security view. For instance, a future
SLR might explore specific security tactics and align its search strategy according to this
goal. Another possibility is to search exclusively for security design concepts applicable
to a certain security view, e.g., specific monitoring design concepts. Our work provides
the basis for these fine-granular approaches by providing a general method that new
studies can refer to.

Another consideration regarding future SLRs is to either include or exclusively search

86

8.2. Future work

in gray literature. Academic articles often propose methods and techniques that are
often not mature and ”battle-tested”, and therefore not established in standards or de
facto standards in the industry. A gray literature analysis of security design concepts
may lead to more mature results. Furthermore, a catalog of industry-wide accepted
techniques and solutions is more prone to be adopted by practitioners.

Besides gray literature, another interesting method conducted by Márquez and As-
tudillo [MA19] was to investigate open-source projects for applied availability tactics in
microservice-based systems. Further analyses like these may reveal interesting but rather
undocumented security design concepts. However, deep knowledge and understanding
of the reviewed projects are prerequisites for this approach.

Another research direction we strongly advise is to perform an extensive evaluation of
the proposed catalogs. We were unable to conduct such an evaluation due to the time and
capacity limitations imposed by the thesis’ regulations. Discussions and brainstorming
sessions with industry and research experts may provide the insights to complete and
refine the catalogs and increase their overall quality.

Finally, an important step toward the adoption of these catalogs by practitioners and
fellow researchers is the transformation into a digital and navigable format. It is neces-
sary and important that a community and culture is formed that addresses and maintains
these catalogs, especially in such a fast-paced area like application security. For this, we
refer to similar existing catalogs like the presented attack libraries in Section 3.2.3.

8.2.2. Security model
Regarding the security model we proposed, we provide the following directions for further
research. Although we conducted an evaluation to assess the value and weaknesses of
our modeling approach, we argue that an in-depth evaluation is required to assess the
completeness and the correctness of the security metamodel more formally. In particular,
we do not claim completeness of our model, and further discussions and research are
necessary to identify and fill potential gaps. Also, more investigations toward other
security views and corresponding concerns can be performed by additional, special-
purpose SLRs. The results of our evaluation depict potential security views that require
deeper exploration, e.g., data security views, developer views and compliance and policy
views. Other development-centric views, e.g., focusing on securing the CI/CD pipeline,
are also conceivable. An in-depth case study where the security model is applied and
assessed on a real-world project may provide beneficial insights that can be incorporated
into the model.

Another fundamental research direction is the exploration of special-purpose modeling
notations, languages, and tools to create models that describe the corresponding security
views accordingly. Our case study presented in Section 6.1.1 offers initial approaches to
how this can be achieved. In particular, an extensive study shall investigate the needs
of the security view under consideration and which modeling elements can effectively
depict these aspects. Respective tools to create such models efficiently and effectively
must also be developed.

Finally, when such modeling languages and tools are established, we can develop and

87

8. Conclusion and future work

perform interesting analysis techniques based on these models. For instance, we can in-
vestigate potential security smells in a software architecture based on certain properties,
e.g., trust boundaries that include too many microservices. Such established analysis
methods provide a first step toward the development of a recommendation system that
reviews and assesses employed security design concepts in software architecture.

88

A. Results of SLR trial searches

This chapter presents the results of our SLR trial searches, which were performed to
generate a search strategy that fits our requirements. In Table A.1, the corresponding
results of each search strategy are presented. In the following, we provide an explanation
and reasoning for the chosen strategies, and how the results are to be interpreted.

Table A.1.: The results of SLR trial searches. Each row depicts the number of publica-
tions retrieved from the selected scientific databases.

Databases

Search string suffix DB1 DB2 DB3 DB4 DB7
∑

none 248 209 48 29 419 953
technique 24 16 10 4 40 94
pattern 27 10 8 5 37 87
"best practice" 0 0 0 0 3 3
tool 40 32 10 6 55 143
technology 87 83 10 8 145 333
"design principle" 1 0 0 1 3 5
activity 12 11 2 2 20 47
process 78 70 9 8 80 245
mechanism 48 39 10 5 72 174
service 163 154 31 12 276 636
design 104 78 20 15 141 358
development 62 49 20 10 99 240
tactic 2 0 0 0 3 5
protocol 31 18 3 4 42 98
all 239 202 48 80 394 963
all w/o service 223 177 45 68 345 858
all w/o service, process 211 167 45 60 334 817
all w/o service, process, technology, design 161 126 38 37 254 616
all w/o service, process, technology, design, tool 148 111 37 31 211 538

Each row from Table A.1 represents one applied trial search on the chosen scien-
tific databases, i.e., Web of Science (DB1), ACM Digital Library (DB2), IEEExplore
(DB3), ScienceDirect (DB4), and Scopus (DB7). For each applied trial search, Ta-
ble A.1 depicts the number of publications retrieved for the specific search strategy from
each scientific database separately, and how many publications were retrieved in total.
The specific search strategy of each trial search was determined as follows. For each
search strategy, we applied the same search filters that were applied in the final search
(cf. Table 4.2). The search string we used for each search strategy was formed by a
conjunction of the base search string (cf. Section 4.1.4) with the search string suffix
from Table A.1. For instance, the applied search string of the technique row was the
following:

(security OR secure) AND (microservice OR microservices OR
"micro-service" OR "micro-services" OR "micro service" OR "micro

services") AND technique

89

A. Results of SLR trial searches

The none row indicates that no additional search string suffix was provided, i.e., only
the base search string was used. As this resulted in too many publications, we refined
our search string by additional design concept categories.

The all row indicates that every design concept category was involved in that partic-
ular search string:

(security OR secure) AND
(microservice OR microservices OR "micro-service" OR "micro-services" OR

"micro service" OR "micro services") AND
(technique OR pattern OR "best practice" OR tool OR technology OR

"design principle" OR activity OR process OR mechanism OR service OR
protocol OR tactic OR development OR design)

This has led to more retrieved publications than the none search strategy provided.
This is because we were required to perform a separate search on the ScienceDirect
(DB4) database, as the search engine only allows up to 8 operators (AND/OR). Therefore,
the results in the DB4 column may contain duplicate publications.

Nonetheless, we continued to reduce the corpus of publications to a manageable
amount. In particular, we tried to generate a search strategy that generates ∼ 500
publications. So we continued as follows. We discussed and chose particular terms of
design concept categories, that either yielded too many results or were not useful for
further consideration. Thus, from the all search strategy, we removed these terms iter-
atively. This is indicated by the all w/o <LIST OF TERMS> rows, i.e., all terms without
the particular terms contained in that list. The chosen final search strategy is indicated
in the last row, i.e., all w/o service, process, technology, design, tool.

90

B. Catalog of security design concepts

B.1. Catalog of security design principles

Name Principle of least privilege

Security view Authorization

Summary Every entity should have the minimum required privileges to complete its tasks.

Intent Prevent unprivileged entities to may have access data or services.

QA enhanced

QA worsened

Related Principle Secure-by-default, Deny access by default, Zero Trust Networking

Publications [NC19a]

Name Deny access by default

Security view Authorization

Summary All access to data and services should be denied by default.

Intent Prevent unprivileged entities to may have access data or services.

QA enhanced

QA worsened

Related Principle Secure-by-default, Zero Trust Networking, Principle of least privilege

Publications [NC19a]

Name Secure-by-communication

Security view

Summary Developers should respond to security incidents and vulnerabilities, and communicate information
about security updates.

Intent

QA enhanced

QA worsened

Related Principle

Publications [NC19a]

Name Secure-by-design

Security view

Summary Consider and integrate security throughout the whole software development life-cycle.

Intent

QA enhanced

QA worsened

Related Principle Single Responsibility Principle, Maximize API Security

Publications [NC19a]

91

B. Catalog of security design concepts

Name Secure-by-default

Security view Secure Build & Deployment

Summary Default configurations for microservices and their composition should be the most secure setting
possible.

Intent

QA enhanced

QA worsened

Related Principle Defense in depth, Deny access by default, Principle of least privilege

Publications [NC19a]

Name Secure-by-deployment

Security view Secure Build & Deployment

Summary Protect the complete deployment process of microservices and their composition.

Intent

QA enhanced

QA worsened

Related Principle

Publications [NC19a]

Name Maximize API Security

Security view Monitoring

Summary Exposed network interfaces must be minimal and must have strong input validation.

Intent Entry points to the microservice system are more likely to be attacked and thus need stricter security
controls.

QA enhanced

QA worsened

Related Principle Asymmetric node strength, Secure-by-design

Publications [OY17]

Name Single Responsibility Principle

Security view

Summary Each microservice should only implement one business functionality.

Intent Reduce LOC per microservice, and thus reduce the number of exploitable bugs.

QA enhanced complexity, maintainability

QA worsened

Related Principle Secure-by-design

Publications [YB18b]

Name Avoid unnecessary node relationships

Security view

Summary Minimize the number of communication edges in a microservice network.

Intent If some microservice can reach another microservice through an intermediate microservice, there
should be no edge between these in order to reduce the attack surface.

QA enhanced

QA worsened complexity, performance

Related Principle

Publications [OY17]

92

B.1. Catalog of security design principles

Name Asymmetric node strength

Security view Monitoring, Secure Communication

Summary Place more secure nodes at critical network segments, e.g. entry points, to protect nodes guarding
the more valuable assets.

Intent Optimize robustness against low-level exploitation.

QA enhanced robustness

QA worsened

Related Principle Maximize API Security, Defense in depth

Publications [OY17]

Name Zero Trust Networking

Security view Authentication, Authorization, Secure Communication

Summary All actions must be verified and all data transfers should be encrypted. There is no implicit trust
between services, and trust must be evaluated continuously.

Intent Always assume that the microservice network is already compromised.

QA enhanced

QA worsened

Related Principle Deny access by default, Principle of least privilege

Publications [Mel21]

Name Fail fast

Security view Monitoring

Summary Microservice systems should tolerate partial failures and limit their propagation.

Intent Limit the effect of Denial of Service attacks and other exploitable failures.

QA enhanced availability, resiliency

QA worsened

Related Principle

Publications [YB18b]

Name Defense in depth

Security view Authentication, Authorization, Monitoring, Secure Communication

Summary Apply distinct, perhaps redundant security controls at multiple layers throughout the microservice
system.

Intent In case of an attack, if one security control fails due to an exploited vulnerability, make use of other
security controls to weaken or prevent the overall attack.

QA enhanced

QA worsened

Related Principle Secure-by-default, Asymmetric node strength

Publications [MCF21b; NC19a]

Name Security Through Diversity

Security view

Summary Add diversity to the microservice system by employing a polyglot architecture, thus making use of
different technologies.

Intent Make (multi-step) attacks less likely to succeed and less effective due to the different exploits required.

QA enhanced

QA worsened

Related Principle

Publications [OY17; YB18b]

93

B. Catalog of security design concepts

B.2. Catalog of security activities

Name Policy conflict resolution

Security view Authorization

Goal Security admins construct access control policies for each microservice, respectively. The composition
of microservices, the lack of analysis methods and tools for policy violations, can lead to inconsistencies
and incompatibilities. Different (automatic) resolution methods exist, e.g., autonomous, random,
traversal sub-base methods, etc.

Stakeholders Operator

SDLC Phase Design

Automaticity Automated

Assets Security policies

Steps

Publications [Liu+20]

Name API Key Distribution

Security view Secure Storage

Goal Each microservice requires API keys and additional information like roles, which it gets from a per-
mission database. The key represents a service or user who is authorized to use it. Each microservice
should be able to fulfill a request without connecting to another service.

Stakeholders

SDLC Phase Operations

Automaticity Automated

Assets API Key, Microservices, Permission database

Steps 1. Initialization phase: the API key is distributed to the instances of a microservice on creation
(registration phase)
2. Production phase: the microservice is available to receive requests and authenticate them using the
API key. The incoming request contains the authentication data (API key) of the user/service from
which the request comes. The service is able to authenticate the request without any management
services (cf. auth service or API gateway)

Publications [Müs+17]

Name Secret Management

Security view Secure Storage

Goal Microservices:
Microservices need secrets or certificates when they are required to authenticate to other microservices
or to third-party applications.
CI/CD pipeline:
Pipeline steps might need to access external services, e.g., to deploy Docker images. These external
services often require credentials to authenticate, and these credentials must be provided in the
corresponding pipeline step securely.

Stakeholders Operator, Software engineer

SDLC Phase Operations

Automaticity Manual

Assets CI/CD pipeline, Certificates, Keys, Secrets

Steps

Publications [NC19b; Thr+21]

94

B.2. Catalog of security activities

Name Static Application Security Testing (SAST)

Security view Secure Build & Deployment

Goal Static security testing that checks the source code and design documents to find errors, code flaws,
and potentially malicious code when the code is not being executed

Stakeholders CI/CD pipeline

SDLC Phase Testing (CI)

Automaticity Automated

Assets Source code

Steps

Publications [NC19a; NL21]

Name Dynamic Application Security Testing (DAST)

Security view Secure Build & Deployment

Goal Dynamic security testing validates the runtime behavior of security mechanisms in an application
when source code is being executed or the application is running

Stakeholders CI/CD pipeline

SDLC Phase Testing (CI)

Automaticity Automated

Assets Microservices

Steps

Publications [NC19a]

Name Security policy decomposition and verification

Security view Authorization

Goal Information flow security is a difficult property to achieve in a decentralized system (MSAs), as global
security policies cannot be decomposed in local security policies without the potential introduction of
ill-formed rules leading to global information leaks. This approach presents an activity to specify and
reason about decomposed security policies (per component/microservices), and verify the composition
of these local policies.

Stakeholders Software architect

SDLC Phase Design

Automaticity Manual

Assets Component architecture, Security policies

Steps 1. Specify security policies
2. Derive component architecture
3. Refine security policies
4. Determine coordination protocols
5. Determine component behavior
6. Verify security policy

Publications [GS19]

Name Dependency scanning

Security view Secure Build & Deployment

Goal Due to the high mass of packages and cumulative dependencies that occur when using package man-
agers, dependencies should be scanned for vulnerabilities in an automated way.

Stakeholders CI/CD pipeline, Operator, Software engineer

SDLC Phase Testing (CI), Deployment (CD)

Automaticity Automated

Assets Container, Source code

Steps Upon code changes, the CI pipeline pulls the repository changes and applies the usual integration
and deployment steps. In addition, a new pipeline step, the Vulnerability Scan, scans dependencies
in container images and application BOMs. If the vulnerability scanner identifies any active vulner-
abilities, a report is created in a human-readable format and sent to the operator or developers.

Publications [Thr+21; NL21]

95

B. Catalog of security design concepts

Name Continuous Security Assessments

Security view Secure Build & Deployment

Goal Continuous security assessments deal with detecting vulnerabilities in production-running microser-
vices and enforcing security policies. This tactic is employed by using the Security Gateway and
Security Health Endpoints patterns, which deal with the problem of discoverability in microservices
and serve as Security Enforcement Points (SEPs).

Stakeholders CI/CD pipeline,Operator

SDLC Phase Testing (CI), Deployment (CD)

Automaticity Automated

Assets Container, Security Gateway, Security Health Endpoints, Security policies

Steps 1. On code changes, the CI server pulls the code repository and container images from a private
image registry.
2. After building the application, it is deployed to a staging environment, where the CAVAS engine
applies pre-deployment security tests.
3. On success, the image is pushed to the production image registry and the application is re-deployed
in the production environment.
4. Further security tests and security policy checks are performed.
5. Vulnerabilities found in the application image are reported to the administrator.

Publications [Tor+19; TSM17; Tor+18]

Name RBAC assessments

Security view Authorization

Goal Identify access control violations or inconsistencies in a microservice-based application. In such a
system, such inconsistencies can be introduced more easily due to its decentralized nature. Often,
RBAC policies are defined per microservice, and not as a whole.
Possible inconsistencies or policy violations are:
1. Missing role
2. Unknown access
3. Entity access violation
4. Conflicting hierarchy
5. Unrelated access violation

Stakeholders CI/CD pipeline, Software engineer

SDLC Phase Implementation, Testing (CI)

Automaticity Automated

Assets RBAC model, Source code

Steps 1. Generate a complete view of microservice communication paths by scraping security metadata
(REST calls, REST endpoints)
2. An analysis module takes descriptions of the method-call graphs and a role-hierarchy model and
searches for possible policy inconsistencies and violations.

Publications [Das+21]

96

B.2. Catalog of security activities

Name Container Security Audits

Security view Secure Build & Deployment

Goal Containers and virtual machines should only use verified operating system platforms or container-
specific operating systems. The outbound network traffic sent by the container should be monitored
and controlled. The configuration of containers and virtual machines should comply with the config-
uration standards.

Stakeholders Operator, Software architect, Software engineer

SDLC Phase Implementation, Testing (CI)

Automaticity Manual

Assets Container

Steps Phase 1: Docker Base Image Inspection
1.1 Check whether the image is official
1.2 Check trust of the base image
1.3 Check the content of the image
1.4 Uninstall unnecessary packages
1.5 DIsable build cache
Phase 2: Dockerfile Configuration
2.1 Base image version
2.2 Run apt-get install and apt-get update as one command
2.3 Use COPY instead of ADD
2.4 Healthcheck
2.5 Secrets not stored in Dockerfile
Phase 3: Image Authentication
3.1 Image signing with DCT
3.2 Registry authentication
Phase 4: Image Authorization
4.1 Create a user per container
4.2 Permissions for user

Publications [SZS21; NC19b]

97

B. Catalog of security design concepts

B.3. Catalog of security tactics

Name Unencrypted Communication

Security view Secure Communication

Security context prevent

Stimulus A communication path between a microservice and a client / another microservice is established.

Threat (Security
Stimulus)

An attacker is able to eavesdrop or manipulate messages on this communication path.

Environment Network communication

Response Unencrypted protocols such as HTTP are used for communication between microservices and clients.

Depends on

Implies usage

QA enhanced complexity

QA worsened confidentiality, integrity

Patterns

Publications [Zdu+22]

Name Microservice Sandboxing

Security view Monitoring

Security context react to

Stimulus An IDS detects an intrusion and notifies the SDN infrastructure controller.

Threat (Security
Stimulus)

A suspicious microservice instance / container is identified.

Environment Monitoring

Response When an intrusion or suspicious container is detected, a clone from a clean state is created, and all
benign connections are redirected to that clone. The suspicious container is moved to a sandbox
network.

Depends on

Implies usage

QA enhanced

QA worsened

Patterns

Publications [Osm+19]

98

B.3. Catalog of security tactics

Name Decentralized Certification Authorities

Security view Secure Build & Deployment

Security context prevent

Stimulus Deploy new versions of a microservice executable.

Threat (Security
Stimulus)

An attacker might exploit the fact that microservice executables are not integrity protected. Thus,
if he is able to intervene in the deployment process, malicious versions of a microservice executable
may be deployed.

Environment Deployment

Response This approach uses x.509v3 certificates to protect the integrity and authenticity of service executables
running in IoT devices. In total, three layers of certificates are used: developers sign their executables
and metadata and create a certificate. This is then copied by the store (which distributes the service
executables), and also signed. The last layer is performed by the Site-local Certification Authority,
which again, copies and signs the certificate from the store (after verifying it). It then distributes the
verified service to the corresponding IoT nodes.

Depends on

Implies usage

QA enhanced authenticity, integrity

QA worsened

Patterns

Publications [PD19; PD18]

Name Distributed tracing

Security view Monitoring

Security context detect

Stimulus Microservice communication patterns have been established in a network, i.e., a set of communicating
microservices and what they communicate is known.

Threat (Security
Stimulus)

Unusual communication paths, e.g., when an attacker or intruder performs requests in a microservice
network, should be detected.

Environment Microservice communication

Response A request in a MSA typically involves multiple microservices. This sequence of operations shall be
recorded as the distributed trace. A traceId and spanId identify the corresponding incoming request
and all microservices that were conducted during this request.

Depends on

Implies usage

QA enhanced

QA worsened

Patterns

Publications [Jac+22; JQL21]

Name No authentication / Authentication not required

Security view Authentication

Security context

Stimulus A service or client performs a request to an unrestricted microservice. The microservice does not need
to authenticate the requestor.

Threat (Security
Stimulus)

Environment Authentication

Response

Depends on

Implies usage

QA enhanced

QA worsened

Patterns

Publications [Zdu+22]

99

B. Catalog of security design concepts

Name Plaintext-based authentication

Security view Authentication

Security context prevent

Stimulus A service or client performs a request to a restricted microservice. In order to process the request,
the microservice needs to determine the identity and permissions of the requestor.

Threat (Security
Stimulus)

A (malicious) client wants to have access to a service/data, which it is not allowed to have.

Environment Authentication

Response The client authenticates itself to the microservice with its credentials, usually a pair of username and
password. The microservice is responsible to validate the credentials.

Depends on Encrypted Communication

Implies usage

QA enhanced

QA worsened

Patterns

Publications [Zdu+22]

Name API Keys

Security view Authentication

Security context prevent

Stimulus A service or client performs a request to a restricted microservice. In order to process the request,
the microservice needs to determine the identity and permissions of the requestor.

Threat (Security
Stimulus)

A (malicious) client wants to have access to a service/data, which it is not allowed to have.

Environment Authentication

Response The client is equipped with a unique token that it presents to the requested microservice. Based on
this token, the microservice determines the identity of the client.

Depends on Encrypted Communication

Implies usage

QA enhanced

QA worsened

Patterns

Publications [Zdu+22]

Name Protocol-based authentication

Security view Authentication

Security context prevent

Stimulus A service or client performs a request to a restricted microservice. In order to process the request,
the microservice needs to determine the identity and permissions of the requestor.

Threat (Security
Stimulus)

A (malicious) client wants to have access to a service/data, which it is not allowed to have.

Environment Authentication

Response The client and microservice determine the identity (either of the client or both) by performing a
communication protocol. The protocol may also be used to establish an encrypted communication
tunnel between these parties.

Depends on

Implies usage Encrypted Communication

QA enhanced

QA worsened

Patterns

Publications [Zdu+22]

100

B.3. Catalog of security tactics

Name Self-preservation

Security view Monitoring

Security context react to

Stimulus An unexpected number of registered service clients fail in their connections and are pending eviction
at the same time.

Threat (Security
Stimulus)

Multiple services are affected by a (distributed) denial of service attacks.

Environment Catastrophic network events

Response Execute an explicit unregister action when service clients are permanently going away. Any service
client that fails 3 consecutive heartbeat renewals is considered to have an unclean termination.

Depends on

Implies usage

QA enhanced

QA worsened

Patterns Service Registry

Publications [MA19]

Name Rate limiting

Security view Monitoring

Security context prevent

Stimulus A service receives an abnormal amount of requests.

Threat (Security
Stimulus)

Multiple services are affected by a (distributed) denial of service attacks.

Environment Network communication

Response Apply a rate-limiting policy, i.e., each client is only permitted to perform a limited number of requests.
This limit can be based on the subscription model of the application.

Depends on

Implies usage

QA enhanced

QA worsened

Patterns

Publications [Che+19]

Name Input Validation

Security view Monitoring

Security context prevent

Stimulus A service receives a message from another service or client.

Threat (Security
Stimulus)

An attacker introduces malicious messages, e.g., messages containing code injection (XSS, …) content.

Environment Monitoring

Response Validate all messages received, in particular messages received from clients. Apply filters to validate
the message in multiple steps.

Depends on

Implies usage

QA enhanced

QA worsened

Patterns

Publications [Che+19; NC19b]

101

B. Catalog of security design concepts

Name Limited Egress

Security view Secure Build & Deployment

Security context prevent

Stimulus A microservice opens a connection to another service outside the microservice cluster (egress).

Threat (Security
Stimulus)

An attacker intends to open a connection to a server or self-hosted infrastructure, e.g., a reverse shell
to gain access to the microservice system.

Environment Network communication

Response Minimize the number of connections each microservice can create outside the microservice system.

Depends on

Implies usage

QA enhanced

QA worsened

Patterns

Publications [Mel21]

Name Encrypted Communication

Security view Secure Communication

Security context prevent

Stimulus A communication path between a microservice and a client / another microservice is established.

Threat (Security
Stimulus)

An attacker is able to eavesdrop or manipulate messages on this communication path.

Environment Network communication

Response Ensure that the communication path is encrypted and integrity protected. Either protect the messages
exchanged by encrypting them on the application layer, or use secure communication protocols like
SSL/TLS.

Depends on

Implies usage

QA enhanced

QA worsened

Patterns

Publications [Zdu+22; NC19b]

Name Set timeouts

Security view Monitoring

Security context react to

Stimulus Timing-out calls that crash services.

Threat (Security
Stimulus)

An attacker actively stalls service calls so they become unavailable to other clients or services, e.g.,
by a slow-loris attack.

Environment Microservice communication

Response Set timing-out calls that take longer than thresholds. If a call reaches the threshold, the service call
will be canceled.

Depends on

Implies usage

QA enhanced

QA worsened

Patterns Circuit Breaker

Publications [MA19]

102

B.3. Catalog of security tactics

Name Preventing single dependency

Security view Secure Communication

Security context prevent

Stimulus Latency in transmitting or processing data in a network.

Threat (Security
Stimulus)

An attacker actively stalls service calls so they become unavailable to other clients or services, e.g.,
by a slow-loris attack.

Environment Network communication

Response Prevent single dependencies by wrapping all calls to external systems (or dependencies) in an object
which typically executes within a separate thread.

Depends on

Implies usage

QA enhanced

QA worsened

Patterns Circuit Breaker

Publications [MA19]

Name Providing fallbacks

Security view Secure Communication

Security context react to

Stimulus A client service repeatedly suffers from dependency faults.

Threat (Security
Stimulus)

An attacker actively stalls service calls so they become unavailable to other clients or services, e.g.,
by a slow-loris attack.

Environment Microservice communication

Response Maintain a small thread pool for each dependency. If it becomes full, requests destined for that
dependency will be immediately rejected instead of queued up.

Depends on

Implies usage

QA enhanced

QA worsened

Patterns Circuit Breaker

Publications [MA19]

Name Observing system services

Security view Monitoring

Security context detect

Stimulus An incoming request is handled by a single or set of microservices.

Threat (Security
Stimulus)

The request contains malicious content or is an attempt of an attacker to intrude on the microservice
system.

Environment Monitoring

Response Observe the behavior of a single or a collection of microservices. In particular, observe which actions
are performed per microservice, messages exchanged, as well as the communication paths within the
microservice system.

Depends on

Implies usage

QA enhanced

QA worsened

Patterns

Publications [Zdu+22]

103

B. Catalog of security design concepts

Name Token-based authentication

Security view Authentication

Security context prevent

Stimulus A service or client performs a request to a restricted microservice. In order to process the request,
the microservice needs to determine the identity and permissions of the requestor.

Threat (Security
Stimulus)

A (malicious) client wants to have access to a service/data, which it is not allowed to have.

Environment Authentication

Response Cryptographic identity tokens are used to authenticate the requestor. The access token contains all
relevant authentication and authorization information, as well as a cryptographic signature to verify
its integrity.

Depends on Encrypted Communication

Implies usage

QA enhanced

QA worsened

Patterns Access token

Publications [Zdu+22; PS19; JLE18]

Name Automated, immutable deployment

Security view Secure Build & Deployment

Security context prevent

Stimulus New changes of a service need to be deployed in the microservice system.

Threat (Security
Stimulus)

An attacker introduces malicious changes to the deployed service, e.g., a backdoor, by a supply chain
attack.

Environment Deployment

Response Make deployments automated and immutable, i.e., instead of applying the changes to the existing
service, replace it with a new version of the service. Automate this process in the CI/CD pipeline.

Depends on

Implies usage

QA enhanced

QA worsened

Patterns Container Manager,Container

Publications [YB18b]

Name Use asynchronous messaging

Security view Secure Communication

Security context prevent

Stimulus A service fails to respond to a client or service request.

Threat (Security
Stimulus)

The requested service is unavailable, e.g., due to a denial of service attack.

Environment Microservice communication

Response Apply asynchronous messaging protocols. The client or message sender does not have to wait for a
response.

Depends on

Implies usage

QA enhanced availability,resiliency

QA worsened

Patterns Asynchronous Messaging

Publications [MA19]

104

B.4. Catalog of architectural security patterns

B.4. Catalog of architectural security patterns

Name Transporter

Security view Secure Communication, Authentication

Also known as

Context A new instance of a microservice wants to communicate with another microservice in the network.

Problem How to register the newly created instance of the microservice? How to authenticate the microservice,
and how to prevent any malicious services to be officially registered in the microservice network?

Solution Introduce a mediator component, the Transporter, which receives and forwards all communication
between microservices in the network. Whenever a new instance of a microservice is created, it first
needs to authenticate itself to the Transporter component using some authentication method, e.g.,
a username and password or an API key. The Transporter verifies the credentials of the requesting
microservice. On successful authentication, the Transporter registers the microservice instance in a
Registry database. Furthermore, it provides the microservice instance with an Access token, which is
used for further communication. See the Guard Microservice pattern.
In contrast to the Service Registry, the Transporter pattern receives and forwards all communication
traffic between microservices, and thus serves as a centralized mediator between microservices. This
ensures that every new instance of a microservice needs to register itself to the Transporter before
any communication with other microservices can begin.

Structure

Related patterns Service Registry, Access token, Service Mesh, Guard Microservice

Publications [Pon+21]

105

B. Catalog of security design concepts

Name Guard Microservice

Security view Authorization

Also known as

Context A registered microservice wants to access actions (REST API) of another registered microservice. A
set of policies or rules exist that define which microservice is allowed to access which actions of other
microservices.

Problem How to evaluate the permissions that a microservice has? Which actions are a requesting microservice
allowed to perform on another microservice?

Solution Introduce a Guard microservice which checks authorization permissions of requesting microservices.
This pattern is used in conjunction with the Transporter pattern. Whenever a microservice (A)
performs a request to another microservice (B), it first needs to register itself to the Transporter.
After successful registration, it receives an Access token which is used during the next request. The
Access Token contains information about the identity and role of the requesting microservice. The
following request is made towards the Transporter component. The Transporter observes that the
microservice (A) is already registered, and forwards the request with the Access Token to the Guard
microservice. The Guard microservice evaluates the Access Token, and checks based on the identity,
the role, and the policy definition which actions microservice (A) is allowed to perform on microservice
(B). On successful authorization, the Guard microservice responds to the Transporter service which
finalizes the request by forwarding the following communication between microservice (A) and (B).

Structure

Related patterns Transporter

Publications [Pon+21]

Name Rate Limit

Security view Monitoring

Also known as Quota, Usage Limitation

Context The API endpoint and contract defining the operations are established. Clients of the API might
have signed up with the provider to use the API if required.

Problem The microservice system needs to prevent excessive usage of its API. In particular, it needs to maintain
high performance for all clients and minimize the impact of excessive use, for instance in the event of
a Denial of Service attack.

Solution Enforce a Rate Limit to protect the microservices against API clients (or attackers) that overuse the
API. This limit can be formulated as the maximum number of requests that are allowed per user in
a given period. If a client exceeds this limit, further requests may be declined, processed later or
allocated with fewer resources. The scope of this limitation can be set to a single microservice or a
group of related microservices.

Structure

Related patterns Access token

Publications [Sto+18]

106

B.4. Catalog of architectural security patterns

Name Load balancer

Security view Monitoring

Also known as

Context A single microservice application receives an increasing number of requests and is unable to handle
this load efficiently.

Problem Due to limited resources a single microservice may have, too many requests to that particular instance
may lead to failures, performance loss or runtime and system errors. The microservice application
may not be able to handle current or future requests and breaks the availability of the service.

Solution Add redundant instances of the same microservice application, and let a separate component, the Load
Balancer, handle incoming requests by forwarding it to an available microservice instance according
to some scheduling strategy. This component may also add or remove instances of the microservice
application, depending on the incoming load of requests. Duplicate microservice instances may also
be deployed on different hosts (virtual or physical) to evenly distribute client requests.

Structure

Related patterns

Publications [Müs+17]

Name Security Health Endpoints

Security view Monitoring

Also known as

Context Several microservices are deployed in a distributed system. The architect or developer needs to know
the security state for each microservice, accessible in a convenient way. The security state includes
information about recent security testing and vulnerability and container scan results. These results
should be accessible by a separate endpoint to be automatically consumed by other services.

Problem How to provide machine- and human-readable security state information to administrating stakehold-
ers as well as automatically consuming security services?

Solution For each microservice, add a specific Security Health Endpoint which provides information about the
security state in a machine- and human-readable format, e.g., JSON. This information includes the
most recent security assessment result, such as the most severe vulnerabilities found, vulnerability
metrics (e.g., CVE or CWE), and solutions to mitigate these vulnerabilities. Other deployed security
services, e.g., a Firewall-as-a-Service (FWaaS) can directly consume the Security Health Endpoint to
automatically derive new rules. The integration with a Security Information and Event Management
platform (SIEM) can also be leveraged.

Structure

Related patterns Security Gateway

Publications [TSM17; Tor+18]

107

B. Catalog of security design concepts

Name Sidecar

Security view Authentication, Monitoring, Authorization, Secure Communication

Also known as

Context Microservices need to implement functionalities that are not concerned with the business concerns of
the application, such as logging or authentication.

Problem Adding these cross-cutting concerns to the application microservice adds complexity, and couples
functionalities within the same component. Although this allows efficient resource sharing, an outage
of one such cross-cutting functionality might lead to an outage of the whole microservice.

Solution Introduce a new component, running alongside the application microservice on the same con-
tainer/host. The Sidecar processes cross-cutting concerns such as logging, authentication, routing
or other tasks without interfering with the application microservice. This component is connected,
but not part of the application microservice. Whenever it moves to a different host or pod, the Sidecar
component moves along. Since the Sidecar runs in its own process, it can be developed in a different
programming language that is suited for its purpose. Stacking or leveraging multiple Sidecars with
one application microservice is possible.

Structure

Related patterns Ambassador,Container

Publications [MR22; SKI19]

108

B.4. Catalog of architectural security patterns

Name Container Manager

Security view Monitoring

Also known as Container cluster orchestrator, Container cluster manager

Context Microservice architectures produce highly distributed systems. The Container pattern is often used in
conjunction with this architectural style. A large number of containers distributed across many host
platforms (either in a cloud-native or IoT environment) needs to be properly orchestrated, monitored,
and managed.

Problem Managing a large number of distributed containers manually or in an ad hoc way is difficult and may
lead to significant system insecurities.
Security: Isolation between containers running on the same host is required to prohibit the propa-
gation of any malicious container. Access to data on the host needs to be restricted. Vulnerabilities
management needs to be performed efficiently for the distributed container landscape. Monitoring
containers for any unusual or malicious behavior needs to be done to detect attacks and/or intruders.
Additional forces are described in The container manager pattern.

Solution A centralized component, the Container Manager, coordinates and manages the container landscape
of the application. It provides an efficient way to orchestrate the execution of and communication
between containerized microservices.
Container Manager: orchestrates and manages the execution of Containers across multiple Hosts that
form a Cluster.
Coherent Units (CUs): a set of closely-related containers, usually due to mutual dependencies or
interactions. Grouped by the Container Manager.
Scheduler: assigns CUs to Hosts to meet resource requirements.
Overlay Network: allows CUs to communicate with each other across hosts.
Discovery Service: allows processes and services to locate each other.
State Storage: stores cluster information and provides data for scheduling and orchestration.
Resource Monitor: collects and provides health and resource information per Host.

Structure

Related patterns Container

Publications [SF17]

109

B. Catalog of security design concepts

Name Security Manager

Security view Authentication, Authorization

Also known as

Context A user sends a request to the microservice system, in particular, to the API Gateway. The API
Gateway needs to decide whether the request is valid and can be forwarded to the corresponding
microservices.

Problem The user request needs to be authenticated, and the users requested actions need to be authorized.

Solution A separate component, the Security Manager, receives the incoming request from the API Gateway,
determines the identity of the user, and creates a user session with contains the user context. A JWT
is then returned to the API Gateway, which forwards it to the corresponding microservices involved
in the following request. Each microservice then decides on its own based on the JWT whether the
user with its particular role is allowed to access the service.
The Security Manager consists of three components:
Authenticator: gets the user identity and access token and forwards it to the Authorization server
(OAuth)
Authorizer: receives the reply (the JWT token) which contains the user information, its roles, allowed
operations and objects (microservices)
Session Manager: creates a user session based on the executing permissions and the underlying access
control model, e.g., RBAC.

Structure

Related patterns API Gateway,Security Gateway,Access token

Publications [PL21]

110

B.4. Catalog of architectural security patterns

Name Security Gateway

Security view Monitoring

Also known as

Context Within the microservice system, a Service Registry component handles the registration and de-
registration of several microservices. This component provides information about the location (IP
address and port) of the microservice as well as a description of the API the microservice offers. Before
the registration of a new microservice instance, a collection of security tests, e.g., Dynamic Security
Application Tests (DASTs), should be performed on the newly registered microservice instance.

Problem How to effectively perform security tests before the startup and enrollment of a new microservice
instance before its registration? A set of security policies should be enforced that satisfy the require-
ments that, for instance, a registering microservice might not be deployed if certain vulnerabilities
are detected. How to deal with the discoverability problem, i.e., the capability to constantly detect
the location of new microservices.

Solution Before registering a new instance of a microservice, perform a set of security tests against it via a
Security Gateway. In contrast to the API Gateway which is concerned with API composition and
efficient routing of incoming and outgoing requests, the Security Gateway is a Security Enforcement
Point (SEP), i.e., it is concerned with the enforcement of the employed security policies, e.g., that
no microservice which contain a specific vulnerability or reach a vulnerability score is allowed to
run in a productive environment. The Security Gateway is invoked by a Service Registry before
the registration of the microservice instance begins. If the security tests fail, a test report is made
accessible to the development team or other service, for instance by leveraging the Security Health
Endpoints pattern for consumable security test results.

Structure

Related patterns Security Manager, Security Health Endpoints, Service Registry

Publications [Yan+22; TSM17]

111

B. Catalog of security design concepts

Name API Gateway

Security view Authentication, Authorization

Also known as

Context A microservice system exposes many different API endpoints. Clients need to access data from
multiple services, which can also be dynamically located. Depending on the client’s use case, some
services may or may not be required. There is a need to request and access multiple microservices
(in a specific sequence perhaps) from different clients.

Problem How do clients get access to multiple, individual microservice applications? Microservice APIs are
often very fine-grained. These details need to be abstracted from the client which is only interested
in a subset of APIs that are needed for its specific use case. Microservices might also be implemented
using different communication protocols, some of which are not web-friendly.
Regarding security, clients need to be authenticated and authorized before they can perform any
actions. Implementing these functionalities adds unnecessary complexity to each microservice, and
increases the risk of implementation errors.

Solution Add an intermediate component between the microservice system and the client, the API Gateway,
which is the single entry point to the microservice system. Instead of communicating with each
microservice directly, clients perform their requests to the API Gateway which in turn evaluates the
request and invokes the corresponding microservices in order. The API Gateway is able to translate
the request to different communication protocols and has knowledge about the location and fine-
grained API of each microservice.
The API Gateway also authenticates each incoming request, for instance in conjunction with an
Authorization Server to identify the user. For this purpose, protocols like OAuth 2.0 and OpenID
Connect might be used. Identifying the user can be done by leveraging the Access token pattern.
Furthermore, the API Gateway may implement other request-validating functionalities, like input
validation, intrusion detection and prevention tasks as well as logging and monitoring the incoming
requests.

Structure

Related patterns Security Manager,Access token

Publications [MR22; Lu+17; Müs+17; Neh+19; Pon+21; AC22]

Name Access token

Security view Authentication, Authorization

Also known as API Key

Context A microservice system provides several APIs that subscribed clients may access. These clients need
to be identified in order to check the privileges of the client and which services they may have access
to.

Problem How can a microservice system identify and authenticate different clients making requests?
The authentication of the client needs to be established without making the API inaccessible or user-
unfriendly, while also minimizing performance and storage impacts.

Solution Assign a unique token to each client that the client can present to the API endpoint for identification
purposes, either as part of the URL query or in the request body. Generated API keys are required
to be unique and should be difficult to guess. UUIDs or other randomly assigned serial numbers
are suited for this purpose. This solution provides a lightweight authentication alternative to a full
authentication scheme or protocol. It balances basic security requirements with minimal management
and communication overhead.

Related patterns Rate Limit, Security Manager, API Gateway, Transporter

Publications [Was+21b; Sto+18; JLE18]

112

B.5. Catalog of security protocols

B.5. Catalog of security protocols

Name Policy-driven authorisation management & Capability-based access control

Security view Authorization

Standard/RFC

Goal The client sends an access request to the Resource Server, which creates a capability token. Autho-
rization services are used to validate the token and determine whether to accept or deny the request.
Upon further requests, the capability token is used in combination with the relevant policy methods
to determine the access capabilities.

Components Authorization Server, Client, Microservice, Policy administration point (PAP), Policy decision point
(PDP), Policy enforcement point (PEP), Policy information point (PIP)

Required assets Access control policy database, Access token

Publications [Kal+20]

Name Multi-party policy-based access control protocol

Security view Authorization

Standard/RFC

Goal Manage and delegate access control to a microservice by multiple resource owners, which might
use different Identity & Access Management (IAM) servers for a resource. This approach describes
a protocol to enable access control decisions with multiple resource owners by using a Multi-party
Delegated Authorization component, which redirects to the proper authorization server. This protocol
uses industry standards like OAuth, OpenID Connect, and JWTs

Components Authorization Server, Microservice, Multi-party Delegated Authorization Server

Required assets Access control policy database, Access token

Protocol flow

Publications [PJ19]

113

B. Catalog of security design concepts

Name Inter-service authentication, authorization, and communication encryption

Security view Authentication, Authorization, Secure Communication

Standard/RFC

Goal Communication between microservices must be secured with the same level of detail as communication
with external clients and services. Otherwise, an attacker is able, once a single service is compromised,
to eavesdrop or manipulate the communication between microservices.
This protocol implements a key exchange and a role authentication procedure. Authentication is
based on either password, shared secrets or X.509 certificates. The provided protocol is similar to
TLS or mTLS. Identified challenges for a solution like this are role support, autonomy, ease of use

Components Microservice

Required assets Passwords

Protocol flow

Publications [JBP18]

Name OpenID Connect

Security view Authentication

Standard/RFC

Goal Authenticate clients using a centralized identity provider across multiple services.

Components Client, Identity Provider

Required assets Access token, ID token

Protocol flow

Publications [AC22]

114

B.5. Catalog of security protocols

Name SAML

Security view Authentication, Authorization

Standard/RFC RFC 7522

Goal Authenticate and authorize clients using a centralized identity provider across multiple services.

Components Client,Identity Provider, Microservice

Required assets Access token

Protocol flow

Publications [AC22]

115

B. Catalog of security design concepts

Name TLS / mTLS

Security view Authentication, Secure Communication

Standard/RFC RFC 5246 (TLS 1.2), RFC 8446 (TLS 1.3)

Goal Authenticate actors (mutually). Establish a secure (encrypted & integrity-protected) communication
tunnel.

Components Client, Microservice

Required assets Digital certificate

Protocol flow

Publications [AC22; YB18b]

116

B.5. Catalog of security protocols

Name OAuth

Security view Authorization

Standard/RFC RFC 6749

Goal Enable third-party service to obtain limited access to an HTTP service on the resource owner’s behalf.

Components Authorization Server, Client, Microservice

Required assets Access token

Protocol flow

Publications [AC22]

Name Decentralized Certificate Transparency Logs

Security view Authentication

Standard/RFC

Goal Centralized Certificate Transparency Log (CTL) approaches cannot be fully utilized by distributed
applications. Also, relying on and trusting a single CA is problematic and may lead to a single point
of failure.
The suggested method uses a decentralized approach using a Blockchain to store microservice cer-
tificates (insertions, updates, and revocations). Whenever two microservices want to communicate,
they receive the signature of the respective other party and query the certificate from the Blockchain
network to verify the signature. Due to its decentralized nature, certificates and their revocations
can be trusted and is more reliable to use than a single CA.

Components Blockchain peers, Certificate Authority (CA), Microservice

Required assets Blockchain (CTL), Digital certificate

Protocol flow

Publications [Dil+20]

117

B. Catalog of security design concepts

B.6. Catalog of IDS/IPS approaches

Name XML Injection Detection Tool

Security view Monitoring

Capability Detect

Algorithm approach Penetration Testing Generator (PTG), Test Objective Generation (TOG)

Evaluation asset Network traffic, XML

Scope Host-based

Placement API Gateway, Per microservice

Threat Code injection

Prevention

Publications [SP19]

Name Unsupervised Service Fissioning

Security view Monitoring

Capability Detect, Respond

Algorithm approach

Evaluation asset CPU usage, Host resources, Memory usage

Scope Host-based

Placement Per microservice

Threat Application-layer DoS

Prevention Isolation/Shutdown

Publications [Baa+20]

Name Privacy-preserving monitoring & anomaly detection

Security view Monitoring

Capability Detect, Respond

Algorithm approach K-means clustering, SVM, machine learning

Evaluation asset CPU usage, Disk usage, Host resources, Memory usage, Network traffic, Number of authentication
failures, Number of requests/s, Service response time

Scope Host-based

Placement Central monitor, Per microservice, Sidecar

Threat

Prevention

Publications [BAR21]

Name Irregular Traffic Detection for RPC

Security view Monitoring

Capability Detect

Algorithm approach Graph Convolution Network (GCN), machine learning

Evaluation asset Network traffic, RPC

Scope Network-based

Placement

Threat Account cracking, Batch registration attack

Prevention

Publications [CHC19]

118

B.6. Catalog of IDS/IPS approaches

Name Automated Intrusion Response based on Game-theoretic approach

Security view Monitoring

Capability Respond

Algorithm approach minimax algorithm

Evaluation asset

Scope Internal, Network-based

Placement Per microservice

Threat

Prevention Isolation/Shutdown, Rollback/Restart service, Scale-up and Scale-down, Split or merge services

Publications [YO18]

Name Intrusion Detection System using Resilient Backpropagation Neural Network

Security view Monitoring

Capability Detect

Algorithm approach Resilient Backpropagation Neural Network, machine learning

Evaluation asset Network traffic

Scope External, Network-based

Placement API Gateway, Firewall

Threat DDoS

Prevention

Publications [Alm+22]

Name API Intrusion Detection System

Security view Monitoring

Capability Detect

Algorithm approach SVM, machine learning

Evaluation asset API, Bandwidth consumption, Client IP address, HTTP method, HTTP response code, Network
traffic

Scope External,Network-based

Placement API Gateway

Threat

Prevention

Publications [Bay+21]

Name Anomaly detection of distributed traffic

Security view Monitoring

Capability Detect

Algorithm approach Diffusion Convolutional Recurrent Neural Network (DCRNN), machine learning

Evaluation asset Distributed trace, Network traffic, RPC

Scope External, Network-based

Placement Per microservice

Threat Batch registration attack, DDoS, Password Brute Forcing

Prevention

Publications [JQL21; Jac+22]

119

C. Case study materials

Figure C.1.: The initial Spring Petclinic architecture model.

Figure C.2.: Addressing SC-AN1 and SC-AN2 by illustrating trust boundaries and
which communication paths are still unauthenticated. This illustrates that
the Zero trust design principle is followed.

121

C. Case study materials

Figure C.3.: The first architectural context that was considered in the case study, namely
the frontend part. This includes the communication and authentication of
clients towards the API Gateway.

Figure C.4.: Authentication model for external clients. Clients authenticate themselves
towards the API Gateway using the Keycloak Identity Provider instance as
authenticator.

122

Figure C.5.: A sequence diagram of the communication between client, API Gateway
and Keycloak IdP to perform client authentication. The client receives
a CODE after a successful login by username and password. This CODE is
exchanged by a TOKEN (cf. OAuth Authorization Code Flow grant [Har12])
which is verified by the API Gateway and Keylcoak IdP afterward.

123

C. Case study materials

Figure C.6.: The second architectural context that was considered in the case study,
namely the backend part. This includes the communication and authenti-
cation between microservices.

Figure C.7.: Authentication between microservices is achieved by employing the mTLS
[RD08] security protocol. Each microservice is assigned a digital certificate,
which is exchanged during the mTLS handshake protocol for authentication.
These certificates hold the identity information of the respective microser-
vice and a digital signature to verify.

124

D. Evaluation transcription
The following pages present the shortened transcriptions of the performed interviews of
the evaluation.

125

D
.

Evaluation
transcription

Table D.1.: Interview transcriptions, participants 1-4.
Participant P1 Participant P2 Participant P3 Participant P4

Position Professor for
IT Security Data Scientist Software Architect Lead Developer

Security modeling
experience

• Model-based development
• Defining and modeling security

requirements in SysML and
Enterprise Architect.

• No specific security modeling
tools were used, but rather
standard tools were used in
which security requirements
were added to certain system
interfaces.

• Rather risk-based analysis
methods in conjunction with
standards like IEC 62443 or
ISO/IEC 27001. Regarding
modeling diagrams, no system-
atic method was followed.

• Yes, had contact with the
aforementioned concepts of se-
curity views, i.e., authentica-
tion, authorization, etc., but
not explicitly modeling those
as such. Rather approaching
the question ”which aspects ex-
ist to harden the application’s
security?”, without separating
it into several views.

• No particular modeling ap-
proaches were used.

• Primarily modeled security
with use case diagrams, but
without including specific se-
curity concerns.

• A bit, security is rather consid-
ered incidentally than system-
atically with concrete security
catalogs and formal models.

• Sift through catalogs like
OWASP Top Ten or similar
cheat sheets, but no appli-
cation of concrete modeling
techniques like threat model-
ing.

• Security basics that are learned
during studies

• Self-studying, i.e., reading
books and articles, being up-
to-date

• No security modeling during
architecture design in particu-
lar

Microservice
experience

• Experience as Head of IT
Security in a company that
employed a cloud-based MSA
based on Docker.

• Not actively developed on con-
crete microservices, but I was
responsible for security design
and reviews of the architecture.

• Project experience: 4 years

• Currently working solely with
MSAs, implementing 7̃ mi-
croservices and communicating
with additional 1̃0 microser-
vices.

• Project experience: 1.5 years

• Primarily working on hybrid
architectures, i.e., that have
aspects of multiple architec-
tural styles (microservices and
monoliths)

• Project experience: 4-5 years

• Experience on MSA concepts,
and differences to monoliths,
but not in-depth

• Project experience: 3-4 years

126

What comprises
security in the

context of software
architectures?

• Security must be considered
in the different development
phases depending on the soft-
ware development model.

• Requirements engineering: se-
curity requirements need to be
collected and assessed by the
project’s stakeholders.

• Design: consider security and
develop a secure architecture
which is depicted in diagrams.
Security concerns must be ad-
dressed in these models. With
threat modeling, additional re-
quirements can be derived.

• Deployment: how is the im-
plementation of the designed
architecture ensured, e.g., us-
ing techniques like IaC. Essen-
tially, how to bring secure de-
sign into the production envi-
ronment? Also, having devel-
opment and staging environ-
ments to test security imple-
mentations and whether they
fulfill security requirements.

• Development process: defining
certain controls during devel-
opment phases, e.g., model-
ing architectures as an essen-
tial step.

• Monitoring and verification:
observe the system, and verify
that the requirements are ful-
filled. Also performing secu-
rity tests in form of penetra-
tion tests and fuzzing for fur-
ther inspections.

• Lastly, having a feedback loop
of the gained information from
the verification phase and us-
ing this data for the next it-
erations to continuously adapt
the architecture.

• Communication with other ser-
vices, i.e., data arrives where
it should and can only be ac-
cessed by those who are autho-
rized.

• Data is stored securely, and
limitations of access rights
need to be preserved.

• Availability of data is ensured,
i.e., they can be retrieved at
any time.

• Also that users are transpar-
ently informed about the se-
curity of the application they
use, i.e., they can see that
and how data and communi-
cation are secured, which ac-
cess rights they have and how
they retrieve them. This can
be achieved by proper docu-
mentation, but these guaran-
tees must be verifiable.

• There are many things to con-
sider, e.g., from a developer
perspective

• Hardening the infrastructure:
access to systems

• Implementation (backend &
frontend)

• Social components: security
awareness of customers and de-
velopers

• A problem is that security
needs to be considered in many
areas

• Knowledge about security best
practices regarding the devel-
opment of software architec-
tures

• OWASP Top 10
• Depends on the application do-

main, e.g., when sensible user
data is involved

127

D
.

Evaluation
transcription

What does
authentication entail?

• Authentication identifies a per-
son based on some properties,
e.g., credentials, and biomet-
rics.

• The proof that the person
or system holds indeed the
claimed identity.

• Authentication does not con-
cern the access rights of a per-
son or system but is rather in-
cluded in authorization, e.g.,
based on a specific role some-
one has.

• I need to prove credibly that I
have certain access rights.

• It includes verification of
claimed access rights.

• Also includes a right and role
system, but that also goes
more in the direction of autho-
rization.

• Authentication and authoriza-
tion are often difficult to dif-
ferentiate because are they so
closely related.

• That users and/or systems lo-
gin and identify themselves
using certain authentication
methods, e.g. passwords,
MFA, Face ID

• Identification and verification
of the user during an authenti-
cation process, e.g., password-
based

• Needs to be differentiated from
authorization

Do you agree with
these authentication

concerns?

• Regarding SC-AN1: nowa-
days, we are strongly moving
towards Zero trust, i.e., au-
thentication is required any-
where.

• But it makes sense to model
is explicit, e.g., when access to
a deep database server in the
network is trusted and does not
require further authentication.

• Yes

• Regarding SC-AN1: let’s as-
sume that we have a Kuber-
netes cluster in an internal
network, i.e., all services are
trusted.

• But some services provide
more sensitive data. Thus,
even within a trusted environ-
ment, authentication might be
necessary. Therefore, trust
never exists.

• There might be services that
are not worth protecting, e.g.,
a web server that provides pub-
lic content.

• The necessity of authentication
depends on the value of the
provided data of these services.

• In principle yes
• SC-AN7 might indicate that

there is a central component
or service that manages and
controls all secret information
about other services. This is
a potential single point of fail-
ure.

Are there any
missing authentication

concerns?

• I would add concern about au-
dit trail logs.

• How are successful and failed
authentication requests logged
and who can access them? How
are they managed and pro-
tected from manipulation?

• Otherwise it seems good.
These concerns are on a very
abstract level, but I guess this
is intended.

• How to securely introduce se-
crets into the application? (Se-
cret Management)

• How to proceed after success-
ful/failed authentication?

• Ad hoc, I can’t think of any
other concerns, unless we were
to discuss them in detail.

• No

Does this model address
these authentication

concerns?

• Definitely, but security know-
how is required to understand
these models.

• I see there is a shift to bring
these topics into the language
of software engineering.

• For security experts that re-
view these kinds of architec-
tures, it is helpful.

• Yes, but there is no overview of
how it works in completeness
because no model addresses all
concerns simultaneously.

• In particular, some models vi-
olate rules that were made be-
fore on purpose (cf. Fig-
ure 6.1b). A complete overview
of the architecture could solve
such ambiguities.

• It makes sense to follow this
approach, but I can not make a
statement about its complete-
ness.

• For this purpose I would sift
through existing security doc-
uments like OWASP ASVS to
highlight the specific areas.

• Yes, but not each model ad-
dresses the full set of security
concerns.

• After a clarification discussion,
the participant agreed that it
is not required that each model
addresses all security concerns
at once, but each model might
address a subset.

128

Does this model
effectively communicate

established security
design concepts?

• Yes and no.
• There is a need for required se-

curity knowledge.
• There might be an additional

step for the developers. From
my experience, they would be
confused about some imple-
mentation details, e.g., how
certificates are deployed to the
microservices or how to employ
mTLS.

• On the other hand, a support-
ing security champion can ad-
vise developers on these types
of questions.

• When syntax and semantics
are clear and consistent, it
is helpful to understand, e.g.,
when a resource must be pro-
tected and how.

• No, not really because the ap-
plied design concepts were not
known as such beforehand.

• Yes, but especially regard-
ing the implementation, some
models need to be more specific
and include more details.

• For instance, there exist sev-
eral OAuth authorization
flows, some of them are depre-
cated and shouldn’t be used.
The architecture must reflect
details about the authentica-
tion method in use and how
specifically they are employed.

• Yes, but these models might
suffer from being outdated
since protocols like TLS might
become deprecated at some
point. This can lead to archi-
tectural erosion.

• Suggestion to rather uses
implementation-agnostic nota-
tions, e.g., arbitrary current
secure protocol.

• Principles like Zero Trust on
the other hand are timeless.

Which modeling
elements should

be added/removed?

• Regarding the authentication
view, I don’t have any sugges-
tions.

• The client-side authentication
model (cf. Figure 6.1b)
should not purposefully violate
the Zero Trust principle, al-
though it is tackled in another
model. Instead, it should an-
ticipate the trust boundaries
and mTLS protocol between
Keycloak IdP and API Gate-
way as in the server-side au-
thentication model (cf. Fig-
ure 6.1c).

• Otherwise such a model causes
confusion and is very error-
prone.

• Another solution would be to
explicitly note when certain
rules or principles are violated
on purpose and resolved in
other models.

• An explicit list or marks of ap-
plied design concepts was miss-
ing.

• Also a model for a complete
overview should be added.

• If shown to a customer, trust
boundaries could be removed
for simplification, since the
Zero trust design principle
specifies this anyway. Showing
it on one slide can be useful.

• It’s difficult to assess whether
modeling elements should be
added or removed because we
treat security rather implic-
itly, but it is good to model
security separately to identify
weaknesses precisely.

• Otherwise, you don’t have an
overview of what is happening
in the architecture.

• I think network segments
should be included as well
because it becomes important
for implementation, especially
when you deal with multiple
cloud providers. For instance,
where exactly is the Keyl-
coak IdP located and how
do components communicate
with each other, i.e., which
protocols are used?

• In the beginning, the notion
of trust boundaries was confus-
ing. Speaking of trust bound-
aries in conjunction with zero
trust clarified that.

• Adding modeling elements
does not make sense, since it
becomes too complicated.

• Removing modeling elements
also means removing relevant
information.

• Simpliying modeling elements,
e.g., that each microservice has
a certificate, instead of having
a specific notation for each mi-
croservice, would help.

• Also having a more general no-
tation instead of modeling spe-
cific protocols like TLS and
certificates would be useful.

129

D
.

Evaluation
transcription

Does such a model
enhance common
understanding/
communication

regarding
authentication?

• Generally yes. When you have
a visual representation and a
mapping of security require-
ments, it is helpful.

• One can think about adding
more concrete models to these
views explaining implementa-
tion details to become more in-
dependent from a security ex-
pert.

• Definitively. Such models help
to think about security con-
cerns in-depth. Also, the spe-
cific designation of concerns,
views, and design concepts
helps to understand and for-
malize how security is imple-
mented in the architecture.

• It is required to have such doc-
umentation, especially when
new colleagues have to deal
with the architecture and need
to understand which security
controls are applied.

• It is important that the doc-
umentation is self-explanatory,
i.e., one can understand it
without additional explana-
tions from another person.
Otherwise, it is useless. For
instance, the purpose and idea
behind Figure 6.1b were only
comprehensible because it was
explained additionally.

• Furthermore, models need to
be diagrams, and not fully
textual. Highlighting certain
modeling elements, e.g., trust
boundaries, by using specific
colors helps to grasp the impor-
tant aspects of the model.

• Certainly. Modeling security
explicitly helps to highlight
these things better than mak-
ing it implicit.

• It is very useful when a com-
mon foundational understand-
ing of security is established
beforehand.

• When building a new archi-
tecture and you have a refer-
ence architecture that can be
trusted to be secure and defines
to what extent certain compo-
nents need to be secured in a
specific way.

• Such a model would be easily
extensible for new projects.

• Concept of concerns helps to
understand and address where
authentication is actually nec-
essary and required.

• These models enhance commu-
nication within a team, e.g.,
when new services are added by
addressing and re-evaluating
the authentication concerns.

• Again, a premise is that a com-
mon understanding of security
in general exists, e.g., the dif-
ference between authentication
and authorization.

How would you assess
the distinction into

security views?

• Generally I would say that it is
a good distinction.

• Secure Build & Deployment is
a rather large area, splitting
this view up might be useful.
For instance, having a separate
view for security testing.

• In principle yes. It covers the
set of security concepts that I
am aware of in my experience.

• Authentication and authoriza-
tion could be merged, because
they often considered together,
at least implementation-wise
they are.

• Cross-cutting concerns be-
tween security views can be
problematic. For instance, au-
thentication and authorization
share a lot of concerns and
responsibilities. This would
lead to several models with
duplicate information.

130

Which security views
need to be considered

additionally?

• I can think of more specific
views for certain areas of a
microservice architecture, e.g.,
different views for frontend
and backend, or databases be-
cause there are more specific
requirements and mechanisms
in these different contexts.

• Thus, additional views that
lower the abstraction level
might be useful when moving
toward implementation.

• In contrast, these general mod-
els apply to a wide variety of
architectures.

• A data security view should be
added, although it might be
out of scope for the architec-
ture.

• This view should address how
and where data of the appli-
cation is processed by its users
and whether further hardening
of the data security is neces-
sary.

• This needs to be compliant
with certain laws, e.g., GDPR.
For instance, when cloud ser-
vices are involved, such con-
cerns need to be addressed.

• Perhaps a separate view for
input validation (not part
of monitoring), including
IDS/IPS and Web Application
Firewalls (WAFs).

• Secret management view, i.e.,
how are Secrets managed and
perhaps rotated, e.g., using
secret management tools like
Azure Keyvault.

• Backup strategy view, i.e., how
are backups created, what is
the backup strategy if data is
lost.

• Security Policy view, i.e., mod-
eling policies that are enforced
by the company. The problem
is that these policies affect pos-
sibly all other views.

• Developer view. The afore-
mentioned views focus on
product security. But devel-
opers often have wide access
to infrastructure services that
impose security risks.

Which concerns need
to be addressed

in this view?

• More specific concerns for
more specific areas, e.g., fron-
tend/backend distinction.

• How and where is data pro-
cessed?

• Does it conform to data pro-
tection and privacy laws, e.g.,
GDPR?

• Who has accessed which infor-
mation at which time?

• Which data confidentiality lev-
els apply, e.g., where is sen-
sitive personal information lo-
cated and processed?

• Secret management: how are
secrets protected? How can ap-
plications access those secrets
securely?

• Input validation: how the sys-
tem alerts any events? Which
anomalies can be detected?

• Policy view: which policies ex-
ist? Which are relevant for the
architecture?

• A developer view needs to ad-
dress the access rights of a de-
veloper, e.g., who can have ac-
cess to a Jenkins pipeline.

• A significant role that needs to
be considered is the trade-off
between security and comfort-
ability.

Which modeling
notations/languages
would you suggest?

• My only suggestion is to be
consistent with the team’s or
company’s modeling languages
and standards.

• For instance, when UML is
heavily employed, it is neces-
sary to adapt these UML mod-
els rather than creating com-
pletely different modeling lan-
guages for security. Other-
wise, this would increase the
gap when integrating security
modeling into the architecture.

• Not any in particular, due
to missing experience in that
area.

• No, I can not judge that.
• UML, because it is an estab-

lished and well-known model-
ing language.

131

D
.

Evaluation
transcription

Are special-purpose
modeling notations/

languages
helpful?

• I think it is useful to have a
consistent language to model
these views, perhaps with the
ability to use modeling ele-
ments in multiple views to pre-
vent that developers need to in-
corporate them into different
languages.

• Yes, it does make sense. How-
ever, having separate lan-
guages for each view is too
much. Especially when certain
modeling elements from one se-
curity view are needed in an-
other.

• Having a unified, standardized
language would also increase
security awareness.

• It can also be an obstacle re-
quiring learning a new model-
ing language.

• I think so, but they need to be
intuitive and not too complex.

• They need to be understood
without reading exhaustive
documentation.

• Special-purpose languages
help to model these aspects
uniquely and to avoid ambigu-
ities.

• Only if these modeling lan-
guages extend the UML family.

• The advantage when using a
notation that is similar to UML
is that it is easily recognizable
and comprehensible.

Can we study the
influence of applied

security design
concepts?

• That is very difficult. I also
think that is heavily process-
oriented.

• I think this modeling tech-
nique, especially with special-
purpose modeling languages,
is good, but like any other
methodology, it is important
to have and follow the right
processes.

• It is much better than doing
nothing or only having require-
ments.

• It might be possible to map
the influence empirically, e.g.,
tracking how many bugs or se-
curity flaws I have found dur-
ing penetration testing.

• I think studying these by ver-
ification and testing phases,
and comparing the results be-
tween projects that have used
this modeling approach against
those that haven’t.

• Having these concerns and
models that address them or a
set of these concerns simplifies
the quantification of the secu-
rity of the architecture.

• Thus it helps to determine the
influence of a design concept
regarding how it addresses the
corresponding concerns.

• Quantifying security is closely
related to what extent the
architecture fulfills the secu-
rity requirements formulated
as concerns.

• Of course, it depends on how it
is lived in the team.

• One possibility is to enforce
that such security views are re-
quired during the creation of
concepts, i.e., that these views
are included in our concept
templates.

• Yes, if the models that were
created are indeed correct and
represent the architecture.

Do such views capture
the software engineering

perspective?

• Definitely yes. When you com-
pare it with the initial architec-
ture model, there is a greater
value to it.

• Security design concepts are
needed by software develop-
ers. Having the knowledge and
terminology of such concepts
helps to understand which con-
structive possibilities and rec-
ommendations are available to
solve a certain security prob-
lem.

• These views provide something
that can be used hands-on.

• It needs to be more detailed,
but in general yes.

• Yes, up to the point that the
developer view is missing.

• If a developer is compromised,
it quickly becomes a serious
problem.

132

How would you assess
the worth of this

modeling approach?

• For software architectures, this
modeling approach is very
good, because it is very
generic.

• For microservices, I am miss-
ing which deployment environ-
ments exist and how microser-
vices are deployed to these
environments. For instance,
whether we have a container
or OS environment, we illu-
minate the differences between
certain microservice architec-
tures. Such an infrastructure
view might be useful.

• It provides additional value
when everyone in the team
adopts a standardized and for-
malized modeling approach for
security.

• Also, it may prohibit thinking
of security as an afterthought.

• For MSA it may be of fur-
ther value because the commu-
nication paths and intercon-
nections amplify and therefore
more places exist where infor-
mation can be captured by a
malicious party.

• The value of this approach be-
comes clear when applied to a
concrete project.

• I can imagine that it is mean-
ingful and there is much to
gain.

• Especially to get team mem-
bers to actively deal with secu-
rity topics, i.e., making these
modeling aspects concrete.

• Communication of security
topics with customers and
within a team.

• The main problem with ad-
dressing security in a software
architecture is that it takes a
lot of time to deal with this
topic.

• The true value of this modeling
approach becomes clear when
it is established in a project,
as it would probably save time
when addressing the security of
an architecture.

• Having standard processes and
modeling tools eases under-
standing and comprehensibil-
ity and saves time.

• The primary value is to have a
reference model which can be
trusted.

133

D
.

Evaluation
transcription

Table D.2.: Interview transcriptions, participants 5-7.
Participant P5 Participant P6 Participant P7

Position IT Security Consultant Frontend Developer Applied Scientist

Security modeling
experience

• Primarily experiences in threat model-
ing with data flow diagrams.

• Modeling approaches: STRIDE (for
threat identification & classification)
and PASTA (for risk analysis).

• Using threat databases for quicker iden-
tification of relevant threats.

• Modeling notations: DFDs to depict
trust boundaries and threats in systems

• No particular experience in security
modeling

• Experience from secure software devel-
opment university courses

Microservice
experience

• Little to no hands-on experience with
microservice architectures, but experi-
ence with distributed systems.

• Concepts of MSAs are clear.
• Project experience: 1 year • Hands-on experience on MSAs at work

• Project experience: 1 year

What comprises
security in the

context of software
architectures?

• Threat modeling is one of the most im-
portant security topics

• Security aspects differ depending on the
context. For instance, authentication
is important, but not in every context.
Identifying where certain security as-
pects are required and necessary is diffi-
cult.

• Most things can be reduced to the CIA
triad. Where do we need confidentiality,
integrity, and availability?

• Secure coding and a secure development
process, e.g., with SAST, manual testing
and penetration testing.

• No matter how much you test, the per-
fect software does not exist and they all
contain some vulnerabilities. Thus, it
is important to have a software devel-
opment lifecycle to react to such events
and patch any findings.

• Data encryption, to prevent others to
read along

• Prevent malicious actors from gaining
access and manipulation

• Traceability of data and actions

• Identification and protection of assets,
i.e., not everyone is allowed to access

• What is the purpose of that particu-
lar service, what data is processed, and
what needs to be protected?

• Who is allowed to do what (authentica-
tion and authorization)

• Regarding architecture, we need to know
which information is allowed to be ex-
changed between services. Not every mi-
croservice may have permission to access
every other service.

What does
authentication entail?

• It consists of three parts:
• Authentication: the process of present-

ing someone or a system my identity
with some credentials

• Authetification: verification of identity
claim, whether it is valid or fake

• Authorization: after I am successfully
authenticated, what am I allowed to do?
Which files can I access? To which mi-
croservices can I perform requests?

• Whenever data is fed into a system, the
system needs to authenticate the user.

• The user needs to identify himself.
• The system needs to determine whether

the user is authorized to do that.

• Requesting and retrieving credentials
• Credentials need to be stored securely

on server side, i.e., hashing with salt.
• The communication on which creden-

tials are exchanged must also be pro-
tected.

• Users must be enforced to choose secure
passwords.

134

Do you agree with
these authentication

concerns?

• Generally, I would agree that this set of
concerns is correct and complete.

• If I would think about it for some time, I
guess I would find some additional con-
cerns that are missing.

• Yes

• SC-AN1 must also reflect how to
deal with external unknown clients and
spoofing.

• Rephrase SC-AN2 and SC-AN3 to in-
clude which secure communication paths
and authentication method is used.
Deprecated, insecure cryptographic al-
gorithms need to be excluded.

Are there any
missing authentication

concerns?

• Regarding authentication, it seems to be
complete.

• Some concerns regarding authentifica-
tion and authorization might be missing.

• How is identity information stored,
and how are they possibly secured (if
needed)?

• In addition to SC-AN4: How to secure
the asset? This should be added to as an
authentication concern because we in-
troduce additional assets because of the
employed authentication method.

Does this model address
these authentication

concerns?
• Yes. The models depict which concerns

are addressed by which solutions.
• Yes, it does address the authentication

concerns.

• Figure 6.1b does not explain the validity
of the session, this needs to be addressed
in the model. This includes how long is
an access token valid, and when a user
needs to re-authenticate.

• In the same model, it is confusing that
the Keycloak IdP and API Gateway are
in the same trust boundary.

• Communication paths, i.e., which proto-
cols are used, are not clear.

Does this model
effectively communicate

established security
design concepts?

• Yes.

• From these models, details about the
authentication method, e.g., how mTLS
works and why it is used, are not clear.

• The remaining models present which de-
sign concepts are used.

• Yes, but information about the validity
of the session and details about com-
munication protocols in which paths are
protected should be included.

Which modeling
elements should

be added/removed?

• Perhaps leaving the arrow notation on
the authentication models.

• Technically it is not important for au-
thentication, but it is small support that
doesn’t cost much.

• No. All in all, the modeling elements
capture the design concepts and how
they address the concerns.

• Modeling elements that indicate how
long an access token is valid.

• Details about communication protocols
and network boundaries should be in-
cluded, e.g., by labeling certain commu-
nication paths.

Does such a model
enhance common
understanding/
communication

regarding
authentication?

• Definitely. Sure, you can talk much
about authentication and how it is im-
plemented, but such diagrams make
things clear quickly.

• Yes. It clarifies which security mecha-
nisms are in use and how microservices
communicate with each other using en-
cryption protocols.

• To effectively use these models as
communication pinpoint in a team, a
premise is that the team agrees to use
a specific modeling standard and follows
its conventions.

• It enhances understanding and commu-
nication.

• It also provides a good basis for dis-
cussions and establishes an overview of
what is actually employed.

135

D
.

Evaluation
transcription

How would you assess
the distinction into

security views?

• In most cases, authentication and autho-
rization must be considered together.

• On the other hand, it is meaningful to
separate those since different concerns
exist for these views which are addressed
by different mechanisms.

• For technical reasons, it makes sense to
split those up, e.g., for authorization,
certificates don’t matter since they are
used for authentication.

• Yes, these views mostly cover the set of
security modeling aspects.

• Authentication and Secure Communica-
tion should be merged because authenti-
cation requires a secure communication
path.

• There exist dependencies between views,
i.e., certain views require modeling con-
cepts of other views. It is difficult to
separate those.

Which security views
need to be considered

additionally?
• No, I can’t think of any ad-hoc. • I can’t think of any additional views.

• An incident-response view, i.e., a plan
on how to react to certain security
events.

• Policy view against insider threats, i.e.,
how to deal with internal threats, e.g., a
former employee that can publish confi-
dential company data.

Which concerns need
to be addressed

in this view?
- -

• Policy view: who can access which in-
ternal information, e.g., code? Who has
admin rights? What happens when an
employee terminates? Employee aware-
ness and training. Enforce that employ-
ees work at least together on projects to
prevent a single employee includes back-
doors.

• Adding to build and deployment view:
how are pull requests and code reviews
handled?

Which modeling
notations/languages
would you suggest?

• I think the authentication models of the
case study were very approachable.

• For other views, different notations are
probably necessary.

• UML because it is a standardized mod-
eling language that every developer un-
derstands and knows.

• Also UML provides a large toolbox
of modeling elements to express such
things.

• Adapted component diagrams should be
sufficient.

Are special-purpose
modeling notations/

languages
helpful?

• It probably makes sense to have one
modeling language for all views, if ap-
plicable.

• You would rarely only work on one view,
therefore it helps when I don’t need to
rethink different notations.

• Additional models, e.g., the sequence di-
agram of the case study, help to under-
stand the architecture from different an-
gles.

• A combination of new special-purpose
languages and UML diagrams would
probably be successful.

• Yes, but the modeling languages cannot
become too complex. Otherwise, they
are adopted by the development teams.

• Also, the team needs to agree and actu-
ally adopt the modeling language.

• Yes. The modeling elements must be
unique and clear though.

• Ambiguities as in Figure 6.1b may
lead to more confusion and should be
avoided.

136

Can we study the
influence of applied

security design
concepts?

• Maybe. It is difficult to assess this ad-
hoc.

• It helps to better document which secu-
rity mechanisms are present in the whole
system.

• Using these design concepts enforces
thinking about how the architecture
should look and enhances argumenta-
tion and discussion on why certain de-
sign concepts are employed.

• This needs to be made explicit in the
modeling, i.e., which security goals are
addressed by the design concepts estab-
lished.

• When it is done implicitly, this is not
clear.

• An additional checklist of the security
goals addressed might be helpful.

Do such views capture
the software engineering

perspective?

• From a software engineering perspective,
I think so.

• Software engineers mostly don’t have in-
depth security knowledge but are profi-
cient with description languages. They
see these models and know what is going
on.

• Yes, this is the whole purpose of using
these kinds of diagrams.

• Yes, for the authentication view it is
achieved.

• Also, views such as the build and de-
ployment view cannot be modeled effec-
tively using threat modeling for exam-
ple, which is an offensive view.

How would you assess
the worth of this

modeling approach?

• It becomes more visible.
• The different security goals are mapped

to the concrete security views.
• This way, it is easily clear how, e.g., au-

thentication is designed in a certain ar-
chitecture.

• Every software engineer sees these mod-
els and can immediately understand
them.

• When the system becomes larger, and
different authentication methods are
available, modeling this kind of concept
improves the understanding of the archi-
tecture and can provide a good overview.

• Otherwise, it can become too complex
when only a textual representation is
employed.

• It is important to split up the model and
only consider certain aspects per model,
otherwise diagrams can be too complex
to comprehend.

• It is useful to have these sets of concerns
as a checklist of what needs to be con-
sidered for each view.

• These models help to ensure that each
concern is addressed and can serve as a
discussion foundation.

137

Bibliography
[AAE16] N. Alshuqayran, N. Ali, and R. Evans. “A systematic mapping study in

microservice architecture.” In: Proceedings - 2016 IEEE 9th International
Conference on Service-Oriented Computing and Applications, SOCA 2016
(Dec. 2016). doi: 10.1109/SOCA.2016.15 (cit. on p. 18).

[AC22] M. G. de Almeida and E. D. Canedo. “Authentication and Authorization
in Microservices Architecture: A Systematic Literature Review.” In: Ap-
plied Sciences (Switzerland) 12.6 (2022). issn: 20763417. doi: 10.3390/
app12063023. url: https://www.scopus.com/inward/record.uri?
eid=2-s2.0-85126960560&doi=10.3390%2Fapp12063023&partnerID=
40&md5=5f95106a7ccbf0b16eb2fa26e68c0140 (cit. on pp. 48, 57, 58, 71,
72, 112, 114–117).

[Alm+22] M. Almiani et al. “Resilient Back Propagation Neural Network Security
Model For Containerized Cloud Computing.” In: Simulation Modelling
Practice and Theory 118 (2022). issn: 1569190X. doi: 10.1016/j.sim
pat.2022.102544. url: https://www.scopus.com/inward/record.
uri?eid=2- s2.0- 85127476658&doi=10.1016%2Fj.simpat.2022.
102544&partnerID=40&md5=28bbfb37ebe9afc5b1a8e4bee447a6dc (cit.
on pp. 61, 119).

[Baa+20] A. F. Baarzi et al. “Microservices made attack-resilient using unsuper-
vised service fissioning.” English. In: Proceedings of the 13th European
Workshop on Systems Security, EuroSec 2020. EuroSec ’20. New York,
NY, USA: Association for Computing Machinery, 2020, pp. 31–36. isbn:
9781450375238. doi: 10.1145/3380786.3391395. url: https://doi.
org/10.1145/3380786.3391395 (cit. on p. 118).

[BAR21] B. Bhargava, P. Angin, and R. Ranchal. “Privacy-preserving data sharing
and adaptable service compositions in mission-critical clouds.” In: CEUR
Workshop Proceedings. Ed. by G. S. Jain S. Vol. 2786. CEUR-WS, 2021,
pp. 60–66. url: https://www.scopus.com/inward/record.uri?eid=2-
s2.0-85102514645&partnerID=40&md5=848411fbf7f367dae9e7aecd2a
055878 (cit. on p. 118).

[Bas17] L. Bass. “The Software Architect and DevOps.” In: IEEE Software 35.1
(Jan. 2017). issn: 07407459. doi: 10.1109/MS.2017.4541051 (cit. on
p. 60).

139

https://doi.org/10.1109/SOCA.2016.15
https://doi.org/10.3390/app12063023
https://doi.org/10.3390/app12063023
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126960560&doi=10.3390%2Fapp12063023&partnerID=40&md5=5f95106a7ccbf0b16eb2fa26e68c0140
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126960560&doi=10.3390%2Fapp12063023&partnerID=40&md5=5f95106a7ccbf0b16eb2fa26e68c0140
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126960560&doi=10.3390%2Fapp12063023&partnerID=40&md5=5f95106a7ccbf0b16eb2fa26e68c0140
https://doi.org/10.1016/j.simpat.2022.102544
https://doi.org/10.1016/j.simpat.2022.102544
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127476658&doi=10.1016%2Fj.simpat.2022.102544&partnerID=40&md5=28bbfb37ebe9afc5b1a8e4bee447a6dc
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127476658&doi=10.1016%2Fj.simpat.2022.102544&partnerID=40&md5=28bbfb37ebe9afc5b1a8e4bee447a6dc
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127476658&doi=10.1016%2Fj.simpat.2022.102544&partnerID=40&md5=28bbfb37ebe9afc5b1a8e4bee447a6dc
https://doi.org/10.1145/3380786.3391395
https://doi.org/10.1145/3380786.3391395
https://doi.org/10.1145/3380786.3391395
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102514645&partnerID=40&md5=848411fbf7f367dae9e7aecd2a055878
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102514645&partnerID=40&md5=848411fbf7f367dae9e7aecd2a055878
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102514645&partnerID=40&md5=848411fbf7f367dae9e7aecd2a055878
https://doi.org/10.1109/MS.2017.4541051

Bibliography

[Bay+21] G. Baye et al. “API Security in Large Enterprises: Leveraging Machine
Learning for Anomaly Detection.” In: 2021 International Symposium on
Networks, Computers and Communications, ISNCC 2021. Oct. 2021, pp. 1–
6. isbn: 9780738113166. doi: 10.1109/ISNCC52172.2021.9615638 (cit.
on pp. 62, 119).

[BBL76] B. W. Boehm, J. R. Brown, and M. Lipow. “Quantitative evaluation of
software quality.” In: Proceedings of the 2nd international conference on
Software engineering (Oct. 1976). doi: 10.5555/800253.807736 (cit. on
p. 10).

[BCK21] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
4th ed. 2021. isbn: 0-13-688609-4 (cit. on pp. 1, 43, 44, 46).

[BDP06] M. Broy, F. Deissenboeck, and M. Pizka. “Demystifying Maintainability.”
In: Proceedings of the 2006 International Workshop on Software Quality.
New York, New York, USA: Association for Computing Machinery, May
2006, pp. 21–26. isbn: 1595933999. doi: 10.1145/1137702 (cit. on p. 1).

[Ber+22] D. Berardi et al. “Microservice security: a systematic literature review.”
In: PeerJ Computer Science 7 (Jan. 2022). issn: 23765992. doi: 10.7717/
PEERJ-CS.779/SUPP-2. url: https://peerj.com/articles/cs-779
(cit. on pp. 20, 32).

[Bil+22] P. Billawa et al. “Security of Microservice Applications: A Practitioners’
Perspective on Challenges and Best Practices.” In: (Feb. 2022). doi: 10.
48550/arxiv.2202.01612. url: https://arxiv.org/abs/2202.01612v
1 (cit. on pp. 2, 14, 19).

[BM99] J. Bosch and P. Molin. “Software architecture design: Evaluation and
transformation.” In: Proceedings - ECBS 1999, IEEE Conference and
Workshop on Engineering of Computer-Based Systems (1999), pp. 4–10.
doi: 10.1109/ECBS.1999.755855 (cit. on pp. 10, 11).

[Bog+19] J. Bogner et al. “Microservices in Industry: Insights into Technologies,
Characteristics, and Software Quality.” In: Proceedings - 2019 IEEE In-
ternational Conference on Software Architecture - Companion, ICSA-C
2019 (May 2019). doi: 10.1109/ICSA-C.2019.00041 (cit. on p. 11).

[BWZ17] J. Bogner, S. Wagner, and A. Zimmermann. “Towards a Practical Main-
tainability Quality Model for Service- and Microservice-based Systems.”
In: Proceedings of the 11th European Conference on Software Architec-
ture: Companion Proceedings (2017). doi: 10.1145/3129790. url: https:
//doi.org/10.1145/3129790.3129816 (cit. on p. 10).

[CH13] Y. Cherdantseva and J. Hilton. “Information Security and Information
Assurance: Discussion about the Meaning, Scope, and Goals.” In: Or-
ganizational, Legal, and Technological Dimensions of Information Sys-
tem Administration. IGI Global, Sept. 2013. Chap. 10, pp. 167–198. isbn:
9781466645271. doi: 10.4018/978-1-4666-4526-4.CH010 (cit. on p. 13).

140

https://doi.org/10.1109/ISNCC52172.2021.9615638
https://doi.org/10.5555/800253.807736
https://doi.org/10.1145/1137702
https://doi.org/10.7717/PEERJ-CS.779/SUPP-2
https://doi.org/10.7717/PEERJ-CS.779/SUPP-2
https://peerj.com/articles/cs-779
https://doi.org/10.48550/arxiv.2202.01612
https://doi.org/10.48550/arxiv.2202.01612
https://arxiv.org/abs/2202.01612v1
https://arxiv.org/abs/2202.01612v1
https://doi.org/10.1109/ECBS.1999.755855
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1145/3129790
https://doi.org/10.1145/3129790.3129816
https://doi.org/10.1145/3129790.3129816
https://doi.org/10.4018/978-1-4666-4526-4.CH010

Bibliography

[Cha+22] A. Chatterjee et al. “SFTSDH: Applying Spring Security Framework with
TSD-Based OAuth2 to Protect Microservice Architecture APIs.” English.
In: IEEE Access 10 (2022), pp. 41900–41920. issn: 21693536. doi: 10.
1109/ACCESS.2022.3165548 (cit. on pp. 56, 57).

[CHC19] J. Chen, H. Huang, and H. Chen. “Informer: Irregular traffic detection for
containerized microservices RPC in the real world.” English. In: Proceed-
ings of the 4th ACM/IEEE Symposium on Edge Computing, SEC 2019.
1515 BROADWAY, NEW YORK, NY 10036-9998 USA: ASSOC COM-
PUTING MACHINERY, 2019, pp. 389–394. isbn: 9781450367332. doi:
10.1145/3318216.3363375. url: https://www.sciencedirect.com/
science/article/pii/S2667295222000022 (cit. on pp. 62, 118).

[Che+19] W. Chen et al. “API security at a glance.” In: IMCIC 2019 - 10th Inter-
national Multi-Conference on Complexity, Informatics and Cybernetics,
Proceedings. Vol. 1. International Institute of Informatics and Systemics,
IIIS, 2019, pp. 111–116. url: https://www.scopus.com/inward/record.
uri?eid=2-s2.0-85066017007&partnerID=40&md5=b2b4208ca79d9cda
c8754f2ae14acf2e (cit. on pp. 56, 62, 101).

[Chi+01] S. D. Chi et al. “Network Security Modeling and Cyber Attack Simulation
Methodology.” In: Information Security and Privacy. ACISP 2001. Lecture
Notes in Computer Science 2119 (July 2001), pp. 320–333. issn: 16113349.
doi: 10.1007/3-540-47719-5_26/COVER. url: https://link.springer
.com/chapter/10.1007/3-540-47719-5_26 (cit. on p. 54).

[Chr77] A. Christopher. A Pattern Language: Towns, Buildings, Construction
(Center for Environmental Structure). New York: Oxford University Press,
1977. Chap. Ch. 59. isbn: 0195019199 (cit. on p. 45).

[Cle+10] P. C. Clements et al. Documenting Software Architectures: Views and Be-
yond. 2nd ed. 6. Oct. 2010. isbn: 0321552687 (cit. on pp. 7, 11).

[CM78] J. P. Cavano and J. A. McCall. “A framework for the measurement of soft-
ware quality.” In: Proceedings of the Software Quality Assurance Workshop
on Functional and Performance Issues (Jan. 1978). doi: 10.1145/800283.
811113 (cit. on pp. 10, 21).

[CMJ15] B. Campbell, C. Mortimore, and M. Jones. Security Assertion Markup
Language (SAML) 2.0 Profile for OAuth 2.0 Client Authentication and
Authorization Grants. RFC 7522. May 2015. doi: 10.17487/RFC7522.
url: https://www.rfc-editor.org/info/rfc7522 (cit. on p. 56).

[Das+21] D. Das et al. “On automated RBAC assessment by constructing a cen-
tralized perspective for microservice mesh.” English. In: PeerJ Computer
Science 7 (Feb. 2021), pp. 1–24. issn: 23765992. doi: 10.7717/peerj-
cs.376 (cit. on p. 96).

141

https://doi.org/10.1109/ACCESS.2022.3165548
https://doi.org/10.1109/ACCESS.2022.3165548
https://doi.org/10.1145/3318216.3363375
https://www.sciencedirect.com/science/article/pii/S2667295222000022
https://www.sciencedirect.com/science/article/pii/S2667295222000022
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066017007&partnerID=40&md5=b2b4208ca79d9cdac8754f2ae14acf2e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066017007&partnerID=40&md5=b2b4208ca79d9cdac8754f2ae14acf2e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066017007&partnerID=40&md5=b2b4208ca79d9cdac8754f2ae14acf2e
https://doi.org/10.1007/3-540-47719-5_26/COVER
https://link.springer.com/chapter/10.1007/3-540-47719-5_26
https://link.springer.com/chapter/10.1007/3-540-47719-5_26
https://doi.org/10.1145/800283.811113
https://doi.org/10.1145/800283.811113
https://doi.org/10.17487/RFC7522
https://www.rfc-editor.org/info/rfc7522
https://doi.org/10.7717/peerj-cs.376
https://doi.org/10.7717/peerj-cs.376

Bibliography

[DD09] T. Dyba and T. Dingsoyr. “What do we know about agile software devel-
opment?” In: IEEE Software 26.5 (Aug. 2009), pp. 6–9. issn: 07407459.
doi: 10.1109/MS.2009.145 (cit. on p. 1).

[Dil+20] D. Dilshan et al. “MSChain: Blockchain based Decentralized Certificate
Transparency for Microservices.” In: MERCon 2020 - 6th International
Multidisciplinary Moratuwa Engineering Research Conference, Proceed-
ings. July 2020, pp. 1–6. isbn: 9781728190594. doi: 10.1109/MERCon
50084.2020.9185320 (cit. on p. 117).

[DJS19] D. Deogun, D. B. Johnsson, and D. Sawano. Secure By Design. 2019. isbn:
9781617294358 (cit. on p. 13).

[Dra+16] N. Dragoni et al. “Microservices: yesterday, today, and tomorrow.” In:
Present and Ulterior Software Engineering (June 2016). doi: 10.48550/
arxiv.1606.04036. arXiv: 1606.04036. url: https://arxiv.org/abs/
1606.04036v4 (cit. on pp. 2, 11).

[Fie+99] R. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616.
June 1999. doi: 10.17487/RFC2616. url: https://www.rfc-editor.
org/info/rfc2616 (cit. on pp. 11, 56).

[FK92] D. Ferraiolo and R. Kuhn. “Role-Based Access Controls.” In: Proceedings
of the 15th National Computer Security Conference (Oct. 1992), pp. 554–
563. url: https://csrc.nist.gov/publications/detail/conference
-paper/1992/10/13/role-based-access-controls (cit. on p. 57).

[FKS17] D. Fett, R. Kusters, and G. Schmitz. “The Web SSO Standard OpenID
Connect: In-depth Formal Security Analysis and Security Guidelines.” In:
Proceedings - IEEE Computer Security Foundations Symposium (Sept.
2017). issn: 19401434. doi: 10.1109/CSF.2017.20. arXiv: 1704.08539
(cit. on p. 56).

[FL14] M. Fowler and J. Lewis. Microservices. 2014. url: https://martinfowl
er.com/articles/microservices.html (visited on 10/19/2022) (cit. on
pp. 2, 11, 12, 59).

[FM10] R. Feldt and A. Magazinius. “Validity Threats in Empirical Software En-
gineering Research-An Initial Survey.” In: Proceedings of the 22nd Inter-
national Conference on Software Engineering & Knowledge Engineering
(SEKE’2010). Redwood City, San Francisco Bay, CA, USA, Jan. 2010,
pp. 374–379 (cit. on pp. 82, 84).

[Fow06] M. Fowler. Writing Software Patterns. Aug. 2006. url: https : / / ww
w.martinfowler.com/articles/writingPatterns.html (visited on
08/04/2022) (cit. on p. 45).

[Gam+94] E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional, Nov. 1994. isbn: 0201633612 (cit.
on pp. 24, 45).

142

https://doi.org/10.1109/MS.2009.145
https://doi.org/10.1109/MERCon50084.2020.9185320
https://doi.org/10.1109/MERCon50084.2020.9185320
https://doi.org/10.48550/arxiv.1606.04036
https://doi.org/10.48550/arxiv.1606.04036
https://arxiv.org/abs/1606.04036
https://arxiv.org/abs/1606.04036v4
https://arxiv.org/abs/1606.04036v4
https://doi.org/10.17487/RFC2616
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc2616
https://csrc.nist.gov/publications/detail/conference-paper/1992/10/13/role-based-access-controls
https://csrc.nist.gov/publications/detail/conference-paper/1992/10/13/role-based-access-controls
https://doi.org/10.1109/CSF.2017.20
https://arxiv.org/abs/1704.08539
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://www.martinfowler.com/articles/writingPatterns.html
https://www.martinfowler.com/articles/writingPatterns.html

Bibliography

[GS19] C. Gerking and D. Schubert. “Component-based refinement and verifica-
tion of information-flow security policies for cyber-physical microservice
architectures.” English. In: Proceedings - 2019 IEEE International Con-
ference on Software Architecture, ICSA 2019. 345 E 47TH ST, NEW
YORK, NY 10017 USA: IEEE, 2019, pp. 61–70. isbn: 9781728105284.
doi: 10.1109/ICSA.2019.00015 (cit. on p. 95).

[GS94] D. Garlan and M. Shaw. “An Introduction to Software Architecture.” In:
(1994) (cit. on pp. 7, 11).

[Ham18] M. H. Hamilton. Keynote: The Language as a Software Engineer. May
2018. url: https://www.youtube.com/watch?v=ZbVOF0Uk5lU (visited
on 10/11/2022) (cit. on p. 1).

[Ham19] M. Hamzehloui. “A Study on the Most Prominent Areas of Research in Mi-
croservices.” In: International Journal of Machine Learning and Comput-
ing 9.2 (Apr. 2019), pp. 242–247. doi: 10.18178/ijmlc.2019.9.2.793.
url: https://www.researchgate.net/publication/333033011 (cit. on
p. 2).

[Har12] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749. Oct. 2012.
doi: 10.17487/RFC6749. url: https://www.rfc-editor.org/info/
rfc6749 (cit. on pp. 56, 123).

[Hof15] T. Hoff. Deep Lessons from Google and eBay on Building Ecosystems of
Microservices. Dec. 2015. url: http://highscalability.com/blog/
2015/12/1/deep-lessons-from-google-and-ebay-on-building-
ecosystems-of.html (visited on 10/11/2022) (cit. on p. 1).

[Hu+19] V. Hu et al. Guide to Attribute Based Access Control (ABAC) Definition
and Considerations. Tech. rep. Gaithersburg, MD: National Institute of
Standards and Technology, Aug. 2019. doi: 10.6028/NIST.SP.800-
162. url: https://csrc.nist.gov/publications/detail/sp/800-
162/final (cit. on p. 57).

[HY20] A. Hannousse and S. Yahiouche. “Securing Microservices and Microser-
vice Architectures: A Systematic Mapping Study.” In: Computer Science
Review 41 (Mar. 2020). doi: 10.1016/j.cosrev.2021.100415. url:
http://arxiv.org/abs/2003.07262 (cit. on pp. 14, 18).

[IEC21] Understanding IEC 62443 | IEC. Feb. 2021. url: https://www.iec.ch/
blog/understanding-iec-62443 (visited on 11/17/2022) (cit. on p. 72).

[ISO11a] ISO/IEC 25010:2011 Systems and software engineering — Systems and
software Quality Requirements and Evaluation (SQuaRE) — System and
software quality models. Tech. rep. International Organization for Stan-
dardization, Mar. 2011. url: https://www.iso.org/standard/35733.
html (cit. on pp. 2, 10, 13, 20, 21, 63).

143

https://doi.org/10.1109/ICSA.2019.00015
https://www.youtube.com/watch?v=ZbVOF0Uk5lU
https://doi.org/10.18178/ijmlc.2019.9.2.793
https://www.researchgate.net/publication/333033011
https://doi.org/10.17487/RFC6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html
http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html
http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html
https://doi.org/10.6028/NIST.SP.800-162
https://doi.org/10.6028/NIST.SP.800-162
https://csrc.nist.gov/publications/detail/sp/800-162/final
https://csrc.nist.gov/publications/detail/sp/800-162/final
https://doi.org/10.1016/j.cosrev.2021.100415
http://arxiv.org/abs/2003.07262
https://www.iec.ch/blog/understanding-iec-62443
https://www.iec.ch/blog/understanding-iec-62443
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html

Bibliography

[ISO11b] ISO - ISO/IEC/IEEE 42010:2011 - Systems and software engineering —
Architecture description. Tech. rep. International Organization for Stan-
dardization, Dec. 2011. url: https://www.iso.org/standard/50508.
html (cit. on pp. 7–9, 52, 80).

[ISO13] ISO/IEC 27001:2013 - Information technology — Security techniques —
Information security management systems — Requirements. Tech. rep.
International Organization for Standardization, Oct. 2013. url: https:
//www.iso.org/standard/54534.html (cit. on p. 72).

[ISO19] ISO - ISO/IEC 25020:2019 - Systems and software engineering — Systems
and software Quality Requirements and Evaluation (SQuaRE) — Quality
measurement framework. Tech. rep. International Organization for Stan-
dardization, July 2019. url: https://www.iso.org/standard/72117.
html (cit. on pp. 10, 21).

[ISO91] ISO - ISO/IEC 9126:1991 - Software enginnering — Product quality.
Tech. rep. International Organization for Standardization, Dec. 1991. url:
https://www.iso.org/standard/16722.html (cit. on p. 21).

[Jac+22] S. Jacob et al. “Anomalous distributed traffic: Detecting cyber security
attacks amongst microservices using graph convolutional networks.” In:
Computers and Security 118 (2022), p. 102728. issn: 01674048. doi: 10.
1016/j.cose.2022.102728. url: https://www.sciencedirect.com/
science/article/pii/S0167404822001237 (cit. on pp. 50, 61, 62, 99,
119).

[JBP18] K. Jander, L. Braubach, and A. Pokahr. “Defense-in-depth and Role Au-
thentication for Microservice Systems.” English. In: Procedia Computer
Science. Ed. by E. Shakshuki and A. Yasar. Vol. 130. Procedia Com-
puter Science. SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000
AE AMSTERDAM, NETHERLANDS: ELSEVIER SCIENCE BV, 2018,
pp. 456–463. doi: 10.1016/j.procs.2018.04.047 (cit. on p. 114).

[JBS15] M. Jones, J. Bradley, and N. Sakimura. JSON Web Token (JWT). RFC
7519. May 2015. doi: 10.17487/RFC7519. url: https://www.rfc-
editor.org/info/rfc7519 (cit. on p. 56).

[JLE18] L. V. Jánoky, J. Levendovszky, and P. Ekler. “An analysis on the re-
voking mechanisms for JSON Web Tokens.” English. In: International
Journal of Distributed Sensor Networks 14.9 (Sept. 2018). issn: 15501477.
doi: 10.1177/1550147718801535. url: https://www.scopus.com/
inward/record.uri?eid=2- s2.0- 85054150323&doi=10.1177%2F
1550147718801535&partnerID=40&md5=e1ce1659d7827487cdf00605b
466a5ad (cit. on pp. 45, 71, 104, 112).

144

https://www.iso.org/standard/50508.html
https://www.iso.org/standard/50508.html
https://www.iso.org/standard/54534.html
https://www.iso.org/standard/54534.html
https://www.iso.org/standard/72117.html
https://www.iso.org/standard/72117.html
https://www.iso.org/standard/16722.html
https://doi.org/10.1016/j.cose.2022.102728
https://doi.org/10.1016/j.cose.2022.102728
https://www.sciencedirect.com/science/article/pii/S0167404822001237
https://www.sciencedirect.com/science/article/pii/S0167404822001237
https://doi.org/10.1016/j.procs.2018.04.047
https://doi.org/10.17487/RFC7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://doi.org/10.1177/1550147718801535
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054150323&doi=10.1177%2F1550147718801535&partnerID=40&md5=e1ce1659d7827487cdf00605b466a5ad
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054150323&doi=10.1177%2F1550147718801535&partnerID=40&md5=e1ce1659d7827487cdf00605b466a5ad
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054150323&doi=10.1177%2F1550147718801535&partnerID=40&md5=e1ce1659d7827487cdf00605b466a5ad
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054150323&doi=10.1177%2F1550147718801535&partnerID=40&md5=e1ce1659d7827487cdf00605b466a5ad

Bibliography

[JQL21] S. Jacob, Y. Qiao, and B. Lee. “Detecting cyber security attacks against a
microservices application using distributed tracing.” English. In: ICISSP
2021 - Proceedings of the 7th International Conference on Information
Systems Security and Privacy. Ed. by P. Mori, G. Lenzini, and S. Fur-
nell. AV D MANUELL, 27A 2 ESQ, SETUBAL, 2910-595, PORTUGAL:
SCITEPRESS, 2021, pp. 588–595. isbn: 9789897584916. doi: 10.5220/
0010308905880595 (cit. on pp. 50, 61, 62, 99, 119).

[Kal+20] D. Kallergis et al. “CAPODAZ: A containerised authorisation and policy-
driven architecture using microservices.” English. In: Ad Hoc Networks 104
(July 2020). issn: 15708705. doi: 10.1016/j.adhoc.2020.102153 (cit. on
p. 113).

[Kan03] K. Kandt. “Software design principles and practices.” In: (2003). url:
https://trs.jpl.nasa.gov/bitstream/handle/2014/10550/02-
2593.pdf?sequence=1 (cit. on p. 41).

[KC07] B. Kitchenham and S. Charters. Guidelines for performing Systematic Lit-
erature Reviews in Software Engineering. Tech. rep. Software Engineering
Group, School of Computer Science, Mathematics, Keele University, and
Department of Computer Science, University of Durham, July 2007. doi:
10.6028/NIST.SP.800-204 (cit. on pp. 4, 29–31, 37, 39, 40, 51, 80, 83,
85).

[KG20] R. Kumar and R. Goyal. “Modeling continuous security: A conceptual
model for automated DevSecOps using open-source software over cloud
(ADOC).” In: Computers & Security 97 (Oct. 2020). issn: 0167-4048. doi:
10.1016/J.COSE.2020.101967 (cit. on p. 60).

[KG99] L. Kohnfelder and P. Garg. The Threats to our Products. Tech. rep. Mi-
crosoft, 1999 (cit. on pp. 13, 21, 23, 54, 72).

[Kim+21] G. Kim et al. The DevOps Handbook: How to Create World-Class Agility,
Reliability, & Security in Technology Organizations. 2nd ed. IT Revolution
Press, Dec. 2021. isbn: 1950508404 (cit. on p. 2).

[Kit+97] B. Kitchenham et al. “The SQUID approach to defining a quality model.”
In: Software Quality Journal 6 (3 1997). issn: 15731367. doi: 10.1023/A:
1018516103435 (cit. on pp. 20, 21).

[KK21] A. Kotov and J. Klein. SEI Software Architecture Principles and Practices
Overview Training. Tech. rep. Pittsburgh, PA 15213: Software Engineering
Institute, Carnegie Mellon University, Mar. 2021. url: https://apps.
dtic.mil/sti/citations/AD1145705 (cit. on pp. 14, 15, 43).

[KMM18] M. Kalske, N. Mäkitalo, and T. Mikkonen. “Challenges When Moving from
Monolith to Microservice Architecture.” In: Current Trends in Web En-
gineering. Springer International Publishing, 2018. isbn: 9783319744322.
doi: 10.1007/978-3-319-74433-9_3/FIGURES/6. url: https://link.
springer.com/chapter/10.1007/978-3-319-74433-9_3 (cit. on p. 2).

145

https://doi.org/10.5220/0010308905880595
https://doi.org/10.5220/0010308905880595
https://doi.org/10.1016/j.adhoc.2020.102153
https://trs.jpl.nasa.gov/bitstream/handle/2014/10550/02-2593.pdf?sequence=1
https://trs.jpl.nasa.gov/bitstream/handle/2014/10550/02-2593.pdf?sequence=1
https://doi.org/10.6028/NIST.SP.800-204
https://doi.org/10.1016/J.COSE.2020.101967
https://doi.org/10.1023/A:1018516103435
https://doi.org/10.1023/A:1018516103435
https://apps.dtic.mil/sti/citations/AD1145705
https://apps.dtic.mil/sti/citations/AD1145705
https://doi.org/10.1007/978-3-319-74433-9_3/FIGURES/6
https://link.springer.com/chapter/10.1007/978-3-319-74433-9_3
https://link.springer.com/chapter/10.1007/978-3-319-74433-9_3

Bibliography

[Kru95] P. Kruchten. “Architectural Blueprints-The ”4+1” View Model of Soft-
ware Architecture.” In: IEEE Software 12.6 (1995). doi: 10.1109/52.
469759 (cit. on p. 1).

[Li+21] S. Li et al. “Understanding and addressing quality attributes of microser-
vices architecture: A Systematic literature review.” In: Information and
Software Technology 131 (Mar. 2021). issn: 0950-5849. doi: 10.1016/J.
INFSOF.2020.106449 (cit. on pp. 2, 19).

[Liu+20] A. Liu et al. “A MRP-based policy conflict resolution mechanism for
micro-service composition.” In: Proceedings - 2020 7th International Con-
ference on Information Science and Control Engineering, ICISCE 2020.
Dec. 2020, pp. 1556–1564. isbn: 9781728164069. doi: 10.1109/ICISCE
50968.2020.00309 (cit. on p. 94).

[LL13] J. Ludewig and H. Lichter. Software Engineering : Grundlagen, Men-
schen, Prozesse, Techniken. 3rd ed. Dpunkt.verlag GmbH, Apr. 2013.
isbn: 3864900921 (cit. on p. 54).

[Lu+17] D. Lu et al. “A Secure Microservice Framework for IoT.” English. In:
Proceedings - 11th IEEE International Symposium on Service-Oriented
System Engineering, SOSE 2017. 345 E 47TH ST, NEW YORK, NY
10017 USA: IEEE, 2017, pp. 9–18. isbn: 9781509063208. doi: 10.1109/
SOSE.2017.27 (cit. on p. 112).

[MA19] G. Márquez and H. Astudillo. “Identifying availability tactics to support
security architectural design of microservice-based systems.” English. In:
ACM International Conference Proceeding Series. Ed. by L. Duchien et al.
Vol. 2. ECSA ’19. New York, NY, USA: Association for Computing Ma-
chinery, 2019, pp. 123–131. isbn: 9781450371421. doi: 10.1145/3344948.
3344996. url: https://doi.org/10.1145/3344948.3344996 (cit. on
pp. 87, 101–104).

[Mar08] R. C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
1st ed. 6. Prentice Hall, Aug. 2008. isbn: 9780132350884 (cit. on p. 41).

[MCF21a] N. Mateus-Coelho, M. Cruz-Cunha, and L. G. Ferreira. “Security in Mi-
croservices Architectures.” In: Procedia Computer Science 181 (Jan. 2021).
issn: 1877-0509. doi: 10.1016/J.PROCS.2021.01.320 (cit. on p. 14).

[MCF21b] N. Mateus-Coelho, M. Cruz-Cunha, and L. G. Ferreira. “Security in mi-
croservices architectures.” English. In: Procedia Computer Science. Ed.
by M. M. CruzCunha et al. Vol. 181. Procedia Computer Science. SARA
BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM,
NETHERLANDS: ELSEVIER SCIENCE BV, 2021, pp. 1225–1236. doi:
10.1016/j.procs.2021.01.320 (cit. on pp. 56, 93).

[McG06] G. McGraw. Software Security: Building Security In. Addison-Wesley Pro-
fessional, Jan. 2006. isbn: 9780321356703 (cit. on p. 12).

146

https://doi.org/10.1109/52.469759
https://doi.org/10.1109/52.469759
https://doi.org/10.1016/J.INFSOF.2020.106449
https://doi.org/10.1016/J.INFSOF.2020.106449
https://doi.org/10.1109/ICISCE50968.2020.00309
https://doi.org/10.1109/ICISCE50968.2020.00309
https://doi.org/10.1109/SOSE.2017.27
https://doi.org/10.1109/SOSE.2017.27
https://doi.org/10.1145/3344948.3344996
https://doi.org/10.1145/3344948.3344996
https://doi.org/10.1145/3344948.3344996
https://doi.org/10.1016/J.PROCS.2021.01.320
https://doi.org/10.1016/j.procs.2021.01.320

Bibliography

[Mel21] R. Melton. “Securing a Cloud-Native C2 Architecture Using SSO and
JWT.” In: IEEE Aerospace Conference Proceedings. Vol. 2021-March. Mar.
2021, pp. 1–8. isbn: 9781728174365. doi: 10.1109/AERO50100.2021.
9438218 (cit. on pp. 42, 56, 58, 70, 71, 93, 102).

[Mie+10] A. Miede et al. “A generic metamodel for IT security - Attack modeling
for distributed systems.” In: ARES 2010 - 5th International Conference on
Availability, Reliability, and Security (2010). doi: 10.1109/ARES.2010.17
(cit. on pp. 12, 52).

[MMR14] J. P. Miguel, D. Mauricio, and G. Rodríguez. “A Review of Software Qual-
ity Models for the Evaluation of Software Products.” In: International
Journal of Software Engineering & Applications (IJSEA) 5 (6 2014). doi:
10.5121/ijsea.2014.5603 (cit. on pp. 10, 20).

[MR22] N. Mohammadi and A. Rasoolzadegan. “A Pattern-aware Design and Im-
plementation Guideline for Microservice-based Systems.” In: 2022 27th
International Computer Conference, Computer Society of Iran (CSICC).
Feb. 2022, pp. 1–6. doi: 10.1109/csicc55295.2022.9780516 (cit. on
pp. 108, 112).

[MU15] M. M. Morana and T. Ucedavelez. Risk Centric Threat Modeling: Process
for Attack Simulation and Threat Analysis. Wiley, May 2015, p. 696. isbn:
978-0-470-50096-5. url: https://www.wiley.com/en-us/Risk+Centr
ic+Threat+Modeling%3A+Process+for+Attack+Simulation+and+
Threat+Analysis-p-9780470500965 (cit. on pp. 13, 54, 72).

[Müs+17] D. Müssig et al. “Highly scalable microservice-based enterprise architec-
ture for smart ecosystems in hybrid cloud environments.” English. In:
ICEIS 2017 - Proceedings of the 19th International Conference on En-
terprise Information Systems. Ed. by S. Hammoudi et al. Vol. 3. AV D
MANUELL, 27A 2 ESQ, SETUBAL, 2910-595, PORTUGAL: SciTePress,
2017, pp. 454–459. isbn: 9789897582493. doi: 10.5220/0006373304540459.
url: https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85023201542&doi=10.5220%2F0006373304540459&partnerID=40&md5=
1300da5e850a197ac1fbb22d670561dd (cit. on pp. 94, 107, 112).

[NC19a] P. Nkomo and M. Coetzee. “Development Activities, Tools and Techniques
of Secure Microservices Compositions.” English. In: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics). Ed. by S. H. Heng and J. Lopez.
Vol. 11879 LNCS. Lecture Notes in Computer Science. GEWERBESTRASSE
11, CHAM, CH-6330, SWITZERLAND: SPRINGER INTERNATIONAL
PUBLISHING AG, 2019, pp. 423–433. isbn: 9783030343385. doi: 10.
1007/978-3-030-34339-2_24 (cit. on pp. 91–93, 95).

147

https://doi.org/10.1109/AERO50100.2021.9438218
https://doi.org/10.1109/AERO50100.2021.9438218
https://doi.org/10.1109/ARES.2010.17
https://doi.org/10.5121/ijsea.2014.5603
https://doi.org/10.1109/csicc55295.2022.9780516
https://www.wiley.com/en-us/Risk+Centric+Threat+Modeling%3A+Process+for+Attack+Simulation+and+Threat+Analysis-p-9780470500965
https://www.wiley.com/en-us/Risk+Centric+Threat+Modeling%3A+Process+for+Attack+Simulation+and+Threat+Analysis-p-9780470500965
https://www.wiley.com/en-us/Risk+Centric+Threat+Modeling%3A+Process+for+Attack+Simulation+and+Threat+Analysis-p-9780470500965
https://doi.org/10.5220/0006373304540459
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85023201542&doi=10.5220%2F0006373304540459&partnerID=40&md5=1300da5e850a197ac1fbb22d670561dd
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85023201542&doi=10.5220%2F0006373304540459&partnerID=40&md5=1300da5e850a197ac1fbb22d670561dd
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85023201542&doi=10.5220%2F0006373304540459&partnerID=40&md5=1300da5e850a197ac1fbb22d670561dd
https://doi.org/10.1007/978-3-030-34339-2_24
https://doi.org/10.1007/978-3-030-34339-2_24

Bibliography

[NC19b] P. Nkomo and M. Coetzee. “Software Development Activities for Secure
Microservices.” English. In: Computational Science and Its Applications –
ICCSA 2019. Ed. by S. Misra et al. Vol. 11623 LNCS. Lecture Notes in
Computer Science. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZER-
LAND: Springer International Publishing, 2019, pp. 573–585. isbn: 9783030243074.
doi: 10.1007/978-3-030-24308-1_46 (cit. on pp. 56, 62, 71, 94, 97, 101,
102).

[Neh+19] A. Nehme et al. “Securing Microservices.” English. In: IT Professional
21.1 (Jan. 2019), pp. 42–49. issn: 1941045X. doi: 10.1109/MITP.2018.
2876987 (cit. on p. 112).

[New15] S. Newman. Building microservices: designing fine-grained systems. 1st ed.
O’Reilly Media, 2015. isbn: 1491950358 (cit. on pp. 11, 12).

[Ngu20] C. D. Nguyen. A Design Analysis of Cloud-based Microservices Archi-
tecture at Netflix. May 2020. url: https : / / medium . com / swlh / a -
design-analysis-of-cloud-based-microservices-architecture-
at-netflix-98836b2da45f (visited on 10/11/2022) (cit. on p. 1).

[NL21] S. Nadgowda and L. Luan. “Tapiserí: Blueprint to modernize DevSecOps
for real world.” In: WoC 2021 - Proceedings of the 2021 7th International
Workshop on Container Technologies and Container Clouds. Association
for Computing Machinery, Inc, 2021, pp. 13–18. isbn: 9781450391719. doi:
10.1145/3493649.3493655. url: https://www.scopus.com/inward/
record.uri?eid=2- s2.0- 85121746017&doi=10.1145%2F3493649.
3493655&partnerID=40&md5=cc09617d696d6146c374da9d785be48c (cit.
on pp. 43, 95).

[OMB07] L. O’Brien, P. Merson, and L. Bass. “Quality attributes for service-oriented
architectures.” In: Proceedings - ICSE 2007 Workshops: International Work-
shop on Systems Development in SOA Environments, SDSOA’07 (2007),
pp. 3–9. doi: 10.1109/SDSOA.2007.10 (cit. on p. 10).

[OMG17] Unified Modeling Language. Tech. rep. Object Management Group, Dec.
2017 (cit. on pp. 9, 54, 77, 82).

[OMG19] OMG Systems Modeling Language (OMG SysML™). Tech. rep. Object
Management Group, Nov. 2019. url: https://www.omg.org/spec/
SysML/1.6/ (cit. on p. 72).

[Osm+19] A. Osman et al. “Sandnet: Towards High Quality of Deception in Container-
Based Microservice Architectures.” In: IEEE International Conference on
Communications. Vol. 2019-May. May 2019, pp. 1–7. isbn: 9781538680889.
doi: 10.1109/ICC.2019.8761171 (cit. on pp. 62, 98).

[OWASP19] Application Security Verification Standard 4.0. Tech. rep. OWASP The
Open Web Application Security Project, Mar. 2019 (cit. on p. 75).

148

https://doi.org/10.1007/978-3-030-24308-1_46
https://doi.org/10.1109/MITP.2018.2876987
https://doi.org/10.1109/MITP.2018.2876987
https://medium.com/swlh/a-design-analysis-of-cloud-based-microservices-architecture-at-netflix-98836b2da45f
https://medium.com/swlh/a-design-analysis-of-cloud-based-microservices-architecture-at-netflix-98836b2da45f
https://medium.com/swlh/a-design-analysis-of-cloud-based-microservices-architecture-at-netflix-98836b2da45f
https://doi.org/10.1145/3493649.3493655
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121746017&doi=10.1145%2F3493649.3493655&partnerID=40&md5=cc09617d696d6146c374da9d785be48c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121746017&doi=10.1145%2F3493649.3493655&partnerID=40&md5=cc09617d696d6146c374da9d785be48c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121746017&doi=10.1145%2F3493649.3493655&partnerID=40&md5=cc09617d696d6146c374da9d785be48c
https://doi.org/10.1109/SDSOA.2007.10
https://www.omg.org/spec/SysML/1.6/
https://www.omg.org/spec/SysML/1.6/
https://doi.org/10.1109/ICC.2019.8761171

Bibliography

[OWASP20] OWASP SAMM v2.0. Tech. rep. OWASP The Open Web Application
Security Project, 2020. url: https://owaspsamm.org/model/ (cit. on
pp. 21, 22).

[OY17] C. Otterstad and T. Yarygina. “Low-level exploitation mitigation by di-
verse microservices.” English. In: Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics). Ed. by F. DePaoli, S. Schulte, and E. B. Johnsen.
Vol. 10465 LNCS. Lecture Notes in Computer Science. GEWERBESTRASSE
11, CHAM, CH-6330, SWITZERLAND: SPRINGER INTERNATIONAL
PUBLISHING AG, 2017, pp. 49–56. isbn: 9783319672618. doi: 10.1007/
978-3-319-67262-5_4 (cit. on pp. 62, 92, 93).

[PD18] M. O. Pahl and L. Donini. “Securing IoT microservices with certificates.”
English. In: IEEE/IFIP Network Operations and Management Sympo-
sium: Cognitive Management in a Cyber World, NOMS 2018. IEEE IFIP
Network Operations and Management Symposium. 345 E 47TH ST, NEW
YORK, NY 10017 USA: IEEE, 2018, pp. 1–5. isbn: 9781538634165. doi:
10.1109/NOMS.2018.8406189 (cit. on p. 99).

[PD19] M. O. Pahl and L. Donini. “Giving IoT services an identity and changeable
attributes.” English. In: 2019 IFIP/IEEE Symposium on Integrated Net-
work and Service Management, IM 2019. 345 E 47TH ST, NEW YORK,
NY 10017 USA: IEEE, 2019, pp. 455–461. isbn: 9783903176157 (cit. on
p. 99).

[Per+19] A. Pereira-Vale et al. “Security mechanisms used in microservices-based
systems: A systematic mapping.” In: Proceedings - 2019 45th Latin Amer-
ican Computing Conference, CLEI 2019. 2019. isbn: 9781728155746. doi:
10.1109/CLEI47609.2019.235060 (cit. on pp. 14, 19, 31).

[Per+21] A. Pereira-Vale et al. “Security in microservice-based systems: A Multivo-
cal literature review.” In: Computers and Security 103 (Apr. 2021). issn:
01674048. doi: 10.1016/J.COSE.2021.102200 (cit. on pp. 14, 19).

[PJ16] C. Pahl and P. Jamshidi. “Microservices: A systematic mapping study.”
In: Proceedings of the 6th International Conference on Cloud Computing
and Services Science. Vol. 1. SciTePress, Apr. 2016. isbn: 9789897581823.
doi: 10.5220/0005785501370146 (cit. on p. 18).

[PJ19] D. Preuveneers and W. Joosen. “Towards multi-party policy-based ac-
cess control in federations of cloud and edge microservices.” English. In:
Proceedings - 4th IEEE European Symposium on Security and Privacy
Workshops, EUROS and PW 2019. 345 E 47TH ST, NEW YORK, NY
10017 USA: IEEE, 2019, pp. 29–38. isbn: 9781728130262. doi: 10.1109/
EuroSPW.2019.00010 (cit. on pp. 57, 113).

149

https://owaspsamm.org/model/
https://doi.org/10.1007/978-3-319-67262-5_4
https://doi.org/10.1007/978-3-319-67262-5_4
https://doi.org/10.1109/NOMS.2018.8406189
https://doi.org/10.1109/CLEI47609.2019.235060
https://doi.org/10.1016/J.COSE.2021.102200
https://doi.org/10.5220/0005785501370146
https://doi.org/10.1109/EuroSPW.2019.00010
https://doi.org/10.1109/EuroSPW.2019.00010

Bibliography

[PL21] C. Pasomsup and Y. Limpiyakorn. “HT-RBAC: A Design of Role-based
Access Control Model for Microservice Security Manager.” In: Proceedings
- 2021 International Conference on Big Data Engineering and Education,
BDEE 2021. Aug. 2021, pp. 177–181. isbn: 9781665439572. doi: 10.1109/
BDEE52938.2021.00038 (cit. on p. 110).

[Pon+21] R. P. Pontarolli et al. “Towards security mechanisms for an industrial
microservice-oriented architecture.” In: 2021 14th IEEE International Con-
ference on Industry Applications, INDUSCON 2021 - Proceedings. Aug.
2021, pp. 679–685. isbn: 9781665441186. doi: 10.1109/INDUSCON51756.
2021.9529415 (cit. on pp. 105, 106, 112).

[PS19] T. Pradeep Pai and K. L. Shashikala. “Smart City Services - Challenges
and Approach.” In: Proceedings of the International Conference on Ma-
chine Learning, Big Data, Cloud and Parallel Computing: Trends, Pre-
spectives and Prospects, COMITCon 2019. Institute of Electrical and
Electronics Engineers Inc., Feb. 2019, pp. 553–558. isbn: 9781728102115.
doi: 10.1109/COMITCon.2019.8862243. url: https://www.scopus.
com/inward/record.uri?eid=2-s2.0-85074132448&doi=10.1109%
2FCOMITCon.2019.8862243&partnerID=40&md5=46a2e29e8ce7f3b9b
9035f554ddb8e97 (cit. on pp. 45, 71, 104).

[PW92] D. E. Perry and A. L. Wolf. “Foundations for the study of software ar-
chitecture.” In: ACM SIGSOFT Software Engineering Notes 17.4 (Oct.
1992). issn: 0163-5948. doi: 10 . 1145 / 141874 . 141884. url: https :
//dl.acm.org/doi/abs/10.1145/141874.141884 (cit. on pp. 1, 7).

[Rah+21] A. Rahman et al. “Security Smells in Ansible and Chef Scripts.” In: ACM
Transactions on Software Engineering and Methodology (TOSEM) 30.1
(Jan. 2021), pp. 1–31. issn: 15577392. doi: 10.1145/3408897. arXiv:
1907.07159. url: https://dl.acm.org/doi/10.1145/3408897 (cit. on
p. 61).

[RD08] E. Rescorla and T. Dierks. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246. Aug. 2008. doi: 10.17487/RFC5246. url: https:
//www.rfc-editor.org/info/rfc5246 (cit. on pp. 56, 71, 72, 124).

[Ric19] C. Richardson. Microservices Patterns. 2019. isbn: 9781617294549. url:
https://learning.oreilly.com/library/view/microservices-patt
erns/9781617294549/ (cit. on p. 59).

[RM16] C. Robson and K. McCartan. Real World Research: A Resource for Users
of Social Research Methods in Applied Settings. 4th ed. Wiley, Jan. 2016.
isbn: 978-1118745236 (cit. on p. 65).

[RMO18] R. Ross, M. McEvilley, and J. C. Oren. Systems Security Engineering:
Considerations for a Multidisciplinary Approach in the Engineering of
Trustworthy Secure Systems. Tech. rep. Gaithersburg, MD: National In-
stitute of Standards and Technology, Mar. 2018. doi: 10.6028/NIST.SP.

150

https://doi.org/10.1109/BDEE52938.2021.00038
https://doi.org/10.1109/BDEE52938.2021.00038
https://doi.org/10.1109/INDUSCON51756.2021.9529415
https://doi.org/10.1109/INDUSCON51756.2021.9529415
https://doi.org/10.1109/COMITCon.2019.8862243
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074132448&doi=10.1109%2FCOMITCon.2019.8862243&partnerID=40&md5=46a2e29e8ce7f3b9b9035f554ddb8e97
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074132448&doi=10.1109%2FCOMITCon.2019.8862243&partnerID=40&md5=46a2e29e8ce7f3b9b9035f554ddb8e97
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074132448&doi=10.1109%2FCOMITCon.2019.8862243&partnerID=40&md5=46a2e29e8ce7f3b9b9035f554ddb8e97
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074132448&doi=10.1109%2FCOMITCon.2019.8862243&partnerID=40&md5=46a2e29e8ce7f3b9b9035f554ddb8e97
https://doi.org/10.1145/141874.141884
https://dl.acm.org/doi/abs/10.1145/141874.141884
https://dl.acm.org/doi/abs/10.1145/141874.141884
https://doi.org/10.1145/3408897
https://arxiv.org/abs/1907.07159
https://dl.acm.org/doi/10.1145/3408897
https://doi.org/10.17487/RFC5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://learning.oreilly.com/library/view/microservices-patterns/9781617294549/
https://learning.oreilly.com/library/view/microservices-patterns/9781617294549/
https://doi.org/10.6028/NIST.SP.800-160V1
https://doi.org/10.6028/NIST.SP.800-160V1

Bibliography

800-160V1. url: https://csrc.nist.gov/publications/detail/sp/
800-160/vol-1/final (cit. on p. 63).

[RS16] C. Richardson and F. Smith. Microservices: From Design to Deployment.
2016 (cit. on p. 11).

[SB15] W. Stallings and L. Brown. Computer Security Principles and Practice.
3rd ed. Pearson, 2015. isbn: 9780133773927 (cit. on pp. 10, 13, 56).

[SC06] M. Shaw and P. Clements. “The golden age of software architecture.” In:
IEEE Software 23.2 (Mar. 2006), pp. 31–39. issn: 07407459. doi: 10.
1109/MS.2006.58 (cit. on p. 1).

[Sch06] R. A. Schrenker. “Software engineering for future healthcare and clinical
systems.” In: Computer 39.4 (Apr. 2006), pp. 26–32. issn: 00189162. doi:
10.1109/MC.2006.139 (cit. on p. 1).

[Sch99] B. Schneier. Attack Trees - Schneier on Security. 1999. url: https://
www.schneier.com/academic/archives/1999/12/attack_trees.html
(visited on 08/31/2022) (cit. on pp. 13, 21, 24).

[SEI10] What is your definition of software architecture? Tech. rep. Software En-
gineering Institute, Carnegie Mellon University, Dec. 2010 (cit. on p. 7).

[SF17] M. H. Syed and E. B. Fernandez. “The container manager pattern.” En-
glish. In: ACM International Conference Proceeding Series. Vol. Part
F1320. 1515 BROADWAY, NEW YORK, NY 10036-9998 USA: ASSOC
COMPUTING MACHINERY, 2017. isbn: 9781450348485. doi: 10.1145/
3147704.3147735 (cit. on p. 109).

[Shi07] R. W. Shirey. Internet Security Glossary, Version 2. RFC 4949. Aug. 2007.
doi: 10.17487/RFC4949. url: https://www.rfc-editor.org/info/
rfc4949 (cit. on pp. 2, 12, 13, 38, 55, 57, 61).

[Sho14] A. Shostack. Threat Modeling: Designing for Security. 1st ed. May. Wiley,
Feb. 2014. isbn: 1118809998 (cit. on pp. 2, 13, 54, 70).

[Sim05] K. D. Simon. “The value of open standards and open-source software in
government environments.” In: IBM Systems Journal 44.2 (2005), pp. 227–
238. issn: 00188670. doi: 10.1147/SJ.442.0227 (cit. on p. 1).

[SKI19] S. Suneja, A. Kanso, and C. Isci. “Can container fusion be securely achieved?”
In: WOC 2019 - Proceedings of the 2019 5th International Workshop on
Container Technologies and Container Clouds, Part of Middleware 2019.
WOC ’19. New York, NY, USA: Association for Computing Machinery,
2019, pp. 31–36. isbn: 9781450370332. doi: 10.1145/3366615.3368356.
url: https://doi.org/10.1145/3366615.3368356 (cit. on p. 108).

151

https://doi.org/10.6028/NIST.SP.800-160V1
https://doi.org/10.6028/NIST.SP.800-160V1
https://csrc.nist.gov/publications/detail/sp/800-160/vol-1/final
https://csrc.nist.gov/publications/detail/sp/800-160/vol-1/final
https://doi.org/10.1109/MS.2006.58
https://doi.org/10.1109/MS.2006.58
https://doi.org/10.1109/MC.2006.139
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://doi.org/10.1145/3147704.3147735
https://doi.org/10.1145/3147704.3147735
https://doi.org/10.17487/RFC4949
https://www.rfc-editor.org/info/rfc4949
https://www.rfc-editor.org/info/rfc4949
https://doi.org/10.1147/SJ.442.0227
https://doi.org/10.1145/3366615.3368356
https://doi.org/10.1145/3366615.3368356

Bibliography

[SP19] D. M. Stallenberg and A. Panichella. “JCOMIX: A search-based tool to
detect XML injection vulnerabilities in web applications.” English. In:
ESEC/FSE 2019 - Proceedings of the 2019 27th ACM Joint Meeting Eu-
ropean Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering. Ed. by M. Dumas et al. 1515 BROADWAY,
NEW YORK, NY 10036-9998 USA: ASSOC COMPUTING MACHIN-
ERY, 2019, pp. 1090–1094. isbn: 9781450355728. doi: 10.1145/3338906.
3341178 (cit. on p. 118).

[Sta10] W. Stallings. Cryptography and Network Security: Principles and Practice.
5th ed. Pearson, Jan. 2010. isbn: 978-0136097044 (cit. on pp. 2, 10).

[STH18] J. Soldani, D. A. Tamburri, and W. J. V. D. Heuvel. “The pains and
gains of microservices: A Systematic grey literature review.” In: Journal
of Systems and Software 146 (Dec. 2018). issn: 0164-1212. doi: 10.1016/
J.JSS.2018.09.082 (cit. on pp. 2, 11, 12, 18).

[STM17] J. C. Santos, K. Tarrit, and M. Mirakhorli. “A catalog of security architec-
ture weaknesses.” In: Proceedings - 2017 IEEE International Conference
on Software Architecture Workshops, ICSAW 2017: Side Track Proceed-
ings (June 2017). doi: 10.1109/ICSAW.2017.25 (cit. on p. 24).

[Sto+18] M. Stocker et al. “Interface quality patterns - Communicating and im-
proving the quality of microservices APIs.” English. In: ACM Interna-
tional Conference Proceeding Series. 1515 BROADWAY, NEW YORK,
NY 10036-9998 USA: ASSOC COMPUTING MACHINERY, 2018. isbn:
9781450363877. doi: 10.1145/3282308.3282319 (cit. on pp. 71, 106,
112).

[SW13] R. Sinnema and E. Wilde. eXtensible Access Control Markup Language
(XACML) XML Media Type. RFC 7061. Nov. 2013. doi: 10 . 17487 /
RFC7061. url: https://www.rfc-editor.org/info/rfc7061 (cit. on
p. 57).

[SWC10] D. Samadhiya, S. H. Wang, and D. Chen. “Quality models: Role and
value in software engineering.” In: ICSTE 2010 - 2010 2nd International
Conference on Software Technology and Engineering, Proceedings 1 (2010).
doi: 10.1109/ICSTE.2010.5608852 (cit. on p. 10).

[Szo+20] D. Szopinski et al. “Software tools for business model innovation: current
state and future challenges.” In: Electronic Markets 30.3 (Sept. 2020),
pp. 469–494. issn: 14228890. doi: 10.1007/S12525-018-0326-1/TABLES/
7. url: https://link.springer.com/article/10.1007/s12525-018-
0326-1 (cit. on p. 1).

[SZS21] W. S. Shameem Ahamed, P. Zavarsky, and B. Swar. “Security Audit
of Docker Container Images in Cloud Architecture.” In: ICSCCC 2021
- International Conference on Secure Cyber Computing and Communi-

152

https://doi.org/10.1145/3338906.3341178
https://doi.org/10.1145/3338906.3341178
https://doi.org/10.1016/J.JSS.2018.09.082
https://doi.org/10.1016/J.JSS.2018.09.082
https://doi.org/10.1109/ICSAW.2017.25
https://doi.org/10.1145/3282308.3282319
https://doi.org/10.17487/RFC7061
https://doi.org/10.17487/RFC7061
https://www.rfc-editor.org/info/rfc7061
https://doi.org/10.1109/ICSTE.2010.5608852
https://doi.org/10.1007/S12525-018-0326-1/TABLES/7
https://doi.org/10.1007/S12525-018-0326-1/TABLES/7
https://link.springer.com/article/10.1007/s12525-018-0326-1
https://link.springer.com/article/10.1007/s12525-018-0326-1

Bibliography

cations. May 2021, pp. 202–207. isbn: 9781665444156. doi: 10.1109/
ICSCCC51823.2021.9478100 (cit. on p. 97).

[Thr+21] S. Throner et al. “An Advanced DevOps Environment for Microservice-
based Applications.” In: Proceedings - 15th IEEE International Conference
on Service-Oriented System Engineering, SOSE 2021. Aug. 2021, pp. 134–
143. isbn: 9781665434775. doi: 10.1109/SOSE52839.2021.00020 (cit. on
pp. 43, 60, 94, 95).

[Tor+18] K. A. Torkura et al. “CAVAS: Neutralizing application and container se-
curity vulnerabilities in the cloud native era.” English. In: Lecture Notes
of the Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering, LNICST. Ed. by R. Beyah et al. Vol. 254. Lec-
ture Notes of the Institute for Computer Sciences Social Informatics and
Telecommunications Engineering. GEWERBESTRASSE 11, CHAM, CH-
6330, SWITZERLAND: SPRINGER INTERNATIONAL PUBLISHING
AG, 2018, pp. 471–490. isbn: 9783030017002. doi: 10.1007/978-3-030-
01701-9_26 (cit. on pp. 60, 96, 107).

[Tor+19] K. A. Torkura et al. “A cyber risk based moving target defense mecha-
nism for microservice architectures.” English. In: Proceedings - 16th IEEE
International Symposium on Parallel and Distributed Processing with Ap-
plications, 17th IEEE International Conference on Ubiquitous Comput-
ing and Communications, 8th IEEE International Conference on Big
Data and Cloud Computing, 11t. Ed. by J. J. Chen and L. T. Yang.
IEEE International Symposium on Parallel and Distributed Processing
with Applications. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014,
LOS ALAMITOS, CA 90720-1264 USA: Institute of Electrical and Elec-
tronics Engineers Inc., 2019, pp. 932–939. isbn: 9781728111414. doi: 10.
1109/BDCloud.2018.00137. url: https://www.scopus.com/inward/
record.uri?eid=2- s2.0- 85063900937&doi=10.1109%2FBDCloud.
2018.00137&partnerID=40&md5=afbbe1214a8795ace12d84163534431b
(cit. on pp. 60, 62, 96).

[TSM17] K. A. Torkura, M. I. Sukmana, and C. Meinel. “Integrating continuous
security assessments in microservices and cloud native applications.” En-
glish. In: UCC 2017 - Proceedings of the10th International Conference
on Utility and Cloud Computing. 1515 BROADWAY, NEW YORK, NY
10036-9998 USA: ASSOC COMPUTING MACHINERY, 2017, pp. 171–
180. isbn: 9781450351492. doi: 10.1145/3147213.3147229 (cit. on pp. 47,
60, 96, 107, 111).

[UF14] A. V. Uzunov and E. B. Fernandez. “An extensible pattern-based library
and taxonomy of security threats for distributed systems.” In: Computer
Standards & Interfaces 36.4 (June 2014). issn: 0920-5489. doi: 10.1016/
J.CSI.2013.12.008 (cit. on p. 52).

153

https://doi.org/10.1109/ICSCCC51823.2021.9478100
https://doi.org/10.1109/ICSCCC51823.2021.9478100
https://doi.org/10.1109/SOSE52839.2021.00020
https://doi.org/10.1007/978-3-030-01701-9_26
https://doi.org/10.1007/978-3-030-01701-9_26
https://doi.org/10.1109/BDCloud.2018.00137
https://doi.org/10.1109/BDCloud.2018.00137
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063900937&doi=10.1109%2FBDCloud.2018.00137&partnerID=40&md5=afbbe1214a8795ace12d84163534431b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063900937&doi=10.1109%2FBDCloud.2018.00137&partnerID=40&md5=afbbe1214a8795ace12d84163534431b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063900937&doi=10.1109%2FBDCloud.2018.00137&partnerID=40&md5=afbbe1214a8795ace12d84163534431b
https://doi.org/10.1145/3147213.3147229
https://doi.org/10.1016/J.CSI.2013.12.008
https://doi.org/10.1016/J.CSI.2013.12.008

Bibliography

[Vin06] S. Vinoski. “Advanced Message Queuing Protocol.” In: IEEE Internet
Computing 10.6 (Nov. 2006), pp. 87–89. issn: 10897801. doi: 10.1109/
MIC.2006.116 (cit. on p. 56).

[Vys12] M. Vysoký. “Diagram of Security.” In: Information Sciences and Technolo-
gies Bulletin of the ACM Slovakia 4.1 (2012), pp. 39–42 (cit. on p. 54).

[Wag+12] S. Wagner et al. “The Quamoco product quality modelling and assess-
ment approach.” In: Proceedings - International Conference on Software
Engineering (2012). issn: 02705257. doi: 10.1109/ICSE.2012.6227106.
arXiv: 1611.04433 (cit. on pp. 20, 22).

[Wag+16] S. Wagner et al. “Operationalised product quality models and assessment:
The Quamoco approach.” In: Information and Software Technology 62
(1 Nov. 2016). doi: 10.1016/j.infsof.2015.02.009. url: http:
//arxiv.org/abs/1611.09230%20http://dx.doi.org/10.1016/j.
infsof.2015.02.009 (cit. on pp. 20, 22).

[Was+21a] M. Waseem et al. “Design, monitoring, and testing of microservices sys-
tems: The practitioners’ perspective.” In: Journal of Systems and Software
182 (Dec. 2021). issn: 0164-1212. doi: 10.1016/J.JSS.2021.111061.
arXiv: 2108.03384 (cit. on p. 14).

[Was+21b] M. Waseem et al. “Design, monitoring, and testing of microservices sys-
tems: The practitioners’ perspective.” English. In: Journal of Systems and
Software 182 (Dec. 2021). issn: 01641212. doi: 10.1016/j.jss.2021.
111061. arXiv: 2108.03384 (cit. on pp. 61, 71, 112).

[WM11] M. E. Whitman and H. J. Mattord. Principles of Information Security.
4th ed. Jan. 2011. isbn: 978-1-111-13821-9 (cit. on pp. 10, 12).

[Woh+12] C. Wohlin et al. Experimentation in Software Engineering. 1st ed. Springer
Berlin, Heidelberg, June 2012. isbn: 978-3-642-29043-5. doi: 10.1007/
978-3-642-29044-2/COVER. url: https://link.springer.com/book/
10.1007/978-3-642-29044-2 (cit. on p. 82).

[Woh14] C. Wohlin. “Guidelines for snowballing in systematic literature studies and
a replication in software engineering.” In: Proceedings of the 18th Interna-
tional Conference on Evaluation and Assessment in Software Engineering.
New York, NY, USA: Association for Computing Machinery, May 2014.
isbn: 9781450324762. doi: 10.1145/2601248.2601268 (cit. on p. 39).

[Wuy+18] K. Wuyts et al. “Effective and Efficient Privacy Threat Modeling through
Domain Refinements.” In: SAC ’18. Pau, France: Association for Com-
puting Machinery, Apr. 2018, pp. 1175–1178. isbn: 9781450351911. doi:
10.1145/3167132.3167414 (cit. on p. 20).

[wwwa] CAPEC - Common Attack Pattern Enumeration and Classification. url:
https://capec.mitre.org/index.html (visited on 08/31/2022) (cit. on
pp. 24, 30).

154

https://doi.org/10.1109/MIC.2006.116
https://doi.org/10.1109/MIC.2006.116
https://doi.org/10.1109/ICSE.2012.6227106
https://arxiv.org/abs/1611.04433
https://doi.org/10.1016/j.infsof.2015.02.009
http://arxiv.org/abs/1611.09230%20http://dx.doi.org/10.1016/j.infsof.2015.02.009
http://arxiv.org/abs/1611.09230%20http://dx.doi.org/10.1016/j.infsof.2015.02.009
http://arxiv.org/abs/1611.09230%20http://dx.doi.org/10.1016/j.infsof.2015.02.009
https://doi.org/10.1016/J.JSS.2021.111061
https://arxiv.org/abs/2108.03384
https://doi.org/10.1016/j.jss.2021.111061
https://doi.org/10.1016/j.jss.2021.111061
https://arxiv.org/abs/2108.03384
https://doi.org/10.1007/978-3-642-29044-2/COVER
https://doi.org/10.1007/978-3-642-29044-2/COVER
https://link.springer.com/book/10.1007/978-3-642-29044-2
https://link.springer.com/book/10.1007/978-3-642-29044-2
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1145/3167132.3167414
https://capec.mitre.org/index.html

Bibliography

[wwwb] CAPEC - New to CAPEC? url: https://capec.mitre.org/about/
new_to_capec.html (visited on 08/31/2022) (cit. on p. 24).

[wwwc] CVE - Common Vulnerability Enumeration. url: https://cve.mitre.
org/index.html (visited on 08/31/2022) (cit. on pp. 25, 43).

[wwwd] CWE - Common Weakness Enumeration. url: https://cwe.mitre.org/
index.html (visited on 08/31/2022) (cit. on pp. 24, 30).

[wwwe] Microsoft Threat Modeling Tool overview - Azure | Microsoft Docs. url:
https://docs.microsoft.com/en- us/azure/security/develop/
threat-modeling-tool (visited on 08/31/2022) (cit. on p. 24).

[wwwf] MITRE ATT&CK®. url: https : / / attack . mitre . org/ (visited on
08/31/2022) (cit. on p. 25).

[wwwg] OWASP Threat Dragon | OWASP Foundation. url: https://owasp.org/
www-project-threat-dragon/ (visited on 08/31/2022) (cit. on p. 24).

[wwwh] OWASP Top Ten | OWASP Foundation. url: https://owasp.org/www-
project-top-ten/ (visited on 08/31/2022) (cit. on pp. 25, 72).

[Yan+22] K. Yan et al. “Design and Application of Security Gateway for Transmis-
sion Line Panoramic Monitoring Platform based on Microservice Archi-
tecture.” In: IEEE 6th Information Technology and Mechatronics Engi-
neering Conference, ITOEC 2022. Vol. 6. Mar. 2022, pp. 714–721. isbn:
9781665431859. doi: 10.1109/ITOEC53115.2022.9734463 (cit. on pp. 47,
111).

[YB18a] T. Yarygina and A. H. Bagge. “Overcoming Security Challenges in Mi-
croservice Architectures.” In: Proceedings - 12th IEEE International Sym-
posium on Service-Oriented System Engineering, SOSE 2018 and 9th In-
ternational Workshop on Joint Cloud Computing, JCC 2018 (May 2018).
doi: 10.1109/SOSE.2018.00011 (cit. on p. 14).

[YB18b] T. Yarygina and A. H. Bagge. “Overcoming Security Challenges in Mi-
croservice Architectures.” In: Proceedings - 12th IEEE International Sym-
posium on Service-Oriented System Engineering, SOSE 2018 and 9th In-
ternational Workshop on Joint Cloud Computing, JCC 2018. Mar. 2018,
pp. 11–20. isbn: 9781538652060. doi: 10.1109/SOSE.2018.00011 (cit. on
pp. 58, 71, 72, 92, 93, 104, 116).

[YO18] T. Yarygina and C. Otterstad. “A game of microservices: Automated in-
trusion response.” English. In: Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). Ed. by S. Bonomi and E. Riviere. Vol. 10853 LNCS.
Lecture Notes in Computer Science. GEWERBESTRASSE 11, CHAM,
CH-6330, SWITZERLAND: SPRINGER INTERNATIONAL PUBLISH-
ING AG, 2018, pp. 169–177. isbn: 9783319937663. doi: 10.1007/978-3-
319-93767-0_12 (cit. on pp. 62, 119).

155

https://capec.mitre.org/about/new_to_capec.html
https://capec.mitre.org/about/new_to_capec.html
https://cve.mitre.org/index.html
https://cve.mitre.org/index.html
https://cwe.mitre.org/index.html
https://cwe.mitre.org/index.html
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://attack.mitre.org/
https://owasp.org/www-project-threat-dragon/
https://owasp.org/www-project-threat-dragon/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://doi.org/10.1109/ITOEC53115.2022.9734463
https://doi.org/10.1109/SOSE.2018.00011
https://doi.org/10.1109/SOSE.2018.00011
https://doi.org/10.1007/978-3-319-93767-0_12
https://doi.org/10.1007/978-3-319-93767-0_12

Bibliography

[YZ10] S. Yu and S. Zhou. “A survey on metric of software complexity.” In: 2nd
IEEE International Conference on Information Management and Engi-
neering. Vol. 2. 2010, pp. 352–356. isbn: 9781424452644. doi: 10.1109/
ICIME.2010.5477581 (cit. on p. 1).

[Zdu+22] U. Zdun et al. “Microservice Security Metrics for Secure Communication,
Identity Management, and Observability.” In: ACM Transactions on Soft-
ware Engineering and Methodology (Apr. 2022). issn: 1049-331X. doi:
10.1145/3532183. url: https://doi.org/10.1145/3532183 (cit. on
pp. 45, 58, 71, 98–100, 102–104).

156

https://doi.org/10.1109/ICIME.2010.5477581
https://doi.org/10.1109/ICIME.2010.5477581
https://doi.org/10.1145/3532183
https://doi.org/10.1145/3532183

Acronyms

ABAC Attribute-based Access Control

API Application Programming Interface

ATT&CK Adversarial Tactics, Techniques & Common Knowledge

CAPEC Common Attack Pattern Enumeration and Classification

CI/CD Continuous Integration/Continuous Delivery

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

DAST Dynamic Application Security Testing

DFD Data Flow Diagram

GoF Gang of Four

IaaS Infrastructure-as-a-Service

IaC Infrastructure-as-Code

IDS/IPS Intrusion Detection System/Intrusion Prevention System

MSA Microservice Architecture

OWASP SAMM OWASP Software Assurance Maturity Model

QA Quality Attribute

RBAC Role-based Access Control

SAML Security Assertion Markup Language

SAST Static Application Security Testing

SBOM Software Bill of Materiels

157

Acronyms

SCA Software Component Analysis

SDLC Software Development Life-cycle

SLR Systematic Literature Review

SMS Systematic Mapping Study

XSS Cross-Site Scripting

158

	Introduction
	Research questions
	Goals and contributions
	Structure of this thesis

	Foundations
	Software architecture modeling
	Microservice architectural style
	Security in software engineering
	Security design concept

	Related work
	Systematic Literature Reviews and Mapping Studies on MSA security
	Views of security in software engineering

	Catalog of security design concepts for microservices
	Systematic Literature Review report
	Review result

	Defining and modeling a software engineering view of security
	Research method
	Software engineering security metamodel
	Security views and concerns for microservices
	Definition of security

	Evaluation
	Evaluation method
	Evaluation results

	Discussion
	Research question findings
	Evaluation discussion
	Threats to validity

	Conclusion and future work
	Summary
	Future work

	Results of SLR trial searches
	Catalog of security design concepts
	Catalog of security design principles
	Catalog of security activities
	Catalog of security tactics
	Catalog of architectural security patterns
	Catalog of security protocols
	Catalog of IDS/IPS approaches

	Case study materials
	Evaluation transcription
	Bibliography
	Acronyms

