
The present work was submitted to
the Research Group
Software Construction

of the Faculty of Mathematics,
Computer Science, and
Natural Sciences

Bachelor Thesis

A classification approach of
information needs for

anti-pattern detection in
microservice applications

presented by

Tim Voigt

Aachen, October 29, 2022

Examiner

Prof. Dr. rer. nat. Horst Lichter

Prof. Dr. rer. nat. Bernhard Rumpe

Supervisor

Alex Sabau, M.Sc.

Acknowledgment
First and foremost, I want to thank Prof. Dr. rer. nat. Horst Lichter for the opportunity
to write this thesis at the chair of the Research Group Software Construction and for
reviewing my thesis. Additionally, I want to thank Prof. Dr. rer. nat. Bernhard Rumpe
for reviewing this thesis as the second examiner.

Special thanks go to my supervisor Alex Sabau for the continuous and insightful
feedback as well as his intriguing input on my concept. The advice and discussions were
greatly appreciated.

My closing thanks go to my friends and family for their constant support throughout
this thesis.

Tim Voigt

Abstract
Microservice applications are on the rise to become one of the most popular architec-
tural styles. They offer many advantages over monolithic applications, such as being
easily scalable and maintainable as well as enabling teams to work autonomously. Nev-
ertheless, it is crucial to properly implement microservice architectures to avoid common
drawbacks. Frequently used solutions that impair the quality of an application, often
referred to as anti-patterns, and the detection of such in software architectures are a
well-known problem in the domain of software engineering. However, in contrast to
monolithic architectures, not much work has been done to improve the detection of
anti-patterns in microservice architectures.

In this thesis we propose a structure and classification approach of information needs
for anti-pattern detection. In this context, the concepts of information requirements
and information sources are defined and explained on the basis of an exemplary mi-
croservice application. Additionally, a catalog which proposes information requirements
of 20 anti-patterns is presented. Building up on this catalog, methods to satisfy these
information requirements are proposed. These insights are used to present an overview
of the relationship between information requirements and information sources. Overall,
the concepts form a basis for further refinement and evaluation of automated detection
methods of anti-patterns in microservice applications.

Contents
1 Introduction 1

1.1 Background . 1
1.2 Motivation . 3
1.3 Problem Statement . 4
1.4 Structure of this Thesis . 4

2 Related Work 5
2.1 Non-Microservice Oriented . 5
2.2 Microservice Oriented . 6

3 Concepts 11
3.1 Structuring Information Needs . 11
3.2 Information Sources . 18
3.3 Information Requirements . 20

4 Anti-pattern Information Requirement Catalog 23
4.1 The Catalog . 23
4.2 Threats to Validity . 37

5 Extracting Information from Microservice Architectures 39
5.1 Proposal of Information Extraction Methods 39
5.2 Relationship between Information Requirements and Information Sources 49
5.3 Threats to Validity . 50

6 Discussion 53

7 Conclusion 55
7.1 Summary . 55
7.2 Future Work . 56

Bibliography 57

i

List of Tables
2.1 Anti-pattern catalog by Taibi, Lenarduzzi, and Pahl [TLP20] 7

3.1 Description of information requirements 21
3.1 Description of information requirements (continued) 22

6.1 Automatically detectable anti-patterns (ordered by decreasing harmfulness) 54

iii

List of Figures
1.1 Exemplary microservice architecture based on Richardson [Ric18] 2

3.1 Proposed structuring of information needs 12
3.2 Architecture of “Hot R.O.D.” application 13
3.3 Simplified dependency graph of the “Hot R.O.D.” application 15
3.4 Merging dependencies of the customer microservice 17
3.5 Overview of information sources . 19

4.1 Relationship between anti-patterns and information requirements 38

5.1 Overview of relationships between information requirements and informa-
tion sources . 51

v

List of Source Codes
3.1 Dependencies of client.go from customer package 14
3.2 Excerpt of Jaeger’s go.mod file . 15

vii

1 Introduction

Contents
1.1 Background . 1

1.1.1 Microservice architectures . 1
1.1.2 Anti-patterns . 3

1.2 Motivation . 3
1.3 Problem Statement . 4
1.4 Structure of this Thesis . 4

1.1 Background
Microservices are steadily gaining popularity and are on track to become one of the most
popular architectural styles. Especially for large applications, microservice architectures
can be beneficial in a multitude of ways. Nevertheless, there still are numerous unsolved
problems, particularly in regard of handling the added complexity microservice applica-
tions introduce. As opposed to traditional monolithic applications, few methods exist
which can detect anti-patterns in microservice applications. These problems are further
motivated in section 1.2. To provide a shared foundation, the concepts of microservice
architectures and anti-patterns are described in the following.

1.1.1 Microservice architectures
As an alternative to traditional, monolithic software architectures, microservice archi-
tectures (MSAs) are rising in popularity [Dra+17]. The basic concept of a MSA is to
encapsulate business logic into many small components, instead of one large application,
which are easy to deploy and scale individually. Richardson [Ric18] describes this as a
form of modularity. According to him, modularity is essential for developing complex
applications. It can also be achieved in monolithic applications by using module-like
constructs of programming languages. However, according to Richardson, the modu-
larization of monolithic applications tends to degrade over time. Microservices have
clearer boundaries, since they are autonomous services, which makes it easier to uphold
modularity over time. Additionally, microservice development encourages polyglot pro-
gramming practices, since the services usually communicate using lightweight protocols,
such as Representational State Transfer (REST)-APIs and therefore do not need to share
a common programming language. This allows developers to work with a programming
language that is suited best for implementing the specific functionality of a microservice.

1

1 Introduction

Notably, microservices can be defined by a set of significant characteristics, as high-
lighted by Nadareishvili et al. [Nad+16]. They are small in size, communicate with other
microservices and only implement a small set of functionalities of one domain. More-
over, development happens autonomously. Microservices can be deployed independent
of another and through automated processes. Finally, MSAs are decentralized by nature.

Microservices provide a range of benefits, if implemented correctly. Richardson [Ric18]
outlines some of them. According to him, microservices enable teams to be autonomous,
while allowing easy experimenting and the adoption of new technologies. Richardson also
states that microservices have better fault isolation, as well as being easily maintainable.

However, Richardson [Ric18] also defines some drawbacks that come with implement-
ing microservice architectures. First, it is challenging to find the right set of services,
since there is no pre-defined way of decomposing a system into microservices. Addition-
ally, the deployment of features which involve multiple microservices requires careful
coordination across teams.

Order
Service

Restaurant
Service

Kitchen
Service

Delivery
Service

API
Gateway

Restaurant
Web UI

Accounting
Service

Notification
Service

REST
API

REST
API

REST
API

REST
API

REST
API

REST
API

REST
API

REST
API

Courier

Consumer

Restaurant

Figure 1.1: Exemplary microservice architecture based on Richardson [Ric18]

An exemplary microservice architecture is shown in figure 1.1. The example is based
on a company which provides food delivery services for restaurants. Microservices are
displayed as heptagons in two different colors. Those which are colored in green interact
directly with users, while those colored in blue only interact with other microservices.
Additionally, it is visualized that some microservices offer a REST-API for communica-
tion and some have private storage. Couriers and consumers interact with the application
using mobile applications, each using their respective REST-APIs to communicate with
an API-gateway. The API-gateway routes requests to the relevant microservices – be-
havior and importance of API-gateways will be discussed in more detail in chapter 4.
Restaurants interact with the application using a web-based user interface which in turn
uses three microservices to provide the required functionality.

2

1.2 Motivation

Overall, microservices are becoming a popular architecture for large applications since
they have several advantages over monolithic applications. However, it is important that
MSAs are implemented properly so that the advantages are properly utilized.

1.1.2 Anti-patterns

The term anti-pattern, which was first popularized by Koenig [Koe95], describes a com-
mon solution to a recurring problem which poses risks of being counterproductive. They
can impair the quality of an application, if they are not fixed. Moreover, the presence of
anti-patterns in a software system has an impact on software evolvability or maintain-
ability [Sal19]. It is important to note that the terms anti-pattern and smell are often
used synonymously in literature [WDC20]. We will use the term anti-pattern in this
thesis.

Furthermore, it has to be distinguished between architectural anti-patterns and code
anti-patterns. Mo et al. [Mo+21] define architectural anti-patterns to be “connections
among source files that violate design principles and impact bug-proneness and change-
proneness”. On the other hand, code anti-patterns, or rather code smells are defined by
Fowler [Fow18] as certain structures in code that indicate trouble and can be solved by
refactoring. Both types of anti-patterns are important and will be discussed in this thesis.
Interestingly, Mo et al. [Mo+21] point out that many existing commercial tools focus on
code-related anti-patterns, which leads to a negligence of architectural anti-patterns.

1.2 Motivation
As previously stated, microservices are becoming a popular architectural choice, espe-
cially for cloud-based systems, since properly exploit the advantages of being deployed
in the cloud [Dra+17]. However, it is important to highlight that designing a MSA is
not easy and a migration from a monolithic system is even more challenging [Ric18].
It is crucial to design microservices as optimal as possible, since bad architecture de-
sign can negatively impact software quality [WDC20]. Furthermore, microservices add
complexity due to the increased amount of inter-service communication, central logging
infrastructure and having to handle partial failure of other microservices in the archi-
tecture. In addition, it is likely that a microservice architecture will grow over time and
therefore further increase the complexity of developing and maintaining microservices.

Because of the aforementioned reasons, it is important to reduce the number of anti-
patterns present in a MSA to a minimum. The process of detecting anti-patterns should
be straightforward and ideally automated so that it can be executed repeatedly in short
intervals, for example before each new deployment of a new microservice version. Conse-
quently, efficient methods for detecting anti-patterns in MSAs would contribute to this
goal. Furthermore, automated detection of some anti-patterns, like some tools already
realize for code smells, would reduce the time and effort spent on manual inspection. In
general, the detection of anti-patterns can help organizations, which recently transitioned
to MSAs, to actually profit from the advantages microservices offer.

3

1 Introduction

1.3 Problem Statement
Contrary to anti-patterns of monolithic software architectures, little research has hap-
pened on how to quantify and analyze the quality of microservice architectures, specifi-
cally on how automated detection of anti-patterns can be realized. For this reason, we
will research how anti-patterns can be detected, manually or automatically, in MSAs.

This leads us to the first research question for this thesis. To be able to detect anti-
patterns, information from the microservice architecture is necessary. This information
is referred to as the information need of an anti-pattern. We argue that the term
information need is a highly abstract term with various facets. Hence, it should be
further substantiated to meaningfully work with it. Therefore, the following question
has to be answered.
RQ1: How can the information need for anti-pattern detection in microservice applica-
tions be meaningfully structured and classified?

While answering the previous question gives insight into the required information, the
result is not sufficient to actually detect anti-patterns in MSAs. This is because the
necessary information has to previously be extracted from a MSA, so that detection can
be performed. Consequently, the following question has to be answered.
RQ2: Which methods can be used to obtain the necessary information for anti-pattern
detection in microservice applications?

Finally, it is of great interest to automate as much of the detection process as possible.
However, it is likely that not every anti-pattern can be detected automatically. Finding
characteristics of anti-patterns which make them detectable without human interaction
can help companies implement detection algorithms and provide an assessment frame-
work for forthcoming anti-patterns. To realize this, the final research question must be
answered.
RQ3: Which anti-patterns in microservice applications can be detected automatically?

1.4 Structure of this Thesis
Chapter 2 portrays related work for automated anti-pattern detection in monolithic-
or microservice-architectures. Chapter 3 defines and explains the concepts of informa-
tion requirements and information sources using two examples. In chapter 4, the first
research question is answered by proposing one or more information requirements for
every anti-pattern. Chapter 5 proposes methods to satisfy information requirements
using information sources, answering the second research question. Chapter 6 discusses
our proposals and whether the research questions were answered successfully. Finally,
chapter 7 concludes this thesis and provides an outlook on possible future work.

4

2 Related Work

Contents
2.1 Non-Microservice Oriented . 5
2.2 Microservice Oriented . 6

After providing information on the foundations of this thesis and identifying the cur-
rent problems of detecting anti-patterns in microservice applications, we now introduce
related work regarding the detection of anti-patterns. First, studies which are not tar-
geted on microservice architectures are mentioned. They are followed by five papers
which were written with MSAs as a focus. As an exception, in this chapter, the terms
smell and anti-pattern are both used in this chapter to preserve the original meaning of
the works.

2.1 Non-Microservice Oriented
During our research, we discovered two papers which propose detection methods for a
limited amount of architectural smells. These papers do not explicitly focus on microser-
vice architectures, but on software architectures in general – specifically on Java, C and
C++ projects.

The first paper, written by Fontana et al. [Fon+17], introduces a tool called Arcan,
which is able to detect three architectural smells in an automated fashion. Arcan is de-
signed to work with Java applications. All detectable smells are related to dependency
issues – cyclic dependency, unstable dependency and hub-like dependency. A main
characteristic of the Arcan tool is the usage of a graph database to build a dependency
graph. The authors report the workflow to detect architectural smells as consisting of
four steps. First, Java classes and packages are reconstructed from compiled Java files.
Next, the dependency graph is created based on the previously extracted classes. In the
third step, various metrics, such Fan In or LCOM, are computed using the dependency
graph. Finally, the architectural smell engine component of Arcan runs multiple detec-
tion algorithms on the dependency graph and stores found architectural smells in the
graph. The tool was evaluated on two Java projects. According to the authors, Arcan
detected all architectural smells present in the projects. However, five smells were re-
ported, which after manual inspection were found to not be valid architectural smells.
In summary, this work introduced a tool for detecting three architectural smells in Java
projects using dependency graphs.

The second paper, by Biaggi, Arcelli Fontana, and Roveda [BAR18], extends the Arcan

5

2 Related Work

tool introduced in the previous paper [Fon+17] for C and C++ projects. In addition
to the three architectural smells Arcan is already able to detect – cyclic dependency,
unstable dependency and hub-like dependency – the authors added support for two
more, namely Multiple Architectural Smells and Specification-Implementation Violation.
The main components making up Arcan stayed the same. Biaggi, Arcelli Fontana, and
Roveda extended them to work with C and C++ projects. Furthermore, the fourth
component, which is responsible for detecting the architectural smells using a dependency
graph, has been extended to enable the detection of the two added architectural smells.
Moreover, the new version of the tool was validated on six open-source projects. The
authors analyzed two of the six open-source projects manually for architectural smells,
which was used to validate the output of Arcan. According to them, all architectural
smells found by the tool in those two projects were correct. However, eight architectural
smells were not detected by Arcan. To summarize, this work extended the existing Arcan
tool to work with C and C++ projects and added detection methods for two additional
architectural smells.

2.2 Microservice Oriented
The first work we elaborate, written by Taibi, Lenarduzzi, and Pahl [TLP20], defines
a catalog and taxonomy of the most common microservice anti-patterns. The authors
extracted 27 anti-patterns based on surveys and interviews of 27 industry practitioners
from 27 different organizations (see table 2.1). Taibi, Lenarduzzi, and Pahl define a
taxonomy which contains descriptions of 20 of their extracted anti-patterns as well as
the caused problems. The seven anti-patterns not included in the taxonomy were pro-
posed by practitioners in technical talks but were never experienced by the interviewees
of Taibi, Lenarduzzi, and Pahl. The authors list them in the catalog only for complete-
ness, but not in their taxonomy because of insufficient information. Additionally, the
anti-patterns are grouped into five categories: Internal, Communication, Technical, Or-
ganizational (Team-Oriented) and Organizational (Technology and Tool Oriented). For
16 anti-patterns, detection approaches are proposed and for 11 of 20, adopted solutions
are listed. Furthermore, the catalog also includes the harmfulness of each anti-pattern,
as perceived by the interviewees, measured on a 10-point Likert scale. The average
harmfulness is 4.81, the median is 5. Finally, the authors conclude their work by sum-
marizing their findings and presenting five lessons learned. They also highlight that
correctly splitting a monolith is the most critical issue.

The next work by Pigazzini et al. [Pig+20] is another extension of the previously intro-
duced Arcan tool [Fon+17; BAR18]. The authors focus on detecting three microservice-
specific smells, namely Cyclic Dependencies, Hardcoded Endpoints and Shared Persis-
tence. According to them, these three smells were chosen because they are the most
common and are technically easy to implement, because they are detectable through
static analysis. Since Pigazzini et al. base their work on Arcan, the four main compo-
nents of the tool are utilized and extended. Consequently, detection of the smells relies
heavily on graph-based analysis, similar to the original tool. However, instead of using a

6

2.2 Microservice Oriented

Name Harmfulness Category
Hardcoded Endpoints 8 Internal
Wrong Cuts 8 Technical
Cyclic Dependency 7 Communication
API Versioning 6.05 Internal
Shared Persistence 6.05 Technical
ESB Usage 6 Communication
Legacy Organization 6 Organizational (Team-

Oriented)
Local Logging 6 Internal
Megaservice 6 Internal
Inappropriate Service Intimacy 5 Internal
Lack of Monitoring 5 Technical
No API-Gateway 5 Communication
Shared Libraries 4 Communication
Too Many Technologies 4 Organizational (Tech. & Tool

Oriented)
Lack of Microservice Skeleton 3.05 Organizational (Tech. & Tool

Oriented)
Microservice Greedy 3 Organizational (Team-

Oriented)
Focus on Latest Technologies 2.05 Organizational (Tech. & Tool

Oriented)
Common Ownership 2 Organizational (Team-

Oriented)
No DevOps Tools 2 Organizational (Tech. & Tool

Oriented)
Non-homogeneous adoption 2 Organizational (Team-

Oriented)
Lack of Service Abstraction – –
Magic Pixie Dust – –
Microservices as the Goal – –
Pride – –
Sloth – –
Timeout – –
Try to Fly Before You Can Walk – –

Table 2.1: Anti-pattern catalog by Taibi, Lenarduzzi, and Pahl [TLP20]

7

2 Related Work

dependency graph, the authors use a call graph to enable the support of microservices.
Furthermore, detection of the Hardcoded Endpoints and Shared Persistence smells is
based on static analysis of source code files. Finally, Pigazzini et al. manually validated
their tool using four Java and one JavaScript open-source microservice projects. The
tool successfully identified multiple instances of smells in the projects, however the au-
thors did not calculate recall values. In summary, Pigazzini et al. modified the existing
Arcan tool to enable the detection of three microservice-specific smells, in applications
developed solely in Java or JavaScript, using static analysis.

Every work discussed so far, excluding that of Taibi, Lenarduzzi and Pahl, uses some
form of metrics to detect anti-patterns. In their paper, Ntentos et al. [Nte+21] propose
a model-based approach to measure conformance to microservice patterns using only
generic, platform-independent metrics. The authors define eight metrics in total to mea-
sure three main architectural decisions – external API decisions, persistent messaging
for inter-service communication decisions and end-to-end tracing decisions. Notably,
Ntentos et al. performed intensive manual analysis on 24 microservice-based systems
to define a ground truth for later evaluation and to acquire necessary values to cal-
culate the metrics. Moreover, the authors conducted an ordinal regression analysis to
derive a predictor variable for an ordinal variable. They report a high level of accuracy.
Summarized, Ntentos et al. proposed a set of metrics to judge the conformance of a
microservice-based system to microservice-specific patterns. The calculation of these
metrics requires a high amount of manual analysis.

The next work by Walker, Das, and Cerny [WDC20] proposes the use of static analysis
to detect 11 microservice-specific code smells in MSAs. The 11 code smells are taken from
the previously introduced catalog by Taibi, Lenarduzzi, and Pahl [TLP20]. Walker, Das
and Cerny introduce an open-source tool called MSANose, which is platform-specific
and only works for Java and Java Enterprise applications. According to them, ex-
tending the tool to other languages would be trivial. Furthermore, they highlight the
importance of analyzing the whole architecture, instead of focusing on individual mi-
croservices. Moreover, the authors analyzed state-of-the-art architecture-specific code
smell detection tools, including Arcan [Pig+20], to check whether they are able to detect
the considered 11 code smells. Only Arcan successfully detected three out of 11 code
smells. Walker, Das and Cerny describe in detail each detection method for every mi-
croservice code smell. Additionally, the detection methods are manually validated using
two microservice-based Java applications. The authors report accurate detection of code
smells for both applications. Notably, three detection methods are highlighted by the
authors to be validity threats, since the corresponding code smells are almost impossible
to reliably detect using static analysis. To conclude, Walker, Das and Cerny developed
a new tool called MSANose which is able to detect 11 microservice-specific code smells
in Java applications using static analysis.

In their work Hübener et al. [Hüb+22] demonstrate the detection of five microservice-
specific anti-patterns using dynamic analysis. The authors rely on distributed tracing,
which is a subfield of dynamic analysis, because static analysis is not feasible in their
scenario, because they do not have access to source code artifacts. The traces are

8

2.2 Microservice Oriented

used as a basis to generate a microservice dependency graph. Hübener et al. then use
metrics defined in other works to detect the anti-patterns Megaservice, Nanoservice,
Bottleneck-service, Ambiguous-service and Cycle-dependent-service, based on the pre-
viously generated dependency graph. Notably, domain knowledge is needed to make
sense of the metrics. The authors’ approach is demonstrated using a commercial envi-
ronment, specifically on an architecture containing 426 microservices, which is part of
the infrastructure of the Dutch bank ING. In summary, the authors demonstrated how
five microservice-specific anti-patterns can be detected by means of analyzing distributed
traces.

Up to our knowledge no work has been done on structuring and categorizing the infor-
mation needs of anti-patterns in MSAs. We will build on the work of Taibi, Lenarduzzi,
and Pahl [TLP20] to propose a solution to this problem.

9

3 Concepts

Contents
3.1 Structuring Information Needs . 11
3.2 Information Sources . 18
3.3 Information Requirements . 20

3.1 Structuring Information Needs
In order to successfully detect anti-patterns, specific information about various aspects of
the observed MSA is necessary. It is not limited to information about application-related
aspects, such as code files, but also includes business and domain related aspects [CT22;
WDC20]. For the rest of this thesis, the information required to detect an anti-pattern
will be referred to as an information requirement, which is defined as follows.

Definition 3.1.1 An information requirement describes the necessary information
required by an algorithm or human to perform anti-pattern detection in microservice
architectures.

Another important concept for anti-pattern detection, which is directly related to the
information requirement, is the information source. It is defined as follows.

Definition 3.1.2 An information source contains information which is able to satisfy
one or more information requirements. An information source can be any artifact from
a microservice application which is either human- or machine-readable, such as source
code or an architecture model. Information can be extracted without human involvement
from a machine-readable information source using various methods – like static analysis.

Figure 3.1 visualizes how anti-patterns, information requirements and information sources
interact with each other. An anti-pattern must have one or multiple information require-
ments associated with it. It is not possible to have a detectable anti-pattern without
any associations, since some information from the MSA is always necessary for detection.
Similarly, one information requirement can be associated with multiple anti-patterns. In
the following, we will refer to this association by saying that an anti-pattern has an infor-
mation requirement. Conversely, an information requirement belongs to an anti-pattern,
if an association exists between these two. Furthermore, information requirements always
require one or multiple information sources in order to be satisfied. In case that such

11

3 Concepts

an information source does not exist, the information requirement will not be satisfiable
and in turn the anti-pattern is not detectable. However, such a case should normally
not occur, since information sources can be chosen from MSA artifacts without hard
constraints, such as being machine-readable.

Additionally, information sources can be grouped into four main types of information
depending on the context the information source is taken out of – domain, business,
application and runtime information. These categories will be discussed in more detail
later on. As stated in definition 3.1.2, necessary information has to be extracted from
the microservice architecture artifacts using manual or automated methods. A manual
extraction process is easier, as a human can deal with a plethora information in different
formats, in most cases without requiring instructions on how to process them. Compared
to an automated process, it is however more costly and requires more effort, since human
labor is involved and processing will likely take more time. On the contrary, automated
methods can only process machine-readable information sources. In addition, algorithms
are necessary to detect anti-patterns based on satisfied information requirements. They
utilize the previously extracted information and perform additional computational steps,
like unifying multiple information requirements if required and finally judging whether
an anti-pattern is present.

Anti-pattern Information Requirement
1..* 1..*

Information Source
1..* 1..*

Figure 3.1: Proposed structuring of information needs

In the following, two examples will be given using an open-source demonstration ap-
plication. The purpose of these examples is the illustration of how a detection of anti-
patterns in MSAs can be realized. Additionally, the examples demonstrate our proposed
structuring of information needs. The examples are structured as follows. First, the con-
sidered anti-pattern is described, followed by a definition of corresponding information
requirements and information sources. Finally, methods for extracting the information
requirements from the information sources, if possible, as well as methods for detecting
the anti-pattern based on the extracted information are proposed.

Demo Application The open-source demonstration application used in the following
examples is called “Hot R.O.D.” and was created by the Jaeger tracing platform1. The
application emulates a ride on demand service, where a customer can order a car to a
specific location. As seen in figure 3.2, the application consists of four microservices –
frontend, customer, driver and route. Due to the fact that this is just a demonstration
application, the two storage backends (MySQL and Redis) are mocked. The arrows
depict communication between the microservices. All services are written in Go and
utilize external libraries, such as Jaeger2 for tracing or Zap3 for logging.

1https://github.com/jaegertracing/jaeger/tree/main/examples/hotrod
2https://github.com/jaegertracing/jaeger
3https://github.com/uber-go/zap

12

https://github.com/jaegertracing/jaeger/tree/main/examples/hotrod
https://github.com/jaegertracing/jaeger
https://github.com/uber-go/zap

3.1 Structuring Information Needs

Frontend

DriverCustomer Route

MySQL Redis

Figure 3.2: Architecture of “Hot R.O.D.” application

Example 1 – Shared Libraries This example is concerned with detecting the Shared
Libraries anti-pattern. It describes the usage of shared libraries between different mi-
croservices, with the focus on in-house (internal) libraries. Sharing libraries between
different services is problematic, since this tightly couples the microservices which in
turn leads to a loss of independence between them. Additionally, increased coordination
is required between teams, if the library is supposed to be modified [TLP20; WDC20].

As mentioned previously, all microservices in the demo application are written in Go.
For this reason, we introduce Go specific concepts which are necessary to understand
the following definitions for the information requirements and -sources. In Go, a library
is referred to as a package4. Such a package is constructed from one or more source files.
These source files contain import declarations at the top of each file (see listing 3.1).
These import declarations state the dependencies of each file, which are references to
other packages. The dependencies can be packages from Go’s standard library, internal
packages or packages available from other repositories on the internet. As an example,
the first three dependencies in listing 3.1 are packages from the standard library. The
following three are external packages and the last two are packages belonging to the “Hot
R.O.D.” application (internal packages). The dependency graph of all four microservices
of the application is visualized in figure 3.3.

Dependencies on packages in the standard library as well external packages are grouped
for the sake of clarity. Because of this simplification, it is impossible to see if shared
dependencies on packages in the standard library or external packages are present. How-
ever, this is not problematic since the focus lies on internal packages, which are not

4https://go.dev/ref/spec#Packages

13

https://go.dev/ref/spec#Packages

3 Concepts

grouped. By looking at the graph, it can easily be seen that shared dependencies on
multiple internal packages are present.

We assume that a microservice consists of one or multiple packages, as is the case for
the demonstration application. With this knowledge, it is intuitive that the information
requirement for this anti-pattern are the dependencies of each microservice.

1 // Copyright (c) 2019 The Jaeger Authors.
2 // Copyright (c) 2017 Uber Technologies , Inc.
3
4 package customer
5
6 import (
7 "context"
8 "fmt"
9 "net/http"

10
11 "github.com/opentracing -contrib/go-stdlib/nethttp"
12 "github.com/opentracing/opentracing -go"
13 "go.uber.org/zap"
14
15 "github.com/jaegertracing/jaeger/examples/hotrod/pkg/log"
16 "github.com/jaegertracing/jaeger/examples/hotrod/pkg/tracing"
17)
18
19 //...

Source Code 3.1: Dependencies of client.go from customer package

Next, it has to be evaluated which artifacts of the MSA can be used to satisfy the
information requirement. The result of this evaluation will be the information source.
In order to acquire all dependencies of each microservice, the import declarations in
the source files can be utilized. The objective is to have a list of dependencies for
each microservice. This can be achieved in two steps. First, all imported packages
of each source file have to be extracted. Then, the results have to be merged on a
per-microservice basis by looking at which source file belongs to which microservice.
Since every necessary information is stored in the source files, they are defined as the
information source.

Processing all source files of every microservice can be time-intensive depending on the
size of the microservice architecture. In Go, we can make use of a different information
source which allows for a more efficient detection. This approach utilizes the Go modules,
which are defined in go.mod files. Because Go’s module system is complex, only the
necessary basics are introduced. A module is defined as a collection of packages. In the
following, for the sake of simplicity, we assume that a microservice consists of exactly
one module. Microservices consisting of multiple modules can be analyzed using this
approach as well. However, as will be explained later, it is not possible to analyze
microservices that are part of the same module – which applies to the demo application.
All external dependencies of a module are specified in the module definition using the

14

3.1 Structuring Information Needs

FrontendDriverCustomer Route

Go Standard Library External Libraries

Log Tracing Delay HTTPerr Pool

Figure 3.3: Simplified dependency graph of the “Hot R.O.D.” application

require keyword – as seen in listing 3.2. External dependencies include every package
which is not part of the standard library or the module itself. This information is still
granular enough to satisfy the information requirement, since shared dependencies on
internal packages are not causing the problems the anti-pattern defines. Therefore, the
information source of this alternative approach is the go.mod file.

Using the Go module definition to extract all dependencies is faster than processing
every source file because only a single file has to be parsed. Additionally, no dependency
is encountered more than once, as can be the case when using source files as information
source. As consequence, post-processing to remove duplicates is not necessary.

It is important to note that relying on the go.mod file is not possible for the demon-
stration application. This is due to the microservices consisting of individual packages
– not modules – which are part of the bigger Jaeger tracing system module. As a conse-
quence, the microservices do not have their own module definitions which could be used
for analysis. Furthermore, basing the analysis on the go.mod file of the Jaeger tracing
system module would result in incorrect outcomes, since dependencies unrelated to the
demo application are contained in that file as well. In summary, source files of the “Hot
R.O.D.” application, are defined as the information source.

1 module github.com/jaegertracing/jaeger
2
3 go 1.19
4
5 require (
6 //...
7 go.opentelemetry.io/collector v0.57.2

15

3 Concepts

8 go.opentelemetry.io/collector/pdata v0.57.2
9 go.opentelemetry.io/collector/semconv v0.57.2

10 go.opentelemetry.io/otel v1.9.0
11 go.uber.org/atomic v1.9.0
12 go.uber.org/automaxprocs v1.5.1
13 go.uber.org/zap v1.22.0
14 //...
15)
16 //...

Source Code 3.2: Excerpt of Jaeger’s go.mod file

After having identified the information source of this anti-pattern, we will now take
a look at possible extraction methods for this information source. The dependencies
can be extracted manually by simply checking every source file. However, we want to
achieve this using automated methods for increased efficiency. One possible approach is
to use static analysis to detect all import declarations, similar to Go’s built-in go vet
tool. In case of the “Hot R.O.D.” application, the analyzer would have to recursively run
through every Go source file in the services directory, except for those in the config
directory, yielding 16 lists of dependencies. The config directory is ignored because
it does not contain a microservice but instead stores configuration parameters for the
microservices. As described in the previous paragraph, the resulting lists have to be
grouped by corresponding microservice. Every source file belonging to the same package
is part of the same microservice. For example, there are four source files belonging
to the customer package, which constructs the customer microservice. This grouping
procedure has to be executed for every analyzed source file. Afterwards, all lists in the
same group have to be merged into one combined list. While merging, it is important
to remove duplicates, so that only unique values are stored in the combined lists. After
acquiring these lists, the information requirement is satisfied.

Figure 3.4 illustrates how the merging process works for all source files belonging to
the customer microservice. It is important to note that only internal dependencies are
considered in this example, as they are the most relevant. However, the procedure is the
same for every type of dependency. As previously described, every source file belonging
to the customer package is analyzed on imported packages. These imports are then
merged into a final list, which describes every dependency the customer microservice
has, purged from duplicates. This process would have to be repeated for every remain-
ing microservice. The following paragraph describes how shared libraries can then be
detected on the basis of these microservice dependency lists.
To detect the anti-pattern based on the microservice dependency lists, an algorithm has
to discover dependencies that occur in more than one of these dependency lists – those
are the shared libraries. Ideally, standard packages, such as fmt or net/http are not
considered, since it is very likely that those are shared and no harm is caused by that.
The result of this analysis is that multiple shared libraries are present in this demo
application. This includes the logging package “go.uber.org/zap” or internal packages
like “github.com/jaegertracing/jaeger/examples/hotrod/pkg/log” which are used

16

3.1 Structuring Information Needs

In-house dependencies of customer microservice

import (
 //...
 "…/pkg/log"
 "…/pkg/tracing"
 //...
)

customer/client.go

import (
 //...
 "…/pkg/delay"
 "…/pkg/log"
 "…/pkg/tracing"
 //...
)

customer/database.go customer/interface.go customer/server.go

import (
 //...
)

import (
 //...
 "…/pkg/httperr"
 "…/pkg/log"
 "…/pkg/tracing"
 //...
)

…/pkg/log
…/pkg/tracing
…/pkg/delay
…/pkg/httperr

Figure 3.4: Merging dependencies of the customer microservice

as abstractions or factories in all microservices. It is expected that these libraries are used
in every microservice, since a logging component is necessary if best practices should be
adhered to. Nevertheless, the anti-pattern is detected, and human evaluation is needed
to determine whether these shared libraries are indeed problematic.

In summary, shared libraries have successfully been detected by first defining the
information requirement, followed by the information source and finally methods to
satisfy the information requirement and to detect the anti-pattern using this information.

Example 2 – Legacy Organization This example is concerned with detecting the
Legacy Organization anti-pattern. The anti-pattern describes the problem of a com-
pany, which transitioned to microservice architectures, not adapting their processes and
policies to MSAs. An example for this are common releases, which are scheduled for
every team, although having independent development teams. This causes the problem
of developers having to conform to the old processes and policies, instead of benefiting
of the introduced microservices [TLP20].

Defining an information requirement for this anti-pattern is similarly straightforward
as in the previous example. In order to detect whether a company did not update
their processes to take advantage of microservice architectures, we must be able to
analyze them. Therefore, we define “Processes and Policies of the Organization” as the
information requirement.

Next, the information source has to be defined. A noteworthy difference to the in-
formation requirement defined previously is how this information requirement can be

17

3 Concepts

satisfied. Because the information requirement is inherently focused on the organiza-
tion instead of the MSA, business knowledge is required to satisfy it. The concept of
business knowledge is defined in section 3.2. Using artifacts of the demo application as
information source would not yield the information needed to satisfy the information re-
quirement, because processes or policies are not stored in the application. Consequently,
business knowledge is defined as information source for this anti-pattern.

For the sake of providing this example, we assume that business knowledge is not avail-
able in a machine-readable format. Thus, satisfying the information requirement requires
manual processing. If the anti-pattern is supposed to be detected automatically, the in-
formation has to be processable by an algorithm. To achieve this, a human has to parse
relevant business knowledge and store all processes and policies in a machine-readable
format. This step is not trivial and can be time-intensive depending on the amount of
processes and policies present in the organization as well as the accessibility of required
business knowledge. In turn, maintaining an up-to-date version of the machine-readable
data requires repeated effort. In any case, having processes and policies accessible in a
machine- or exclusively human-readable format satisfies the information requirement.

As the last step, the anti-pattern has to be detected on the basis of the satisfied
information requirement. Detection can either happen manually or in an automated
fashion. In case it is done manually, a human has to flag processes and policies which
have not been adapted to microservice architectures based on own reasoning or previously
defined rules. If processes or policies which conform to these criteria, therefore being
not adapted, are found, the anti-pattern is present. On the other hand, detecting the
anti-pattern using an algorithm, is likely more challenging and requires a higher up-front
effort. This is because developing a system which performs automated detection likely
requires more work than performing a one-time manual analysis. An algorithm has to
be able to evaluate whether a process or policy is adapted to MSAs or not. Currently,
it is unclear how this can be achieved.

In summary, it can be said that detecting the legacy organization anti-pattern would
increase the quality of a given MSA, since it is classified as harmful by multiple industry
practitioners [TLP20]. However, detecting it automatically is very challenging due to
the difficulty of converting business knowledge to a machine-readable format, as well as
judging it using an algorithm [Hep+05; OLe98].

3.2 Information Sources
Information sources form the base for the detection of anti-patterns – as seen in figure 3.1.
They are artifacts from which information for detection is extracted (see definition 3.1.2).
This extraction process can be manual or automated. As stated in the definition, au-
tomated extraction is only possible for machine-readable information sources. Whether
information sources are human- or machine-readable depends on how, and in which
format the artifacts are stored.

Furthermore, during our research, we discovered that information sources can be cat-
egorized into four classes depending on the contained information: domain-, business-,

18

3.2 Information Sources

application-, and runtime-knowledge. Notably, the term knowledge is deliberately chosen
instead of information because the four classes describe a larger collection of information,
which is why delineating the terms is useful.

Domain knowledge describes knowledge about a specific domain. According to
Evans [Eva04], a domain, in the context of software engineering, is the subject area to
which a program is applied. Moreover, some domains involve the physical world, e.g.
an airline-booking service, while some are intangible, e.g. an accounting service [Eva04].
Regarding the extraction of domain knowledge, domain experts are crucial, as will be
seen later. Vernon [Ver13] describes domain experts as “people who know a subject area
really well and are likely to have a background in the business domain”.

Business knowledge has many varying definitions. The Northern Ireland Business
Info [Nor] describes it as “a sum of skills, experiences, capabilities and insight which you
collectively create and rely on in your business”. However, the following definition will
be used as reference throughout this thesis, since it better fits the context of software
architectures. Ross [Ros] defines it as “the total set of business concepts, their organizing
connections, and the business rules upon which the existence of the business depends”.

We define application knowledge to be knowledge about a microservice application
and the artifacts it contains. The knowledge can be extracted from application-related
files, such as source code, configuration- or log files. The primary method of accessing
this knowledge is through static analysis.

Finally, we define runtime knowledge to be knowledge which can only be obtained
when observing a running system (i.e. microservice architecture). Consequently, knowl-
edge which is covered by this term is strictly related to information only available at
application runtime. This primarily includes connections between microservices in the
context of this thesis. Runtime knowledge can be accessed using variations of dynamic
analysis.

Figure 3.5 displays the seven main information sources used in this thesis, along with
their categorization. Each class contains a different type of information and requires
different methods of extraction. Each information source is colored to highlight the
appropriate extraction method.

Legend

Dynamic Analysis

Static Analysis

Only Human-understandable

We assume that every source
is human-readable

Information Sources

Domain Knowledge Business Knowledge Runtime Knowledge

Source Code

Application Knowledge

Domain Expert Business Expert

CommunicationLog FilesEnterprise
Architecture Models Accessed StorageConfiguration Files

Figure 3.5: Overview of information sources

The knowledge of experts, be it domain- or business-knowledge, is not available in
a machine-readable format, which is why a manual extraction process, is necessary.
However, if an expert of business knowledge formulates his knowledge in the form of
enterprise architecture models, which are stored in a machine-readable format, it can be

19

3 Concepts

extracted using automated methods – specifically through static analysis. While no stan-
dard definition for enterprise architecture exists, the consensus is that it, among other
aspects, contains strategic information which defines the business along with the infor-
mation and technology necessary to run it [SML17]. Furthermore, existing approaches
by Boer et al. [Boe+05], Naranjo, Sánchez, and Villalobos [NSV15], and Sabau, Hacks,
and Steffens [SHS21] show the feasibility of running static analysis methods on enterprise
architecture models to extract information.

Due to its nature, application knowledge is stored in a machine-readable format. A
plethora of approaches exist which extract information from source code or log files by
means of static analysis [Lou06; CT22]. However, automated analysis of configuration
files is more challenging. Because of near infinite naming possibilities of configuration
variables, it is not easily possible to automatically judge what information is stored in
them. Reliable automated analysis of such configuration files would require some form
of mapping from variables to type of information – such a mapping would likely require
human involvement. However, many configuration files are constructed using a domain-
specific language, which follow a declared grammar or syntax. Docker’s compose files5

are an example for such a configuration file. Consequently, if an algorithm is designed
to analyze Docker compose files – therefore making it platform-specific – it is certainly
possible to extract information without human involvement. Hence, it depends on the
type of configuration file and the algorithm used to analyze it, whether the configuration
file is only human-readable or machine-readable as well. For this reason, we highlight
configuration files as a combination of being machine-readable by means of static analysis
and being only human-understandable.

Finally, by definition, runtime knowledge focuses on running microservice architec-
tures. Therefore, approaches using dynamic analysis have to be used to extract infor-
mation about the communication between microservices, since this information is not
available in static files.

Detailed extraction methods are discussed in chapter 5. In summary, this section in-
troduced seven information sources, belonging to four main knowledge categories, which
will be used throughout this thesis to detect the anti-patterns defined by Taibi, Lenar-
duzzi, and Pahl [TLP20].

3.3 Information Requirements

As stated in definition 3.1.1, information requirements are a key component for the
detection of anti-patterns. This section gives an insight into the information require-
ments discovered during our research and states how an information requirement can be
satisfied.

During our research, we were able to propose 20 information requirements by inves-
tigating what information is necessary to detect the anti-patterns from the catalog of
Taibi, Lenarduzzi, and Pahl [TLP20]. Table 3.1 lists all 20 information requirements

5https://docs.docker.com/compose/compose-file/

20

https://docs.docker.com/compose/compose-file/

3.3 Information Requirements

alongside a description of the contained information. The term “contained information”
denotes the information necessary to satisfy an information requirement. At the same
time, contained information is the information humans or algorithms are able to use if
an information requirement is satisfied.

An information requirement is called satisfied if the underlying requirement is ful-
filled. For example, the information requirement “Accessed Storage” is satisfied, if a list
of every persistent storage medium a microservice accesses is present. It is irrelevant
whether it is present in only human- or in machine-readable form. To satisfy information
requirements, previously introduced information sources are used. As will be presented
in chapter 5, each information requirement has one or more information sources associ-
ated with it. Information has to be extracted from the associated information sources in
order to satisfy the information requirement. This procedure is exemplified in section 3.1
and follows the same pattern for every pair of information requirement and information
source.

While analyzing the discovered information requirements, it became apparent that 10
out of 20 focus on technical information while the other half focuses on business-related
information. Technical information denotes information which can be extracted using
only application knowledge. On the other hand, business-related information has to
be extracted from domain- or business knowledge. Moreover, it was noticed that eight
anti-patterns have more than one information requirement. Consequently, the same
holds true for the information requirements (see figure 4.1). The anti-patterns that have
more than one information requirement are likely to have at least one business-related
information requirement. This shows that the detection of some anti-patterns requires
more information than others.

Name Description
Accessed Storage Lists every persistent storage medium (e.g. a

database) that a microservice accesses.
Application Dependencies Lists all dependencies of a microservice on other mi-

croservices which are part of the same MSA. A mi-
croservice A is dependent on a microservice B, if A
sends requests to B.

API Endpoints Lists all fully qualified API paths (i.e. endpoints) a
microservice offers.

External Endpoints in
Static Files

Contains information about which endpoints are
specified in which static files.

Imported Libraries Lists all libraries a microservice imports.
Inter-Microservice Com-
munication

Contains detailed information about the communica-
tion between microservices of the same MSA. Should
include every request and response with correspond-
ing headers.

Table 3.1: Description of information requirements

21

3 Concepts

Name Description
Logging Target Describes the location where logs of a microservice

are stored at. This can, for example, be a log file
stored in the local file system of a microservice or
a central log aggregator. A microservice can have
multiple logging targets.

Microservice Functionali-
ties

Describes business capabilities (i.e. functionalities)
implemented by a microservice. Microservices can
implement one or more functionalities.

Microservice Owners Contains the team or individual responsible for a mi-
croservice – referred to as the owner.

Owned Storage Contains a mapping of persistent storage units (e.g.
databases) to microservices. The mapping should be
injective, meaning every storage is mapped to exactly
one microservice. A storage is mapped to a microser-
vice, if it is designed to belong to it.

Presence of Central Moni-
toring Architecture

Describes whether a central monitoring solution ex-
ists, which monitors the metrics of microservices.

Presence of Company-
Wide Frameworks

Describes whether a company offers frameworks or
boilerplate code which can be used by any team de-
veloping microservices.

Presence of Metrics Li-
brary or Health Endpoint

Describes whether microservices use a metrics library
to log their metrics or if microservices offer a health-
endpoint. A health endpoint is an API endpoint
which offers health-related information.

Processes and Policies of
the Organization

Lists every development-related process and policy of
an organization.

Shared Code Fragments Lists fragments of code which are used in multiple
microservices.

Technologies Used Lists every technology (e.g. programming languages,
protocols, etc.) used by a microservice.

Technology Selection Mo-
tives

Describes why a technology was chosen to be used in
the application.

Transmitted Version In-
formation

Contains API version information transmitted in
request or response headers. E.g. the value of
Content-Type or Accept headers.

Usage of CI/CD Pipelines Contains information about which teams or individ-
uals use continuous integration and continuous de-
ployment pipelines.

Versioning Schema Describes the versioning schema mandated by the or-
ganization, if any.

Table 3.1: Description of information requirements (continued)

22

4 Anti-pattern Information Requirement
Catalog

Contents
4.1 The Catalog . 23
4.2 Threats to Validity . 37

After the introduction of anti-patterns in chapter 1 and a proposal to structure their
information needs in chapter 3, this chapter deals with the definition of corresponding
information requirements. In section 4.1, the results of our analysis are presented in the
form of a catalog. Section 4.2 states the main validity threats of the analysis.

4.1 The Catalog
The analysis is based on the 20 anti-patterns listed in the taxonomy by Taibi, Lenarduzzi,
and Pahl [TLP20] (see table 2.1). The last seven anti-patterns in table 2.1 were extracted
by Taibi et al. from technical talks by practitioners and are not part of the taxonomy.
They will not be used in this thesis because these talks do not provide enough information
to propose methods for automated detection. Moreover, these anti-patterns were also
not explored in other literature, from which more information about them could have
been derived.

Determining which information is needed for the detection of anti-patterns in MSAs
requires an in-depth analysis of each anti-pattern. The following method was used for
our analyses. First, we searched in existing literature for approaches which are able to
detect a specific anti-pattern in MSA. Information requirements can then be derived from
the necessary input of these approaches. If there was no literature found fulfilling these
criteria, the search was expanded to include literature which is not targeted for MSA
but traditional, monolithic software architectures. In case the expanded search yields
no results as well, information requirements were defined by ourselves. This analysis
was conducted for 20 of the 27 anti-patterns defined by Taibi, Lenarduzzi, and Pahl
[TLP20] in their paper, which was introduced in chapter 2. Seven anti-patterns were
not considered for the reasons mentioned previously. The anti-patterns are ordered by
descending perceived harmfulness scores, which is the same order used in the taxonomy
by Taibi, Lenarduzzi, and Pahl.

23

4 Anti-pattern Information Requirement Catalog

Hardcoded Endpoints

Anti-pattern Description This anti-pattern is also known as Hardcoded IPs and
Ports and describes the problem of using hardcoded IP addresses or hostnames and
ports to connect to other microservices [TLP20]. This practice is problematic because
it defeats some advantages of MSA. One such advantage is the ability to have a high-
availability deployment of a microservice, which means that multiple replicated instances
of the microservice are running simultaneously. Should one of those instances become
unavailable, traffic can be redirected to the other instances without impacting the overall
availability of the microservice. If such a high-availability deployment of a microservice
is accessed by another microservice through hardcoded endpoints, it is impossible to
quickly redirect the traffic to replicated instances.

By definition of the term “hardcoded”, endpoints have to be stored in static files,
such as source code. Furthermore, they can be stored in different formats, namely IPv4,
IPv6 or as a string (hostnames). Each variant can be extended with the specification
of a port number. The following examples are all valid endpoints: “127.0.0.1:42,
::1:42, database”. However, it is important to point out that the usage of IPv6 for
communication in microservices is still rare, but possible. It was first introduced to
Kubernetes in version 1.91.

Detection Methods in Literature Two existing approaches for detection were found
in literature focused on MSAs. Pigazzini et al. [Pig+20] try to identify hardcoded
endpoints using regular expressions to match IPv4 addresses with ports in source code.
This approach can be extended to detect IPv6 addresses as well, however it will not be
able to detect hostnames reliably, except if they are known in advance. Walker, Das,
and Cerny [WDC20] propose a platform-specific method which utilizes the bytecode of
a microservice. To be precise, they observe which parameters are passed into functions
used to connect to other microservices. This approach seems promising, since it is able
to detect all three formats of hardcoded endpoints. Notably, it will not work with all
common programming languages, since some are not compiled and therefore have no
bytecode.

Definition of Information Requirements In case it is possible to acquire every host-
name of the microservices in the architecture, the approach of Pigazzini et al. should
be able to accurately detect the presence of this anti-pattern. Consequently, source
code and hostnames of every microservice are required for detection. The corresponding
information requirement is titled “External Endpoints in Static Files”.

1https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.9.md#ipv6

24

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.9.md#ipv6

4.1 The Catalog

Wrong Cuts

Anti-pattern Description One of the hardest problems when migrating from a mono-
lithic architecture to a MSA is splitting the monolith into independent microservices
[CBD18; TS20]. If not done properly, the result is a MSA without proper separation
of concerns as well as increased data-splitting complexity [TLP20]. This anti-pattern,
which is also known as “wrong separation of concerns”, is likely one of the hardest to
detect using automated methods, due to the amount of domain knowledge necessary for
detection.

Detection Methods in Literature Walker, Das, and Cerny [WDC20] state that de-
tecting wrong cuts is nearly impossible without having a deep understanding of the
business domain. However, they still propose a method for detecting this anti-pattern
by looking for unbalanced distributions of artifacts within the microservices. According
to the authors, unbalanced artifacts are a possible consequence of wrong cuts. Notably,
they highlight their detection method as one of the main validity threats. For this rea-
son, and because in the case study conducted by the authors, the anti-pattern was only
correctly identified one out of two times, we will not refer to this method any further. In
another paper, Pigazzini et al. [Pig+20] further underline the difficulty of detection. It
would require analyzing different business processes as well as the architectural structure
of the whole architecture along with further information. In addition, the authors state
that research is being done to identify decomposition strategies and methods to detect
proper decomposition for MSA. They do not propose a detection method themselves
because of the aforementioned reasons.

Definition of Information Requirements In conclusion, the detection of this anti-
pattern heavily depends on domain knowledge and no automated methods for reliable
detection have been found in current literature. Therefore, we propose the following
information requirement for this anti-pattern: “Microservice Functionalities”.

Cyclic Dependency

Anti-pattern Description This anti-pattern, which is also known as “Circular De-
pendency”, is one of the most well-known of this catalog as it already has been defined
for monolithic architectures. Cyclic dependencies are present if there exists a loop of
dependencies – a circular chain of imports – between modules. If we have two modules
A and B, a cyclic dependency would look like this A → B → A (A imports B and B
imports A). Furthermore, there exist much more complex cyclic dependency patterns,
for the detection of which graph-based algorithms have proven useful [Al-+14]. How-
ever, when working in the context of microservice architectures, dependencies between
microservices themselves, not individual modules, are decisive for triggering this anti-
pattern [TLP20]. Cyclic dependencies are bad practice in such architectures, because it

25

4 Anti-pattern Information Requirement Catalog

increases the effort needed for maintenance and makes individual microservices harder
to reuse in isolation.

Detection Methods in Literature Pigazzini et al. [Pig+20] utilize a call graph be-
tween microservices to detect this anti-pattern. They use a platform-specific approach
to generate the call graphs, which is targeted at Java projects utilizing the Spring frame-
work. Specifically, the algorithm tries to identify every HTTP request made to other
microservices based on the RestTemplate class. This approach should be extendable to
other programming languages and frameworks as further analysis only depends on the
call graph. The authors use their own tool, called “Arcan”, to generate the dependency
graph based on a call graph. Cyclic dependencies can then be detected either manually,
by looking at a graphical representation, or automatically using graph-based algorithms.
Walker, Das, and Cerny [WDC20] use a similar approach to the one previously men-
tioned. They also generate a call graph based on REST API calls, the detection of which
is not further documented. Next, they run their cyclic dependency detection algorithm,
which is a modified depth-first search, on this graph. In another paper by Hübener et
al. [Hüb+22] a detection method using distributed tracing is proposed. This approach
was used because, in the scenario described by the authors, acquiring the source code
artifacts of all microservices is infeasible. Therefore, Apache Kafka2 was used to infer
dependencies between microservices based on the time-stamped invocations of services.
The resulting dependency graph can subsequently be analyzed automatically to detect
cyclic dependencies.

Definition of Information Requirements All three papers propose interesting ap-
proaches for detecting this anti-pattern. Likely, the two approaches based on static
analysis should be preferred since they do not require a running application to per-
form the detection. Consequently, this allows scanning for cyclic dependencies before
the source code is executed in a production environment, which can help to increase
maintainability. Therefore, we propose the following information requirement for this
anti-pattern: “Application Dependencies”.

API Versioning

Anti-pattern Description Most microservices of an architecture communicate with
each other using REST APIs – other communication protocols like gRPC also exist.
It is common practice to semantically version these endpoints so that consumers of an
endpoint are not forced to immediately upgrade if breaking changes are necessary. As the
name suggests, REST APIs use API endpoints, which are uniquely identified by URIs.
In this case, a version can be defined as part of the URI. Another option, which is often
used for protocols that do not define URIs, is including the version in the transmitted
headers. There are multiple best-practices for semantically versioning an API, which will

2https://kafka.apache.org/

26

https://kafka.apache.org/

4.1 The Catalog

be discussed in a later chapter. This anti-pattern, which Richards also refers to as “Static
Contract Pitfall” [Ric16], is triggered if endpoints of microservices are not semantically
versioned. As already touched upon, if a non-versioned API is updated, the consumers
may face connection issues or encounter other problems related to a changed data model
of input or return data [TLP20].

Detection Methods in Literature Tighilt et al. [Tig+20] list three hints to the pres-
ence of this anti-pattern: “(1) microservices endpoint URLs do not contain version num-
bers, (2) no custom header information are sent by the client, (3) multiple microservices
have similar names”. The first two hints are rather intuitive, however one could argue
that the third hint should be treated with caution, since microservices can have similar
names for multiple reasons and this does not directly indicate a lack of API versioning.
Nonetheless, these indicators provide a good base for detection of this anti-pattern. An
approach which is based on the first hint can be found in the paper of Walker, Das, and
Cerny [WDC20]. They match every fully qualified API path offered by a microservice
against a regular expression pattern which detects semantic versioning in the URL path.
This is a straightforward approach which has the disadvantage that the pattern has
to be customized to the utilized versioning format if it does not conform to standards.
The authors only propose this method for fully qualified API paths, however it can be
extended to check request and response headers as well. For a completely reliable de-
tection of this anti-pattern, knowledge about how versioning has been implemented is
ultimately required. This is because there are almost infinite possibilities of formatting
version information in both URIs and headers – assuming best practices are not adhered
to. If this information is not present, heuristics can be utilized to detect the lack of API
versioning in a subset of possible cases.

Definition of Information Requirements Summarizing the above, we need multiple
types of information to reliably detect whether API versioning is not used for specific
microservices. First, API endpoints of the microservice act as the base for the analysis.
In case that version information is transmitted in the header, this information will be
used as well. Finally, if an accurate analysis is indispensable, the API versioning schema
should be utilized. Therefore, we propose the following information requirements for this
anti-pattern: “Endpoints”, “Transmitted Version Information” and “Versioning
Schema”.

Shared Persistence

Anti-pattern Description As previously discussed, one of the main benefits of MSAs,
if implemented correctly, is the low coupling between services. It is very common for
microservices to have some sort of persistence layer, such as relational databases. This
anti-pattern describes the problems that occur when different microservices access the
same database or, even worse, the same entities of the same database. If shared persis-
tence is present between multiple microservices, it is certain that these services become

27

4 Anti-pattern Information Requirement Catalog

tightly coupled and in turn the team- and service-independence is reduced [TLP20].
Therefore, it is important that every microservice has its own persistence layer.

Detection Methods in Literature Tighilt et al. [Tig+20] define three symptoms that
characterize this anti-pattern: “(1) multiple microservices share the same configuration
files and deployment environments, (2) database tables are prefixed, or (3) databases
have a lot of schemas”. These symptoms can be good indicators of the presence of
shared persistence, however they are formulated rather unspecific and broad. Pigazzini
et al. [Pig+20] propose a detection method which operates on a similar idea as the first
defined symptom. On a high level, their approach searches for all database references or
usages in every microservice. Using this information, the detection of shared persistence
is straightforward, since it can quickly be detected if multiple microservices access the
same database. However, this only detects access to the same databases and cannot check
if the same entities are accessed. Furthermore, the approach is platform-dependent, as
the authors rely on specific configuration files of the Java Spring framework to detect
connection strings to databases. This method is also used in a paper by Walker, Das,
and Cerny [WDC20].

Definition of Information Requirements Multiple other detection methods are think-
able, which do not use configuration files but log files as a source for finding database
accesses. These will be discussed in the sections concerned with the corresponding in-
formation requirements. Therefore, we propose the following information requirement
for this anti-pattern: “Accessed Storage”.

ESB Usage

Anti-pattern Description An Enterprise Service Bus (ESB) is a central component
used in service-oriented architectures and is mainly used to connect enterprise services
with each other, independent of the utilized communication protocols. ESBs should
however not be used in microservice architectures since it highly increases coupling,
because it is a central component. This means that all traffic runs through the bus
which creates a single point of failure. Furthermore, it adds complexity for registering
and deregistering services [TLP20].

Detection Methods in Literature Because the ESB is designed to be a transparent
component, it is rather difficult to detect reliably. Walker, Das, and Cerny [WDC20]
propose a detection method using communication information. They define three criteria
using which an Enterprise Service Bus can be detected on the basis of incoming and
outgoing connection of every module in the application. A module needs to have a
high, outlier like, number of total connections, with the number incoming and outgoing
connections being balanced and connections to almost every other module in order to
be flagged as a potential ESB. It is unclear how the authors managed to obtain the

28

4.1 The Catalog

connection information, since the paper is focused on static analysis and information
such as incoming or outgoing connections are usually acquired using dynamic analysis.

Definition of Information Requirements Regardless of whether automated or man-
ual analysis of the architecture is conducted, the communication between microservices
has to be observed to allow for analysis. Therefore, we propose the following information
requirement for this anti-pattern: “Inter-Microservice Communication”.

Legacy Organization

Anti-pattern Description This anti-pattern, which is also known as the “Red Flag
Law” [Ric] has already been analyzed in detail in section 3.1. For the sake of complete-
ness it is mentioned here nonetheless. When a company migrates from a monolithic
architecture to a microservice architecture, it must transition its processes and policies
related to development to fit to MSA as well. If this does not happen and developers
are still required to follow the unadjusted processes, they cannot benefit of the newly
introduced architecture change [TLP20]. According to Taibi et al., an example for a
legacy organization is that teams still have to schedule common releases although hav-
ing independent development teams.

Detection Methods in Literature No detection approaches have been found in ex-
isting literature.

Definition of Information Requirements Detection of this anti-pattern relies solely
on business knowledge. Therefore, we propose the following information requirement for
this anti-pattern: “Processes and Policies of the Organization”.

Local Logging

Anti-pattern Description Due to the distributed nature of MSA, getting a com-
plete overview of all logs becomes increasingly difficult with the number of microservices
present. For this reason, some type of central log aggregation is typically used to unify
all logs in one location. Local logging describes the problem of logs only being stored
locally in each microservice and not being aggregated. This can result in errors staying
hidden inside of microservice containers because these logs are not being analyzed fre-
quently enough. Furthermore, if, for example, a user-facing error has to be investigated,
a developer has to access each involved microservice individually, access and merge those
logs to reenact why the error occurred. This comes at the expense of time and requires
the developer to have access privileges on every required machine.

29

4 Anti-pattern Information Requirement Catalog

Detection Methods in Literature We have not found any literature which proposes
detection methods for this anti-pattern. However, Tighilt et al. [Tig+20] define symp-
toms that occur if no log aggregation is being performed: “(1) the presence of log files
inside microservices, (2) files being written by the microservice, (3) the usage of time
aware databases, and (4) logging frameworks and tools” They provide good initial point-
ers to artifacts that should be searched to check for this anti-pattern. This is especially
helpful for manual analysis, although an automated approach can be based on these
indicators but likely needs more detailed and machine-readable information.

Definition of Information Requirements Local logging is probably one of the anti-
patterns most difficult to detect because a variety of different information is necessary
to reliably determine if logs are aggregated. This is because aggregation can happen
in multiple ways, such as letting microservices directly log to a central location using a
dedicated library or writing logs to a local file which is periodically scraped by another
service which assumes the responsibility of uploading them. Therefore, we propose the
following information requirement for this anti-pattern: “Logging Target”.

Megaservice

Anti-pattern Description One important aspect of developing MSAs is correctly de-
signing the scope of microservices. If one service ends up having multiple non-trivial
functionalities and resembles a monolith, it is referred to as a megaservice. Such ser-
vices should certainly be avoided as they can result in maintenance issues, reduced
performance and increased testing difficulty [Tig+20]. In addition, the advantages of
microservice architectures are not utilized properly [TLP20].

Detection Methods in Literature We have found multiple papers which deal with
the detection of such megaservices. Taibi, Lenarduzzi, and Pahl [TLP20] suggest that
services which implement multiple business processes, are composed of multiple modules
and are developed by multiple teams or developers are characteristic for megaservices.
These indicators require mainly organizational information. Tighilt et al. [Tig+20] focus
solely on technical information. They propose a high number of modules, files and lines
of code along with an above average number of incoming requests as possible symptoms
of megaservices. Detection of this anti-pattern is also feasible using distributed tracing
according to Hübener et al. [Hüb+22]. In their paper, they mention megaservice as one
of the anti-patterns detectable using metrics on a dependency graph. However, they
neither define these metrics in the paper itself nor the referenced ones. Presumably the
authors relied on the total number of dependencies in their generated dependency graph
for detection. A service on which an unusual high number of other services depend could
be classified as a megaservice. This approach is extendable to static analysis methods,
as long as dependency graphs can be generated. Esas [Esa22] utilized a simpler approach
by manually counting the number of endpoints of each microservice. Classification as
megaservice would occur if an outlier-like number of endpoints were counted.

30

4.1 The Catalog

Definition of Information Requirements Judging from the previously quoted liter-
ature, detection can be based on either technical- or organizational-information. The
usage of organizational-information is likely to provide the best results, while also being
the most difficult to process automatically. Therefore, we propose the following infor-
mation requirements for this anti-pattern: “Microservice Owners”, “Microservice
Functionalities” and “Endpoints”.

Inappropriate Service Intimacy

Anti-pattern Description As discussed previously, in the Shared Persistency para-
graph, it is important that every microservice only accesses its own private persistence
layer. This anti-pattern is related to shared persistence, as it describes microservices
which connect to private data from other services in addition to its own data. This be-
havior increases coupling between microservices and indicates a possible mistake made
during modelling [TLP20].

Detection Methods in Literature Taibi et al. propose a detection method which is
based on requests from one microservice to the private data of another. This primarily
includes requests to private databases. If a microservice performs such requests, it can
be argued that it violates service intimacy. Walker, Das, and Cerny [WDC20] utilize a
variant of their shared persistence detection method. Compared to the original method,
an instance of inappropriate service intimacy is only detected if a microservice accesses
a shared database while having its own private persistence layer.

Definition of Information Requirements In contrast to the shared persistence anti-
pattern, further information is required for detection. In order to judge whether mi-
croservices have their own private persistence layer, storage accessed and owned by the
microservice is considered. Therefore, we propose the following information requirements
for this anti-pattern: “Accessed Storage” and “Owned Storage”.

Lack of Monitoring

Anti-pattern Description A lack of monitoring, which is also referred to as insuf-
ficient monitoring, causes multiple problems and leads to a decrease in quality of the
MSA. If a service becomes unavailable, and it is not monitored, developers will likely
not notice this in a reasonable timeframe without periodically checking each microser-
vice manually [TLP20]. Furthermore, individual service performance and failures are
not tracked if monitoring is not used [Tig+20].

Detection Methods in Literature No literature was found that proposes concrete
methods for detecting this anti-pattern. However, Tighilt et al. [Tig+20] provide indi-
cations for a lack of monitoring: the use of local logging for some microservices and the

31

4 Anti-pattern Information Requirement Catalog

absence of health check endpoints. A health check endpoint3 is a dedicated endpoint
which exposes health related information. They can be one of the main sources of in-
formation for monitoring systems or orchestrators like Kubernetes to check if a service
is alive.

Definition of Information Requirements From the information mentioned above,
it can be deduced that several pieces of information are required for detection. First,
it should be checked whether the local logging anti-pattern is present as suggested by
Tighilt et al. [Tig+20]. Next, knowledge of whether a metrics library or health endpoint
is used improves detection quality. Finally, it is necessary to know whether a central
monitoring architecture is present to judge whether there exists a monitoring solution
which can be used by microservices. Therefore, we propose the following information
requirements for this anti-pattern: “Presence of Metrics Library or Health End-
point” and “Presence of Central Monitoring Architecture”.

No API Gateway

Anti-pattern Description API gateways4 are an important component of complex
microservice architectures. They offer multiple functions, such as abstracting the inter-
nal structure for consumers or providing authorization. Furthermore, if an API gateway
is present, microservices do not have to talk to each other directly – which can cause
problems if a service becomes unavailable – but can communicate over the gateway,
which can act as a load balancer if required. Taibi et al. discovered that their intervie-
wees reported communication and maintenance issues if the MSA consisted of over 50
interconnected services and no API gateway was present [TLP20].

Detection Methods in Literature Tighilt et al. [Tig+20] define two symptoms of
this anti-pattern. According to them, a consumer application sending multiple requests
to different URLs, as well as systems with multiple frontends are indications that no API-
Gateway is used. The term “system” likely refers to the whole microservice application
in this case. These symptoms are extended by Taibi, Lenarduzzi, and Pahl [TLP20],
who propose direct communication between microservices as an indicator. Walker, Das,
and Cerny [WDC20] bring up the important point that detecting this anti-pattern is
not necessarily possible using only code analysis methods. The authors refer to the
increased usage of cloud-based routing frameworks, like AWS API Gateway5, which are
not detectable using static code analysis, to support this claim. Because their paper is
concerned only with static analysis methods, they propose no detection methods.

Definition of Information Requirements Every mentioned symptom requires some
form of information about the communication in a MSA. Therefore, we propose the

3https://docs.microsoft.com/en-us/azure/architecture/patterns/health-endpoint-monitoring
4https://microservices.io/patterns/apigateway.html
5https://aws.amazon.com/de/api-gateway/

32

https://docs.microsoft.com/en-us/azure/architecture/patterns/health-endpoint-monitoring
https://microservices.io/patterns/apigateway.html
https://aws.amazon.com/de/api-gateway/

4.1 The Catalog

following information requirement for this anti-pattern: “Communication between
Services (Incoming and Outgoing)”.

Shared Libraries

Anti-pattern Description This anti-pattern has already been analyzed in detail in
section 3.1. For the sake of completeness it is mentioned here nonetheless. As previously
mentioned, shared libraries between different microservices are problematic, because
the coupling increases and independence decreases. This can reduce the advantages of
microservice architecture. Additionally, coordination between teams is required, if the
shared library should be modified [TLP20].

Detection Methods in Literature Walker, Das, and Cerny [WDC20] propose a de-
tection method which utilizes dependency management files. Their approach is to scan
those files for each application module to locate shared libraries. An important aspect
the authors highlight is that in-house libraries should be the focus of this analysis, as
some overlapping use of libraries is almost inevitable.

Definition of Information Requirements Every possible approach to detect this anti-
pattern has to use some form of information about each service’s dependencies. There-
fore, we propose the following information requirement for this anti-pattern: “Imported
Libraries”.

Too Many Technologies

Anti-pattern Description One of the main advantages microservice architectures
offer is the ability to develop using different languages for one microservice application.
Polyglot programming allows to use the strengths of each programming language where
they are necessary. However, if too many technologies are adopted for an application,
this can have negative effects, especially if a new developer joins the team [TLP20]. To
prevent this, this anti-pattern defines the problem of using too many technologies, which
includes programming languages, protocols, frameworks and more [TLP20].

Detection Methods in Literature Walker, Das, and Cerny [WDC20] describe impor-
tant challenges of detecting too many technologies. First, there is no common definition
of the amount of technologies regarded as too many. Such a definition would not be sen-
sible, since different companies and applications have different requirements. Therefore,
a threshold should be defined manually [WDC20]. The detection method defined by the
authors counted the standards used for every application layer (presentation, business
and data), with the option to configure a threshold for every layer. An important note
is that Walker et al. highlight this method as one of the main validity threats, because
the correctness of this method is up to interpretation.

33

4 Anti-pattern Information Requirement Catalog

Definition of Information Requirements This anti-pattern is challenging to detect
for multiple reasons. First, no precise definition of what the term “technology” entails
in this context was found in current literature. As a consequence, it is not obvious
which technologies should be considered for detection. Furthermore, the developer’s
reasons for choosing a technology should also be considered, since a technology selected
only because of recent popularity is more likely to cause problems long-term than an
established technology at the company. Therefore, we propose the following information
requirements for this anti-pattern: “Technologies Used” and “Technology Selec-
tion Motives”.

Lack of Microservice Skeleton

Anti-pattern Description A microservice skeleton is a form of boilerplate code, which
can help developer teams to focus on the business logics of their microservices. The
skeleton, as the name suggests, contains the basic source code required to set up a
microservice using the company’s infrastructure, for example the connection to an API
gateway [TLP20]. In case such a boilerplate does not exist, developers have to program
new microservices from scratch which increases development time as well as the likelihood
of errors occurring [TLP20].

Detection Methods in Literature No detection approaches were found in existing
literature.

Definition of Information Requirements One possible approach to detect a mi-
croservice skeleton is to look for similarities between different microservices. If every
service has, for example, the same directory structure with some identical files or code
fragments, it is likely that shared boilerplate code was used. Nonetheless, it is still possi-
ble that the microservices were developed from scratch every time. Therefore, it would be
helpful to use business knowledge in order to figure out whether a company-wide skeleton
or framework for microservices exists. Therefore, we propose the following information
requirements for this anti-pattern: “Presence of Company-wide Frameworks” and
“Shared Code Fragments”.

Microservice Greedy

Anti-pattern Description This anti-pattern describes the behavior of creating new
microservices for small features, which do not require a microservice of their own, like
serving static HTML pages [TLP20]. Taibi, Lenarduzzi, and Pahl also state that having
too many microservices in an architecture can have a negative impact on the overall
maintainability. Therefore, it should be carefully considered whether new microservices
are needed.

34

4.1 The Catalog

Detection Methods in Literature The only method we found in recent literature
is proposed by Walker, Das, and Cerny [WDC20]. This approach is similar to those
defined by the same authors for the wrong cut anti-pattern, and relies on counting
different microservice artifacts. These artifacts include source code files, service objects
and entity objects [WDC20]. Outliers, meaning microservices with too few counted
artifacts, are regarded as fulfilling the anti-pattern. It is important to highlight that the
authors highlight this method as a validity threat – analogous to the detection method
for the wrong cuts anti-pattern.

Definition of Information Requirements From the previously mentioned approach,
as well as the description given by Taibi, Lenarduzzi, and Pahl [TLP20], it can be
deduced that the functionalities of each microservice are decisive when detecting the
microservice greedy anti-pattern. Microservice functionalities can be extracted from
the business capabilities a microservice implements. Although implemented business
capabilities do not include basic microservice functionalities, like connecting to other
microservices, the extracted functionalities suffice to detect this anti-pattern. This is
because the basic microservice functionalities are included in every microservice, even if
they offer only a small “greedy” feature. Therefore, we propose the following information
requirement for this anti-pattern: “Microservice Functionalities”.

Focus on Latest Technologies

Anti-pattern Description According to Taibi, Lenarduzzi, and Pahl [TLP20], this
anti-pattern describes the problem of focusing on the adoption of new and fashionable
technologies when migrating to microservice architectures, instead of focusing on re-
quired technologies. As a result, the migration to microservice architectures will not
solve existing problems and likely contain infrastructure which is not actually necessary
[Ric; TLP20].

Detection Methods in Literature No detection approaches were found in existing
literature.

Definition of Information Requirements Defining an information requirement for
this anti-pattern is challenging, since it is hard to detect if technologies are only chosen
because they are fashionable and new, or because they are necessary. Because of this,
the motives for selecting a technology should be regarded when analyzing whether the
anti-pattern is present. If no motive, besides the technology being fashionable or new,
exists, it is likely that the focus of the migration to MSA lies on using the latest technolo-
gies. Therefore, we propose the following information requirements for this anti-pattern:
“Technology Selection Motives” and “Technologies Used”.

35

4 Anti-pattern Information Requirement Catalog

Common Ownership

Anti-pattern Description One advantage microservice architectures offer, is allow-
ing multiple development teams to independently develop and deploy new features and
microservices without coordinating with other teams. The anti-pattern “Common Own-
ership” describes a MSA in which every microservice is owned by one development team
[TLP20]. According to Taibi, Lenarduzzi, and Pahl [TLP20], the company will thus not
benefit from the development independency MSAs enable.

Detection Methods in Literature No detection approaches were found in existing
literature.

Definition of Information Requirements If the microservice owners are known, de-
tecting if one development team or individual developer owns all microservices is straight-
forward. Therefore, we propose the following information requirement for this anti-
pattern: “Microservice Owners”.

No DevOps Tools

Anti-pattern Description This anti-pattern describes the lack of continuous deliv-
ery and continuous deployment (CI/CD) tools [TLP20]. It is also referred to as “No
Continuous Integration / Continuous Delivery” [Tig+20]. Because no CI/CD pipelines
are present, developers have to manually perform tests and manually have to deploy
the microservices. This can result in decreased productivity and may increase errors
made during deployment due to the lack of automation, according to Taibi, Lenarduzzi,
and Pahl [TLP20]. Furthermore, the lack of DevOps tools prevents utilization of a key
advantage of microservice architectures. CI/CD pipelines allow independent teams to
test and deploy their microservices in small and frequent iterations. This is not possible
for monolithic applications which involve multiple teams.

Detection Methods in Literature No detection approaches were found in existing
literature. However, Tighilt et al. [Tig+20] define four symptoms of this anti-pattern:
“(1) no version control repositories on microservices, (2) no unit/integration/functional
tests, (3) no automated delivery tools, or (4) no staging environments”. These symptoms
cannot guarantee a successful detection but can be used to develop a method that utilizes
them. Furthermore, information requirements can be defined based on the symptoms.

Definition of Information Requirements If we know whether CI/CD pipelines are
used by development teams, we can judge whether this anti-pattern is present. Therefore,
we propose the following information requirement for this anti-pattern: “Usage of
CI/CD Pipelines”.

36

4.2 Threats to Validity

Non-homogeneous Adoption

Anti-pattern Description This anti-pattern is also known as “Scattershot adoption”
[Ric] and describes development teams within an organization transitioning to microser-
vice architectures without central coordination and infrastructure. This is a problem
because the effort of, for example, building infrastructure or deployment pipelines is
duplicated across teams. Furthermore, some development teams may not have the skills
necessary to build the infrastructure required for microservices [TLP20; Ric].

Detection Methods in Literature No detection methods were found in existing lit-
erature.

Definition of Information Requirements This anti-pattern could potentially be de-
tected by comparing the amount of teams already using microservices to those who do
not. If there is a discrepancy between the two amounts, it is likely that non-homogeneous
adoption is happening in the organization. Moreover, the existence of multiple de-
ployment pipelines or unshared microservice-related infrastructure could also indicate
the presence of this anti-pattern. Therefore, we propose the following information re-
quirements for this anti-pattern: “Microservice Owners” and “Usage of CI/CD
pipelines”.

4.2 Threats to Validity
Limitations of this analysis have to be stated. All information requirements have been
proposed on the basis of related works and our own concepts.

First, it is important to highlight that the proposed information requirements have
not been evaluated yet. In regard to the related works we used, it has to be noted that
the threat of biases exists, since some works utilize or refer to the research of other
literature we used as well. In addition, only a limited number of related works was used.

Moreover, no unique solution regarding the proposal of information requirements ex-
ists, since the definition of them is a fundamentally qualitative process.

37

4 Anti-pattern Information Requirement Catalog

Hardcoded Endpoints

Wrong Cuts

Cyclic Dependency

API Versioning

Shared Persistence

ESB Usage

Legacy Organization

Local Logging

Megaservice

Inappropriate Service
Intimacy

Lack of Monitoring

Microservice Functionalities

External Endpoints in Static
Files

Application Dependencies

API Endpoints

Transmitted Version
Information

Versioning Schema

Accessed Storage

Inter-Microservice
Communication

Processes and Policies of the
Organization

Logging Target

Microservice Owners

Owned StorageNo API Gateway

Shared Libraries

Too Many
Technologies

Presence of Metrics Library
or Health Endpoint

Presence of Central
Monitoring Architecture

Imported Libraries

Technologies Used

Technology Selection
Motives

Lack of Microservice
Skeleton

Presence of Company-Wide
Frameworks

Shared Code Fragments

Microservice Greedy

Focus on Latest
Technologies

Common Ownership

No DevOps Tools

Usage of CI/CD PipelinesNon-Homogenous
Adoption

Figure 4.1: Relationship between anti-patterns and information requirements

38

5 Extracting Information from Microservice
Architectures

Contents
5.1 Proposal of Information Extraction Methods 39
5.2 Relationship between Information Requirements and Information Sources 49
5.3 Threats to Validity . 50

After defining information requirements for every anti-pattern, this chapter proposes
extraction methods to satisfy these information requirements. Furthermore, the rela-
tionship between information requirements and information sources is visualized and
discussed.

5.1 Proposal of Information Extraction Methods
In chapter 3, information requirements and information sources have been defined and
explained. Moreover, in chapter 4, we have assigned information requirements to each
anti-pattern. In this section, we propose methods to satisfy these information require-
ments based on the previously defined information sources.

Such methods are highly dependent on the microservice architecture and organization
in the context of which they are utilized. For this reason, the methods proposed below
are not guaranteed to extract the wanted information under every possible circumstance.
In addition, it can be challenging to satisfy business-related information requirements,
since business- or domain-knowledge has to be present in machine-readable information
sources. One such machine-readable information source containing business-knowledge
has been introduced in section 3.2 – enterprise architecture models. Notably, before
utilizing them, the user should evaluate whether enterprise architecture models actually
represent the current state, since that is not guaranteed – for example due to architecture
erosion [PB21; Li+22; RW11]. As consequence of using an eroded enterprise architec-
ture model, the extracted information will not reflect the actual state of the enterprise
architecture and could therefore cause inaccurate detection results.

The research method we used to discover the extraction methods is quite similar to that
used in chapter 4. First, we determined whether extraction methods for the specific type
of required information already exist in other works. If only broadly-related methods
were found, a transfer to the specific context of microservices was performed. If no
existing methods were found, we proposed our own, based on existing literature and

39

5 Extracting Information from Microservice Architectures

considering where the information requirement is present in microservice architectures.
In the following, information extraction methods for every information requirement

are proposed. They are grouped by the respective information requirement and sorted
by alphabetical order.

Accessed Storage If this information requirement is satisfied, a list of every persistent
storage medium that each microservice accesses is present. Persistent storage mediums
can, for example, be databases or key-value stores.

Multiple approaches are thinkable to extract this information. First, static analysis
methods can be used to detect calls to well-known libraries used to interface with per-
sistent storage mediums. Such libraries could be popular third-party libraries, such as
SQLAlchemy1, or official libraries provided by the persistent storage medium vendor, for
example the Redis library for Python2. This approach presupposes information about
the utilized libraries and persistent storage mediums. Furthermore, the final list would
include every possible access to persistent storage mediums, independent of whether it
is used during runtime, due to the use of static analysis. The information source in this
case is source code.

Another approach is to analyze access log files from persistent storage mediums. This
approach has two main requirements: the persistent storage medium must log every
access, which includes the accessed resource as well as the request origin, and the ob-
served microservices are either currently active or were active before analysis. These
ensure that the necessary information is present. For example, PostgreSQL databases
can be configured to log the executed SQL query, as well as the remote host name or
IP address3. Analyzing these log files yields the information necessary to satisfy the in-
formation requirement, as it can be traced which microservice accessed which persistent
storage medium. The utilized information source are log files of the persistent storage
mediums.

Finally, as an alternative to the two approaches already mentioned, the communica-
tion between microservices and persistent storage mediums can be used as information
source. The idea is that if a microservice accesses data from a persistent storage medium,
it executes a TCP request – all mainstream persistent storage mediums currently com-
municate using a proprietary protocol on top of TCP. If such a request is detected,
the targeted persistent storage medium is added to the list of accessed storage for that
microservice. This idea implies that an executed request always stands in context of
accessing data. This approach is likely the most elaborate and, additionally, does not
yield detailed information about the accessed resource. The utilized information source
is the communication between microservices and persistent storage mediums.

Application Dependencies This information requirement is satisfied, if every depen-
dency of a microservice is known. Dependencies, in this case, refer to dependencies on

1https://www.sqlalchemy.org/
2https://pypi.org/project/redis/
3https://www.postgresql.org/docs/9.0/runtime-config-logging.html#GUC-LOG-LINE-PREFIX

40

https://www.sqlalchemy.org/
https://pypi.org/project/redis/
https://www.postgresql.org/docs/9.0/runtime-config-logging.html#GUC-LOG-LINE-PREFIX

5.1 Proposal of Information Extraction Methods

other microservices, not dependencies of the source code on libraries.
Hübener et al. [Hüb+22] demonstrate how to extract microservice dependencies in

the form of a dependency graph using distributed tracing. Distributed tracing belongs
to the group of dynamic analysis methods. The authors used Apache Kafka as their
source for the traces, however other sources, like OpenTelemetry4 are possible as well.
The information contained in a dependency graph satisfies the information requirement,
since dependencies of every microservice belonging to the application are visible. Dis-
tributed traces can be seen as a subclass of overall communication in a MSA. Therefore,
the utilized information source is the communication between microservices of the
application.

API Endpoints This information requirement is satisfied if all API endpoints that a
microservice offers are known. According to Ibsen and Anstey [IA18], an API endpoint
is “an abstraction that models the end of a message channel through which a system
can send or receive messages”.

If the source code of a microservice can be accessed, static analysis can be used to
detect the specification of endpoints in it. Oftentimes, developers rely on external or
in-house libraries to specify the endpoints of the API their microservice exposes. These
specifications likely rely on multiple functions the libraries offer. Consequently, the
idea is to detect calls to those functions in the source code using static analysis. As
a result, all endpoints defined by the microservice are known, since they have to be
defined in the source code. However, this approach assumes that information about
the utilized libraries is present, specifically how endpoints are defined using it. Source
code is the information source used in this approach. Notably, there already exist
commercial applications which are able to automatically detect API endpoints, such as
AppDynamics5.

In other cases, for example if the source code is inaccessible or no information about
the utilized libraries is available, a running MSA can be examined. The incoming traffic
of a microservice can be observed to deduce the exposed API endpoints. This idea is
designed to work with REST-based APIs. However, it can be adapted to other types of
APIs, such as gRPC, since both use HTTP as transport protocol. Independent of the
protocol, only endpoints which are triggered in the observed time frame can be detected.
Therefore, it is essential that all available endpoints are triggered during observation in
order to satisfy the information requirement. If a dedicated system integration testing
environment, which is identical to the production environment, is present and if all avail-
able endpoints can be triggered, the information requirement can be satisfied. However,
it can be challenging to trigger all API endpoints without knowing them in advance. The
information source for this approach is the incoming communication of microservices.

4https://opentelemetry.io/
5https://docs.appdynamics.com/appd/21.x/21.1/en/application-monitoring/

configure-instrumentation/service-endpoint-detection

41

https://opentelemetry.io/
https://docs.appdynamics.com/appd/21.x/21.1/en/application-monitoring/configure-instrumentation/service-endpoint-detection
https://docs.appdynamics.com/appd/21.x/21.1/en/application-monitoring/configure-instrumentation/service-endpoint-detection

5 Extracting Information from Microservice Architectures

External Endpoints in Static Files This information requirement is satisfied if a list
of hardcoded external endpoints for every static file of a microservice is present. An
external endpoint is an endpoint which belongs to an entity of the MSA different from
the considered microservice. The term is used to emphasize that it is not an API end-
point offered by the considered microservice. Furthermore, only hardcoded endpoints are
regarded, meaning they can only be changed by modifying the source code or configu-
ration file. Specifically, in accordance to the definition used by Taibi, Lenarduzzi, and
Pahl [TLP20], only IP-addresses are considered as hardcoded endpoints.

Extracting the necessary information can be realized through static analysis. In the
simplest form, source code and configuration files are searched for occurrences of IP-
addresses. Since this does not guarantee that the IP-address actually belongs to a
used external endpoint, a more sophisticated approach can be used. This involves the
analysis of the target destination of HTTP calls, by looking at function calls of known
HTTP libraries. Should an IP-address be detected as destination, it will be added
to the list for that source file. However, analyzing function calls of HTTP libraries
requires programming language and library specific information so that an algorithm
knows which function calls to analyze and how necessary parameters are defined. This
information can for example be stored in some form of knowledge base, which has to be
updated regularly in accordance to updates to the utilized HTTP libraries. The utilized
information source for this extraction is source code.

Imported Libraries This information requirement is satisfied if a list of all libraries a
microservice depends on is acquired. A microservice depends on a library if the library
is imported by one or more source files, which are part of the microservice.

This information source, as well as methods for information extraction, are discussed
in detail in the first example of section 3.1. Essentially, import statements in source files
are aggregated using static code analysis methods. Finally, post-processing is necessary
to remove duplicates and group dependencies by microservice.

As an alternative, methods which are tailored to specific programming languages can
be utilized. In the previously referenced example, the module definition of Go is used to
acquire a list of imported libraries. These methods are likely to be more efficient, but
need to be adapted to the programming languages used in the microservice application.
In summary, both approaches utilize source code as information source.

Inter-Microservice Communication This information requirement needs detailed in-
formation about the communication between microservices in order to be satisfied. No-
tably, this information requirement is broadly formulated, because a broad range of
information is required for the detection of some anti-patterns. We suggest two ap-
proaches to extract communication information from microservice architectures.

The first approach relies on logs generated by the microservices which contain informa-
tion about incoming and outgoing requests. Ideally, these logs contain protocol-specific
information, like HTTP headers, as well as basic information about the request, for
example the source host. Obviously, logging of such information has to be enabled

42

5.1 Proposal of Information Extraction Methods

for all microservices. If the necessary logs are available, they have to be collected and
analyzed using static analysis methods. The resulting data satisfies the information re-
quirement. This approach uses log files as information source. In addition to requiring
the permanent logging of connections, the extracted information is not real-time.

Should real-time connection information be necessary, or if no log files are available,
another dynamic approach is possible as well. However, this requires one or more proxy-
like components which are able to monitor the traffic for every microservice. Such
components could for example be a sidecar proxy, placed in front of every microservice.
This would enable real-time communication analysis, which can also be stored for longer
periods and satisfies the information requirement. The utilized information source is the
communication between microservices.

Logging Target This information requirement is satisfied if a list containing the logging
locations for each microservice is present. A logging location can, for example, be the
local file system or a central log aggregator.

To get an accurate view of the logging targets, two steps are required. This approach
requires a machine-readable knowledge base which stores information about where and
how various logging libraries store their logging target configuration. First, microservice
dependencies are checked for known logging libraries. If a known logging library is
found, it is possible to extract the logging target using static analysis methods from
either source code files or configuration files. Consequently, the utilized information
sources are source code and configuration files.

Microservice Functionalities Information about all functionalities (i.e. business capa-
bilities) which a microservice implements is necessary to satisfy this information require-
ment. Each microservice can implement one or more functionalities.

This information belongs to the class of domain knowledge and therefore is not avail-
able in machine-readable form without additional processing. As a result, automated
extraction is challenging in contrast to manual extraction methods. Information can
be extracted manually by a domain expert who has knowledge about the domain in
which the microservice operates. The domain expert can judge which functionalities the
microservice implements and consequently satisfy the information requirement.

Notably, this process can be adapted to automated extraction. One possibility is to
interview a domain expert, for example through a computer-guided survey, about the
implemented functionalities. If this interview is designed properly, a list of functionalities
is the outcome of it. This list would satisfy the information requirement. The utilized
information source is a domain expert.

Microservice Owners This information requirement is satisfied if the teams or indi-
viduals responsible for a microservice are known. This group of people is referred to
as microservice owners. We came up with two approaches on how this information
requirement can be satisfied.

43

5 Extracting Information from Microservice Architectures

The first one requires the codebase of the microservice to be tracked by a version
control system, like Git. In Git, each individual contributing to the codebase is identified
by a username and email address. Furthermore, it is straightforward to get a list of
these contributors. Executing the command git shortlog -ens yields a list of every
contributor identified by username and email, along with the total number of commits
made by each. This list already satisfies the information requirement. However, a more
sophisticated analysis is necessary to get information about the team each contributor
belongs to, if any. It may be possible to deduce this information through common
patterns observed in contributing behavior. Otherwise, the previously acquired list could
be enriched with business knowledge to the individual teams. In any case, the source
code is utilized as information source in this approach.

An alternative method uses enterprise architecture models to acquire a list of microser-
vice owners. Notably, this approach requires the models to be designed in a way that the
necessary information is included. Additionally, the enterprise architecture models have
to be up-to-date to ensure that the correct information is used. If the owners of each
microservice are listed in an enterprise architecture model, they can simply be extracted
by means of static analysis. In addition, if the authors are associated to a team in the
enterprise architecture model, this information can be extracted as well and can be used
to enrich the resulting list of microservice owners. The information source utilized in
this approach are enterprise architecture models.

Owned Storage In order to satisfy this information requirement, it has to be known
which persistent storage medium belongs to which microservice. A persistent storage
medium belongs to a microservice, if it is designed to contain private data of the mi-
croservice. In a well constructed MSA, no persistent storage medium is owned by more
than one microservice [Ric18].

It may be possible to extract this information from infrastructure-as-code (IaC) def-
inition files. IaC enables developers to define infrastructure in machine-readable files
using declarative approaches. Examples for IaC include Docker-compose files6, Kuber-
netes manifest files7 or more complex solutions like Ansible8. By analyzing these files,
it can be deduced which persistent storage mediums belong to which microservices. As
an example, if a Docker-compose file contains exactly two images, one for an arbitrary
microservice and one for a key-value store, it is very likely that the key-value store be-
longs to the specified microservice. However, if multiple microservice share the same
database and their private data is stored in tables, instead of a dedicated database, the
proposed extraction method becomes more challenging. In addition, business knowledge
can be utilized to get accurate results for cases the method based on IaC files does not
work with. Possibly, each persistent storage medium could be assigned one microser-
vice in enterprise architecture models, which can then be parsed using static analysis.
Therefore, the utilized information source is mainly source code with the addition of

6https://docs.docker.com/compose/compose-file/
7https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/
8https://www.ansible.com

44

https://docs.docker.com/compose/compose-file/
https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/
https://www.ansible.com

5.1 Proposal of Information Extraction Methods

enterprise architecture models to improve extracted information quality.

Presence of Central Monitoring Architecture This information requirement is sat-
isfied if the presence or absence of a central monitoring solution is detected. Central
means that the solution is shared within an organization and used by multiple indepen-
dent teams or departments.

The method we propose uses business knowledge in the form of enterprise architec-
ture models to detect this. We did not find a reliable alternative method which relies
on application- or runtime-knowledge. However, it is not ruled out that an approach
using static or dynamic analysis is feasible. Therefore, further analysis of alternative
approaches is an interesting topic for forthcoming research. As already mentioned, us-
ing enterprise architecture models requires the necessary information to be modeled in
them. It is possible to model a monitoring solution as an object in enterprise architec-
ture, which can be detected using static analysis methods. If no such object is found, it
implies that no central monitoring solution exists – provided that the enterprise archi-
tecture model is correct and up-to-date. The information source utilized in this approach
are enterprise architecture models.

Presence of Company-Wide Frameworks This information requirement is satisfied if
the presence or absence of programming frameworks or boilerplate code, which are used
throughout an organization and dedicated to microservices, is detected. Boilerplate code
in this case refers to code snippets which can be used as a skeleton for the development
of new microservices.

Similarly to the previous method, this extraction method also utilizes enterprise ar-
chitecture models. If one or more programming frameworks or microservice skeletons
(i.e. boilerplate code) are modeled in enterprise architecture, they can be detected using
static analysis methods. Should no such model be found, the absence of company-wide
frameworks or boilerplate code is assumed. The information source utilized in this ap-
proach are enterprise architecture models.

Presence of Metrics Library or Health Endpoint This information requirement is
satisfied, if it is known whether a microservice uses a metrics library or a health endpoint
to report health-related metrics or if it does not use them. A health-endpoint, sometimes
also called health check endpoint, is a pattern in microservice development [Ric18]. It
reports the health of the microservice after performing corresponding checks. Similarly,
a metrics library is used by the microservice to send metrics to an aggregator, such as
Prometheus9 [Ric18].

By convention, a health-endpoint is always called /health. Using this information,
we can use the methods introduced in the paragraph on the API Endpoints information
requirement to validate whether such an API endpoint is implemented. Notably, the
health-endpoint could be called differently, which makes it more challenging to detect

9https://prometheus.io

45

https://prometheus.io

5 Extracting Information from Microservice Architectures

it automatically. A thinkable approach to detect non-standard named health-endpoints
is through the usage of heuristics which take the returned payload of an endpoint and
endpoints with similar names into account. Hence, manual validation of the result could
prove helpful. The utilized information source is the microservices’ source code.

Moreover, a metrics tracking library can be detected using the methods presented
in the paragraph on the Imported Libraries information requirement. Having a list of
libraries a microservice imports makes it possible to check it against a list of known
metrics libraries, to see if it is used in the microservice. The result of this check satisfies
the information requirement. The utilized information source of this approach is also
the source code.

Processes and Policies of the Organization This information requirement is satisfied
if all development-related processes and policies of an organization are known.

Automatically extracting this information is feasible, if the underlying business knowl-
edge is stored in machine-readable formats – like enterprise architecture models. The
modeled processes or policies can be extracted using static analysis methods. If this
information is not modeled in a machine-readable information source, it may be possible
to interview a business expert using a structured questionnaire. However, it is challeng-
ing to store information about processes and policies in a format that makes it possible
for algorithms to later process and interpret them. Therefore, the format should be
sufficiently evaluated beforehand. In summary, the utilized information source is either
an enterprise architecture model, business expert, or a combination of both.

Shared Code Fragments This information requirement is satisfied if a list of shared
code fragments and shared directory structures of an entire microservice application has
been extracted. Shared code fragments are parts of the source code which are duplicated
across two or more microservices. The minimum length of these fragments should be
customizable and use a sensible default, such as 10 lines of code or more. Customization
is important in order to adapt to different circumstances and to avoid generating false
positives or false negatives. A directory structure is called shared, if it occurs in more
than one microservice’s source code. It may be useful to restrict the similarity analysis
to a specific depth, such as two hierarchy levels, depending on the desired sensitivity.

The method we propose utilizes static code analysis to extract shared code fragments
and directory structures. Consequently, the source files of every microservice have to
be analyzed. Some integrated development environments (IDEs), for example most Jet-
Brains IDEs10 show that detecting duplicate code fragments is feasible. Therefore, the
utilized information source is the source code of all microservices.

Technologies Used To satisfy this information requirement, an ideally complete list of
all technologies that are used in the microservice application and organization is neces-
sary. Since technologies is a vague term, we define it to include programming languages,
10https://www.jetbrains.com/help/idea/analyzing-duplicates.html

46

https://www.jetbrains.com/help/idea/analyzing-duplicates.html

5.1 Proposal of Information Extraction Methods

protocols, frameworks and databases in accordance with Taibi, Lenarduzzi, and Pahl
[TLP20]. Notably, no proper definition was found in current literature. Furthermore,
the definition may differ between organizations. Multiple methods are needed for every
type of technology that should be detected. In the following, we propose one method
for every previously mentioned technology.

Programming languages can be detected by analyzing the source files, specifically
analyzing the file extension should be sufficient.

Next, used protocols can be detected using static code analysis. It can be checked
whether known libraries, which are associated to a specific protocol, are imported and
used in the source code. To further illustrate how this method could work, we use
the example of a Python microservice which communicates using the gRPC protocol.
In order to use gRPC, the official gRPC library is installed using the command pip
install grpcio. Moreover, each Python module that handles gRPC communication
must import the previously installed library using import grpc. These imports can
be then detected using static code analysis. This method works analogously for other
libraries or protocols.

Furthermore, it is possible to detect utilized frameworks with a similar method, by
checking if framework-specific files, classes or similar artifacts are present. In this con-
text, a framework is a tool or a set of tools which provides support and guidance for
the development of the basic microservice structure. Additionally, frameworks offer
ready-made components which help developers to focus on the business capabilities of
a microservice. As an alternative to checking for framework-specific files, frameworks
could also be detected using business knowledge and a similar method proposed in the
paragraph on the presence of company-wide frameworks.

Finally, utilized databases can be discovered by analyzing the communication of a
microservice application. It is possible to distinguish individual databases, such as Post-
greSQL or MySQL by their network traffic and their use of different ports, assuming
that standard ports are not changed.

In summary, the information sources used to satisfy this information requirement are,
depending on the utilized methods, a combination of source code, business knowl-
edge and communication in the MSA.

Technology Selection Motives This information requirement is satisfied if the motives
for selecting a particular technology are known.

The main requirement for satisfying this information requirements is the documenta-
tion of all selection motives. In theory, it is possible to store technology selection motives
in enterprise architecture models, which would make them machine-readable by means
of static analysis. However, a format suitable for subsequent automated analysis should
be chosen. Consequently, the utilized information sources are enterprise architecture
models.

Transmitted Version Information This information requirement is satisfied by know-
ing if and how a microservice transmits version information about its API. We con-

47

5 Extracting Information from Microservice Architectures

sider the two most common API versioning patterns. The first pattern includes ver-
sion information in the API’s uniform resource identifier (URI). For example, the URI
https://example.org/api/v1/hello describes that version 1 of the API is accessed.
Alternatively, version information can be included in HTTP headers, which is particu-
larly suited for REST-based APIs. It is common to use the Content-Type header for
this purpose11, which could look like this: application/vnd.example.test.v1+json.
In the following we propose an extraction method for each of the two patterns.

First, the URIs that are accessed in a running microservice application can be analyzed
using heuristics to check whether they contain a versioning schema. The versioning is not
guaranteed to adhere to best practices. As a result, it can be stored at any location in the
URI – https://v1.api.example.org/hello is a valid versioning schema. Therefore,
multiple common possibilities should be checked. Notably, using heuristics does not
guarantee that transmitted version information is found.

The same approach using heuristics can be used for version information being trans-
mitted in the HTTP headers. First, the Content-Type header should be checked to see
whether it defines a MIME-type like exemplified before. Should no custom versioning
be found, other non-standard headers could be checked as well. Like before, this does
not guarantee that transmitted version information is found if it is present.

Both approaches utilize communication in the microservice application as informa-
tion source.

Usage of CI/CD Pipelines This information requirement is satisfied by knowing if the
considered microservice is being built, tested or deployed using a CI/CD pipeline that
is part of the organization’s infrastructure. Some Git hosting services, such as GitHub12

or GitLab13 offer managed CI/CD pipelines, which are defined using source files in the
microservice’s repository. Furthermore, an organization can also provide a central CI
which is hosted on-premise or use another cloud provider.

One approach to extract the necessary information is to look for pipeline definition
files in the microservice’s repository. If, for example, a non-empty .gitlab-ci.yml file
is present, it is very likely that GitLab’s CI/CD pipelines are utilized. Ideally, a catalog
of standard file names should be known. However, if no such file is found, business
knowledge is likely needed to extract the required information. Enterprise architecture
models can be analyzed using static analysis methods to check whether CI/CD-related
components are modeled. In summary, the utilized information sources are source code
files, as well as enterprise architecture models.

Versioning Schema This information requirement is satisfied if it is known whether an
organization prescribes a specific versioning schema for APIs.

It may be possible to apply heuristics to all known URIs of API endpoints and custom
MIME-types to detect a shared schema. Notably, it is not guaranteed that a detected
11https://opensource.zalando.com/restful-api-guidelines/#114
12https://github.com/features/actions
13https://docs.gitlab.com/ee/ci/

48

https://opensource.zalando.com/restful-api-guidelines/#114
https://github.com/features/actions
https://docs.gitlab.com/ee/ci/

5.2 Relationship between Information Requirements and Information Sources

schema is actually prescribed by the organization. Instead, it is possible that multiple
teams of developers mutually agreed on some schema. In this case, the schema is not
considered to be prescribed by an organization and should therefore not be reported as
such. It is currently unclear how a distinction between these cases can be made, making
the development of a solution to this problem an interesting topic for further research.

In cases where the application of heuristics is not possible, an approach using business
knowledge by analyzing enterprise architecture models or interviewing business experts
may be feasible. To summarize, the utilized information source is either the communi-
cation in a microservice application or business knowledge in the form of enterprise
architecture models or a business expert.

5.2 Relationship between Information Requirements and
Information Sources

In the previous section, each information requirement was linked to one or more infor-
mation sources necessary to satisfy the information requirement. Figure 5.1 visualizes
these relationships.

At the top, all information sources are listed, grouped by the contained information,
as seen in section 3.2 before. Furthermore, the individual information sources are colored
to indicate which methods are required to extract the contained information. Orange
shading indicates that information can not be extracted using automated methods and
therefore manual methods have to be used. Green shading indicates that static analysis
methods can be used to extract information, which means that automated analysis is
feasible. Finally, blue shading indicates that a running MSA has to be analyzed using
dynamic analysis methods to extract information automatically.

At the bottom, all information requirements are listed. They are colored as well to
indicate which methods are necessary to satisfy the respective information requirement.
The coloring is directly related to the associated information sources. For example, the
information requirement Transmitted Version Information is colored green and blue,
since the information sources Source Code (green) and Communication (blue) are re-
quired to satisfy it. Dotted arrows indicate that the targeted information source is
necessary to satisfy the information requirement. Additionally, nine information re-
quirements have been grouped, because all of them are business-focused. In this case,
a dotted arrow with an empty arrow head is used to indicate that one or more of the
three associated information sources can be used to satisfy a contained information re-
quirement, depending on the solution proposed in the previous section. In addition, this
figure enables seeing which information sources are used most often – “Source Code”
and “Microservice Communication” – as well as which information requirements need
more information sources than average – “Technologies Used” requires three information
sources.

49

5 Extracting Information from Microservice Architectures

5.3 Threats to Validity
It is important to state the limitations of this research. With regard to internal validity,
it has to be pointed out that the extraction methods suggested in this chapter have
not yet been evaluated, due to the limited scope of this thesis. Although the methods
were constructed with careful research, it can not be guaranteed that they function as
envisioned, without conducting a proper evaluation.

Regarding external validity, it is important to highlight that the proposed extraction
methods may need to be adapted depending on the environment they are utilized in.
Microservice architecture can vastly differ depending on the organization and the tech-
nologies used. Albeit we tried to propose methods which are as generalized as possible,
the need for modification may still arise.

50

5.3 Threats to Validity

Te
ch

no
lo

gy
Se

le
ct

io
n

M
ot

iv
es

Pr
oc

es
se

s
an

d
Po

lic
ie

s
of

 O
rg

.

U
sa

ge
 o

f C
I/C

D
Pi

pe
lin

es
M

ic
ro

se
rv

ic
e

O

w
ne

rs

C
om

pa
ny

-w
id

e
Fr

am
ew

or
ks

C
en

tra
l M

on
ito

rin
g

Ar
ch

ite
ct

ur
e

O
w

ne
d

St
or

ag
e

Ve
rs

io
ni

ng

Sc
he

m
a
*

Tr
an

sm
itt

ed
 V

er
si

on

In
fo

rm
at

io
n
*

In
fo

rm
at

io
n

So
ur

ce
s

D
om

ai
n

Kn
ow

le
dg

e
Bu

si
ne

ss
 K

no
w

le
dg

e
R

un
tim

e
Kn

ow
le

dg
e

So
ur

ce
 C

od
e

In
fo

rm
at

io
n

R
eq

ui
re

m
en

ts

In
te

r-S
er

vi
ce

C
om

m
un

ic
at

io
n

Ap
pl

ic
at

io
n

Kn
ow

le
dg

e

Lo
gg

in
g

Ta
rg

et
Sh

ar
ed

 C
od

e
Fr

ag
m

en
ts

En
dp

oi
nt

s
M

et
ric

s
Li

br
ar

y
or

H
ea

lth
 E

nd
po

in
t

D
om

ai
n

Ex
pe

rt
Bu

si
ne

ss
 E

xp
er

t

C
om

m
un

ic
at

io
n

Lo
g

Fi
le

s

M
ic

ro
se

rv
ic

e
Fu

nc
tio

na
lit

ie
s

En
te

rp
ris

e
Ar

ch
ite

ct
ur

e
M

od
el

s

Le
ge
nd

D
yn

am
ic

 A
na

ly
si

s

St
at

ic
 A

na
ly

si
s

O
nl

y
H

um
an

-re
ad

ab
le

W
e

as
su

m
e

th
at

 e
ve

ry
 s

ou
rc

e
is

 h
um

an
-re

ad
ab

le

In
te

r-M
ic

ro
se

rv
ic

e
C

om
m

un
ic

at
io

n
Ac

ce
ss

ed
 S

to
ra

ge
Ac

ce
ss

ed
 S

to
ra

ge
Lo

gg
in

g
Ta

rg
et

M
et

ric
s

Li
br

ar
y

or

H
ea

lth
 E

nd
po

in
t
*

AP
I E

nd
po

in
ts

Ex
te

rn
al

 E
nd

po
in

ts

in
 S

ta
tic

 F
ile

s
Ap

pl
ic

at
io

n
D

ep
en

de
nc

ie
s

Te
ch

no
lo

gi
es

 U
se

d *
Sh

ar
ed

 C
od

e
Fr

ag
m

en
ts

Ac
ce

ss
ed

 S
to

ra
ge

C
on

fig
ur

at
io

n
Fi

le
s

* H
eu

ris
tic

s
ne

ed
ed

 to
 s

at
is

fy

Fi
gu

re
5.

1:
O

ve
rv

ie
w

of
re

la
tio

ns
hi

ps
be

tw
ee

n
in

fo
rm

at
io

n
re

qu
ire

m
en

ts
an

d
in

fo
rm

at
io

n
so

ur
ce

s

51

6 Discussion
After the proposal of information requirements and extracting methods, this section is
used to discuss our findings and validate whether they answer the previously defined
research questions.

The goal of the first research question was to discover how information needs can
be structured and categorized. To answer this question, the concepts of information
requirements and information sources were introduced in chapter 3. Furthermore, we
proposed four categories of information sources – domain-, business-, application- and
runtime-knowledge. Additionally, we were able to propose one or more information
requirements for every anti-pattern in the catalog of Taibi, Lenarduzzi, and Pahl [TLP20]
in chapter 4. An overview of the findings can be seen in figure 4.1. Consequently, it can
be concluded that the first research question has been successfully answered.

The second research question is about how information requirements can be satis-
fied using information from MSAs. As a first step, information sources were linked to
the previously proposed information requirements. Moreover, methods to extract the
required information were proposed in chapter 5. It is important to note that these
methods have not been implemented or validated yet, due to the limited scope of this
thesis. A validation of the extraction methods is certainly an interesting objective for
future research. Furthermore, the extraction methods are designed to be as generalizable
as possible, so they can be adapted to a variety of microservice applications. Arguably,
the extraction methods proposed in chapter 5 answer the second research question, since
they make the information required for detection obtainable.

The third and final research question is concerned with discovering anti-patterns that
have information requirements which can be satisfied without human involvement. To
answer this question, analyzing figure 5.1 is helpful. Thanks to the coloring of informa-
tion sources and information requirements, it becomes clear which information require-
ments can be satisfied without human interaction. Every information requirement which
uses information sources from which information can be extracted using static- or dy-
namic analysis, is satisfiable automatically. Now, it can be deduced which anti-patterns
are detectable using automated methods by finding those which only need automatically
satisfiable information requirements. Consequently, four anti-patterns are automatically
detectable. In addition, six more anti-patterns belong to this group, if the necessary in-
formation is modelled in up-to-date enterprise architecture models (EAM). Assuming
that a knowledge base which allows automated parsing of necessary configuration files
is present, the following three anti-patterns are detectable without human interaction as
well. Table 6.1 lists the results of this analysis.

53

6 Discussion

Name Automatically
Detectable

Additional Requirements

Hardcoded Endpoints Yes None
Wrong Cuts No –
Cyclic Dependency Yes None
API Versioning Yes EAM up-to-date
Shared Persistence Yes Configuration file parsable
ESB Usage Yes None
Legacy Organization No –
Local Logging Yes Configuration file parsable
Megaservice No –
Inappropriate Service Inti-
macy

Yes Configuration file parsable

Lack of Monitoring Yes EAM up-to-date
No API–Gateway Yes None
Shared Libraries No –
Too Many Technologies No –
Lack of Microservice Skele-
ton

Yes EAM up-to-date

Microservice Greedy No –
Focus on Latest Technologies No –
Common Ownership Yes EAM up-to-date
No DevOps Tools Yes EAM up-to-date
Non-homogeneous adoption Yes EAM up-to-date

Table 6.1: Automatically detectable anti-patterns (ordered by decreasing harmfulness)

The third column of the table refers to the previously mentioned requirements, meaning
updated enterprise architecture models and the presence of a knowledge base which
allows automated parsing of relevant configuration files. As a result of the information
given above, the third research question can be considered answered.

54

7 Conclusion

Contents
7.1 Summary . 55
7.2 Future Work . 56

As conclusion of this thesis, the most important findings are summarized in section 7.1
and an outlook on possible future work is given in section 7.2.

7.1 Summary

This thesis is a first step towards the detection of microservice-specific anti-patterns in
microservice architectures using automated methods. The ability to automatically detect
anti-patterns has the potential to increase the quality of microservice applications and
can help organizations transition from monolithic architectures with fewer problems.
Additionally, this thesis provides groundwork for further research on this topic with the
proposal of a fundamental structuring of anti-pattern information needs.

First, necessary concepts were introduced. Specifically, the terms information require-
ment and information source were defined along with an explanation of the relationship
between anti-patterns, information requirements and information sources. Additionally,
the complete detection processes of two anti-patterns were demonstrated on the basis of
a demo application.

Next, concrete information sources were defined along with the four main knowledge
classes which were discovered during our research. It was stated which types of methods
can be utilized to extract information from the main knowledge classes. This was fol-
lowed by an elaboration of information requirements and which information they contain
specifically.

After all required concepts were introduced, all anti-patterns from the catalog of Taibi,
Lenarduzzi, and Pahl [TLP20] were investigated to deduce the information requirements
that have to be satisfied in order to detect an anti-pattern.

Building up on this insight, methods to satisfy the previously discovered informa-
tion requirements using the information sources were proposed. In addition, a visual
overview of the relationship between information requirements and information sources
was introduced.

Finally, the results were analyzed to validate that they answer the research questions
defined in the beginning.

55

7 Conclusion

7.2 Future Work
We now want to give an outlook on interesting research that could be done in the future
in the context of this work.

Evaluation
Most importantly, a proper evaluation of our proposed information requirements and
methods for information extraction should be conducted. Due to the limited scope of
this thesis, we were unable to perform such an evaluation. An evaluation is needed
to determine whether the results of this thesis can be build upon and used in forth-
coming research without significant modifications. A thinkable evaluation concept can
include interviews of a set of experts to determine whether the information requirements
were chosen correctly, or the implementation of proposed extraction methods to validate
whether they yield the desired information. A case study would also be feasible.

Extension of information requirements and extraction methods
Additionally, proposed information requirements and extraction methods can be ex-
tended on the basis of another microservice-specific anti-pattern catalog. An extension
would enable the detection of a broader range of anti-patterns.

Automated processing of human-readable information
Furthermore, research on how only human-readable classes of information sources, like
business- and domain-knowledge, can be processed reliably by algorithms would be very
interesting. Automated processing of such information has the potential to enable auto-
matic detection of even more microservice-specific anti-patterns – especially those which
focus on non-technical aspects. It is thinkable that machine learning methods can en-
able the extraction and processing of such information sources, for example by training
models to extract unstructured information.

Automatically resolving anti-patterns
Finally, one of the most exciting future research topics is the question of how detected
anti-patterns can be automatically resolved. This is likely a complex problem to solve,
since a holistic view of the microservice application is indispensable, but it would be a
great contribution to the improvement of microservice architecture quality.

56

Bibliography
[Al-+14] H. A. Al-Mutawa et al. “On the Shape of Circular Dependencies in Java

Programs.” In: 2014 23rd Australian Software Engineering Conference. ISSN:
2377-5408. Apr. 2014, pp. 48–57. doi: 10.1109/ASWEC.2014.15 (cit. on
p. 25).

[BAR18] A. Biaggi, F. Arcelli Fontana, and R. Roveda. “An Architectural Smells De-
tection Tool for C and C++ Projects.” In: 2018 44th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA). Aug. 2018,
pp. 417–420. doi: 10.1109/SEAA.2018.00074 (cit. on pp. 5, 6).

[Boe+05] F. de Boer et al. “Enterprise Architecture Analysis with XML.” In: Proceed-
ings of the 38th Annual Hawaii International Conference on System Sciences.
ISSN: 1530-1605. Jan. 2005, 222b–222b. doi: 10.1109/HICSS.2005.242 (cit.
on p. 20).

[CBD18] A. Carrasco, B. v. Bladel, and S. Demeyer. “Migrating towards microservices:
migration and architecture smells.” In: Proceedings of the 2nd International
Workshop on Refactoring. IWoR 2018. New York, NY, USA: Association for
Computing Machinery, Sept. 2018, pp. 1–6. isbn: 978-1-4503-5974-0. doi:
10.1145/3242163.3242164. url: https://doi.org/10.1145/3242163.
3242164 (visited on 06/08/2022) (cit. on p. 25).

[CT22] T. Cerny and D. Taibi. Static analysis tools in the era of cloud-native systems.
Number: arXiv:2205.08527 arXiv:2205.08527 [cs]. May 2022. url: http://
arxiv.org/abs/2205.08527 (visited on 06/27/2022) (cit. on pp. 11, 20).

[Dra+17] N. Dragoni et al. “Microservices: Yesterday, Today, and Tomorrow.” en.
In: Present and Ulterior Software Engineering. Ed. by M. Mazzara and B.
Meyer. Cham: Springer International Publishing, 2017, pp. 195–216. isbn:
978-3-319-67425-4. doi: 10.1007/978-3-319-67425-4_12. url: https:
//doi.org/10.1007/978-3-319-67425-4_12 (visited on 10/21/2022)
(cit. on pp. 1, 3).

[Esa22] Ö. Esas. “Design Patterns and Anti-Patterns in Microservices Architecture:
A Classification Proposal and Study on Open Source Projects.” English. MA
thesis. Milano: Politecnico Milano, Apr. 2022. url: https://www.politesi.
polimi.it/handle/10589/186745?mode=complete (cit. on p. 30).

[Eva04] E. J. Evans. Domain-driven Design: Tackling Complexity in the Heart of
Software. en. Addison-Wesley Professional, 2004. isbn: 978-0-321-12521-7
(cit. on p. 19).

57

https://doi.org/10.1109/ASWEC.2014.15
https://doi.org/10.1109/SEAA.2018.00074
https://doi.org/10.1109/HICSS.2005.242
https://doi.org/10.1145/3242163.3242164
https://doi.org/10.1145/3242163.3242164
https://doi.org/10.1145/3242163.3242164
http://arxiv.org/abs/2205.08527
http://arxiv.org/abs/2205.08527
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://www.politesi.polimi.it/handle/10589/186745?mode=complete
https://www.politesi.polimi.it/handle/10589/186745?mode=complete

Bibliography

[Fon+17] F. A. Fontana et al. “Arcan: A Tool for Architectural Smells Detection.” In:
2017 IEEE International Conference on Software Architecture Workshops
(ICSAW). Apr. 2017, pp. 282–285. doi: 10.1109/ICSAW.2017.16 (cit. on
pp. 5, 6).

[Fow18] M. Fowler. Refactoring: Improving the Design of Existing Code. Englisch.
2nd ed. Boston: Addison-Wesley Professional, Nov. 2018. isbn: 978-0-13-
475759-9 (cit. on p. 3).

[Hep+05] M. Hepp et al. “Semantic business process management: a vision towards
using semantic Web services for business process management.” In: IEEE
International Conference on e-Business Engineering (ICEBE’05). Oct. 2005,
pp. 535–540. doi: 10.1109/ICEBE.2005.110 (cit. on p. 18).

[Hüb+22] T. Hübener et al. “Automatic Anti-Pattern Detection in Microservice Archi-
tectures Based on Distributed Tracing.” In: 2022 IEEE/ACM 44th Interna-
tional Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). May 2022, pp. 75–76. doi: 10.1109/ICSE-SEIP55303.2022.
9794000 (cit. on pp. 8, 26, 30, 41).

[IA18] C. Ibsen and J. Anstey. Camel in Action. en. Simon and Schuster, Feb. 2018.
isbn: 978-1-63835-280-8 (cit. on p. 41).

[Koe95] A. Koenig. “Patterns and antipatterns.” In: Journal of Object-Oriented Pro-
gramming 8.1 (1995), pp. 46–48 (cit. on p. 3).

[Li+22] R. Li et al. “Understanding software architecture erosion: A systematic
mapping study.” en. In: Journal of Software: Evolution and Process 34.3
(Mar. 2022). issn: 2047-7473, 2047-7481. doi: 10.1002/smr.2423. url:
https://onlinelibrary.wiley.com/doi/10.1002/smr.2423 (visited on
06/17/2022) (cit. on p. 39).

[Lou06] P. Louridas. “Static code analysis.” In: IEEE Software 23.4 (July 2006).
Conference Name: IEEE Software. issn: 1937-4194. doi: 10.1109/MS.2006.
114 (cit. on p. 20).

[Mo+21] R. Mo et al. “Architecture Anti-Patterns: Automatically Detectable Viola-
tions of Design Principles.” In: IEEE Transactions on Software Engineering
47.5 (May 2021). Conference Name: IEEE Transactions on Software Engi-
neering, pp. 1008–1028. issn: 1939-3520. doi: 10.1109/TSE.2019.2910856
(cit. on p. 3).

[Nad+16] I. Nadareishvili et al. Microservice Architecture: Aligning Principles, Prac-
tices, and Culture. en. ”O’Reilly Media, Inc.”, July 2016. isbn: 978-1-4919-
5634-2 (cit. on p. 2).

[Nor] Northern Ireland Business Info. What is knowledge in business? English.
url: https://www.nibusinessinfo.co.uk/content/what-knowledge-
business (visited on 10/03/2022) (cit. on p. 19).

58

https://doi.org/10.1109/ICSAW.2017.16
https://doi.org/10.1109/ICEBE.2005.110
https://doi.org/10.1109/ICSE-SEIP55303.2022.9794000
https://doi.org/10.1109/ICSE-SEIP55303.2022.9794000
https://doi.org/10.1002/smr.2423
https://onlinelibrary.wiley.com/doi/10.1002/smr.2423
https://doi.org/10.1109/MS.2006.114
https://doi.org/10.1109/MS.2006.114
https://doi.org/10.1109/TSE.2019.2910856
https://www.nibusinessinfo.co.uk/content/what-knowledge-business
https://www.nibusinessinfo.co.uk/content/what-knowledge-business

Bibliography

[NSV15] D. Naranjo, M. Sánchez, and J. Villalobos. “PRIMROSe: A Graph-Based
Approach for Enterprise Architecture Analysis.” en. In: Enterprise Informa-
tion Systems. Ed. by J. Cordeiro et al. Lecture Notes in Business Informa-
tion Processing. Cham: Springer International Publishing, 2015, pp. 434–
452. isbn: 978-3-319-22348-3. doi: 10.1007/978-3-319-22348-3_24 (cit.
on p. 20).

[Nte+21] E. Ntentos et al. “Detector-based component model abstraction for microservice-
based systems.” en. In: Computing 103.11 (Nov. 2021), pp. 2521–2551. issn:
0010-485X, 1436-5057. doi: 10.1007/s00607-021-01002-z. url: https:
/ / link . springer . com / 10 . 1007 / s00607 - 021 - 01002 - z (visited on
06/27/2022) (cit. on p. 8).

[OLe98] D. O’Leary. “Enterprise knowledge management.” In: Computer 31.3 (Mar.
1998). Conference Name: Computer, pp. 54–61. issn: 1558-0814. doi: 10.
1109/2.660190 (cit. on p. 18).

[PB21] T. Portugal and J. Barata. “Enterprise Architecture Erosion: A Definition
and Research Framework.” en. In: AMCIS 2021 Proceedings. 7. 2021, p. 5
(cit. on p. 39).

[Pig+20] I. Pigazzini et al. “Towards microservice smells detection.” en. In: Proceedings
of the 3rd International Conference on Technical Debt. Seoul Republic of
Korea: ACM, June 2020, pp. 92–97. isbn: 978-1-4503-7960-1. doi: 10.1145/
3387906.3388625. url: https://dl.acm.org/doi/10.1145/3387906.
3388625 (visited on 05/31/2022) (cit. on pp. 6, 8, 24–26, 28).

[Ric] C. Richardson. Potholes in the road from monolithic hell - Microservices
adoption anti-patterns. url: https://microservices.io/microservices/
general/2018/11/04/potholes-in-road-from-monolithic-hell.html
(visited on 07/08/2022) (cit. on pp. 29, 35, 37).

[Ric16] M. Richards. Microservices antipatterns and pitfalls. en-US. Oct. 2016. url:
https://www.oreilly.com/content/microservices- antipatterns-
and-pitfalls/ (visited on 06/08/2022) (cit. on p. 27).

[Ric18] C. Richardson. Microservices Patterns: With examples in Java. English. 1st
edition. Shelter Island, New York: Manning, Nov. 2018. isbn: 978-1-61729-
454-9 (cit. on pp. 1–3, 44, 45).

[Ros] R. Ross. What Business Knowledge Is : Commentary. en. url: https://www.
brcommunity.com/articles.php?id=b959#fn1 (visited on 10/03/2022)
(cit. on p. 19).

[RW11] N. Rozanski and E. Woods. Software Systems Architecture: Working with
Stakeholders Using Viewpoints and Perspectives. en. Addison-Wesley, Oct.
2011, p. 25. isbn: 978-0-321-71833-4 (cit. on p. 39).

[Sal19] J. Salentin. “Towards a Catalogue of Enterprise Architecture Smells and
their Detection.” en. Bachelor Thesis. Aachen: RWTH, July 2019 (cit. on
p. 3).

59

https://doi.org/10.1007/978-3-319-22348-3_24
https://doi.org/10.1007/s00607-021-01002-z
https://link.springer.com/10.1007/s00607-021-01002-z
https://link.springer.com/10.1007/s00607-021-01002-z
https://doi.org/10.1109/2.660190
https://doi.org/10.1109/2.660190
https://doi.org/10.1145/3387906.3388625
https://doi.org/10.1145/3387906.3388625
https://dl.acm.org/doi/10.1145/3387906.3388625
https://dl.acm.org/doi/10.1145/3387906.3388625
https://microservices.io/microservices/general/2018/11/04/potholes-in-road-from-monolithic-hell.html
https://microservices.io/microservices/general/2018/11/04/potholes-in-road-from-monolithic-hell.html
https://www.oreilly.com/content/microservices-antipatterns-and-pitfalls/
https://www.oreilly.com/content/microservices-antipatterns-and-pitfalls/
https://www.brcommunity.com/articles.php?id=b959#fn1
https://www.brcommunity.com/articles.php?id=b959#fn1

Bibliography

[SHS21] A. R. Sabau, S. Hacks, and A. Steffens. “Implementation of a continuous
delivery pipeline for enterprise architecture model evolution.” en. In: Software
and Systems Modeling 20.1 (Feb. 2021), pp. 117–145. issn: 1619-1366, 1619-
1374. doi: 10.1007/s10270-020-00828-z. url: https://link.springer.
com/10.1007/s10270-020-00828-z (visited on 10/27/2022) (cit. on p. 20).

[SML17] P. Saint-Louis, M. C. Morency, and J. Lapalme. “Defining Enterprise Archi-
tecture: A Systematic Literature Review.” In: 2017 IEEE 21st International
Enterprise Distributed Object Computing Workshop (EDOCW). ISSN: 2325-
6605. Oct. 2017, pp. 41–49. doi: 10.1109/EDOCW.2017.16 (cit. on p. 20).

[Tig+20] R. Tighilt et al. “On the Study of Microservices Antipatterns: a Catalog
Proposal.” en. In: Proceedings of the European Conference on Pattern Lan-
guages of Programs 2020. Virtual Event Germany: ACM, July 2020, pp. 1–
13. isbn: 978-1-4503-7769-0. doi: 10.1145/3424771.3424812. url: https:
//dl.acm.org/doi/10.1145/3424771.3424812 (visited on 06/08/2022)
(cit. on pp. 27, 28, 30–32, 36).

[TLP20] D. Taibi, V. Lenarduzzi, and C. Pahl. “Microservices Anti-patterns: A Tax-
onomy.” en. In: Microservices. Ed. by A. Bucchiarone et al. Cham: Springer
International Publishing, 2020, pp. 111–128. isbn: 978-3-030-31645-7 978-3-
030-31646-4. doi: 10.1007/978-3-030-31646-4_5. url: http://link.
springer.com/10.1007/978-3-030-31646-4_5 (visited on 05/23/2022)
(cit. on pp. 6–9, 13, 17, 18, 20, 23–25, 27–37, 42, 47, 53, 55).

[TS20] D. Taibi and K. Systä. “A Decomposition and Metric-Based Evaluation
Framework for Microservices.” en. In: Cloud Computing and Services Sci-
ence. Ed. by D. Ferguson et al. Vol. 1218. Series Title: Communications
in Computer and Information Science. Cham: Springer International Pub-
lishing, 2020, pp. 133–149. isbn: 978-3-030-49431-5 978-3-030-49432-2. doi:
10.1007/978-3-030-49432-2_7. url: http://link.springer.com/10.
1007/978-3-030-49432-2_7 (visited on 05/31/2022) (cit. on p. 25).

[Ver13] V. Vernon. Implementing Domain-Driven Design. en. Addison-Wesley, Feb.
2013. isbn: 978-0-13-303988-7 (cit. on p. 19).

[WDC20] A. Walker, D. Das, and T. Cerny. “Automated Code-Smell Detection in Mi-
croservices Through Static Analysis: A Case Study.” en. In: Applied Sciences
10.21 (Jan. 2020). Number: 21 Publisher: Multidisciplinary Digital Publish-
ing Institute, p. 7800. issn: 2076-3417. doi: 10.3390/app10217800. url:
https://www.mdpi.com/2076-3417/10/21/7800 (visited on 06/29/2022)
(cit. on pp. 3, 8, 11, 13, 24–28, 31–33, 35).

60

https://doi.org/10.1007/s10270-020-00828-z
https://link.springer.com/10.1007/s10270-020-00828-z
https://link.springer.com/10.1007/s10270-020-00828-z
https://doi.org/10.1109/EDOCW.2017.16
https://doi.org/10.1145/3424771.3424812
https://dl.acm.org/doi/10.1145/3424771.3424812
https://dl.acm.org/doi/10.1145/3424771.3424812
https://doi.org/10.1007/978-3-030-31646-4_5
http://link.springer.com/10.1007/978-3-030-31646-4_5
http://link.springer.com/10.1007/978-3-030-31646-4_5
https://doi.org/10.1007/978-3-030-49432-2_7
http://link.springer.com/10.1007/978-3-030-49432-2_7
http://link.springer.com/10.1007/978-3-030-49432-2_7
https://doi.org/10.3390/app10217800
https://www.mdpi.com/2076-3417/10/21/7800

	Introduction
	Background
	Motivation
	Problem Statement
	Structure of this Thesis

	Related Work
	Non-Microservice Oriented
	Microservice Oriented

	Concepts
	Structuring Information Needs
	Information Sources
	Information Requirements

	Anti-pattern Information Requirement Catalog
	The Catalog
	Threats to Validity

	Extracting Information from Microservice Architectures
	Proposal of Information Extraction Methods
	Relationship between Information Requirements and Information Sources
	Threats to Validity

	Discussion
	Conclusion
	Summary
	Future Work

	Bibliography

