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Abstract
The microservices architectural style is an increasingly popular way of designing large,
complex applications. Recent literature has proposed an automatic aid for verifying
compliance of microservice architecture models with best practices, as a way to ensure
good quality microservice architectures. However, compliance with best practices does
not guarantee that the resulting microservice application will meet its performance re-
quirements. In the literature, there is a lack of approaches to predict performance of
microservice applications based on their architecture models.

In this thesis, we propose a discrete-event simulation approach to predict the per-
formance of microservice applications. To do this, our approach uses user-generated
architecture models, workload scenario descriptions, and deployment configuration to
simulate the behavior of microservices and their interactions. The results can be used to
gain detailed insight into the expected performance and its causes, allowing architectures
to be adjusted cost-effectively before writing a single line of code.

We validate our approach by first simulating two microservice applications, one us-
ing broker-based messaging and the other using brokerless messaging. Subsequently,
we implement these applications and perform real-world measurements. From a com-
parison of the results, we conclude that while our approach is promising in principle,
further elaboration is needed, especially for the simulation of the hardware on which the
microservices run.
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1.1. Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 3

Nowadays, software is pervasive in almost every aspect of our lives. Due to the increas-
ingly complex tasks for software, the complexity of software itself grows further[Mit90].
Simultaneously, software quality is expected to meet a multitude of requirements, which
are typically expressed by measuring quality attributes[Tek+16; BCK03]. Fast response
times are critical as users are quick to abandon slow-performing services[Nah04]. How-
ever, this must be balanced against cost considerations, requiring a focus on minimizing
resource utilization. At the same time, systems are often exposed to excessive work-
loads for short periods of time, during which the response times must be kept sta-
ble[Feh+14]. In addition, systems need to be easily adaptable to meet ever-changing
requirements[NZP04]. Therefore, it is necessary to structure software systems care-
fully[BCK03].

Structuring a system through software elements, their associations with each other,
and the attributes of both is the domain of software architecture[BCK03]. The most
appropriate software architecture is determined by the requirements and requires bal-
ancing of various quality aspects[BCK03]. Since many software systems often face sim-
ilar challenges, similar software architectures can be used to overcome them[BCK03].
Architectural patterns consist of proven design decisions and can help to find a suit-
able software architecture[BCK03]. A popular architecture pattern to handle the ever-
increasing complexity of software is the microservices architectural style[Dra+17]. It
structures the system as a set of self-contained services that are deployed independently
and communicate solely through messages via service interfaces[BCK03]. Microservices
are great for deploying changes quickly, are easily maintainable, and can scale resource-
efficiently for unpredictable workloads[BCK03; Dra+17]. However, microservices also
introduce a new dimension of complexity. The decomposition of the application logic
into different services, the design of communication between the services, and the im-
plementation of processes across service boundaries pose new challenges[Ric18; BCK03;
BNK18]. Whether microservices bring the expected benefits depends largely on whether
the decomposition into services is performed correctly[Ric18].

However, optimal decomposition cannot be guaranteed easily, and achieving it is a
challenging task[Ric18]. To aid architects in creating a good decomposition, a consid-
erable amount of literature provides best practices and architectural design patterns
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1. Introduction

for microservice architectures[Ric18; HSS+17; Pac18]. Nonetheless, industrial-grade
microservice architectures can consist of hundreds of microservices, making manual ver-
ification of compliance with best practices a time-consuming task[Nte+21]. Recent work
by Ntentos et al. [Nte+21] has focused on developing a semi-automated approach to
measure quality of microservice architectures, by validating their conformance to mi-
croservice architectural design patterns. For their approach, the architecture must first
be modeled, then their developed algorithms can recognize architectural design pattern
violations and repair them automatically[Nte+21]. However, the correct use of design
patterns does not automatically lead to low response times for the offered services, as
patterns exhibit different performance for different scenarios[AP19]. But good perfor-
mance can be critical to the success of a software product, as high response times can lead
to dissatisfied customers[SN18]. Thus, only verifying compliance with design patterns is
not enough to ensure that a microservice architecture is well suited for the requirements
of the resulting application. To assist architects in constructing suitable architectures
that lead to satisfied customers, there is a need for a method to evaluate the performance
implications of different microservice architectures.

One way to evaluate the performance of a microservice architecture is to implement
and deploy the corresponding microservice application to then run performance tests.
Although viable, this approach is not ideal, as identifying architectural errors during
architecture creation is preferable to avoid high costs of fixing them[Tol+19]. To cost-
effectively identify architectural flaws that lead to poor performance in specific scenar-
ios, a predictive approach that works on the architecture models directly is needed.
Combined with verification for compliance with architectural design patterns, such an
approach could provide great guidance for creating good microservice architectures.

In the literature, there are approaches for performance prediction of microservices.
However, most require benchmarks of the existing system and focus on the prediction
of changes in performance[Bao+19; ZGD19; COQ21; Kha+21; MWW12]. Others work
with models too specific, to assess them regarding architectural best practices[GIM+17],
or are based on too general models that are not adequate for the simulation of microser-
vices[KBB19]. Therefore, the current approaches are not appropriate for use alongside
the verification of design pattern compliance in aiding software architects to develop an
initial microservices architecture.

1.1. Research Questions
We consider this thesis as a contribution to a broader effort with the goal of developing
a comprehensive exploration platform that provides tools for building good microservice
architectures. To support such an exploration platform, we aim to investigate an ap-
proach that can predict the performance of microservice applications. By performance,
we understand the request-response times that users experience when using a microser-
vice application. The performance is composed of the communication time between
the user and the application, the communication times between microservices within an
application, and the processing times of the microservices to provide a response to the

2
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request. For this purpose, we implement a simulation for performance prediction based
on the microservice architecture models of Ntentos et al. [Nte+21]. In combination with
an automatic check of architectural design pattern conformance, such a performance
prediction could be of great help when creating microservice architectures. By answer-
ing the following research questions, this work aims to provide the basis for the further
development of a model-based simulation approach to predict performance.

RQ 1 Can model-based architecture simulation be a meaningful approach to
predict performance of microservice applications?

Performance prediction of software using model-based simulation is an already estab-
lished approach that has been extensively covered in literature[HM98; Reu+16; Bec+06].
However, modeling and simulating microservice applications for performance prediction
poses new challenges[Hei+17]. In particular, we want to examine how architectural de-
cisions affect the performance of a microservice application and whether simulation is a
meaningful approach to predicting these effects. A meaningful performance prediction
approach must provide accurate results that enable the evaluation of performance in the
context of other quality attributes. Because inaccurate simulation results may lead to
the rejection of good architectures based on predicted performance, even when this is
not warranted. In addition, the prediction must be detailed enough to be able to make
a statement about the causes of performance differences, so that an adjustment of the
architecture is possible in the right places.

The extent of this work is not sufficient to examine all aspects of a microservice archi-
tecture that might affect performance. Therefore, the focus of this work is to determine
if model-based simulation can accurately predict performance differences between mes-
saging via a broker and direct messaging. This should give us an indication of whether
model-based simulation is appropriate for predicting the performance of microservice
architectures in general.

RQ 2 What adaptations to the metamodel of Ntentos et al. [Nte+21] are
necessary, to enable it to support performance prediction simulation?

The metamodel for microservice architectures by Ntentos et al. [Nte+21] does not
include all the information needed for performance prediction in specific scenarios. For
example, the model does not include information about the hardware on which the dif-
ferent services run[Nte+21]. However, the hardware has a large impact on the expected
performance, which is why we need to extend the metamodel[Bao+19].

1.2. Structure of this Thesis
The thesis is organized as follows. To provide a foundation for understanding our simula-
tion, in chapter 2 we first give an overview of relevant microservice application concepts
and explain the basics of discrete-event simulation. In chapter 3, we briefly present the
work of Ntentos et al. on whose metamodel our metamodel for the simulation is based.

3
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Furthermore, we give an overview of the existing approaches for the simulation of mi-
croservice applications and explain their shortcomings. In chapter 4, we then present
the concepts for our simulation approach for performance prediction of a microservice
application. Due to their scope, we explain the concepts for predicting message trans-
fer times in a separate chapter (chapter 5). In chapter 6 we explain the design of the
simulation implementation and in chapter 7 we present the details of our simulation im-
plementation. To evaluate the accuracy of our simulation implementation, we compared
simulation results with measurements of the performance of real-world microservice ap-
plications. We present and discuss the results of the evaluation in chapter 8. In chapter 9,
we provide answers to our research questions. Finally, in chapter 10, we summarize this
thesis and provide an outlook for future work.

4
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Contents
2.1. Microservice Applications . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Discrete-event Simulation . . . . . . . . . . . . . . . . . . . . . . . 6

In this chapter, we first explain the fundamentals of microservice applications, which
are necessary for understanding the concepts of our simulation approach. We then ex-
plain the basic concepts of a discrete-event simulation (DES) to provide an understanding
of our implementation of a DES.

2.1. Microservice Applications
A microservice application is a distributed application that consists of several small appli-
cations (microservices) that implement little functionality, run independently, and com-
municate with each other via messages[Dra+17]. Utilizing microservices to implement
an application’s functionality provides advantages over implementing it as a single ap-
plication (monolith)[Dra+17]. The limited functionality of each microservice allows for
better maintainability[Dra+17]. In addition, changes can be made more easily because
only individual microservices need to be updated[Dra+17]. Microservice applications
also benefit from better scalability, as the microservices can be scaled independently
with respect to their individual load[Dra+17].

However, creating microservice applications also leads to increased complexity com-
pared to creating a monolith[Ric18]. One reason is that the communication between
microservices to provide the application’s functionality is more complex than commu-
nication in a monolith[Ric18]. In principle, there are two options for implementing
communication between microservices: broker-based or brokerless, as illustrated in fig-
ure 2.1.

Broker-based architecture

In a broker-based architecture, a message broker acts as an intermediary for com-
munication between the microservices[Ric18].

Brokerless architecture

In a brokerless architecture, microservices communicate directly[Ric18].

5



2. Foundations

Microservice Microservice

Microservice

Microservice Microservice

Microservice

Message Broker

Brokerless architectureBroker-based architecture

Figure 2.1.: Comparison of communication in a broker-based architecture and a broker-
less architecture[Ric18]

A broker-based architecture is used by most enterprise applications because it leads
to loose coupling between the services[Ric18]. In addition, a message broker can buffer
messages when the system is under a high load, so that non-time-critical requests can
be processed later[Ric18]. However, brokerless architectures can also be advantageous
when fast application response times are critical. This is because brokerless communica-
tion leads to lower latencies between microservices and eliminates the possibility of the
message broker becoming a performance bottleneck.[Ric18].

2.2. Discrete-event Simulation
Discrete-event simulation (DES) is a commonly used technique, to observe the behavior
of a modeled system over time[Rob05]. The underlying assumption is that the observed
state of the system changes only at discrete points in time[Fis01]. The modeled at-
tributes of the state define the characteristics of the system behavior to be observed in
the simulation[Fis01]. The behavior of the system is in turn determined by its modeled
entities[Fis01].

Entity

An entity determines the behavior of the system by performing operations[Fis01].

An operation is thereby represented by a pair of events, which define the start and
the end of the operation. Such a pair of events is referred to as an activity.

Event

An event represents a change in the state of a system at a point in time[Fis01].

The behavior of a system over time is then represented as a sequence of events[Fis01].
To run the simulation a timing routine is used to manage the sequence of events and
advance in time to simulate step by step the state changes caused by the events[Fis01].
The sequence of events can then be used after a simulation to analyze the performance
of the modeled system, where the accuracy of the simulation depends on the accuracy
of the models used[Fis01].
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The first section of this chapter presents the effort of Ntentos et al. [Nte+21] for
creating an automatic tool to assist in the evaluation of microservice architectures. We
then examine existing approaches for performance prediction of microservice applications
in section 3.2.

3.1. Evaluation of Microservice Architectures
There are many architectural patterns in the literature for building good microservice
architectures[Nte+21]. However, it is a cumbersome task, especially for large architec-
tures, to manually check compliance with architectural patterns[Nte+21]. A possible
solution to help architects to create good architectures is an automatic verification of
the created architectural models for compliance with architectural patterns[Nte+21].

To support such an automatic approach, Ntentos et al. [Nte+21] use a metamodel
that allows microservice architectures to be modeled as a set of components and con-
nectors. A component is an entity that interacts with other components in the context
of the microservice architecture[Nte+21]. For example, microservices, databases, clients,
facades are possible relevant components that can be considered[Nte+21]. Connectors
describe which components interact with each other in which way[Nte+21].

To check these modeled microservice architectures for architectural pattern compli-
ance, Ntentos et al. [Nte+21] define a catalog of Architectural Design Decisions (ADD).
An ADD covers an area of a microservice architecture and defines the corresponding
architectural design patterns that can be used in this area together with metrics to
make the decisions in this area measurable[Nte+21]. For example, they define an ADD
Service Interconnections, which covers different patterns for communication between ser-
vices[Nte+21]. An algorithm then searches the model for direct synchronous interactions
between services and fixes them, e.g. by replacing the direct synchronous interaction with
asynchronous interaction through a message broker[Nte+21].

For their approach, Ntentos et al. [Nte+21] assume that asynchronous communication
is usually preferable to synchronous communication. However, in some scenarios, for
example when performance is of particular relevance, synchronous communication may
also be preferable[Ric18]. However, the approach of Ntentos et al. [Nte+21] is not capable
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of predicting the performance impacts of the various component interaction options. This
highlights the need for additional support to incorporate potential performance impacts
of different architectures into the decision-making process.

3.2. Performance Prediction of Microservice Applications
In this section, we examine the existing approaches for performance prediction of mi-
croservice applications with respect to the concepts used and the possible uses in a
microservice architecture exploration platform (MAEP). We assume that at
the time of using a MAEP, only architecture models of the microservice application
exist and no implemented microservices exist yet.

To accurately simulate complex service chains created by the communication of differ-
ent microservices Khan et al. [Kha+21] developed PerfSim. PerfSim simulates incoming
requests, by simulation the resulting messaging chains between microservices that re-
sult from a request[Kha+21]. The simulation can make predictions for response times
and host utilization for user-defined workload scenarios[Kha+21]. However, PerfSim
requires prior extraction of network traces from an existing system[Kha+21]. These
network traces are then used to create the messaging chains and information about the
performance of the services as simulation input[Kha+21]. This makes this approach us-
able only if a microservice application already exists and is actively used. Therefore, it
is not suitable to be used as part of a MAEP. PerfSim also offers the possibility to create
the models for the simulation manually. But this approach has not been validated by
the authors and the required models are complex which makes the practicability of this
possibility questionable.

Zhang, Gan, and Delimitrou [ZGD19] have developed µqSim, a simulation framework
that simulates messaging chains between microservices and the resulting message pro-
cessing of microservices. To model the messaging chains between the different microser-
vices, the user must create inter-microservice dependency graphs[ZGD19]. The process-
ing of messages through microservices is represented using execution paths[ZGD19]. An
Execution path is a detailed representation of the actual microservice logic, which con-
sists of several execution stages that are linked with transition probabilities[ZGD19].
In this way, the execution paths precisely map the different paths in the code of the
microservice implementation[ZGD19]. However, µqSim requires measurements of the
individual execution stages under different loads from a real existing system for the
simulation[ZGD19]. Therefore, µqSim is also not suitable for use in a MAEP.

Courageux-Sudan, Orgerie, and Quinson [COQ21] developed a simulation framework
based on a simplified model of the execution logic of a microservice. Unlike µqSim, this
approach does not require models of the exact execution stages of microservice logic.
Instead, the processing times of a simulated microservice depend on the CPU cost, the
I/O ratios and the parallelization degree of the executed logic[COQ21]. The use of
this simplified model allows the use of generic tracing tools for the calibration of the
input models[COQ21]. Generic traces can also be used for mapping the communication
between the microservices for this approach[COQ21]. However, due to the required
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traces of a real existing system, this approach is also not suitable for use in a MAEP.
Bao et al. [Bao+19] represent the message processing of a microservice in their simu-

lation by considering three sub-processes. They assume that microservices run in a con-
tainer that limits the number of messages that can be processed simultaneously[Bao+19].
Based on this, they calculate the processing time as the sum of the times taken by the
three sub-processes[Bao+19].

1. Request caching time This is the time the message waits in the queue until it
is processed by the microservice.

2. Business processing time This is the time it takes to execute the corresponding
business logic triggered by the message.

3. Transaction processing time This is the time it takes to perform I/O opera-
tions.

To calculate these times, they consider the hardware on which the microservices are
hosted and the current load on a microservice at the time of processing[Bao+19]. For
this, they consider for the hardware, the CPU clock speed, the number of CPU cores
and the amount of available RAM[Bao+19]. For the hardware, they consider the CPU
clock speed, the number of CPU cores, the amount of disk space, and the amount of
available RAM on which the processing times depend[Bao+19]. However, their approach
first requires benchmarks of a deployed microservice application on a wide variety of
hardware to calibrate the simulation[Bao+19]. This also makes this approach, like the
previously presented approaches, unsuitable for use in a MAEP as we envision it.
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This chapter presents our concept for a discrete-event simulation for performance pre-
diction of microservice applications. The basis for our approach is the metamodel of
Ntentos et al. [Nte+21], which enables automatic checking for compliance with archi-
tectural design patterns. We refer to this model as the static analysis metamodel.
The input models for the simulation should also be suitable to perform a static analysis
on their own, but in addition they should enable simulation for performance prediction.
We refer to this adapted model for simulation as the simulation metamodel.

It is not possible to reflect all possible influences of a microservice architecture on
the performance in our simulation within the scope of this work. Therefore, we have
chosen a bottom-up approach to develop the concepts and the implementation for the
simulation. For this purpose, we first create a reference microservice architecture in
order to derive the necessary concepts for the simulation of such an architecture, as
presented in section 4.1. Section 4.2 presents adjustments we have made to the static
analysis metamodel to enable simulation. Section 4.3 explains how the simulation uses
the simulation metamodel to simulate a microservices application.

4.1. FruitCollector: A Multiplayer Game based on
Microservices

In this section, we introduce FruitCollector, a multiplayer game using a microservices
backend. We chose a reference architecture in the gaming domain for two reasons.
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1. Previous experience in this domain allows us to quickly create a reasonable archi-
tecture.

2. The performance of the backend in multiplayer games plays an essential role, as
increased latency significantly affects the players’ enjoyment of the game[DWW05].

FruitCollector is intended to be representative of the performance behavior of real-
world microservice architectures. In order to achieve this, FruitCollector should contain
a wide range of performance influencing factors that are also contained in real existing
microservice applications. For this the offered API of the application plays a crucial
role. The request-response times for the functions of the API show how the performance
affects the users. And the use of the API functions of a microservice application can
influence the performance of the entire system in various ways. For example, some
functions might start the execution of complex algorithms, while others might consume
bandwidth by transferring large amounts of data, both of which could affect performance.
So to be representative, the API of the FruitCollector backend should cover as large of a
set of possible performance influences. To ensure high coverage, we score API functions
against four factors that we expect to influence performance.

Message size We assume that functions that require a lot of data to be
transferred, such as a file upload, have an impact on performance due to
their increased bandwidth usage.

Frequency We assume that the frequency in which the functions are called
has a performance influence.

Processing time Some functions run complex algorithms that consume
a significant amount of computing power and we assume that this has an
influence on the performance.

Messaging chain length Some functions lead to a lot of message exchange
between the different microservices. We assume that long message chains
have a greater performance influence than lower ones.

Based on our estimation, we score functions for each factor from 1–3 points, where
1 point means low expected influence and 3 points means high expected influence. We
design the API of FruitCollector in such a way that we achieve a high coverage of
the different factors with the functions. Furthermore, it should be ensured that we can
implement an actual playable game with the given functions for the evaluation. Through
this, we came up with 11 functions the API of the FruitCollector backend provides. The
matrix resulting from our estimations for the functions with our evaluations for the
different factors is shown in table 4.1.
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Function Message Size Frequency Processing Time Messaging
chain length

register
login
playerView
move
collectItem
inventoryState
sendChat
retrieveChat
retrieveQuests
finishQuest
uploadReplay

Table 4.1.: Our estimations for the scores of the API functions of FruitCollector.

Understanding the API

The API enables gameplay in which each user navigates his avatar through a two-
dimensional world and tries to collect certain fruits distributed in the world in order to
finish quests of the form “collect 10 fruits of type X”. For a general overview of the seven
services of the FruitCollector backend and for which functions of the API they interact
with each other see figure 4.1. In the following we explain the functions of the API
that we consider not self-explanatory. The explanations for the remaining functions are
provided in appendix A.1.

playerView

Involved services World Uses database 7

Description
Returns a view of the world, which is a list containing the positions and ids of all
fruits and other players near the requesting player, so that they can be rendered
by the game client. For performance reasons, the state of the world is saved in the
service’s memory so that all players connected to the same instance of the World
service are playing in the same world.
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[collectItem]

World

[playerView, move,  
collectItem]

[inventoryState] [sendChat, retrieveChat][retrieveQuests, finishQuest] [uploadReplay]

Inventory Authentication Chat

[finishQuest]

[finishQuest]

[finishQuest]

Quest

[uploadReplay]

Replay

Anticheat

[register, login]

API

Figure 4.1.: An overview of FruitCollector’s services and the API functions they realize.
The cylinders indicate that a service requires a database to provide its func-
tionality.

finishQuest

Involved services Quest, Inventory, World, Chat Uses database 3

Description
When a player has collected enough fruit of a certain type to complete a quest, the
game automatically calls finishQuest. The Quest service uses the Inventory service
to check whether the player actually has enough fruit. Then the fruits of that type
are deleted from the inventories of all players and new fruits are placed in the world.
Finally, a new quest is created and an announcement is made in the chat.

uploadReplay

Involved services Replay, Anticheat Uses database 3

Description
A player uploads a replay in the form of a list of world views received from play-
erView. The anticheat service checks if the replay is legitimate, i.e. if all movements
within the replay are within the movement range. A legitimate replay is then stored
in the database and the replay id is returned to the user.

4.2. Modeling a Microservice Application for Simulation
Ntentos et al. [Nte+20] model a microservice application to perform a static analysis
and find architecture design decision violations. However, the static analysis metamodel
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lacks modeling capabilities for some information needed for a simulation for perfor-
mance prediction. For example, information about the deployment hardware is not part
of the metamodel, but has a great impact on the performance of the resulting appli-
cation[Bao+19]. Therefore, to support simulation for performance prediction, we need
to adapt the static analysis metamodel. Since a full adaptation is beyond the scope of
this work, we remove the parts of the static analysis metamodel that we do not need
for modeling the FruitCollector reference application. However, these removed parts are
compatible with the simulation metamodel and can be added back in for future work.

This section discusses the adaptations we have made to the static analysis metamodel
to obtain an adequate simulation metamodel. We reduce the number of component
types, described in section 4.2.1. We extend the static analysis metamodel to allow
for a more precise description of message exchanges between components, described in
section 4.2.2. We add ways to model the deployment hardware, described in section 4.2.3.
We also add ways to describe usage scenarios for the microservice application, described
in section 4.2.4.

4.2.1. Modeling Microservice Components
Ntentos et al. [Nte+20] define a microservice architecture as a graph of component
nodes and connector edges. Component nodes represent an entity that interacts with
other components in the architecture. Connector edges provide information about how
components interact with each other. To assign a role to each component and connector,
they define 26 component types and 39 connector types.

Component type

Defines the role of a component in a microservice architecture. E.g. client, gateway,
or database.

A connector’s role is defined by its connector type, e.g. HTTP, synchronous, or JDBC.
An analysis of the differences in performance behavior between different implemen-

tations of services is beyond the scope of this work. Thus, we reduce the amount of
component types available for the simulation model to exclude implementation specific
types. For example, Ntentos et al. [Nte+20] define different component types for differ-
ent database implementations. They define a PostgreSQL DB type and a MySQL DB
type, both of which inherit from the Database type. In the simulation model these are
removed and only a Database type is available. Furthermore, we only include types that
are needed to model the FruitCollector architecture described in section 4.1. As a result
we end up with five component types for the simulation metamodel:

1. Client A component that initiates requests to the microservice application.

2. Facade A component that routes requests to other components.

3. Service A generic microservice that executes some type of business logic.
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4. Database A component that is used to store and retrieve data.

5. Message Broker A component that distributes messages between microservices.

In accordance with the static analysis metamodel, the simulation metamodel also
includes the possibility to define the component nodes of the microservice architecture.

Component node

Represents an instance of particular component type that is specific to the modeled
microservice architecture. For example, an authentication service that handles user
login requests is an instance of the component type Service.

4.2.2. Modeling Communication

In the static analysis metamodel a connector expresses general messaging capabilities
between two components. For the simulation, however, it is not enough to know which
components can exchange messages with each other. If two components exchange a
message once a day, this will certainly have less impact on performance than if the
components exchange a message once a second. So for the simulation, we need to know
the circumstances under which messages will be exchanged. Often message exchanges
are part of a larger chain of messages caused by an initial message with a certain purpose.
For example, a client sends an initial message with the goal of logging in, this message
then triggers a messaging chain involving client, gateway, authentication service, and
database. We assume that messages with the same purpose as the initial messages also
trigger the same messaging chain. To model these messaging chains, we introduce the
concept of request types.

Request type

A dependency graph that represents a messaging chain triggered by an initial mes-
sage with a specific purpose.

The dependency graph of a request type is defined as G = (N,E) for a request type
R. The nodes in N represent a microservice processing a message and the edges in E
represent a message transfer between two microservices. To reduce the complexity of the
simulation implementation, connector types and thus the exact messaging protocol used
are omitted at this point. Instead, message exchanges are treated as general network
messages. Thus, the edges in E are only annotated with the size of the transmitted data.

Since the services in the FruitCollector reference architecture only become active
through calls to API functions, it is sufficient to map each API function to a request type.
An example dependency graph for the request type collectItem is shown in figure 4.2.
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Player
<<Client>>

Gateway
<<Facade>>

World
<<Service>>

Inventory
<<Client>>

Inventory_db
<<Database>>

Inventory
<<Client>>

Gateway
<<Facade>>

Player
<<Client>>

Figure 4.2.: The request type dependency graph of collectItem. Edge annotations omit-
ted for brevity.

4.2.3. Modeling Deployment of Microservices

The component nodes and their interactions are not sufficient to run a simulation for
performance prediction. Because the performance of a microservice application depends
not only on the architecture, but also on the hardware on which the services are run-
ning[Bao+19]. However, the static analysis metamodel only considers the microservice
architecture and does not consider how many instances of the different services are
deployed on which hardware. To represent this information, we need to extend the
metamodel to include deployment modeling capabilities.

Microservices usually run in data centers of a cloud provider[Ric18]. For the perfor-
mance from the user’s point of view, it is relevant in which data center the microservices
are running, since the distance to the data center can influence the response times[AA19].
Therefore, the simulation metamodel needs to be able to model the data centers in which
the services run. A data center consists of a geolocation and references a host topology.

Host topology

Defines the hardware and network connectivity of hosts within a data center and
the distribution of components across these hosts.

Each host consists of an id, the number of available logical cores and their respective
clock speeds, and the upload and download bandwidth. In addition, each host has a list
of references to component nodes that are deployed on the host. By separating the data
center and host topology definitions, it is easy to model multiple data centers with the
same deployment configuration.

4.2.4. Modeling Usage

The performance of a microservice application also varies depending on how many users
are connected and how these users behave. Different types of clients might use the
microservice application in different ways. E.g. an online shop might have users that
want to view the website and place orders and some external warehouse software that fre-
quently requests shipping information. To accommodate this, the simulation metamodel
includes means to define different kinds of clients for a microservice application. In order
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to represent the diversity of clients, the simulation metamodel includes the possibility
to define client definitions consisting of client properties and client behavior.

Client properties

Define the geographic location of clients as well as their upload and download
bandwidth.

In reality, the clients most likely won’t all be in the exact same geolocation, but rather
spread out over a certain area. To account for this, the geographic location of clients is
defined by latitude, longitude, and a radius. This defines a circular area in the world from
which clients with these client properties connect and send messages to the microservice
application.

Client behavior

Defines the request types that a client triggers and the rate at which they are
triggered.

A client behavior consists of a list of request behaviors. Each request behavior
references a request type and defines a request frequency. Each simulated client then
sends the appropriate simulated messages to trigger processing of that request type every
X time units as defined by the request frequency. In addition, an initial delay can be
defined before a client begins sending the messages repeatedly. In this way, it is easy
to define a set of clients that represent normal shopping users connecting via cell phone
from anywhere in France, and another set of clients that have the same behavior but
connecting from anywhere in Germany.

With this approach, each client with the same client behavior behaves exactly the same
and sends the same messages at exactly the same time. For user input independent
requests, such as constantly requesting positions from other clients in a multiplayer
game, this approach is well suited. However, this approach has limitations when it
comes to describing user input dependent requests. For example, a visitor to an online
store will not make a payment every X minutes. The frequency of this kind of requests
strongly depends on the user’s behavior. To model user input dependent requests and
the underlying human behavior, probabilistic finite-state automata could serve as a
complement to the frequency based approach described above[CS04]. However, to keep
the effort for modeling the client behavior low, we do not adopt this approach in this
work.

Microservice architectures are especially useful when scalability of the system is im-
portant[Bao+19]. Scalability is often needed when the workload, or number of connected
users, can change rapidly. For example, websites for a particular product might see a
rapid increase in users when the product is advertised on television1. Fehling et al.

1https://blog.hubspot.com/marketing/how-to-prepare-website-for-traffic-influx
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[Feh+14] describe five different types of such workloads that an application may expe-
rience: Static workload, periodic workload, one-time workload, unpredictable workload,
continuously changing workload. In the simulation metamodel, we therefore introduce
scenarios that can be used to model these types of workload.

Scenario

Defines the workload experienced by the microservice application by mapping the
number of connected clients and their client definition over time.

A scenario contains a list of snapshots. Each snapshot is associated with a timestamp
and defines the number of connected users of a particular client definition at that point
in scenario time. The simulation then simulates the period from the first to the last
snapshot. In addition, the scenario contains a reference to an interpolation strategy. The
interpolation strategy defines how the simulation should interpolate between snapshots
when the simulation time is in between snapshots.

4.3. Simulating a Microservice Application
This section explains how the simulation uses the models discussed in section 4.2 to
predict the performance of a microservice application. The performance of a microservice
application is determined by two factors:

Message transfer time The time it takes to transfer messages between the
different services within the application and to transfer messages between
clients and the application.

Processing time The time the services need to process incoming messages.

The simulation must therefore simulate these two factors for the requests defined in
the models in order to make a performance prediction.

First we discuss how the simulation uses request types as a basis to simulate the
message chains for each request in section 4.3.1. Then we discuss how the simulation
simulates the processing of messages by services in section 4.3.2. Due to its complexity,
the estimation of message transmission times is discussed in depth in a separate chapter
(chapter 5). In section 4.3.3 we discuss how the discrete-event simulation operates.
Finally, in section 4.3.4 we discuss how the simulation generates output to allow analysis
of performance.

4.3.1. Simulating Requests
The messaging chain between microservices triggered by an initial message is represented
by a request type dependency graph. While the request types provide an overview of the
messaging between components, they do not provide any information about the deploy-
ment. However, we need this information to determine processing times and message
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transfer times. Moreover, message processing and message transmission are complex
tasks for which it would be useful to decompose them into a finer-grained representa-
tion. This, in turn, allows a simpler implementation of the simulation, since only a
small subtask of the respective task has to be considered. To obtain a representation
with small subtasks that also takes deployment into account, we transform the request
types into Petri nets.

Petri nets are well suited to represent concurrent processes[Bar16], such as the pro-
cessing of message chains by microservices. In addition, the transformation in Petri nets
gives us the following benefits:

• Splitting the different simulation steps into a Petri net makes it easy to implement
separation of concerns. One transition in the Petri net has one concern regarding
the simulation.

• A Petri net can be easily extended at various points by simply adding places and
transitions in between.

• A Petri net allows for easy debugging of the simulation implementation, since the
current state of a request that has an error can be easily represented and debugged
using a Petri net visualization.

For large dependency graphs, the Petri net representation with all the subtasks can
quickly become confusing. However, the simulation of the components always follows the
same pattern: A component receives one or more messages and then starts processing.
For more clarity, we divide the Petri nets into different request stages based on these
repeating patterns.

Request stage

A structure consisting of one node of a request type and all its ingoing edges.

In addition, we group places and transitions of the Petri net that are responsible for a
subtask of the simulation into segments. We show an example request stage of a Petri
net created in this way in figure 4.3. For more a more in-depth explanation of Petri net
segments, refer to section 6.1.

For the simulation we use the Petri nets by creating a new Petri net marking for
each initial message sent that belongs to the corresponding request type. This marking is
then used to simulate the processing of the request by the microservice application. The
segments delay the consumable time of the token for as long as the simulation predicts
that the subtask of the segment requires. A token can only be moved through a transition
if the consumable time is equal to the simulation time. Whenever the simulation time
reaches the consumable time of a token in a marking all available transitions are fired.
A request is considered processed when all request stages have been traversed.
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Figure 4.3.: Petri Net Representation of a request stage. Segments are grouped with
dashed lines.

The segments of a request stage

In the following, we explain the tasks of each segment of a request stage. In this context,
we distinguish between two types of segments:

Timed segments� These segments increase the consumable time of a token
when it passes through and thus increase the request-response time.

Organizational segments These segments are needed for the Petri net
traversal, e.g. to create multiple tokens because a message is sent to multiple
recipients. They do not affect the request-response time.

MessageInput Serves as a connector to the components that send messages for this
request stage. For each message sender there is one MessageInput segment.

WaitForInput The processing of a request stage by the component can only start
when all previous request stages are finished. This segment ensures this, because the
transition can only fire if there is a token in each MessageInput segment. The segment
also stores the instances of the services that sent the messages in the token as sender
instances.

LocalGroupSelection Selects a suitable local group to which the messages should
be transferred to, by using the stored locations of the message senders in the token. For
the purpose of this work, the suitable local group is the one with the shortest distance.

Global groups & Local groups

The request type only describes what type of service processes a message in the
request stage. However, to calculate the times, the simulation must also know
which instance of a service in which data center receives the messages. A local
group contains all instances of a type of service within one data center, so the
simulation can decide for a target data center of a message transmission. A Global
group contains all local groups of a type of service.

HostSelection Selects an instance of the service within the local group based on the
load of the corresponding host and stores the selected instance in the token.
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MessageTransfer� Since the token now contains the service instance to which the
messages are sent, the message transfer time can be calculated. The segment calculates
the message transfer times for a transfer of messages from all sender instances stored
in the token and increases the consumable time by the highest one. The approach with
which we calculate the message transfer times is explained in detail in chapter 5.

ComponentCalculations� The segment calculates the processing time the service
instance needs for processing of the message using the approach described in section 4.3.2.

LocalGroupMerging This segment merges the paths of the different local group
sections back into one path.

MessageSender This segment creates as many tokens as messages are sent in this
request stage, so that the next request stages can process them in the MessageInput
segment.

4.3.2. Simulating Components
The processing time required by the components to process the messages depends on
the business logic executed and the hardware that executes this logic. Therefore the
simulation needs a way to simulate the execution of logic on hardware. It is not possible
for us to consider all possible hardware characteristics that might affect performance
within the scope of this work. Since we assume that the CPU has the greatest influence
on the performance, we only consider the number of CPU cores and the CPU clock speed
for the simulation of the hardware. First, we discuss how to represent the complexity
of tasks in terms of time. After that, we discuss the CPU model of the simulation that
simulates the processing of many tasks by the CPU.

Task

In the simulation, a task is created by a service when it receives a message and
represents the business logic that is executed as a result of that message.

Representing the complexity of tasks

To estimate the execution time of tasks, Buyya and Murshed [BM02] use the number
of instructions the logic executes and the instructions per second the CPU can process.
However, this approach has two problems:

1. The actual number of CPU instructions needed to process messages in a microser-
vice is not intuitive. For example, Java is transpiled, then executed on the JVM,
and some unknown framework code is also executed. This results in a number of
actual instructions that may be significantly different from the number expected
from the business logic code.

2. Instructions per second can be misleading, especially on modern CPUs. Tuomi
[Tuo02] states: “One problem […] is that the clock speed is not directly related
to the amount of information processed. For example, the original Intel 8088 PC
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microprocessor took on average 12 clock cycles to execute a single instruction.
Modern microprocessors can execute three or more instructions per clock cycle.”

For our simulation approach we do not want to use the instructions of business logic
to calculate the execution time. We skip this intermediate step and directly define the
time that business logic takes to execute via the base processing time.

Base processing time

The base processing time is defined as the time it takes a CPU core running at 1
GHz to process a certain task.

The base processing time is not very intuitive either, but can be measured easily.
In future work, for example, a catalog of base processing times for common business
logic could be provided like a login procedure, which would simplify the creation of
simulation models. Within the scope of this work we cannot provide such a catalog, so
for the purposes of this work we use a simple formula to calculate the base processing
time tb of all components which considers a constant time value a and the message size
in kB sm:

tb = a+ 0.1 · sm
We assume that the base processing time also depends on the size of the received

message, since serialization and deserialization take longer. As value for a we use 3ms,
based on measurements of Akbulut and Perros [AP19]. In addition, the base processing
time can be overridden by the user at the component node or request stage level. This
simplified formula is likely to give inaccurate values for the base processing time, leading
to inaccurately predicted request-response times, and needs more attention in future
work.

Simulating processing of tasks

The simulation uses the base processing time of a task to predict the task processing
duration.

Task processing duration

The amount of time a service actually needs to process a task, which depends on
the current CPU load and the base processing time.

For this purpose we have developed a CPU model based on the principles of a CPU
scheduler. When a CPU receives instructions, these are distributed over the available
computing time on the different cores using a scheduling algorithm[AA18]. Within the
scope of this work, we are not able to represent the complexity of real existing schedulers
like the Completely Fair Scheduler of Linux[Pab09]. Therefore, we decided to develop a
CPU model for simulation based on the principles of a first come first serve scheduler.
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CPU: 4 Cores, 2GHz
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Figure 4.4.: Queuing and subsequent processing of a task in our CPU model.

We consider each task that a service wants to process as an instruction that must
be scheduled on the corresponding host’s CPU and then processed. A CPU consists of
multiple cores, where each core can work on one task at a time. We assume that a core
with 2 GHz clock speed can process a task twice as fast as a core with 1 GHz clock
speed. Thus, with a core speed in GHz of Sc and a task base processing time of tb we
apply the following formula to get the core processing time tc.

tc =
Sc

Tb

When a service wants to process a task, the task is then scheduled on the CPU and
takes tc time to be processed by a core. If the CPU does not have a free core to process
the task, the task is queued and executed based on first come first serve scheduler basis
as soon as a CPU core becomes available. As a result, the Task processing duration is
made up of the time spent in the queue and the core processing time.

In figure 4.4 we show an example of how the Authentication service wants to process
a task with a base processing time of 4ms for a message received at time tq. However,
no core is free at this time and the task is queued and executed at time te.

4.3.3. Running the Simulation

This subsection presents how the request type Petri nets, the message transfers, and CPU
models are used to run the simulation. In order to run a simulation, the simulation suite
needs the following input:
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• An architecture, as described in section 4.2.1.

• A deployment, as described in section 4.2.3.

• A scenario, as described in section 4.2.4.

• Client definitions, as described in section 4.2.4.

The simulation is run as a discrete-event simulation. There is a global queue of events,
called the simulation queue, where each event is associated with a timestamp. The event
with the lowest timestamp is selected as the active event and then simulated. Then all
subsequent events triggered by the active event are added to the queue, and the next
active event is selected and simulated.

To fill the simulation queue with events, simulated clients are first created according
to the scenario definition. During the simulation, active clients are added to or removed
from a list of simulated clients according to the scenario definition. Each client initiates
new simulated requests according to its defined client behavior. To initiate new simulated
requests, the simulated client adds a request creation event to the simulation queue.
When a simulated client creates a request, a Petri net marking is created for the Petri
net of the request type and it is added to a list of active requests. The initial token is
placed and the request is queued with the current simulation time as the consumable
time. When the request event is handled by the simulation, the tokens are consumed
and the marking is stepped from M to M ′. The corresponding Petri net segments
calculate the time the events take and return the new consumable times for M ′. Where
consumable times is a set of timestamps when the tokens in M ′ can be consumed by
a transition. For the lowest token usage time in M ′, a new event is queued for the
simulation. The simulation then runs until there are no active requests and no active
clients.

4.3.4. Simulation Output
To provide useful insight into the predicted performance of a microservice architecture,
the simulation must output data to the user. Fleckenstein, Fellows, and Ferrante [FFF18]
define data as high quality if it is suitable for its intended use. However, the data provided
by the simulation should not be collected with too narrow a domain of use in mind. As
we want to restrict users in the analysis of the data as little as possible, so that users
themselves can determine the focus of their analyses. For this reason, we decided that
the simulation should not provide an interpretation of the data, but only provide data
in a format that can be interpreted by the user according to his needs.

To represent the data collected by the simulation, we decided to create event logs.
Using event logs has several advantages:

• We can use process mining to verify the correctness of the simulation. The pro-
cesses discovered for a request type should match the dependency graphs configured
by the user.
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• For later evaluation with an implemented microservice application, we can create
event logs in the same format. This allows us to use the same code to interpret
the simulation data and its real-world counterpart.

• Event logs don’t restrict users too much in their interpretation.

The simulation outputs two different event logs. A request event log for insight
into the behavior of requests, and a host event log for insight into the usage of hosts.

Request event log

According to Van Der Aalst [Van16], each process mineable event log should have at
least a case id and an activity column. Additionally, all events within a case should be
ordered in some way[Van16]. To order the events, each event is given a timestamp of the
current simulation time when it is created. Each event in the request event log should
contain information about the request type to which it belongs. However, storing the
request type id in each event would be too much redundant data to store. Therefore,
the request event log is split so that each request type has a separate event log. For the
request event log, we define the case id as the id of the simulated request to which it
belongs. Each request gets a unique id from an ascending sequence of numbers when
it is created. Events in the request event log are created to represent when an activity
starts or ends.

Activity

Represents a piece of work of a certain duration that occurs when fulfilling a request
in the microservice application.

In order to be able to calculate the duration of the activities, we add a type column,
which can be either “Start” or “Finish”. Although this information is implicitly included
in the event log by using the timestamp associated with each event, we decided to include
it explicitly for two reasons:

1. It makes it easier to later merge two events of the event log to get the duration.

2. It allows us to sanity check the event logs of the real world microservice application.
In which timestamp problems could arise due to clock synchronization issues with
distributed systems.

It would be possible to include the duration of the activity directly in the event log for
the simulation. However, we chose not to do so in order not to increase the complexity
of the simulation and the real-world microservice application implementations.

The simulation records events for the following activities:

Transfer A message is transferred between components.

Queue A task is waiting in the queue of a CPU until it is executed.
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gateway
<<Facade>>

Simulation time

auth
<<Service>>

Request stage: main

Queue Processing

Event log

Transfer(main)(gateway->auth)

Queue(main)(auth)

Task(main)(auth)

Finish

Finish

Finish

Start

Start

Start

Figure 4.5.: Depiction of when events are recorded for which activity within a request
stage.

Task A task is executed by a CPU.

Each activity name is generated using the component ids of the component nodes
involved. To make the activity names unique within a request type, they are additionally
labeled with the request stage. An example diagram illustrating when events are created
with which activity name is shown in figure 4.5.

In addition, each event contains a resource name to indicate on which resource the cor-
responding activity was performed. For the Queue and Task activities, the resource name
is the component id. For the Transfer activities, the resource is network(A, B) grouping
all message transfer activities of the form Transfer(X)(A, B) and Transfer(X)(B, A).
See table 4.2 for a sample partial request event log for the request type register.

Host event log

Each event in the host event log should contain information about the host to which it
belongs. However, storing the host id in each event would be too much redundant data
to store. Therefore, the host event log is split so that each host has a separate event log.
In the host event log, we create an event each time a host processes a task. A host can
have multiple components running on it, and each component can have multiple request
types in which it may be starting a task. Therefore, for the data to be useful, we need
to include information about what triggered the task. To do this, each event contains
the request id of the request that initiated the processing. It also contains the request
type of the request and the component that initiated the task processing. To provide
information about CPU usage, each event contains the index of the core that processed
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id type activity resource time

0

Start Transfer(stage1)(player->gateway) network(gateway, player) 0
Finish Transfer(stage1)(player->gateway) network(gateway, player) 6
Start Queue(stage1)(gateway) gateway 6
Finish Queue(stage1)(gateway) gateway 6
Start Task(stage1)(gateway) gateway 6
Finish Task(stage1)(gateway) gateway 7
Start Transfer(main)(gateway->auth) network(auth, gateway) 7

… … … … …

Table 4.2.: Example request event log for a request sent from the player client to the
gateway at simulation time 0.

request id request type component core start time finish time
0 register gateway 0 6 7
0 register auth 0 10 20
0 register gateway 0 23 24
1 register gateway 1 23 24

Table 4.3.: Example event log for a host running gateway and authentication service.

the task, as well as a start time and a finish time for the task. With this information,
a user can then derive CPU utilization on each host and find potential bottlenecks. See
table 4.3 for a sample partial host event log.

4.4. Summary

Architecture

Scenario

Deployment

Clients

Simulation Event log Analysis

(A) (B) (C)

Figure 4.6.: Workflow for the performance prediction of a microservice application.

The concepts we have developed lead to a performance prediction workflow as shown
in figure 4.6. First, an architect creates four models as input for the simulation:

• Architecture contains the components and request types.
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• Deployment contains the datacenters, hosts and distribution of services on the
hosts.

• Clients contains the client behaviors and client properties.

• Scenario contains the period of observation and corresponding the workload.

These models are then given as input to the simulation, which simulates the transfer
times between clients and application (A), the transfer of messages between microservices
(B), and the processing of messages by microservices (C). As output, the simulation
generates an event log which can be used to perform an analysis of the microservice
application’s performance.
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The simulation uses the CPU model presented in section 4.3.2 to predict how long it
takes a component to process a received message. However, in distributed systems, the
cost of communication also has a significant impact on the performance of the system.
For this reason, the simulation needs a way to accurately predict the time it takes to
send a message between two hosts. This chapter explains how the simulation predicts
the message transfer times between the different services.

One challenging part of predicting transfer times is predicting the Round-trip time
(RTT) between two hosts. Once the RTT is known, the bandwidth of the connected
hosts and the message size can be used to predict the message transfer time. In
section 5.1 we present existing literature about RTT prediction systems. Section 5.2
explains our approach based on a neural network to predict the RTT and how we use the
predicted RTT to predict message transfer times. Section 5.3 discusses the limitations
of our approach.

5.1. Existing RTT Prediction Systems
This section presents existing approaches to predict RTT between hosts.

Wong, Slivkins, and Sirer [WSS05] introduced Meridian, a framework for performing
node selection based on the expected RTT. For large distributed systems, it is not
practical to measure RTT for all possible nodes individually[WSS05]. Meridian reduces
the number of nodes to measure by grouping nodes into rings[WSS05]. Each node creates
a number of rings around itself and measures in each step only the RTT to a node in a
certain ring[WSS05]. From this measurement the RTT to the other nodes in the same
ring is estimated[WSS05]. This reduces the number of measurements needed[WSS05].

One group of approaches for predicting RTT between hosts are network coordinate
systems[MAB18]. Network coordinate systems for predicting RTT calculate positions
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for nodes in a virtual geometric space[MAB18]. For this purpose, some measurements of
already placed nodes are used to determine the position of a new node[MAB18]. Based on
the positions in the virtual space, predictions can then be made about the expected RTT
between two nodes between which there has never been a direct measurement[MAB18].

One subcategory of network coordinate systems are landmark based system[MAB18].
In landmark based systems, when new nodes are inserted, measurements are first made to
specific selected nodes, called landmarks, to determine the position of the new node in the
coordinate system[MAB18]. Francis et al. [Fra+01] presented IDMaps, a landmark based
RTT prediction system where landmarks are distributed in a network. The distance D
between two nodes A and B with the respective nearest landmarks LA and LB is then
calculated as: D = distance(A,LA) + distance(LA, LB) + distance(B,LB).

However, landmark based systems have the problem that a small number of landmark
nodes represent a single point of failure and the infrastructure can also quickly reach
its scalability limits[Cos+04]. To avoid these problems, there are distributed based
systems in which every node that has already been assigned a position in the geometric
space can also serve as a landmark[MAB18]. Vivaldi by Dabek et al. [Dab+04] is such
distributed based system. To minimize errors, Vivaldi uses Hooke’s Law and simulates
springs connecting the nodes in the geometric space[Dab+04]. When a node is placed,
the springs exert force on the connected nodes to reduce the error[Dab+04].

The presented network coordinate systems are based on the assumption that the Tri-
angle Inequality holds for the RTTs between different nodes[MAB18]. In other words,
the systems assume that the RTT between host A and host C is always less than the
RTT between host A and B plus the RTT of host B and host C, if they are arranged in
a triangle shape in the respective coordinate system. However, Dabek et al. [Dab+04]
noted that the Triangle Inequality does not necessarily hold in datasets for RTTs be-
tween hosts. To solve the problem of the Triangle Inequality Violation, there are matrix
factorization systems (MFS) for RTT prediction[MAB18].

However, just like all the previously explained approaches, the MFS approaches also
have the problem that predicting RTT from one host to another requires at least some
calibration requests. So for RTT prediction using the previous approaches we need an
actual host connected to the Internet. This makes the previously presented RTT pre-
diction approaches unsuitable for determining the RTT between two simulated hosts for
which we have only the information from the deployment model. Since this is unsuit-
able for determining the simulated message transfer time for microservice simulation, a
different approach must be taken.

Beverly, Sollins, and Berger [BSB06] use a Support Vector Machine approach to predict
RTTs between two hosts of which the ip addresses are known. Their approach makes
use of the inherent locality of ip addresses, to be able to predict RTT between two
hosts[BSB06]. However, their approach requires IP addresses to work, which are not
available from the deployment model of the simulation. Since it works by inferring RTT
from the locality of IP addresses, it should also be possible to predict RTT directly from
the geographic locations of hosts.

Landa et al. [Lan+13] collected RTT measurements between hosts distributed around
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the world. They enriched their data by adding relevant network and geographic meta-
data to each measurement[Lan+13]. They found that the pair of countries in which the
communicating hosts are located is the best predictor of RTT[Lan+13]. In addition, us-
ing the distance between the hosts is useful in further improving the prediction[Lan+13].

5.2. Predicting Message Transfer Times
The previously presented approaches to RTT prediction are not suitable for use in our
simulation. They either use input we do not have in the simulation context[WSS05;
Dab+04; BSB06] or do not provide datasets with which we can replicate the approach
[Lan+13]. However, they do reveal, that we cannot simply use the distance between two
hosts to obtain an accurate RTT prediction[MAB18; Lan+13].

But, from the input model of the simulation we have only limited information. We
know the geographic location of each host through the data center locations(cf. sec-
tion 4.2.3), and we know the geographic location of the clients from the client proper-
ties(cf. section 4.2.4). Using this information, we must predict the RTT between hosts
and between clients and hosts. Then we can use the predicted RTTs and the defined
bandwidths of clients and hosts to predict the message transfer times for the simula-
tion. In this section we explain our approach to predict message transfer times with the
limited information available to the simulation.

5.2.1. Obtaining data
In order to predict RTT from the available variables, we first need a dataset with mea-
sured RTTs and geolocation information for the hosts. However, the available datasets
are either outdated or missing geographic location information, so we need to obtain
a dataset first. CloudPing.co provides RTT measurements between hosts in different
AWS regions. For each AWS region, the time it takes to establish a TCP connec-
tion to a database in each region is measured multiple times a day. We downloaded
measurements from CloudPing.co for one day1. This gives us a dataset of 2205 mea-
surements of RTT between different AWS regions, including the ID of the sender and
receiver AWS region. Next, we obtained the latitude and longitude of the AWS data
centers for the regions and enriched the data with the obtained geolocations2. AWS has
multiple AWS regions in a geographic region, for example, the US East Coast has two
AWS regions, “us-east-1” and “us-east-2”. To summarize the AWS regions we introduce
AWS districts.

AWS district

Aggregates the data centers from multiple AWS regions to assign each data center
an approximate region in the world.

1The data was retrieved on 2022-10-09.
2The data center locations were obtained from https://github.com/turnkeylinux/aws-datacenters
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Figure 5.1.: Geographic distribution of the data centers in our dataset and their respec-
tive AWS districts.

AWS districts are obtained by removing the number suffix from the AWS region.
The locations of the data centers and their corresponding AWS districts are shown in
figure 5.1.

5.2.2. Predicting Round-Trip Time

Landa et al. [Lan+13] found that the distance between the two hosts is a good predictor
of RTT. The distance between two hosts is given as great-circle distance on the world.
Plotting the RTT from our data, as shown in figure 5.2, against the distance between the
hosts seems to confirm that there is a correlation between distance and RTT. However,
the data suggests that the variance of the measured RTT values increases with the
distance between hosts. To confirm this hypothesis, we performed ordinary least squares
(OLS) regression. The linear regression yields an adjusted R2 ≈ 0.75. The White test
confirmed the heteroscedasticity of the data with p < 0.001. To further check decreasing
linearity, we split the dataset into D1 for entries with distance < 7500km and D2 for
entries with distance ≥ 7500km. Separate OLS regressions on D1 and D2 reported an
adjusted R2 of 0.81 and 0.63 showing that a linear regression is not suitable for higher
distances.

Our results are consistent with the findings of Ziviani et al. [Ziv+05], who found that
there is a strong correlation between distance and RTT in the regions of Europe or the
US, but that this correlation does not hold for the Internet as a whole. One reason for
this may be the routing of messages through the Internet infrastructure. The greater the
distance, the greater the chance that the routing path will deviate significantly from a
straight line. One reason could be the different density of Internet exchanges in different
regions of the world. Another reason could be the layout of undersea cables connecting
different regions of the world. For example, messages from Europe to the United States
can be transmitted almost in a straight line, while messages from Europe to South Africa
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Figure 5.2.: Relationship between great circle distance and RTT in the measurements
from our data set.

are likely to deviate from a straight line. figure 5.3 shows a map of Internet exchange
locations and the undersea cables connecting them. For RTT prediction, this means
that we need to consider not only the great circle distance, but also the regions between
which the message transfers take place. This finding is consistent with the results of
Landa et al. [Lan+13], who additionally consider the country pairs to improve their
prediction. Based on our available dataset, we use the sender and receiver AWS district
as an additional input for our RTT prediction. Including the sender and receiver AWS
district as independent variables for the OLS regression yields an adjusted R2 = 0.83.

Since the relationship of the great-circle distance and the RTT are not linear, a linear
regression can not be accurate[PO71]. Instead, we use a multilayer perceptron (MLP)
for regression, which is well suited to solve non-linear problems. A multilayer perceptron
for regression is a feedforward neural network architecture to learn a mapping function
from input variables to continuous output values. Since the MLP can not handle strings
as input directly, we use One-Hot encoding to encode the sender and receiver AWS
district categorical values. We use the rectified linear unit function as activation function.
Based on an iterative process we found that an initial hidden layer of 50 neurons and one
subsequent layer of with three neurons yields the highest accuracy. Applying a train-test
split of 70% train and 30% test data, yields a R2 = 0.98.

5.2.3. Validation

The accuracy of the multiplayer perceptron is good for the randomized train-test splits
used previously. However, a randomized train-test split of the training data is meaning-
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Figure 5.3.: Geographical distribution of internet exchanges and undersea cables. The
data was obtained from https://github.com/telegeography on 2022-10-
21.

less if we want to use the neural network to predict RTT to data centers that do not yet
exist. If the training data contains an RTT measurement between two data centers, it
is easy to accurately predict another RTT between the same data centers.

To better validate the RTT prediction, we need a more meaningful train-test split.
For the simulation, we want to predict RTTs for non-existent data centers for which the
neural network has no training data. To emulate this behavior, we design a meaningful
train-test split as follows: We select a data center and move all records where the data
center is either a sender or a receiver to the test set. We use all other records as the
training set. Now the neural network has to predict RTTs to a data center it has never
seen before. We repeat this process for all data centers where there are at least 2
data centers in the corresponding AWS district. Otherwise, the neural network has no
knowledge of the AWS region for which to predict RTT. Using this approach, we end up
with 12 train-test splits, for which the R2 results are available in table 5.1

We observe, that the neural network performs poorly for the ap-southeast AWS dis-
trict. A reason for that could be the great-circle distance between the ap-southeast-1 and
ap-southeast-2 data centers, as shown in figure 5.1. Because ap-southeast-1 is located in
Singapore and ap-southeast-2 is located in sydney, their respective RTTs to the other
regions differ greatly. Data centers in other AWS districts are closer geographically
and their RTTs have greater similarity. Representing the average RTTs between the
different data centers in a dendrogram, as presented in figure 5.4, shows the similarity
of RTT measurements. This shows, that the clustering into AWS districts based on the
AWS regions is not optimal. The AWS district classification is excessively granular for
data centers in the EU and US, yet inadequate in granularity for data centers in the
Asia-Pacific region.
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Test data center AWS district Adjusted R2

ap-northeast-1
ap-northeast

0.98
ap-northeast-2 0.92
ap-northeast-3 0.99
ap-southeast-1 ap-southeast 0.04
ap-southeast-2 0.57
eu-west-1

eu-west
0.97

eu-west-2 0.99
eu-west-3 0.98
us-east-1 us-east 0.98
us-east-2 0.98
us-west-1 us-west 0.98
us-west-2 0.97

Table 5.1.: Results from the meaningful train-test splits.
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Figure 5.4.: Dendrogram of a hierarchical clustering of the AWS regions using the average
RTT between them.
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5.2.4. Deriving Message Transfer Time from RTT
From the neural network discussed in section 5.2.2, we can predict the RTT between
two hosts. For the simulation suite, however, we are interested in how long it takes
to transfer a message from one host to another. The actual time for an end-to-end
message transfer is mainly influenced by the transmission delay and the propagation
delay. The transmission delay dtrans is the time it takes a host to push a message of size
L bits onto the network at a rate of R bits/sec. The propagation delay dprop describes
the time it takes for a packet of data to travel through the network until it reaches its
destination[JK+13]. For the simulation, we assume that dprop = RTT

2 and dtrans can
be calculated with the defined bandwidth of the communicating hosts. Thus, we can
predict the message transfer times tm for the simulation with tm = dtrans + dprop.

5.3. Limitations
Predicting message transfer times by using a multilayer perceptron to predict RTT is a
promising approach. However, the approach has several shortcomings.

The underlying data is based on the time it takes to establish a TCP connection.
However, a TCP handshake consists of two SYN messages and an ACK message being
transmitted. Thus, the assumption dprop =

RTT
2 oversimplifies the complexity of network

messaging and may result in incorrect values for dprop[CY05].
The categorization of AWS regions into AWS districts is flawed, as shown in figure 5.4.

Better categorization approaches are needed to make RTT predictions reliable worldwide.
The underlying data consists only of measurements of RTT between data centers.

However, computers in data centers are naturally more connected to the Internet than
other hosts. Smartphones connected over cellular networks or home computers connected
over copper lines may have completely different RTTs.

RTT prediction only considers the geographic location of the two connected hosts. In
reality, RTT can vary by time of day or season. For example, the total traffic exchanged
at DE-CIX Frankfurt can vary from 6 Tbps at night to 14 Tbps in the evening3, which
may affect the RTT.

Another issue is the distribution of AWS data centers. To predict RTT for a non-
existent data center, it must first be assigned to the nearest AWS district. However, for
many parts of the world, there are no data centers in the underlying data, making it
difficult to assign an AWS district without compromising prediction quality.

3https://www.de-cix.net/en/locations/frankfurt/statistics
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In this chapter, we first present the design of the Petri net framework that we developed
to enable the request simulation (section 6.1). Then, in section 6.2, we present the design
of the simulation and how it uses the Petri net framework.

6.1. A Petri Net Framework
For the simulation the request types are transformed into Petri nets as we describe in
more detail in section 4.3.1. The resulting Petri nets can be very large, so we need a
data structure that allows us to easily create these large Petri nets. Also, the tokens
moving through the petri nets are a main driver of the simulation, so we need to be able
to link the movements of the tokens through the petri nets and the simulation logic in a
meaningful way. Since we did not find a framework that supported these requirements
for our chosen technology, we decided to develop a Petri net framework ourselves.

Constructing Petri nets

It is time-consuming to construct a request type Petri net from the individual places,
transitions and arcs. Thus, the petri net framework introduces segments as a higher-level
structure for creating Petri nets.

Segment

A structure consisting of places and transitions and directed connections between
them (arcs). They are grouped in a segment according to their purpose in a Petri
net.

To create the request type Petri nets out of segments, we have identified five different
types of segments that are needed1. The segment types supported by the Petri net

1The identified segments are based on the primitive structures from https://www.techfak.
uni-bielefeld.de/~mchen/BioPNML/Intro/pnfaq.html.
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Segment type Visual representation Description

Sequential
P1 P2T1 If P1 holds a token the transition T1

can fire and move the token to P2.

Conflict
P1

P2

P3

T1

T2

If P1 holds a token, either T1 or T2
can fire and move the token to P2 or
P3. Can be extended with any number
of transitions and corresponding output
places.

Concurrency
P1

P2

P3

T1
If P1 holds a token, T1 can fire and
produces one token each in P2 and P3.
Can be extended with any number of
output places for the transition.

Synchronization
T1

P1

P2

P3
Transition T1 can only fire if both P1
and P2 hold a token and produces one
token in P3. Can be extended with any
number of input places.

Merging

P1

P2

P3

T1

T2

If either P1 or P2 hold a token, the as-
sociated transition can fire and produce
a token in P3. Can be extended with
any number of input places and the as-
sociated transition.

Table 6.1.: Overview of the segment types available in the Petri net framework.
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Segment Composition
Sequential Segment

Sequential Segment

Conflict Segment Merging Segment

Figure 6.1.: Linking of segments to create a Petri net.

framework are presented in table 6.1. Each segment has a set of input places (left of
the transitions) and a set of output places (right of the transitions). To create a Petri
net, first the segments are created and the number of input and output places of the
segments are defined. The transitions and arcs between the input and output places are
automatically generated based on the segment type. Then the segments are linked by
merging the output places of one segment with the input places of another segment. To
do this, the number of output segments of the first segment must match the number
of input segments of the second segment. However, this cannot be always guaranteed,
for example, when linking a conflict segment with two sequential segments. In order
to make these links possible, we introduce a segment composition for the linking of
segments, which is a structure that combines several segments and can be linked to the
other segments like a normal segment. In figure 6.1 we show how a Petri net can be
created with a conflict segment, a merging segment and two sequential segments. The
original segments remain in the resulting Petri net and can be used to execute logic, as
we describe in the next section.

Petri nets & custom logic

In the following we explain which mechanisms the Petri net framework provides to be
used by the simulation to represent the message processing by the microservice appli-
cation. To be usable for simulation there are several requirements for the Petri net
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framework.

1. The simulation must be able to move tokens through the Petri net, to represent
messages moving through the microservices application in a request type.

2. Tokens must be able to be deactivated for a certain time, so that time consumption
for message transfers and message processing can be reflected.

3. The tokens must be able to hold attributes, e.g. about the chosen host.

To map the current state of a request of a particular request type we use a petri net
marking. A marking contains all tokens and references to the places in which they are
currently located and every token can hold attributes chosen by the framework user.
To move the tokens in a marking through the petri net, the framework offers a step
functionality. Step is a function s(M,P ) that takes a marking M and a Petri net P and
fires all transitions for which there are enough tokens as input and thereby generates
a new marking M ′. To map the time consumption by operations in the microservice
application, we introduce a timed marking in which each token is given a consumable
time value t. For timed marking, step is a function of the form s(M,P, T ) where T is
a time value and for the transitions only those tokens are considered that fulfill t < T .

To set the consumable times of the tokens and other information of the tokens the
Petri net framework offers a possibility to manipulate the tokens when they pass the
transitions in a segment. For each segment, the user can specify a transition hook that
can be used to modify the attributes stored in the token. There is one hook that allows
changes before the tokens are taken out of the input places and one hook that allows
changes after the tokens are placed in the output places. This allows the simulation to
specify in the tokens, for example, the hosts to which the messages are routed or the
time required for message transfer.

6.2. Simulation
In this section, we first explain the input the simulation receives from the user and then
show how the simulation uses the models to simulate the processing of requests by a
microservice application.

6.2.1. Simulation Input

The simulation needs the information described in section 4.2 as input to run a simula-
tion. The models are first created by the user in a readable format and are then parsed
by the simulation. For this, the simulation expects four models from the user, which we
explain in the following.

Architecture The architecture contains the different components of the microservice
architecture and the request types that specify the communication between the different
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components. The request types are converted by the simulation into a Petri net rep-
resentation using the Petri net framework, on which the tokens can then be moved in
order to reflect processing by the system.

Deployment The deployment defines the data centers, the hosts in the data centers
and how the components are distributed to the different hosts.

Clients The clients model specifies the types of clients and defines their behavior and
network connectivity.

Scenario The scenario specifies which time period the simulation should simulate and
how many clients of which type are connected in which time period.

The division into four input models allows the user to evaluate the performance of
his microservice architecture in different scenarios, with different clients, and different
deployments, and only has to exchange individual models.

6.2.2. Running the Simulation
The simulation runs as a discrete-event simulation, with a queue of events sorted by their
time in simulation time. In the simulation, the events are associated with a simulation
entity that does something at the time of the event.

Simulation entity

An entity that performs actions that change the simulation state.

Simulation state

The simulation state contains the current simulation time, all active clients, and all
active requests.

A simulation entity that is to perform an action at a certain time is called a simu-
lation step and its execution is called stepping. The simulation runs by taking the
first event from the queue, forwarding the simulation time to the event time, and then
stepping using the simulation entity from the event. This is done repeatedly until the
queue is empty and the simulation state contains no more active clients. The simulation
distinguishes between four different types of simulation entities which are explained in
the following.

Simulation entity: Scenario

The scenario entity is stepped at regular intervals and determines the number of clients
connected to the system. When stepping, the previous and the following scenario snap-
shot from the scenario defined by the user are considered. Then the user’s scenario
interpolation strategy is used to calculate the number of desired clients of a certain
client definition at the current simulation time. Depending on how many clients are
desired, the appropriate number of clients are added to or removed from the current
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simulation state. When the last snapshot is reached, all clients are removed from the
simulation state.

Simulation entity: Client

Each active client is represented as a simulation entity that steps whenever a client needs
to send a request of a certain request type as defined by the user in the client behavior.
The simulation step creates a request simulation entity of a certain request type for each
request sent and adds it to the simulation state as active request.

Simulation entity: Request

The simulation entity request represents the current state of processing a request of a
certain request type sent by the client. To represent the current state of processing we
use a timed marking for the Petri net of the corresponding request type. The Petri net
consists of different request stages as shown in figure 4.3. The simulation extends the seg-
ment types available in the Petri net framework with its own segment types that contain
the simulation logic. The two segments relevant for the calculated time processing time
of requests are ComponentCalculations and MessageTransfer. ComponentCalculations
initiates a calculation using the host simulation entity and adds the time required for the
calculation to the token consumable time. MessageTransfer uses the approach described
in Chapter 4 to calculate a message transfer time between two hosts. In addition, the
segment also creates the transfer events for the request event log, as described in . For
an explanation on the role of the other segments in the simulation, refer to section 4.3.1.
Additionally, at the end of the Petri net a Finish synchronization segment is inserted
that indicates that a request was processed completely if a token is in its output place.
This is necessary because in case of parallel execution it might be necessary to wait for
several request stages to complete. A step on the request entity executes a step on the
underlying Petri net marking. The request entity then uses the smallest time of the
existing tokens in the marking after a Petri net step to insert itself back into the queue
as a simulation step.

Simulation entity: Host

The host simulation entity represents a host with a CPU on which the components per-
form calculations. When a token is consumed by the ComponentCalculations segment,
a Task corresponding task is created to process the incoming message. The task is
then sent to the component host, which processes the task based on the CPU model
described in section 4.3.2 and returns the completion time to the segment. In addition,
the host also creates the events for the time the task waits in the CPU queue and the
time it is executed. The segment then increases the consumable time of the token by the
corresponding value. For components of type client the corresponding host has a special
infinite CPU on which an infinite number of cores are available for processing. Thus,

44



6.2. Simulation

Simulation CoreTransfer Time Prediction

Petri net

Request Simulation

Segment

+ fireTransitions()
PetriNet

TimedMarking

ConflictSequential Concurrency Synchronization Merging

<<use>>

MessageTransfer

HostSelection

creates

ComponentCalculations

MessageInput LocalGroupMergingWaitForInput

FinishMessageSenderRequest Entity

Marking

1

1 

SimulationState
1

*

Host Simulation

<<use>>

Transfer Time Predictor

Latency Predictor

LocalGroupSelection

Host

CPU

1

1 

Simulation

1
1 

Task

processes on

Figure 6.2.: Conceptual model of the most important components of the simulation.

there are no queue times for processing the hosts and the same host and CPU concept
can be used for the clients, which in reality do not share a host.

Overview

In figure 6.2 we give an overview of the components of the simulation. The Simulation
Core runs the simulation and holds the current simulation state. The Request Simu-
lation uses the Petri net framework to represent the defined request types as Petri nets.
A Request Entity manages the current state of the processing using a TimedMarking
on the defined Petri net. The segments defined in the request simulation execute the
individual simulation logic and use Transfer Time Prediction and Host Simulation
to determine the time consumption that occurs during the processing of the requests.
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In this chapter we first discuss how we implemented round-trip time prediction with
Python. Then we present our implementation of the simulation in Java in section 7.2.

7.1. Round-Trip Time Prediction

To implement round-trip time (RTT) prediction with a multi-layer perceptron (MLP)
for regression we used a Jupyter notebook with Python 3. First, we downloaded the mea-
sured RTTs between AWS data centers from cloudping.co using node.js and JavaScript1.
Then we imported the data downloaded as csv as dataframe using pandas 1.4.32. After
that, we downloaded the geographic locations of the AWS data centers as csv from the
internet3 and imported them with geopandas 0.11.14 as geopandas dataframe. To cal-
culate the great-circle distances between the data centers from the geographic positions
of the data centers, we used geopy 2.2.05.

To investigate the relationship between distances and RTT we performed a linear
regression with statsmodels 0.13.56 and plotted the data with seaborn 0.12.17 and mat-
plotlib 3.5.38. Then, we trained a neural network on the data using the MLPRegressor
from scitkit-learn 1.1.2 to learn a target function that can predict the RTT between two
data centers. As input variables, we used the distance between the two data centers and
the one-hot encoded AWS districts of sender and receiver. As activation function we
used the rectified linear unit function and we configured the MLPRegressor to use 50
neurons in the first hidden layer and 3 neurons in the second hidden layer.

1JavaScript code to download was adapted from https://github.com/mda590/cloudping.co/issues/
35#issuecomment-706523186

2https://pandas.pydata.org/
3Data was obtained from https://github.com/turnkeylinux/aws-datacenters/blob/master/input/

datacenters
4https://geopandas.org
5https://geopy.readthedocs.io
6https://www.statsmodels.org
7https://seaborn.pydata.org
8https://matplotlib.org
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To make the RTT prediction usable by the simulation, we exported the trained ML-
PRegressor with joblib 1.2.0. Then we created a Python 3 script, which imports the
trained MLPRegressor at startup and expects the input parameters via command line
and outputs the predicted RTTs. The simulation, written in Java, then runs the python
script as a process, inputs the inputs as strings, and parses the RTT outputs to predict
the message transfer times.

7.2. Simulation

The simulation is implemented in Java 18 with Java Spring Boot 2.7.39 and built using
Gradle 7.5. An implementation in Spring Boot has the advantage that a future extension
of the simulation to a web service is easily possible. While the input models are passed
to the simulation as local files in the current implementation, they could also be passed
via a web interface in the future. Thereby the current implementation could be extended
in the future with a graphical interface on the web to simplify the modeling process. In
the following, we first explain the format of the input models for the simulation and then
the implementation details of the simulation.

Simulation input

The input model definitions are passed to the simulation as JSON and parsed into
Java objects using Jackson 2.13.310. The simulation expects an architecture.json in
which the component nodes and the request types are defined. Objects like component
nodes or request types get an id property to reference them at other points of the model
definitions. The properties ending with the suffix Ref serve as reference. In source
code 7.1 we show an excerpt from architecture.json in which the components player
and gateway are defined. These are in turn referenced in the excerpt shown in source
code 7.2 to define a request type, which is shown in graph form in figure 7.1. A request
type consists of several request stages and a special start stage that specifies which
component sends the initial message. In the current implementation the start request
stage is ignored as an initial message is always sent by a client according to his client
behavior. In the future, an extension is possible at this point to enable other components
to send the initial message.

In addition, the simulation expects a clients.json for the definition of the client prop-
erties and client behavior, a deployment.json for the definition of the hosts and the
distribution of the components on the hosts, and a scenario.json for the definition of the
scenario. Excerpts of these model definitions are provided in source codes A.1 to A.4 in
the appendix.
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1 ...
2 "componentNodes": [
3 {
4 "id": "player",
5 "name": "Player Client",
6 "type": "Client"
7 },
8 {
9 "id": "gateway",

10 "name": "Gateway",
11 "type": "Facade"
12 }
13 ],
14 ...

Source Code 7.1: Excerpt of an architecture.json defining component nodes.

Player
<<Client>>

Gateway
<<Facade>>

World
<<Service>>

500b 500b

gateway_entry mainstart

Figure 7.1.: Visual representation of the request type and the resulting request stages
defined in source code 7.2.
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1 ...
2 "requestTypes": [
3 {
4 "id": "playerView",
5 "start": {
6 "sender": "player"
7 },
8 "stages": [
9 {

10 "id": "gateway_entry",
11 "requires": [{
12 "stageRef": "start",
13 "messageSizeBytes": 500
14 }],
15 "receiver": "gateway"
16 },
17 {
18 "id": "main",
19 "requires": [{
20 "stageRef": "gateway_entry",
21 "messageSizeBytes": 500
22 }],
23 "receiver": "world"
24 }
25 ]
26 }
27 ]
28 ...

Source Code 7.2: Excerpt of an architecture.json defining a request type.
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Figure 7.2.: Overview of relevant classes used to realize request simulation.
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Requests & Petri nets

The simulation consists of two Java packages, one package for the simulation and one
package for the Petri net framework. The Petri net package has no dependencies on the
simulation package and can be separated out as an independent library in the future.
In the following, we explain how these two packages cooperate in the simulation imple-
mentation to simulate the processing of requests. We provide a simplified class diagram
of the relevant classes to accompany the explanations in figure 7.2.

At the beginning of a simulation, the RequestGraphCreator uses the parsed Request-
Types from the architecture.json to create RequestGraphs from them. Each Request-
Graph represents the steps necessary to process a request with a PetriNet, which in turn
consists of ActiveSegments. An ActiveSegment can be assigned a ITransitionHook via
dependency injection to determine logic to be executed before and after the processing of
tokens by the segment. A PassiveSegment does not contain logic, but only information
about the input and output places and can be connected to other segments. To enable
the combination of several segments for connection a SegmentComposition can be used.
These are used, for example, to create and connect the segments assigned to a local
group. Source code 7.3 shows an excerpt from the RequestGraphCreator which uses a
SegmentComposition to combine multiple segments, the corresponding visualization is
shown in figure 7.3. For visualization, the Petri net framework provides a PetriNetRen-
derer that can be extended via inheritance to display custom clustering, e.g. of local
groups. The Petri nets are visualized using graphviz-java 0.18.111, a Java wrapper for
GraphViz12. To facilitate debugging, the simulation also allows visualizing the current
state of a request by rendering the Petri net together with the corresponding marking.

Once the RequestGraphs have been created, an instance of a SimulationRun is created
which uses a queue of SimulationEvents to determine when a AbstractSimulationEntity
becomes active. Each SimulationEvent has a time in milliseconds associated with, indi-
cating when it should be handled by the SimulationRun The ScenarioManager creates
SimulatedClients, which in turn create SimulatedRequests that use SimulatedHosts to
calculate the processing times of messages. The current state of a SimulatedRequest is
displayed on the PetriNet of the RequestGraph using TimeMarkings and Messagetokens.

Host simulation

A SimulatedHost is used by a SimulatedRequest to add the processing times of services
to the token consumable times. First, tasks are created and then placed in a queue by
the SimulatedCPU from which tasks are taken and processed on a first come first serve
scheduling basis. With this scheduling strategy, it is known in advance when the task
will be processed, but this is not the case with all scheduling strategies. To support other
scheduling strategies in the future, the host uses asynchronous event-based programming

9https://spring.io/projects/spring-boot
10https://github.com/FasterXML/jackson
11https://github.com/nidi3/graphviz-java
12https://graphviz.org
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1 private SegmentComposition createLocalGroupSegments(RequestStage
requestStage , GlobalComponentGroup globalGroup) {

2 if (globalGroup.getLocalComponentGroups().isEmpty()) {
3 throw new InvalidInputModelException("Request Stage '" +

requestStage.id() + "' references a component '" +
globalGroup.getComponentType().id() + "' that is not
deployed anywhere.");

4 }
5 SegmentComposition localGroupsSegment = new SegmentComposition();
6 for (var localGroup: globalGroup.getLocalComponentGroups()) {
7 var calculations = new ComponentCalculations(requestStage ,

localGroup)
8 .inOut(1, 1)
9 .addTo(requestGraph.petriNet);

10 var messageTransfer = new MessageTransfer(requestStage ,
localGroup)

11 .inOut(1, 1)
12 .connect().to(calculations)
13 .addTo(requestGraph.petriNet);
14 var hostSelection = new HostSelection(requestStage , localGroup)
15 .inOut(1, 1)
16 .connect().to(messageTransfer)
17 .addTo(requestGraph.petriNet);
18 localGroupsSegment
19 .add(hostSelection)
20 .add(messageTransfer)
21 .add(calculations);
22 }
23 var localGroupMerging = new LocalGroupMerging(requestStage ,

globalGroup)
24 .inOut(globalGroup.getLocalComponentGroups().size(), 1)
25 .addTo(requestGraph.petriNet);
26 localGroupsSegment.connect().to(localGroupMerging);
27 localGroupsSegment.add(localGroupMerging);
28 return localGroupsSegment;
29 }

Source Code 7.3: Excerpt of the RequestGraphCreator used to create a segment
composition.
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Figure 7.3.: Visualization of a SegmentComposition created by the RequestGraphRen-
derer with the code shown in source code 7.3

using RxJava 3.1.513. When a task is placed in the queue, initially only an observable is
returned, which then emits the finish time of the task at a later time when it is removed
from the queue.

Event logs

The event logs of a simulation are created as Java objects and serialized as JSON at
the end of a simulation with Jackson. The resulting JSON is divided into two objects as
shown in source code 7.4. The requestTypeStats contains the transfer, queue, and task
events divided for the different request types. While the hostStats contains the events
that can be used to take a closer look at the usage of a host. The event logs use the ids
specified in the model definitions for the references to components or hosts.

For the analysis of the event log we used a Jupyter notebook with Python 3 and
imported and processed the data with pandas 1.4.3. For plotting the data we used
seaborn 0.12.1. We also used pm4py 2.2.3214 to generate Petri nets from the event logs.
Then we compared the generated Petri nets from pm4py with the Petri nets generated
from the simulation to check the reasonableness of the generated event logs.

13https://github.com/ReactiveX/RxJava
14https://pm4py.fit.fraunhofer.de/
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1 {
2 "requestTypeStats": {
3 "uploadReplay": {
4 "requestEvents": [
5 {
6 "requestId" : 3166,
7 "type" : "Start",
8 "time" : 10000,
9 "activity" :

"Transfer(gateway_entry)(player ->gateway)",
10 "resource" : "network(gateway <->player)"
11 },
12 ...
13 },
14 "hostStats": {
15 "Host(host -2,0)": {
16 "hostEvents": [
17 {
18 "requestId": 0,
19 "requestDefinition": "register",
20 "component": "auth",
21 "core": 0,
22 "startTime": 11,
23 "finishTime": 13
24 },
25 ...
26 }

Source Code 7.4: Excerpt of a statistics.json event log generated by a simulation.
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The goal of the evaluation is to compare the simulation of a microservices application
with the actual behavior of a real microservices application. The results can then be used
to check the accuracy of the simulation prediction and to find the reasons for possible
differences between prediction and reality. For the evaluation, we consider erroneous
simulation of microservices behavior and erroneous assumptions in the models that serve
as input for the simulation as possible sources of error. In order to understand potential
problems that may occur when modeling the simulation input, we mimic the actual
workflow when using a microservices application simulation. For the evaluation, we
assume that the simulation is used to facilitate a decision between brokerless messaging
and broker messaging.

In the evaluation, we proceed accordingly so that we first create the models for the
simulation as described in section 8.2. Then, based on the models, we implement and
deploy the actual microservices applications as described in section 8.3. Afterwards, we
show the collected results in section 8.4. Then we explore the reasons for the differences
between simulation and reality in section 8.5.
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8.1. Approach
For the evaluation of the simulation we created two microservice applications with iden-
tical functionality. The functionality of the microservice applications is described in
section 4.1. The difference between the two microservice applications is the messaging
pattern used for communication between the services. One application uses brokerless
messaging, where the service exchange messages directly[Ric18]. The other application
uses broker-based messaging, where the messages between services are passed through
intermediary message broker[Ric18]. We expect the brokerless application to have a
better latency[Ric18].

For both applications we first created the models for the simulation suite. Then we ran
the simulation for both modelled applications for the scenario described in section 8.1.1.
After that we implemented both applications and deployed them in the cloud, closely
following the models defined for the simulation. Then we ran the same scenario for
the deployed applications to obtain the real system results. A comparison of simulation
results and real system results then gives us insights into whether the simulation is able
to provide meaningful information.

8.1.1. Evaluation Scenario

For the scenario, we define a two-minute window of scenario time in which each client
creates an account and plays the FruitCollector game described in section 4.1. At 0
seconds, 25 clients connect to the server. Between 0 and 60 seconds there are 25 clients in
total connected, we call this time interval phase 1. At 60 seconds, 25 new clients connect
to the server. Between 60 and 120 seconds there are 50 clients in total connected, we
call this time interval phase 2. After 120 seconds the scenario stops and the clients stop
sending requests. After connecting, each client must register with the server and then
log in to obtain an authentication token. Once a client has received an authentication
token, it can begin playing the game by moving around the world, collecting fruit, and
completing quests. After 10 seconds of being connected each client uploads a replay
containing a list of all the playerViews received so far.

8.2. Modeling for Simulation
Accurately modeling the behavior of clients for the simulation is a challenging task. In
reality behavior of the clients depends on the behavior of a human player. For exam-
ple some players might constantly move through the world to finish quests while others
might stop often to chat with other players. The request types whose frequency depends
on human behavior are designated as behavioral request types. While behavioral request
types pose a challenge for predicting behavior of human clients, we can somewhat miti-
gate this issue for the evaluation. For the evaluation we will use the models created for
the simulation to define the behavior of the clients for the reference application. This
assures that the reference application client behavior closely resembles the simulated
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client behavior for most request types. However, the similarity of simulated client be-
havior and real client behavior can not be guaranteed for all request types. Some request
types can only be executed once a condition is fulfilled, which we call conditional request
types:

• Login can only be executed once register has been called and an account has been
created.

• FinishQuest can only be executed once a client has collected enough fruits.

• CollectItem can only be executed if there is a fruit in the player’s vicinity.

• All request types except register and login are only possible if the client has ob-
tained an authentication token from login.

Since the client behavior for a request type is modeled only by its frequency and an
initial delay, it is not possible to represent these conditions for the simulation. Therefore,
we make some simplified assumptions for the client behavior model regarding conditional
requests:

• We assume that register and login are sent at the same time when a client connects.

• We assume that a client collects enough items to finish a quest once every minute.

• We assume that there are enough fruits available so that a client can always collect
a fruit.

• We assume that a client immediately has an authentication token and can start
all requests immediately.

Thus, we only categorize login and finishQuest as conditional request types. This leads
to the problem that the behavior of the clients in the simulation and in the real system
application do not match. However, this problem is likely to occur in any real-world
usage of the simulation suite. Therefore, the evaluation can also give us hints whether
the simulation can generate useful information for real use cases.

Request types that are neither behavioral nor conditional are easy to model for the
simulation suite. For example, the playerView request acts as a client tick that synchro-
nizes the client game world state with the server game world state. This is a periodic
request that is defined by the game code and does not depend on any user behavior.
Other periodic requests defined by the game code are inventoryState, retrieveChat, re-
trieveQuests. The defined client behavior for the simulation and the categorization of
the request types is shown in table 8.1. An example of the resulting request times from
the defined client behavior is shown in figure 8.1.

For the definition of the message sizes for the requests we sort each message into one
of four categories.

• Small: 340 bytes
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Request Type Frequency Delay Behavioral Conditional
register once 0 ✓
login once 0 ✓ ✓
playerView 8/s 0
move 1/s 0 ✓
collectItem 1/s 0 ✓
inventoryState 1/s 0
sendChat 1/min 15s ✓
retrieveChat 1/s 0
retrieveQuests 12/min 0
finishQuest 1/min 5s ✓ ✓
uploadReplay once 10s ✓

Table 8.1.: Frequencies and classifications of the different request types sent by clients
in the evaluation scenario.
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Figure 8.1.: Overview of the requests that are sent from the clients in the evaluation
scenario. Shown for one client connecting at 0 seconds and one client con-
necting at 60 seconds.
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Figure 8.2.: Distribution of the services on the hosts.

• Medium: 500 bytes

• Large: 1500 bytes

• Replay Transfer: 2MB

We measured the size of an HTTP GET request from a browser with no payload in
Wireshark, which transferred about 300 bytes. We add 40 bytes to account for a minimal
json payload and an authentication token, which is also transferred for most request
types, to end up with 340 bytes for a small message. For a Medium message, we assume
a slightly larger payload, e.g., a service sending a list of quests to the client, along with
their names and item types. For a large message, we assume the payload is significant,
e.g. the world service sending a list of all items along with their locations near the player.
The Replay transfer is the estimated size of a 10 second replay, consisting of a list of
10 seconds worth of playerView jsons. The client bandwidths are defined to match the
bandwidth of the machine that later simulates real players for the reference applications.

The component processing times are not overwritten for the simulation and remain at
their default value, described in section 4.3.2. The deployment model is defined based
on the specifications provided DigitalOcean, where the reference application is hosted.
The microservice application is hosted in a datacenter for which we use the latitude
and longitude of London1. The services of the microservice application are distributed
on three hosts as seen in figure 8.2. Due to budgetary constraints for the reference
applications cloud deployment we only evaluate with one replica per service.

8.3. Reference Applications
To evaluate whether the simulation suite is actually useful for predicting real-world
application behavior, we build the FruitCollector game as a real playable microservice
application. The reference application is built as close as possible to the models used
for the simulation. However, some aspects of a real microservice application, such as a

1Latitude: 51.509865 Longitude: -0.118092, taken from https://www.latlong.net/place/
london-the-uk-14153.html
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discovery service, can not be represented in the simulation models. Differences between
the reference applications and the simulation are explained in section 8.3.3.

The individual services were implemented in Java using Spring Boot. Spring Boot
was selected as the technology for this due to prior experience using it. For the Gateway
we used Spring Cloud Gateway2 and the for a discovery service we used Eureka3. The
public API of the services is available via HTTP from the gateway. For the message
broker we use Apache ActiveMQ4.

The game world state contains a list of all the players and items associated with their
respective positions in the game world. The world service uses an R-Tree to store the
locations of the items. This allows the world service to quickly find all items in the
players vicinity and only send those to the client, which is needed to reduce the size
of the playerView response. For performance reasons each instance of the world service
keeps the continuously changing game world state of one game world in its memory. The
inventory, authentication, and replay service persist their data in a relational database.

For deployment, each service is packaged as a Docker image. The Docker containers are
then orchestrated using Kubernetes. We chose DigitalOcean Managed Kubernetes5 as
the cloud deployment solution because of previous experience with it. For the database,
we chose DigitalOcean Managed PostgreSQL6.

The Kubernetes cluster is configured so that the services are distributed on the avail-
able hosts in the same way as in the simulation model shown in figure 8.2. We use
the DigitalOcean General Purpose Droplets which have two vCPUs with a clock speed
of 2.7Ghz and 4GB of RAM as hosts7. For the Managed Database we use the Starter
plan with 1 vCPU and 1 GB of RAM. The hosts have upload and download bandwidth
of 2 Gbit/s8. The speed of the database vCPU could not be found out through the
Digitalocean documentation, but we assume that it is also clocked with 2.7GHz. The
Kubernetes cluster and the managed Database are hosted in the LON1 region located
in London.

For budgetary reasons, we cannot run the 50 clients for evaluation on 50 different
machines. Therefore, we implemented a player simulator in Java that plays 50 computer
players that behave similarly to the client behavior defined for the simulation. The
player simulator runs on a Windows machine with 32 GB of RAM and an AMD Ryzen
7 3700X 8-core processor which is located in Aachen. The machine has a measured
download bandwidth of ≈ 944Mbit/s and an upload bandwidth of ≈ 839Mbit/s.

When a player simulation is started, the player immediately registers and creates an
account. Once the account is created, the player logs in and waits for the authentication
token in response. Once a player receives their authentication token, they begin playing

2https://cloud.spring.io/spring-cloud-gateway/reference/html/
3https://cloud.spring.io/spring-cloud-netflix/multi/multi_spring-cloud-eureka-server.

html
4https://activemq.apache.org/
5https://www.digitalocean.com/products/kubernetes
6https://www.digitalocean.com/products/managed-databases-postgresql
7https://docs.digitalocean.com/products/droplets/concepts/choosing-a-plan/
8https://docs.digitalocean.com/products/droplets/details/limits/
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the game. A player chooses a random location in the game world as their destination.
He then sends periodic move requests to move toward the destination in small steps.
When he reaches the destination, he selects a new destination. Throughout the game,
the player periodically collects items from the environment. There are always enough
items in the game world for a player to collect an item if they wish. A player completes a
quest when they have collected enough items to do so. After a 15 second delay, a player
sends a chat message every 60 seconds. After 10 seconds, a player uploads a replay,
which is a list of all player view responses received so far.

To collect the data for the reference applications, we first let the player simulator
run through the simulation scenario without collecting statistics as a warm-up run.
Immediately afterwards, the database tables are cleared and the states of the stateful
services are reset. After that, the player simulator simulates the simulation scenario and
statistics are collected. The warm-up run is necessary to avoid possible distortions of
the statistics by a cold start. For example, TCP connections are initially slower due to
the congestion control algorithms used[Gou+02].

8.3.1. Microservices Design
The microservices share a common codebase that contains the public interface defini-
tions of all available services and the messaging logic. For message handling, a service
implements an IMessageHandler interface for each message type it handles. For example,
the authentication service has a RegisterHandler that takes username and password as
input and the new account id as output. Each service has an IMessageReceiver that is
responsible for receiving messages, finding the correct message handler, and forwarding
the message content to the correct message handler. The abstract class AbstractMes-
sageReceiver contains the message forwarding logic. There are two versions of the Ab-
stractMessageReceiver, the RestMessageReceiver, which handles HTTP messaging for
the brokerless application, and the BrokerMessageReceiver, which handles JMS mes-
saging for the broker application. The same concept applies to sending messages. The
IMessageSender interface has two implementations, RestMessageSender and BrokerMes-
sageSender.

This design decouples the business logic of each service from the messaging logic. De-
pending on the configuration, either the broker or brokerless versions of the message
receivers and senders are instantiated on the services. This allows quick switching be-
tween the broker and brokerless versions when deploying the application for evaluation
in the cloud. A diagram showing how the Authentication service uses the shared classes
to realize its functionality is shown in figure 8.3.

8.3.2. Statistics Collection
Each message contains statistical metadata so that the system can collect an event log
similar to the simulation. When a player sends a request for a request type to the
gateway, the message is assigned a unique number from an ascending number sequence.
This number is used as the request ID and is shared by all messages triggered by that
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Figure 8.3.: Overview of how the authentication service uses the shared classes to provide
its business logic for brokerless and broker-based communication.

request. Each message also contains the request stage ID to which the message and
subsequent message handling belongs. Additionally, each message contains the request
type to which it belongs, since some message handlers are called in multiple request
types, this information is necessary.

To collect statistics, each service has its own event log. The player simulator also has
its own event log. We use Spring Boot’s messaging hooks to create the events for the
event log. The timestamp for each event is the current system time in milliseconds when
the event is created. For Task Start and Transfer Finish events, the events are logged
as soon as Spring Boot receives a message, before any serialization has taken place. For
the Task Finish and Transfer Start events, the events are logged after deserialization
has taken place, just before a message is sent. Thus, the length of task activity in
the reference application should be the same as the queue and task activity from the
simulation. We have not found a way to log the CPU core on which a message is being
processed. In addition, due to constant context switching on the CPU, it is difficult to
definitively assign a start and end time to the processing of a message. Therefore, we
do not collect host statistics for the reference application.

In addition, we have not been able to find a way to log the PostgreSQL database
processing times for each call. Therefore, we assume that database processing starts
when a service commits a transaction to the database and ends when the transaction
completes. We get these times by extending the JpaTransactionManager of the services.

For the message broker implementation chosen, we were also not able to find hooks to
precisely log the timings of messages being forwarded. For this reason, the processing
time on the message broker is part of the message transfer activities.

To collect the statistics event logs, the gateway provides a method that collects all the
individual event logs and merges them. The player simulator receives this merged event
log and merges it with its own event log, resulting in an event log in the same format

64



8.3. Reference Applications

as the one generated by the simulation. This allows us to use the same code to analyze
the simulation event logs and the event logs of the reference applications.

Perfect clock synchronization cannot be guaranteed in distributed systems[Gen+18].
There are protocols that allow clock synchronization in the nanosecond range, but they
require special hardware[Gen+18]. Since we need accurate time measurements in mil-
liseconds on 5 different machines to create the event logs, we deploy an NTP time server
in addition to the services. NTP allows time synchronization with an accuracy of tens
of milliseconds[Gen+18]. We use chrony9 as implentation for our NTP time server. The
clock drift between two hosts can be up to 30 microseconds per second[Gen+18]. So
over the 120 seconds of a scenario the clocks can accumulate up to 3.6 milliseconds de-
viation. To prevent this, the services and the player simulator continuously synchronize
their clocks with chrony during the entire run. To avoid possible outliers caused by the
NTP protocol, only synchronizations that change the current time by a maximum of one
millisecond are accepted after the initial synchronizations.

8.3.3. Differences between the Simulation and the Reference Applications

We tried to build the reference applications as close to the simulation models as possible.
However, some differences between the reference applications and the simulation models
still remain.

There are some differences due to deployment in the cloud. The simulation assumes
there are only the modeled services running on the hosts. However, due to the managed
Kubernetes solution from DigitalOcean there are 20 more services used for management
of the Kubernetes Cluster from DigitalOcean running on the hosts. For the services to
be able to find each other, we deploy an Eureka discovery service. The simulation models
do not contain a discovery service. Since the idle CPU usage of the Kubernetes hosts
without any FruitCollector services is always < 2%, we assume that the performance
impact of these additional services is negligible.

The simulation assumes that each host is a physical host with a dedicated CPU. How-
ever, for budgetary reasons, we chose to use virtual hosts with a vCPU. The performance
of a vCPU can vary depending on the load on the underlying physical processor. There-
fore, the hosts on which the services are hosted may actually have more processing power
to handle the requests than is defined in the simulation. In addition, the simulation only
takes into account the processing power of the CPU, but in reality, the amount of RAM
available can also affect performance. During test runs for the simulation, RAM usage
remained below 70%, so we assume that the amount of available memory is not a limiting
factor.

There are also some differences due to the collection of statistics on the services.
Each time a message is processed by a service, more computing power is required than
under normal circumstances because additional events are stored in the event log. Also,
because of the statistics header, the messages sent are slightly larger than they would be
without statistics. This behavior is not included in the simulation models. In addition,

9https://chrony.tuxfamily.org/
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chrony is running on one of the hosts to allow time synchronization between the various
services and the player simulator. This additional component is also not represented in
the simulation models.

Another difference is the difference in behavior between simulated and real clients.
The simulation assumes precise request timing, while the message timing of the player
simulator is subject to hardware and network limitations. In the simulation, 25 clients
call uploadReplay with a delay of exactly 10 seconds of scenario time. For the player
simulator, the upload is scheduled to occur 10 seconds after a player connects. However,
because all players are simulated on one machine, I/O and CPU limitations can delay
this call for some time.

8.4. Results
This section presents the collected results of the simulation and reference applications.
The metrics used to analyze the event logs are presented in section 8.4.1. The results of
the simulation are presented in section 8.4.3. The results of the reference applications
are presented in section 8.4.4.

8.4.1. Metrics

Since the simulation and reference applications generate event logs, we first need to
define metrics to extract analyzable data from the event logs. This section presents
the metrics we use to analyze the event logs generated by the simulation and reference
applications.

Request metrics

We define the following metrics for a request:
Request Completion Time (RCT) This is the time it takes the application to

finish all activities triggered by a client’s message of a certain request type. Each re-
quest generates a set of n events with timestamp E = e1, e2, . . . , en. The operation
firstt(E) returns the lowest timestamp from E. The operation lastt(E) returns the
highest timestamp from E. The request completion time for a given request is defined
as RCT (E) = lastt(E) − firstt(E). Note that for collectItem and finishQuest, this is
not necessarily the response time for the request a client experiences. For example, for
collectItem the client may get a response before the collected item is added to his inven-
tory by the inventory service. To keep the analysis of the results short, we decided not
to record the response times separately. Since with the RCTs we can look at how long
the system is influenced by the processing of a request and still observe the response
time for the client for a large part of the requests.

Activity Duration The request completion time is a result of the durations of the
activities needed to complete a request. Each activity has a start and a finish event,
the activity duration is the time between these events. The activity durations can give
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insights into what services or message transfers in the messaging chain of a request type
cause high RCTs.

Resource Duration Each activity has a resource associated with it. The resource
duration is the average activity duration of all activities on a resource. The use of the
resource duration as a metric has two advantages: first, the clarity can be maintained
even with request types with many activites, and second, it is easier to see which resource
represents a possible bottleneck.

Host metrics

We define the following metrics for a host:
Host Queue Size This is the amount of tasks that are waiting to be processed on the

CPU of a given host at a given time. The host queue size does not take the amount of
work behind a queued task into account. So a higher host queue size does not necessarily
mean that there is more work waiting to be processed.

Host CPU Usage We define the CPU Core Usage as the fraction of time in a given
time interval in which the CPU is busy with processing tasks. The Host CPU Usage
for a given time interval is the sum of the CPU Core Usages for all cores on the Host
divided by the amount of cores.

Visualizations

Request completion times To visualize request completion times, we map each re-
quest with an event log E to a start time ts(E) = firstT (E). Then we create time
intervals with a length of 2.5 seconds. Requests of the same request type with start
times within the same time interval are grouped and displayed with markers. The larger
the marker, the more requests of that type were created in that time frame. The position
of the marker on the vertical axis indicates the average request completion time of the
requests in that time frame. We chose a logarithmic scale for the vertical axis to be able
to plot the request completion times of the different request types on one graph.

Activity Durations To visualize activity durations, we map each activity to a start
time, which is the timestamp of the start event. Then we create time intervals with a
length of 2.5 seconds and represent the average activity durations with markers similar
to the request completion times. The visualization has a linear scale on the vertical axis
between 0 and 2 milliseconds and is logarithmic for higher values.

Resource Durations Resource durations are visualized similar to activity durations.
Host Queue Sizes To visualize Host Queue Sizes for multiple hosts at once, we use

a stacked bar chart. We create time intervals with a length of 1 second and create a bar
in the chart to indicate the maximum amount of tasks in the queue of a given host in
the time interval.

Host CPU Usage To visualize Host Queue Sizes for one host, we use a stacked bar
chart. We create time intervals with a length of 1 second and create a bar in the chart
to indicate the CPU usage a given component on the host in the time interval.
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Figure 8.4.: Average activity durations of the reference applications.

8.4.2. A Brief Overview
The request completion times are determined by the individual activity durations of the
request. To allow a manageable comparison of the results, we categorize the activities
into three categories:

• Internal network The activities of the message transfers between the services
within the microservice application. For the broker applications, the time needed
by the message broker to forward the message is included in this category.

• Public network The activities of message transfers between client and gateway.

• Service All task activities, i.e. the durations it takes the services to process mes-
sages.

Within a category we distinguish between activities started during phase 1 (before 60
seconds scenario time) or during phase 2 (after 60 seconds scenario time). This allows
a comparison between the influence that a doubling of the number of clients has on the
performance.

First, we compare the average durations of the activities in the categories for the
reference systems, shown in figure 8.4. During the entire scenario time, the internal
network activities for the broker variant are slower than for the brokerless variant. For
the internal network activities of the broker variant, we observe a deterioration in per-
formance in phase 2. Whereas the same durations for the brokerless variant decrease
slightly, although more users are connected. However, we also observe that the public
network activities account for the majority of the performance experienced by the user
for all variants. The slightly higher internal network durations of the broker variant are
therefore only really noticeable for requests with very long messaging chains. Moreover,
we observe that for broker and brokerless variants the times of service activities decrease
in phase 2, although the number of clients and therefore the load on the hosts is higher.
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Figure 8.5.: Average activity durations of the simulations.

However, the average durations of the simulation’s activities, as shown in figure 8.5,
paint a different picture. Although the internal network activities for the broker variant
are also higher than for the brokerless variant, the extent of the increase is many times
higher than measured in the reference applications. In addition, the public network
activities play a much smaller role in the performance of the requests as perceived by
the user. In the simulation, the service durations and the performance of the message
broker are much more significant for the perceived performance than in reality.

8.4.3. Simulation Results

To find an explanation for the differences in performance between reference applications
and simulations, we examine the event logs of the simulations in more detail in this
section. To reduce the complexity of the visualizations and to make the simulation
results easier comparable to the reference application results, we adapt the event log
in the following way: We remove the activities for a task being queued on a host and
added the duration of the queue activities to the duration of the task activities. Since
the reference applications do not record separate queue activities, this makes the activity
durations more comparable.

Brokerless messaging simulation

This section presents the results of the simulation of the FruitCollector Microservice
Application using brokerless messaging.

Running the simulation took 30.9s on the same machine as the player simulator runs
on. The count column shows the number of requests of a request type that were recorded
during the scenario time. For example, we see that a total of 4550 inventoryState requests
were simulated. Since inventoryState is called 1 time per second, we expect at 120
seconds scenario duration, for phase 1 (from 0 to 60 seconds) 25 · 60 requests and for
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Request Type Count Request Completion Time (ms)
Mean Min Max Std

register 50 243.1 125 389 95.3
login 50 234.1 119 377 77.0
playerView 36050 120.4 25 1706 213.5
move 4550 214.9 77 1341 188.7
collectItem 4550 214.2 77 1369 187.8
inventoryState 4550 205.1 78 1278 146.6
sendChat 75 249.2 104 388 88.6
retrieveChat 4550 196.8 75 1271 142.3
retrieveQuests 950 402.0 159 1626 321.0
finishQuest 75 501.8 249 637 175.2
uploadReplay 50 2323.1 1254 2854 457.8

Table 8.2.: Brokerless Messaging Simulation: Statistics

phase 2 (from 60 to 120 seconds) 50 · 60 requests, so a total of 4500 requests. The
simulation, however, simulates including the last millisecond of the scenario time, which
is why another 50 requests are started in the last millisecond of the scenario time. The
other columns show the mean, min, max and standard deviation of the measured request
completion times (RCTs). We observe that uploadReplay has by far the highest average
RCT. We also see that for some requests the maximum measured RCT is very different
from the average RCT and the standard deviation is high, suggesting that there are
some RCT peaks during the scenario.

Figure 8.6 shows the request completion times throughout the simulation. The data
shows, that the average request completion times scale approximately proportional to the
number of connected clients. Furthermore, we make three main observations regarding
the performance of the system:

Fluctuations Throughout the scenario time, we can observe fluctuations in the re-
quest completion times. Since these fluctuations coincide with the retrieveQuests re-
quests every 5 seconds, they are likely the cause for the fluctuations.

Connection Peaks At the beginning of phase 1 and phase 2 respectively, 25 clients
call register and login. We observe that at these times the request completion times
increase slightly for around 10 seconds after which we observe another peak.

Replay Peaks At 10 and 70 seconds scenario time, 25 clients each call uploadReplay.
We observe that shortly after the clients start uploading the replays, the request com-
pletion times of the other requests increase sharply. However, the request completion
times recover quickly here as well. These calls seem to have a drastic influence on the
request completion times of the other request types. The move and playerView request
completion times seem to be particularly affected by this. This suggests that the world
service is particularly affected by replay peaks.

We use the playerView requests to further investigate the behavior of the system.
This request type is particularly well suited for this purpose, since we have a high
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Figure 8.8.: Brokerless Messaging Simulation: Host Queue Sizes

coverage of playerView requests during the entire scenario time. Also, the replay peaks
are particularly devastating for the playerView RCTs, which requires closer observation.
We plot the activity durations for playerView in figure 8.7. The transfer times between
the different components are constant, since the simulation assumes that the round-trip
time between two hosts is constant.

We see that the fluctuations are not caused by the task durations on the world ser-
vice, but stem from the fluctuating durations of the gateway tasks. This supports the
assumption that retrieveQuests is responsible for the fluctuations, since gateway and
quest service are both running on host 1.

We observe that the first connection peak is triggered by high task activity durations
in the request stage gateway_entry. Since all clients send their register and login requests
simultaneously, there is a short congestion for all requests when entering the gateway.
However, since the gateway processes the messages one after the other, this congestion
dissipates and there is no more congestion at the gateway exit. We also observe that the
second connection peak is caused by higher task durations at both gateway entry and
gateway exit. It is possible that congestion caused by register and login requests in the
gateway host’s queue may not resolve as quickly due to the higher overall load, causing
delays at entry and exit.

The activity durations reveal that high activity durations on both the world and
gateway services are responsible for the replay peaks. Since the replay and world service
both run on host 3, it makes sense that both gateway and world service are affected by
the replay peaks. This also explains why playerView and move are especially affected
by the replay peaks.

To further investigate the behavior of the system we plot the hosts queue sizes in
figure 8.8. We see that host 2 and host db, hardly have any tasks waiting in their
queues. This means that these two hosts provide mostly constant activity durations for
tasks processed on them and are not responsible for the peaks or fluctuations.

At 10 and 70 seconds we observe a drastic increase in the host queue sizes for host
1 and host 3. This confirms that a slow processing of tasks on both host 1 and host
3 is indeed responsible for the replay peaks. Since the world service runs on host 3,
this confirms that the workload on host 3 is the reason why playerView and move are
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Figure 8.9.: Brokerless Messaging Simulation: Host 1 and 3 CPU Usage

particularly affected.
To further investigate the reasons for the observations, we plot the CPU usage for Host

1 and Host 3 in figure 8.9. The CPU usage for host 1 confirms that the retrieveQuests
requests are indeed the reason for the observed fluctuations. Every 5 seconds, the quest
service and the gateway use a little more CPU due to the retrieveQuests requests. Since
the gateway is also hosted on Host 1, and all inbound and outbound requests must be
processed by the gateway, this explains why the fluctuations affect all request types.

Also, the CPU usage for host 1 shows us that the CPU is fully utilized at 10 and
70 seconds, probably caused by the uploadReplay requests. This explains why the up-
loadReplay requests affect the request completion times of the whole system. The CPU
usage of Host 3 shows why the request types of the world services are particularly af-
fected by the replay peaks. The anticheat service and the replay service use almost all
the available CPU time on host 3, which also hosts the world service, for two seconds.

Broker messaging simulation

This section presents the results of the simulation of the FruitCollector Microservice
Application using broker based messaging.

Running the simulation took 62.8s on the same machine as the player simulator runs
on. We see that finishQuest is the request type with the highest average RCT. Moreover,
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Request Type Count Request Completion Time (ms)
Mean Min Max Std

register 50 593.9 346 927 190.3
login 50 587.7 342 963 189.3
playerView 36050 11606.3 47 25382 9920.1
move 4550 11628.2 225 25309 9857.2
collectItem 4550 11625.8 220 25310 9858.5
inventoryState 4550 11637.6 232 25312 9856.7
sendChat 75 9396.1 1558 13471 5542.1
retrieveChat 4550 11644.4 226 25311 9863.0
retrieveQuests 950 14135.3 347 30637 11788.9
finishQuest 75 12849.3 736 19800 8672.2
uploadReplay 50 11093.3 4837 18087 6098.3

Table 8.3.: Broker Messaging Simulation: Statistics

the average RCTs of the request types other than register and login are exceptionally
high. Since the min and max values of the RCTs of the respective request types differ so
much, this could indicate an overload of the system from phase 2 onwards, which affects
all request types equally.

To check whether the system is actually overloaded in phase 2, we plot the RCTs
over the course of the scenario in figure 8.10. We observe that request completion times
increase dramatically in phase 2 and that all request types are affected. We can also
observe that the replay peaks at 10 and 70 seconds have a strong influence on the request
completion times of the subsequent requests. In phase 1, the request completion times
can still recover from the replay peaks, while in phase 2 the request completion times
remain very high until the scenario is finished. The presence of the connection peak at
0 seconds is noticeable, in the time directly after that the RCTs are slightly higher than
between 20 and 60 seconds. The connection peak at 60 seconds also seems to have an
impact. But it is difficult to detect if the high RCTs are a result of the register and
login requests or if the system is generally not able to handle 50 clients. We observe that
the broker application in phase 1 is also affected by fluctuations due to the recurring
retrieveQuests requests. In phase 2, we cannot see any fluctuations because the system
is generally overloaded during this period.

For further analysis we plot the activity durations for playerView in figure 8.11. We
see that even 20 seconds after the last client disconnects and no new requests arrive, the
system is still busy processing playerView requests. Similar to the brokerless system,
the replay peaks cause the world service to shortly take longer to process the tasks in
the playerView request. However, the main cause of the high RCTs in phase 2 are the
increase task durations on the gateway and broker. We can also observe that the tasks
on the broker and gateway are responsible for the fluctuation of the request completion
times between 20 and 60 seconds scenario time.

To further explore the reasons for the increased request completion times, we plot the
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Figure 8.10.: Broker Messaging Simulation: RCTs
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Figure 8.11.: Broker Messaging Simulation: Activity Durations playerView
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Figure 8.12.: Broker Messaging Simulation: Host Queue Sizes
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Figure 8.13.: Broker Messaging Simulation: Host 1 and 3 CPU Usage

host queue sizes in figure 8.12. It can be seen that the queue for host 1 continues to grow
as soon as phase 2 starts. Tasks enter the queue faster than host 1 can process them,
so the queue continues to grow. The other hosts do not experience such a high growth
of queue sizes. This is probably due to the fact that the gateway and broker are hosted
on host 1, which means that all other hosts can only receive their messages as quickly
as host 1 can process and forward them. The gateway and broker clearly represent a
bottleneck for the entire system.

To investigate the causes for the growth of the host queue sizes, we plot the CPU
usages of the hosts that are relevant for the processing of playerView in figure 8.13. We
observe that broker and gateway take up almost the entire CPU time on host 1. The
short increase of the first replay peak at 10 seconds can be processed relatively quickly
and the CPU usage returns to its normal value. However, as soon as a total of 50 clients
send requests to the system at 60 seconds, the CPU is fully utilized throughout. For
host 3, we can see that at 10 and 70 seconds, the world service is barely processing any
tasks. The reason for this is probably that the gateway and broker are clogged with
uploadReplay requests and therefore no messages arrive for the world service for a short
time. We can also observe that at the second replay peak, a second elapses between the
times when the replay service processes tasks and the anticheat service processes tasks.
The reason for this is that the replay service routes messages through the broker to send
them to the anticheat service. Since the broker is overloaded, this forwarding takes some
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Request Type Count Request Completion Time (ms)
Mean Min Max Std

register 49 1191.4 192 2006 515.7
login 49 1610.8 1272 2062 230.4
playerView 30875 25.8 19 2719 57.3
move 3990 26.3 19 2723 76.1
collectItem 4027 26.4 19 2844 71.5
inventoryState 4061 29.3 22 2395 57.6
sendChat 73 24.8 21 36 2.8
retrieveChat 4115 26.1 20 2618 55.0
retrieveQuests 846 28.2 20 1822 62.5
finishQuest 19 83.4 55 146 19.6
uploadReplay 38 511.3 165 776 180.0

Table 8.4.: Brokerless Messaging Reference Application: Statistics

time.

8.4.4. Reference Applications Results

In this section we examine the event logs of the reference applications to find out which
factors influence the performance of microservice applications.

Brokerless messaging reference application

This section presents the results of the reference application of FruitCollector using
brokerless messaging.

Table 8.4 shows the request completion time statistics for each request type. One main
problem with the player simulator is immediately apparent. The player simulator is not
able to keep the modeled frequencies for the real sent requests. Part of the problem
could be caused by the long request completion times for register and login requests,
since a client only receives its authentication token after login to send further requests.
However, the player simulator seems to be overloaded in general, as the 50th client does
not even send a register request. Moreover, out of 50 expected replay uploads, only 38
are actually made.

Figure 8.14 shows the request completion times over the scenario time. We can observe
that the playerView requests start after about 2.5 seconds, because the players have
received the required authentication tokens only then. We can observe that the first 25
clients are still able to upload their replays at about 10 seconds scenario time. For the 25
clients that connect later, however, the timing of the replay uploads is severely delayed.
We also observe that the amount of connected clients seems to have little impact on
the request completion times. After 80 seconds of scenario time, the request completion
times even stabilize at a lower level than before. However, we can observe that shortly
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Figure 8.14.: Brokerless Messaging Reference Application: RCTs
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Figure 8.15.: Brokerless Messaging Reference Application: Activity Durations register

after the 25 new clients connect, the RCTs for all requests increase shortly. The RCTs
of finishQuest seem to be particularly affected. Moreover, we can observe that the RCTs
are affected by more or less strong fluctuations during the whole scenario time. Some
requests even have strong outliers for the RCT, for example retrieveChat at about 25
seconds, inventoryState between 30 and 42 seconds, and collectItem between 15 and 30
seconds.

First, we examine why the register and login requests have such high request comple-
tion times. Since both take a similar amount of time and have a similar message flow, we
do this exemplarily by plotting the register activity durations in figure 8.15. We see that
the task on the auth service is responsible for most of the request completion time. This
is likely due to the fact that this task hashes passwords using the Blowfish encryption
algorithm (BCrypt), which is an algorithm purposely designed to be expensive to protect
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Figure 8.16.: Brokerless Messaging Reference Application: Activity Durations play-
erView

passwords[SK15]. Since passwords have to be hashed for both registration and login,
this also explains the high request completion times for login. Furthermore, this could
explain the high standard deviation for register and login RCTs, since the expensive
hashing algorithms require a lot of CPU time, the earlier requests block the later ones,
which in turn leads to the later requests having a higher completion time. We can also
see that the message transfer from the player to the gateway and from the gateway to
the auth service is higher for the first 25 clients that sign up. A possible explanation
is that despite the warm-up run, there are still some TCP congestion control algorithm
effects that cause the initial HTTP message transfers to be slower than later.

To investigate the reasons for the increase in request completion times between 60
and 80 seconds of scenario time, we plot the activity durations of the playerView in
figure 8.16. We see that the gateway and world service tasks take less than a millisecond
on average. This is because we only record events in the millisecond range, so if a task is
processed too quickly, the associated activity duration may be recorded as 0 milliseconds.
We also see that message transfers are the main factor behind the measured RCTs. The
message transfers between the gateway and the world are also hardly relevant. The main
part comes from the message transfers between the player simulator and the gateway.
These message transfers are also the reason for the increase in the measured request
completion times between 60 and 80 seconds of scenario time. The reasons for this
increase are difficult to pinpoint, as there are many factors that can affect message
transfer on the Internet. However, we do know that excessive host load due to client
registration and login at 60 seconds is unlikely to be the cause of this increase.

To explore the reasons for the RCT outliers, we plot the resource durations of collec-
tItem in figure 8.17 as an example. We can see that also for the collectItem requests,
the message transfers account for the main part of the measured RCTs. The message
transfers between player and gateway are also the reason for the outliers. However, we
can also observe that the processing time of the tasks on the inventory service increases
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Figure 8.17.: Brokerless Messaging Reference Application: Activity Durations collec-
tItem

slightly at 60 seconds and then returns to normal. Since the inventory service runs on
the same host as the auth service, this could be an indication that the registration and
login requests are affecting the processing times of the other services on the same host.

To check this we plot the resource durations for finishQuest in figure 8.18. We observe
that the processing times of the tasks on the inventory service actually increase signifi-
cantly shortly after the new clients connect at 60 seconds scenario time. This confirms
the hypothesis that the increased load on the host due to register and login requests has
an impact on the other requests.

Broker messaging reference application

This section presents the results of the reference application of FruitCollector using
broker based messaging.

Table 8.5 shows the request completion time statistics for each request type. Again,
the data shows that the player simulator is not able to send all requests as planned. We
also observe that register and login are again the request types with the highest request
completion time. We also observe a high standard deviation for register and login again.
The reason for this is again the expensive hashing algorithm used for the passwords.

Figure 8.19 shows the request completion times over the scenario time. We observe
that the average RCTs for phase 2 are higher than for phase 1. For example, the
average RCT of playerView increases from 24.5ms for phase 1 to 25.9ms for phase 2.
The increase is particularly significant for finishQuest, where the average RCT increases
from 52.3ms to 88.2ms. Since we did not find an increase in RCTs for phase 2 for the
brokerless messaging application, we assume that the message broker is the cause of these
increases. Since the message broker acts as an intermediary for each message transfer, it
is to be expected that request types with long message chains, such as finishQuest, will
particularly suffer from a slowdown of the broker. However, the RCTs for finishQuest
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Figure 8.18.: Brokerless Messaging Reference Application: finishQuest

Request Type Count Request Completion Time (ms)
Mean Min Max Std

register 50 1793.4 751 2862 614.3
login 50 822.8 149 1753 449.6
playerView 27743 25.4 18 1045 7.5
move 3632 24.2 19 52 4.0
collectItem 3110 25.8 20 75 4.9
inventoryState 3592 27.6 21 1044 17.8
sendChat 51 26.4 22 56 5.5
retrieveChat 3573 24.6 20 76 4.2
retrieveQuests 720 24.0 19 48 4.1
finishQuest 18 72.2 44 212 44.0
uploadReplay 45 457.4 241 815 159.1

Table 8.5.: Broker Messaging Reference Application: Statistics
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Figure 8.19.: Broker Messaging Reference Application: RCTs

requests from phase 2 only seem significantly higher between 60 and 80 seconds. These
could be strongly influenced by the register, login, and uploadReplay requests from phase
2. To allow a better comparability between the finishQuest requests from phase 1 and
phase 2, we only take finishQuest requests that start after the last replay upload is
finished. After this adjustment, the average RCT for finishQuest is 52.3ms for phase 1
and 58.7ms for phase 2.

To verify that the message broker is indeed responsible for the increased RCTs in
phase 2, we plot the playerView resource durations in figure 8.20. We observe that
message transfers between gateway and world service indeed take longer in phase 2.
This shows that the message broker is measurably slower for messages from 50 clients
than for messages from 25 clients.

8.5. Discussion of Results
In this section, we discuss the reasons for the differences between the performance predic-
tion of the simulation and the actual measured performance of the reference applications.

Workload and request completion times

The simulations show that the number of clients and thus the load on the system has a
clear influence on the request completion times. The simulation results of the brokerless
application show that the request completion times scale proportionally to the number
of connected clients. For the broker application simulation, the RCTs in phase 2 increase
even more and show that the system is completely overloaded. For the brokerless refer-
ence application, the data shows that the request completion times actually decrease in
phase 2 even though the number of clients doubles. For the broker reference application,
we can observe an increase in request completion times in phase 2, which is due to an
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Figure 8.20.: Broker Messaging Reference Application: Resource Durations playerView

increased workload of the broker. However, this increase is of smaller magnitude than in
the corresponding simulation. In other words, the simulation overestimates the impact
that more workload has on a microservice application.

One reason that simulation overestimates the increase in RCTs by more clients is due
to the simultaneity of the requests. Since for the simulation all clients have the same
behavior, all clients send their messages at the same time. Since the message transfer
durations for the same request types are also always the same, the messages also arrive
at the gateway at the same time. This quickly causes congestion in the gateway in the
simulation, which leads to an increase in the request completion times, even though the
CPU is not fully utilized. For the reference applications, the various requests arrive
more evenly distributed over time, which means that such a congestion cannot occur as
quickly.

Another reason is the processing of requests with large messages in the simulation.
Large messages lead to tasks with long processing times, e.g. the gateway needs about
750ms to process a 2MB message in the simulation. If now the service is scheduled to
process two such tasks on a CPU with two cores, the CPU is completely blocked for
750ms. In a worst case scenario, a short task with only 1ms of processing time that
is queued in the same millisecond has to wait for 750ms. This would lead to a total
task duration of 2251ms for these three tasks, whereas the task duration would only be
1501ms if the short task is queued first. Small messages that also want to be processed
by the CPU in this time must therefore wait up to 750ms in the queue, although their
processing would perhaps only require 1ms. Real CPUs are however able to interrupt
the execution of a process, in order to grant other processes processing time. At this
point, the CPU model of the simulation falls short.

Another reason could be that the hosts used for the reference application, so-called
droplets, are only virtual machines that use vCPUs. With the droplets, the physical
hardware and thus both the network access and the computing power are shared, so it
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is not guaranteed that the same performance is available for the hosts at all times.
Another reason is the overload of the player simulator, which is not able to send the

same amount of requests as defined in the simulation models. This problem is even
more severe in phase 2, whereby twice the number of clients in the reference application
does not cause twice the workload. For example, in phase 1 we expect 12000 playerView
requests and in phase 2 24050 playerView requests. However, for the brokerless reference
application, the player simulator sends only 10935 in phase 1 and only 19940 playerView
requests in phase 2, so still ≈ 91% for phase 1 but only ≈ 83% in phase 2. The reasons
for this could be the hardware of the player simulator machine. However, none of the
CPU cores of the running machine reached 100% utilization, so we assume that the CPU
of the player simulator machine is not a limiting factor. The player simulator could also
be limited by network limitations, as it has to send a lot of HTTP messages at the
same time. Due to time constraints, we were not able to further investigate the poor
performance of the player simulator.

Expensive requests

For the simulation, the expensive requests, i.e. the requests with high request completion
times, are those with long messaging chains and high message sizes. In the simulation,
uploadReplay is the most expensive request in the time interval in which it is sent. For the
reference applications, however, uploadReplay is only the third most expensive request.
Register and login are even more expensive, although both have a small messaging chain
and small message sizes.

The simulation uses only the message size as parameter to calculate the processing
times. The simulation provides possibilities to overwrite the base processing times per
service or per request stage. However, during modeling we only have a description of
the functionality of the different tasks on the services. We did not find a way to infer
a reasonable base processing time from these descriptions. Even if we know that an
expensive hashing algorithm is needed to register and login, too many questions remain.
For example, we do not know how long an expensive hashing algorithm takes on a 1
GHz CPU, which exact hashing algorithm is used and with which parameters. Without
reference values it is difficult to make an estimation.

Short duration activities

In the reference applications there are many average activity durations of less than
1 millisecond. For example, the average duration of tasks on the world service for
playerView is 0.3ms. However, the reference applications only work with millisecond
precision for the timestamps of the events. So we can assume that the actual task
durations are between 0ms and 1ms.

However, the simulation works with only one millisecond accuracy. Tasks with such
short durations cannot be simulated at all, but are always rounded to the nearest mil-
lisecond. For the transfer activities, this leads to the average request completion times
deviating from the actual length by a constant factor. For the task durations, however,
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this can have far-reaching consequences for the simulation results. The task processing
durations tp are calculated with the base processing time tb and the CPU clock speed in
GHz s with the formula tp =

tb
s . If the CPU clock speed is 2GHz this results in tp = 0.5

and is rounded up to 1ms by the simulation, which means one core can process 1000
tasks in one second. If the CPU now has a clock speed of 2.1GHz, we expect that in
reality the CPU can process a few more tasks in the same time. However, due to the
rounding to milliseconds, the simulation calculates a task processing time of 0ms. This
means that the CPU can process an infinite number of tasks in one second. This in turn
can make the difference between a completely overloaded system and a stable system in
the simulation. The millisecond accuracy of the simulation is therefore not sufficient to
accurately simulate microservice applications.

Long distance message transfers

The simulation underestimates long distance message transfer durations, i.e. message
transfers from player to gateway and vice versa. All other message transfers take place
within the same data center. As an example we consider the message transfer times
from player to gateway for brokerless messaging. To compare the message transfer du-
rations we take the average durations of these message transfers for playerView and
uploadReplay. PlayerView is an example for a message transfer with a small payload,
while uploadReplay is an example for a transfer with a large payload. For the simulation
the message transfer time is constant and is 7ms for playerView and 23ms for upload-
Replay. For the reference application the average time message transfer time from player
to gateway is 9ms for playerView and 133ms for uploadReplay.

One reason for the deviations between the real message transfer times and the simu-
lated message transfer times could be the underlying formula that the simulation uses.
The simulation uses the formula tm = dtrans + dprop to calculate the message trans-
fer durations, as explained in section 5.2.4. The actual measured RTT between the
player simulator machine and the reference application data center is 17ms10. Applying
the formula dprop = RTT

2 , gives us the propagation delay for the reference applications
dprop = 8.5ms. Since the message size for playerView is very small and the upload band-
width of the player simulator machine is very high, dtrans can be disregarded. Thus, we
assume tm = dprop for playerView. The average measured tm is 9ms, while the formula
using the measured RTT gives us 8.5ms Since the reference applications only measure
in the millisecond range, the values match well. So the formula seems to be accurate for
playerView and not the reason for the deviations.

Another reason for the deviations could be the predicted RTTs that the simulation
uses. The multi layer perceptron predicts an RTT of 13.54ms between a host in Aachen
and a host in London, which leads to dprop = 6.77ms. This in turn results in the 7ms
message transfer time for playerView from the simulation. So we see that the discrepancy
of the actual RTT and the predicted RTT is responsible for the 2ms difference in the
average message transfer times for playerView.
10Measured with an ICMP ping to speedtest-lon1.digitalocean.com.
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However, the question remains how the discrepancy between the message transfer
durations at uploadReplay comes about. dprop is the same for all message transfers and
explains only 2ms difference. So we are still missing an explanation for the remaining
110ms between the 23ms duration in the simulation and 133ms duration in the reference
application. During simulation configuration, we assumed a replay size of 2MB, which
with the upload bandwidth of the client properties leads to dtrans = 16ms. However, the
actual size of the replays in the reference application is about 10MB, which leads to the
simulation calculating dtrans as 5 times smaller than it should be. So if the simulation
was configured with the correct message size, it would give a message transfer duration
of 16ms·5+7ms = 87ms, which is already much closer to the measured average duration
of 133ms.

However, even with the adjustments we still have a discrepancy of 46ms. This could
be due to the fact that the simulation assumes that all clients independently use their
own bandwidth. However, the player simulator sends the requests of up to 50 clients
simultaneously on the same machine. This results in all requests having to share the
available bandwidth, leading to a higher dtrans. In addition, the available bandwidth of
a machine may be subject to fluctuations[Eke+06]. Both these reasons suggest, that in
reality the replays are uploaded with a lower bandwidth than expected. The measured
message transfer durations of the reference application, have a standard deviation of
55.9ms with a minimum value of 86ms and a maximum value of 436ms. Which sup-
ports the hypothesis that the replays are uploaded with different amounts of available
bandwidth.

8.6. Threats to Validity
In this section we discuss the threats to validity of this evaluation. For the evaluation,
we compared the results of the simulation with the results of the simulation. However,
the collection of the reference application results is affected by inaccuracies, which in
turn may affect the inferences drawn, which we discuss in section 8.6.1. For the eval-
uation, we implemented the FruitCollector game as a microservices application as an
example. However, microservices applications are diverse, which might make it difficult
to generalize the results of the evaluation to other microservices applications. We discuss
possible difficulties of generalizability in section 8.6.2.

8.6.1. Internal Validity

The events of the reference applications are captured on four different hosts. Although
we synchronize the times of the different hosts using the network time protocol, perfect
clock synchronization is not given. This can lead to the durations of the transfer activities
not being recorded accurately. For the brokerless reference application we have 196785
recorded transfer activities of which 7038 have a negative duration with an average of
−1ms. For the broker reference application we have 173680 recorded transfer activities of
which 825 have a negative duration with an average of −1ms. The existence of negative
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Service logicInternal logic Internal logic

Simulation time

Measured task duration

Actual task duration

Outgoing messageIncoming message

Figure 8.21.: Internal logic as a possible cause for a discrepancy between actual and
measured task durations.

transfer durations indicates that all transfer durations can be affected by an inaccuracy.
The simulation assumes that all hosts are independent machines, where the perfor-

mance is only influenced by the services running on them. However, for cloud deploy-
ments of microservices, including the evaluation reference application, virtual machines
are often used to host the services. Therefore, the assumption of the simulation that
only the modeled services affect the performance does not hold. We can not know
how many other virtual machines are running on the underlying hardware during our
measurements, which could have an impact on the performance of the virtual machines.

Furthermore, the simulation assumes that a message transfer between two hosts is
always a transfer between two different physical machines. This assumption is also not
necessarily given when using virtual machines. However, DigitalOcean guarantees that
the virtual machines of a Kubernetes cluster run on different physical hosts. Although
we could not verify this statement, we assume that the assumption of the simulation
about the message transfers between hosts is correct.

To capture the events for the reference applications we use hooks in the Spring Boot
implentations of the services. However, incoming messages must first pass through some
internal logic of the operating system and spring boot before we can capture an event.
This causes transfer finish and task start events to be logged slightly later than they
actually happen. Outgoing messages also have to go through some internal logic after
logging the task finish and transfer start events. This leads to the fact that the measured
task durations and therefore also the measured transfer durations can deviate from
reality, as illustrated in figure 8.21.

8.6.2. External Validity

The measurements of the reference applications provide insights into the relationship
of the simulation results to a microservices application with the technologies of the
reference applications. However, one strength of microservices is that the languages and
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frameworks with which the individual services are implemented are not predefined and
can also differ within a microservices application[BCK03]. In the reference applications,
however, all microservices are implemented with Java and Spring Boot, so it is unclear
whether the findings can be transferred to microservices applications that use other
technologies.

Moreover, in the reference applications all message transfers are implemented as HTTP
messages. However, HTTP messages are hardly used in multiplayer games of a similar
nature. For real-time communication, e.g. for transmitting the state of the game world,
there are better alternatives. For example, slither.io uses WebSocket to synchronize
the available items and the locations of the other players. Websocket connections have
less overhead than HTTP and thus allow for faster message transfers[PFH13]. Therefore,
it is possible that the results do not generalize to microservice applications that use other
protocols for communication.

In addition, the reference applications use the HTTP/1.1 protocol without encryption
for communication. However, a large proportion of websites now use encrypted http
connections11 by default. Encryption and decryption of messages can have an impact on
performance[He03]. In addition, about one third of all websites use the newer HTTP/2
protocol12. Also, using HTTP/2 over HTTP/1.1 brings performance changes[BMR17].
Therefore, the measurements of the reference applications may not translate to other
applications that use different HTTP protocols.

The logic of the reference applications might be less complex than the corresponding
logic in production systems. For example, the authentication logic is very lean. The
authentication token contains only the user ID of the corresponding account. For com-
parison, Gmail sends a 1024 byte cookie with the GET request to the server when the
web interface is initially called. This means that in the reference applications generally
less data is sent from the clients to the server than would be the case in a similar produc-
tion system. Furthermore, the token signature is not verified on the server side, which
is essential in any production system. This results in slightly less logic being executed
on each request than would be the case in a similar production system. In addition, the
number of deployed services in the FruitCollector architecture might be lower than in
production microservice architectures. For example, in 2020, Uber used 1100 microser-
vices to realize its business model13. In addition, the load on production systems is
much higher and is distributed across many replicas of the services. For example, the
Netflix microservices process more than 2 billion requests per day14. In our evaluation,
we have relatively low load on the FruitCollector services. Furthermore every service in
our Evaluation only has one replica, so the impact of load balancing and provisioning of
new replicas is not explored.

11https://w3techs.com/technologies/details/ce-httpsdefault
12https://w3techs.com/technologies/details/ce-http2
13https://www.uber.com/en-us/blog/microservice-architecture/
14https://netflixtechblog.com/optimizing-the-netflix-api-5c9ac715cf19
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In this chapter, we first answer the research questions and then discuss the limitations
of our answers.

9.1. Research Question Findings
The goal of this thesis is to contribute to a microservice architecture exploration platform
by examining whether model-based simulation is suitable to predict the performance
impact of architecture decisions. With the first research question we want to answer
whether it is worthwhile to pursue this approach further.

RQ 1 Can model-based architecture simulation be a meaningful approach to
predict performance of microservice applications?

We examined the performance impact of an architectural decision between messag-
ing via a message broker or direct messaging (brokerless). In our evaluation, we have
shown that there are measurable performance differences between broker messaging and
brokerless messaging in a real-world microservice application. The message broker leads
to increased communication times between the different services, which is exacerbated
when there is an increased load on the system. Our developed model-based simulation
was also able to detect that broker messaging leads to increased communication times
between services. And the event logs provided as output are also detailed enough to
detect the cause of the performance differences, namely the overload of the broker host
machine. However, the simulation vastly overestimated the performance impact of using
a message broker and found a complete overload of the microservice application already
with 50 simulated users. While the real broker messaging microservice application only
felt a minor performance impact due to the increased number of users. Consequently,
the impact of this architectural decision could not be accurately represented by our
model-based simulation approach.

To determine whether these findings mean that model-based simulation is generally
not a meaningful approach for performance prediction, we need to examine the under-
lying issues in our approach. For this we consider the two factors that influence the
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performance of a microservice application, the transfer of messages and the processing
of messages by services.

Our approach for the prediction of message transfer durations presented in
chapter 5 already provides promising results. However, this approach suffers from in-
accuracies due to the data used for prediction. Also, fluctuations in the performance
of the data transmission infrastructure of the Internet could not be reproduced in this
work. Further development of this approach is necessary to predict the performance of
microservice applications more accurately.

However, the main reason for the large discrepancy between actual and predicted
performance is the processing of messages by the services. Our CPU model and the
milliseconds resolution of the simulation times are insufficient and cannot correctly rep-
resent the actual functioning of modern CPUs. Complex message processing blocks the
entire computing time of a CPU in our model, which does not correspond to reality
and the milliseconds resolution leads to accumulating rounding errors. This causes the
broker service to act as a bottleneck between all services and rapidly degrade the overall
simulated application performance. Thus, enhancements to the CPU model and a more
fine-grained time resolution are necessary to achieve accurate performance predictions.

Furthermore, a fundamental problem of the model-based approach is the modeling of
the processing effort. It is difficult to estimate how much processing effort is required
by the business logic of a service, especially when the implementation details are not
yet known at the time of architecture creation. In our models, for example, we under-
estimated the processing effort for a registration, while we overestimated the relevance
of message sizes for the processing times of our own algorithms. Existing performance
prediction approaches use benchmarks of already running microservice applications for
this purpose, which are not available for our approach. Therefore, an estimation aid for
the processing effort of message processing by services is necessary to obtain accurate
performance predictions.

Due to the identified issues with our simulation approach, we cannot provide a conclu-
sive answer to this research question. However, we remain optimistic that the identified
issues can be addressed and the accuracy of the simulation can be improved. There-
fore, we suggest that model-based simulation is a promising approach to predict the
performance of microservice applications.

RQ 2 What adaptations to the metamodel of Ntentos et al. [Nte+21] are
necessary, to enable it to support performance prediction simulation?

To answer this question, we propose an extended metamodel based on the Ntentos
et al. [Nte+21] metamodel in section 4.2. For this purpose, we have extended the meta-
model with request types, a more detailed modeling capability for the communication
between the components. With the request types, the messaging chains that arise for
processing requests to the application can be modeled precisely. We have also introduced
a deployment model that can be used to model the hardware on which the services of a
microservice application run. This allows a simulation of the usage of the hardware and
the transfer of messages between different machines. Furthermore, with the scenarios
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and client definitions we have created possibilities to precisely model the usage of the
microservice application for which the performance is to be predicted.

With these extensions, it is possible to integrate performance prediction into a mi-
croservice architecture exploration platform to help software architects build good ar-
chitectures, along with automatic verification of compliance with architectural patterns
by Ntentos et al. [Nte+21].

9.2. Limitations
In this work, we focused on the performance impact of the architectural decision be-
tween broker-based and brokerless messaging. This limits our findings to only a tiny
fraction of possible architectural patterns. For example, in his microservice architecture
pattern language, Richardson [Ric18] lists 50 patterns for constructing microservices.
Our simulation and the input models were tailored to the messaging pattern. Whether
the basic concepts of our simulation still hold when predicting performance impacts of
all the other patterns remains unanswered.

Even within the decision between broker and brokerless messaging, there are countless
factors that we have not considered in this work. For example, Wikipedia lists 39
different implementations for message brokers1. In this work, we have only considered
the performance impact of a single implementation. In addition, message brokers provide
tuning options, for example for different types of message delivery guarantees. Whether
our findings can be applied to all combinations of message broker implementations and
different configurations also remains unanswered.

For the evaluation of the simulation, we developed and deployed an exemplary mi-
croservice application. However, due to hardware limitations, we only evaluated the
performance under a relatively minor workload by simulating 50 users sending requests.
Thus, the number of requests is lower than the number of requests we would expect in
a production microservice application. Also, our reference application consists of only
7 services, but in reality microservice architectures may consist of many more services
and thus trigger much longer messaging chains between them. Furthermore, we have
not considered some aspects of deployment in our work, such as horizontal and verti-
cal scaling or load balancing. How the performance behaves when these aspects are
included is also unclear. As a result, the question of whether our findings can be applied
to real-world microservice applications also remains unanswered.

1https://en.wikipedia.org/wiki/Message_broker
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10.1. Summary

This thesis investigated, whether model-based simulation is a meaningful approach to
predict the performance of microservice applications. Such performance prediction could
then be used in the future in conjunction with existing methods for verification of com-
pliance with microservice architectural design patterns to help software architects create
good microservice architectures.

For our investigation, we first created two variants of a reference microservice architec-
ture for a multiplayer game backend, which only differ in how the services communicate
with each other. While the services in one variant communicate with each other via
a message broker, the services in the other variant communicate directly (brokerless).
We have created these reference architectures to assess whether the simulation is able
to predict the difference in performance between broker and brokerless communication.
Based on the reference architectures, we then derived the necessary concepts to develop
a model-based simulation for performance prediction. The developed discrete-event sim-
ulation then uses models describing an architecture, a deployment and a usage scenario
as input to simulate the transfer of messages between services and the processing of
messages by services.

To evaluate the accuracy of the simulation, we first modeled both variants of the ref-
erence architectures for the simulation and then simulated them to obtain the predicted
performance. Then we implemented both reference architectures as microservice appli-
cations and measured the actual performance in the same scenarios as defined in the
simulation inputs. The simulation predicted a complete overload of the system when
using a message broker, while the actual performance revealed only slightly increased
communication times between the services. Our investigations have shown that this is
mainly due to the oversimplified CPU model of the simulation.

As a result of these findings, we conclude that model-based simulation is fundamentally
a meaningful approach for performance prediction of microservice applications, although
significant refinements of the concepts are still necessary.
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10.2. Future Work

We see this thesis as part of an effort to create a comprehensive microservice architecture
exploration platform, which can help architects building good microservice architectures.
In this section we give an overview of future work that builds on this thesis to lead to
such an exploration platform.

Improving prediction of processing times

First, the issues with the current version of the simulation need to be addressed. For this,
an improved CPU model for simulating hardware must be created. The current CPU
model is based on the principles of a first come first serve scheduler, which is, however,
not suitable to represent the functioning of real CPUs. A more suitable approach could
be, for example, to mimic the functionality of the Completely Fair Scheduler of Linux
for the simulation. In particular, it is important that the scheduler is able to interrupt
processes to avoid a blocking of the CPU by a few complex tasks.

In addition, assistance is needed for the estimation of base processing times, i.e. the
times that the CPU model takes as a basis for the simulation. For non-application-
specific functionalities of services, such as login and registration, a library of validated
base processing times could be created that users of the simulation can access. Ap-
proaches for estimating the base processing times of application-specific algorithms also
require investigation.

Refining message transfer time prediction

The message transfer time prediction of the simulation can also be improved in future
work. The current implementation suffers particularly from two deficiencies in the train-
ing data that make the prediction inaccurate for some cases.

First, the clustering of the different data centers into AWS districts is too simplistic, as
the clustering does not take into account the different quality of Internet infrastructure
in the different AWS districts. For example, Europe is divided into several clusters, while
Singapore and Australia are considered in the same cluster, even though the underlying
round-trip times between the data centers in the clusters do not support this division.
Thus, improving the clustering could lead to an improvement in message transfer time
prediction.

Second, for message transfer time prediction, we only use the measured round-trip
times between different data centers. However, data centers are usually better con-
nected than users of a microservice application. Our message transfer time prediction
is therefore not able to accurately predict the transfer times for messages sent by users,
since they are often connected to the Internet via mobile data connections or copper
lines, for example. Therefore, an improvement of the message transfer time prediction,
which also takes into account the connection type of the user, is needed.
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Supporting more microservice applications

In this work, we designed the concepts of the simulation based on the FruitCollector
reference application, so the simulation can only represent a small number of possi-
ble performance impacts. Thus, the performance impact of other messaging protocols
such as UDP or the performance impact of document-oriented databases cannot be simu-
lated. Furthermore, we have not considered the performance impact of horizontal scaling
strategies, such as on-demand deployment of more instances or serverless deployment.
However, the ability to easily scale horizontally is one of the strengths of microservice
applications[Ric18]. Also, for many other possible performance impacts concepts are still
missing in the simulation. Therefore, the simulation needs to be extended to include
concepts that can be used to simulate other performance impacts.

Towards a comprehensive microservice architecture exploration platform

In the current implementation, input models are passed to the simulation using lengthy
JSON files, which is a cumbersome manual process. A better option could be the graph-
ical creation of the input models. Especially the definition of the different components
and the messaging chains between the components could be done much easier via a
graphical user interface. Therefore, we see a possibility to support the development of a
future exploration platform by creating a user interface for the simulation. The models
created in this way could then also be used to verify compliance with architectural design
patterns.
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A.1. FruitCollector API

register

Involved services Authentication Uses database 3

Description
The client sends username and password to the API to create an account entry in
the database.

login

Involved services Authentication Uses database 3

Description
The client sends username and password to the API. The authentication service
checks whether a corresponding account exists and sends back an authentication
token for future authentication.

move

Involved services World Uses database 7

Description
The user sends a new desired position within his moving range and is moved to the
desired position by the service.

collectItem

Involved services World, Inventory Uses database 3

Description
The user sends the id of a fruit in the game world that is within his collection
range. The World service checks if the fruit is in range and sends a message to the
Inventory service to add the fruit to the player’s inventory.
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inventoryState

Involved services Inventory Uses database 3

Description
Returns a list of all fruits in the player’s inventory.

sendChat

Involved services Chat Uses database 7

Description
The user sends a chat message to communicate with the other players.

retrieveChat

Involved services Chat Uses database 7

Description
The client periodically queries which messages the chat contains in order to display
them to the player.

retrieveQuests

Involved services Quest Uses database 7

Description
The client periodically queries which quests are currently active and how many of
what kind of fruits need to be collected for them.
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A.2. Simulation JSON Model Definitions

1 ...
2 "properties": {
3 "aachen -university": {
4 "networkAccess": {
5 "uploadSpeed": 117964800,
6 "downloadSpeed": 104857600,
7 "location": {
8 "latitude": 50.775555,
9 "longitude": 6.083611,

10 "radiusKm": 1
11 }
12 }
13 }
14 },
15 ...

Source Code A.1: Excerpt of a clients.json defining client properties.

1 ...
2 "behaviors": {
3 "default": {
4 "requests": {
5 "login": {
6 "frequency": {
7 "amount": "1",
8 "time": "DAYS"
9 }

10 },
11 "playerView": {
12 "frequency": {
13 "amount": "8",
14 "time": "SECONDS"
15 }
16 },
17 ...

Source Code A.2: Excerpt of a clients.json defining a client behavior.

99



A. Appendix

1 ...
2 "dataCenters": [
3 {
4 "topologyRef": "config -1",
5 "latitude": 51.509865,
6 "longitude": -0.118092
7 }
8 ],
9 "hostTopologies": {

10 "config -1": {
11 "hosts": [
12 {
13 "id": "host -1",
14 "logicalCores": 2,
15 "coreSpeedGhz": 2.7,
16 "components": ["gateway", "quest"],
17 "uploadSpeed": 2000000000,
18 "downloadSpeed": 2000000000
19 },
20 ...

Source Code A.3: Excerpt of a deployment.json defining a data center and the
corresponding host topology.

1 ...
2 "interpolater": "step",
3 "snapshots": [
4 {
5 "clients": {
6 "default": 25
7 },
8 "atTime": "PT0S"
9 },

10 {
11 "clients": {
12 "default": 50
13 },
14 "atTime": "PT60S"
15 },
16 ...

Source Code A.4: Excerpt of a scenario.json defining a scenario.
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