
The present work was submitted to
the Research Group
Software Construction

of the Faculty of Mathematics,
Computer Science, and
Natural Sciences

Master Thesis

Mocking Microservice
Architectures through

Message Sequence Models

presented by

Pavan Nadkarni

Aachen, May 25, 2023

Examiner

Prof. Dr. rer. nat. Horst Lichter

Prof. Dr. rer. nat. Bernhard Rumpe

Supervisor

Alex Sabau, M.Sc.

Acknowledgment
Firstly, I express my profound gratitude towards my supervisor and mentor, Alex Sabau.
This endeavour would have been unimaginable without his constant support and invalu-
able feedback that helped in this journey’s phases.

Next, I would like to express my immense appreciation towards Prof. Dr. rer. nat.
Horst Lichter and Prof. Dr. rer. nat. Bernhard Rumpe for examining my thesis and
providing indispensable feedback that helped me refine and polish my ideas and vision
for this thesis. Additionally, a special thanks to the Software Construction Research
Group and RWTH Aachen, which helped streamline the entire process.

Finally, I sincerely thank my family for their perpetual support and presence during
my most challenging times and my friends and work colleagues whose constant support
has kept me focused and high-spirited. Thank you all for making this journey a very
memorable part of my life.

Pavan Nadkarni

Abstract
Microservice Architecture (MSA) is a modern architectural style of building software ap-
plications where a single application gets broken down into a suite of granular services
called a microservice. Individually microservice is designed to have a single responsi-
bility within a defined bounded context. As a result of this fine decomposition based
on bounded context, a need for intercommunication and cooperation between other mi-
croservices materialises to realise complex functionalities.

Enterprise applications can consist of hundreds of microservices distributed across
multiple data centres. The communication network between microservices can become
extraordinarily complex in such distributed applications. Consequently, designing and
developing such complex distributed applications or migrating existing monolithic ar-
chitectural style applications to MSA is a challenging task where inaccurate designs can
give rise to severe performance issues and lead to the accumulation of technical debt for
the future.

To avoid this, it is common in industries to test and create prototypes to provide proof
of concept before adopting or implementing any major architectural changes. In such
situations, the ability to model and mock MSA systems with the specific desired changes
can help observe their behaviour in real-time, identify design issues and mitigate risks
at earlier stages of software development/migration lifecycles.

In order to facilitate such novel use cases, in this thesis, we explore the idea of mocking
MSAs by relying on message sequence models, which we use to model inter-service com-
munications between microservices for functional requirements of MSAs. As part of this,
we propose a metamodel to capture microservices data with associated communication to
model MSAs. We also develop a prototype that transforms concrete instance models of
our metamodel into mocked-up microservices. Lastly, we present an approach to build,
compose and deploy observable polyglot microservice applications in an automated way
to mock MSAs.

Contents

1. Introduction 1
1.1. Research Questions . 3
1.2. Goals and Contribution . 4
1.3. Thesis Structure . 5

2. Foundations 7
2.1. Communication in Microservice Architecture (MSA) 7
2.2. Model-Driven Development . 9
2.3. Observability of MSAs . 9

3. Related Work 11
3.1. Model-Driven Development of MSA . 11
3.2. MSA Simulation . 14
3.3. MSA Observability . 15

4. Research Approach and Solution Concepts 17
4.1. Research Phases and Scope . 17
4.2. Conceptual Approach to Mocking MSAs 19
4.3. Generating Microservice Applications . 20
4.4. Modelling Microservices API Dependency Model (MAPI-DM) 26

5. Design 33
5.1. Design of MSA-Gen Application . 33
5.2. Microservice Application Composition and Observability 41

6. Implementation 51
6.1. Data and Configurations . 51
6.2. Frameworks . 52
6.3. Tools . 53

7. Evaluation Approach 55
7.1. Evaluation Strategy . 55
7.2. Evaluation Tasks . 64

8. Evaluation Outcomes 67
8.1. Evaluation Results . 67
8.2. Discussion of the Evaluation Results . 81

i

9. Discussion 85
9.1. Answers to Research Questions . 85
9.2. Threats to Validity . 87

10.Conclusion and Future Work 89
10.1. Summary . 89
10.2. Future Work . 90

A. Message Sequence Models of E-commerce Application Case Study 93

B. MSA Observability Snapshots 99

Bibliography 105

Glossary 111

List of Tables
5.1. Comparison between FastAPI and Flask web frameworks for developing

Python-based microservices. 42
5.2. Comparison between different open source Application Performance Mon-

itoring (APM) tools. The superscript “req intg” indicates that further
integration with other tools is necessary to support the criterion in that
tool. 49

7.1. The list of functional requirements derived from an example user interac-
tion with the case study E-commerce MSA. 60

8.1. Table capturing the data for temporal Key Performance Indicators (KPIs)
for Spring microservices scenario. 71

8.2. Resource consumption statistics for Spring microservices when in idle state. 71
8.3. Resource consumption statistics for Spring microservices when receiving

requests. 72
8.4. Table capturing the data for temporal KPIs for FastAPI microservices

scenario. 73
8.5. Resource consumption statistics for FastAPI microservices when in idle

state. 73
8.6. Resource consumption statistics for FastAPI microservices when process-

ing requests. 74
8.7. Table capturing the data for temporal KPIs for Polyglot microservices

scenario. 74
8.8. Resource consumption statistics for Polyglot E-commerce application when

idle. Superscript:- “s”:Spring ; “f”:FastAPI. 75
8.9. Resource consumption statistics for Polyglot E-commerce application when

receiving requests. Superscript:- “s”:Spring ; “f”:FastAPI. 76

iii

List of Figures
2.1. Message sequence model illustrating the login functional requirement. . . 8

4.1. A conceptual approach to generating microservice applications that can
be used to mock MSAs. 19

4.2. The manual transformation of the prerequisite data is transformed into
Microservices API Dependency Model (MAPI-DM) 21

4.3. The input of MAPI-DM to the prototype application via an Application
Programming Interface (API) request. 22

4.4. Generation of various types of microservices by the prototype after parsing
the MAPI-DM input. 23

4.5. An example architectural view of a composed and deployed microservice
application with integrated MSA observability tool. 25

4.6. Representative example of the message sequence model acting as our pre-
requisite data. 26

4.7. State of the MAPI-DM metamodel as concluded in this thesis. 28

5.1. The architecture of the MSA-Gen web application. 34
5.2. The Unified Modeling Language (UML) diagram illustrates the realisation

of the Strategy design pattern as in this thesis. 37
5.3. The UML diagram illustrates the realisation of the Factory Method design

pattern as in this thesis. 39
5.4. API-Gateway design pattern offering clients a unified interface to com-

municate with application’s microservices. 43
5.5. Self-registration service discovery design pattern allows services to register

with the service registry and be discoverable in MSAs. 44
5.6. Representative outline of a microservice template with the associated

project attributes captured by it. 45
5.7. Service instance per container design pattern to have isolated service de-

ployment. 46
5.8. Telemetry data collection from deployed microservices using an MSA Ob-

servability tool to comprehend their run time behaviour. 47

6.1. A snippet of the Spring microservice generator configuration written in
YAML Ain’t Markup Language (YAML). 52

6.2. A snippet of microservice template file written in Jinja. 54

7.1. Message sequence model illustrating registration of a new user (FR1). . . 59
7.2. Message sequence model illustrating purchase order creation (FR9). . . . 61

v

7.3. Envisioned architectural view of the modelled E-commerce microservice
application illustrating various microservice interactions. 62

8.1. A snippet of E-commerce MAPI-DM model that represents one modelled
path of the “advertisement-service”. 68

8.2. Service map view of E-commerce application in idle state after deployment. 69
8.3. Service map view of E-commerce application showing communication be-

tween microservices when receiving API requests. 70
8.4. Comparison of average microservice generation time for Spring, FastAPI

and Polyglot generation scenarios. 77
8.5. Comparison of average microservice build and deployment time for Spring,

FastAPI and Polyglot generation scenarios. 78
8.6. Comparison of average microservice startup and registration time for

Spring, FastAPI and Polyglot generation scenarios. 78
8.7. Overview of all the temporal KPIs for Spring, FastAPI and Polyglot gen-

eration scenarios. 79
8.8. Memory usage comparison between Spring and FastAPI microservices. . . 79
8.9. Dashboard to visualise and trace external requests received by microser-

vice applications. 80

A.1. Message sequence model illustrating the loyalty-bonus program registra-
tion functional requirement (FR2). 93

A.2. Message sequence model illustrating the login functional requirement (FR3). 93
A.3. Message sequence model illustrating the logout functional requirement

(FR4). 94
A.4. Message sequence model illustrating the catalogue search functional re-

quirement (FR5). 94
A.5. Message sequence model illustrating wishlists creation functional require-

ment (FR6). 94
A.6. Message sequence model illustrating the functional requirement to add

items to the shopping cart (FR7). 95
A.7. Message sequence model illustrating the functional requirement to create

and publish advertisements (FR8). 95
A.8. Message sequence model illustrating the functional requirement to retrieve

policies (FR10). 95
A.9. Message sequence model illustrating the functional requirement to retrieve

all purchasing orders of a given user (FR12). 96
A.10.Message sequence model illustrating the functional requirement to add

reviews to the purchased products (FR13). 96
A.11.Message sequence model illustrating the functional requirement to create

customer-support tickets (FR14). 96
A.12.Message sequence model illustrating the functional requirement to provide

feedback to customer support (FR15). 97

A.13.Message sequence model illustrating the functional requirement to cancel
a purchasing order (FR11). 98

B.1. Dashboard showing latency measures, request rate, error percentage and
key operations metrics collected for “shopping-cart-service” during the
non-idle state. We can infer that as the request rate to the microservice
increases, the latency also spikes. 100

B.2. Log aggregation dashboard that allows visualisation of logs collected for
all deployed microservices. From the figure, we can see the logs events of
“session-service”, “order-service”, and “notification-service” 101

B.3. Snapshot of the exceptions dashboard that allows us to visualise and track
microservice exceptions. For each exception, relevant details are captured
and displayed with the associated event identifier allowing us to trace the
exception to its origin. 102

B.4. Service map view of the E-commerce microservice application representing
the error-prone microservices in red and the error-free services in green. . 103

B.5. Service Discovery dashboard lets us visualise the list of registered mi-
croservices and their health status. The status column displays “UP” for
reachable healthy microservices and “DOWN” for unreachable unhealthy
microservices. 104

List of Source Codes

ix

1. Introduction
The formulation of a problem is
often more essential than its
solution, which may be merely a
matter of mathematical or
experimental skill. To raise new
questions, new possibilities, to
regard old problems from a new
angle requires creative
imagination and marks real
advances in science.

Albert Einstein

Contents
1.1. Research Questions . 3
1.2. Goals and Contribution . 4
1.3. Thesis Structure . 5

In an era where companies are shifting from “on-premise” based deployments to offer-
ing services in the cloud, distributed and cloud-native software applications are increas-
ing. Microservice Architecture (MSA) is a more modern software development archi-
tectural style gaining wide adoption when developing cloud-native software applications
[GBS17].

In the traditional monolithic style of software development, an entire software appli-
cation gets packaged as a single unified unit, frequently bundling various functionalities
carrying diverse responsibilities as part of the single application. However, with this
approach, as applications grow and become more complex, they can quickly become in-
comprehensible “big ball of mud” [RS16]. In contrast, the core idea behind MSA style of
software development is decomposing a single software application into a suite of smaller
individual services known as a microservice. Each microservice is designed to be self-
contained and has its realm of responsibility around a single business capability. It runs
a separate process and can be independently deployed [LF] [RS16]. Some other charac-
teristics of MSAs include decentralised governance and data management, designed for
failure, infrastructure automation and evolutionary design [LF].

While MSAs offer several benefits like independent deployment, scalability, and tech-
nology heterogeneity. They also have drawbacks, such as increased design and opera-
tional complexities, security, testing, data consistency when using a database per service
approach, monitoring and troubleshooting [New21]. In addition, due to the independent

1

1. Introduction

and isolated design of microservices and the distributed architectural style of MSAs, the
need for inter-service Application Programming Interface (API) communication between
microservices arises when realising complex functional requirements. In enterprise-scale
microservice applications, the sheer magnitude of inter-service API communications be-
tween the hundreds and thousands of microservices becomes complex and challenging.
While MSA are better suited for developing complex, scalable and evolving enterprise
applications, designing them can be challenging [RS16]. Furthermore, any poor archi-
tectural decisions taken during the design stages can significantly impact various per-
formance, maintainability and quality aspects of a software application [Kou+15]. It is
something which cannot be solved just by using a more modern architectural style like
MSA.

When exploring unknown domains, techniques like mocking, prototyping, and simu-
lations can provide means to gain valuable insights. Such techniques are particularly
beneficial when adopting modern architectural styles like MSAs to develop distributed
applications as they generally involve complex design and communication structures
spreading across numerous microservices, introducing high possibilities for failures [LF]
[RS16]. At the same time, these techniques may not provide answers to everything but
can undoubtedly lower the possibilities of certain uncertainties from our approach. They
can help us acquire a practical understanding of varied characteristics of existing or to-be
architectures by adding significant value to our development process and approach. For
example, mocked simulations of MSAs during the design stages can provide a way to de-
termine potential issues in the design earlier by identifying MSA anti-patterns like cyclic
dependencies between microservices. We can also use such approaches to test the de-
signed/migrated architectures with user workloads that mimic our production scenarios
to identify bottleneck or hotspot microservices and take proactive measures to prevent
issues in the future. The opportunities to effectively apply such mocked simulation
techniques are limitless and need to be explored in the context of MSAs.

While some similar approaches exist in the domain of MSAs, based on our investiga-
tion, research gaps still exist that have yet to be researched to their full potential. We
found studies where researchers have conducted investigations to simulate various char-
acteristics of MSAs utilising user-provided simulation data. However, the simulation
approaches presented in these studies solely carry out virtual non-realtime simulations
of MSAs.

Furthermore, during our investigation, we noticed the existence of several published
studies that focused on the development of MSAs using Model-Driven Development
(MDD) rather than from the perspective of mocking MSAs. Based on our investigation
into these studies, we identified specific research gaps in this domain, which include the
limited research supporting the modelling and generation of technology heterogenous
microservices, also known as polyglot microservices to mock polyglot MSAs and the lack
of research related to automated composition, deployment and observability of mocked
MSAs.

To address the identified research gaps, in this thesis, we investigate a MDD approach
to mock observable polyglot MSAs. As part of this, we research the definition of a

2

1.1. Research Questions

metamodel to capture microservice data and their inter-service API communications.
Because the inter-service communications between microservices can be captured and
represented in different ways, in this thesis, we decided to capture them through mes-
sage sequence models when we model functional requirements of MSAs. Furthermore,
To offer real-time interaction with MSAs, we explore the transformation of concrete in-
stance models of our metamodel into deployable technology heterogeneous mocked-up
microservices. Finally, we explore the automated composition, deployment and observ-
ability of the mocked-up microservices to compose observable polyglot MSAs that we
wish to use in simulating various modelled functional requirements.

1.1. Research Questions
To bridge the identified research gaps, we formulated the following set of Research Ques-
tions (RQs) to investigate as part of this thesis so that answering them would help us
to explore mocking of MSAs through message sequence models.

• RQ1: How would a metamodel that can capture attributes of microservices exhibit-
ing inter-service API communications materialise to be?
As part of this research question, we first aim to identify the attributes of microser-
vices required to create their mocked versions. With this knowledge, we explore
the definition of a metamodel capable of capturing the identified microservices
attributes and their inter-service API communications.

• RQ2: How can we use concrete instance models of our metamodel to construct
MSAs composed of mocked-up microservices that can replicate the behaviour of
modelled inter-service API communications?
In the second research question, we focus on defining concrete instance models
from our metamodel and exploring the creation of a prototype that can parse such
models and generate mocked-up microservices. Our approach must also support
automated composition and deployment of the generated microservices to create
MSAs where microservices can communicate with their dependency services to
imitate the behaviour of modelled inter-service API communications.

• RQ3: How can we automatically visualise the behaviour of the composed MSAs?
Once the microservices are rendered and composed into MSAs, as part of the third
research question, we wanted to explore automated support for the observability
of the composed MSAs. We plan to investigate the collection of telemetry data
like metrics, logs and traces that provide a way to visualise the behaviour of the
generated microservices and gain more insights into other functional and non-
functional aspects of mocked MSAs.

• RQ4: What are the learnings and challenges associated with generating polyglot
MSAs?

3

1. Introduction

Microservice architectural style supports the development of applications using
polyglot languages [Gar18] [BHJ16a]. As part of this research question, we try
to understand and capture our learnings and challenges associated with support-
ing multiple microservice generation strategies for various technologies to mock
polyglot MSAs.

• RQ5: What are the benefits and drawbacks of modelling large-scale MSAs using
our metamodel?

Enterprise MSAs are complex, and modelling them can be challenging. We formu-
lated this research question to understand and capture the benefits and drawbacks
of utilising our custom model for modelling such large-scale microservice applica-
tions.

1.2. Goals and Contribution

The primary goal of this thesis is to explore the capability to mock MSAs through mes-
sage sequence models. As part of this, we define a process to model microservices and
their inter-service API communication and use this data to automate the process of
generating, composing and deploying large-scale observable polyglot microservice appli-
cations. By achieving this, we aim to facilitate a simulation approach for MSAs that can
be used by researchers, architects and developers in academia and industry to unlock
novel methods of investigating, testing and observing different characteristics of MSAs
without developing fully functional microservice applications.

This thesis offers the following four principal contributions:

• Our first contribution is a metamodel whose definition is independent of message
sequence model representation and microservice technology. Its core purpose is to
capture both the structural definition of microservices and the relational aspect
of their inter-service API communications in an input and technology-agnostic
manner.

• Our second contribution is a prototype application capable of ingesting models
conforming to our metamodel and generating, composing and deploying large-scale
mocked MSAs in an automated manner.

• Our third contribution focused on introducing observability concepts as part of the
generated and composed MSAs. It allowed us to collect various telemetry data to
proactively observe the behaviour of the mocked MSAs.

• In our fourth contribution, we mock large-scale polyglot MSAs and capture our
learnings and challenges.

4

1.3. Thesis Structure

1.3. Thesis Structure
The remainder of this thesis is structured as follows. We introduce foundational con-
cepts relevant to our study in Chapter 2. In Chapter 3, we categorically review all the
related work we identified as relevant and connected with this thesis to establish an
understanding of the existing research and to outline the differentiating factor to our
contributions as part of this thesis.

In Chapter 4, we first describe the phases of our research process, each aiming to tackle
a part of our overall research objective and summarise the scope of this thesis. Second,
we outline the conceptual approach to mocking MSAs. Third, we describe the process of
generating microservices applications. Finally, we discuss the process followed to define
our metamodel capable of capturing data of MSAs. In Chapter 5, we first examine the
design of our developed prototype application that generates microservices. Next, we
discuss various MSA design patterns used for composing, deploying and observing the
generated microservice applications. Chapter 6 discusses the different notations, tools
and frameworks used to define our metamodel’s concrete instance models and develop
the prototype application.

In Chapter 7, we detail our evaluation strategy and associated tasks. Next, in Chap-
ter 8, we capture our evaluation results, examine and interpret the outcomes, and ac-
cordingly perform their reasoning. In Chapter 9, we answer our research questions and
then discuss the threats to the validity of our findings. In the final Chapter 10, we
summarise and draw our conclusion on this thesis and list the prospects of extending
this thesis as part of future work.

5

2. Foundations
Perfecting oneself is as much
unlearning as it is learning.

Edsger Dijkstra

Contents
2.1. Communication in Microservice Architecture (MSA) 7
2.2. Model-Driven Development . 9
2.3. Observability of MSAs . 9

This chapter provides the relevant background knowledge to understand the founda-
tional concepts essential for this thesis.

2.1. Communication in Microservice Architecture (MSA)
MSAs are composed of numerous microservices that communicate with one another. Due
to their distributed nature, they communicate with one another on the network level
using lightweight synchronous or asynchronous inter-service communication protocols
such as Hypertext Transfer Protocol (HTTP), gRPC Remote Procedure Call (gRPC)
or Advanced Message Queuing Protocol (AMQP) [LF]. As discussed in Chapter 1, in
this thesis, we use message sequence models to capture inter-service API communication
between microservices when modelling functional requirements of MSAs.

Definition 2.1.1: Message Sequence Models

Message sequence models illustrate the sequential ordering of all the inter-service
API requests between microservices in an MSA to realise a specific functional
requirement. One can represent these models in different styles, for example, in
a written textual form, such as a Domain-Specific Language (DSL) or a diagram-
matic form, like Unified Modeling Language (UML) sequence diagrams.

Figure 2.1, illustrate an example of a message sequence model represented as a UML
sequence diagram depicting the various inter-service communication requests that occur
between microservices “authentication-service”, “user-service” and “session-service” to
realise login functional requirement in an E-commerce application.

From the message sequence model shown by Figure 2.1, we can see that microser-
vices are independent and self-contained, as a result, in realising specific functional

7

2. Foundations

authentication-service

POST : /users-authentication/login

response

user-service

response

GET : /users/{user-id}

session-service

POST : /user-sessions/

response

Figure 2.1.: Message sequence model illustrating the login functional requirement.

requirements, particularly complex ones, coordinated communication between multiple
microservices becomes inevitable in any enterprise-scale microservice applications. This
dependency on other microservices to complete a single business requirement can lead to
a form of coupling known as domain-based coupling [New21] or efferent coupling [Ric16].
In this thesis, we refer to such inter-service communication dependencies as inter-service
API dependencies.

Definition 2.1.2: Inter-service API Dependency

When two microservices communicate with each other via the Remote Procedure
Invocation (RPI) pattern [Ric19] [RRS17], we say there exists an inter-service
API dependency relationship between the pair of microservices.

For example, from Figure 2.1, since “authentication-service” consumes a “GET” API
offered by “user-service”, we say there exists an inter-service API dependency between
them. Similarly, there is also inter-service API dependency between “authentication-
service” and “session-service” as “authentication-service” consumes a “POST” API of-
fered by “session-service”.

Furthermore, coordinated communications in complex functional requirements can
involve multiple API requests across numerous microservices. This results in a series
of API requests occurring sequentially. In this thesis, we refer to such a series of API
requests as inter-service API dependency sequences.

Definition 2.1.3: Inter-service API Dependency Sequence

Inter-service API dependency sequence is the sequential ordering of inter-service
API dependencies between microservices to realise a specific functional require-
ment.

From the message sequence model illustrated by Figure 2.1, we can see that an API
request made to the “authentication-service” for login results in the invocation of multi-
ple inter-service API dependency requests, first to the “user-service” and second to the

8

2.2. Model-Driven Development

“session-service”. This invocation of inter-service API dependencies following a sequen-
tial order creates an inter-service API dependency sequence. Capturing this information
becomes essential in this thesis when mocking MSAs.

2.2. Model-Driven Development
Model-Driven Development (MDD) is a software engineering approach that advocates
the usage of models for capturing and managing essential complexities of software sys-
tems and reducing their accidental complexities [Rad+18] [Com+20]. We follow the
view of Whittle, Hutchinson and Rouncefield and consider MDD to be a subset of Model-
Driven Engineering (MDE) with a focus on generating implementations using models
[WHR14] [Ame10]. In software engineering, a model is an abstraction of a software
system in its reality from various viewpoints. We can use models to study and cap-
ture complex software more abstractly and generate software code and documentation
artefacts in an automated manner [Rad+18] [Com+20].

Some of the generic perceived benefits of adopting MDD include abstraction of domain-
specific complexities via model, increase in productivity, automated code generation that
can embed any formulated architectural constraints and domain-specific best practices
and design patterns to improve code quality [WHR14] [Rad+18].

Specific characteristics displayed by MSAs, like technology heterogeneity and re-
silience, facilitate the adoption of supportive MDD techniques like automated code
generation when developing microservice applications [Rad+18]. Furthermore, MDD
presents ways to address some of the challenges faced when designing MSAs [RSS18].
In this thesis, we aim to leverage some of these characteristics of MDD to mock MSAs
through message sequence models.

2.3. Observability of MSAs
MSAs is an architectural style that fosters the development of distributed cloud-native
applications [BHJ16b] [IS21]. Consequently, distributed systems bring complexity and
comprehending the behaviour and state of such running systems is challenging. Many
systems integrate monitoring tools to ease some of these complexities. These tools
operate in parallel with such systems to supervise, record and analyse their operation
[IEE90].

While monitoring can be a great way to collect and analyse application metrics, it be-
comes necessary to understand systems’ behaviour. Observability provides this opportu-
nity. It is a term that stems from control systems theory [Gop93] [Nie+19]. In software
engineering, observability allows us to gain insights into software systems’ working from
the outside without understanding their inner working structure. While traditional
monitoring is more reactive, observability is more about proactive systems monitoring
[CK21]. The three pillars of observability include traces, metrics and logs [Gat21]. Cap-
turing microservices data related to these aspects in this thesis can help us holistically
map MSAs’ runtime behaviour when mocking them.

9

3. Related Work
If we knew what it was we were
doing, it would not be called
research, would it?

Albert Einstein

Contents
3.1. Model-Driven Development of MSA 11

3.1.1. Academia . 11
3.1.2. Open-source Tools . 14

3.2. MSA Simulation . 14
3.3. MSA Observability . 15

This chapter presents various existing academic works and other literature related
to our thesis topic that were collected by surveying diverse research databases and the
internet. We discuss each scholarly work presenting the author(s) contribution(s) to the
paper. Finally, we draw a comparison outlining how our work is distinguishable and
what additional value it brings.

The first section discusses scholarly works and open-source tools concerning code gen-
eration using MDD techniques in the context of MSAs. The second section deals with
scientific works which use simulation tools to simulate MSAs. The final section presents
scholarly works on observability in MSAs.

3.1. Model-Driven Development of MSA
3.1.1. Academia
Sorgalla et al. [Sor+18] propose AjiL, a tool developed based on Eclipse Modeling Frame-
work (EMF) for graphical modelling and generation of MSAs. It comprises an editor
and a single code generator for generating Java Spring-based microservices. The authors
also define AjiML, a DSL to capture microservice data. The graphical editor allows for
simple and easy modelling of MSAs, including supportive infrastructure services like
API Gateway, Discovery, Security, and User-Management Service. Nevertheless, the
MSA generation process is not so trivial as the editor, and the code generator are not
interconnected. The AjiML model generated by the modelling editor must be manually
relocated to a specific code generator’s project directory to generate MSAs.

Wizenty et al. [Wiz+17] propose the tool Maven Archetype for Generating Microser-
vice Architectures (MAGMA). It uses the Maven build management system and seeks to

11

3. Related Work

accelerate and ease the development of MSAs. This tool allows for generating microser-
vice template projects and, like AjiL, the generation of supportive infrastructure services.
It also provides a basic User Interface (UI) that offers an optional selection of infras-
tructural services and for creating service templates. Like AjiL, this tool supports the
generation of templates for only Java Spring-based microservices. Furthermore, it only
generates template projects for services, and users must manually code the microservices
API details later in the generated service templates.

In the following study, Lange et al. [Lan+16] propose Community Application Editor
(CAE), a tool for near real-time collaborative modelling and generation of microservices-
based web applications. CAE offers UI based modelling of web applications. It comprises
the following modelling views: a view to model the front-end components of a web
application, a view to model the back-end microservices, and finally, a view to specify
the communication between the front-end and back-end applications modelled as part
of the previous views. The tool also provides various pre-defined front-end and back-
end modelling elements that the users can use in respective modelling views to design
the front-end and back-end of web applications and to interconnect them. The bundled
generator in the tool then uses these modelled view definitions to generate corresponding
front-end and back-end projects on GitHub 1. This tool offers an excellent way for users
to develop web applications collaboratively. Nevertheless, it requires manual effort to
compose and deploy the generated web applications and similar to AjiL and MAGMA,
this tool supports microservice generation only for a single programming language.

In the following study by Terzić et al. [Ter+17], the authors present MicroBuilder, a
tool for modelling and generating Representational State Transfer (REST)-based MSAs.
Similar to AjiL, this tool also uses EMF for modelling of MSAs. The tool comprises
two modules, MicroDSL a DSL for modelling MSAs and MicroGenerator, which uses
MicroDSL to generate Java Spring-based microservices. Furthermore, it pre-bundles
supportive infrastructure services during the generation process. The authors also extend
this tool in [Ter+18b] to support graphical modelling of MicroDSL similar to AjiL and
add basic monitoring capabilities. As it uses EMF, it faces challenges similar to AjiL,
and the authors designed the tool and DSL to support the generation of microservices
only for a single technology. To overcome some of these drawbacks, the authors present
a positional study in [Ter+18a] to discuss the challenges associated with modelling,
development and deployment of MSAs and propose a conceptual approach to enhance
MicroBuilder.

Düllmann and van Hoorn [DH17] present a generative platform for benchmarking per-
formance and resilience of MSA environments under controlled conditions. The authors
propose a DSL and its metamodel to capture microservice data and a generator tool
that uses the DSL models to generate microservices in Java. This study also used EMF
for modelling and code generation. In addition to the generated microservice code, the
generator tool also generated Kubernetes 2 deployment artefacts for the generated mi-

1https://github.com/ (accessed on 18.05.2023)
2https://kubernetes.io/ (accessed on 18.05.2023)

12

3.1. Model-Driven Development of MSA

croservices. In the proposed approach, following supporting services, Apache JMeter 3

and Kieker 4 are deployed manually later for user workload simulation and application
monitoring. It enables running performance benchmarks on the MSAs.

Sorgalla et al. [Sor+20] present Language Ecosystem for Modeling Microservice Archi-
tecture (LEMMA), a language ecosystem that defines a set of textual Architecture Mod-
elling Languagess (AMLs) for modelling MSAs from different architectural viewpoints.
The authors have implemented all of LEMMA’s AMLs using EMF. Each modelling lan-
guage in LEMMA models data related to specific viewpoints like domain, service and
operation, consequently targeting particular stakeholders and allowing for holistic mod-
elling of MSAs [RSZ19] [Rad+21]. At the same time, to foster collaboration among the
team, these modelling languages are also interconnected [Rad+19]

Montesi, Guidi and Zavattaro [MGZ14] propose Jolie, an open-source service-oriented
programming language which allows defining microservices in a contract-first approach.
Like any other programming language, it defines its own syntax and language constructs
and comes with a language interpreter written in Java. Services written in Jolie com-
prise two parts, namely behaviour and deployment. The behaviour captures the code
representing the functionality offered by the service. It includes primitives for defining
communication and computational constructs. The deployment part captures the in-
formation necessary for establishing communication between services and architectural
primitive data for specifying the application’s structure.

A recent study by Suljkanović et al. [Sul+22] propose Silvera, an open-source declar-
ative language developed for the domain of MSA. It comprises SilveraDSL, a modelling
language for microservices and supportive infrastructural services, and a template-based
code generator that generates microservices using SilveraDSL models. The authors have
created a compiler based on textX 5 to parse SilveraDSL. Silvera supports the registra-
tion of new code generators as plugins and additionally evaluates the architecture of the
designed MSA based on tailored MSA metrics.

In all of the examined studies, we see none exploring the concept of mocking MSAs
through message sequence models, which is the primary differentiation of our research in
this thesis. In addition, out of the many tools and modelling languages discussed, only
Silvera and LEMMA support modelling microservices in polyglot technologies. Never-
theless, their case studies did not incorporate polyglot MSAs, which we include as part
of our work. Furthermore, only studies [DH17] and [Ter+18b] examined some form of
monitoring of the composed MSAs. But, none of the studies researches automated ob-
servability of the composed MSAs, which we investigate and contribute to in this thesis.
Finally, among the discussed tools, we observed an overall lack of automated support in
composing MSAs after the code generation step. Our work uniquely contributes here by
supporting automated build, composition and deployment of MSAs using our prototype
after the code generation process.

3https://jmeter.apache.org/ (accessed on 18.05.2023)
4https://kieker-monitoring.net/ (accessed on 18.05.2023)
5http://textx.github.io/textX/3.1/ (accessed on 18.05.2023)

13

3. Related Work

3.1.2. Open-source Tools

JHipster 6 is an open-source development platform that allows generating, developing,
and deploying fully functional web applications and MSAs containing front-end and
back-end components. It defines a JHipster Domain Language (JDL) to model MSAs.
Modelling of MSAs is easy using JDL because of its user-friendly syntax. JHipster
generates executable microservice applications by transforming the JDL specifications
in an automated manner. This tool supports multiple front-end technologies and a few
specific back-end technologies that are Java-based, Node.js or .NET. Nevertheless, one
needs to manually install respective generators for each technology to create microservice
in that technology and compose them manually to create MSAs.

OpenAPI Generator 7 is an open-source application that uses OpenAPI 8 definitions
to generate API client libraries, server stubs and documentation in an automated man-
ner. It currently has code generators for numerous languages and technologies. The
generated stubs can be used for prototyping applications or in mocking API functional-
ities. Nevertheless, the OpenAPI definition accepted by OpenAPI-Generator does not
support capturing the inter-service API dependencies of microservices which is necessary
to model the API communications of the MSAs.

The differentiating factor to our work in this thesis is that we focus on mocking MSAs
through message sequence models, for which these open-source tools are not designed.
Furthermore, OpenAPI models do not support modelling inter-service communication,
which we address in our metamodel defined in this thesis. In the case of JHipster, there
is only a focus on specific technologies and a lack of support for automated composition
and observability of MSAs. In our work, we address these as part of our prototype,
which would support heterogeneous programming languages and technologies and offer
an automated way to build, compose and deploy observable MSAs.

3.2. MSA Simulation
Khan et al. [Gok+21] present PerfSim, a discrete-event simulation platform that ap-
proximately predicts the performance of cloud-native microservice chains for user-defined
scenarios. The tool supports a set of modelling elements to model different aspects of
cloud-native systems to capture the necessary input data for simulation. The authors
also propose a systematic performance modelling approach outlining the creation of
performance profile models to represent service chains, endpoint functions, hosts and
network topology based on real microservice systems that are to be simulated.

Zhang, Gan, and Delimitrou [ZGD19] propose µqSim, a queuing network simulator
tool designed to simulate interactive microservices. It requires simulation data concern-
ing internal microservice details, inter-microservice topology, path indicating the flow of
requests across microservices, system and resource information, and client requests load

6https://www.jhipster.tech/ (accessed on 18.05.2023)
7https://openapi-generator.tech/ (accessed on 18.05.2023)
8https://www.openapis.org/ (accessed on 18.05.2023)

14

3.3. MSA Observability

pattern as part of multiple input files to run simulations and capture their operational
performance.

The two discussed studies focus on performing a virtual event or queue-based sim-
ulation of microservice systems by collecting the necessary simulation data based on
existing real systems. In contrast, this thesis focuses on generating observable mocked-
up microservices that can be composed and deployed in an automated manner to mock
MSAs. It allows us to interact with the mock MSAs and observe their real-time be-
haviour. Our approach also facilitates researchers to explore novel real-time simulation
techniques using the mocked MSAs.

3.3. MSA Observability
Usman et al. in [Usm+22], conducted a comprehensive survey on the observability in
the domain of distributed edge environments and container-based microservices. Their
study investigated the requirements, best practices and challenges related to the observ-
ability of distributed systems. Their study revealed a collection of available state-of-art
monitoring and observability tools from academia and industry, which they compare
on set criteria. It also captures the fundamental characteristics essential to realise ob-
servability. Furthermore, their study also states that, unlike extensive research in the
monitoring domain, the research on the observability of distributed systems like MSAs
is still evolving and is primarily driven by industries.

Niedermaier et al. [Nie+19] conduct qualitative research on the observability and
monitoring of distributed systems in the industry. In this paper, the authors perform
semi-structured interviews with software professionals from various organisations to un-
derstand and capture the challenges and best practices related to monitoring and ob-
servability of distributed systems. Their study identified nine challenges and fourteen
stakeholder requirements related to the monitoring and observability of distributed sys-
tems. For each, they also gathered possible solutions from the interview participants and
presented the results. They conclude that this topic is not just technical but cross-cutting
and strategic oriented and that there is a need for additional good practices for aligning
technical and business objectives to facilitate effective development and operation.

Marie-Magdelaine, Ahmed and Astruc-Amato [MAA19] conducted a study to demon-
strate an observability framework they implement in collaboration with an industrial
partner. The study offers insights into this framework’s architecture and various ele-
ments and outlines its capabilities. The authors also capture how one can implement a
similar framework by integrating multiple open-source tools.

Heger et al. [Heg+17] propose a study to holistically monitor and observe an applica-
tion’s performance on various levels of abstraction during its operation using continuous
Application Performance Management activities. It outlines the multiple activities in-
volved in this approach and the tooling support available for its realisation.

The existing studies only conduct surveys to identify and discuss the concepts and chal-
lenges behind adopting observability in distributed systems, including MSAs, with only
one providing a high-level demonstration of realising such an observability framework. In

15

3. Related Work

contrast to these studies, in our thesis, we focus on generating observable mock MSAs
in an automated manner to capture various real-time telemetry data and understand
the behaviour of the composed distributed system during its runtime. Nevertheless, we
draw inspiration from the existing research to gain more conceptual knowledge about
observability in MSAs.

16

4. Research Approach and Solution
Concepts

Being abstract is something
profoundly different from being
vague... The purpose of
abstraction is not to be vague,
but to create a new semantic
level in which one can be
absolutely precise.

Edsger Dijkstra

Contents
4.1. Research Phases and Scope . 17

4.1.1. Phase 1: Microservice Attributes Identification and Metamodel
Definition . 18

4.1.2. Phase 2: Generate and Compose Microservices to Mock MSAs . 18
4.1.3. Phase 3: Observability of mocked MSAs 18
4.1.4. Phase 4: Generating and Mocking Polyglot MSAs 18
4.1.5. Scope . 19

4.2. Conceptual Approach to Mocking MSAs 19
4.3. Generating Microservice Applications 20
4.4. Modelling Microservices API Dependency Model (MAPI-DM) 26

4.4.1. Overview of MAPI-DM Definition Process 26
4.4.2. MAPI-DM Meta-Model . 27

In this chapter, to begin with, we discuss our research approach and the scope of this
thesis. Next, we present the process we defined on a conceptual level in order to achieve
this thesis’s vision of mocking MSAs. As part of this, we provide an overview of the
process model and briefly discuss the individual execution steps. Secondly, we examine
in detail the process we defined for generating microservice applications. Finally, we also
present our modelling approach to creating our metamodel.

4.1. Research Phases and Scope

We divided our research into four phases, each contributing incremental value to re-
alise our final vision. Some of these phases consisted of multiple smaller objectives to
achieve the milestones defined for that phase incrementally. We aimed to incorporate

17

4. Research Approach and Solution Concepts

the systematic software development lifecycle process to streamline our development ap-
proach for all the software development activities involved in our research [Som10]. As
we had only six months for the thesis, we decided to adopt the combination of rapid
prototyping and an iterative agile-based development process to create the first proof
of concept quickly and then work towards stable incremental expansion and delivery of
our research artefacts [Som10] [Rup10]. During the research, we adopted the Notion
1 web application as our collaboration platform. We used it for project planning and
tracking activities like defining roadmaps and milestones, for task management using
Kanban boards and as a documentation space to capture all our discussions and design
decisions concerning the thesis activities for its entire duration. Next, we briefly discuss
each phase’s research focus and milestones.

4.1.1. Phase 1: Microservice Attributes Identification and Metamodel
Definition

In the first phase of our roadmap, we planned to identify various microservice attributes
and define our metamodel capable of capturing the identified microservice attributes
and inter-service API dependencies. Developing this metamodel would contribute to
achieving our first milestone.

4.1.2. Phase 2: Generate and Compose Microservices to Mock MSAs

The second phase consisted of two focus areas. The first focus was to capture MSA
data as part of concrete domain-specific models conforming to our defined metamodel
and to identify an approach to transform these models into mocked microservices using a
prototype application. Our second focus was investigating how to compose and construct
MSAs using the generated mocked microservices. Completing the two goals would allow
us to achieve our milestone of creating mocked MSAs.

4.1.3. Phase 3: Observability of mocked MSAs

In this third phase of our research, we aimed to focus on understanding and incorporating
MSA observability design patterns to comprehend the behaviour of our mocked MSAs.
Achieving this milestone would allow us to gather vital run-time insights on our mocked
MSAs.

4.1.4. Phase 4: Generating and Mocking Polyglot MSAs

In our research’s fourth and final phase, we focused on the support for generating poly-
glot microservices. It allows us to reap the benefits of numerous programming languages
and technologies and select the most appropriate one for each microservice based on our

1https://www.notion.so/ (accessed on 18.05.2023)

18

4.2. Conceptual Approach to Mocking MSAs

use case. Generating polyglot microservices would allow us to achieve our phase mile-
stone of composing and mocking observable polyglot MSAs, which are steadily becoming
prevalent in industries.

4.1.5. Scope
In this thesis, we restrict the inter-service API communication between the generated
microservices in the mocked MSAs to using HTTP. All APIs adopt the RESTful de-
sign principles for managing a resource’s state. In addition, all the REST API requests
between the microservices will be synchronous and blocking in nature, such that any re-
quests received by microservices are processed immediately, and further code execution
is blocked on the clients until the server returns a response or an error message. As well
as, the generated microservices are strictly mocked versions of the existing/envisioned
applications that do not encapsulate any business logic. Furthermore, this study was
limited to simulating MSAs where the inter-service communication between microser-
vices occurs only via the RPI strategy and not via message queueing or publish and
subscribe patterns.

4.2. Conceptual Approach to Mocking MSAs
After understanding the different phases and scope of our research, in this section, we
provide a conceptual understanding of the strategy adopted in the thesis to generate
microservice applications to mock MSAs. Figure 4.1 offers a high-level illustration of
our process outlining the necessary prerequisite data and the various artefacts that are
involved in this mocking process.

Functional
Requirement(s)

Message Sequence
Model(s)

Domain-Specific
Model

PrototypeMicroservicesMicroservice
Application

model model

input

generate
compose and

 deploy

prerequisite data

Figure 4.1.: A conceptual approach to generating microservice applications that can be
used to mock MSAs.

• Prerequisite data: Firstly, we begin with the premise that the required prereq-
uisite data is available in the specified format. In our case, this would be message

19

4. Research Approach and Solution Concepts

sequence model(s) that can be modelled in varied formats illustrating distinct func-
tional requirement(s) of MSAs under study. These models would allow us to infer
the inter-service API dependencies that exist between microservices.

• Domain-Specific Model: Since the message sequence models can have varied
representations, we needed a representation format independent of the message
sequence model representation. Furthermore, we realised that just having infor-
mation on inter-service API dependencies would not be sufficient to generate mi-
croservices. We required a way to capture additional attributes of microservices in
order to model them. For these reasons, we aim to define a metamodel based on the
identified microservice attributes and create domain-specific models conforming to
this metamodel. This way, these models would be independent of the message
sequence models’ representation. In addition, as they conform to our metamodel,
they would also be capable of capturing additional attributes of microservices
besides the information gathered on the sequential ordering of inter-service API
dependencies derived from message sequence models. We discuss the metamodel
definition process and its outcome in Section 4.4.

• Prototype: In our next step, we aimed to transform the domain-specific model
containing the necessary MSA data to executable code. To achieve this, first, we
planned to develop a prototype application capable of taking the domain-specific
model as its input.

• Microservices: Once we had the MSA data from the domain-specific model
inputted to our prototype, as the next step, we wanted to explore microservice
code generation using MDD to generate deployable microservices. To achieve this,
we planned to develop custom code generation logic as part of our prototype to
parse MSA data and generate microservices.

• Microservice Application: Finally, in order to mock MSAs, we planned on com-
posing the individual generated microservices to construct large-scale microservice
applications such that the resulting architecture of these applications are capable
of delivering the modelled functional requirement(s).

We gained a more profound understanding of our conceptual approach during the
thesis. Consequently, it helped us to refine our approach and associated inputs and out-
puts. The following section discusses the process of generating microservice applications
to mock MSAs.

4.3. Generating Microservice Applications
After getting a high-level understanding of our conceptual view to mock MSAs, in this
section, we present the precise sequential flow of execution involved in the process of
generating mocked microservices and composing them to construct elaborate large-scale
microservice applications. We explain the overall execution flow by splitting it across

20

4.3. Generating Microservice Applications

multiple parts and mapping them to our current knowledge of our conceptual approach
to understand the generation process efficiently.

To begin with, the Figure 4.2 represents the first part of the microservice generation
flow, where we use the prerequisite data to manually model a representation of our
domain-specific model as per our metamodel, which is discussed further in Section 4.4.
We named this domain-specific model discussed in our conceptual approach as Microser-
vices API Dependency Model (MAPI-DM).

Microservices API Dependency Model
(MAPI-DM)

Message Sequence Model(s)

model

Microservice A

Request
to API - A1

Microservice B

Dependency Request to API - C1

Response from API - B1

Dependency Request to API - B1

Microservice C Microservice D

Dependency Request to API - D1

Response from API - D1

Response from
API - A1

Response from API - C1

Functional Requirement(s)

model

prerequisite data

MAPI-DM

Figure 4.2.: The manual transformation of the prerequisite data is transformed into
MAPI-DM

21

4. Research Approach and Solution Concepts

Definition 4.3.1: Microservices API Dependency Model (MAPI-DM)

Microservices API Dependency Model (MAPI-DM) is designed to capture the
structural definition of microservices and the relational aspect of their inter-service
API dependencies in sequential order.

In comparison to our conceptual approach, the prerequisite data remained unaltered.
Accordingly, we expected MSAs’ functional requirement(s) to be modelled as message
sequence model(s). For example, the Figure 4.2 shows how a message sequence model
can be represented in a diagrammatic form as a UML sequence diagram. It is essential
to understand that irrespective of the representation format of the message sequence
models, the inter-service API communications between microservices must be captured
in a sequential order to mock the modelled functional requirement precisely. We use
this information on the sequential ordering of communication between microservices
captured as part of message sequence models to infer each microservice’s inter-service
API dependencies. Next, for each microservice, we combine the information on their
inter-service API dependencies with other microservice-specific attributes as outlined in
Section 4.4.2 in order to create MAPI-DM. Furthermore, in Section 4.4.1, we also present
our approach to designing MAPI-DM.

In the next step of the microservice generation process represented by Figure 4.3, we
needed a way to process MAPI-DM. We plan to achieve this by developing the prototype
application mentioned in our conceptual approach. This prototype would have embedded
business logic to parse and process MSA data modelled as MAPI-DM.

Microservices API Dependency Model
(MAPI-DM)

API request

MAPI-DM

Prototype

Figure 4.3.: The input of MAPI-DM to the prototype application via an API request.

As a next step, we had to solve the generation of mocked microservices. To achieve
this, we planned to embed code generation logic in the prototype that we would develop,
allowing it to use the processed MAPI-DM data from the step before to generate mi-
croservices for varied technologies and programming languages as depicted in Figure 4.4.
This capability also ensures polyglot language support, one of the many essential advan-
tages of adopting the microservice architectural style for developing enterprise software

22

4.3. Generating Microservice Applications

applications. In addition, we also wanted to understand the behaviour of the generated
microservices. Our planned approach to realising this is to use the prototype to instru-
ment each generated microservice with a telemetry agent that can capture and export
the microservice’s various telemetry data like metrics, traces, and logs.

Furthermore, creating architectures adopting the best practices of MSA becomes es-
sential for mocking any enterprise-scale microservice applications. As part of this, we
wanted to adopt a way to avoid clients having to interact directly with individual mi-
croservices and also a way to allow each microservice to be discoverable to others within
the MSA network. Therefore, as part of the generation process, we intended to pre-
bundle the generation of specific supportive infrastructural microservices like an API-
Gateway service that we can use to provide clients with a unified interface to interact
with the microservices of the mocked MSAs and also a Service Discovery which we can
use to facilitate microservices to discover other microservices within the MSA network.

Besides this, we also wanted to compose and deploy the generated microservices au-
tomatically. Our planned approach was to generate an MSA composition tool artefact
and a deployment artefact using the same prototype as depicted in Figure 4.4.

Service
Discovery

Microservice
A

Microservice
C

Microservice
D

Microservice
B

generate

Prototype

API Gateway Deployment
Script

MSA
Composition

Tool

Legend

User-Defined Services
(Technology T1)

Bundled Services/Scripts

User-Defined Services
(Technology T2)

Telemetry Data
Instrumentation Agents

Figure 4.4.: Generation of various types of microservices by the prototype after parsing
the MAPI-DM input.

In the final step of this generation process, as illustrated in Figure 4.5, we wanted to
use the generated microservices to create large-scale microservice applications that we
can use to mock MSAs. For this, we intended to use the MSA composition tool artefact
generated by the prototype in the previous step to build and compose all the individual
generated microservices into a more elaborate large-scale microservice application that
we can deploy under a single MSA network. After this, by using the deployment script

23

4. Research Approach and Solution Concepts

the prototype generated in the previous step, we plan to deploy the composed microser-
vice applications to mock the modelled MSAs and use it for simulation purposes.

In addition, we wanted to find a method to automatically collect and visualise the var-
ious telemetry data exported by the telemetry agents that are instrumented in generated
microservices to create highly observable MSAs. Therefore, in this step, we planned to
use the same deployment script to deploy an open-source MSA observability tool possess-
ing a telemetry data collector capable of collecting the telemetry data of microservices
exported by the telemetry agents.

In Figure 4.5, we have represented the infrastructural view of how an example microser-
vice application after its composition and deployment using the composition tool and
deployment script would look. Observing this view, we can infer that the resulting MSA
would comprise the generated microservices, including the supportive infrastructural
services and the open-source MSA observability tool, all deployed on a single network.
The supportive infrastructural services include the API-Gateway service and the Ser-
vice Discovery, whose purpose we have outlined in the step before. The multi-coloured
and textured arrows represent the envisioned communication or data exchange between
microservices and ancillary services to accomplish different goals like inter-service API
communications, service registration or telemetry data collection. Next, we look at the
various arrow types and their purpose.

• Filled Red Arrow: These arrows represent the various communications with the
mocked MSAs having their origin external to the MSA network. These would be
client requests interacting with the microservices of mocked MSAs or the MSA
observability tool.

• Filled Purple Arrow: These arrows represent the inter-service API requests
between microservices that would be internal to the MSA network. We would
derive the collection of permitted communications between microservices from the
data captured as part of MAPI-DM.

• Dashed Blue Arrow: This arrow collection represents the microservices’ requests
to register/deregister themselves from the Service Discovery’s registry upon their
startup/shutdown after deployment/un-deployment. We further discuss the service
discovery MSA design pattern in Section 5.2.1.

• Dashed Pink Arrow: This arrow cluster represents the export of telemetry
data from the telemetry agents instrumented to every generated microservice to
the telemetry collector that would be present in the deployed open-source MSA
observability tool. We discuss more on the concept of MSA observability and its
associated design patterns further in Section 5.2.4

This infrastructural view also depicts a hypothetical example of how complex func-
tional requirements generally require a sequence of API interactions between microser-
vices for their realisation. After acquiring a solid foundation on the overall microservice
application generation process and gaining knowledge on the different artefacts involved
in this process, in the next section, we discuss the approach taken to defining MAPI-DM.

24

4.3. Generating Microservice Applications

Se
rv

ic
e

D
is

co
ve

ry
M

ic
ro

se
rv

ic
e

A
M

ic
ro

se
rv

ic
e

C
M

ic
ro

se
rv

ic
e

D
M

ic
ro

se
rv

ic
e

B

co
m

po
se

 a
nd

 d
ep

lo
y

A
PI

 G
at

ew
ay

D
ep

lo
ym

en
t

Sc
rip

t

M
SA

C
om

po
si

tio
n

To
ol

Le
ge

nd

Ex
te

rn
al

 A
PI

 R
eq

ue
st

s

In
te

rn
al

 A
PI

 R
eq

ue
st

s

Se
rv

ic
e

R
eg

is
tr

at
io

n

Se
nd

 T
el

em
et

ry
 D

at
a

U
se

r-
D

ef
in

ed
 S

er
vi

ce
s

(T
ec

hn
ol

og
y

T1
)

B
un

dl
ed

 S
er

vi
ce

s

U
se

r-
D

ef
in

ed
 S

er
vi

ce
s

(T
ec

hn
ol

og
y

T2
)

Te
le

m
et

ry
 D

at
a

In
st

ru
m

en
ta

tio
n

A
ge

nt
s

A
PI

 G
at

ew
ay

Se
rv

ic
e

D
is

co
ve

ry

M
ic

ro
se

rv
ic

e
A

M
ic

ro
se

rv
ic

e
D

M
ic

ro
se

rv
ic

e
B

M
ic

ro
se

rv
ic

e
C

M
SA

 N
et

w
or

k

A
PI

 -
B

1

A
PI

 -
C

1
A

PI
 -

D
1

M
SA

O
bs

er
va

bi
lit

y
To

ol

A
PI

 -
A

1

Fi
gu

re
4.

5.
:A

n
ex

am
pl

e
ar

ch
ite

ct
ur

al
vi

ew
of

a
co

m
po

se
d

an
d

de
pl

oy
ed

m
ic

ro
se

rv
ic

e
ap

pl
ic

at
io

n
w

ith
in

te
gr

at
ed

M
SA

ob
-

se
rv

ab
ili

ty
to

ol
.

25

4. Research Approach and Solution Concepts

4.4. Modelling Microservices API Dependency Model
(MAPI-DM)

MAPI-DM is one of the core artefacts we introduced as part of this thesis. From the
microservice generation process discussed in the previous section, we understood that
MAPI-DM is fundamental to the overall generation process, capturing the data necessary
for generating microservice applications. To understand further details of this model,
we first look into how we defined it, followed by the metamodel of MAPI-DM.

4.4.1. Overview of MAPI-DM Definition Process

In our approach to defining MAPI-DM, we followed an iterative top to bottom approach
following the steps as described below:

• First, we created an example message sequence model for a hypothetical functional
requirement to model our prerequisite data. We have illustrated this example as
part of Figure 4.6.

order-service

POST : /orders/

catalogue-service

response

GET : /items/{item-id}

inventory-service

GET : /items-stock/{item-code}

response

shipping-service payment-service

POST : /shipping/

response

POST : /payments/

response

response

Figure 4.6.: Representative example of the message sequence model acting as our pre-
requisite data.

• Next, using this prerequisite data, we gathered the inter-service API dependencies
for each microservice.

• As the next step, we focused on identifying the attributes necessary for modelling
each microservice. Here we followed a recursive attribute identification approach.
In this approach, we first determined the fundamental high-level attributes required
to model microservices like their functional attributes API endpoints/interfaces
and non-functional attributes like the microservice name and version. As the next
step of this recursive approach, we recursively identified attributes for the identified

26

4.4. Modelling Microservices API Dependency Model (MAPI-DM)

fundamental attributes, if any, to create a more granular decomposition of each
attribute.
For example, as part of the API endpoint attribute, we identified further sub-
attributes that model an API endpoint like the API name and the various path
operations corresponding to the different HTTP verbs like GET, POST, PUT and
DELETE. Next, we identified the need for attributes like the path value capturing
path information such as “/items/item-id”, parameters necessary for the operation,
method name and dependencies to model each path attribute.

• We repeated this process over multiple iterations, and in each iteration, we added
new attributes or modified existing attributes during the recursive attribute iden-
tification phase in order to improve and refine our model. For example, in our
second iteration, to support polyglot microservice generation, we introduced the
generator attribute as another fundamental attribute of microservices, allowing us
to specify the technology to utilise when generating them.

• We stopped the iterations once we had identified and refined the attributes neces-
sary to be able to generate deployable mocked versions of microservices for multiple
technologies. As the next step, we expressed these attributes in a generic form to
create the metamodel of MAPI-DM.

4.4.2. MAPI-DM Meta-Model
In this section, we describe the various components that compose MAPI-DM, their
relationship with each other and their attributes. Figure 4.7 depicts the metamodel of
MAPI-DM that we concluded in this thesis. Surely, in its current state, this metamodel
is not final nor complete. It is extensible and adaptable based on the introduction of new
feature requirements or modifications in the future. Next, we discuss each component
of the MAPI-DM metamodel and their associated attributes in more detail.

• MSA: An MSA is composed of at least one microservice. We have yet to identify
any common attributes across all the microservices. But it would be an ideal
location to capture any externalised configurations that would be applicable to all
the microservices in the architecture.

• Service: The Service component consists of elements applicable to an individual
microservice. We have identified the following attributes under this component:

– serviceName: This attribute captures the name of the microservice.
– generator: This attribute captures the type of technology that will be

utilised during the microservice generation process. This attribute has a de-
fault value set to “spring” if not specified.

– version: This attribute represents the version of the microservice configura-
tion. It was introduced to support configuration versioning in future. It has
a default value set to “1” if not specified.

27

4. Research Approach and Solution Concepts

Service

 serviceN
am

e: string
 generator: enum

 [spring, fastapi]
 version: integer
 instances: integer

M
SA1..*

1

Path

 path: string
 httpM

ethod: enum
 [get, post, put, delete]

 m
ethodN

am
e: string

 operationSum
m

ary: string

11..*

Param
eter

 nam
e: string

 dataType: enum
 [string, integer, float, boolean, list, user-defined-type]

 elem
entType: enum

 [string, integer, float, boolean, user-defined-type]
 userD

efinedType: string
 position: enum

 [body, path, query]
 isR

equired: boolean

0..*
1..*

D
ependency

 serviceN
am

e: string
 apiN

am
e: string

 version: integer
 path: string
 httpM

ethod: enum
 [get, post, put, delete]

 isInternalD
ependency: boolean

1..*
0..*

R
esponse

 dataType: enum
 [string, integer, float, boolean, list, user-defined-type]

 elem
entType: enum

 [string, integer, float, boolean, user-defined-type]
 userD

efinedType: string

1 1

A
PI

 version: string
 apiN

am
e: string

 basePath: string
 isInternalA

pi: boolean

11..*

LEG
EN

D

R
equired attributes

O
ptional attributes w

ith default values

C
onditionally optional attributes

Figure
4.7.:State

ofthe
M

A
PI-D

M
m

etam
odelas

concluded
in

this
thesis.

28

4.4. Modelling Microservices API Dependency Model (MAPI-DM)

– instances: The attribute records the initial number of to-be-deployed mi-
croservice instances. The default value for this attribute is set to “1” if not
specified.

A Service component must consist of at least one API endpoint that can be pub-
lished externally or used for internal consumption. Next, we discuss the attributes
of the API component.

• API: This component encapsulates all the common attributes of a microservice’s
API endpoint. Every API endpoint must be associated with a specific Service
component representing a microservice. We have identified the following attributes
as part of this component:

– version: This attribute captures the version number of the API. A microser-
vice can possess numerous APIs, each having a different version. It has a
default value set to “1” if not specified.

– apiName: We use this attribute to capture the API name.
– basePath: APIs generally expose multiple paths, each performing a spe-

cific HTTP verb action like GET or POST. But these paths usually share a
common path URL structure, for example, “/payments/” and “/payments/-
paymentId”. The basePath attribute captures a particular API endpoint’s
common portion of the path Uniform Resource Locators (URLs). The base
path value in our example will be “/payments”. Separating this provides
consistency and simplifies the path URL data across the API by preventing
repetition.

– isInternalApi: If set to “false”, this boolean attribute indicates that the API
is published externally and clients external to the MSA network can invoke
it. On the contrary, if set to “true”, it means the API is published internally
and is accessible only to other microservices within the MSA network. If not
specified, it has a default value of “false”.

Every API component has at least one Path component that expresses one of the
allowed HTTP verb actions to manage the state of resources concerning the API.

• Path: Every Path component is associated with an API component, represent-
ing one of the allowed HTTP verb actions performed in order to manipulate an
API resource’s state. We have identified the following attributes as part of this
component:

– path: This attribute captures the distinct part of the path URL for a Path
component realising a particular HTTP verb action.

– httpMethod: The httpMethod attribute records the HTTP verb action
performed by the API to manipulate the state of a resource.

– methodName: This attribute captures a generic method name to represent
the path action when translating the model to code.

29

4. Research Approach and Solution Concepts

– operationSummary: This attribute captures a short description of the op-
eration carried out by the path action for documentation purposes. It has a
default value set to “operation-summary-not-defined”.

In addition to the above-discussed common attributes, every Path component con-
sists of at most one Response component and zero or more Parameter and Depen-
dency components. Next, we discuss these components’ purpose and individual
attributes in detail.

• Response: A Response component is always associated with a Path component.
It consists of attributes that record the information on the payload returned by
the API when the HTTP action represented by the Path component is executed.
We have currently identified the following attributes as part of this component:

– dataType: This attribute records the data type of the response that gets
returned after the execution of a path action for an API endpoint. Currently,
we support a predefined set of data types as documented in the metamodel
in Figure 4.7.

– elementType: This attribute captures the data type of the individual ele-
ments of a list. This attribute is conditional and is required if the dataType
attribute is selected as a list.

– userDefinedType: This attribute captures the data type of the user-defined
types. This attribute is conditional and is required if the dataType attribute
is selected as a user-defined-type.

• Parameter: The Parameter component captures the details of the various pa-
rameters the Path component requires during its execution. We have primarily
identified the following attributes under this component:

– name: This attribute records the parameter name.

– dataType: This attribute records the data type of the response that gets
returned after the execution of a path action for an API endpoint. Currently,
we support a predefined set of data types as documented in the metamodel
in Figure 4.7.

– elementType: This attribute captures the data type of the individual ele-
ments of a list. This attribute is conditional and is required if the dataType
attribute is selected as a list.

– userDefinedType: This attribute captures the data type of the user-defined
types. This attribute is conditional and is required if the dataType attribute
is selected as a user-defined-type.

– position: This attribute captures the parameter’s position depending on
whether the input is part of the request body, as a path variable in the path
URL, or as a query parameter.

30

4.4. Modelling Microservices API Dependency Model (MAPI-DM)

– isRequired: This boolean-valued attribute indicates if the parameter is
mandatory or optional. If not set, it has a default value of “false”.

• Dependency: Finally, the Dependency component expresses the sequential or-
dering of the inter-service API dependency requests made during the execution
of a particular Path component for a given API of a microservice. The different
attributes part of this component are as follows:

– serviceName: This attribute captures the name of the dependency microser-
vice.

– apiName: This attribute captures the name of the dependency API offered
by the dependency microservice.

– version: This attribute captures the version of the dependency API. It has
a default value set to “1” if not specified.

– path: This attribute captures the distinct part of the path URL for the
executed Path component.

– httpMethod: The httpMethod attribute records the HTTP verb action
performed by the dependency API to manipulate the state of a resource.

– isInternalDependency: If set to “false”, this boolean attribute indicates
that another microservice offers the dependency API, which makes it an inter-
service API dependency. On the contrary, if set to “true”, it means the
dependency API is one of the APIs offered by the same microservice and is
an internal API dependency. If not set, it has a default value of “false”.

MAPI-DM Design Decisions

After understanding the metamodel of MAPI-DM, we now discuss the various design
decisions we considered when defining it.

• Microservice Dependencies: When capturing dependency APIs for a microser-
vice as part of MAPI-DM, we decided to capture only the direct API requests made
by that microservice to other microservices in the sequential order of their invoca-
tion without involving any of the indirect API requests that further occur between
other microservices to fulfil that request. For example, in Figure 4.6, when cap-
turing the dependency APIs for “order-service”, we consider only the direct API
requests made by “order-service” to other microservices in their sequential order.
It means our first dependency API entry would be the GET API request “/item-
s/itemId” to the “catalogue-service”, secondly the POST API request “/shipping/”
to the “shipping-service”, and lastly, the POST API request “/payments/” to the
“payment-service”. We need to understand here that we do not consider any indi-
rect API requests made by other microservices as a dependency of “oder-service”
when modelling the MAPI-DM data for “order-service”. An example of such indi-
rect API request would be the GET API request “/items-stock/item-code” made

31

4. Research Approach and Solution Concepts

by the “catalogue-service” to the “inventory-service” as illustrated in the same
example in Figure 4.6.
Following this approach allowed each microservice to include only the fragment of
dependency information that is necessary to model itself, thus keeping the depen-
dency data compacted in the resulting model. Furthermore, we eventually model
the required functional requirements when we realise these fragments of depen-
dency API information for each microservice.

• Data-type support: In addition to any user-defined complex data types, we
decided to support a subset of the standard set of data types available across
many programming languages and used most commonly when developing REST
APIs.

• Input characters restrictions: To keep input consistent and have predictability
in code generation logic, we mandate input values of MAPI-DM to obey lowercase
convention with additional rules on the allowed list of characters.

32

5. Design
There are two ways of
constructing a software design.
One way is to make it so simple
that there are obviously no
deficiencies. And the other way
is to make it so complicated that
there are no obvious deficiencies.

Charles Antony Richard
Hoare

Contents
5.1. Design of MSA-Gen Application . 33

5.1.1. Architecture . 33
5.1.2. Design Decisions of MSA-Gen 35

5.2. Microservice Application Composition and Observability 41
5.2.1. Communication Patterns . 42
5.2.2. Handling Cross-Cutting Concerns using Service Template Pattern 44
5.2.3. Deployment Pattern using Service Instance per Container 45
5.2.4. MSA Observability . 46

Software design is an integral part of software engineering. It helps us define our
application’s overall structure and the organisation of its various components [Som10].
In this chapter, we first discuss the architecture of our prototype application, which we
name MSA-Gen. Next, we discuss our different design decisions and the various design
patterns we adopted during the development stages. Finally, we examine the various
best practices and MSA design patterns we used to compose microservice applications
and support observability.

5.1. Design of MSA-Gen Application
In this section, we first outline the MSA-Gen web application’s architecture and discuss
our design decisions.

5.1.1. Architecture
MSA-Gen, short for Microservice Architecture-Generator, is a web application that we
developed according to the Model-View-Controller (MVC) architectural style[Fow+02].

33

5. Design

In Chapter 6, we discuss the various technologies we used to develop the MSA-Gen web
application. This web application exposes an API endpoint as captured in Figure 5.1
that accepts MAPI-DM as its input which contains data on microservices and their
associated API dependencies. At the core of MSA-Gen is custom data transformation
logic that parses and validates the MAPI-DM data using schema models conforming to
our MAPI-DM metamodel. In addition, it also incorporates the following code genera-
tors that contain code generation logic for a specific technology. These code generators
use microservice templates written using a templating engine and the parsed MAPI-
DM data in order to render microservices and other supportive infrastructural services
as illustrated in Figure 5.1. In addition to the microservice templates, each genera-
tor comprises generator-specific configuration files used to configure various generator
parameters. Next, we briefly discuss each code generator and outline its purpose.

Legend

Telemetry Instrumentation
Agent

Microservices API
Dependency Model

(MAPI-DM)

API: /v1/msa-generator/generate

MSA-Gen
Web Application

Spring Cloud
Gateway

Eureka
Service

Discovery
Spring

Microservice
Spring

Microservice
Docker

Compose
Deployment

 Script
FastAPI

Microservice
FastAPI

Microservice

Spring Application
Generator

generate

Technology-Specific
Generators

Internal Use

FastAPI Application
Generator

Generator
Config Files

Docker Compose
Generator
Microservice

Template Files

Generator
Config Files

Microservice
Template Files

Generator
Config Files

Microservice
Template Files

Figure 5.1.: The architecture of the MSA-Gen web application.

• Spring Generator: This generator is responsible for generating Spring Boot
1 technology microservices. Spring Boot technology allows the development of
production-grade standalone applications. It comes bundled with embedded web
servers like Tomcat, production-ready features like health checks and offers sim-
plified build configuration by providing opinionated starter dependencies.

Our Spring microservice generator comprises microservice template files written
according to standard Spring Boot-based Java projects following the standard

1https://spring.io/projects/spring-boot (accessed on 18.05.2023)

34

5.1. Design of MSA-Gen Application

technology-specific guidelines and best practices. This generator is also respon-
sible for generating the following supportive infrastructural services:

– API Gateway Service: This service provides a common external interface
to access the different microservices and simple and resilient mechanisms to
route and filter requests. We discuss this MSA design pattern and its reali-
sation in this thesis in more detail in Section 5.2.1

– Service Discovery: This service maintains a service registry to allow mi-
croservices to register and be discoverable to other microservices within the
network. We discuss this MSA design pattern and present its realisation in
more detail in Section 5.2.1

• FastAPI Generator: This generator handles the generation of all FastAPI tech-
nology microservices. It incorporates microservice template files written according
to standard FastAPI-based Python projects following technology-specific guide-
lines and best practices.

• Docker Compose Generator: The Docker compose generator is a special gen-
erator that is available only for MSA-Gen internal consumption. It generates the
Docker Compose file, which builds individual microservice containers and com-
poses them as a single microservice application that can be deployed as part of a
single shared network.

In addition to the different microservices and composition tools generated by the
generators mentioned above, they also instrument each generated microservice with a
telemetry instrumentation agent discussed in Section 5.2.4. This agent is responsible for
collecting various telemetry data of the individual microservices. Furthermore, MSA-Gen
also generates a deployment script for deploying the composed microservice application
and also an open-source MSA observability tool discussed in Section 5.2.4. We discuss
the technologies used to represent MAPI-DM data and to develop the MSA-Gen web
application in greater depth in Chapter 6.

5.1.2. Design Decisions of MSA-Gen
When developing software applications, their design influences non-functional require-
ments, like performance, maintainability, scalability, and robustness. Developing an
efficient design that structures the various components of a software application is by no
means a trivial task, and it involves making many design decisions. This section presents
the different design decisions taken when developing the MSA-Gen web application.

Object Oriented Design Patterns

Since their inception, design patterns have become the de facto standard when designing
and developing software applications. They provide architects and developers with well-
defined generic solutions to commonly recurring problems when designing and developing

35

5. Design

new software applications. Next, we present the two Object Oriented design patterns
that we incorporated in MSA-Gen during its development.

• Strategy Design Pattern: The Strategy design pattern belongs to the class
of behavioural patterns as classified by Gamma et al., famously known as the
Gang of Four (GoF). As per the authors’ definition, the intent of this pattern is
to create a family of encapsulated algorithms that are interchangeable in nature
[Gam+94]. The participating components of this design pattern, as defined by the
GoF, include the following:

– Strategy: This component is the common interface for all the different con-
crete implementations of the strategy. The Context component uses the
Strategy component to invoke any of the desired algorithms defined by a
ConcreteStrategy component.

– ConcreteStrategy: This component represents concrete algorithm realisa-
tions of the common interface component Strategy.

– Context: This component uses one of the available ConcreteStrategy com-
ponents via a reference carried by the Strategy component.

Our realisation of the Strategy pattern represented in Figure 5.2 includes the “ab-
stract_generator”, acting as our Strategy component, which provides the common
interface defining abstract methods that concrete generators must implement with
specific generation algorithms. Apart from the common abstraction layer, we have
created a second abstraction layer for the programming language represented by
components “abstract_java_generator” and “abstract_python_generator”, which
act as secondary-level Strategy components. They allow defining a default imple-
mentation for any language-specific constructs or configurations that are com-
mon across all the concrete technology generators using that programming lan-
guage. Next, we have the various concrete generators like “spring_generator”,
“fastapi_generator”, and “docker_compose_generator” that act as ConcreteStrat-
egy components implementing technology-specific microservice generation logic.
Finally, we have “msa_generator” acting as the Context component.
Using the Strategy design pattern allowed us to create a family of generator classes
that offer microservice generation strategies for various technologies. Clients can
specify any of the supported generator technology in MAPI-DM in order to take
advantage of different generation strategies to create polyglot microservice applica-
tions. With this pattern, extending MSA-Gen to support microservice generation
for new technologies in future becomes very simple. For example, one can extend
MSA-Gen to support the Flask web framework by just creating a new concrete
generation strategy component called “flask_generator” as a child component of
“abstract_python_generator” containing the logic to generate Flask-based mi-
croservices.

• Factory Method Design Pattern: The Factory Method design pattern belongs
to the class of creational patterns as classified by GoF. The primary intent of this

36

5.1. Design of MSA-Gen Application

ab
st

ra
ct

_g
en

er
at

or

ge
ne

ra
te
()

ab
st

ra
ct

_j
av

a_
ge

ne
ra

to
r

ge
ne

ra
te
()

ab
st

ra
ct

_p
yt

ho
n_

ge
ne

ra
to

r

ge
ne

ra
te
()

m
sa

_g
en

er
at

or

ge
ne

ra
te
_m

sa
()

sp
rin

g_
ge

ne
ra

to
r

ge
ne

ra
te
()

fa
st

ap
i_

ge
ne

ra
to

r

ge
ne

ra
te
()

Pr
og

ra
m

m
in

g
La

ng
ua

ge
Le

ve
l A

bs
tr

ac
tio

n

C
on

cr
et

e
Te

ch
no

lo
gy

Im
pl

em
en

ta
tio

n

do
ck

er
_c

om
po

se
_g

en
er

at
or

ge
ne

ra
te
()

Fi
gu

re
5.

2.
:T

he
U

M
L

di
ag

ra
m

ill
us

tr
at

es
th

e
re

al
isa

tio
n

of
th

e
St

ra
te

gy
de

sig
n

pa
tt

er
n

as
in

th
is

th
es

is.

37

5. Design

pattern is to create a common interface for creating an object but delegate the task
of object instantiation to the subclasses [Gam+94]. The participating components
of this design pattern, as defined by the GoF, include the following:

– Product: This component is the common interface for all concrete objects
created by the factory method.

– ConcreteProduct: This component represents concrete realisations of the
common interface component Product.

– Creator: This component declares an abstract factory method that returns a
Product object. This factory method can also have a default implementation
that returns an instance of ConcreteProduct.

– ConcreteCreator: This component overrides the factory method defined in
the Creator component to return an instance of a particular ConcreteProduct
component.

Our implementation of the Factory Method pattern represented in Figure 5.3 includes
the “abstract_generator”, acting as the Product component, which is the common inter-
face for all other abstract or concrete generators. In addition, we have also created an ad-
ditional layer of abstraction at the programming language level represented by the com-
ponents “abstract_java_generator” and “abstract_python_generator”, which in turn
have concrete generator components that are technology-specific implementations like
“spring_generator” and “fastapi_generator” representing ConcreteProduct components.
We also have a concrete generator implementation, “docker_compose_generator”, for
Docker Compose technology, another ConcreteProduct component. Finally, we have the
“generator_factory” acting as our ConcreteCreator component.

When implementing this design pattern, we use the parameterised factory method
variation described by GoF [Gam+94]. We pass a “service_data” parameter to the
factory method “get_generator” in this variation. As represented in Figure 5.3, this
parameter holds the relevant information for the factory method, which uses conditional
logic to determine the type of generator instance to be created. Using this pattern not
only allowed us to delegate the creation of technology-specific generator instances into a
separate factory method but also to provide a common interface for the various concrete
generators and eliminate the necessity to bind the logic of creating technology-specific
generator instances in the code.

Generator Configuration

With the support of generating microservices in various programming languages using
different technologies, we needed a strategy to handle their configurations efficiently
in order to avoid hardcoding them. Each programming language can have language-
specific configurations like, for example, the compiler/interpreter version to be used
when building and running the generated microservices. Furthermore, each technology,
like Spring and FastAPI, comes with numerous technology-specific configuration options

38

5.1. Design of MSA-Gen Application

ab
st
ra
ct
_g

en
er
at
or

ge
ne

ra
te

()

ab
st
ra
ct
_j
av

a_
ge

ne
ra
to
r

ge
ne

ra
te

()

ab
st
ra
ct
_p

yt
ho

n_
ge

ne
ra
to
r

ge
ne

ra
te

()

sp
rin

g_
ge

ne
ra
to
r

ge
ne

ra
te

()

fa
st
ap

i_
ge

ne
ra
to
r

ge
ne

ra
te

()

ge
ne

ra
to
r_
fa
ct
or
y

ge
t_

ge
ne

ra
to

r(s
er

vi
ce

_d
at

a)

m
at

ch
 s

er
vi

ce
_d

at
a[

"g
en

er
at

or
"]:

 c

as
e

"s
pr

in
g"

:

 r

et
ur

n
Sp

rin
gG

en
er

at
or

(s
er

vi
ce

_d
at

a=
se

rv
ic

e_
da

ta
)

 c

as
e

"fa
st

ap
i":

 r
et

ur
n

Fa
st

Ap
iG

en
er

at
or

(s
er

vi
ce

_d
at

a=
se

rv
ic

e_
da

ta
)

 c

as
e

"d
oc

ke
r-c

om
po

se
":

 r
et

ur
n

D
oc

ke
rC

om
po

se
G

en
er

at
or

(s
er

vi
ce

_d
at

a=
se

rv
ic

e_
da

ta
)

do
ck

er
_c

om
po

se
_g

en
er
at
or

ge
ne

ra
te

()

Fi
gu

re
5.

3.
:T

he
U

M
L

di
ag

ra
m

ill
us

tr
at

es
th

e
re

al
isa

tio
n

of
th

e
Fa

ct
or

y
M

et
ho

d
de

sig
n

pa
tt

er
n

as
in

th
is

th
es

is.

39

5. Design

like version, logging, and project structure. Combining the configuration settings for
diverse programming languages and technologies into a single source creates haphazard
structuring of the configurations making it inefficient and leading to the anti-pattern
“Big Ball of Mud” [FY97]. Our approach to avoid this hurdle was by maintaining
individual configuration files for each language and technology supported by MSA-Gen.
As a result, it allowed each configuration file to be compact and focused by adopting the
concept of separation of concerns in the context of configuration.

In addition, we also support the option of configuration overriding in a hierarchical
structure where any child configuration can always override the configurations of the par-
ent by redefining them in its file with new values. This configuration overriding concept
becomes necessary when we have multiple technologies depending on the configurations
of a common programming language but simultaneously require different values to a
part of the configurations based on their use case. For example, FastAPI and Flask are
both technologies that use Python programming language and hence rely on its config-
uration. With the option to override configuration, these technologies can now override
the default version of Python and use different versions of the programming language
based on their individual generation strategy.

Selection of Generator Technologies

After understanding the necessity and benefits of having independent configurations for
each technology, we next discuss the criteria that were considered when selecting Spring
and FastAPI technologies as our starting point in this thesis.

• Prior Experience: We used this criterion to account for any existing experience
in developing enterprise microservice applications using a given technology and
programming language. Having a higher technology experience shortens the time
required to get started and develop a new microservice generator for that tech-
nology which is advantageous when adopting a rapid prototyping development
strategy as in this thesis.

• Documentation and Learning Resources: We used this criterion to evalu-
ate the availability of proper documentation and learning resources for a given
technology. Having this aids in faster learning and adoption of new technologies.

• Supportive Tool Integrations: As part of this criterion, we evaluated the sup-
port of different tools that we could rapidly integrate as part of a single ecosystem
to realise common patterns when developing applications following microservice
architectural style. For example, Spring is one of the most widely adopted frame-
works for developing resilient enterprise Java-based applications. This technology
offers a comprehensive ecosystem of supporting frameworks like Spring Cloud that
offer tools to realise various distributed systems patterns like intelligent routing,
service discovery, and configuration management.

• Supported Features: When evaluating this criterion, we performed a mutual
comparison of the different features offered by related technologies and used the

40

5.2. Microservice Application Composition and Observability

collected information to select the technology that offered additional supporting
features apart from the features relevant to satisfy the scope of this thesis. The
result of such a comparison between FastAPI and Flask web frameworks for gener-
ating Python-based microservices is presented in Table 5.1. We decided to adopt
FastAPI over Flask due to its advantages, like native support for both synchronous
and asynchronous task executions, API documentation, and data validation and
serialisation.

• Future use cases: Using this criterion, we evaluated technologies to understand
their compatibility and support for future enhancements that can possibly be an ex-
tension of this thesis’s work. For example, technologies that support asynchronous
modes of inter-service communication and task executions in addition to the syn-
chronous mode.

Upgrade of Third Party Libraries in Microservice Templates

All generated microservices depend on one or more third-party libraries during their
runtime or compile time. It becomes necessary to upgrade these dependencies during
new releases, which requires incrementing the dependency artefact’s version number
in the generator configuration. After exploring a few alternatives for performing an
automatic upgrade of dependencies and testing them out, we decided to keep this as a
manual approach for the following reasons:

• New releases of third-party dependencies can introduce breaking changes compared
to their previous versions. As a consequence, it would require further changes to
the existing microservice templates in order to function correctly. We could not
identify any straightforward solution to automatically make these changes in the
templates for different technologies.

• Alternative search and upgrade solutions were necessary when an automatic depen-
dency upgrade mechanism was unavailable for a particular technology. Developing
a service that offers a generic solution to this problem was beyond the scope of
this thesis.

5.2. Microservice Application Composition and Observability
Developing enterprise-scale microservice applications with a sound architectural design
is no trivial task, and MSA is not a silver bullet to everything. This architectural
style also has its own issues, which must be addressed when designing an enterprise
application. For example, due to the distributed nature of MSAs, reliable inter-service
communication between microservices can be challenging. Furthermore, the architecture
can be dynamic and constantly changing in such a distributed system. New microservices
can be spawned up at any instant, or existing microservices can crash or get deleted. In

41

5. Design

Web Framework
Criteria FastAPI Flask

Open Source Yes Yes

Gateway Interface
Specification Type

Asynchronous Server
Gateway Interface (ASGI)

specifications

Web Server Gateway
Interface (WSGI)

specifications
Synchronous

Task Executions Yes Yes

Asynchronous
Task Executions Yes No

Native API
Documentation Support OpenAPI and ReDoc No

Native Data
Validation Support Yes No

Native Data
Serialization Support Yes No

GitHub Stars
(09.04.2023) 56.5k 62.5k

Community Support Relatively small Rich community support

Table 5.1.: Comparison between FastAPI and Flask web frameworks for developing
Python-based microservices.

such a dynamic environment, it becomes necessary that each microservice be discoverable
to other microservices within the network for successful inter-service communication to
occur. To address such issues in the composed MSA, we adopted several MSA design
patterns. These design patterns are part of the more extensive collection of MSA design
patterns that together form the microservice architecture pattern language [Ric19].

5.2.1. Communication Patterns

In this section, we discuss the set of MSA design patterns related to microservices’ com-
municational aspects. We first describe the mechanism that we adopted for realising
inter-service communications between microservices within the MSA network. Next,
we explain the design pattern adopted to streamline external communications between
clients and microservices. Finally, we discuss a design pattern that facilitates the discov-
ery of microservices within the MSA network for enabling a resilient form of inter-service
communications.

42

5.2. Microservice Application Composition and Observability

• Synchronous RPI using REST: In Section 2.1, we learnt about the various
protocols that microservices use for inter-service communication. In this thesis,
we implement the inter-service communication between microservices using syn-
chronous RPI pattern using REST for all microservices generated by MSA-Gen
[Ric19]. This communication form follows the request/response style, where clients
send requests to the services via the RESTful APIs exposed by the services to ma-
nipulate the state of resource objects. The service then processes these requests
and sends back a response to the clients.

• API Gateway Pattern: In contrast to inter-service communication, external
communication between clients and microservices also exists. In enterprise MSAs,
it is challenging for clients to keep track of the microservices they must commu-
nicate with to realise specific functional requirements. Tracking and composing
this information is undesirable as it fails to encapsulate and hide the application’s
decomposition from the clients. It creates a tight coupling between clients and the
application’s internal architecture, which can negatively affect future architectural
changes. In order to overcome such issues, we adopted the API gateway pattern.
In this thesis, we use the Spring Cloud Gateway 2 project offering an API Gateway
service. This service delivers a unified interface for clients to communicate with
the application’s microservices as depicted in Figure 5.4. It is primarily responsible
for API compositions and routing client requests to the appropriate microservice.
In addition, API Gateway can also handle cross-cutting concerns like request rate
limiting and implementing central security measures for every external request
made to the MSA network.

Legend

External API Requests

Internal API Requests
API Gateway

Microservice
A

Microservice
B

Microservice
C

MSA Network

Consumer
Application

Figure 5.4.: API-Gateway design pattern offering clients a unified interface to commu-
nicate with application’s microservices.

• Service Discovery using Self-Registration Pattern: Another issue in en-
terprise MSAs is that they can contain hundreds of microservices, each running
multiple instances. These can change dynamically at any point in time when-
ever there are failures, upgrades or autoscaling. In such scenarios, to carry out
inter-service communication, it becomes necessary for microservices to be able to
discover other microservices within the MSA network. To address this problem, we

2https://cloud.spring.io/spring-cloud-gateway/reference/html/ (accessed on 18.05.2023)

43

5. Design

adopt the Service Discovery pattern. In this pattern, we deploy a Service Discov-
ery microservice that is responsible for maintaining a service registry containing
the network addresses of all the registered and running microservices within the
MSA network. There are several variations for realising this pattern [Ric19]. In
this thesis, we adopted the self-registration approach, as illustrated in Figure 5.5.

We use the Spring Cloud Netflix 3 project that offers Eureka Service Discovery
composed of server and client for realising the service discovery pattern. The
Eureka server acts as our service registry, maintaining the network addresses of
all the registered running microservices within the MSA. Eureka Service Discovery
adopts the self-registration approach. In this variation, every microservice registers
itself with the Eureka server microservice upon startup, making it discoverable to
other microservices within the MSA network and deregisters itself during shutdown
to convey its unavailability. In order to achieve this, we integrate the technology-
specific Eureka client in each generated microservice using simple mechanisms
like annotations. The client also has a bundled load balancer that performs load
balancing in a basic round-robin manner. Once the microservices are registered,
during inter-service communication, the caller microservice obtains the network
address of the callee microservice by querying the service registry maintained by
the Eureka server microservice.

Legend

Service Registration

Service
Discovery

Microservice
A

Microservice
B

MSA Network

Figure 5.5.: Self-registration service discovery design pattern allows services to register
with the service registry and be discoverable in MSAs.

5.2.2. Handling Cross-Cutting Concerns using Service Template Pattern

When developing enterprise microservice applications consisting of numerous microser-
vices, a single technology may be used to develop a set of microservices. In such cases,
creating production-ready microservice templates that handle common project aspects
can be efficient and beneficial, which can be used to set up new microservices quickly.
Drawing inspiration from this pattern, we created microservice project templates for
different technologies that a templating engine can use to render microservices using
MAPI-DM data. These templates address common project attributes like structure,

3https://cloud.spring.io/spring-cloud-netflix/reference/html/ (accessed on 18.05.2023)

44

5.2. Microservice Application Composition and Observability

build management, server stubs and other cross-cutting concerns as illustrated in Fig-
ure 5.6.

Technology Specific Microservice Template

Project Structure Build

Source Code Directory

Tests Directory

Container Files Directory

Build and Dependency
Management Tool

Container Build Tool and
Resources

Source Code
Management Resources

CI/CD Pipeline
Resources

Cross-Cutting
Concerns

Logging

Security

Distributed Tracing

API Documentation

Entities, Models,
Schemas

Controllers

Services

Tests
Service Registration

Resources Directory

Server Stubs

Repositories

Figure 5.6.: Representative outline of a microservice template with the associated project
attributes captured by it.

5.2.3. Deployment Pattern using Service Instance per Container
In this thesis, we adopted the “Service Instance per Container” deployment pattern to
compose and deploy the generated microservices. As illustrated in Figure 5.7, during
the build process, for every generated microservices, we create a container image. Con-
tainer images are lightweight software units that package source code and associated
dependencies like system libraries, third-party libraries and any other dependencies nec-
essary to run a software application. When deployed into a container runtime engine like
Docker, the container images become containers at runtime. These containers offer an
isolated execution environment for software applications. As a consequence, these soft-
ware applications can be executed consistently, quickly and reliably in various computing
environments.

In this thesis, we have chosen Docker 4, particularly Docker Engine and Docker Com-
pose, as our containerisation and composition tool as it is open source, widely adopted in
the industry, and has extensive community support and documentation. Docker software
is used to deliver software in packages known as containers using OS-level virtualisation
techniques. These containers are hosted and run in the Docker Engine. This engine is
an open-source containerisation technology. It is used to build docker container images
and containerise software applications. We use this technology to containerise individual
microservices and compose them all to create and deploy enterprise-scale microservice
applications.

4https://www.docker.com/ (accessed on 18.05.2023)

45

5. Design

Application
Source Code

Image
Build

Base
Container

Image

Containerisation
Tool

Container Runtime
 Engine

Build Process Runtime

Container Instance 1 Microservice
Container

Image

Container Instance 2

multi-instance
 deployment

Running
Application

Running
Application

Figure 5.7.: Service instance per container design pattern to have isolated service de-
ployment.

5.2.4. MSA Observability
After deploying enterprise microservice applications into production, observing and un-
derstanding what is happening in the system is usually challenging due to its distributed
nature. Capturing data on microservices like resource consumption, network traffic, and
service failures allows development teams to proactively improve their performance and
identify issues. Consequently, to generate such observable microservices, in this section,
we discuss the subset of MSA design patterns that we adopted from the ones proposed
by Richardson in [Ric19] and Newman in [New21].

To realise these design patterns most efficiently, in this thesis, we integrated an MSA
Observability tool that uses a telemetry collector to collect various telemetry data such
as logs, traces and metrics from each deployed microservice. Every generated microser-
vice is instrumented with a technology-specific telemetry agent that collects telemetry
data of the microservice and transfers it to the telemetry collector as illustrated in Fig-
ure 5.8. The service consumer can then visualise this data via the UI offered by the
MSA Observability tool. Next, we present the set of MSA Observability design patterns
we adopted and then discuss the Observability framework and tool used in this thesis.

• Log Aggregation: This pattern uses a centralised logging service to aggregate
the logs generated by every microservice into a single data store. These logs can be
useful for analysing application errors, warnings, information, and debug messages.

• Application Metrics: The application metrics pattern allows us to collect mi-
croservice metrics that provide critical data concerning the health of running mi-
croservices. The metrics can include application-level metrics like request rate,
request failures and latency or infrastructure-level metrics such as CPU and mem-
ory resource consumption data. After collection, the metrics are exported to a
centralised metric collection service, where they can be visualised and monitored
by service consumers or by dedicated system administrators.

46

5.2. Microservice Application Composition and Observability

Legend

Transmission of
Telemetry Data

Access
Telemetry Data

Telemetry
Data

Exporter
Agent

MSA Network

MSA
Observability Tool

Telemetry
Data

Collector
Agent

Microservice
A

Telemetry
Data

Exporter
Agent

Microservice
B

Service Consumer

UI
Access

Telemetry
Datastore

Read/Write
Telemetry Data

Figure 5.8.: Telemetry data collection from deployed microservices using an MSA Ob-
servability tool to comprehend their run time behaviour.

• Distributed Tracing: In distributed systems like microservice applications, a
single request originating from the client generally traverses multiple microser-
vices before returning a result. Tracing such requests and identifying the point of
failure can be challenging. For this reason, we have adopted the distributed trac-
ing pattern. In this pattern, we instrumented every microservice with an instru-
mentation agent. This agent assigns each external request called trace, a unique
identifier called a trace identifier. For each operation performed when processing
this request, called a span, gets a span identifier [Ric19]. We then injected these
identifiers into the microservice’s log entries. This data was then utilised to trace
paths of external requests across multiple microservices and determine the point
of failures in MSAs.

• Exception Tracking: Software applications are prone to a wide range of excep-
tions, and microservices are no different. In certain application domains, excep-
tions may require quick handling and alerting. For this reason, we have adopted
the exception tracking pattern. In this pattern, an exception tracking service ac-
cumulates the exceptions that occurred during the microservices’ runtime. This
data can then be used to generate alerts for specific critical exceptions or whenever
a high number of exceptions occur.

• Health Check API: In MSAs, microservices can sometimes be up and running
but cannot handle any requests. The microservice is unhealthy in such situa-
tions as it cannot service any requests. In order to identify the health status of
a microservice, we adopted the health check API pattern. In this design pattern,

47

5. Design

each microservice exposes a health check API endpoint that provides the health
status of the microservice. Supporting services like Service Discovery can query
this endpoint at regular intervals to determine the health condition of the regis-
tered microservices and detect and remove any unhealthy services from the service
registry.

OpenTelemetry Framework

OpenTelemetry 5 is a framework which is composed of APIs, tools and Software
Development Kits (SDKs). It offers mechanisms to instrument application code,
making the systems more observable. This thesis uses OpenTelemetry as the ob-
servability framework because it is open-source and vendor-neutral. It is backed by
several industry leaders in the observability space. Furthermore, as a Cloud Native
Computing Foundation (CNCF) incubating project, it offers cloud-native support,
which is extremely important in developing scalable enterprise-scale MSAs. In
addition, it offers effortless integration of several technology-specific telemetry in-
strumentation agents. In this thesis, we instrumented a telemetry instrumentation
agent to each generated microservice as part of its code. These agents collect var-
ious telemetry data like metrics, traces and logs of the instrumented microservices
and export them over to an OpenTelemetry collector service via OpenTelemetry
Protocol (OTLP) to HTTP or gRPC based endpoints.

SigNoz Application Performance Monitoring (APM) Tool

While OpenTelemetry provided the backbone for MSA observability, we needed a
way to visualise and monitor the collected telemetry data, for which we integrated
the SigNoz 6 tool. Before finalizing on using SigNoz, we made a mutual comparison
with many other popular open-source observability tools based on various criteria
as captured in Table 5.2.
SigNoz is an open-source application performance monitoring tool that uses dis-
tributed tracing to observe, monitor and troubleshoot any issues of software appli-
cations with OpenTelemetry instrumentation. This tool bundles an OpenTeleme-
try collector that collects telemetry data exported by OpenTelemetry agents in-
strumented in microservices. It then aggregates this telemetry data and offers
various dashboards to visualise them and gain valuable insights into the applica-
tion’s behaviour. In this thesis, we use it to monitor application metrics, aggregate
container logs, obtain the microservice application’s architectural overview, trace
external requests across microservices and also for exception tracking.

5https://opentelemetry.io/ (accessed on 18.05.2023)
6https://signoz.io/ (accessed on 18.05.2023)

48

5.2. Microservice Application Composition and Observability
A

P
M

To
ol

s

C
ri

te
ri

a
Si

gN
oz

A
pa

ch
e

Sk
yW

al
ki

ng
a

E
la

st
ic

A
P

M
Se

rv
er

b
Zi

pk
in

c
Ja

eg
er

d
P

ro
m

et
he

us
e

In
st

al
la

ti
on

P
ro

ce
ss

Si
m

pl
e

Si
m

pl
e

C
om

pl
ex

Si
m

pl
e

Si
m

pl
e

Si
m

pl
e

N
at

iv
e

O
T

LP
Su

pp
or

t
Ye

s
N

o
Ye

s
N

o
Pa

rt
ia

l
N

o

M
et

ri
cs

Ye
s

Ye
s

Ye
s

N
o

N
o

Ye
s

Lo
gs

Ye
s

Ye
s

re
q

in
tg

Ye
s

re
q

in
tg

N
o

N
o

N
o

D
as

hb
oa

rd
s

Ye
s

Ye
s

Ye
s

re
q

in
tg

N
o

N
o

Ye
s

D
is

tr
ib

ut
ed

Tr
ac

in
g

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Se
rv

ic
e

M
ap

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

G
it

H
ub

St
ar

s
(0

9.
04

.2
02

3)
12

.4
k

21
.6

k
1.

1k
16

.1
17

.4
k

47
.5

k

Ta
bl

e
5.

2.
:C

om
pa

ris
on

be
tw

ee
n

di
ffe

re
nt

op
en

so
ur

ce
A

PM
to

ol
s.

T
he

su
pe

rs
cr

ip
t“

re
q

in
tg

”
in

di
ca

te
s

th
at

fu
rt

he
r

in
te

gr
a-

tio
n

w
ith

ot
he

r
to

ol
s

is
ne

ce
ss

ar
y

to
su

pp
or

t
th

e
cr

ite
rio

n
in

th
at

to
ol

.
a ht

tp
s:/

/s
ky

w
al

ki
ng

.a
pa

ch
e.

or
g/

(a
cc

es
se

d
on

18
.0

5.
20

23
)

b ht
tp

s:/
/w

w
w

.e
la

st
ic

.c
o/

gu
id

e/
en

/a
pm

/g
ui

de
/8

.7
/a

pm
-o

ve
rv

ie
w

.h
tm

l(
ac

ce
ss

ed
on

18
.0

5.
20

23
)

c ht
tp

s:/
/z

ip
ki

n.
io

/
(a

cc
es

se
d

on
18

.0
5.

20
23

)
d ht

tp
s:/

/w
w

w
.ja

eg
er

tr
ac

in
g.

io
/

(a
cc

es
se

d
on

18
.0

5.
20

23
)

e ht
tp

s:/
/p

ro
m

et
he

us
.io

/
(a

cc
es

se
d

on
18

.0
5.

20
23

)

49

6. Implementation
Measuring programming progress
by lines of code is like measuring
aircraft building progress by
weight.

Bill Gates

Contents
6.1. Data and Configurations . 51
6.2. Frameworks . 52
6.3. Tools . 53

This chapter discusses the technologies we used to develop MAPI-DM and the MSA-
Gen web application.

6.1. Data and Configurations
This section discusses the various data and configuration representation formats and
languages used in developing MAPI-DM and the MSA-Gen web application. For each
representation format, we first give a brief description. After that, we discuss where we
used it in this thesis and outline the reasons for choosing the formats.

JavaScript Object Notation (JSON)

In this thesis, for representing the data of MAPI-DM and also for all exchange of the
payloads between the microservices, we use JavaScript Object Notation (JSON) 1, a
lightweight data-interchange format. An example of MAPI-DM represented in JSON
format is illustrated by Figure 8.1. We decided to use JSON because it is a language
and framework-independent data representation format. Its self-describing and simple
hierarchical data representation structure make it human-friendly to read and write.
In addition, due to its compactness and simple textual representation, simple editors
can be used to view and edit it easily. Furthermore, as its structure follows specific
guidelines outlined by different standards, machines can efficiently and quickly parse
and generate JSON files. It is also one of the most widely adopted data exchange
formats for developing RESTful APIs over HTTP.

1https://www.json.org/json-en.html (accessed on 18.05.2023)

51

6. Implementation

YAML Ain’t Markup Language (YAML)

YAML 2 is a programming language agnostic data serialisation language. In this thesis,
YAML is used to capture the configurations of the different microservice generators of
the MSA-Gen web application. We used YAML for this purpose because its human-
friendly design makes it easy to read and understand. It is also one of the most popular
ways to represent the configuration files of applications. Figure 6.1 shows a snippet of
the configuration file of the Spring microservice generator.

Figure 6.1.: A snippet of the Spring microservice generator configuration written in
YAML.

6.2. Frameworks
In this section, we discuss the web framework that we used to develop the MSA-Gen
application. We first briefly describe the framework and then discuss the different frame-
work features we leveraged in developing the MSA-Gen web application.

FastAPI

The core of the MSA-Gen web application is developed using FastAPI 3. FastAPI is a
high-performance web framework used to develop web applications in Python program-
ming language. Learning it and developing lightweight, fast and robust production-ready

2https://yaml.org/ (accessed on 18.05.2023)
3https://fastapi.tiangolo.com/lo/ (accessed on 18.05.2023)

52

6.3. Tools

web applications is easy. In Table 5.1 presented in the previous chapter, we outlined the
various advantages of this framework by comparing it to another popular Python-based
web framework called Flask 4.

In this thesis, using FastAPI allowed us to document our microservice generation API
endpoint using the built-in support for OpenAPI documentation. In addition, the built-
in integration of the Pydantic 5 Python library as part of the framework allowed us
to realise data parsing and validation effortlessly. We used Pydantic to define schema
models for each component of the MAPI-DM metamodel containing the attributes de-
fined for that particular component as shown in Figure 4.7. These schema models were
also used to parse the MAPI-DM data represented in JSON format and also to perform
validation checks during the parsing process to prevent the input of invalid MAPI-DM
data.

6.3. Tools
This section discusses the various tools we used as part of the MSA-Gen application
for its development and distribution. We first discuss the templating engine adopted in
this thesis to create the technology-specific microservice templates used for microservice
generation. After that, we briefly discuss the tool used to containerise the application
for easier distribution.

Jinja Templating Engine

Jinja 6 is a widely used open-source templating engine for Python programming lan-
guage, the underlying programming language used for developing the MSA-Gen web
application. The advantages of using Jinja are that it is fast, expressive and extensible.
It allows the creation of template files that carry special placeholders like “{% ... %}”
and “{{ ... }}”, as illustrated in Figure 6.2. The templating engine accepts rendering
data as input that the engine will use to replace the special placeholders present in the
template files to render final concrete files with the necessary data.

This thesis uses Jinja templating engine to write various template files for microser-
vices. These template files differed based on the underlying technology used to develop
the microservices. We use MAPI-DM as our input rendering data, which Jinja uses
together with the technology-specific microservice templates to generate microservices
for different technologies.

Furthermore, the extensible part of Jinja allowed us to write custom filters that we
could later use in the microservice template files. We implemented filters for code case
conversion as different programming languages specify different styles for writing code.
For example, when writing code using Java programming language, the best practice is
to use camel case style, while the best practice for writing Python language code is to use

4https://flask.palletsprojects.com/en/2.3.x/ (accessed on 18.05.2023)
5https://docs.pydantic.dev/latest/ (accessed on 18.05.2023)
6https://jinja.palletsprojects.com/en/3.1.x/ (accessed on 18.05.2023)

53

6. Implementation

Figure 6.2.: A snippet of microservice template file written in Jinja.

snake case style. In addition, we also implemented filters that allowed us to convert the
generic data type values specified in MAPI-DM into programming language-specific data
types. This conversion was necessary because the keywords used to represent data types
differ for different programming languages. For example, in Java, the keyword “String”
is used to define a variable of string data type. In contrast, in Python, we use the
keyword “string”, all in lowercase characters, to define a string variable. To conclude,
Jinja templating engine offered many possibilities for extensions wherever necessary,
allowing us to design complex and robust templates effortlessly.

Docker

We used Docker in MSA-Gen to containerise the application so that it can be run in an
isolated and self-sufficient container environment and easily deployed on any operating
system with support for running Docker. We have already discussed Docker and its
advantages that we benefit from in Section 5.2.3.

54

7. Evaluation Approach
Any program is only as good as
it is useful.

Linus Torvalds

Contents
7.1. Evaluation Strategy . 55

7.1.1. Case Study E-commerce Microservice Application 55
7.1.2. Modelling the Prerequisite Data for Evaluation 58
7.1.3. Test System Configuration 63

7.2. Evaluation Tasks . 64

This chapter first outlines our evaluation case study and strategy. Next, we list the
different evaluation tasks and discuss their purpose.

7.1. Evaluation Strategy

Enterprise MSAs are generally composed of hundreds of microservices that interact with
each other to form a complex system. In order to obtain a most practical understanding
of the advantages and drawbacks when using our implemented approach to mock such
MSAs, we designed a hypothetical E-commerce application for our evaluation case study
following the exemplary MSA pattern where we broke down the entire application into
a suite of autonomous services [Ric19].

7.1.1. Case Study E-commerce Microservice Application

The E-commerce case study application was partially inspired by the open-source project
“e-commerce-microservices-sample” consisting of just five microservices [Rav]. We par-
tially adopted this design and extended the case study architecture by introducing addi-
tional microservices to closely resemble a large-scale MSA. Our runtime MSA consisted
of thirty microservices in total, of which nineteen were E-commerce application microser-
vices captured as part of MAPI-DM, two other microservices included the API-Gateway
Service and the Service Discovery, which are generated out of the box by MSA-Gen
during the microservice generation process. Finally, the remaining nine microservices
belonged to the SigNoz APM tool that was deployed for facilitating MSA observability
[Ric19].

55

7. Evaluation Approach

Next, we present the list of E-commerce microservices we defined, describe their pur-
pose, and list the different API endpoints they expose.

• Advertisement Service: This microservice offers functionality for managing
advertisements for the E-commerce microservice application.

– advertisement: API endpoint to create, retrieve, update and delete adver-
tisements.

• Authentication Service: This microservice provides all authentication-based
functionality for users and merchants.

– user-authetication: API endpoint to provide authentication for user login
and logout.

– merchant-authetication: API endpoint to provide authentication for mer-
chant login and logout.

• Blog Service: This microservice offers functionality to manage the information
published to the blogs of the E-commerce microservice application.

– blog-post: API endpoint to create, retrieve, update and delete blog posts.

• Career Service: This microservice handles all career-related aspects like open
positions management of the E-commerce microservice application.

– job: API endpoint to create, retrieve, update and delete job posts.

• Catalogue Service: This microservice manages the catalogue of items sold by
the E-commerce microservice application.

– item: API endpoint to create, retrieve, update and delete items from the
catalogue.

• Customer Support Service: This microservice offers the functionality for cus-
tomers to raise their concerns with the customer support team of the E-commerce
microservice application.

– support: API endpoint to create, retrieve, update and delete customer sup-
port tickets for any issues.

– feedback: API endpoint to add, retrieve and delete feedback provided by
customers to the support they received from the customer support team.

• Inventory Service: This microservice manages the inventory data for each item
in the catalogue of the E-commerce microservice application.

– item-stock: API endpoint to create, retrieve, update and delete item stock
value for items in the catalogue.

56

7.1. Evaluation Strategy

• Loyalty Program Service: This microservice allows users to register and par-
ticipate in the loyalty bonus programmes offered by the E-commerce microservice
application.

– loyalty-program: API endpoint to register, retrieve, update and deregister
users from the loyalty bonus programmes.

• Merchant Service: This microservice allows the onboarding of new merchants
to the E-commerce platform where they can sell their products.

– merchant: API endpoint to register, retrieve, update and deregister mer-
chants from the E-commerce microservice application.

• Notification Service: This microservice subscribes, creates and forwards all no-
tifications for the E-commerce microservice application.

– subscription: API endpoint to subscribe, retrieve and unsubscribe to dif-
ferent notifications.

– notification: API endpoint to provide the functionality to send notifications
to specific users or broadcast them to all registered users.

• Order Service: This microservice is responsible for processing orders placed by
the users of the E-commerce microservice application.

– order: API endpoint to create, retrieve, update and cancel orders placed by
users.

• Payment Service: This microservice handles all the payment functionality when
users proceed to pay for their orders on the E-commerce microservice application.

– payment: API endpoint to create, retrieve, update and cancel user pay-
ments.

• Policy Service: This microservice manages all the user-relevant policies-related
data outlined by the E-commerce microservice application.

– policy: API endpoint to create, retrieve, update and delete policies.

• Review Service: This microservice provides functionality to manage user reviews
for the list of items in the catalogue.

– review: API endpoint to create, retrieve, update and delete user reviews
only for the products they have purchased.

• Search Service: This microservice offers search-related functionality to users.

– search: API endpoint to search for items in the catalogue.

• Session Service: This microservice manages session data for all the currently
logged-in users and merchants interacting with the E-commerce microservice ap-
plication

57

7. Evaluation Approach

– user-session: API endpoint to create, retrieve, and delete session data for
logged-in users.

– merchant-session: API endpoint to create, retrieve, and delete session data
for logged-in merchants.

• Shipping Service: This microservice provides functionality for managing order
shipping and tracking.

– shipping: API endpoint to create, retrieve, update and cancel order shipping
for specific users.

– tracking: API endpoint to retrieve shipping statuses of placed orders for
specific users.

• Shopping Cart Service: This microservice offers the shopping cart and wishlist
functionalities to the users of the E-commerce microservice application.

– cart: API endpoint to create, retrieve, update and delete items from a user’s
shopping cart.

– wishlist: API endpoint to create, retrieve, update and delete items from a
user’s wishlist.

• User Service: This microservice allows users to sign up for the E-commerce
platform to buy products online.

– user: API endpoint to register, retrieve, update and deregister users from
the E-commerce microservice application.

7.1.2. Modelling the Prerequisite Data for Evaluation
Until now, we have obtained an understanding of the E-commerce microservices that we
will be generating and their functionality. Next, we model the prerequisite data neces-
sary to perform the evaluation. We first define an example scenario that captures the
user’s interaction with the E-commerce application. Then, we extract several functional
requirements based on this scenario to simulate it.

User Interaction with the E-commerce Application

The customer’s interaction with the E-commerce application begins with a new registra-
tion on the platform. After registering, the customer signs up for the loyalty program to
gain bonus points. After this, the customer logs in to the created account and browses
the catalogue of available products under different categories and adds a few products
to the wishlist for making a future purchase. The customer subsequently receives an
advertisement from the E-commerce platform about an upcoming sale where products
in the wishlist will be available for a steep discount.

After that, the customer adds the items from the wishlist to the shopping cart and
places the order during the sale. Later, the customer realises that some of the ordered

58

7.1. Evaluation Strategy

products are unneeded. As a result, the customer creates a support ticket to enquire
about the cancellation policy. Based on the input received from the support team,
the customer provides feedback to them and views the cancellation policies of the E-
commerce platform. The customer then cancels the existing order and places a new
order for other products added to the cart. Finally, the customer writes reviews for the
purchased products after their delivery and signs out of the application.

Functional Requirements of the E-commerce Application

Using this example scenario, we next derive several functional requirements as captured
in Table 7.1, which involve the user’s interaction with the designed E-commerce applica-
tion to simulate the scenario. We capture these functional requirements on a high level
and avoid any implementation-level details as the primary intent is to simulate and not
to implement them.

With all the functional requirements listed to realise the example scenario, we next
model each of them as a message sequence model. It is essential to understand that
message sequence models can have varied representation formats, and also, the approach
taken to mock the functional requirements can differ. Next, we present one such possible
approach to mock the discussed functional requirements. In this approach, we use UML
sequence diagrams to model message sequence models. They illustrate the inter-service
API communications between microservices, from which we infer the inter-service API
dependencies for our E-commerce microservices. Due to spatial limitations, we illus-
trate and discuss only two of them here, and we document the remaining as part of
Appendix A.

Figure 7.1 depicts the API communications that occur between microservices when
mocking user registration functional requirements. The “user-service”, after receiving
the request to create a new user, executes the business logic for the user creation and then
makes an inter-service API dependency request to the “notification-service” to send the
registration notification to the newly registered user. After receiving the “notification-
service” response, the “user-service” returns its response to the registration request.

user-service

POST : /users/

notification-service

response

POST : /subscriptions/subscription

response

session-service

response

GET : /user-sessions/{session-id}

Figure 7.1.: Message sequence model illustrating registration of a new user (FR1).

Next, Figure 7.2 depicts the API communications that occur between microservices
when mocking purchase order creation functional requirements. The “order-service”,
after receiving the request to create a new purchase order, makes an API request to the

59

7. Evaluation Approach

ID Functional Requirement (FR)

FR1 The E-commerce microservice application must allow new users to register
to the platform.

FR2 The application must also allow users to register for loyalty-bonus programs
offered by the application.

FR3 The application must allow users to log in to the application after a
successful registration.

FR4 The application must allow users to log out of the application after a
successful login.

FR5 The application must offer search functionality for users to perform item
searches in the catalogue.

FR6 The application must support users in creating wishlists and adding items
to their wishlists.

FR7 The application must support users in adding items either from the
catalogue to their shopping cart directly or from their existing wishlists.

FR8 The application must be able to deliver generic and focused
advertisement notifications to the registered users.

FR9 The application must allow users to place purchase orders for the items
in their shopping cart.

FR10 The application must allow users to view consumer policies outlined by
the company.

FR11 The application must allow users to cancel created purchase orders that are
still in the processing stage.

FR12 The application must support users to view all the purchase orders created
by them.

FR13 The application must allow users to write reviews for the items that they
have purchased.

FR14 The application must offer users to create customer support tickets to raise
any issues or concerns.

FR15 The application must allow users to provide feedback to the customer
support they received from the support team.

Table 7.1.: The list of functional requirements derived from an example user interaction
with the case study E-commerce MSA.

“session-service” to receive user session data. After receiving a response from “session-
service”, it makes subsequent API requests to the “catalogue-service” for fetching in-
formation on the cart items. The “catalogue-service”, in turn, makes API requests to
the “inventory-service” to get the current stock for those items. Following the chain of
events, subsequent API requests are executed by the “order-service” to the “shipping-
service”, “loyalty-program-service”, “payment-service”, and the “notification-service” in
a sequential order to fetch shipping details, loyalty-bonus data, initiate payment for
purchase order and to subscribe and send notifications respectively. After receiving re-
sponses from all the dependency API requests, the “order-service” might execute any
remaining business logic to process the creation of the purchasing order and return the
response to the user.

60

7.1. Evaluation Strategy

or
de

r-
se

rv
ic

e

PO
ST

 :
/o

rd
er

s/

re
sp

on
se

re
sp

on
se

G
ET

 :
/u

se
r-

se
ss

io
ns

/{s
es

si
on

-id
}

ca
ta

lo
gu

e-
se

rv
ic

e

G
ET

 :
/it

em
s/

{it
em

-id
}

re
sp

on
se

sh
ip

pi
ng

-s
er

vi
ce

lo
ya

lty
-p

ro
gr

am
-s

er
vi

ce

PO
ST

 :
/s

hi
pp

in
g/

re
sp

on
se

G
ET

 :
/lo

ya
lty

-p
ro

gr
am

/{u
se

r-
id

}

re
sp

on
se

pa
ym

en
t-s

er
vi

ce
no

tif
ic

at
io

n-
se

rv
ic

e

PO
ST

 :
/p

ay
m

en
ts

/

re
sp

on
se

PO
ST

 :
/s

ub
sc

rip
tio

ns
/s

ub
sc

rip
tio

n

re
sp

on
se

PO
ST

 :
/n

ot
ifi

ca
tio

ns
/s

en
d

re
sp

on
se

in
ve

nt
or

y-
se

rv
ic

e

G
ET

 :
/it

em
s-

st
oc

k/
{it

em
-c

od
e}

re
sp

on
se

se
ss

io
n-

se
rv

ic
e

G
ET

 :
/u

se
r-

se
ss

io
ns

/{s
es

si
on

-id
}

re
sp

on
se

re
sp

on
se

G
ET

 :
/u

se
r-

se
ss

io
ns

/{s
es

si
on

-id
}

Fi
gu

re
7.

2.
:M

es
sa

ge
se

qu
en

ce
m

od
el

ill
us

tr
at

in
g

pu
rc

ha
se

or
de

r
cr

ea
tio

n
(F

R
9)

.

61

7. Evaluation Approach

Figure 7.3 represents the envisioned architectural view of the E-commerce application,
illustrating the different microservices and their interactions, which we interpreted based
on the modelled message sequence diagrams of all the functional requirements listed
in Table 7.1. We also capture the API-Gateway service and Service Discovery and
their associated interactions like service registration to correspond to our conceptual
infrastructural view of a composed and deployed MSA that we had depicted in Figure 4.5.

authentication-
service

api-gateway-
service

customer-
support-
service

shipping-
service

session-
service

payment-
service

catalogue-
service

shopping-
cart-

service

review-
service

merchant-
service

advertisement-
service

policy-
service

notification-
service

career-
service

search-
service

loyalty-
program-
service

user-
service

inventory-
service

blog-
service

order-
service

service-
discovery

api-gateway-
service

Legend

External API Requests

Internal API Requests

Service Registration

Bundled Supportive
Infrastructural Services

User-Defined Services

Figure 7.3.: Envisioned architectural view of the modelled E-commerce microservice ap-
plication illustrating various microservice interactions.

62

7.1. Evaluation Strategy

Evaluation Steps and Tools

After modelling all the necessary prerequisite data for our evaluation and visualising
the expected architectural view of our case study application, we briefly outline the
evaluation procedure and list down the tools used.

• In the first step, we modelled the MAPI-DM for the E-commerce application.
Based on the API endpoints exposed by each microservice that is part of the E-
commerce application, we defined appropriate values for the different attributes
as outlined in the MAPI-DM metamodel as defined in Section 4.4.2. In addition,
for each microservice, the information on inter-service dependencies was obtained
using the prerequisite data represented as message sequence models.

• As the second step to mock user interaction with the E-commerce microservice
application, we created a test plan. It comprises API requests made to the appli-
cation in an automated way to mock all the functional requirements captured in
Table 7.1.

• In the third step, we deployed the MSA-Gen application and used the modelled
MAPI-DM to generate, compose and deploy the E-commerce application onto the
test system.

• The fourth and final step was executing the different evaluation tasks and capturing
the results. The evaluation tasks are defined in Section 7.2

In the following section, we have documented the test setup configuration.

7.1.3. Test System Configuration

In this section, we discuss the test system configuration, where we record the hardware
specification of the system, followed by the list of additional software and tools we
installed and used when performing the evaluation.

Operating System and Hardware Configuration

• Operating System: Ubuntu 20.04 LTS version running on a WSL2 environment
of Windows 10.

• Processor: Intel Core i5-8600 CPU @ 3.10GHz (6 CPUs)

• RAM Capacity: 24GB.

• Network Speed Download: 132.2 Mbit/s ; Upload: 25.2 Mbit/s.

63

7. Evaluation Approach

Additional Software and Tools

• Docker: We used the Docker software to run the MSA-Gen application in a
container environment, build the microservice container images, and compose and
deploy the containers onto the test system for evaluation.

• Postman1: We used the Postman tool to make API requests to the MSA-Gen
application for sending the MAPI-DM payload.

• Apache JMeter2: We used the Apache JMeter tool to create an API execution
plan. This API execution plan allows us to make API requests to the composed
E-commerce microservice application in a specified sequential order to mimic the
previously defined user scenario. We configured the execution plan to simulate
a hundred users concurrently making requests to the E-commerce application for
five minutes.

7.2. Evaluation Tasks
This section presents the different evaluation scenarios we will execute as part of our
evaluation process.

• Task 1: The first evaluation task involved modelling the E-commerce microser-
vice application as MAPI-DM. From this, we wanted to evaluate the benefits,
drawbacks and the total time effort required for the modelling process.

• Task 2: As part of the second task, we wanted to evaluate the generation and
composition of the E-commerce microservice application for the following four
scenarios.

– Scenario 1: The first scenario comprised generating and composing the E-
commerce application where all microservices use Spring technology.

– Scenario 2: The second scenario constituted generating and composing the
E-commerce application where all microservices use FastAPI technology.

– Scenario 3: For the third scenario, we wanted to evaluate generating and
composing a polyglot E-commerce application where microservices are a mix
of Spring and FastAPI technologies.

– Scenario 4: In the fourth scenario, we mainly wanted to experiment and un-
derstand the impact of having cyclic inter-service API dependencies in MAPI-
DM definition and whether we can identify them in the mocked MSAs using
the observability tool. In order to evaluate this, we made simple modifications
to add a cyclic dependency to the MAPI-DM used in the first scenario.

1https://www.postman.com/ (accessed on 18.05.2023)
2https://jmeter.apache.org/ (accessed on 18.05.2023)

64

7.2. Evaluation Tasks

We wanted to evaluate the performance of the microservice generation approach
and the generated microservice application for the first three scenarios based on
the following Key Performance Indicators and also capture other interesting and
relevant findings observed during the evaluation process. It is to be noted that
when measuring the KPIs, we do not consider the auxiliary microservices that are
part of the APM tool.

– Microservices Generation Time: This KPI captures the total microser-
vice generation time, which includes the whole request roundtrip time from
making the API request to the MSA-Gen application to processing the mi-
croservice generation.

– Microservices Build and Deployment Time: This KPI captures the
total time required to build and deploy only the collection of microservices
defined in MAPI-DM onto the container runtime engine.

– Microservices Startup and Registration Time: This KPI measures the
total time taken for all microservices to start and register themselves to the
Service Discovery.

– Idle Microservices Resource Consumption Statistics: This KPI cap-
tures the resource consumption statistics of the deployed microservices in
their idle state for resources CPU, Memory usage and Network I/O.

– Non-idle Microservices Resource Consumption Statistics: This KPI
captures the resource consumption statistics related to CPU, Memory usage
and Network I/O of the deployed microservices when they receive continuous
API requests from 100 concurrent users for five minutes.

In order to get an average estimate for the three temporal KPIs, namely “Mi-
croservices Generation Time”, “Microservices Build and Deployment Time”, and
“Microservices Startup and Registration Time”, we intended to execute three trial
runs each for the scenarios one, two and three and capture the ceiled average for
the temporal KPIs.

• Task 3: Finally, as part of the third task, we wanted to evaluate the extent of ob-
servability of the generated E-commerce microservice application on the following
criteria.

– Collection and visualisation of microservice metrics
– Logs aggregation
– Distributed tracing of external requests
– Exception tracking
– Microservices health check

65

8. Evaluation Outcomes
Premature optimization is the
root of all evil.

Donald Knuth

Contents
8.1. Evaluation Results . 67

8.1.1. Task 1: Modelling MAPI-DM 67
8.1.2. Task 2: Microservice Generation Scenarios 69
8.1.3. Task 3: Microservice Application Observability 75

8.2. Discussion of the Evaluation Results 81
8.2.1. Task 1: MAPI-DM Modelling 81
8.2.2. Task 2: Microservice Generation Scenarios 82
8.2.3. Task 3: Microservice Application Observability 84

After performing the evaluation approach presented in the previous chapter, we present
and discuss the evaluation outcomes in this chapter.

8.1. Evaluation Results
In this section, we record in sequential order the results obtained from the execution of
each evaluation task discussed in Section 7.2.

8.1.1. Task 1: Modelling MAPI-DM

As part of the first task, we modelled three variations of MAPI-DM to represent scenarios
one, two and three that are part of the second evaluation task. In terms of the modelling
effort, the entire modelling process took us eight hours. Due to large model size and
spatial limitations, we have decided to illustrate only a portion of the overall MAPI-DM
from the all Spring microservices scenario. Figure 8.1 represents one of the modelled
API paths for the “advertisement-service”. We have captured the complete MAPI-DM
representation of scenarios one, two and three as part of the thesis’s GitLab codebase 1.

In order to test scenario four, we introduced slight contrived modifications to the
MAPI-DM of scenario one intending to create an artificial cyclic dependency. We

1https://git.rwth-aachen.de/swc-theses/master/pavan-nadkarni/msagenerator/-/releases/v1.0.0-
master-thesis with evidence collection SHA: 122930e0032438b0e65b53040fd17ac455130e8c47ed
(accessed on 25.05.2023)

67

8. Evaluation Outcomes

Figure 8.1.: A snippet of E-commerce MAPI-DM model that represents one modelled
path of the “advertisement-service”.

achieved this by changing the inter-service API dependencies of “catalogue-service” and
“inventory-service”.

68

8.1. Evaluation Results

8.1.2. Task 2: Microservice Generation Scenarios

We executed the microservice generation for the following four scenarios as part of the
second task. Here, we captured the measurements of the discussed KPIs metrics for the
first three scenarios to compare and assess the impact of the selected generator tech-
nology on the microservice generation process. But before we discuss our observations
of each scenario, Figure 8.2 helps us visualise the service map view of the generated
E-commerce microservice application in its idle state after its deployment. From this,
we can ascertain that all the microservices register themselves with the Service Dis-
covery after deployment. Furthermore, Figure 8.3 depicts the service map view of the
E-commerce microservice application during a simulation run where the application
processes external client requests. Next, we explain the results of different microservice
generation scenarios.

Figure 8.2.: Service map view of E-commerce application in idle state after deployment.

69

8. Evaluation Outcomes

Figure 8.3.: Service map view of E-commerce application showing communication be-
tween microservices when receiving API requests.

Scenario 1: All Spring Microservices

In scenario one, we generated the E-commerce microservice application composed of all
spring microservices. We recorded the temporal KPIs measurements in Table 8.1 for the
three trial runs performed. For this scenario, we observed the average value for “Mi-
croservices Generation Time” to be 419ms, “Microservices Build and Deployment Time”
to be 206s and “Microservices Startup and Registration Time” to be 128s. In addition,
Table 8.2 represents the container resource consumption statistics of the different mi-
croservices in their idle state, and Table 8.3 depicts the container resource consumption
statistics during non-idle conditions when external API requests were being executed.
Comparing the two states, we see an increase in the container resource consumption of
microservices in the non-idle state compared to the idle state.

70

8.1. Evaluation Results

KPI
Trial Microservices

Generation
Time (ms)

Microservices
Build and

Deployment
Time (s)

Microservices
Startup and
Registration

Time (s)
Trial 1 510 ms 205 s 125 s
Trial 2 377 ms 214 s 130 s
Trial 3 371 ms 199 s 127 s

Ceiled Average 419 ms 206 s 128 s

Table 8.1.: Table capturing the data for temporal KPIs for Spring microservices scenario.

Resources
Microservice

Name
CPU (%) Memory Usage

(MiB)
Network I/O

(MB)
advertisement-service 0.08 372.3 0.0178
api-gateway-service 0.06 403.8 0,0606

authentication-service 0.08 340.6 0.0179
blog-service 0.34 352.2 0.0178

career-service 0.14 347.7 0.0176
catalogue-service 0.08 378.3 0.0172

customer-support-service 0.08 317.9 0.0181
inventory-service 0.09 324.6 0.0181

loyalty-program-service 0.29 334.1 0.0182
merchant-service 0.14 352.5 0.0176

notification-service 0.08 535.2 0.0177
order-service 0.11 363.2 0.0176

payment-service 0.08 367.9 0.0173
policy-service 0.09 343.2 0.0179
review-service 0.08 393.7 0.0179
search-service 0.22 349.1 0.0178

service-discovery 1.16 433.8 0.0174
session-service 0.08 375.7 0.0175

shipping-service 0.29 325.8 0.0179
shopping-cart-service 0.19 351.4 0.0177

user-service 0.07 333.6 0.0185

Table 8.2.: Resource consumption statistics for Spring microservices when in idle state.

Scenario 2: All FastAPIMicroservices

In scenario two, we generated the E-commerce microservice application, which was en-
tirely composed of FastAPI microservices. In order to realise this, we extended the
MSA-Gen web application by introducing a new microservice generator to generate
FastAPI-based microservices. It took us two weeks to learn the basics of FastAPI and
develop the generator code with the associated definition of microservice template files.

71

8. Evaluation Outcomes

Resources
Microservice

Name
CPU (%) Memory Usage

(MiB)
Network I/O

(MB)
advertisement-service 0.46 384.9 0.435
api-gateway-service 33.23 490.1 6.8

authentication-service 0.10 418 0.724
blog-service 0.21 390.6 0.0412

career-service 0.09 343.3 0.0409
catalogue-service 22.16 388.2 3.16

customer-support-service 8.18 374.5 0.552
inventory-service 10.36 404.9 1.63

loyalty-program-service 3.16 380.1 0.462
merchant-service 0.09 372 0.0413

notification-service 11.16 425,9 3.53
order-service 41.52 427.3 2.76

payment-service 6.88 363.3 0.407
policy-service 7.34 386.3 0.194
review-service 0.10 363.9 0.287
search-service 0.09 342.6 0.328

service-discovery 1.09 462.7 0.46
session-service 8.31 369 3.68

shipping-service 12.64 438.3 1.19
shopping-cart-service 83.08 401.7 6.78

user-service 0.09 376.7 0.633

Table 8.3.: Resource consumption statistics for Spring microservices when receiving re-
quests.

Next, we present the recorded temporal KPIs measurements in Table 8.4 for the three
trial runs performed. For this scenario, we observed the average value for “Microservices
Generation Time” to be 286ms, “Microservices Build and Deployment Time” to be 116s
and “Microservices Startup and Registration Time” to be 43s. Furthermore, Table 8.5
represents the container resource consumption statistics of the different microservices
in their idle state, and Table 8.6 depicts the container resource consumption statistics
during non-idle conditions when external API requests were being executed. Comparing
the two states, we again notice an increase in the container resource consumption of
microservices in their non-idle state compared to its counterpart.

Scenario 3: Polygot Microservices

The successful extension of MSA-Gen to support the generation of microservices in
Spring and FastAPI technologies allowed us to evaluate scenario three. Here, we gen-
erated a polyglot E-commerce microservice application composed of nine FastAPI mi-
croservices and ten Spring microservices. We recorded the temporal KPIs measurements
in Table 8.7 for the three trial runs we executed. For this scenario, we observed the av-

72

8.1. Evaluation Results

KPI
Trial Microservices

Generation
Time (ms)

Microservices
Build and

Deployment
Time (s)

Microservices
Startup and
Registration

Time (s)
Trial 1 381 ms 154 s 40 s
Trial 2 240 ms 102 s 45 s
Trial 3 237 ms 90 s 42 s

Ceiled Average 286 ms 116 s 43 s

Table 8.4.: Table capturing the data for temporal KPIs for FastAPI microservices sce-
nario.

Resources
Microservice

Name
CPU (%) Memory Usage

(MiB)
Network I/O

(MB)
advertisement-service 0.11 45.17 0.0474
authentication-service 0.14 45.2 0.0475

blog-service 0.13 44.31 0.0471
career-service 0.18 46.23 0.0468

catalogue-service 0.17 43.78 0.0471
customer-support-service 0.15 44.44 0.0471

inventory-service 0.17 47.14 0.0471
loyalty-program-service 0.15 44.26 0.0471

merchant-service 0.18 44.4 0.0473
notification-service 0.17 44.3 0.0473

order-service 0.15 46.36 0.047
payment-service 0.16 43.79 0.0473

policy-service 0.17 44.27 0.047
review-service 0.18 43.82 0.0473
search-service 0.17 43.73 0.0471
session-service 0.16 43.88 0.0471

shipping-service 0.14 44.4 0.0474
shopping-cart-service 0.2 44.38 0.0473

user-service 0.20 46.25 0.0474

Table 8.5.: Resource consumption statistics for FastAPI microservices when in idle state.

erage value for “Microservices Generation Time” to be 380ms, “Microservices Build and
Deployment Time” to be 149s and “Microservices Startup and Registration Time” to be
95s.

Apart from this, Table 8.8 represents the container resource consumption of the dif-
ferent microservices in their idle state, and Table 8.9 depicts the container resource
consumption during non-idle conditions when external API requests were being exe-
cuted. Comparing the two states, we again see an increase in the container resource
consumption of microservices in the non-idle state compared to the idle state.

73

8. Evaluation Outcomes

Resources
Microservice

Name
CPU (%) Memory Usage

(MiB)
Network I/O

(MB)
advertisement-service 0.23 48.41 0.479
authentication-service 0.18 47.64 0.719

blog-service 0.16 44.3 0.189
career-service 0.18 46.23 0.186

catalogue-service 23.19 47.15 3.23
customer-support-service 0.24 46.98 0.425

inventory-service 12.92 50.49 1.85
loyalty-program-service 0.19 47.03 0.494

merchant-service 0.13 44.4 0.188
notification-service 0.16 47.75 3.37

order-service 0.15 49.61 1.92
payment-service 0.13 45.86 0.441

policy-service 0.20 45.49 0.255
review-service 0.24 46.28 0.34
search-service 0.14 46.45 0.376
session-service 16.14 46.98 3.88

shipping-service 15.98 47.47 1.24
shopping-cart-service 41.08 49.76 5.73

user-service 0.17 49.49 0.897

Table 8.6.: Resource consumption statistics for FastAPI microservices when processing
requests.

KPI
Trial Microservices

Generation
Time (ms)

Microservices
Build and

Deployment
Time (s)

Microservices
Startup and
Registration

Time (s)
Trial 1 509 ms 153 s 95 s
Trial 2 321 ms 146 s 96 s
Trial 3 310 ms 148 s 94 s

Ceiled Average 380 ms 149 s 95 s

Table 8.7.: Table capturing the data for temporal KPIs for Polyglot microservices sce-
nario.

Scenario 4: Cyclic Dependency Check

When evaluating this scenario, we observed no issues in MSA-Gen to process the MAPI-
DM with cyclic inter-service API dependencies and generating microservices. But the
composition and deployment of the microservice application using the Docker composi-
tion tool failed due to the presence of cyclic dependency.

74

8.1. Evaluation Results

Resources
Microservice

Name
CPU (%) Memory

Usage (MiB)
Network I/O

(MB)
advertisement-services 0.09 357 0.0791
api-gateway-services 0.07 411.6 0.277

authentication-servicef 0.14 46.42 0.0979
blog-services 0.09 347.8 0.0795

career-servicef 0.14 46.39 0.0973
catalogue-services 0.10 363.6 0.0791

customer-support-servicef 0.18 46.52 0.0983
inventory-services 0.10 337.7 0.0789

loyalty-program-servicef 0.18 44 0.0973
merchant-services 0.09 330.9 0.0793

notification-servicef 0.19 46.41 0.983
order-services 0.11 346.2 0.0778

payment-servicef 0.17 46.14 0.097
policy-services 0.09 327.2 0.0791
review-servicef 0.15 44.52 0.0976
search-services 0.10 371.5 0.0774

service-discoverys 0.90 501 1.27
session-servicef 0.19 48.25 0.0976

shipping-services 0.10 343.3 0.0795
shopping-cart-servicef 0.16 44.91 0.0978

user-services 0.09 350.6 0.0787

Table 8.8.: Resource consumption statistics for Polyglot E-commerce application when
idle. Superscript:- “s”:Spring ; “f”:FastAPI.

Graphical Visualisation of Tabular Data

In addition to this, we created graphs to visualise the tabular data that contain detailed
KPI and resource measurements. Figure 8.4 compares the average microservice gener-
ation time. Next, Figure 8.5 helps us visualise and compare the outcome for average
microservice build and deployment times. After that, we captured the result comparing
the average microservices startup and registration time measures in Figure 8.6. Finally,
Figure 8.7 provides an overview of all the temporal KPIs as part of a single graph for
the Spring, FastAPI and Polyglot microservice generation scenarios while Figure 8.8
draws a comparison between the memory resource consumed by Spring and FastAPI
microservices during both idle and non-idle operation states.

8.1.3. Task 3: Microservice Application Observability

In the third evaluation task, we assessed the observability of the generated microservice
application on the five criteria mentioned before by using the observability framework
and tool that we integrated as part of this thesis. Next, we present our observations and

75

8. Evaluation Outcomes

Resources
Microservice

Name
CPU (%) Memory

Usage (MiB)
Network I/O

(MB)
advertisement-services 0.12 379.6 0.412
api-gateway-services 19.47 496.9 3.12

authentication-servicef 0.16 50.38 0.855
blog-services 0.09 349 0.143

career-servicef 0.18 46.39 0.176
catalogue-services 13.06 402 10.8

customer-support-servicef 0.97 50.03 0.667
inventory-services 6.45 364.4 4.24

loyalty-program-servicef 4.17 47.09 0.529
merchant-services 0.10 332.7 0.143

notification-servicef 18.10 51.54 14.6
order-services 42.53 439.5 2.17

payment-servicef 7.48 49.09 0.472
policy-services 0.98 338.2 0.272
review-servicef 0.22 45.51 0.312
search-services 0.11 384.4 0.385

service-discoverys 1.29 511.5 2.57
session-servicef 33.22 51.97 15

shipping-services 12.41 365.5 1.45
shopping-cart-servicef 52.29 52.95 26.3

user-services 0.13 430.4 0.776

Table 8.9.: Resource consumption statistics for Polyglot E-commerce application when
receiving requests. Superscript:- “s”:Spring ; “f”:FastAPI.

results for each criterion. Due to spatial limitations, we capture only a subset of the
snapshots here and the remaining as part of Appendix B

• Collection and Visualisation of Microservice Metrics: Integrating Open-
Telemetry observability framework and SigNoz APM tool allowed us to automat-
ically collect and visualise application metrics for different latency measures, re-
quest rate, error percentage and key operations for each microservice. Furthermore,
the framework and tool also offered the possibility to define custom metrics per
microservice and the ability to create custom dashboards to visualise the data
collected for the metrics defined.

• Logs Aggregation: Since we adopted service instance per container deployment
pattern as discussed in Section 5.2.3. Consequently, each container constitutes a
single service configured to write application logs to a log file and the container’s
standard input, output and error consoles. In order to achieve logs aggregation,
we again used the observability framework OpenTelemetry and SigNoz APM tool
to automatically collect and aggregate all the container logs and visualise them in

76

8.1. Evaluation Results

Figure 8.4.: Comparison of average microservice generation time for Spring, FastAPI
and Polyglot generation scenarios.

a pre-defined logs dashboard.

• Distributed Tracing of External Requests: By using the instrumented Open-
Telemetry telemetry instrumentation agent, we collected trace telemetry data to
achieve distributed tracing of external requests. This agent assigned each request
with a unique Trace identifier to map the entire trace of a request. In addition,
it also sets a unique Span identifier for all the intermediary operations performed
to fulfil the request. These identifiers are then mapped accordingly by the Ob-
servability tool to create visualisations showcasing the trace of an external request
as it traverses across multiple microservices. This detailed trace data also allows
us to pinpoint the location of errors or issues in servicing requests that require
coordination across numerous microservices. Figure 8.9 shows an example of such
a trace visualisation for a create purchase order API request where a drill down of
the trace reveals the failure of the request due to an error at “shipping-service”.

• Exception Tracking: The observability tool SigNoz integrated as part of the
deployed MSA offered the capability to isolate exceptions from the collected logs
in order to visualise them separately under a different dashboard. We leveraged
this feature to achieve exception tracking. In addition, to identify error-prone
services on a high level, we also used the service-map view. This view provides
a dynamic structural overview of all the microservices in the MSA. In this view,
SigNoz represents error-prone microservices in red, which are otherwise in green.

77

8. Evaluation Outcomes

Figure 8.5.: Comparison of average microservice build and deployment time for Spring,
FastAPI and Polyglot generation scenarios.

Figure 8.6.: Comparison of average microservice startup and registration time for Spring,
FastAPI and Polyglot generation scenarios.

78

8.1. Evaluation Results

Figure 8.7.: Overview of all the temporal KPIs for Spring, FastAPI and Polyglot gener-
ation scenarios.

Figure 8.8.: Memory usage comparison between Spring and FastAPI microservices.

79

8. Evaluation Outcomes

Figure
8.9.:D

ashboard
to

visualise
and

trace
externalrequests

received
by

m
icroservice

applications.

80

8.2. Discussion of the Evaluation Results

• Microservices Health Check: Each microservice registers itself after startup
with the Service Discovery. It then sends periodic heartbeats to the Service Dis-
covery to indicate its health status. The Service Discovery maintains a list of
healthy registered services and offers a dashboard to visualise this list.

After recording the results for each evaluation task, in the following section, we dive
deeper into the evaluation results to analyse and interpret the outcomes.

8.2. Discussion of the Evaluation Results
This section examines the results captured for each evaluation task in Section 8.1 to gain
profound insights into the outcomes of the evaluation process. For each task, we interpret
the results, perform mutual comparisons wherever applicable and finally summarise and
document our understanding and arguments.

8.2.1. Task 1: MAPI-DM Modelling

Based on our evaluation task of modelling MAPI-DM for the fictitious E-commerce mi-
croservice application, we have noted our observations of the benefits and drawbacks of
using MAPI-DM. The benefits and drawbacks captured are exclusively based on our ex-
perience using MAPI-DM to model the E-commerce case study microservice application.
Our claims, nonetheless, need to be qualitatively validated externally in the future.

Benefits

• The model has a simplistic structure, which makes it easy to learn and adopt.

• With a short learning curve, one can use it to model large-scale microservice ap-
plications quickly, ranging from a few hours to one or two days, considering the
availability of the necessary prerequisite data.

• The model is also independent of the prerequisite data representation, allowing
users the flexibility to choose appropriate representations to define the prerequisite
data.

• The model has a technology and programming language independent representa-
tion. As a result, we can use it to represent microservice applications written in
any programming language using any technology.

• It offers an extensible design allowing to add any newly identified attributes in the
future.

• Finally, the model also encapsulates both the structural and relational data aspects
of microservices when modelling them.

81

8. Evaluation Outcomes

Drawbacks

• For enterprise-scale applications, the model can grow significantly in size as the
overall number of microservices and their associated API endpoints increase. For
the modelled E-commerce microservice application consisting of nineteen microser-
vices, the model reached a total size of 2271 lines. Considering this, it will be a
challenging and complicated task to manually model any enterprise-scale microser-
vice applications consisting of hundreds to thousands of microservices.

• It can also be challenging to keep track of inter-service API dependencies and their
sequential ordering as they increase over time.

8.2.2. Task 2: Microservice Generation Scenarios
We first compare our envisioned E-commerce architecture captured by Figure 7.3 to
the generated counterpart illustrated by Figure 8.3, and we observe that they are very
much alike. This similarity confirms that the MSA generated and composed by MSA-
Gen successfully replicates all the modelled inter-service API communications between
microservices which we interpreted through message sequence models and captured as
part of the MAPI-DM data. This outcome also successfully demonstrates the mocking of
our MSA case study through message sequence models. Next, we discuss our learnings
from extending MSA-Gen by supporting FastAPI microservice generation.

• With the addition of a new microservice generator, we verified the extensibility
characteristic of the developed MSA-Gen web application.

• During expansion, we faced several impediments when integrating the new technol-
ogy with supporting frameworks like OpenTelemetry and Spring Eureka Service
Discovery. To resolve them, we first referred to official documents and then to
other online resources and experimental methods when there were gaps in the
documentation.

• We also assimilated that it is necessary to understand the underlying programming
language constructs and other technology-specific best practices to write efficient
microservice templates for any technology.

After discussing our learnings on supporting polyglot microservice generation in MSA-
Gen, we compare the different temporal KPIs measurements for microservice generation
scenarios one, two and three and discuss our observations.

• As captured in Figure 8.4, we can visualise that, on average, the generation of
Python-based FastAPI microservices is close to one and a half times quicker com-
pared to the generation of Java-based Spring microservices. This significant time
difference can be attributed to the different project structures each technology ad-
vocates, resulting in differences in the number of files generated for each technology.
Comparing the Polyglot generation scenario, we can see that it has a generation

82

8.2. Discussion of the Evaluation Results

time greater than FastAPI but less than Spring. This measurement meets the ex-
pected outcome as it comprises a nearly equal distribution of microservices based
on the two technologies.

• Visualising the results for the build and deployment time KPI as depicted in Fig-
ure 8.5, we again notice a similar overall trend where Java-based Spring microser-
vices take the highest time due to the involvement of Maven build to generate
project sources and artefacts for deployment. Since Python programs do not re-
quire a build of the project, their measurement for this KPI is significantly less,
making their deployment twofold quicker as Spring microservices. Finally, Polyglot
records a build and deployment time between the Spring and FastAPI results.

• Figure 8.6 depicts the graph showing that FastAPI microservices start and register
three times quicker than Spring microservices. This considerable time difference
is because Spring-based applications require a proportional amount of time for
startup and initialising the bundled web application server. In contrast, the startup
and initialisation of the bundled web application server in FastAPI is relatively
instantaneous.

• Comparing the resource consumption between Spring and FastAPI microservices,
we notice that the utilisation of both Network I/O and CPU resources are compar-
atively similar for the microservices of both these technologies and these values for
each microservice fluctuate depending on the number of API requests it receives
at any given time which we can corroborate by comparing the idle and non-idle
trials captured for each generation scenarios in Section 8.1.2.
In contrast, comparing the memory usage of Spring and FastAPI microservices, we
notice an evident difference in value as illustrated in Figure 8.8. We can observe
that the memory consumption of Spring microservices is eight times that com-
pared to FastAPI microservices. This difference is significant, considering these
microservices are only mocked versions that simulate inter-service API communi-
cations without any business logic getting executed in them.
From this observation, we can conclude that any enterprise-scale microservice ap-
plication consisting only of Spring-based microservices would require a significantly
higher memory availability for its operation than FastAPI-based microservices.
This high resource requirement leads to higher operational costs for enterprises as
they need to rent more powerful machines to deploy their cloud-native microser-
vice applications or higher development and maintenance costs concerned with
optimising applications based on these technologies.
However, we need to acknowledge that while FastAPI outperforms Spring in all
the measured KPIs and has significantly lower memory consumption statistics, we
do not say that FastAPI is more performant when compared to Spring. We cannot
benchmark the holistic performance of these technologies solely based on mocked
versions of microservices that carry no business logic.

83

8. Evaluation Outcomes

For scenario four, we observed that it was impossible to compose and deploy MSAs
that consisted of cyclic dependencies since we used the “depends_on” condition attribute
offered by the composition tool. This attribute is used to express dependency between
microservices. The composition tool then uses this information during deployment in
order to deploy the microservices based on their dependency order. The deployment
failure with cyclic dependency conditions is one of the substantial benefits of using our
approach when mocking MSAs, as it provides an additional layer of check to prevent the
deployment of microservice applications that included the cyclic dependency microser-
vices anti-pattern [TLP20].

8.2.3. Task 3: Microservice Application Observability
Based on the evaluation results of task three, we documented our overall thoughts on the
support of microservice application observability based on the considered observability
parameters.

• The instrumentation of telemetry agents in each microservice and the integration
of an observability tool allowed us to generate highly observable mocked MSAs.

• The various metrics collected for each microservice allowed us to infer its overall
performance and identify bottleneck services.

• Tracing external requests allowed us to observe their flow through the mocked
E-commerce MSA. In addition, it also allowed us to visualise the breakup of the
processing time of individual requests as they passed through multiple microser-
vices. Furthermore, this capability allowed us to pinpoint the exact position of
error occurrences during the sequential invocation of inter-service API dependen-
cies.

• Monitoring the health status of each microservice allowed us to identify service
failures and take appropriate actions to rectify the situation.

• Incorporating log aggregation and exception tracking allowed to development of
microservices that support faster debugging in case of errors.

The results successfully showcased the efficacy of observable microservices when de-
veloping large-scale MSAs. Nevertheless, selecting the appropriate telemetry framework
like OpenTelemetry and an observability tool like SigNoz is essential to develop observ-
able microservices that allow you to monitor the behaviour of such distributed systems.

84

9. Discussion
In programming, the hard part
isn’t solving problems, but
deciding what problems to solve.

Paul Graham

Contents
9.1. Answers to Research Questions . 85
9.2. Threats to Validity . 87

9.2.1. Internal Validity . 87
9.2.2. External Validity . 87
9.2.3. Construct Validity . 87

In this chapter, we answer our research questions formulated in Section 1.1 and discuss
the various threats to the validity of our research work in this thesis.

9.1. Answers to Research Questions
In this thesis, we embarked on the journey to find an approach to mock MSAs from
message sequence models. We defined the following five research questions to achieve
this. Next, we answer each research question using the knowledge we obtained from our
research work in this thesis.

• RQ1: How would a metamodel that can capture attributes of microservices exhibit-
ing inter-service API communications materialise to be?
To answer RQ1, we adopted an iterative top to bottom modelling approach as
discussed in Section 4.4 to identify different microservice attributes necessary to
create their mocked representation. Using the various attributes identified as part
of the iterative modelling approach, we defined our MAPI-DM metamodel, pre-
sented in Section 4.4.2. It can capture the structural definition of microservices and
the relational aspect of their inter-service API dependencies in sequential order.

• RQ2: How can we use concrete instance models of our metamodel to construct
MSAs composed of mocked-up microservices that can replicate the behaviour of
modelled inter-service API communications?
To answer RQ2, we first created MAPI-DM definitions which are concrete in-
stances of our defined metamodel containing MSA data. Next, we investigated

85

9. Discussion

ways to transform MAPI-DM into mocked MSAs. For this, we explored creat-
ing a prototype application capable of performing this transformation to generate
mocked-up microservices. As part of our investigation, we adopted the rapid pro-
totyping development strategy to design and develop a prototype web application
MSA-Gen as explained in Section 5.1. This application uses MAPI-DM definitions
to generate, compose and deploy MSAs in an automated manner which can be
interacted with in real-time as described in Section 4.3. Finally, using the inter-
service API dependency data obtained from MAPI-DM, we mocked the modelled
functional behaviours in the generated MSAs.

• RQ3: How can we automatically visualise the behaviour of the composed MSAs?

Next, to answer RQ3, we researched the concept of observability in MSAs. As
part of our investigation, we adopted several MSA observability design patterns as
presented in Section 5.2.4. It led to the instrumentation of the generated microser-
vices with telemetry agents and the integration of an observability framework and
tool described in Section 5.2.4 to automatically collect telemetry data exported
by the microservices and use them to visualise and comprehend the behaviour of
the composed MSAs. Section 8.1.3 presents the various telemetry data we au-
tomatically collect from the generated microservices allowing us to design highly
observable MSAs.

• RQ4: What are the learnings and challenges associated with generating polyglot
MSAs?

To answer RQ4, we explored the expansion of MSA-Gen that was capable of
generating only Spring-based MSAs to additionally generate MSAs composed of
microservices implemented using more than one technology. In order to achieve
this, we extended the MSA-Gen application by developing a second microservice
generator to support the generation of FastAPI microservices. This extension
allowed us to generate polyglot MSAs using MSA-Gen and to evaluate it against
other deployment scenarios as presented in Section 8.1.2. In addition, we also
captured our learnings from supporting polyglot microservice generation as part
of Section 8.2.2

• RQ5: What are the benefits and drawbacks of modelling large-scale MSAs using
our metamodel?

Finally, to answer RQ5, our last research question, we developed a case study to
generate and mock a fictitious large-scale E-commerce microservice application as
discussed in Section 7.1.1. As part of this, we modelled the MAPI-DM for the case
study application, which captures the MSA data. It gave us first-hand insights
into the benefits and drawbacks of using our metamodel for modelling large-scale
MSAs, which we discuss as part of Section 8.2.1.

86

9.2. Threats to Validity

9.2. Threats to Validity
In this section, we discuss the different threats to the validity of our research approach
and the results presented in this thesis. We evaluate the applicability of the following
three validity concepts based on the definitions presented by Wohlin et al. in [Woh+12]
and by Feldt and Magazinius in [FM10].

9.2.1. Internal Validity
Internal validity focuses on the confidence associated with the technique used in an ex-
periment to that of the observed outcomes. In our research, we defined MAPI-DM meta-
model to capture microservice data. Since one can develop microservices using various
technologies, we perceived a threat of unknowingly introducing technology-specific bias
when defining our metamodel. To mitigate this, when modelling, we took a technology-
agnostic approach. Our added support for a second microservice generator to generate
polyglot microservice applications eliminated this threat.

9.2.2. External Validity
External validity examines if the results of an experiment can be generalised outside the
context of a study. In our research, we realised that since we build and deploy the MSAs
in real-time on a test system, factors like the test system configurations and network
speed influenced the outcomes measured for the temporal KPIs. We conducted three
trial runs for each deployment scenario to try and mitigate this risk and captured our test
system configurations and network speed information in Section 7.1.3. This information
allows other studies to repeat the case study evaluation with comparable test system
configurations and compare the outcomes. However, even in this case, we acknowledge
that the results might not be a replica of our observations but would predominantly fall
closer to the average values captured in this thesis.

9.2.3. Construct Validity
Construct validity is concerned with assessing the extent to which the observations of
an experiment conform to its underlying theory. In our research, we initially proposed
a conceptual approach to use message sequence models to generate microservice appli-
cations to mock MSAs. We sensed a threat regarding the effectiveness and validity of
our approach when generating and mocking enterprise-scale MSAs. In order to mitigate
this risk, we defined a case study microservice application that resembled an enterprise-
scale E-commerce MSAs and used this to evaluate the fundamental concepts defined to
mocking MSAs.

87

10. Conclusion and Future Work
The best way to predict the
future is to invent it.

Alan Kay

Contents
10.1. Summary . 89
10.2. Future Work . 90

After gaining answers to the research questions we formulated in this thesis and dis-
cussing the threats to the validity of our research approach and findings, in this chapter,
we first summarise our work by outlining the contributions of this thesis. Finally, we
mark the end of our journey by proposing possible paths for future work that can mark
the beginning of many new ones.

10.1. Summary

In this thesis, our primary aim was to discover a way to mock MSAs using message
sequence models that illustrate the functional requirements of MSAs. In order to achieve
this, we first defined MAPI-DM metamodel. This metamodel allows us to define MAPI-
DM whose declaration is independent of the representation of message sequence models.
It can capture various structural attributes of microservices and their relational aspects
of inter-service API dependencies that are essential for mocking functional requirements
of MSAs.

Next, we investigated code generation using MDD concepts to generate deployable mi-
croservices from MAPI-DMs. We developed a prototype application MSA-Gen, capable
of parsing MAPI-DMs and automatically generating, composing and deploying observ-
able microservice applications. Once the applications were composed and deployed,
we could interact with them, mock the modelled functional requirement of MSAs and
observe their behaviour in real-time.

We next investigated supporting polyglot MSAs in MSA-Gen. We achieved this by
extending MSA-Gen to support microservice generation in multiple technologies, pri-
marily Spring and FastAPI. It allowed us to go beyond our primary aim and mock
polyglot MSAs. Then, we focused our research on enhancing the observability aspects
of the mocked MSAs that would help us to observe their behaviour during runtime. In
order to achieve this, we explored the integration of observability frameworks and tools

89

10. Conclusion and Future Work

to automatically collect various telemetry data of microservices like logs, metrics, and
traces.

Finally, to evaluate our contributions to this thesis, we present a case study where we
define, generate and mock a large-scale E-commerce microservice application using the
artefacts developed as part of this thesis. To conclude, we answer our research questions
based on our findings from the evaluation of our case study.

10.2. Future Work
The scope of extension and future work to extend this thesis are many. In this section,
we briefly discuss some possible areas one can explore to extend our work in this thesis
to answer many new and novel research questions.

• Automated Generation MAPI-DM: In this thesis, we manually modelled
the MAPI-DM by capturing information from message sequence models. Based
on our learnings from the case study, manual modelling of large-scale microservice
applications can become tedious, complex and time intensive. Future studies can
explore the automated generation of MAPI-DM to address some of these concerns
and make the modelling process more user-friendly and straightforward.

• New Microservice Generators: In this study, we demonstrated the auto-
mated generation of microservices developed in Spring and FastAPI technologies.
Prospective research extending this thesis can explore supporting new microservice
generators that implement different popular technologies used in the industry to
develop microservice applications.

• Beyond Mocking MSAs: The aim of this thesis was to mock MSAs using
message sequence models. Accordingly, the current realisation is capable of gener-
ating mocked microservices. Future research can go beyond mocking to study and
investigate the automated generation of fully functional microservices possessing
rudimentary business logic.

• Container Orchestration Support: As part of this thesis, we generate Docker
compose files for automatic composing and deploying microservice applications.
Future studies can explore the automatic generation of orchestration resources us-
ing technologies like Kubernetes 1, which allows for finer orchestration of containers
and offers many benefits like simplified cloud deployment, horizontal scaling, se-
crets and configuration management, automated rollbacks and many other features
that are relevant for cloud-native enterprise applications to support.

• Asynchronous Communication Support: In this thesis, we restricted the
scope of communication between microservices to include only the REST-based
synchronous communication style. This scope limitation presents future studies

1https://kubernetes.io/ (accessed on 18.05.2023)

90

10.2. Future Work

with the prospects of extending our work in this thesis by generating microservices
to support other synchronous, asynchronous and messaging modes of communica-
tion widely used in industry to develop enterprise-scale MSAs.

• Generating Secure MSAs: As part of this thesis, we incorporated non-root
users in the deployed containers to generate secure microservices. Apart from
this, other security-related aspects of the generated microservices remain largely
unexplored. It offers future studies an enormous potential to close this gap by
researching ways to generate highly secure microservice applications.

• Validation with Domain Experts and Industries: As part of this thesis, we
formulated a case study to validate the thesis artefacts. Future research can take
this further by conducting interviews with domain experts in the fields related to
MSA to obtain more profound and holistic insights into the benefits and challenges
in using MAPI-DM and MSA-Gen for mocking MSAs. In addition, industrial
collaborations can be conducted to test the prototype with more realistic data to
assess its benefits and relevance in industries and identify limitations to determine
further research gaps in this domain.

91

A. Message Sequence Models of
E-commerce Application Case Study

This chapter illustrates the remaining message sequence models representing the inter-
service API dependencies for the functional requirements identified in Table 7.1 to model
the discussed example user interaction with the E-commerce microservice application.

loyalty-program-service

POST : /loyalty-program/

response

Figure A.1.: Message sequence model illustrating the loyalty-bonus program registration
functional requirement (FR2).

authentication-service

POST : /users-authentication/login

response

user-service

response

GET : /users/{user-id}

session-service

POST : /user-sessions/

response

Figure A.2.: Message sequence model illustrating the login functional requirement
(FR3).

93

A. Message Sequence Models of E-commerce Application Case Study

authentication-service

POST : /users-authentication/logout

response

session-service

DELETE : /user-sessions/{session-id}

response

Figure A.3.: Message sequence model illustrating the logout functional requirement
(FR4).

search-service

POST : /searches/catalogue

catalogue-service

GET : /items/

response

response

Figure A.4.: Message sequence model illustrating the catalogue search functional require-
ment (FR5).

shopping-cart-service

POST : /wishlists/

response

notification-service

POST : /subscriptions/subscription

session-service

GET : /user-sessions/{session-id}

catalogue-service

GET : /items/{item-id}

response

GET : /user-sessions/{session-id}

inventory-service

GET : /items-stock/{item-code}

response

response
response

response

Figure A.5.: Message sequence model illustrating wishlists creation functional require-
ment (FR6).

94

shopping-cart-service

POST : /cart/

response

shipping-service

GET : /shipping/shipping-details/{postal-id}

catalogue-service

GET : /items/{item-id}

response

session-service

response

GET : /user-sessions/{session-id}

inventory-service

GET : /items-stock/{item-code}

response

response

Figure A.6.: Message sequence model illustrating the functional requirement to add
items to the shopping cart (FR7).

advertisement-service

POST : /advertisements/

response

notification-service

POST : /notifications/broadcast

response

Figure A.7.: Message sequence model illustrating the functional requirement to create
and publish advertisements (FR8).

policy-service

GET : /policies/{policy-id}

response

Figure A.8.: Message sequence model illustrating the functional requirement to retrieve
policies (FR10).

95

A. Message Sequence Models of E-commerce Application Case Study

order-service

GET : /orders/

session-service

GET : /user-sessions/{session-id}

response

response

Figure A.9.: Message sequence model illustrating the functional requirement to retrieve
all purchasing orders of a given user (FR12).

review-service

POST : /reviews/

response

session-service

response

GET : /user-sessions/{session-id}

order-service

GET : /orders/

response

Figure A.10.: Message sequence model illustrating the functional requirement to add
reviews to the purchased products (FR13).

customer-support-service

POST : /support-tickets/

response

notification-service

POST : /subscriptions/subscription

session-service

response

GET : /user-sessions/{session-id}

response
response

GET : /user-sessions/{session-id}

Figure A.11.: Message sequence model illustrating the functional requirement to create
customer-support tickets (FR14).

96

customer-support-service

POST : /ticket-feedbacks/

response

session-service

response

GET : /user-sessions/{session-id}

Internal method invocation to
the API endpoint GET : /support-tickets/

Figure A.12.: Message sequence model illustrating the functional requirement to provide
feedback to customer support (FR15).

97

A. Message Sequence Models of E-commerce Application Case Study

order-service

PO
ST : /orders/cancel

session-service

response

G
ET : /user-sessions/{session-id}

shipping-service

PO
ST : /shipping/cancel

response

paym
ent-service

notification-service

PO
ST : /paym

ents/cancel

response

PO
ST : /notifications/send

response

session-service

G
ET : /user-sessions/{session-id}

response

G
ET : /user-sessions/{session-id}

response

PO
ST : /subscriptions/unsubscription

response

response

Figure
A

.13.:M
essage

sequence
m

odelillustrating
the

functionalrequirem
ent

to
cancela

purchasing
order

(FR
11).

98

B. MSA Observability Snapshots

This chapter presents the detailed snapshots we captured while evaluating task three
concerning microservice application observability as discussed in Section 8.1.3.

99

B. MSA Observability Snapshots

Figure
B.1.:D

ashboard
show

ing
latency

m
easures,request

rate,error
percentage

and
key

operations
m

etrics
collected

for
“shopping-cart-service”

during
the

non-idle
state.

W
e

can
infer

that
as

the
request

rate
to

the
m

icroservice
increases,the

latency
also

spikes.

100

Fi
gu

re
B.

2.
:L

og
ag

gr
eg

at
io

n
da

sh
bo

ar
d

th
at

al
lo

w
s

vi
su

al
isa

tio
n

of
lo

gs
co

lle
ct

ed
fo

r
al

ld
ep

lo
ye

d
m

ic
ro

se
rv

ic
es

.
Fr

om
th

e
fig

ur
e,

we
ca

n
se

e
th

e
lo

gs
ev

en
ts

of
“s

es
sio

n-
se

rv
ic

e”
,“

or
de

r-
se

rv
ic

e”
,a

nd
“n

ot
ifi

ca
tio

n-
se

rv
ic

e”

101

B. MSA Observability Snapshots

Figure
B.3.:Snapshot

ofthe
exceptions

dashboard
that

allow
s

us
to

visualise
and

track
m

icroservice
exceptions.

For
each

exception,relevant
details

are
captured

and
displayed

w
ith

the
associated

event
identifier

allow
ing

us
to

trace
the

exception
to

its
origin.

102

Fi
gu

re
B.

4.
:S

er
vi

ce
m

ap
vi

ew
of

th
e

E-
co

m
m

er
ce

m
ic

ro
se

rv
ic

e
ap

pl
ic

at
io

n
re

pr
es

en
tin

g
th

e
er

ro
r-

pr
on

e
m

ic
ro

se
rv

ic
es

in
re

d
an

d
th

e
er

ro
r-

fre
e

se
rv

ic
es

in
gr

ee
n.

103

B. MSA Observability Snapshots

Figure
B.5.:Service

D
iscovery

dashboard
lets

us
visualise

the
list

ofregistered
m

icroservices
and

their
health

status.
T

he
status

colum
n

displays
“U

P”
for

reachable
healthy

m
icroservices

and
“D

O
W

N
”

for
unreachable

unhealthy
m

i-
croservices.

104

Bibliography
[Ame10] D. Ameller. “SAD: Systematic Architecture Design: A Semi-automatic Method.”

2010 (cit. on p. 9).
[BHJ16a] A. Balalaie, A. Heydarnoori, and P. Jamshidi. “Microservices Architecture

Enables DevOps: Migration to a Cloud-Native Architecture.” In: IEEE Soft-
ware 33.3 (May 2016), pp. 42–52. issn: 1937-4194. doi: 10.1109/MS.2016.
64 (cit. on p. 4).

[BHJ16b] A. Balalaie, A. Heydarnoori, and P. Jamshidi. “Microservices Architecture
Enables DevOps: Migration to a Cloud-Native Architecture.” In: IEEE Soft-
ware 33.3 (May 2016), pp. 42–52. issn: 1937-4194. doi: 10.1109/MS.2016.
64 (cit. on p. 9).

[CK21] M. Chakraborty and A. P. Kundan. “Introduction to Modern Monitoring.”
In: Monitoring Cloud-Native Applications: Lead Agile Operations Confi-
dently Using Open Source Software. Berkeley, CA: Apress, 2021, pp. 3–24.
isbn: 978-1-4842-6888-9. doi: 10 . 1007 / 978 - 1 - 4842 - 6888 - 9 _ 1. url:
https://doi.org/10.1007/978-1-4842-6888-9_1 (cit. on p. 9).

[Com+20] B. Combemale et al. Engineering Modeling Languages: Turning Domain
Knowledge into Tools. Chapman & Hall/CRC Innovations in Software En-
gineering and Software Development Series. CRC Press, June 2020. isbn:
9780367574215 (cit. on p. 9).

[DH17] T. F. Düllmann and A. van Hoorn. “Model-Driven Generation of Microser-
vice Architectures for Benchmarking Performance and Resilience Engineer-
ing Approaches.” In: Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering Companion. ICPE ’17 Companion.
L’Aquila, Italy: Association for Computing Machinery, 2017, pp. 171–172.
isbn: 9781450348997. doi: 10.1145/3053600.3053627 (cit. on pp. 12, 13).

[FM10] R. Feldt and A. Magazinius. “Validity Threats in Empirical Software En-
gineering Research - An Initial Survey.” In: Proceedings of the 22nd In-
ternational Conference on Software Engineering & Knowledge Engineer-
ing (SEKE’2010). Knowledge Systems Institute Graduate School, 2010,
pp. 374–379 (cit. on p. 87).

[Fow+02] M. Fowler et al. Patterns of Enterprise Application Architecture. Addison-
Wesley Professional, 2002, pp. 330–332. isbn: 0321127420 (cit. on p. 33).

105

https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1007/978-1-4842-6888-9_1
https://doi.org/10.1007/978-1-4842-6888-9_1
https://doi.org/10.1145/3053600.3053627

Bibliography

[FY97] B. Foote and J. W. Yoder. “Big Ball of Mud.” In: Proceedings of the 4th
Pattern Languages of Programming Conference (PLoP’97/EuroPLoP’97).
Washington University Technical Report, Sept. 1997 (cit. on p. 40).

[Gam+94] E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented
Software. Vol. 47. Addison-Wesley Professional, Oct. 1994, pp. 107–116,
315–323. isbn: 0201633612 (cit. on pp. 36, 38).

[Gar18] M. Garriga. “Towards a Taxonomy of Microservices Architectures.” In: Soft-
ware Engineering and Formal Methods. Ed. by A. Cerone and M. Roveri.
Springer International Publishing, 2018, pp. 203–218. isbn: 978-3-319-74781-
1 (cit. on p. 4).

[Gat21] R. Gatev. “Observability: Logs, Metrics, and Traces.” In: Introducing Dis-
tributed Application Runtime (Dapr): Simplifying Microservices Applica-
tions Development Through Proven and Reusable Patterns and Practices.
Berkeley, CA: Apress, 2021, pp. 233–252. isbn: 978-1-4842-6998-5. doi: 10.
1007/978-1-4842-6998-5_12. url: https://doi.org/10.1007/978-1-
4842-6998-5_12 (cit. on p. 9).

[GBS17] D. Gannon, R. Barga, and N. Sundaresan. “Cloud-Native Applications.” In:
IEEE Cloud Computing 4.5 (Sept. 2017), pp. 16–21. issn: 2325-6095. doi:
10.1109/MCC.2017.4250939 (cit. on p. 1).

[Gok+21] M. Gokan Khan et al. “PerfSim: A Performance Simulator for Cloud Native
Microservice Chains.” In: IEEE Transactions on Cloud Computing (2021),
pp. 1–1. issn: 2168-7161. doi: 10.1109/TCC.2021.3135757 (cit. on p. 14).

[Gop93] M. Gopal. Modern Control System Theory. Wiley, 1993. isbn: 9788122405033
(cit. on p. 9).

[Heg+17] C. Heger et al. “Application Performance Management: State of the Art and
Challenges for the Future.” In: Proceedings of the 8th ACM/SPEC on Inter-
national Conference on Performance Engineering. ICPE ’17. L’Aquila, Italy:
Association for Computing Machinery, 2017, pp. 429–432. isbn: 9781450344043.
doi: 10.1145/3030207.3053674 (cit. on p. 15).

[IEE90] IEEE. “IEEE Standard Glossary of Software Engineering Terminology.” In:
IEEE Std 610.12-1990 (Dec. 1990), pp. 1–84. doi: 10.1109/IEEESTD.1990.
101064 (cit. on p. 9).

[IS21] K. Indrasiri and S. Suhothayan. Design Patterns for Cloud Native Applica-
tions. O’Reilly Media, Inc., May 2021. isbn: 9781492090717 (cit. on p. 9).

[Kou+15] E. Kouroshfar et al. “A Study on the Role of Software Architecture in the
Evolution and Quality of Software.” In: 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories. May 2015, pp. 246–257. doi:
10.1109/MSR.2015.30 (cit. on p. 2).

106

https://doi.org/10.1007/978-1-4842-6998-5_12
https://doi.org/10.1007/978-1-4842-6998-5_12
https://doi.org/10.1007/978-1-4842-6998-5_12
https://doi.org/10.1007/978-1-4842-6998-5_12
https://doi.org/10.1109/MCC.2017.4250939
https://doi.org/10.1109/TCC.2021.3135757
https://doi.org/10.1145/3030207.3053674
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/MSR.2015.30

Bibliography

[Lan+16] P. d. Lange et al. “Community Application Editor: Collaborative Near Real-
Time Modeling and Composition of Microservice-based Web Applications.”
In: Modellierung 2016, 2.-4. März 2016, Karlsruhe - Workshopband. Ed.
by S. Betz and U. Reimer. Vol. P-255. LNI. GI, 2016, pp. 123–128. url:
https://dl.gi.de/20.500.12116/844 (cit. on p. 12).

[LF] J. Lewis and M. Fowler. Microservices. url: https://martinfowler.com/
articles/microservices.html (visited on 04/03/2023) (cit. on pp. 1, 2,
7).

[MAA19] N. Marie-Magdelaine, T. Ahmed, and G. Astruc-Amato. “Demonstration
of an Observability Framework for Cloud Native Microservices.” In: 2019
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM). Apr. 2019, pp. 722–724 (cit. on p. 15).

[MGZ14] F. Montesi, C. Guidi, and G. Zavattaro. “Service-Oriented Programming
with Jolie.” In: Web Services Foundations. Ed. by A. Bouguettaya, Q. Z.
Sheng, and F. Daniel. New York, NY: Springer New York, 2014, pp. 81–
107. isbn: 978-1-4614-7518-7. doi: 10.1007/978-1-4614-7518-7_4. url:
https://doi.org/10.1007/978-1-4614-7518-7_4 (cit. on p. 13).

[New21] S. Newman. Building Microservices, 2nd Edition. O’Reilly Media, Inc., Aug.
2021 (cit. on pp. 1, 8, 46).

[Nie+19] S. Niedermaier et al. “On Observability and Monitoring of Distributed Sys-
tems – An Industry Interview Study.” In: Service-Oriented Computing. Ed.
by S. Yangui et al. Cham: Springer International Publishing, 2019, pp. 36–
52. isbn: 978-3-030-33702-5 (cit. on pp. 9, 15).

[Rad+18] F. Rademacher et al. “Microservice Architecture and Model-Driven Devel-
opment: Yet Singles, Soon Married (?)” In: Proceedings of the 19th In-
ternational Conference on Agile Software Development: Companion. XP
’18. Porto, Portugal: Association for Computing Machinery, 2018. isbn:
9781450364225. doi: 10.1145/3234152.3234193 (cit. on p. 9).

[Rad+19] F. Rademacher et al. “Viewpoint-Specific Model-Driven Microservice De-
velopment with Interlinked Modeling Languages.” In: 2019 IEEE Interna-
tional Conference on Service-Oriented System Engineering (SOSE). Apr.
2019, pp. 57–5709. doi: 10.1109/SOSE.2019.00018 (cit. on p. 13).

[Rad+21] F. Rademacher et al. “Towards Holistic Modeling of Microservice Architec-
tures Using LEMMA.” In: ECSA 2021 Companion Volume, Virtual (origi-
nally: Växjö, Sweden), 13-17 September, 2021. Ed. by R. Heinrich, R. Mi-
randola, and D. Weyns. Vol. 2978. CEUR Workshop Proceedings. CEUR-
WS.org, 2021. url: https://ceur-ws.org/Vol-2978/mde4sa-paper2.
pdf (cit. on p. 13).

[Rav] V. Ravuri. Sample E-Commerce application using Microservices / Cloud
Native Architecture (CNA). url: https://github.com/venkataravuri/e-
commerce-microservices-sample (visited on 04/13/2023) (cit. on p. 55).

107

https://dl.gi.de/20.500.12116/844
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1007/978-1-4614-7518-7_4
https://doi.org/10.1007/978-1-4614-7518-7_4
https://doi.org/10.1145/3234152.3234193
https://doi.org/10.1109/SOSE.2019.00018
https://ceur-ws.org/Vol-2978/mde4sa-paper2.pdf
https://ceur-ws.org/Vol-2978/mde4sa-paper2.pdf
https://github.com/venkataravuri/e-commerce-microservices-sample
https://github.com/venkataravuri/e-commerce-microservices-sample

Bibliography

[Ric16] M. Richards. Microservices vs. Service-Oriented Architecture. O’Reilly Me-
dia, Inc., Apr. 2016. isbn: 9781491941607 (cit. on p. 8).

[Ric19] C. Richardson. Microservices Patterns: With examples in Java. Manning,
2019, pp. 1–471. isbn: 9781617294549 (cit. on pp. 8, 42–44, 46, 47, 55).

[RRS17] P. Raj, A. Raman, and H. Subramanian. Architectural Patterns. Packt Pub-
lishing, 2017. isbn: 9781787287495 (cit. on p. 8).

[RS16] C. Richardson and F. Smith. Microservices From Design to Deployment.
NGINX, Inc., 2016 (cit. on pp. 1, 2).

[RSS18] F. Rademacher, J. Sorgalla, and S. Sachweh. “Challenges of Domain-Driven
Microservice Design: A Model-Driven Perspective.” In: IEEE Software 35.3
(May 2018), pp. 36–43. issn: 1937-4194. doi: 10.1109/MS.2018.2141028
(cit. on p. 9).

[RSZ19] F. Rademacher, S. Sachweh, and A. Zündorf. “Aspect-Oriented Modeling of
Technology Heterogeneity in Microservice Architecture.” In: 2019 IEEE In-
ternational Conference on Software Architecture (ICSA). Mar. 2019, pp. 21–
30. doi: 10.1109/ICSA.2019.00011 (cit. on p. 13).

[Rup10] N. B. Ruparelia. “Software Development Lifecycle Models.” In: SIGSOFT
Softw. Eng. Notes 35.3 (May 2010), pp. 8–13. issn: 0163-5948. doi: 10.
1145/1764810.1764814. url: https://doi.org/10.1145/1764810.
1764814 (cit. on p. 18).

[Som10] I. Sommerville. Software Engineering. 9th. USA: Addison-Wesley Publishing
Company, 2010, pp. 27–228. isbn: 0137035152 (cit. on pp. 18, 33, 111).

[Sor+18] J. Sorgalla et al. “AjiL: Enabling Model-Driven Microservice Development.”
In: Proceedings of the 12th European Conference on Software Architecture:
Companion Proceedings. ECSA ’18. Madrid, Spain: Association for Comput-
ing Machinery, 2018. isbn: 9781450364836. doi: 10.1145/3241403.3241406
(cit. on p. 11).

[Sor+20] J. Sorgalla et al. “Modeling Microservice Architecture: A Comparative Ex-
periment towards the Effectiveness of Two Approaches.” In: Proceedings of
the 35th Annual ACM Symposium on Applied Computing. SAC ’20. Brno,
Czech Republic: Association for Computing Machinery, 2020, pp. 1506–
1509. isbn: 9781450368667. doi: 10.1145/3341105.3374065 (cit. on p. 13).

[Sul+22] A. Suljkanović et al. “Developing Microservice-Based Applications Using
the Silvera Domain-Specific Language.” In: Applied Sciences 12.13 (2022).
issn: 2076-3417. doi: 10.3390/app12136679. url: https://www.mdpi.
com/2076-3417/12/13/6679 (cit. on p. 13).

[Ter+17] B. Terzić et al. “MicroBuilder: A Model-Driven Tool for the Specification
of REST Microservice Architectures.” In: Mar. 2017 (cit. on p. 12).

108

https://doi.org/10.1109/MS.2018.2141028
https://doi.org/10.1109/ICSA.2019.00011
https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1145/3241403.3241406
https://doi.org/10.1145/3341105.3374065
https://doi.org/10.3390/app12136679
https://www.mdpi.com/2076-3417/12/13/6679
https://www.mdpi.com/2076-3417/12/13/6679

Bibliography

[Ter+18a] B. Terzić et al. “A Model-Driven Approach to Microservice Software Archi-
tecture Establishment.” In: Sept. 2018, pp. 73–80. doi: 10.15439/2018F370
(cit. on p. 12).

[Ter+18b] B. Terzić et al. “Development and evaluation of MicroBuilder: a Model-
Driven tool for the specification of REST Microservice Software Architec-
tures.” In: Enterprise Information Systems 12.8-9 (2018), pp. 1034–1057.
doi: 10 . 1080 / 17517575 . 2018 . 1460766. eprint: https : / / doi . org /
10.1080/17517575.2018.1460766. url: https://doi.org/10.1080/
17517575.2018.1460766 (cit. on pp. 12, 13).

[TLP20] D. Taibi, V. Lenarduzzi, and C. Pahl. “Microservices Anti-patterns: A Tax-
onomy.” In: Microservices: Science and Engineering. Ed. by A. Bucchiarone
et al. Cham: Springer International Publishing, 2020, pp. 111–128. isbn:
978-3-030-31646-4. doi: 10.1007/978-3-030-31646-4_5. url: https:
//doi.org/10.1007/978-3-030-31646-4_5 (cit. on p. 84).

[Usm+22] M. Usman et al. “A Survey on Observability of Distributed Edge & Container-
Based Microservices.” In: IEEE Access 10 (2022), pp. 86904–86919. issn:
2169-3536. doi: 10.1109/ACCESS.2022.3193102 (cit. on p. 15).

[WHR14] J. Whittle, J. Hutchinson, and M. Rouncefield. “The State of Practice in
Model-Driven Engineering.” In: IEEE Software 31.3 (May 2014), pp. 79–85.
issn: 1937-4194. doi: 10.1109/MS.2013.65 (cit. on p. 9).

[Wiz+17] P. Wizenty et al. “MAGMA: Build Management-Based Generation of Mi-
croservice Infrastructures.” In: Proceedings of the 11th European Confer-
ence on Software Architecture: Companion Proceedings. ECSA ’17. Canter-
bury, UK: Association for Computing Machinery, 2017, pp. 61–65. isbn:
9781450352178. doi: 10.1145/3129790.3129821 (cit. on p. 11).

[Woh+12] C. Wohlin et al. Experimentation in Software Engineering. Springer Pub-
lishing Company, Incorporated, 2012. isbn: 3642290434 (cit. on p. 87).

[ZGD19] Y. Zhang, Y. Gan, and C. Delimitrou. “µqSim: Enabling Accurate and Scal-
able Simulation for Interactive Microservices.” In: 2019 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
Mar. 2019, pp. 212–222. doi: 10.1109/ISPASS.2019.00034 (cit. on p. 14).

109

https://doi.org/10.15439/2018F370
https://doi.org/10.1080/17517575.2018.1460766
https://doi.org/10.1080/17517575.2018.1460766
https://doi.org/10.1080/17517575.2018.1460766
https://doi.org/10.1080/17517575.2018.1460766
https://doi.org/10.1080/17517575.2018.1460766
https://doi.org/10.1007/978-3-030-31646-4_5
https://doi.org/10.1007/978-3-030-31646-4_5
https://doi.org/10.1007/978-3-030-31646-4_5
https://doi.org/10.1109/ACCESS.2022.3193102
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1145/3129790.3129821
https://doi.org/10.1109/ISPASS.2019.00034

Glossary
AML Architecture Modelling Languages

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

APM Application Performance Monitoring

CNCF Cloud Native Computing Foundation

DSL Domain-Specific Language

EMF Eclipse Modeling Framework

functional requirement Functional requirement is a statement of a service a system
should provide, how a system should react to particular inputs, and how a system
should behave in particular situations [Som10].

gRPC gRPC Remote Procedure Call

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

KPI Key Performance Indicator

MAPI-DM Microservices API Dependency Model

MDD Model-Driven Development

MDE Model-Driven Engineering

MSA Microservice Architecture

MVC Model-View-Controller

OTLP OpenTelemetry Protocol

REST Representational State Transfer

111

Glossary

RPI Remote Procedure Invocation

SDK Software Development Kit

UI User Interface

UML Unified Modeling Language

URL Uniform Resource Locator

YAML YAML Ain’t Markup Language

112

	Introduction
	Research Questions
	Goals and Contribution
	Thesis Structure

	Foundations
	Communication in MSA
	Model-Driven Development
	Observability of MSA

	Related Work
	Model-Driven Development of MSA
	MSA Simulation
	MSA Observability

	Research Approach and Solution Concepts
	Research Phases and Scope
	Conceptual Approach to Mocking MSA
	Generating Microservice Applications
	Modelling MAPI-DM

	Design
	Design of MSA-Gen Application
	Microservice Application Composition and Observability

	Implementation
	Data and Configurations
	Frameworks
	Tools

	Evaluation Approach
	Evaluation Strategy
	Evaluation Tasks

	Evaluation Outcomes
	Evaluation Results
	Discussion of the Evaluation Results

	Discussion
	Answers to Research Questions
	Threats to Validity

	Conclusion and Future Work
	Summary
	Future Work

	Message Sequence Models of E-commerce Application Case Study
	MSA Observability Snapshots
	Bibliography
	Glossary

