
The present work was submitted to
the Research Group
Software Construction

of the Faculty of Mathematics,
Computer Science, and
Natural Sciences

Master Thesis

Designing a view-based
approach to model security in

software architectures

presented by

Sebastian Jörn Geiss

Aachen, June 26, 2023

Examiner

Prof. Dr. rer. nat. Horst Lichter

Prof. Dr. rer. nat. Bernhard Rumpe

Supervisor

Alex Sabau, M.Sc.

Abstract

As software systems become increasingly prevalent in our digitalized world, the security
of these systems becomes a critical concern. Cybercriminals continually exploit vulnera-
bilities in software, making it essential for software developers to consider the security
of the software system while planning. Since existing approaches focus on identifying
vulnerabilities from an attacker’s perspective, there is a research gap in modeling security
from a defender’s perspective.

This thesis addresses this gap by contributing a modeling language called the Fortress
Modeling Language (FML). FML uses security dimensions to model the defender’s
perspective. A security dimension is a part of a software architecture view that refers to
defined security aspects, like for example authentication. Further, it consists of multiple
security concerns, which are to be covered by the security dimension, and provides the
link between the security concerns, requirements, and corresponding security design
concepts.

The concept of security dimensions is based on the concept of “security views” defined
by Sinkovec [Sin22].

This thesis presents the FML metamodel and an example for realization as well as an
evaluation of FML. For the evaluation, experts from industry and research were surveyed
about FML in a semi-structured expert interview to investigate whether FML is suitable
as a modeling language for the security of a software system.

The results of the evaluation show that despite some criticism, the experts have
considered the language to be overall suitable. The discussion of the results indicates
that FML offers a promising first draft for modeling the security of software systems.
Therefore, FML can serve as a foundation for upcoming security modeling languages. It
can be used as a starting point for future improvements and shows a new way to model
the security of system architectures.

Contents

1. Introduction 1
1.1. Contribution . 2
1.2. Research questions . 2
1.3. Structure . 3

2. Foundations 5
2.1. Software- and system architecture definitions 5
2.2. Security definitions . 7

3. Background 11
3.1. Software engineering view on security . 11
3.2. Security dimension . 12

4. Research Approach 15
4.1. Information need . 15
4.2. ISTQB Security Tester Syllabus . 16
4.3. Method . 17
4.4. Results . 20

5. Creation of the Fortress Modeling Language 25
5.1. Research method . 25
5.2. The Fortress Modeling Language metamodel 29

6. Realization of FML 45
6.1. Component elements . 45
6.2. Policy Elements . 47
6.3. Ownership . 48
6.4. Behavior . 48

7. Evaluation 51
7.1. Method . 51
7.2. Results . 55

8. Discussion 59
8.1. Discussion of the evaluation results . 59
8.2. Discussion in the context of the research questions 62

i

9. Related Work 65
9.1. UML . 65
9.2. UMLsec . 65
9.3. SecureUML . 66
9.4. CySeMoL . 67
9.5. Further modeling languages . 68
9.6. Differentiation to the Fortress Modeling Language 68

10.Conclusion 71
10.1. Summary . 71
10.2. Future work . 72

A. Security dimension case studies 75

B. Evaluation transcription 81

Bibliography 85

List of Tables

3.1. Overview of the security dimensions as defined in definition 13 and their
concerns . 14

4.1. Information list of the extraction process after step 2 (section 4.3) 21
4.2. Policies which are mentioned in the ISTQB Security Tester Syllabus. The

Policies were assigned to dimensions in the Need Analysis, described in
section 4.3. 22

4.3. Added concerns to the dimensions from the extraction process in sec-
tion 4.3. The concerns extend the existing concerns (table 3.1). 24

5.1. Overview of the randomly chosen design principles from the catalog of
Sinkovec (see chapter 3), used to extend the case studies during the process
to create FML. 26

7.1. Questionaire for the expert interview to evaluate FML 52

iii

List of Figures

4.1. Example of a work instruction in the ISTQB Security Tester Syllabus [Ist] 16
4.2. Overview over the information extraction process to enrich the security

dimensions with the information needed by the security tester. 17
4.3. Classification of the information from the ISTQB Security Tester Syllabus

[Ist] . 19

5.1. Flowchart of the FML creation process . 27
5.2. Hierachy of the security dimension elements in the meta model of FML. . 30
5.3. Hierarchy of component elements in FML 31
5.4. Hierachy of the relationship elements in the meta model of FML. 33
5.5. Hierachy of the policy elements of FML. 34
5.6. Ownership of the general security dimension. 35
5.7. Ownership of the component elements . 35
5.8. Ownership of the policy elements. 36
5.9. Behaviour of the policy elements. 37
5.10. Behaviour of the component elements . 37
5.11. Behaviour of the subclasses of the abstract configuration 38
5.12. Elements of the authentication dimension. 39
5.13. Elements of the authorization dimension. 40
5.14. Elements of the secure communication dimension. 40
5.15. Elements of the secure storage dimension. 41
5.16. Elements of the deployment dimension. 42
5.17. Elements of the monitoring dimension. 42

6.1. Example realization of the basic components in FML. 45
6.2. Example realization of the authentication and authorization components

in FML. 46
6.3. Example realization of the configuration components in FML. 47
6.4. Example realization of the policy elements in FML. 48
6.5. Example realization of the relationships in FML. 48
6.6. Example realization of the relationships in FML. 49
6.7. Example realization of the default policy implementation hint in FML. . . 49

7.1. Case study for the evaluation of FML . 54

9.1. Example of an UMLSec model [Jü02] . 66
9.2. Example of an UMLSec model [LBD02] 67

v

9.3. Example of a CySeMoL model with a 19-step attack path. The numbers
display the steps on the attack graph. The probability that each step on
the path is reached is given with probability T [SEH13] 68

9.4. Example of figure 9.2 remodeled in FML as an authentication dimension. 69

A.1. Case study for designing the authentication dimension. The existing case
study was extended to include mtls authentication between the services.
The client now has to authenticate itself at the api gateway with oauth2.0.
Additionally, all databases were set to an outdated technology and the
customer service communicates with an open database that does not require
authentication. In addition, a password policy and a data classification
policy were introduced, as well as a zero trust policy, which is violated by
the unprotected database. 75

A.2. Case study for designing the authorization dimension. Various authoriza-
tions were added to the customer service. The writing and reading of
customer data is allowed to be done by users with the role of medical
assistant. Doctors have all the same rights as medical assistants, but are
also allowed to make changes. The authorization validation is done by a
keycloak service. 76

A.3. Case study for designing the secure communication dimension. A network
was specified, which has a configuration. This configuration fullfills various
policies. In addition, a message chain was defined over various services to
query credit card information for users, as well as to query a user’s pets. 77

A.4. Case study for designing the secure storage dimension. It was added that
the system runs in a house where there is a corporate network. In one
room of the house there are two machines running the customer and vets
service. In addition, two databases with a local backup were added, where
the backup is in the same building. Further, a database with cloud backup
was added. Additionally, an application was added that contains two
passwords modeled as secret. One for the cloud backup service and one
for a database of the system. 78

A.5. Case study for designing the secure deployment dimension. It was added
that each service runs on one machine. In addition, a configuration for
machines was defined. One of them is the default configuration, which is
intended as a minimum configuration for all systems. In addition, there is
a server security policy, which is violated by the customer server install. . 79

A.6. Case study for designing the monitoring dimension. It was added that each
machine will be equipped with a log. The electronic and privacy policy
was added, which defines what must not be logged. The API gateway
violates this by logging the content of messages between vets. In addition,
there is an antimalware configuration that is run manually once a week.
However, this is only active on one machine, which means that only this
machine complies with the antimalware policy. 80

B.1. Interview transcription EQ1-4 . 82
B.2. Interview transcription EQ4-7 . 83

1. Introduction

In an increasingly digitalized world, software systems have become an integral part of our
daily lives. We use them in various fields such as communications, banking, healthcare,
transportation, and many more. However, as our dependence on software increases, so
does the threat to the security of these systems. Cybercriminals use advanced techniques
to exploit vulnerabilities in software systems and gain unauthorized access to confidential
information or cause damage.

However, software developers are not helpless against these attacks. There are software
design principles that provide fundamental guidelines for software development [KK21].
These principles aim to improve the quality, maintainability, extensibility, and reusability
of the code. In terms of software security, software design principles aim to avoid security
vulnerabilities and enhance resilience against potential attacks.

An example of such a design principle is zero trust networking." This security concept
revolves around the notion that no network perimeter should be automatically trusted,
even if it resides within the corporate network, and every action should be authenticated.
By implementing this principle, software systems can establish a stronger security
foundation.

However, there I perceive a research gap when it comes to modeling security in system
architecture. Existing approaches often consider security from the perspective of an
attacker, such as in threat modeling. This technique is used to identify potential threats
and weaknesses in a system or application by analyzing its architecture, components, and
interactions. The results of the analysis can then inform the development of corresponding
countermeasures [BJE16].

Nevertheless, this technique does not assist in the actual design of the software.
Software architects and software testers view the system from a defender’s perspective.
The defender perspective should focus on understanding the design decisions made to
secure the software system and examines which design principles have been implemented
at various stages.

Returning to the example of zero trust networking, from a defender’s perspective,
one can assess whether the design principle has been effectively implemented. Such a
perspective could be valuable in the design of software systems. Additionally, when
testing software architectures, the defender’s perspective aids in evaluating where software
design principles may not have been adequately implemented.

By adopting a defender’s perspective and considering the implementation of design
principles, software developers can enhance the security posture of software systems. This
approach shifts the focus from solely identifying vulnerabilities and threats to actively
incorporating security measures into the software design process. It empowers software

1

1. Introduction

developers to proactively defend against cyber threats and bolster the overall security of
the systems they create.

Sinkovec created a first approach on how security could be modeled from the defender’s
perspective by using “security views”. A “security view” should provide the link between
related security concerns and requirements and corresponding security design concepts.
Sinkovec considers a partition into different “security views” as necessary to cope with
the complexity of the security-relevant design. Sinkovec defines the “security view” to
be supposed to be created during the design and engineering of a software architecture.
Further a “security view” should capture certain security aspects of such a system, e.g.,
authentication [Sin22].

This creates the need for a modeling language that models the security of software
systems on the basis of the “security views”.

1.1. Contribution

This thesis aims to fill the research gap and propose a first draft of a modeling language
for security in system architectures. In this thesis, I build on the concept of “security
views” according to Sinkovec and extend them under the name security dimensions.

These security dimensions serve as the basis for a modeling language called the Fortress
Modeling Language (FML). FML models the security of already designed software
systems from the perspective of a security software tester. For this purpose FML offers
a possibility to model the security dimensions in order to model the different security
aspects. Therefore, FML can be used to model typical security design principles for the
different security dimensions.

To test the validity of FML, I also contribute an initial evaluation. For this purpose, I
conduct a semi-structured expert interview. This should show to what extent FML is
suitable for modeling the security of software systems.

1.2. Research questions

The following research questions arise from the research gap of a missing modeling
language for security in system architectures:

RQ1 How can a metamodel for modeling security dimensions of software architecture
views look like?

RQ2 Which modeling elements can be used to model an Authentication, Authoriza-
tion, Secure Communication, Secure Storage, Secure Build and Deployment, and
Monitoring Dimension?

2

1.3. Structure

1.3. Structure
The thesis is structured as follows: In chapter 2, I introduce definitions and terms for
modeling software and system architectures as well as the security terms which will
further be used in this thesis. As this thesis builds on the thesis from Sinkovec about
a software engineering perspective of security [Sin22], I describe the background of
Sinkovec’s thesis which this thesis is built on in chapter 3 and define the term security
dimension. In chapter 4 I describe which information the creation of the FML is based
on. For this purpose, I describe what information is missing and how this information
was obtained. In chapter 5, I tackle the research questions by describing the metamodel
of FML. Chapter 6 describes an example realization of FML. Chapter 7, describes the
method and results of the evaluation. The evaluation results are discussed in chapter 8.
In chapter 9, I distinguish FML from comparable languages. Finally, I summarize the
thesis in chapter 10 and offer an outlook on future extensions.

3

2. Foundations

In this chapter, I introduce definitions and terms for modeling software and system
architectures as well as the security terms which will further be used in this thesis. For
this purpose, I first clarify basic definitions of concepts from software engineering in
section 2.1. Subsequently, I clarify definitions used in this thesis for concepts and terms
from the area of security in section 2.2.

2.1. Software- and system architecture definitions

Since there are many different definitions in the field of software engineering, I clarify in
this section the basic definitions used in this thesis.

In this thesis FML is developed, which models the security of software systems. Since
there are different definitions, it is important to build a common definition of what a
system is in the context of this work. For this, I use definition 1 from the IEEE standard
glossary of software engineering terminology.

Definition: 1: Software system

A software system is a collection of components organized to accomplish a specific
function or set of functions. [Ele90]

A software system has a structure, the system architecture. There are multiple
definitions for the term system architecture. [BCK03; Ele90]. In this work, I will further
use the definition by Bass, Clements, and Kazman, defined in definition 2.

Definition: 2: System architecture

The system architecture of a program or computing system is the structure or
structures of the system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them. [BCK03]

Therefore a system architecture is more than just a list of software components with
their corresponding relations. It includes a structure that is a product of different design
decisions which were made by a system architect. If two system architects get the same
problem to solve, they probably design different system architectures.

According to definition 2, software architectures consist of software elements. These
software elements are e.g. software components.

5

2. Foundations

Definition: 3: Software component

Is an architectural entity that (1) encapsulates a subset of the system‘s functionality,
(2) restricts access to that subset via an explicitly defined interface, (3) has explicitly
defined dependencies on its required execution context.

Taylor, Medvidović, and Dashofy describes a software component as an architectural
entity that (1) encapsulates a subset of the system‘s functionality and/or data, (2)
restricts access to that subset via an explicitly defined interface, (3) has explicitly defined
dependencies on its required execution context [TMD09]. For the creation of FML, the
importance of data security was pointed out. Therefore data related software elements
like databases are separated from common software components in this work. This leads
to definition 3.

Definition: 4: View

A view expresses the architecture of the system from the perspective of one or
more stakeholders to address specific concerns, using the conventions established
by its viewpoint. [612]

The view of a system architecture refers to a specific perspective or representation of a
system. This helps to break down and understand the system’s structure, behavior, or
functionality from a particular angle. This particular angle is defined by the viewpoint.

Definition: 5: Viewpoint

A viewpoint is a set of conventions for constructing, interpreting, using, and
analyzing one type of architecture view. [612]

In system architectures, a viewpoint refers to a specific perspective or frame of reference
from which a system is analyzed, described, or understood. It represents a particular
way of looking at the system and focuses on specific concerns or interests of a particular
stakeholder or group of stakeholders.

Views are used to analyze, design, document, and communicate aspects of a complex
system to different stakeholders, such as architects, developers, testers, and users. These
stakeholders have a specific area of interest or focus within the system they formulate
concerns.

Definition: 6: Concern

A concern is an interest in a system relevant to one or more of its stakeholders.
[612]

A concern represents a particular aspect or issue. Concerns often represent cross-cutting
themes that can impact multiple components of the system.

6

2.2. Security definitions

As views are an individual perspective of the system, the architectural description is
the complete documentation or representation that encompasses these views.

Definition: 7: Architectural description

The architectural description is a model, document, product, or other artifact to
communicate and record a system’s architecture. An architectural description
conveys a set of views each of which depicts the system by describing domain
concerns. [Ell+96]

An architectural description, in the context of system architecture, refers to a com-
prehensive and structured representation of the system’s architecture. It captures the
essential design decisions, components, relationships, and behaviors of a system in a way
that facilitates understanding, communication, and analysis among stakeholders.

The architectural description provides a blueprint or documentation of the system’s
structure, organization, and behavior, enabling stakeholders to gain insights into how
the system is designed and how its various parts interact with each other. It serves
as a common reference for architects, developers, testers, project managers, and other
stakeholders involved in the system’s lifecycle.

2.2. Security definitions

To avoid misinterpretation, I define some basic terms of security in this section, which
will be used in the following of this thesis.

In the further course of the thesis, the terms authenticity and authorization will be
used in connection with FML. Authentication and authorization are two fundamental
concepts in access control and play an important role in protecting systems and resources.

In this context, I will follow the definitions of ISO/IEC 25010:2011:

Definition: 8: Authenticity

The goal of authenticity refers to the guarantee of the authenticity and trustwor-
thiness of information, identities and entities. [250]

Authentication typically involves the use of credentials such as username and password,
biometrics (fingerprint, iris scan, etc.), two-factor authentication, or other methods. The
goal of authentication is to ensure that only authorized users or entities gain access to a
system or resource.

Definition: 9: Authorization

The goal of authorization refers to the successful management of access and usage
rights of a system. [250]

7

2. Foundations

The authorization ensures that an authenticated entity can perform only those actions
for which it is authorized. This is usually done by assigning permissions or roles that
grant users certain privileges. For example, an authorized user may be granted permission
to read, write, or delete files, while another user may be granted read-only privileges.

Furthermore, in the context of authorization, the access control models Attribute-Based
Access Control (ABAC) and Role-Based Access Control (RBAC) are mentioned in the
course of the thesis.

Definition: 10: Role-based access control (RBAC)

RBAC is a model for access control which uses roles to decouple the users from
their privileges. The model includes five data types: [Fer+01]

Users (USERS) Users are defined as a person or software agents.

Roles (ROLES) A role is a function or a job in an organization. A role combines
different privileges which allow the execution of an operation on a set of
protected objects or resources. Roles are assigned to users with a user
assignment. Roles can inherit from other roles, which means, that they
include all permissions from the role they inherited from.

Objects (OBS) Objects are defined as resources that are protected by a security
mechanism. These could be for example system resources.

Operations (OPS) Operations are defined as an action on an object which can
be done via a system entity.

Permission (PRMS) A permission stands for the authorization to operate on a
set of objects.

RBAC is an access protection model based on assigning roles to users. It was developed
to simplify the management of permissions in large organizations. In comparison to
RBAC, which is primarily based on roles and their assignment to users, the ABAC model
uses attributes and attribute-based policies to control access.

8

2.2. Security definitions

Definition: 11: Attribute-Based Access Control (Abac)

ABAC is an access control methodology where authorization to perform a set
of operations is determined by evaluating attributes associated with the subject,
object, requested operations, and, in some cases, environment conditions against
policy, rules, or relationships that describe the allowable operations for a given set
of attributes.

Attributes Attributes are characteristics that define certain aspects of the sub-
ject, object, environment conditions, and/or requested operations that are
predefined and assigned by an authority. Attributes contain information
specifying the class of information given by the attribute, a name, and a
value

Subjects Subjects are active entities that cause the flow of information between
objects or change the system state. They may be the user, the requester, or
a mechanism acting on behalf of the user or requester. A subject can also
be a non-personal entity, such as a system or process, rather than a human.

Subjects An object is a passive (in the context of the given request) information
system-related entity (e.g., devices, files) containing or receiving information.
For ABAC, attribute control can be more granular than at the object level.

Operation An operation is the execution of a function at the request of a subject
upon an object. Operations include for example reading, writing, editing,
and deleting.

[Hu+14]

In the ABAC model, access to resources is controlled based on a comprehensive
assessment of attributes and policies. It allows flexible and fine-grained access control,
as different attributes and conditions can be combined to create complex access rules.
ABAC can also be dynamic, where access rules can change based on current attribute
values or context.

Definition: 12: Security policy

Policies govern allowable behavior within an organization, based on the privi-
leges of subjects and how resources or objects are to be protected under which
environmental conditions.[Hu+14]

Security policies are an important part of FML. In the context of access control, a
policy refers, for example, to a set of rules, guidelines, or instructions that specify how
access to resources is controlled in a system. A policy specifies which users or roles
may have access to certain resources, what actions they can perform, and under what

9

2. Foundations

conditions access is allowed or denied. It serves as the basis for enforcing access control
and maps the rules that are applied in the security system. In the further course of this
thesis, the term policy will be used as a shorthand for the term security policy.

10

3. Background

This thesis builds on the thesis from Sinkovec about a software engineering view of security
for microservice-based applications [Sin22]. In this chapter, I describe the background of
Sinkovec’s thesis in section 3.1. I then define the term security dimension, which is based
on Sinkovec’s thesis in section 3.2.

3.1. Software engineering view on security

In his thesis, Sincovec’s first contribution is a catalog of security design concepts that
apply to microservice-based applications. This catalog was created to structure the
available measures that exist to secure such a software application from an architectural
viewpoint and to provide a first approach toward a searchable and navigable knowledge
database to be used by software architects. To accomplish this, he performed an adapted
version of Kitchenham et al.’s Systematic Literature Review (SLR) [Sin22]. The resulting
catalog of security design concepts is split into six catalogs:

• Security design principles (14)

• Security activities (10)

• Security tactics (20)

• Architectural security patterns (11)

• Security protocols (8)

• Intrusion detection/prevention system approaches

Further, Sinkovec assigned different properties to every item in this catalog, like the
name and the publication, in which it was published. Some of the catalogs define special
properties for example security design principles, the motivation behind the principle,
or related principles. This led for example to the security design principle zero trust
networking.

11

3. Background

Name Zero Trust Networking

Security view Authentication, Authorization, Secure Communication

Summary All actions must be verified and all data transfers should be encrypted.
There is no implicit trust between services, and trust must be evaluated contin-
uously

Intent Always assume that the microservice network is already compromised

Related Principle Deny access by default, Principle of least privilege

Based on the insights from the conducted SLR as well as other related work, Sinkovec
proposed a security metamodel for the description, modeling, and assessment of security
in software architectures. The security metamodel should illustrate the most important
concepts and relationships when modeling the security of such an architecture. The
core of this metamodel defines the notion of a “security view”. A “security view” should
provide the link between related security concerns and requirements and corresponding
security design concepts. Sinkovec considers a partition into different “security views” as
necessary to cope with the complexity of the security-relevant design. Sinkovec defines
the “security view” to be supposed to be created during the design and engineering of a
software architecture. Further a “security view” should capture certain security aspects
of such a system, e.g., authentication.

3.2. Security dimension

In chapter 2 the term “view” is defined as an expression of an architecture of the system
from the perspective of one or more stakeholders to address specific concerns, using the
conventions established by its viewpoint. The term view in “security view” defined by
Sinkovec, is more concerned with what is seen, the security of the software system, rather
than the viewpoint from which the architecture is viewed. Therefore the term view does
not quite fit in this context in my opinion and the term security dimension will be used
for this concept in the further course of the work.

Definition: 13: Security dimension

A security dimension is a part of a view that refers to defined security aspects, like
for example authorization. A security dimension provides the link between related
security concerns and requirements and corresponding security design concepts
and consists of multiple security concerns, which are to be covered by the security
dimension.

12

3.2. Security dimension

In addition to the renaming, other changes were made to the concept. Sinkovec defined
a secure build and deployment “view” where the build part relates to a process, but the
deployment part relates to a structure. Since the simultaneous modeling of a process and
a structure is difficult to implement, the secure build and deployment “view” was split
into two dimensions, the secure build dimension, and the secure deployment dimension.
In order to reduce the scope of FML to model the structure of systems, the secure build
dimension is excluded from this work. This leads to a set of six security dimensions with
their corresponding concerns, which will be referred to in the following work and are
shown in table 3.1.

13

3. Background

Dimension Concerns

Authenti-
cation

SC-AN1: Which components can be trusted?
SC-AN2: Which communication paths exist that need to be authenti-
cated?
SC-AN3: Which authentication method is used?
SC-AN4: Which assets (secrets) are required to perform the authentica-
tion method?
SC-AN5: Does the authentication method need to be secured?
SC-AN6: Who validates the identity claim?
SC-AN7: Who manages the identity information of components?

Authori-
zation

SC-AZ1: Which authorization model is used?
SC-AZ2: Which roles/attributes need to be considered?
SC-AZ3: How are roles/attributes assigned to services/clients?
SC-AZ4: Which permissions are assigned to each role? Which access
rules exist and on which attributes do they depend?
SC-AZ5: Who determines the permissions of the entity?
SC-AZ6: Who validates whether the requested action is allowed?

Secure
Commu-
nication

SC-SC1 Which communication paths exist in the system architecture?
SC-SC2 What type of information is transported on these communication
paths?
SC-SC3 Which communication paths need to be secured?
SC-SC4 How do communication paths need to be secured?
SC-SC5 Which assets are required to secure the communication path?

Secure
Storage

SC-SS1 Which storage assets exist?
SC-SS2 Which storage assets are secured?
SC-SS3 How are storage assets secured?
SC-SS4 Which assets are required to secure the storage asset?

Secure
Deploy-
ment

SC-SB2 Which application and container dependencies exist in each
component?
SC-SB3 Which vulnerabilities exist in those dependencies and how severe
are they?
SC-SB5 On which machines or deployment units are components deployed
or installed?
SC-SB6 How are components configured?
SC-SB7 Which capabilities and actions do components have permissions
for?

Secure
Monitor-
ing

SC-MT1 Which entities need to be monitored?
SC-MT2 Which actions need to be traced?
SC-MT3 How and by whom are traced actions evaluated?
SC-MT4 How are irregular actions reported?
SC-MT5 Which prevention measures are executed (if any) on an irregular
action and by whom?

Table 3.1.: Overview of the security dimensions as defined in definition 13 and their
concerns

14

4. Research Approach

In this chapter, I describe which information the creation of the FML is based on.
Therefore, in section 4.1, I describe why the security dimensions alone are not sufficient
as an information base and why additional information is needed. Then I describe in
section 4.2 the ISTQB Security Tester Syllabus, a training document for security software
testers, from which the additional information is taken. In section 4.3 I describe the
Need Analysis, the method of how additional information are gained out of the ISTQB
Security Tester Syllabus. In section 4.4 I present the results of the Need Analysis.

4.1. Information need

In the previous chapters I defined the terms view (definition 4) and security dimension
(definition 13). The goal of FML is to be able to model the security dimensions of a
system architecture. From the definition it can be derived, that if a security dimension is
to be modeled, it must be associated with a view.

The stakeholders of the view define which software components are relevant. This helps
to define the scope of the view and therefore of the security dimensions and to ensure
that only the relevant parts of the system are covered. The stakeholders also define the
level of abstraction. Security design patterns can be used at different abstraction levels.
A low level of abstraction can be applied, for example, from a programmer’s point of
view, when they refer to catching errors in the code to prevent the system from crashing.
At a high level of abstraction, the security design patterns relate, for example, to the
secure exchange of data when two large applications interact. Thus, a stakeholder is
essential to model the security dimensions in a meaningful way to define which design
principles should be shown. In addition, the stakeholder also defines the goal of the view
and thus also of the security dimensions. In this way, the stakeholder defines the purpose
for which the security dimensions are to be modeled and what information is to be read.

In order to be able to use FML as a modeling language for the security dimensions,
I have to create an information base that supplements the security dimensions with
additional information related to a stakeholder to create a view.

For the first version, which is developed in the context of this thesis, I first focus on
one stakeholder. For this purpose, the security software tester is chosen. Therefore,
FML is based on the security softwaretester view. The background of this decision is
the availability of good information material in the form of training material. For this
purpose, the ISTQB Security Tester Syllabus, which is further described in section 4.2,
is used for the creation of FML. In a future version, FML should be suitable for use in
views with different stakeholders.

15

4. Research Approach

4.2. ISTQB Security Tester Syllabus
The ISTQB Security Tester Certification is a certification for professionals who specialize
in security testing. It is offered by the International Testing Qualifications Board
(ISTQB)1. The certification focuses on planning, performing, and evaluating security
tests from multiple perspectives, including risk, requirements, vulnerability, and human
factors. Further security standards and testing tools are covered.

The Certified Tester Advanced Level Syllabus Security Tester is a document that
outlines the topics and subtopics that are covered in the ISTQB Advanced Level Security
Tester certification. It provides the knowledge which is needed to get certificated and is
separated into nine chapters:

1. The basis of security testing

2. Security testing purposes, goals, and strategies

3. Security testing processes

4. Security testing throughout the software lifecycle

5. Testing security mechanisms

6. Human factors in security testing

7. Security test evaluation and reporting

8. Security testing tools

9. Standards and industry trends

The following text was taken from the ISTQB Security Tester Syllabus and will
be used as an example for the Need Analysis, described in section 4.3:

When evaluating security controls, the auditor should look at a system
from the perspective of an attacker and anticipate how people, process
or technology could be exploited to gain unauthorized access to valuable
assets. Management in organizations is often surprised that the
security mechanisms they thought were secure, are not. [Ist]

Figure 4.1.: Example of a work instruction in the ISTQB Security Tester Syllabus [Ist]

The first chapter covers the fundamentals of security testing, addressing topics such as
security risks, information security policies, security procedures, and security auditing.
Moving on to the second chapter, it provides the context of security testing by explaining
its purpose, scope, and goals. This chapter also explores different approaches to testing.

1https://www.istqb.org/

16

4.3. Method

The third chapter focuses on the processes involved in security testing, including planning,
design, execution, and evaluation. It provides a comprehensive overview of each stage. In
the fourth chapter, the testing processes are aligned with the various stages of software
development. Starting from requirements and extending all the way to maintenance, each
stage is discussed in detail. Chapter Five is dedicated to teaching about the testing of
security mechanisms. This includes topics such as system hardening, encryption, intrusion
detection, and malware scanning. Moving to chapter six, it delves into the human factors
of security testing. This encompasses perspectives from attackers, user awareness, and the
potential for social engineering. Chapter seven addresses the evaluation of security tests
and how the results are presented. It provides guidance on assessing the effectiveness of
security measures. The last two chapters cover the tools used for security testing and
provide insights on understanding and implementing security standards.

Figure 4.1 shows an excerpt from the ISTQB Security Tester Syllabus. This is used in
the following chapter as an example for the need analysis. In the example you can see
that a security tester should look at the authorization to identify possible vulnerabilities.

4.3. Method

The previous section describes why the security dimensions need to be supplemented
with additional information about a corresponding view to be an information base for
FML. In this section, I describe the Need Analysis, after which the additional information
is procured. In the Need Analysis a document, which is a training document for a
stakeholder, is analyzed systematically. Thereby important needs and information for
the work of the stakeholder are extracted, to be able to represent these later in a view.
The process is based on the assumption that a teacher, who teaches a student, knows
best about these needs.

Figure 4.2.: Overview over the information extraction process to enrich the security
dimensions with the information needed by the security tester.

17

4. Research Approach

Figure 4.2 shows a graphical visualization of the Need Analysis. In the following the
methodology is explained step by step. Figure 4.1 is used as an example to further clarify
the process.

Step 1: Analysis

In the first step, the syllabus is analyzed chapter by chapter. All needs which are named in
the ISTQB Security Tester Syllabus are noted in a list which is further called Information
List. A piece of information is added to the list if one of the following criteria is met:

• The information directly describes a need for a security software tester

• The information directly describes an asset, software component, or concern that is
important for security testing

• The information describes a policy

All information that meets the criteria is added to the Information List, even if they were
already added during the analysis of another chapter. Thus, the Information List contains
duplicates. If too many filters are already applied during the analysis process, information
could be missed. Therefore, allowing duplicates prevents missing a piece of information
due to similarities with a piece of information that is already in the Information List.
The Information List should contain all the information from the ISTQB Security Tester
Syllabus which are needed to extend the existing security dimensions but also contain
unnecessary information which is not needed for the extension of the security dimensions.

In the example of figure 4.1 this means that the information “user of the system”,
“technologies of the system” and “access rights” is extracted from the passage and add it
to the Information List.

Step 2: Filtering

In the second step the Information List is ordered and elements are excluded based on
the following list:

• Exclude information that relate to testing in general, e.g. test metrics

• Exclude information on organizational level based on figure 4.3

• Exclude information that is already covered by existing models e.g. threat model.

General testing information is excluded in step two because the dimensions are meant to
model a software system to analyze the security testing. Testing information would be
part of the modeling of the results of the security testing and not of the software system.
Further also the organizational information based on figure 4.3 is excluded because they
are out of scope for the modeling of a software system. Organizational information would
fit in an enterprise model which is not in the scope of this thesis.

18

4.3. Method

Figure 4.3.: Classification of the information from the ISTQB Security Tester Syllabus
[Ist]

The result of this step is the ordered Information List. Further, the Information List
should not contain information that is unnecessary to extend the security dimensions.

In the example of figure 4.1 this means that the “user of the system” information is
removed from the Information List since it is at the organizational level and is not part
of the system. Accordingly, “technologies of the system” and “access rights” remain in
the Information List.

Step 3: Assigment

In the third step, the items of the Information List are iterated and each element is
assigned to the best fitting dimensions. An information is assigned to a security dimension
if it fits one of the following criteria:

• The information is covered by the concerns of the dimension

• The information is covered by the description of the dimension

• The information is covered by the goal of the dimension

If elements are not covered by security dimension concerns, a new concern is created
for this element. If the criteria are met for more than one security dimension, the concern
is assigned to all thematically proximate security dimensions. The result of this step is
an overview of the extended security dimensions which contains the previously existing
concerns, the newly added concerns, and the Policy List, a list with the information to
which security dimensions a policy is assigned. Policies are not exclusive to the dimension
they are assigned to. The idea is to guarantee that every policy from the information list
can be modeled in at least one dimension.

19

4. Research Approach

In the example of figure 4.1, this means that the information “technologies of the
system” and “access rights” are mapped to the security dimensions. The technologies are
mapped to all dimensions since this information is relevant throughout and not limited
to one dimension. The access rights refer to the authorization and are therefore assigned
to the authorization dimension.

4.4. Results
In section 4.3 the Need Analysis, a method how to extract needs and information needed
by a security tester from the ISTQB Security Tester Syllabus, is described. In this
chapter, I describe the results of this method. The results are split in three parts: the list
which contains the extracted needs and information in the Information List, the concerns
which were newly created and assigned to the dimension and, in the Policy List, the
policies which where mentioned in the ISTQB Syllabus and were not filtered out in step
2 of the Need Analysis.

4.4.1. Information List

The Information list is a result of the Need Analysis. It contains needs and information
which are mentioned in the ISTQB Security Tester Syllabus and were not filtered out in
the Need Analysis. The Information List is shown in section 4.4.1.

It is noticeable that from nine chapters, just the first five provided elements for the
Information List. The first five chapters are larger than the other chapters. Further,
they concentrate on security testing at the project level. The other chapter focus on the
organizational level. For example, the last chapter is about industry trends and the use
of standards.

Further, it is noticeable that some needs are mentioned in the syllabus more often than
other needs. This could be caused by the abstractness of the often-mentioned needs.

4.4.2. Policy List

The Policy List is, as the Information List, a result of the Need Analysis. It contains
the policies which are mentioned in the ISTQB Security Tester Syllabus and were not
filtered out in the Need Analysis. The Policy List is shown in table 4.2.

It can be seen that policies are visible in all security dimensions. Further, not all
security dimensions include the same number of policies as other security dimensions.
The most policies are assigned to the secure communication dimension.

4.4.3. Extensions to the security dimensions

The concerns which extend the security dimension are a direct result of the information
list which was created by the Need Analysis. It can be seen that the policy concern and
a concern about the used technology are added to all security dimensions. This is a
result of the importance of the policies which was described in the ISTQB Security Tester

20

4.4. Results

Information Found in Sections Assign to Dimension:
Used technologies 1.1.1, 1.3.3, 2.4 All
Software components 1.1.1, 3.4 All

Networks 1.1.1, 3.4, 4.6 Secure Communication
Monitoring

Environment of operation 1.1.1, 2.6, 3.4, 4.6

Secure Communication
Secure Storage
Secure Deployment
Monitoring

Value of asset 1.1.2, 1.3.2 Authentication
Secure Storage

Data 1.1.2, 3.4 Authentication
Secure storage

Place of assets 1.1.2 Secure Storage

Security policies 1.2.1, 1.3.0, 2.4, 2.6
3.2.2 All

Malware detection mechanisms 1.3.0, 5.1, 5.6 Secure Communication
Monitoring

Recovery of system 1.3.0 Monitoring
Reaction time for breaches 1.3.0 Monitoring
Open ports 1.3.1, 5.4 Secure Communication
Protection of data 1.3.1 Secure Storage
Application of security updates 1.3.1 Secure deployment view
Roles 1.3.3, 5.2 Authorization
Access rights
Access limitations

1.3.3, 3.4, 4.5,
5.2 Authorization

Encryptions 2.6, 4.5, 5.1, 5.3 Secure Communication

Backups 2.6 Secure Storage
Secure Deployment

Authentication 4.5, 5.2 Authentication
Update mechanisms 5.1 Secure Deployment
Sand boxes 5.1 Authorization
Certification mechanisms 5.2 Authentication
Password rules 5.2 Authentication

Table 4.1.: Information list of the extraction process after step 2 (section 4.3)

21

4. Research Approach

Policy Name Description Assigned to Dimension
Minimum Ac-
cess

Defines the access rights to a soft-
ware component or asset.

Authoriza-
tion

Network Ac-
cess

Defines criteria to access networks
and defines permissions on network

Secure Com-
munication

Remote Access Defines required criteria to use a net-
work remote

Secure Com-
munication

Internet Access Defines how internet access is filtered
(e.g. whitelisting)

Secure Com-
munication

User Account
Management

Defines creation maintenance and
deletion of user account

Authoriza-
tion

Data Classifica-
tion

Classification of sensitive data into
classes: public, confidential, highly
confidential, private, secret

All

Server Security Defines how a server is configurated,
with all settings, monitoring and au-
diting

Deployment

Mobile Devices Policy which relates to mobile de-
vices as these can get lost easier

Secure Com-
munication

Guest Devices Defines how and if guests can use
the internet

Secure Com-
munication

Password Pol-
icy

Defines password requirements Authentica-
tion

Malware Pro-
tection

Defines how malware is prevented,
detected and removed

Monitoring

Incident Re-
sponse

Defines how to respond to an inci-
dent

Monitoring

Software
Licencing

Defines where licences are defined
and monitored

Deployment

Elektronic
Monitoring
and Privacy

Defines which communication in the
company is monitored

Monitoring

Table 4.2.: Policies which are mentioned in the ISTQB Security Tester Syllabus. The
Policies were assigned to dimensions in the Need Analysis, described in
section 4.3.

22

4.4. Results

Syllabus. As the used technology was described as a possible security vulnerability, it
was added to all dimensions.

Further, concrete concerns were added to the dimensions. One example would be
the concern SC-SS-BACKUP which relates to the used backup strategy of software
components.

23

4. Research Approach

Dimension Concerns

Authenti-
cation

SC-AN-TECH: Which technologies are used for the authentication?
SC-AN-VALUE. How valuable are the assets?
SC-AN-POLICY: Which security policies need to be followed during the
authentication?
SC-AN-PASSWORD: Which password rules are defined for authentica-
tion?

Authori-
zation

SC-AN-TECH: Which technologies are used for the authorization pro-
cess?
SC-AN-POLICY: Which security policies need to be followed during the
authorization process?

Secure
Commu-
nication

SC-SC-TECH: Which technologies are used to secure the communication?
SC-SC-POLICY: Which security policies need to be followed to secure
the communication?

Secure
Storage

SC-SS-TECH: Which technologies are used to secure the storage?
SC-SS-POLICY: Which security policies need to be followed to secure
the storage?
SC-SS-VALUE: How valuable are the storage assets?
SC-SS-BACKUP: How and when are backups created?

Secure
Deploy-
ment

SC-SB-TECH: Which technologies are used on the deployed system?
SC-SB-POLICY: Which security policies need to be followed on the
deployed system?
SC-SB-ENV: On which operating systems do the applications run?
SC-SB-PORT: Which ports are open?
SC-SB-UPDATES: How are security updates installed?
SC-SB-SANDBOX: Which services run in a sandbox?

Secure
Monitor-
ing

SC-MT-TECH: Which technologies are used for the monitoring?
SC-MT-POLICY: Which security policies need to be followed during the
monitoring?
SC-MT-MALWARE: Which antimaleware tools are used?
SC-MT-RECOVER: How can the system recover?

Table 4.3.: Added concerns to the dimensions from the extraction process in section 4.3.
The concerns extend the existing concerns (table 3.1).

24

5. Creation of the Fortress Modeling
Language

In the previous chapter, the Need Analysis, which extracted the needed information
for the security tester from the ISTQB Security Tester Syllabus, was described. This
information was used to complete the security dimensions. Based on the results from the
previous chapter, FML is created.

In this chapter, I describe the metamodel of FML and how the metamodel was
developed. To do this, I describe my research method in section 5.1. In section 5.2 I
describe the metamodel that was created by the research method.

5.1. Research method

In this section, I describe the research method for creating the metamodel of FML.
For this purpose, in section 5.1.1 I present the information that is used to create the
metamodel. In section 5.1.2 I describe the process how the metamodel is created from
the information.

5.1.1. Information on which the metamodel is built

In this subsection I describe the input for the process used to create the metamodel of
FML. The process for creating the metamodel is based on following information:

• The security dimensions by Sinkovec (table 3.1)

• The additional concerns that were added to the security dimensions during the
need analysis (section 4.4)

• The results of the need analysis in the form of the information list and the policy
list (section 4.4)

Additional input is provided by sinkovec’s evaluation of the dimensions from his thesis
[Sin22]. He conducted an expert interview evaluating the security dimensions. For this
he created a prototype modeling language to let the experts evaluate the authentication
dimension on the basis of an example. Additionally, the experts gave feedback on
the prototype language for the authentication dimension. This feedback is directly
incorporated into FML.

The following list of remarks was included in the evaluation:

25

5. Creation of the Fortress Modeling Language

Dimension Modeled security design concept

Authentication

- Zero trust networking
- No authentication / Authentication not required
- Plaintext-based authentication
- Protocol-based authentication
- API gateway

Authorization
- Principle of least privilege
- Deny access by default
- API gateway

Secure communication
- Unencrypted communication
- Use asynchronous messaging
- TLS / mTLS

Secure storage - Secret management
Secure deployment - Secure-by-default

Monitoring
- Distributed tracing
- Input validation
- Security gateway

Table 5.1.: Overview of the randomly chosen design principles from the catalog of Sinkovec
(see chapter 3), used to extend the case studies during the process to create
FML.

• The description, where successful and failed connection attempts are logged, is
missing

• It is unclear, how the secret management made

• Specific details about the implementation are needed

• Better use implementation agnostic notation

• There should be a notation for rulebreaking

• Network segments should be included

• More general notations than specific notation for each service are preferred

Sinkovec’s modeling language for the security dimensions was not further evaluated in
his work as the modeling language was not in his scope. Nervertheless the feedback is
used to improve FML.

5.1.2. Creation process of the metamodel
The information listed in the subsection before are now used as an input for the incremental
and iterative process to create FML. The process is is visualized by figure 5.1 and further
explained in this chapter. The output is the metamodel of FML and the Modeling

26

5.1. Research method

Figure 5.1.: Flowchart of the FML creation process

27

5. Creation of the Fortress Modeling Language

Element List, which also contains all elements. The process iterates over all security
dimensions . For each security dimension a case study is built based on the “Spring Pet
Clinic”, an example for microservice architectures.

Spring Pet Clinic

The Spring Pet Clinic1 is an open source project that provides a sample application
for developing web applications using the Spring Framework. It is designed to provide
developers with a real-world example of best practices and design patterns in Spring
application development.

The main goal of Spring Pet Clinic is to demonstrate the management of a veterinary
practice. The application allows you to record and manage veterinarians, pets, owners
and appointments. It provides features such as adding, editing and deleting animals and
owners, creating and managing appointments, and searching for vets and animals.

The Spring Pet Clinic is a widely used sample project that is often used by developers
as a starting point or learning resource to learn how to develop web applications using
the Spring Framework. It provides extensive code and documentation to help developers
understand and apply best practices and proven development practices.

The Pet Clinic consists of the following components: VetService: VetService is re-
sponsible for managing the veterinarians in the veterinary practice. It provides methods
for adding, updating, and deleting veterinarians, as well as retrieving a list of all vet-
erinarians. The VetService can access the VetRepository to persistently store vet data.
CustomerService: The CustomerService is responsible for managing the owners of the
pets. It provides methods for adding, updating, and deleting customers, as well as
retrieving customers by name, last name, or phone number. VisitService: VisitService is
responsible for the management of veterinary visits (appointments) in the PetClinic. It
provides methods for adding, updating, and deleting visits, as well as retrieving visits
for a specific pet or veterinarian. In addition, there is an AdminService to manage the
system, as well as a logging service for monitoring.

The FML creation process

The process iterates over all security dimensions but starts with the authentication
dimension. The reason behind this decision was the already existing feedback in the work
by Sinkovec which contained feedback to his prototype modeling language which was
created by him. For the selected authentication dimension a case study is created. The
case study is based on “Spring Pet Clinic”.

To archive this, design principles of the Design Principle Catalogue by Sinkovec are
used to extend the case study. The design principles used are shown in table 5.1. Further
the case study should include all kinds of information of the Information List. Also all
polices of the Policy List, which were assiged to the authentication dimension should be
includable in the case study.

1https://github.com/spring-petclinic/spring-petclinic-microservices

28

5.2. The Fortress Modeling Language metamodel

As the authentication dimension is the first dimension, the Modeling Element List is
empty. Therefore new elements are created until the case study can be modeled. To
reduce the number of elements, all elements of the Modeling Element List are checked if
they can be replaced by an other element in the Modeling Element List. If there are no
replaceble elements, a metamodel is created for all elements in the Modeling Element
List and the next security dimension is selected.

For the selected security dimension also a case study is created, like for the authentica-
tion dimension in the first step. The created case studies for all dimensions can be found
in appendix A. Also for this dimension the case study is enriched with further information.
To model the case study, the already existing modeling elements in the Modeling Elements
List, are used. If the Case Study can not be modeled with the existing modeling elements,
new modeling elements are created and added to the Modeling Elements List. If an
existing element is a specialization of the needed element, the generalization is added as
a new element and will probably replace this element in a later step. The goal is, not to
have a number of specialized modeling elements which are hard to learn, but generalized
elements which make it easy to understand all dimensions.

Therefore, the next step is to filter out unnecessary modeling elements. To archive this,
all existing modeling elements of the Modeling Elements List are checked if they can be
replaced by an existing modeling element. If no more modeling elements can be replaced,
the meta model is updated and the next dimension is selected, until all dimensions got a
case study. This leads to the final meta model.

5.2. The Fortress Modeling Language metamodel
In this section I describe FML the result of the research method, presented in the previous
section. In FML there are three different categories of elements:

Component elements The component elements describe the artifacts and configurations
of a system. These can be machines or databases, for example. Elements that
define the configuration of a machine also fall under the component elements. It
is important that in FML the assumption is made that the component elements
represent the real existing system. This means that during the evaluation it is not
necessary to consider that something might not be implemented.

Policy elements The policy elements describe policies that apply in a system, such as
a policy about password length. Policies differ from component elements because
they do not describe the system, but the rules that apply in the system. Also with
the policies the assumption is made that the modeled policies are valid in the real
system, if they were modeled in the same way in FML.

Security dimension elements The security dimension elements symbolize the security
dimensions. The security dimension elements indicate which component elements
are used in which security dimension.

In addition to the elements, FML defines relationships between the elements:

29

5. Creation of the Fortress Modeling Language

Relationships The relationships show how elements behave and interact with each other.
The relationships also define how elements change when they interact with another
element.

In the following the elements and relationships of FML are introduced and explained.
For this purpose all elements and relationships are listed and explained in section 5.2.1,
where also the hierarchy of the elements and relationships is explained. In section 5.2.2
it is explained how elements can be owned by other elements. Which relationships are
used by which elements is described in section 5.2.3. In section 5.2.4 I describe which
relationships and elements are used by which security dimension.

5.2.1. Hierachy of the elements in FML
In this section I introduce the elements of FML and explain, which element has which
function and which elements inherit from other elements.

Hierachy of the security dimension elements

<<abstract>>
Security Dimension

Authorization
Dimension

Authentication
Dimension

Deployment
Dimension

Secure Communication
Dimension

Secure Storage
Dimension Monitoring Dimension

Figure 5.2.: Hierachy of the security dimension elements in the meta model of FML.

The security dimension elements in figure 5.2 represent the security dimensions which
are a result of the need analysis from section 4.4. Each individual security dimension
element is specified as an own object in the metamodel which inherits from the abstract
security dimension. This allows to specify the used elements for every security dimension,
as done in section 5.2.4. Further this leads to an extendability of the security dimension
concept, as further security dimensions can be added in the hierachy in future work.

Hierachy of the component elements

The hierarchy of the component elements in FML is shown in figure 5.3. FML defines
the following component elements:

Component The component stands for software components in the system such as services
or applications. In FML databases are not explicitly considered as components
since they are modeled as a separate element

Database The database is a special component that models only databases. it also
contains information about the database software, such as mySQL and its version
number. In addition, the database contains information about the classification of

30

5.2. The Fortress Modeling Language metamodel

<<abstract>>
Component Element

Antimalware
ConfigurationBackupUpdate

StrategyLogLicencesConfiguration Installation

<<abstract>>
Abstract Configuration

Database

Component <<abstract>>
Entry Point

<<abstract>>
Entry Point informationArea

Area Hint Authentication Point Authorization Point Authentication
Information

Authorization
Information

Authorization Attribute

Authorization Role

Secret

Figure 5.3.: Hierarchy of component elements in FML

the data it contains. Databases are displayed independently from other software
components. Because FML is focused on data security also, databases are modeled
separately due to their significance in data security

Secret A secret is private information that serves as a key to unlock protected resources
or sensitive information in tools, applications, containers, DevOps, and cloud-native
environments. Example of this is a private key to log in to a database as admin.

Abstract Configuration An abstract configuration defines the configuration of a com-
ponent element. The abstract configuration can appear in different forms: 1.
Configuration, which defines the configuration of a network, a machine or a software.
2. Installation, which defines the software installed on a machine. 3. Licenses,
which specifies the licenses of a software. 4. Log, which defines what information is
recorded when a system is operated. 5. Update strategy, which defines when and
how updates are applied to a machine. 6. Backup, which defines when to create a
backup, which trigger to create it and where to store the backup. 7. Antimalware
configuration, which defines which antimalware programs and scanners run on a
machine or in a network.

Area An area represents environments such as machines, networks or even physical
environments such as houses, rooms or locations. Accordingly, an area shows where
an assigned component is located.

Area Hint Area hint has the same meaning as an area. The difference is that the area
hint occurs in dimensions in which environments would actually not be modeled,
but special environments are nevertheless relevant for the evaluation of software
system security. In this case the information of the area is borrowed from another
dimension and modeled as an area hint. A dimension therefore always contains
either area, area hint or none of these elements.
An example of the use of area hint is the authentication dimension, which models a
behavior of the system. Since the environments of the software components are not
always relevant for the evaluation of the security of the authentication process, the

31

5. Creation of the Fortress Modeling Language

information is only relevant for communications that leave a network and may have
to be secured separately. Let’s assume that there is a poorly secured connection,
but it takes place within a well-protected corporate network. Then the area hint,
which models the corporate network, is necessary to assess the security of the
connection, since the security software tester may assume that the connection could
go over the internet and therefore assesses the connection as a security risk.

Authentication Point The authentication point indicates a communication interface of
a component or database. It indicates that a component that connects to another
component via an authentication point must authenticate itself.

Authentication Information The authentication information contains information about
an authentication method. This includes the method used, e.g. an authentication
via user and password, the technology like for example oauth2.0 and optionally the
concrete implementation. The implementation is specified by a link to a sequence
diagram.

Authorization Point The authorization point indicates a communication interface of a
component or database. It is similar to an authentication point, but relates to the
authorization.

Authorization Information The authorization information is similar to the authentication
information but relates to the authorization. It also specifies the method, technology
and optional the concrete implementation.

Authorization Attribute An authorization attribute defines an attribute that is required
to access a component or database. Attributes are properties or characteristics of
users, resources or the environment. They are used as a basis for access control
decisions. The authorization attribute is created to be able to model attribute-based
access control (see chapter 2) in FML.

Authorization Role An authorization role defines an role that is required to access a
component or database. An authorization role defines the permissions and privileges
assigned to a user based on their role in the organization or system. The role serves
as an abstract representation of a user’s duties and responsibilities and enables
efficient management of access rights because permissions are assigned at the role
level rather than at the individual user level. The authorization role is created to
be able to model role-based access control (see chapter 2) in FML.

Hierachy of the relationships in FML

The relationships between the elements of FML are shown in figure 5.4. In FML the
following relationships are defined:

Upgrade The Upgrade-Relationship connects two elements, a parent element and the
child element. An Upgrade is interpretet, that information and properties from the

32

5.2. The Fortress Modeling Language metamodel

ConnectionValidation

<<abstract>>
Element Relationship

Message Connection

Upgrade Implementation

Connection Hint

Figure 5.4.: Hierachy of the relationship elements in the meta model of FML.

parent element are copied to the child element, but the information and properties
of the child element overwrite the information and properties from the parent
element.

Validation The Validation is a relationship between two component elements, a validator
and an element to be validated, like for example an authentication. A Validation
specifies who validates authentication and authorization access.

Connection The Connection stands for a possible connection between two components.
This indicates that the components are communicating with each other. If two
components need to authenticate themselves before establishing a connection, this
is indicated by the Connection pointing to the authentication point.

Message Connection The Message Connection is a special Connection. Unlike the
standard Connection, the Message Connection contains one or more messages that
are exchanged between the components. This is used, for example, in the secure
communication dimension to track how messages are sent through a system.

Connection Hint Connection Hint is a special Connection that occurs only in security
dimensions that do not contain the Connection. The security dimension borrows
the information about the Connection from another security dimension, if this is
useful for the evaluation. This also indicates that not all Connections were modeled
in this security dimension, just important Connections, in form of a Connection
Hint.

Implementation The Implementation indicates that an Abstract Element implements an
abstract configuration or an entry point configuration. This means that the Abstract
Element conforms to the specifications of the Abstract Configuration or Entry
Point Configuration. An example would be the implementation of Authentication
Information by an Authentication Entry Point. The Implementation indicates how
the Authentication Entry Point is specified.

33

5. Creation of the Fortress Modeling Language

Policy elements in FML

Policy

Default Policy

Policy Description Default Policy Target

<<abstract>>
Policy Elements

Figure 5.5.: Hierachy of the policy elements of FML.

The hierarchy of the policy elements in FML is shown in figure 5.5. In FML the
following policy elements are defined:

Policy The policy models a set of rules or regulations that define how security aspects
are handled in a system. It defines the allowed or disallowed actions, behaviors, or
configurations and which are used to ensure the security of data, resources, and
systems.

Default Policy The default policy is a special policy. It differs from the policy in that in
an FML model default policies are always valid and only violations are modeled.

Policy description A policy description describes the content, configuration and the
specification of a policy or a default policy. In a policy description of a password
policy, for example, the minimum length of passwords could be defined.

Default Policy Target A default policy target describes the target elements of a default
policy. With a default policy target you can for example define that a policy that
was modeled as a default policy only refers to databases.

5.2.2. Ownership of the elements in FML

In this section I introduce the ownership of the elements of FML. It is explained which
elements can own other elements and which elements consist of other elements.

34

5.2. The Fortress Modeling Language metamodel

<<abstract>>
Component Element

<<abstract>>
Policy Elements

<<abstract>>
Element Relationships

<<abstract>>
Security Dimension

Figure 5.6.: Ownership of the general security dimension.

Security dimension ownership

The ownership of the security dimensions in general is shown in figure 5.6. Each security
dimension consists of policy elements, component elements and element relationships.
The concrete component elements for each security dimension are defined in section 5.2.4.

Component element ownership

Component <<abstract>>
Entry PointArea

* *

has

1 *

has

Secret

1
has

* * *
has

* *
has

Figure 5.7.: Ownership of the component elements

The ownership of the component elements is shown in figure 5.7.
Areas have any number of components. This specifies where components are located

in the system. For example, it is possible to define on which machine, modeled as an
area, which application, modeled as a component, is running. A component can belong
to several areas. Thus it is possible to model, for example, if an application can access
several networks. Additionally areas can have further areas. This allows to define, for
example, which networks exist in the system and which machines are connected to which
network.

To be able to model different secured connections to a component, components can
have any number of entry points. These are either authentication points or authorization
points.

35

5. Creation of the Fortress Modeling Language

Secrets are assigned to components in which they are stored. Secrets can additionally
be assigned to authentication points. In this case they contain authentication information,
like credentials, which can be used for authentication at the assigned authentication point.

Policy element ownership

has

1

Policy Default Policy

Policy Description

0..1

Default Policy Target

1

*

has

0..1

has

1

Figure 5.8.: Ownership of the policy elements.

The ownership of the policy elements is shown in figure 5.8. Policies and default
policies have a policy description that describes the policy. This must clearly explain
how the policy is defined. For example, the policy description of a password policy must
clearly define what the minimum strength of passwords should be. Default policies can
have any number of default policy targets. This defines which elements the default policy
applies to. For example, the password policy applies only to authentication points. If the
password policy is modeled as a default policy, it is possible to define the authentication
point as a default policy target. This would make it clear that the password policy does
not apply to, for example, areas.

5.2.3. Behaviour of the elements in FML
In this chapter I present the behavior of the elements of FML. Thereby it is explained
how the elements behave to other elements.

Policy element behaviour

The behaviour of the policy elements is shown in figure 5.9. All component elements and
element relationships can implement or violate any number of policies and default policies.
For policies, the implementation is explicitly modeled and the violation is implicitly
assumed by not modeling. For default policies it is the other way round, here the violation
is modeled explicitly and the implementation is assumed implicitly.

For example, if an authentication information satisfies a password policy modeled as
a policy, the implementation is modeled. If a zero trust policy is modeled as a default
policy, which states in the policy description that all connections in the system must
be authenticated, only violations are modeled. These violations would point to the
connection and not to the components in this case.

36

5.2. The Fortress Modeling Language metamodel

<<abstract>>
Component Element

Policy

Default Policy

*

implements *

violates
*

*
<<abstract>>

Element Relationships

violates
*

*

*

*

implements

Figure 5.9.: Behaviour of the policy elements.

Component element behaviour

Component

Authentication Point

Authorization Point

Authentication
Information

Authorization
Information

implements

*

Authorization Attribute

Authorization Role

upgrades
*

*
upgrades

*

*

*

*

implements
*

*

connects

*

*

connects
*

*
*

validates

validates

authorizes

1

* *

*

<<abstract>>
Abstract Configuration

Area

implements

*

* *

*

implements

Figure 5.10.: Behaviour of the component elements

The behaviour of the component elements is shown in figure 5.10.
Components can connect to other components. This can be modeled by 2 possibilities: 1.

the component is directly connected to another component. In this case no authentication
takes place during this communication. 2. the component is connected to an authentication
point, which belongs to a component (see figure 5.7).

Another behavior of components is the validation of any number of entry point in-
formation in the form of authentication information or authorization information (see
figure 5.3). An authentication information is implemented by an authentication point,
indicating how authentication is performed at the implementing authentication point. An
authentication information can be implemented by any number of authentication points.

37

5. Creation of the Fortress Modeling Language

The implementation of authorization information by an authorization point is similar.
This behavior is best explained with an example: A client communicates with an api

gateway and must authenticate itself. The validation of the authentication is done by an
auth service. In FML the components client, api gateway and auth service are modeled.
The communication between client and api gateway is modeled by a communication via
an authentication point, which belongs to the api gateway. This authentication point
implements an authentication information. The authentication information is validated
by the auth service. A graphical visualization of the example can be found in the case
study in section 7.1.2.

The authorization point indicates that access to a component must be authorized.
Authorization attributes, which authorize the authorization point, indicate that for the
access the corresponding authorization attribute must be held by the accessor. See also
the description of ABAC in chapter 2.

Authorization roles are an upgrade of any number of authorization attributes. Thereby
the authorization role gets the authorization attribute assigned. Authorization roles can
also be upgrades of other authorization roles. Thus the upgraded authorization roles get
the authorization rights of the upgrading authorization roles.

Abstract configurations can be implemented by any number of components and areas.
Thus, the owned elements guarantee that they fulfill the configurations of the abstract
configuration. For example, if an installation as a special abstract configuration (see
section 5.2.1) contains the firefox browser in version 113, all machines which implement
this installation are guaranteed to have this browser installed in the defined version 113.

Configuration behaviour

Antimalware
ConfigurationBackupUpdate

StrategyLogLicencesConfiguration Installation
* *

 implements implements
* *

 implements* * implements* * implements* * implements* * implements* * implements* * implements* *

Figure 5.11.: Behaviour of the subclasses of the abstract configuration

The behaviour of the subclasses of the abstract configuration is shown in figure 5.11.
An element of a subclass can implement other elements of the same subclass. Thereby
additional information is added to the implementing element. If properties conflict with
each other, the properties of the implementing element apply.

For clarification the installation serves as an example. An installation can be im-
plemented by other installations. In this example, let’s assume that there is a base
installation in a system, which should be available on all machines in an example system.
This base installation contains python 3.10 and firefox 113. Additionally there should be
machines in the example system, which have just python 2.6 installed, for compatibility
reasons.

In FML the example can be modeled by defining the installation “base installation” and
the installation “compatibility installation”. The “compatibility installation” implements

38

5.2. The Fortress Modeling Language metamodel

the “base installation”. This will keep firefox 113 on all machines, the python version
would be 3.10 for the “base installation” and 2.6 for the “compatibility installation”.

Installations can additionally implement configurations and licenses which then refer
to the installation. For example, if there is an installation, which contains the web server
software nginx and the containerization software docker, the implemented configuration
could define the ports used by nginx, while the implemented license specifies the docker
license.

5.2.4. Elements of the security dimensions

In section 5.2.2 it is defined that security dimensions in FML consist of policy elements,
component elements and element relationships. Additionally, FML defines which concrete
elements are used in a security dimension. The limited number of elements is intended
to ensure that the modeled security dimensions do not become too large and model
too much information that actually belongs to other security dimensions. Thereby all
concerns of the respective security dimension should be able to be modeled with the
elements. These are represented in section 4.4.

Authentication dimension

Security Dimension

DatabaseComponentArea Hint Authentication Point Authentication
InformationSecret

Authentication
Dimension

Validation

Connection

Figure 5.12.: Elements of the authentication dimension.

Figure 5.12 shows the elements that are allowed to be used for modeling an authen-
tication dimension. In an authentication dimension the component, database, secret,
authentication point and authentication information can be used. The secret in combi-
nation with the authentication point, which implements authentication information, is
the core of an authentication dimension, because it models the actual authentication
process. The validation and connection are used to show where connections exist and
which component validates authentications.

The area hint is used to evaluate the authentication. With the area hint, it is modeled
whether the communication between components takes place in the same network or
even on the same machine. In this way, it can be evaluated whether an authentication
method is sufficient, for example, if it takes place in a partitioned network.

39

5. Creation of the Fortress Modeling Language

Authorization dimension

Security Dimension

Authorization RoleComponent Authorization Point Authorization
InformationDatabase

Authorization
Dimension

Authorization Attribute

Validation

Connection

Figure 5.13.: Elements of the authorization dimension.

Figure 5.13 shows the elements that are allowed to be used for modeling an authorization
dimension. In an authorization dimension the component, database, authorization at-
tribute, authorization role, authorization point and authorization information can be used.
The authorization role and authorization attribute in combination with theauthorization
point, which implements an authorization information, model the authorization process.
The validation and connection are used to show where connections exist which need to
be authorized and which component validates authorization.

The authorization dimension does not contain area hints. The goal of the dimension is
to evaluate the authorization and to see where individual users may have too many rights.
Since this is very complex, the number of elements here should be particularly small.

Secure communication dimension

Security Dimension

Secure Communication
Dimension Frame

Area Hint Component

Message Connection

Connection

Figure 5.14.: Elements of the secure communication dimension.

Figure 5.14 shows the elements that are allowed to be used for modeling a secure
communication dimension. The secure communication consists of several frames. These
frames contain components and area hints. The frames always represent a specific
communication sequence. This is for example an API call. They show all messages between
the components, which are triggered by this api call. A finished secure communication

40

5.2. The Fortress Modeling Language metamodel

dimension strongly resembles a communication diagram of Unified Modeling Language
(UML).

In a secure communication dimension, existing connections between components in
the system are represented by connections. Connections on which communication takes
place within the modeled communication are replaced by a message connection. Thus the
dimension should always represent a complete picture of the communication in a system.

The area hint is used to evaluate the communication, since it may, for example, make a
difference in the evaluation whether an unsecured connection exists in the same network
or not.

Secure storage dimension

Security Dimension

DatabaseComponentArea Authentication Point Authentication
InformationSecret

Secure Storage
Dimension

Validation

Connection

Authorization AttributeBackup

Figure 5.15.: Elements of the secure storage dimension.

Figure 5.15 shows the elements that are allowed to be used for modeling a secure
storage dimension. In an secure storage dimension the component, database, secret,
authentication point, authentication information, authorization attribute, area and backup
can be used. The secret in combination with the authentication point, which implements
authentication information, is only included in the secure storage dimension to model
the authentication of databases. In the secure storage dimension only authentication
processes in the system are modeled if they belong to the connection to a database. The
authentication processes are included to evaluate the data security of a system.

In the authorization dimension, the secret therefore refers to passwords or access codes
for databases. In order to evaluate how secure the secrets are, authorization attributes
belonging to the secret are also modeled in the secure storage dimension to show who
has access to the secret.

The area in the secure storage dimension shows, where databases are located, both
the virtual and physical. This is intended to enable an evaluation of the resilience of a
system, as it can be used, for example, to model the location of backups.

Secure deployment dimension

Figure 5.16 shows the elements that are allowed to be used for modeling a secure
deployment dimension. In a secure storage dimension the relationship connection and
the elements component, database, area, configuration, update strategy, installations and
licences can be used. The connection and the area can be used to model the infrastructure

41

5. Creation of the Fortress Modeling Language

Security Dimension

ComponentDatabase Update Strategy InstallationsConfiguration

Secure Deployment
DimensionConnection

Area Licences

Figure 5.16.: Elements of the deployment dimension.

of a system. Additionally, the configuration, the update strategy, the installations and the
licenses define how the components, areas and databases of the system are configured.

The update strategy makes it possible to read how a component or an installation
is updated and what the trigger is. This makes it possible to easily identify where an
update strategy may be insufficient.

The installations allows a good overview of the different software including the version
numbers. Thus outdated versions can be found quickly. In addition, dependencies are
also modeled with the installation. Thus outdated dependencies are also included in the
secure deployment dimensions.

The licenses are also part of the secure deployment dimension. Missing and expired
licenses are also a security risk, as the need analysis in section 4.4 has shown.

Secure monitoring dimension

Security Dimension

Database Log Antimalware
ConfigurationArea

Secure Monitoring
DimensionConnection Hint

Component

Figure 5.17.: Elements of the monitoring dimension.

Figure 5.17 shows the elements that are allowed to be used for modeling a secure
monitoring dimension. In a secure storage dimension the relationship connection hint
and the elements component, database, area, log and antimaleware configuration can be
used.

The area is used to model networks and machines. Networks and machines, as well as
the components, implement logs and antimaleware configurations. This aims to make
it easy to read which activities are recorded and to discover missing logs. In addition,

42

5.2. The Fortress Modeling Language metamodel

the antimalware configuration can be used to read whether and how the network or the
machine is monitored.

43

6. Realization of FML

The previous chapter describes the process of creating the FML metamodel. During this
process, case studies were created for all security dimensions. For this purpose and for
the evaluation, a sample realization of FML was developed, which is presented in this
chapter.

6.1. Component elements

In this section I describe the realization of the component elements presented in figure 5.3.
These have been divided into three groups for a better overview: 1. the basic components:
database, secret, area and area hint. 2. the authentication and authorization specific
component elements. 3. the abstract configuration subclasses.

6.1.1. Realization of the basic components

Area hint
<<network/machine/room/...>>

H

Component: Database

<<database>>
{data classification=

technology=}
$NameDB

Secret

<<secret>>
secret_name

Area

$ComponentName

<<network/machine/room/...>>

Figure 6.1.: Example realization of the basic components in FML.

Figure 6.1 shows the example realization of the basic components. The component is
symbolized by a rectangle, which contains the name of the component. The rectangular
representation of the component is based on the representation from other realizations,
e.g. often used UML component diagrams.

Databases are represented as cylinders as commonly used in other representations.
Additionally the stereotype «database» refers to the type. The database attributes are
written in curly brackets inside the cylinder. Furthermore the database is named.

The secret is represented by a triangular shape. Additionally the name of the secret
is written in the triangle, as well as the stereotype «secret». Since the secret is a
FML specific element, the annotation by the stereotype is an important information for
understanding the language.

Area and area hint are each represented by a box. The stereotype above the box
indicates what the area or area hint represents. This can be e.g. a network or a machine.

45

6. Realization of FML

Unlike the area, the area hint is colored in gray instead of black and depicted an H for
hint.

6.1.2. Realization of the authentication and authorization components

Authorization
Role

<<authorization_role>>
NameRole

$roleDesctiption

Entry Point

<<authentication>>

<<authentication>>

Authentication
Information

<<authentication>>
NameAuthentication

<<authentication>>
method =
method_description =
technology =

Authorization
Information

<<authorization>>
NameAuthorization

<<authorization>>
method =
method_description
technology =

Authorization
Attribute

<<authorization_attribute>>
NameAttribute

$attributeDesctiption

Figure 6.2.: Example realization of the authentication and authorization components in
FML.

Figure 6.2 shows the example realization of the authentication and authorization
elements. The two entry points, authentication point and authorization point, are
represented by a box, which has a connection point. Additionally, the stereotype indicates
whether it is an authentication point or authorization point. Since authentication point
and authorization point are not used in the same dimension, a stronger separation of
both elements is not necessary. The design is based on interfaces in representations of
UML component diagrams.

The authentication information consists of a rectangle divided by a bar. The upper
part of the rectangle contains the stereotype «authentication» and the name of the
authentication information. Additionally the upper part contains a key symbol. This is
to distinguish the authentication information from the authorization information. The
authorization information looks exactly like the authentication information, with the
difference that the stereotype “authorization” is used and a stamp is used as recognition
symbol. The stamp is supposed to remind of authorizations in the real world, where
for example authorized contracts are stamped. In the lower part of the rectangle,
authentication information and authorization information define the technology and
authentication, respectively authorization method. The design is reminiscent of that of
a class in a UML class diagram. Since the authentication information specifies how an
authentication point is defined, this analogy is intentional.

The authorization attribute is also symbolized by a two-part rectangle. Analogous to
the authentication information, the upper part of the rectangle for the authorization
attribute consists of the stereotype "authorization attribute" and its name. The lower
part contains the description of the authorization attribute. The representation of the
authorization role is analogous to the representation of the authorization attributes.

46

6.2. Policy Elements

Configuration

<<configuration>>
NameConfiguration

app:name of config
app:name of config

Installation

<<installation>>
NameInstalls

software: version
software: version

Licences

<<licences>>
NameLicences

licence: type: until
licence: type: until

§

Log

<<log>>
NameLog

event : {what is logged}
event : {what is logged}

Update Strategy

<<update strategy>>
Standart Server Updates

frequency=
trigger=
method_description=
technology=

Back Up

<<backup>>
NameBackup

<<backup>>
method =
method_description
technology =
frequency =
trigger =

Antimalware
Configuration

<<antimalware configuration>>
AntimalwareConfigurationName

scanfrequency=,
trigger=,
technology=

Figure 6.3.: Example realization of the configuration components in FML.

6.1.3. Realization of the configuration components

Figure 6.3 shows the example realization of the configuration elements. Similar to the
authentication information, the configuration components consist of a rectangle divided
into two parts. However, unlike the authentication information and the authorization
information, the rectangle has rounded corners. This difference is intended to clearly
distinguish the configuration components from authentication information and autho-
rization information, since their behavior differ significantly, as defined in section 5.2.3.
Analogous to the authentication information, the upper part of the rectangle contains
the configuration element’s type in the form of a stereotype and the name of the element.
Additionally there is a symbol for each configuration element. This symbol is introduced
to better distinguish the configuration components from each other. The lower part
contains the content of the configuration component.

6.2. Policy Elements

Figure 6.4 shows the example realization of the policy elements in FML as defined in
section 5.2.1. A policy is symbolized by an octagon. The octagon contains the name of
the policy. In addition, the added stereotype «policy» in the octagon indicates that it is
a policy. The default policy is defined analogously, but with a double bordered octagon.
The policy description is symbolized by a document with a bent corner and contains a
textual description of the policy assigned to it.

47

6. Realization of FML

Policy

<<policy>>
policyName

Default Policy

<<default policy>>
defaultPolicyName

Policy Description

policy
description

Figure 6.4.: Example realization of the policy elements in FML.

6.3. Ownership

<<policy>>
password policy

Passwords
need a length of

5 characters

<<network>>

SecretService

<<secret>>
standard password

<<authentication>>

<<authentication>>

Figure 6.5.: Example realization of the relationships in FML.

Figure 6.1 shows an example how ownership is visualized in the example representation
of FML as defined in section 5.2.2. In figure 5.7 it is shown that an area can have any
number of components. This is represented by enclosing a component in an area. The
relationship between a component and a secret is analogous. If a component has a secret,
the secret is enclosed by the component.

If entry points belong to another element, they are docked to the element. The point
of the entry point always points away from the docked element.

The ownership relationship between a policy and a policy description is represented by
a black line.

6.4. Behavior
Figure 6.1 shows the example realization of the relations between the elements in FML
as defined in section 5.2.1. The relation upgrade is represented by an arrow and marked
with the stereotype «upgrade>. The arrow points to the element that is being upgraded.
The relation validation works analogously. Since in FML both relations do not occur at
the same place, no further graphical distinction is defined.

48

6.4. Behavior

Upgrade

<<upgrades>>

Validation

<<validates>>

Connection Hint

<<connection>>

H

Connection

<<connection>>
{encryption= }

Message
Connection

<<message>>
number=; dateclassification=; type=; call=

Implementation Violation

Figure 6.6.: Example realization of the relationships in FML.

<<default policy>>
data classification policy

<<database>>
{data classification=private

technology=PostgreSQL6.0}
NameDB

Figure 6.7.: Example realization of the default policy implementation hint in FML.

49

6. Realization of FML

The connection is undirected and is only defined by a line. In addition the stereotype
«connection» is used. Furthermore, an encryption technology can be defined in the form
of a tagged value.

A connection hint is represented like a connection. The difference to the connection is
the missing encryption information and a gray color instead of a black one. Additionally,
the connection hint is extended by an H, which stands for “hint”.

The message connection consists of an arrow, which indicates the direction of the
message. Additionally the stereotype «message» indicates that it is a message connection.
A message connection contains any number of messages, which contain tagged values
which assign a number, a data classification, a type and possibly a call to the message.

The implementation is represented by an arrow with a dotted line. The direction
indicates that the target is implemented. For example, if an implementation points from
a component to a policy, this defines that the policy applies at that component. The
violation is displayed like an implementation, with the difference that rectangles with
lightning bolts are added at the beginning and end of the arrow. These represent a
negativity, which is supposed to symbolize the violation.

Figure 6.7 shows an example of a default policy implementation hint. This gives a
hint that a default policy is implemented by an element, even if default policies are
implemented by all elements by default. For this purpose the default policy is given a
color and information concerning the default policy is underlined with the corresponding
color. In the example figure 6.7 this concerns the classification of the data in the database,
which originates from the default policy.

50

7. Evaluation

In this chapter, I evaluate the Fortress Modeling Language (FML) to see how suitable
the language is for modeling security in software systems. For this purpose, I describe
the evaluation method in section 7.1. Then I describe the results of the evaluation in
section 7.2.

7.1. Method

The semi-structured interview serves as the evaluation method. In this interview style,
the interview is guided by predefined questions. However, the interviewer can deepen the
answers through specific follow-up questions. This allows both a common thread of the
interview, whereby predefined topics are discussed, and a more in-depth conversation
about the content. The focus of the interview was also maintained. All interviews were
conducted online via videoconferencing and visually supported by a screen presentation.
Each interview lasted between 30 and 45 minutes.

7.1.1. Interview structure

The interview consists of four parts: The introduction of the interview, the introduction
of the research project, the presentation of a case study, and the outro. The questions
asked can be seen in table 7.1. EQ1 and EQ2 are general questions about the participant.
The questions EQ3 to EQ7 are asked during the introduction of the case study, which
builds up during the interview. The outro is optional and should round off the interview.
During the interview, the questions were asked in an open manner, so that the participant
has enough space to imagine the modeling on his own projects.

Figure 7.1 shows the case study, presented in the third part of the interview. The case
study is an authentication dimension of a fictitious system and is further described in
section 7.1.2. The goal of the case study is to represent all elements of the authentication
dimension. As the elements and the language are new to the participants, the size and
complexity of the case study could confuse the participants. To avoid confusion, the case
study is built iteratively, with two or three new elements being added at each step. After
each iteration, a question was asked about the newly added elements, which directly
relate to a specific part of the FML metamodel.

In the following, I present the course of the interview.

51

7. Evaluation

General Questions
EQ1 What is your current role?
EQ2 Do you have experience in modeling security in software architectures or

software architectures in general?
Case study questions

EQ3 How do you rate the authentication element modeling concept with respect to
granularity and scope?

EQ4 Which of the area concepts, area hint, area, no area, do you prefer?
EQ5 How do you rate the policy modeling concept with respect to scope and

granularity?
EQ6 Would you add or delete any element of the authentication dimension?
EQ7 Could you imagine using an authentication dimension to evaluate the authenti-

cation security of a software system for security testing?

Table 7.1.: Questionaire for the expert interview to evaluate FML

Introduction of the interview (EQ1+2)

The interview starts with the general questions to get an overview of the participant.
First questions were asked about the current position of the participant (EQ1). Then
the participant was asked about previous experience in the areas of security, software
architectures, and security modeling (EQ2).

Introduction to the research project

Afterward, the research project was presented and the background of FML was presented.
The presentation of the background is similar in content to chapter 3. The aim of
the presentation is to familiarize the participant with the security dimensions. This
is important for the classification of the case study, as missing information may be in
another security dimension. After that, the participant was able to ask questions about
the research project. This should prevent participants from being at different levels of
knowledge to ensure comparability.

Evaluation of the authentication elements (EQ3)

At this point, the case study is introduced. The introduction of the case study starts
by showing the software component elements of the case study and explaining them.
Then the authentication point elements were inserted and explained. Afterward, the
authentication information was added to the case study and also explained. Thus all
authentication elements were in the case study. At this point, the participant was
allowed to ask questions to make sure the concept was understood. Subsequently, the
question “How do you rate the authentication element modeling concept with respect to
granularity and scope?” (EQ3) was asked. Question EQ3 mainly evaluates the behavior

52

7.1. Method

and ownership of the authentication point and authentication information, shown in
figure 5.7 and figure 5.10. The aim is to evaluate whether the authentication point in
combination with the authentication information provides enough information to evaluate
the existence of the authentication process. Additionally, the answer shall be used to
derive whether the concept that component elements implement an information element
to indicate how they are configured makes sense. This should provide first conclusions
about the element abstract configuration which works the same way.

Evaluation of the area concept (EQ4)

In the subsequent course of the interview, the database element is introduced and shown
in the case study. Then the elements area and area hint are introduced and explained.
Now the participant is shown three versions of the case study: 1. Figure 7.1 without the
policies, where the area hint element was removed 2. Figure 7.1 without the policies,
where the area hint element was replaced by an area element 3. Figure 7.1 without the
policies. Afterward, the participant could ask questions about the concepts if something
was not understood. Then the question “Which of the area concepts, area hint, area, no
area, do you prefer?” (EQ4) was asked.

The question is intended to evaluate the area concept shown in figure 5.7. Thus the
question aims at whether the element area is meaningful at all in the context of the
authentication dimension. For this, the participant was shown the case study without
area or area hint. Furthermore, the whole concept of hints, which was also used for
the connection in the form of a connection hint, shall be evaluated. So it should be
shown, how possible users of FML evaluate the mixture of the dimensions. Therefore
the question is also intended to show whether the hint concept adds some value to the
language.

Evaluation of the policy concept (EQ5)

After the explanation and questions about the area concept, the policy and the policy
description are explained. Further, the default policy is explained and the differences
between the policy and the default policy are pointed out. Then the complete case study
is shown, in which the policy elements were added (see figure 7.1). After that, the
participant can ask questions if the policy modeling concept was not understood. Then
the question “How do you rate the policy modeling concept with respect to scope and
granularity?” (EQ5) is asked.

The question aims at evaluating whether the policy elements contain enough information
to assess to what extent policies are fulfilled and violated in the system. In addition,
it should be possible to assess whether the information is sufficient to classify policy
violations, i.e. to determine whether, for example, it is a critical violation. Thus the
behavior shown in figure 5.9 is evaluated. Furthermore, the distinction between policy
and default policy (see figure 5.5) is to be evaluated.

53

7. Evaluation

Evaluation of the full authentication dimension (EQ6+7)

After asking about the policy concept, the participant is informed that the case study is
now fully modeled. Then “Would you add or delete any element of the authentication
dimension? “ (EQ6) is asked. EQ6 refers to the elements of the authentication dimension,
modeled in the metamodel in figure 5.12. It is to be evaluated whether the information
is missing, which would be necessary for the evaluation of an authentication concept
of a system. Also, EQ6 is used to evaluate whether elements are unnecessary for the
evaluation of the authentication concept.

Afterward “Could you imagine using an authentication dimension to evaluate the
authentication security of a software system for security testing?” (EQ7) is asked. EQ7
aims at evaluating whether the elements in interaction generate an added value for the
evaluation of an authentication concept and whether FML is useful for modeling it.

Outro

The interview ends with a loose outro in which another case study is shown, representing
a secure storage dimension of a fictitious system. The outro rounds off the interview and
is intended to show the participant a further dimension. The goal is to get ahead of the
question for an example of a further dimension by the participant. This is also intended
to maintain interest in the research project.

7.1.2. Case study

<<network>>

Auth Service

<<policy>>
password policy

Client API Gateway

Account Service
<<database>>

{data classification=public
technology=mySQL 8.0.32}

AccountDB

<<authentication>>

<<default policy>>
data classification policy

<<authentication>>
NameAuthentication

<<authentication>>
method = user:password
technology = mysql authentication

passwords should
contain more than 6

symbols, numbers and
capital letters

<<authentication>>
API Authentication

<<authentication>>
method = user:password
method_description = auth_seqdia.xml
technology = oauth2.0

<<authentication>>

<<validates>>

H
<<default policy>>

zero trust policy

Figure 7.1.: Case study for the evaluation of FML

In this section, I describe the structure of the case study used for the interview. The
case study, shown in figure 7.1, displays a fictitious system mapped to an authentication
dimension modeled in FML. The requirements for the system are that all elements of
the authentication dimension are represented. The authentication dimension was chosen
because it contains many concepts of FML. Thus, by evaluating the authentication
dimension, conclusions can be drawn about other dimensions and FML.

54

7.2. Results

In terms of content, the case study sees a client, an API gateway, an account service,
and an auth service. An API gateway is a tool that sits between a client and the backend
services. It receives all API calls and aggregates the different required services and
returns the corresponding result. The account service is connected to a database. The
account service must authenticate itself to the database with a user and password. The
data contained in the database is classified as public and the database software is MySQL
8.0.032 and therefore on the current version at the time of this thesis. Besides the
connection between the account service and the database, two other connections around
the system have been modeled: There is a connection between the client and the API
gateway. In this connection, the client has to authenticate itself to the API gateway.
The Auth Service validates this authentication. In the communication between the API
gateway and account service, there is no authentication.

In addition, three policies were modeled: 1. a zero trust policy, which specifies that
every communication, inside and outside every network, must be authenticated. This is
modeled as a default policy. Therefore, only the violation in the form of the communication
between the API gateway and account service occurs, since no authentication takes place
there. 2. a password policy. This has a policy description, which describes the required
password strength. The policy is modeled as a normal policy and is only fulfilled by
the database authentication. Therefore, the authentication between the client and API
gateway violates the required password strength. 3. the data classification policy, which
classifies data. This was modeled as default policy and no violations were modeled.
However, a hint was modeled in the account service database that attributes the origin
of the data classification to the data classification policy.

In the case study, the zero trust policy and the data classification policy were modeled
without a policy description. This is since the interviews were conducted via a screen
presentation and the policy descriptions would have greatly increased the size of the
model due to their volume, which would have resulted in significantly lower readability.

The selected example does not claim to be a high-quality architecture but was chosen
for the purpose of evaluation to be able to model and present the developed concepts as
meaningfully and comprehensibly as possible, taking care to consider realistic use cases.

7.2. Results

In this section, I describe the results of the expert interview described in the previous
section. In the following, I will go through the individual questions that were asked in the
expert interview and summarize the participants’ answers. An overview of all questions
is shown in table 7.1. The shortened and translated transcriptions of the expert interview
are displayed in appendix B. In the following, I will first describe the general questions,
which were asked to get an overview of the participants. Then the case study questions
are asked, which refer to the case study described in section 7.1.2.

55

7. Evaluation

7.2.1. General questions
In this section, I present the participants’ answers to the general questions from the expert
interview. This includes an explanation of their current position and their experience in
the field of security modeling or software architecture as a whole.
EQ1 What is your current role?

A total of six people from industry and science took part in the expert interview.
The participants from the industry are P1, P2, P3, and P6. The industry participants
P2, P3, and P6 are software architects, while P1 is a cyber security consultant. From
the academic environment, two scientists from the field of cyber security, P4, and P5,
participated. P4 is a private lecturer at a German university and P5 is a Ph.D. student.

EQ2 Do you have experience in modeling security in software architectures or software
architectures in general?

Participant P1 claims to have two years of experience in designing and implementing
security systems for customers. Participants P2 and P3 state a high level of experience
as software architects with 20 and 13 years respectively. Additionally, P2 states that
he has been reengineering the software of a German concern with a focus on security
for four years of the 20 years. Participant P6 states that he has had experience in the
area of software architecture for three years, with a focus on the area of infrastructure.
Participants P4 and P5, who come from an academic environment, report 15 and three
and a half years of experience in security research, respectively.

7.2.2. Case study questions
In this section, the case study questions are asked, which refer to the case study described
in section 7.1.2.

EQ3 How do you rate the authentication element modeling concept with respect to
granularity and scope?

For this question, the case study from section 7.1.2 was presented, in which only
the components, authentication points and authentication information was shown. Of
the six participants, five said that the elements component, authentication point and
authentication information are sufficient to evaluate an authentication process and rated
the scope and depth of information of the authentication modeling concept as sufficient.
Only P3 did not make a clear statement in this direction.

However, the participants made additional comments about missing information. For
example, three of the five participants from the industry said that more information
about the authentication process was needed. In addition, two of the four participants
from the industry wanted more information about the communication methods used for
authentication. P4 and P6 noted that the configuration of the authentication method or
software is missing. According to P4, this is a reason for many security breaches. P6
noted that the version number of the software responsible for authentication would be
missing.

56

7.2. Results

EQ4 Which of the area concepts, area hint, area, no area, do you prefer?

For this question, the case study from section 7.1.2 was shown three times, in which
only the components, authentication points, authentication information, and databases
were faded in. The first time no area or area hint was shown, the second time the area
hint was replaced by an area and shown, and the third time the area hint element was
shown. The area or area hint provided the information that a network exists in the case
study. Afterward, the participants were asked about their preferred version.

None of the participants stated that they preferred the variant without an area. All
participants said that information about the existence of a network in the authentication
dimension is useful.

The participants did not agree on whether the area hint was useful. Two participants,
P1 and P2, stated that they would rather use only area. Both participants found the
concept of a hint that borrows information from other dimensions confusing and difficult
to understand. P2 would say that in practice it could lead to misusing only area or area
hint in all dimensions.

Four of the experts, two from industry and two from research stated that they preferred
the area hint. However, the importance of separating the dimensions of P4 was emphasized.
The separation is possibly lost by the overlapping of the dimensions by hints. Otherwise,
P3 noted that the concept of hints might be too complex if it only occurred within areas.
Also, P3 noted that dimensions could become too large. Finally, P1 noted that with the
term network, it was not quite clear whether it was a logical or physical network.

EQ5 How do you rate the policy modeling concept with respect to scope and granularity?

For this question, the case study from section 7.1.2 was presented completely with
all elements. Therefore the participants were able to see three policies: one policy and
two default policies. Further, one of the default policies is violated, one default policy
has an implementation hint and the policy has one implementation as well as a policy
description.

Of the six participants, P1, P3, and P6 said directly, that the depth and scope of the
information was sufficient. P1 and P2 said that the description of the policy in the form
of the policy description would be useful. Further, P4 suggested replacing the policy
description with a link to a broader description. Four of the six participants, P1, P2, P5,
and P6, expressed positive views about modeling policy violations.

P1 stated that the concept would be suitable for modeling common policies in a system.
According to P2, the concept needs the possibility to model positive deviations. For
example, it is only possible to model at which point a password policy is followed and
not at which point it is exceeded. P2 also suggests checking whether too many policies
need to be modeled on one dimension, which could lead to a lack of clarity, in future
work. P6 notes that it is unclear where policies should be used and where default policies
should be used. In addition, P6 notes that default policies complicate changes in the
system because the documentation has to be revised each time.

EQ6 Would you add or delete any element of the authentication dimension?

57

7. Evaluation

For this question, the case study from section 7.1.2 was still presented completely with
all elements. With this question, the participants were asked which elements they would
miss, or which elements might be unnecessary for an authentication dimension.

P1 suggests that classifications could be modeled separately from policies, as a separate
element. Additionally, P1 suggests combining the policy description with the policy or
the default policy to one element. However, P2 wants information about the transport
protocols used in the system. P3 suggests that grouping elements could be added.
These could group different elements together and thus reduce the number of modeled
relationships. P5 suggests an asset value dimension, which models the value of assets.
Subsequently, asset hints could be added to the authentication dimension.

EQ7 Could you imagine using an authentication dimension to evaluate the authentication
security of a software system for security testing?

The final question was to find out whether the participants could imagine using FML.
Five of the six participants said that they could imagine using it. Only P6 considered
the language useful at first sight, but the abstraction level would be too detailed for the
current use in the company.

58

8. Discussion

In this chapter, I discuss and evaluate FML based on the expert interview. For this
purpose, I first discuss in section 8.1 the results of the expert interview which was
described in chapter 7. Subsequently, I elaborate on the implications of these discussion
results for the research questions of this thesis described in chapter 1 in section 8.2.

8.1. Discussion of the evaluation results

The goal of the evaluation was to evaluate the metamodel of FML. For the discussion
of the evaluation results in this section, I revisit the interview questions about the case
study (EQ3 to EQ7) and analyze the participants’ responses.

EQ3 How do you rate the authentication element modeling concept with respect to
granularity and scope?

Question EQ3 should mainly evaluate the behavior and ownership of the authentication
point and authentication information, shown in figure 5.7 and figure 5.7. The aim is
to evaluate whether the authentication point in combination with the authentication
information provides enough information to evaluate the existence of the authentication
process. Additionally, the answer shall be used to derive whether the concept, that
component elements implement an information element to indicate how they are con-
figured, makes sense. This should provide first conclusions about the element abstract
configuration which works the same way.

Overall, the authentication concept seems to have been well received, as five out
of six experts were overall satisfied with the scope and depth of information. Thus,
the authentication information and the authentication point in combination seem to be
suitable for a rough evaluation of an authentication process.

However, the participants made additional comments about information that could be
included in the authentication dimension. For example, three of the five participants from
the industry said that more information about the authentication process was needed.
This affects the authentication information. In FML, the authentication process is only
named and referred to other documents. In the case study presented, this was done with
a link to a sequence diagram, which was not included in the case study. It was therefore
unclear to the participants whether the requested information could have been found in
this sequence diagram. The reason for this is that a new diagram might have taken too
much time to explain, so it was not included in the case study. It may be that further
evaluation of FML requires the inclusion of the linked material.

59

8. Discussion

In addition, two of the four industry participants stated that they would like to have
information about the communication protocols used for authenticated communications
in the software system. This information would be assigned to the secure communication
dimension in FML. It may be considered whether the information would be useful as a
communication hint in the authentication dimension. For this purpose, a further study
would have to be conducted to find out whether the participants, having seen a secure
communication dimension and a corresponding authentication dimension, consider the
use of a communication hint to be useful.

Additionally, two of the participants noted that the configuration of the components
involved in the authentication is relevant for the evaluation of the authentication. The
element configuration would be suitable for this purpose. It might make sense to add the
configuration to the authentication dimension for this purpose.

Another criticism was that the version number of the components that are responsible
for performing the authentication was missing. I fully agree with this point of criticism.
Since version numbers are also information from the need analysis (see chapter 4), the
information should be added in the next version of FML in any case.

Overall, there was no criticism of the concept that an element containing information,
such as the authentication information, defines or configures a component element.
Accordingly, I would pursue this concept in future versions of FML.

EQ4 Which of the area concepts, area hint, area, no area, do you prefer?

The question EQ4 is intended to evaluate the area concept shown in figure 5.7. Thus
the question aims at whether the element area is meaningful at all in the context of the
authentication dimension. For this, the participant was shown the case study in three
versions: 1. Without area or area hint. 2. With area 3. With area hint. In the case
study, the area and area hint display a network. By evaluating the area hint, the whole
concept of hints, which was also used for the connection in the form of a connection
hint, shall be evaluated. It shall be evaluated, how potential users of FML evaluate the
mixture of the dimensions. Therefore, the question is also intended to show whether the
hint concept is too confusing.

Since none of the participants in the expert interview preferred the variant shown with-
out the network information and each of the experts stated that the network information
is useful, an area or area hint would in principle be seen as useful in the authentication
dimension.

However, two of the participants from industry found the concept of area hints confusing
and would only use areas. This criticism did not come from the research participants at
all. It could be that the principle of a sharp separation between logical and infrastructural
information is kept rather strict in security research, while it is not so important in the
industry. Thus, research participants may perceive the concept of intentional violation of
the separation between the logical and infrastructural viewpoints to be useful.

It is also noticeable that the first two participants found the area hint concept confusing.
Therefore it could also be possible that the explanations of the concept got better in
later interviews, even though the same slides and script were used. Additionally, P3

60

8.1. Discussion of the evaluation results

commented that the hint concept is complicated, especially when it is only present in the
form of an area. It could be considered to revise the hint concept so that it can be used
consistently for all elements. However, P3 notes that the dimensions may become too
large if hints are used too often. This indicates, that clear rules have to be found, when
a hint is allowed and when not.

In summary, I would not make a statement about whether an area or an area hint
should be used in the authentication dimension. Overall, the hint concept should be
redefined, making the borrowing of information by using hints clearer. Possibly this
would lead to greater acceptance of the area hint.

EQ5 How do you rate the policy modeling concept with respect to scope and granularity?

The question aims at evaluating whether the policy elements contain enough information
to assess to what extent policies are fulfilled and violated in the system. In addition,
it should be possible to assess whether the information is sufficient to classify policy
violations, i.e. to determine whether, for example, it is a critical violation. Thus the
behavior shown in figure 5.9 is evaluated. Furthermore, I want to evaluate the distinction
between policy and default policy (see figure 5.5).

Overall, participants were rather positive about the modeling of policies in FML.
Participants P1, P3, and P6 clearly stated that the scope and depth of information were
sufficient. The fact that the violations were well received by four of the six participants
and that the usefulness of the policy description was also emphasized by three of the six
participants shows that the policy modeling concept was overall well received.

However, there were also suggestions for improvement. For example, according to p2
policy modeling lacked a way to model when policies are not only adhered to but also
exceeded. This could be achieved by changing the relationship implementation, but the
use of more complex relationships could affect the clarity of the security dimensions. In
general, the idea could be considered for the next version.

In addition, P6 noted that default policies mean that if changes are made to the system,
the documentation may have to be completely revised. However, this could also happen
with policies, as these would also have to be revisited. Additionally, P6 was unclear when
policies and when default policies are used. The idea of FML is that this should be the
decision of the user. However, it might make sense to define rules, as to when to use
which type of policy. These rules could then also depend on the severity of not following
the policy. This should possibly be considered in the next version of FML.

In summary, the policy modeling concept was received rather positively. I would
suggest using it as a starting point for further versions of FML and extending it.

EQ6 Would you add or delete any element of the authentication dimension?

EQ6 refers to the elements of the authentication dimension, modeled in the metamodel
in figure 5.12. It is to be evaluated whether the information is missing, which would be
necessary for the evaluation and evaluation of an authentication concept of a system.
Also, EQ6 is used to evaluate whether elements are not necessary for the evaluation of
the authentication concept.

61

8. Discussion

Overall, no participant in the study suggested that any element should be removed.
However, there were ideas for elements that could be added.

For example, participant P1 suggested adding an element for classifications to the
authentication dimension. This could then replace policies that classify. The idea sounds
quite reasonable and should be investigated in future versions.

Apart from that, according to p2 the authentication dimension lacked information
about the transport protocols used in the communication within the system. This was
already discussed in EQ3.

The suggestion of P3, that elements could be grouped to form classes by using abstract
elements, seems reasonable to me. This could be well realized with the relationship
upgrade and should be considered in the next version of FML.

Also, the suggestion of P5 that asset value hints could be added to the authentication
dimension should be considered. These hints could refer to the secure storage dimension.

EQ7 Could you imagine using an authentication dimension to evaluate the authentication
security of a software system for security testing?

EQ7 aims at evaluating whether the elements in interaction generate an added value
for the evaluation of an authentication concept and whether FML is useful for modeling
it.

It was found that five of the six participants could imagine using FML to model an
authentication dimension to evaluate the authentication security of a software system.
Only one participant did not make a direct statement but indicated that the language
was currently too detailed for the current application in his company.

Overall, it can be concluded that the idea of a modeling language such as FML is
meeting with interest in industry and research. Due to the broad population of interview
participants from both research and industry, with different backgrounds and different
levels of experience, the value of FML and the research direction of security modeling is
thus supported.

8.2. Discussion in the context of the research questions

In this section, I evaluate Fortress Modeling Language (FML) with regard to the research
questions, defined in chapter 1. Since the two research questions are closely intertwined,
I analyze them together and evaluate whether FML can be seen as being an answer to
both.

RQ1 How can a metamodel for modeling security dimensions of software architecture
views look like?

RQ2 Which modeling elements can be used to model an Authentication, Authoriza-
tion, Secure Communication, Secure Storage, Secure Build and Deployment, and
Monitoring Dimension as defined by Sinkovec?

62

8.2. Discussion in the context of the research questions

The goal of this thesis is to create a modeling language that can be used to model the
security dimensions. For this purpose, the FML was created in this work and evaluated
in an expert interview. The experts did not directly evaluate the metamodel and its
suitability for modeling security in system architectures. For reasons of comprehensibility,
the modeling elements were evaluated by using a case study modeled with the represen-
tation, described in chapter 6. It was evaluated whether the information scope and the
information depth of the representation of selected core concepts of FML are sufficient.
For this, a case study was created which explained the modeling elements to the experts.
This process was based on the assumption that if the metamodel is rather insufficient to
model the security of a software system, the representation is also considered insufficient.
This assumption is called transfer assumption in the following. The transfer assumption
allows to conclude the evaluation to the metamodel. To evaluate RQ1 and RQ2, I analyze
the responses of the expert interview participants regarding the metamodel and with
focussing on the modeling elements.

Overall, the evaluation of the authentication dimension was rather positive, the
authentication concept was well received, and the experts found the scope and depth of
information to be sufficient. However, some participants suggested additional information,
such as details about the authentication process. These were isolated comments for
missing information, but there was no conceptual criticism of the language. FML thus
provides a first draft for a metamodel to model the authentication dimension, based on
the transfer assumption. The metamodel of FML therefore offers sufficient possibilities to
model the authentication. In addition, conclusions can be drawn about other dimensions.
Other dimensions take over concepts of the authorization dimension. For example, the
secure communication dimension, which uses the authentication concept for authentication
related to databases. In addition, other concepts, such as the authorization concept,
are based on the authentication concept in order to create uniformity within FML.
Accordingly, initial conclusions can also be drawn about the authorization dimension. For
example, the combination of entry point and abstract information for describing access
to a software component was well received by the experts. Cross-dimensional concepts
such as the policy concept were also well received by the experts. This also indicates that
the metamodel was a good first draft. However, the metamodel of FML cannot be seen
as complete because of the limitations of the evaluation. For this, more extensive studies
are needed, both for the authentication dimension and for the other security dimensions.

Further, the elements of FML can serve as a basis to model the security dimensions,
and further enhancements and additions can be made based on the feedback received
during the further evaluation process. The modeling elements have proven to be suitable
in the evaluation. It was possible to model the case study, with the existing elements.
In addition, there was no major criticism of the modeling elements or comments that
certain scenarios or edge cases could not be modeled. However these edge cases and
scenarios which cannot be modeled in FML cannot be ruled out completely due to the
limited scope of the evaluation Rough information gaps by the elements of FML would
have probably been noticed during the evaluation. This suggests that it makes sense to
let further versions of FML build on these elements.

63

8. Discussion

However, due to the lack of a large scale study, it cannot be guaranteed that the
elements of FML are suitable for modeling the entirety of security dimensions. For the
other security dimensions, such as authorization, secure communication, secure storage,
secure build and deployment, and monitoring, it would be necessary to conduct further
research and evaluations to identify possibly missing modeling elements required for these
dimensions. The expert interview focused on the authentication dimension, and although
some participants mentioned elements related to other dimensions, a detailed evaluation
of those dimensions was not conducted. Therefore, additional studies and expert opinions
would be needed for each security dimension.

Additionally, there are some limitations of the evaluation to be considered. Due to the
shortage of experts in the field of security modeling and the time constraints of this thesis,
the evaluation has to be interpreted taking into account of the following limitations:

• Only six participants took part in the expert interview. Thus, the study cannot be
considered large scale. Accordingly, the results should be seen as a rough overview
rather than a complete evaluation of FML.

• The expert interview covers only the authentication dimension. Although the
authentication dimension was chosen because it contains most of the basic concepts
of FML, the other dimensions were not evaluated. Thus, some elements of FML
have not been evaluated by experts.

• The experts did not evaluate the metamodel directly, but with the help of a case
study. Although this was intended to illustrate the concepts of FML, there are no
direct statements about the metamodel.

• Since the case study had to be comprehensible within a short period of time, it was
limited in scope. This meant that it was not possible to model a large real system.
Therefore, FML was only evaluated within a predefined context.

In conclusion, the evaluation of the metamodel and modeling elements in FML for mod-
eling security dimensions provided valuable insights. The assessment of the authentication
dimension was positive, indicating that FML offers a promising first draft for modeling
authentication and potentially other dimensions. However, the evaluation had limitations,
including a small number of participants, focus on authentication, and indirect evaluation
through a case study. Further studies are necessary to validate and enhance FML for all
security dimensions, addressing potential missing elements. Nevertheless, FML serves as
a foundation for modeling security dimensions, can be a base for future improvements.

64

9. Related Work

In this chapter, I will describe related work for already existing security modeling
approaches in software architectures. I first describe the Unified Modeling Language
(UML), which is already suitable as a modeling language for software system security
without extensions. Then I describe the two extensions of UML, UMLSec and SecureUML.
After that I describe CySeMol, a language specialized for the analysis of enterprise systems.
This is followed by short descriptions of other relevant languages, which are suitable for
security modeling. Finally I distinguish FML from the previously described languages.

9.1. UML
The Unified Modeling Language (UML) is a modeling language for software engineering
to design and visualize software systems from different perspectives. UML is defacto the
industry standard and many developers are familiar with the language [MiD10; RREAT17].
The language does not provide a specific diagram type for security. But it is possible to
extend UML with built-in extension mechanisms [Obj17]. These so-called lightweight
extensions are realized with stereotypes, profiles, constraints, and model libraries. Further,
extensions can also be realized by adding new concepts and relationships to the UML
meta-model [Obj17; Fak].

An example for the use of UML without extensions for the modeling of security of
software systems is the approach of Pavlich-Mariscal, Michel, and Demurjian [PMMD07].
In this approach, constraints related security information is added to UML. This allows
to use UML already without further extensions for modeling the security of a system.

9.2. UMLsec
The first language I describe is UMLSec, which is a lightweight extension of UML. UMLsec
focuses on secure-critical distributed systems and provides the possibility to evaluate
the security aspects of a system design by referring to a formal semantics of a simplified
fragment of UML [Jü02]. UMLsec extends the UML meta-model and therefore does
not provide its one. It uses the extension mechanisms stereotypes, tagged values, and
constraints to extend the semantics of existing types in UML [Jü02]. Constraints are
used to specify the security requirements. These constraints are written in a not further
specified language [MiD10]. UMLsec supports the whole set of UML diagrams. With the
use of UMLsec, the system security can be assessed by performing a formal analysis. A
UMLsec model can contain confidentiality, integrity, and authenticity criteria which are
realized with solution stereotypes. This could be for example fair exchange, Role-based

65

9. Related Work

Access Control, authenticity, or secure information flow definitions. UMLsec further
supports standard risk management. [MiD10]

Figure 9.1.: Example of an UMLSec model [Jü02]

The example figure 9.1 shows the modeling of a purchase transaction in UMLSec. The
fair exchange stereotype shows that the customer can either complete the purchase or
get his money back. The keywords buy and sell define that each payment must lead to
either a reclaim or a delivery.

9.3. SecureUML

Another UML extension for security modeling is SecureUML. Like UMLSec it uses the
UML extension possibilities stereotypes, tagged values, and constraints to extend the
UML [LBD02]. In comparison to UMLsec, SecureUML has its meta-model which is
defined on the Role-based Access Control Model (RBAC) [LBD02].

Further, in comparison to UMLsec, SecureUML extends mainly the UML class diagrams
and not the complete sets of UML diagrams. They further differ in the modeling target.
[MiD10] SecureUML is designed to model solutions with the use of RBAC, as defined in
chapter 3, and not to model different security criteria. [MiD10]

The example in figure 9.2 shows a modeling of a calendar application in SecureUML.
The example consists of two classes, Calendar and Entry. A calendar contains several
entities, which simulate appointments. These have different attributes like location, start
and end date, as well as an owner.

The secuml.constraint element to the right of the Entry element indicates that access
to an Entry is restricted to working days. Additionally, the sec.uml.permission to the left

66

9.4. CySeMoL

Figure 9.2.: Example of an UMLSec model [LBD02]

of the Entry element indicates that only the owner of an entry can update the element,
but all users can see it.

9.4. CySeMoL

CySeMoL is a modeling language, which is made to analyze the security of enterprise
system architectures [SEH13]. A CySeMoL model contains a probabilistic relational
model (PRM) which is used to estimate the securitz of a system. CySeMoL is defined with
its own meta-model. The PRM specifies how a Bayesian Network should be constructed
from an object model like a UML object model [SEH13]. A possible result can be seen
in figure 9.3. A CySeMoL model can be generated in two steps: First, the qualitative
structure is created. This structure contains the assets, attacks, and defenses and how
they are associated. In the second step, quantitative data is added with the information
on how likely different attacks succeed. This is done with the information about the
presence or absence of different defenses [SEH13]. CySeMoL can analyze 22 assets, 102
attacks and defenses, and 32 asset relationships.

67

9. Related Work

Figure 9.3.: Example of a CySeMoL model with a 19-step attack path. The numbers
display the steps on the attack graph. The probability that each step on the
path is reached is given with probability T [SEH13]

9.5. Further modeling languages

Next to the already presented approaches exist some more mentionable approaches.
IoTSec is a UML extension for security modeling which specializes in the Internet of
things [RREAT17]. The extension is made with stereotypes and notation extensions.
The extension aims to be used in the design stage and claims that the user does not need
to be familiar with cybersecurity concepts completely.

Another approach is SecREAM, which is described to crater different system types
like cloud-based or real-time [GGS15]. SecREAM was created with a focus to improve
the communication between the different stakeholders of the system. Further, SecREAM
is described as precise enough to be used to advise management decisions.

Rodríguez, Fernández-Medina, and Piattini approach focus on the security of business
processes [RFMP06]. For this purpose, they extended UML activity diagrams with
stereotypes and tagged values. The approach allows us to evaluate a system in a very
early design stage.

9.6. Differentiation to the Fortress Modeling Language

The difference which exists between the Fortress Modeling Language (FML) and the
other presented approaches is the connection of the security dimensions. FML is strongly
connected to the security dimensions to model the different aspects of security. UMLSec
provides a security extension to already existing UML diagrams. This allows the usage
of UMLSec in behavior diagrams. The actual focus of FML is the use in structural
diagrams. Thereby FML gives a specification, which contents are modeled in which

68

9.6. Differentiation to the Fortress Modeling Language

CalendarService

<<authorization>>
read CalendarEntry

<<authorization>>y
delete CalendarEntry

<<authorization>>
update CalendarEntr

<<authorization>>
Change Calendar

<<authorization_role>>

Owner of Calendar Entry

<<authorization_role>>

SuperUser

<<authorization_role>>

User

Figure 9.4.: Example of figure 9.2 remodeled in FML as an authentication dimension.

dimension. UMLSec and SecureUML do not provide such a strict specification [MiD10].
To better compare the differences between FML and SecureUML, figure 9.2 is remodeled

in figure 9.4. Figure 9.4 shows an authorization dimension that displays a comparable
system with the same functionality as the example from figure 9.2. The direct comparison
shows how the focus of FML is on the entire system. Therefore, individual classes of a
software are not modeled as in SecureUML, but system components, such as a service.
SecureUML is more formal and clearly more precise with respect to the functions of the
individual software components. FML, on the other hand, shows an overview of which
authorization is required for which system components. Additionally, it would be possible
to model, where the validation of the authorization is done in FML.

The scope of CySeMol is to model enterprise architectures [SEH13]. FML has the focus
on system architectures. Further CySeMol is analyzed automatically based on common
attacks. FML has the focus to model common defenses. Attacks are not in the scope of
FML but are modeled in CySeMol. Also, the analysis of the security based on an FML
model is made by hand.

FML differs from IoTSec in the sense that it does not specialize in one application.
In addition, FML is aimed at security software testers, who need to have knowledge in

69

9. Related Work

the field of security. SecREAM differs from FML in the sense that SecREAM models
are created in the early stages of development, while FML models are based on fully
developed systems in the late stage of testing. In an earlier stage of development are
also models of the language of Rodríguez, Fernández-Medina, and Piattini. In addition,
this language is concerned with securing the processes, while FML is concerned with the
system.

70

10. Conclusion

This exploratory work aims to present a first draft of a language to model the security
of software systems. In future work, it is proposed to further refine this draft and to
complete it to a comprehensive modeling language for software system security. In this
chapter, a brief summary of the research method and contribution of this thesis is given
in section 10.1. Through the knowledge gained during this work, many opportunities
for further development and research have been revealed. Therefore, a brief outlook on
the directions in which future work can be approached to extend the contribution of this
thesis is provided in section 10.2.

10.1. Summary

This thesis has addressed an approach to meet the increasing threat to the security
of software systems in a digitized world. Given our heavy dependence on software in
various domains, it is crucial that software developers take measures to avoid security
vulnerabilities and strengthen resilience against potential attacks. Existing approaches
such as threat modeling mainly focus on identifying vulnerabilities from an attacker’s
perspective. Therefore, there is a research gap in considering security from a defender’s
perspective during the software design process. By introducing a defender’s point of view
and considering design principles, software developers can actively improve the security
of software systems and proactively defend against cyber threats.

In his thesis, Sinkovec introduced the concept of his “security views". This concept
divides the security of system architecture into different “security views", which to-
gether should form a complete picture of the system security from a defender’s point of
view[Sin22].

In this thesis, the concept of “security views” is extended under the name security
dimensions by creating the Fortress Modeling Language (FML) as a modeling language
with the goal to model the security of system architectures by dividing them into the
security dimensions authentication dimension, authorization dimension, secure commu-
nication dimension, secure storage dimension, secure build dimension and monitoring
dimension, described in chapter 3.

Since the security dimension has not yet been specifically defined for a stakeholder,
the creation of FML starts by adding a stakeholder, which is the security software tester
in this work. The decision was made because there exists good documentation about the
tasks and needs of the security software tester. Therefore, the security software tester’s
requirements for a security software tester view are extracted from a document from the
security software tester training. The security dimensions are then supplemented by the

71

10. Conclusion

security software tester’s requirements to finally be underlying information of FML. (
chapter 4).

Based on this information, the FML metamodel is created in an iterative process,
described in chapter 5. In addition, an example representation of FML is created and
described in chapter 6 to be used in the evaluation.

In the evaluation, a subsequent semi-structured expert interview, in which experts
from research and industry are presented with an authentication dimension in the form
of a case study, the suitability of FML for modeling the security of a software system is
evaluated (chapter 7).

The subsequent discussion of the results of the expert interview, chapter 8, shows
that FML is suitable as a basis for a language for modeling security, but cannot yet be
considered complete.

The thesis shows with FML an effective method to model security aspects in software
systems. The experts interviewed in this study responded positively to the concepts
behind FML and showed great interest in its application. Of the six experts interviewed,
five indicated that they could imagine using FML in their projects. It is also noteworthy
that when using a variable level of abstraction, even all six experts considered FML to
be useful.

These positive responses underscore the relevance and potential value of FML modeling
for software system security. Future research can build on this and continue to explore
the application of FML in practice to further improve the security of software systems.

10.2. Future work

The work completed within the scope of this thesis has laid the groundwork for further
investigation of the present state of FML. Futhermore, opportunities to expand FML
to meet the growing requirements of industry and research for the security of software
systems have arisen The research methods and results used in this thesis provide a
starting point for future work, which can be divided into further extensions of FML and
further evaluations of the present state of FML.

10.2.1. Extension of FML

Within the scope of this thesis, FML was designed with a focus of an a software security
tester as a stakeholder to provide a tool to re-model and evaluate the security of an
existing software system In a future version, it should be developed to the point where it
can be used to model software systems and their security. Thus it could be possible to
use FML not only after the development process but already in the design phase of the
software development process. The use of FML could then constitute a new step when
designing software architectures and thus support the security of software systems.

Additionally, it would be a useful extension of FML, if the security dimensions could be
evaluated automatically and this would not have to be done manually as is the case now.
This could be used to detect security holes, which are not easily detected by hand. This

72

10.2. Future work

would provide a user-independent and accurate way to evaluate the security of software
systems.

For this purpose, a tool support for FML should be established. Complementary tools
should allow an easy change between the dimensions of a software architecture. This
would significantly improve the ability of FML to evaluate the security of a software
system.

10.2.2. Further evaluation of FML
Within the time constraints of this thesis, FML was evaluated with the help of an expert
interview with a limited number of participants. Although this lead to a good foundation
the evaluation of FML needs to be expanded to provide a clearer picture of the current
state of FML and its advantages and limitations and whether it meets the requirements
of industry and research in a satisfactory way.

The first evaluation of FML, described in chapter 7, consisted of an expert interview.
Since there were only six participants due to the lack of time and experts, FML should be
further evaluated. For this purpose, it would be a possibility to repeat the first evaluation
on a larger scale. This would allow a broader view of the experts to be obtained in order
to uncover any weaknesses in the metamodel and to identify information gaps.

Furthermore, only an authentication dimension was shown to the experts during the
first evaluation of FML. Other dimensions were not evaluated directly. This should
be done in a future expert interview, which includes both the individual evaluation of
other security dimensions, as well as the evaluation of the interaction of several security
dimensions, in which the experts are presented with several security dimensions that
refer to the same system. In this way, it could be examined to what extent the concept of
dimensions, modeled by FML, is suitable to provide a holistic evaluation of the security
of a software system.

In addition to the evaluation by expert interviews, it is useful to perform an evaluation
of FML with a case study based on a real software system from the industry. Since real
software systems are often very complex, this might reveal some weaknesses or deficiencies
of FML.

73

A. Security dimension case studies

This appendix chapter includes the case studies as vector graphics, which were used to
create FML:

<<network>>

H

API GatewayClient

Keycloak
IdB

Customer Service

<<authentication>>

<<authentication>>

<<authentication>>

<<authentication>>

<<authentication>>

<<authentication>>

<<validates>>

<<default policy>>
zero trust policy

<<authentication>>
oauth token authentication

<<authentication>>
method = token
method_description= petclinic_oauth_seqdia.xml
technology = oauth 2.0 <<authentication>>

<<authentication>>
oauth user:password authentication

<<authentication>>
method = user:password
method_description= petclinic_oauth_seqdia.xml
technology = oauth 2.0

<<authentication>>
database standard authentication

<<authentication>>
method = user:password
method_description =
technology = database management system
 authentication

<<authorization>>
mtls authorization

<<authorization>>
method = mtls
method_description= petclinic_mtls_seqdia.xml
technology = keycloak 21.0 mtls

<<validates>>

<<validates>>

<<database>>
{data classification=public
technology=postgres1.0}

plzDB

<<database>>
{data classification=secret
technology=postgres1.0}

UserDB

<<default policy>>
data classification policy

classification of
sensitive data into

classes:
- public

confidential
- highly confidential

- private
- secret

always verify
communications

<<policy>>
password policy

passwords should
contain more than 6

symbols, numbers and
capital letters

<<secret>>
DB Password

Figure A.1.: Case study for designing the authentication dimension. The existing case
study was extended to include mtls authentication between the services.
The client now has to authenticate itself at the api gateway with oauth2.0.
Additionally, all databases were set to an outdated technology and the
customer service communicates with an open database that does not require
authentication. In addition, a password policy and a data classification
policy were introduced, as well as a zero trust policy, which is violated by
the unprotected database.

75

A. Security dimension case studies

customer_management

<<authorization_role>>
medical assistant

<<authorization_attribute>>
read_medical_record

<<authorization>>
write customer data

keycloak

<<validate>>

<<authorization_attribute>>
write_medical_record

<<authorization_role>>
doctor

<<policy>>
Deny sensitive

access
before 9am

<<authorization>>
read customer data

<<authorization>>
edit customer data

<<authorization_attribute>>
edit_medical_record

<<authorization>>
NameAuthorization

<<authorization>>
method = oauth token
method_description = authpetclinic.xml
technology = keycloak 23.0 authorization

Figure A.2.: Case study for designing the authorization dimension. Various authorizations
were added to the customer service. The writing and reading of customer
data is allowed to be done by users with the role of medical assistant. Doctors
have all the same rights as medical assistants, but are also allowed to make
changes. The authorization validation is done by a keycloak service.

76

Check Creditcard Info and Pets

<<network>>

Mobile devices have a unique set of security concerns, so therefore a separate
policy may be needed just for mobile devices. For example, laptops and smart phones can be easily
lost or stolen, which could result in loss of company and private data. These devices also have a high

risk of contact with malware. These risks require specific rules and precautions that must be followed to
mitigate the risks and limit the organization’s exposure to security threats. This policy may include

requirements for which data must be encrypted, the installation and maintenance of current versions of
anti-malware software, and when passwords are needed to access the device. Also, the types of

organizational information that can reside on mobile devices are defined in this policy. Physical security
can also be addressed, such as having cable locks for laptop computers and having procedures for

reporting lost or stolen devices.

<<policy>>
mobile device policy

<<machine>>

H

Mobile Client API Gateway

Customer Service

Pets Service

Vets Service

<<message>>
number=1; data_classification= confidential; type=request ; call= GET /owner/{ownerId}/pets

number=2; data_classification= confidential; type=request ; call= GET /owner/{ownerId}/creditcard

<<message>>
number=1.1: data_classification: confidential; type=request;call= GET /owner/{ownerId}/pets

number=2.1: data_classification: confidential; type=request; call= GET /owner/{ownerId}/creditcard

<<message>>
number=1.3:type= response; msg:pets for owner $ownerID

<<
mes

sa
ge

>>

nu
mbe

r=1
.4

;da
ta_

cla
ss

ific
ati

on
: p

riv
ate

;ty
pe

=re
sp

on
se

; m
sg

:pe
ts

for
 ow

ne
r $

ow
ne

rID

nu
mbe

r=2
.2:

;da
ta_

cla
ss

ific
ati

on
: s

ec
ret

;ty
pe

=re
sp

on
se

; m
sg

:{o
wne

rId
} c

red
itc

ard
 in

fo

<<message>>
number=1.5 data_classification= secret; type=response; msg: pets for owner $ownerID
number=2.2: data_classification= secret ; type=response ; msg:{ownerId} creditcard info

Bill Creation Service

<<message>>

number=1.2; data_classification: confidential; type=request ;call= GET /owner/{ownerId}/pets

<<connection>>
{encryption=TLS ; authentication= mTLS}

<<connection>>
{encryption=TLS ; authentication= mTLS}

<<connection>>

{encryption=TLS ; authentication= mTLS}

<<connection>>
{encryption=TLS ; authentication= mTLS}

<<connection>>
{encryption=TLS ; authentication= mTLS}

<<connection>>
{encryption=TLS ; authentication= mTLS}

<<connection>>
{encryption=none; authentication= none}

<<default policy>>
data classification policy

classification of
sensitive data into

classes:
- public

confidential
- highly confidential

- private
- secret

<<policy>>
guest access policy

This policy defines the practices that should be in place
to protect the organization,

while allowing the company to host guests and others
on organizational networks. One aspect of this

policy is to require guests to read and agree with
acceptable use policies before granting network

access to them. This policy can be implemented in a
variety of ways, such as having guests sign an

acceptable usage policy and then providing a code for
temporary access. The main intent of this policy

is to enforce the organization's security standards and
still provide procedures for allowing guests to

access the network or Internet

<<policy>>
network access policy

This policy defines criteria for accessing various types
of networks such as local

area networks (LANs) and wireless networks. In
addition, this policy can define what is permissible and
non-permissible while on the network. This policy often

prohibits users from adding unauthorized
devices such as routers and hot spots to the network.

<<policy>>
remote access policy

This policy requires what is needed so that remote
network access can be granted

to both internal employees and external
(non-employee) users. VPN usage is often covered in

this
policy

This policy defines permissible usage
of the Internet by employees and

guests of an
organization. The scope of this policy

includes the types of websites that
may and may not be

accessed, such as gambling or
pornography sites, and also addresses

whether non-business use of
the Internet is allowed

<<policy>>
internet access policy

<<Configuration>>
InternNetworkConfig

internet_access:whitelisting
remote_access: vpn required
network_access:
guest_access: no guests allowed

Figure A.3.: Case study for designing the secure communication dimension. A network
was specified, which has a configuration. This configuration fullfills various
policies. In addition, a message chain was defined over various services to
query credit card information for users, as well as to query a user’s pets.

77

A. Security dimension case studies

<<cloud>>

<<house>>

<<network>>

<<room>>

<<machine>>

<<machine>>

<<data_classification:public data;
technology: mariaDB5.8>>

PLZ Database

<<data_classification: highly confidential data;
technology: mariaDB5.8>>

PaymentDB

Customer Service

inhouse backup
application

Vets Service <<data_classification: secret ; technology: postgres1.0>>
EmployeDB

AmazonAWS backup

<<authentication>>

Confluence System

<<contains password>>

<<secret>>
EmployeDB log in

<<secret>>
AWSCredentials

<<backup>>
LocalBackup

<<backup>>
method = differential
technology = baracuda backup 2014
frequency = weekly
trigger = manual

<<authentication>>
Database Authentication

<<authentication>>
method = user:password
technology = database management system
 authentication

<<authentication>>

<<authentication>>

<<authentication>>

<<backup>>
AWSBackup

<<backup>>
method = complete
technology = aws backup
frequency = all 14 days
trigger = automatical

<<cloud>>

<<policy>>
password policy

passwords should
contain more than 6

symbols, numbers and
capital letters

<<default policy>>
data classification policy

classification of
sensitive data into

classes:
- public

- confidential
- highly confidential

- private
- secret

<<contains password>>

<<authorization attribute>>
secret manager

secret manager

Figure A.4.: Case study for designing the secure storage dimension. It was added that the
system runs in a house where there is a corporate network. In one room of
the house there are two machines running the customer and vets service. In
addition, two databases with a local backup were added, where the backup
is in the same building. Further, a database with cloud backup was added.
Additionally, an application was added that contains two passwords modeled
as secret. One for the cloud backup service and one for a database of the
system.

78

<<network>>

<<machine>>

<<machine>>

<<machine>>

<<machine>>

Mobile Client API Gateway

Customer Service

Pets Service

Vets Service

Bill Creation Service

<<installations>>
API Gateway Installs

apache apsix:: 3.2.0
windows server 2022: 21H2 (10.0.20348.1487)

<<licences>>
API Gateway Licences

windows server 2022: single licence: lifetime

<<configuration>>
API Gateway Configuration

apache apsix config: API Gateway apsix config
open ports: 20, 21, 22, 23, 24, 52, 137, 139, 445,
80, 443, 8080, 8443

<<installations>>
Vet Server Installs

Vets Service: 1.0.3
Bill Creation Service : 2.1
windows server 2022: 21H2 (10.0.20348.1487)

<<licences>>
Vet Server Licences

windows server 2022: single licence: lifetime

<<configuration>>
Vet Server Configuration

Vets Service configuration
Bill Creation Service configuration
open ports: 20, 21, 22, 23, 24, 52, 137, 139, 445,
80, 443, 8080, 8443

<<dependency>>
Vet Server Installs

log4j: 2.0

<<installations>>
Standart Server Installs

python:3.7.2

<<policy>>
server security policy

<<update stragegy>>
Standart Server Updates

<<UpdateStragegy>>
{frequency=every week,
trigger=manual,
technology=matrix42}

<<installations>>
Customer Server Installs

python:3.7.1

<<default policy>>
data classification policy

classification of
sensitive data into

classes:
- public

-confidential
- highly confidential

- private
- secret

server have python
3.7.2 installed

Figure A.5.: Case study for designing the secure deployment dimension. It was added
that each service runs on one machine. In addition, a configuration for
machines was defined. One of them is the default configuration, which is
intended as a minimum configuration for all systems. In addition, there is a
server security policy, which is violated by the customer server install.

79

A. Security dimension case studies

<<network>>

<<machine>>

<<machine>>

Mobile Client API Gateway
Customer Service Pets Service

Vets Service

<<policy>>
malware protection

Bill Creation Service

<<default policy>>
Elektronic Monitoring

and Privacy Policy

<<antimalware configuration>>
Standart Malware Configuration

<<AntimalwareStrategy>>
{scanfrequency=every week,
trigger=manual,
technology=kaspersky endpoint security}

<<log>>
Gateway Log

- Successfull login to network : {IP Adress: User, Time,
Place}
- Send message from Vet to Vet {IP Adress: User,
Time, Place, Message}

<<log>>
Customer Service Log

- Successfull login : {IP Adress: User, Time, Place}
- Get customer operatoin: user, IP, customer
- Delete Customer: user, IP , customer

<<log>>
Gateway Log

- Successfull login to network : {IP Adress: User, Time,
Place}
- Failed login to network {IP Adress: User, Time,
Place}

<<log>>
Company Network Log

- Successfull login to network : {IP Adress: User, Time,
Place}
- Failed login to network {IP Adress: User, Time,
Place}

<<connection>>

H

check for malware every
week

employee messages are
not allowed to check

Figure A.6.: Case study for designing the monitoring dimension. It was added that each
machine will be equipped with a log. The electronic and privacy policy was
added, which defines what must not be logged. The API gateway violates
this by logging the content of messages between vets. In addition, there is
an antimalware configuration that is run manually once a week. However,
this is only active on one machine, which means that only this machine
complies with the antimalware policy.

80

B. Evaluation transcription

This appendix contains the shortened and translated transcriptions of the expert interview.

81

B. Evaluation transcription

Figure B.1.: Interview transcription EQ1-4

Question P1 P2 P3 P4 P5 P6
(EQ1) What is
your Current
Role?

Cyber Security
Consultant
since 2 Years

-Teamlead
-Head of the
architecture
group of a
german
company

Software
Architect since
13 years

Privatdozent
KIT

Phd Student at
Fraunhofer

Software
Architect

(EQ2) Do you
have
experience in
modeling
security in
software
architectures
or software
architectures
in general?

- design,
implementation
of security
systems for
customers
- Relocation of
software
systems
- Planning of
security in
software
systems

-. 20 years
experience as
software
architect
- since 4 years
with focus of
remodeling an
existing system
architecture to
customer needs
in the it security
area

-design and
improving the
software of a
german
company since
13 years

- 15 years of
modeling and
analysis of
software
architectures for
properties such
as performance
and reliability
- Research on
vulnerability
analysis

- 3 1/2 years of
experience in
software system
security
research

- Maintaining
the software
architecture of
the
infrastructure of
a German
company for 3
years

(EQ3) How do
you rate the
authentication
element
modeling
concept with
respect to
granularity and
scope?

-it is easy to
understand
- the necessary
information
about the
authentication
are given
- more detailed
information
about the
kommunikation
and the
authentication
process should
be given

- it is a good
start
- more
information
about the
authentication
technology
needed
- enough
information to
evaluate the
existence of an
authentication
-
unauthenticated
connections
could be
marked

- reference of
additional
diagram makes
the model feel
uncomplete
-
communication
protocol
information are
missing
- maybe add a
layer for more
detailed
authentication
technology
information
- technology
information and
method do not
feel consistent

- good overview
about
authentication
of SW System
- auth method is
visible which is
very important
- the
configuration of
the auth method
is missing which
is a cause for
many security
leaks

- most important
dimensions
included
- scope is
sufficient

- configuration
of the software
is missing
- version
number of
software from
the validater of
an
authentication
missing
- Besides this,
the scope and
depth of
information are
all right

(EQ4) Which of
the area
concepts, area
hint, area or no
area, do you
prefer?

- if network is
logical or
physical is not
directly clear
- including the
network
information is
useful for the
evaluation
- area hint does
not provide
additional
information to
area, but
confuses

- the seperarion
of area and
area hint
appears unclear
- split of logical
and infrastructur
useful
- area hint is
confusing as it
does not
contain new
information in
comparison to
area
- in practice just
one of these
elements would
be used

- concept of
using hints for
using
information
which are not a
part of the
actual
dimension for
evaluation is
useful
- if hint concept
is just for areas
it is to special
- network
information is a
good idea in the
authentication
dimension
- the dimension
could get to big
in size

- network
information are
useful in an
authentication
dimension
- the seperation
between the
dimensions gets
unclear if
elements are
used from other
dimensions
- clear
seperation
between
dimensions
required
- hint concept is
useful as a
reference to
other
dimensions

- Concept of the
hints useful to
support the
evaluation
- useful
information
given with areas

- Modeling the
areas seems
rather useful
- Area hint
seems like a
useful concept
at first sight

82

Figure B.2.: Interview transcription EQ4-7

Question P1 P2 P3 P4 P5 P6
(EQ5) How do
you rate the
policy
modeling
concept with
respect to
scope and
granularity?

- policy
description very
useful
- modeling
violations is
very useful
- granularity and
scope are good
for the
evaluation,
typical policies
could be
modeled

- adding policies
to FML is useful
- violation
modeling is
useful
- modeling
positive
deviations to
policy
implementation
s should be part
of FML like e.g.
have a stronger
password than
the password
policy
- policy
description is
very useful
- it could be
further
evaluated if
there are too
many policies in
one dimension

- modeling
policies is
useful
- scope and
information
depth are
appropriate
- modeling
concept of the
policies is good

- enough details
for
interpretation
- good overview
- Expression of
the policy not
visible, but this
should be part
of an other
dimension
- description
could be a link
to an other
dimension
- good scope
and information
depth

- modeling
defects of
policies is
useful
- good overview
about the
policies
- helpful
assessment
basis

- idea of
modeling
policies is good
- scope and
depth of
information is
okay
- it is not clear
when to use a
normal policy
and when to
use a default
policy
- default policies
make changing
the system
more difficult,
because then
the whole
documentation
has to be
checked as well

(EQ6) Would
you add or
delete any
element of the
authentication
dimension?

- classifications
could be
modeled a an
individual
element
- join policy
description and
policy element
to one element

- transport
protocol
information
should be
added to the
authentication
dimension

-creating
abstract
components to
group
components to
reduce the
connection and
policy
implementation
arrows

- - maybe add a
asset dimension
where the value
of assets is
important. Then
asset value
hints could be
used in the
authentication
dimension

-

(EQ7) Could
you imagine
using an
authentication
dimension to
evaluate the
authentication
security of a
software
system for
security
testing?

yes yes. The
language would
be helpful for
the company

yes yes yes, would want
to try it out to
understand an
unknown
system for
example

At first glance,
the language
seems useful.
But the
language is too
detailed for
current use,
since often only
the
communication
between the
networks is
relevant.

83

Bibliography
[250] “ISO/IEC 25010:2011 Systems and software engineering — Systems and

software Quality Requirements and Evaluation (SQuaRE)”. In: ISO/IEC/IEEE
25010:2011 (2011), pp. 1–46 (cit. on p. 7).

[612] “ISO/IEC/IEEE Systems and software engineering – Architecture descrip-
tion”. In: ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007
and IEEE Std 1471-2000) (2011), pp. 1–46. doi: 10.1109/IEEESTD.
2011.6129467 (cit. on p. 6).

[BCK03] L. Bass, P. Clements, and R. Kazman. “Software Architecture In Practice”.
In: Jan. 2003. isbn: 978-0321154958 (cit. on p. 5).

[BJE16] S. Bromander, A. Jøsang, and M. Eian. “Semantic Cyberthreat Modelling”.
In: Semantic Technologies for Intelligence, Defense, and Security. 2016
(cit. on p. 1).

[Ele90] I. Electronics Engingeers. “IEEE Standard Glossary of Software Engineering
Terminology”. In: Office 121990 (1990), p. 84 (cit. on p. 5).

[Ell+96] W. J. Ellis et al. “Toward a recommended practice for architectural descrip-
tion”. In: Proceedings of ICECCS ’96: 2nd IEEE International Conference
on Engineering of Complex Computer Systems (held jointly with 6th CSE-
SAW and 4th IEEE RTAW) (1996), pp. 408–413 (cit. on p. 7).

[Fak] K. Fakhroutdinov. UML, Meta Meta Models and profiles. url: https:
//www.uml-diagrams.org/uml-meta-models.html (cit. on p. 65).

[Fer+01] D. F. Ferraiolo et al. “Proposed NIST standard for role-based access con-
trol”. In: ACM Transactions on Information and System Security (TISSEC)
4 (2001), pp. 224 –274 (cit. on p. 8).

[GGS15] R. Goel, M. C. Govil, and G. Singh. “Security Requirements Elicitation and
Assessment Mechanism (SecREAM)”. In: 2015 International Conference
on Advances in Computing, Communications and Informatics (ICACCI)
(2015), pp. 1862–1866 (cit. on p. 68).

[Hu+14] V. C. Hu et al. “Guide to Attribute Based Access Control (ABAC) Defini-
tion and Considerations”. In: 2014 (cit. on p. 9).

[Ist] ISTQB Certified Tester Advanced Level Syllabus - Security Tester. Inter-
national Software Testing Qualifications Board. Version 1.0. 2016. url:
https://www.german- testing- board.info/wp- content/
uploads/2020/12/ISTQB-CTAL-SEC_Syllabus_V2016_EN.pdf
(cit. on pp. 16, 19).

85

https://doi.org/10.1109/IEEESTD.2011.6129467
https://doi.org/10.1109/IEEESTD.2011.6129467
https://www.uml-diagrams.org/uml-meta-models.html
https://www.uml-diagrams.org/uml-meta-models.html
https://www.german-testing-board.info/wp-content/uploads/2020/12/ISTQB-CTAL-SEC_Syllabus_V2016_EN.pdf
https://www.german-testing-board.info/wp-content/uploads/2020/12/ISTQB-CTAL-SEC_Syllabus_V2016_EN.pdf

Bibliography

[Jü02] J. Jürjens. “UMLsec: Extending UML for secure systems development”.
In: vol. 2460. Jan. 2002, pp. 412–425. isbn: 978-3-540-44254-7. doi: 10.
1007/3-540-45800-X_32 (cit. on pp. 65, 66).

[KK21] A. Kotov and J. Klein. SEI Software Architecture Principles and Prac-
tices Overview Training. Tech. rep. CARNEGIE-MELLON UNIV PITTS-
BURGH PA, 2021 (cit. on p. 1).

[LBD02] T. Lodderstedt, D. Basin, and J. Doser. “SecureUML: A UML-based
modeling language for model-driven security”. In: vol. 2460. Jan. 2002,
pp. 426–441. isbn: 978-3-540-44254-7. doi: 10.1007/3-540-45800-
X_33 (cit. on pp. 66, 67).

[MiD10] R. Matulevi, ius, and M. Dumas. “A Comparison of SecureUML and
UMLsec for Role-based Access Control”. In: 2010 (cit. on pp. 65, 66, 69).

[Obj17] Object Management Group. OMG Unified Modeling Language (OMG UML).
Version 2.5.1. Dec. 2017. url: https://www.omg.org/spec/UML/2.
5.1/PDF (cit. on p. 65).

[PMMD07] J. Pavlich-Mariscal, L. Michel, and S. Demurjian. “Enhancing UML to
Model Custom Security Aspects”. In: Jan. 2007, p. 10 (cit. on p. 65).

[RFMP06] A. Rodríguez, E. Fernández-Medina, and M. Piattini. “Towards a UML 2.0
Extension for the Modeling of Security Requirements in Business Processes”.
In: Trust and Privacy in Digital Business. Ed. by S. Fischer-Hübner,
S. Furnell, and C. Lambrinoudakis. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 51–61. isbn: 978-3-540-37752-8 (cit. on pp. 68, 70).

[RREAT17] D. A. Robles-Ramirez, P. J. Escamilla-Ambrosio, and T. Tryfonas. “IoTsec:
UML Extension for Internet of Things Systems Security Modelling”. In:
2017 International Conference on Mechatronics, Electronics and Automotive
Engineering (ICMEAE). 2017, pp. 151–156. doi: 10.1109/ICMEAE.
2017.20 (cit. on pp. 65, 68).

[SEH13] T. Sommestad, M. Ekstedt, and H. Holm. “The Cyber Security Modeling
Language: A Tool for Assessing the Vulnerability of Enterprise System
Architectures”. In: Systems Journal, IEEE 7 (Sept. 2013), pp. 363–373.
doi: 10.1109/JSYST.2012.2221853 (cit. on pp. 67–69).

[Sin22] B. Sinkovec. “Towards a software engineering view of security for microser-
vice-based applications”. MA thesis. RWTH Aachen University, 2022 (cit.
on pp. c, 2, 3, 11–13, 25, 26, 28, 71).

[TMD09] R. N. Taylor, N. Medvidović, and E. M. Dashofy. “Software architecture:
foundations, theory, and practice”. In: 2010 ACM/IEEE 32nd International
Conference on Software Engineering 2 (2009), pp. 471–472 (cit. on p. 6).

86

https://doi.org/10.1007/3-540-45800-X_32
https://doi.org/10.1007/3-540-45800-X_32
https://doi.org/10.1007/3-540-45800-X_33
https://doi.org/10.1007/3-540-45800-X_33
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://doi.org/10.1109/ICMEAE.2017.20
https://doi.org/10.1109/ICMEAE.2017.20
https://doi.org/10.1109/JSYST.2012.2221853

Bibliography

87

	Introduction
	Contribution
	Research questions
	Structure

	Foundations
	Software- and system architecture definitions
	Security definitions

	Background
	Software engineering view on security
	Security dimension

	Research Approach
	Information need
	ISTQB Security Tester Syllabus
	Method
	Results

	Creation of the Fortress Modeling Language
	Research method
	The Fortress Modeling Language metamodel

	Realization of FML
	Component elements
	Policy Elements
	Ownership
	Behavior

	Evaluation
	Method
	Results

	Discussion
	Discussion of the evaluation results
	Discussion in the context of the research questions

	Related Work
	UML
	UMLsec
	SecureUML
	CySeMoL
	Further modeling languages
	Differentiation to the Fortress Modeling Language

	Conclusion
	Summary
	Future work

	Security dimension case studies
	Evaluation transcription
	Bibliography

