SI I l Software
Construction

BACHELOR THESIS

An Overview of
Machine Learning
Approaches to support
Software Architecting

presented by

Keven Hu

Aachen, August 8, 2024

The present work was submitted to
the RESEARCH GROUP
SOFTWARE CONSTRUCTION

of the FACULTY OF MATHEMATICS,
COMPUTER SCIENCE, AND
NATURAL SCIENCES

EXAMINER
Prof. Dr. rer. nat. Horst Lichter

Prof. Dr. rer. nat. Bernhard Rumpe

SUPERVISOR

Alex Sabau, M.Sc.

Acknowledgment

I would like to thank my supervisor Alex Sabau for his guidance and feedback throughout
my work on this thesis. Despite being very busy with many other tasks and responsi-
bilities, he always managed to find time to guide me and offer valuable feedback on my
work. I am also very grateful to the Department of Computer Science of RWTH Aachen
University for teaching me the various aspects of computer science in interesting and
exciting ways and helping me in the matters of my studies when I was unsure. Lastly, I
would like to thank my family for always supporting me throughout my studies. I would
not have been able to reach this point without their help and encouragement.

Keven Hu

Abstract

Software and software systems require well-designed software architectures to fulfil ever
more complex tasks and to ensure ease of understanding of the system, maintainability,
evolution and other aspects. Thus, tools or approaches that support effectively and
efficiently software architects who directly work on software and software systems can
be very useful. With machine learning being applied to a growing list of domains such as
medicine, autonomous driving or cybersecurity, naturally an interest in its applications
regarding software architecture exists. However, there is no current overview of the
available research. In order to offer such an overview of machine learning approaches
that support software architecting, a systematic literature review was conducted. The
results of the systematic literature review show that a wide variety of machine learning
approaches that support software architecting exist. A total of 25 studies which proposed
a machine learning approach were found. The approaches can be classified into different
fields with the field of Fvaluation, which concentrates on evaluating software architecture
artefacts, having the most studies with ten in total. In terms of challenges and future
work directions, data gathering is the most mentioned challenge with nine studies and
conducting an efficiency analysis being one of several potential research ideas.

Contents

|1 Introductior{

|2 Related Work|

|3 Research Method

3.1 Planningl

3.2 Data Aggregatiod

3.3 Data Extractiod

3.4 Data Synthesisl
E Discussioq

5.1 Research Question I

5.2 __Research Question i

6.3 Research Question d
b Conclusion and Future Work|

6.1 Conclusiod

6.2 Future Work]
B o phy

21

25
25
25
27

29
29
29

31

List of Tables

3.1 First table of the index for the examined papers] 13
3.2 Second table of the index for the examined papersl 14
3.3 First table with the authors of the examined papers] 15
3.4 Second table with the authors of the examined papers! 16
3.5 First table of selection results and reasons for failing] 16
3.6 Second table of selection results and reasons for failing] 17
3.7 Common directions for future work or perceived challenges in the papersl 18
3.8 Classification of papers and the maturity of their tool or approach| 19

iii

List of Figures

3.1 Process of the systematic literature reviewl 5
3.2 Timeline of the review process] 7
3.3 Ratio of studies after initial screening which passed the study selectionl .9
1.1 Number of papers in each classification class] 22
1.2 Ratio of the practical and experimental approaches| 23
1.3 Common future directions, proposed by the studies| 23
1.4 Common challenges in the papersl 24

1 Introduction

In a world where digitalisation continues to grow in importance with a global spending
forecast of more than five trillion dollars in the information technology sector [Gar24],
the number of software systems that require good software architecture also grows.

Software architecture describes the structure of a software system consisting of soft-
ware components, their characteristics and their relationship to each other [Va09]. In-
deed, the modular decomposition of the software or software system into software com-
ponents plays an important role in the field of software architecture. It is necessary for
fundamental principles of software engineering like information hiding or the separation
of concerns. Information hiding describes the principle of making information, that a
developer should not use for other components, inaccessible. The principle of separation
of concerns ensures that a software component has one specific group of tasks which it is
responsible for [LL23]. Thus, software architecture plays an important part in software
engineering and its creation requires the software architect to consider aspects such as
system design or requirements engineering. Even after designing and implementing the
software architecture, the architecture is seldom final since the software or software sys-
tem is often subject to changes, due to, for example, maintenance or evolution [Va09].
An activity which a software architect may have to complete is the modelling of the soft-
ware architecture and its behaviour using a modelling language like MontiArcAutomaton
[RRW15]. Thus, tools that support software architects in their software architecting ef-
forts, like code generators in the case of modelling architecture and behaviour using
MontiArcAutomaton [RRW15], are useful.

In recent years, artificial intelligence, which includes machine learning, has become
prominent in real-world use cases. With large language model applications like Chat-
GPT reaching more than 100 million monthly active users [Hu23] machine learning has
reached widespread use. Machine learning employs statistics and computer science to
learn and extract knowledge from data. So-called machine learning models are trained
and tested on datasets, so they can make predictions about the output for some given
input [MG16]. Most machine learning can be differentiated into three types: supervised
learning, unsupervised learning and reinforcement learning. In supervised learning, a
machine learning model is trained on often manually pre-labelled training datasets. In
contrast to supervised learning, in unsupervised learning a machine learning model is
trained on unlabelled data. Reinforcement learning aims to find the optimal actions that
maximise some form of reward or minimise some form of penalty [Bis0f]. The machine
learning models employ various algorithms to learn from the training dataset. Some
common machine learning models are k-Nearest-Neighbour, naive Bayes, Decision Tree,
Support Vector Machines or k-Means-Clustering [MG16].

Since machine learning has proven its practicality in real-world use cases, such as

1 Introduction

with ChatGPT [Hu23|, there is interest in the research of machine learning in software
engineering. An example of a research topic regarding machine learning in software
engineering is the automation and data management of the machine learning training
process. It is explored in the paper submitted by Rumpe et al. by defining and testing a
new artefact model [Rum+21]. Thus, other research topics may deal specifically with the
sub-field of employing machine learning to support software architecting. An overview
that shows the current state of machine learning approaches that support software ar-
chitecting would be useful for considering further research into the topic. In order to
create an overview of the topic, a systematic literature review was conducted which was
used to answer the following three research questions:

¢ RQ1: What machine learning approaches exist for the support of software archi-
tecting?

e« RQ2: How can existing approaches be classified in terms of their relationship to
software architecting?

« RQ3: What are the current challenges and research gaps of machine learning
approaches for supporting software architecting?

RQ1 is there to create a rough overview of what kind of machine learning approaches
exist that support software architecting. The systematic literature review contains a
table of relevant papers that fit the topic for this purpose. With RQ2 it is possible to
take a closer look at the current trend of the research. It shows how the papers can be
ordered into groups which subtopics in the research are explored the most and which
topics may have potential for further research. Since this overview strives to also offer
ideas or inspiration for future work to interested researchers, RQ3 is necessary. In order
to offer inspiration for future work in the research field of machine learning approaches
that support software architecting, R3 aims to find common challenges and apparent
research gaps. It is possible to propose ideas or directions for future work based on these
challenges and research gaps, as they show what research may be helpful or missing.

This thesis is structured in the following into chapters, beginning with the chapter
which deals with related work to the topic of this thesis. After the chapter about related
work, the research method _of a systematic literature review is explained and applied
in chapter E The chapter E also includes tables and figures for visualisation purposes.
Chapter Y presents the results of the systematic literature review. These results are also
compiled into diagrams, which are included in chapter {. After the result presentation
in chapter {, the research questions are answered in chapter fj by discussing the results
from the previous chapter. Finally, in chapter f, the thesis will be summarised in a
concise manner and potential ideas for future work are presented.

2 Related Work

In terms of related work, the systematic literature review by Wang et al. investigates
how the complexity of applying machine learning and deep learning solutions to soft-
ware engineering problems leads to issues regarding the replicability of those studies.
In addition, the review explores the differences and commonalities between machine
learning and deep learning applications in the field of software engineering, such as the
improvements of deep learning over machine learning or differences in training or im-
plementation. Among the findings is that the rationale for choosing deep learning is
achieving better performance or solving complex problems, while machine learning is
chosen for better performance, robustness to diverse data, simplicity of the task, bet-
ter interpretability of prediction results and simple implementation through available
implementations [Wan+23].

Furthermore, the study by Barenkamp, Rebstadt, and Thomas conducts a systematic
review and five interviews with software developers to determine the current develop-
ment status, future development potentials and risks associated with the application of
machine learning in software engineering. The main potentials of machine learning are
the automation of routine work, the structured analysis of large data pools to discover
novel information clusters and the structured evaluation of the data in neural networks,
according to the study. The five interviews reveal the belief of the interviewed software
developers that software developers will continue to have a defining role during soft-
ware development since software innovation requires creativity, which machine learning
is supposedly not capable of [BRT20].

The survey conducted by Yang et al. explores the application of deep learning in soft-
ware engineering and tries to summarise deep learning applications, classify them, and
determine challenges in the research field. The most common deep learning architectures
that were applied are recurrent neural networks, concurrent neural networks and feedfor-
ward neural networks, according to the survey. Also, deep learning tackled problems in
software engineering activities, software requirements, software design, software imple-
mentation, software testing and debugging, maintenance and software management. As
for challenges, the lack of transparency for understanding the deep learning output, the
lack of real-world datasets used for training and evaluation, reliance on large datasets
and the lack of performance analysis are mentioned [Yan+2(0].

3 Research Method

This thesis follows the guidelines proposed by Kitchenham and Charters in ”Guidelines
for performing Systematic Literature Reviews in Software Engineering” [KCO07]. Due to
the time- and resource limitations of a bachelor thesis, the systematic literature review
was not strictly conducted according to the guidelines. This applies especially to the
activities that require more than one researcher, such that activities had to be adjusted
or cut for this review. The systematic literature review process, which was followed for
this thesis, can be divided into four steps: Planning, Data Aggregation, Data Extraction
and Data Synthesis as seen in B.1l.

Planning

) 2

Data Aggregation

2

Data Extraction

: 4

Data Synthesis

Figure 3.1: Process of the systematic literature review.

3.1 Planning

In the Planning step of the systematic literature review, several pre-review activities
have to be addressed. First of all, the reviewer has to confirm the need for a review on
the given topic. A systematic literature review’s purpose is to summarise all information
regarding a topic or phenomenon thoroughly in an unbiased manner or be a starting point
for further research. Once the need for a systematic literature review has been confirmed
by the reviewer, the research questions that the review aims to answer have to be defined.
For this purpose, any of the six criteria population, intervention, comparison, outcomes,
context, and experimental designs can be considered while defining the research questions.

3 Research Method

Lastly, the reviewer has to develop a review protocol in order to reduce researcher bias
and specify the methods used for conducting the review. The review protocol consists
of all elements of the review in addition to some planning information [KCO07].

The first task in the Planning step of the systematic literature review is to show the
necessity of the review. As illustrated in [l machine learning and its applications have
been intensively researched in the past few years. Alongside the importance of high-
quality software architecture and its activities relating to it, the interest in exploring
machine learning approaches or tools that support the activities of software architects is
reasonable. Thus, an overview of the current state of research and its challenges in the
topic of machine learning approaches or tools to support software architecture activities
would be a helpful starting point for researchers who are new to the field. However,
as far as I have found from searches in the databases of IEEExplore and Engineering
Village, there are currently no reviews, overviews or surveys that deal with the topic
of machine learning approaches that support software architecting activities. Therefore,
a new systematic literature review of the machine learning approaches that support
software architecting is necessary to understand the current state of the research.

A research question is necessary for a systematic literature review since it determines
the goal and direction that the review attempts to achieve. To define the research
question, the criteria population, intervention, comparison, outcomes, context and exper-
imental design can be considered. In this review, the criteria population and intervention
were considered for the definition of the research question. Other criteria were ignored in
order to avoid limiting search results relating to the topic of machine learning approaches
that support software architecting. The criterion of population is supposed to address
software engineering roles or -categories, application areas or industry groups, according
to Kitchenham and Charters [KCO07]. Here, the application area of software architec-
ture and the role of software architects and their activities are chosen as the population.
An intervention is a "software methodology/tool/technology/procedure that addresses
a specific issue”, as defined by Kitchenham and Charters [KCO07]. In this review, the
considered intervention are machine learning approaches — methodologies, tools or pro-
cedures — that support the activities of software architects. As a result, the research
question according to the defined criteria coincides with the first research question of
this thesis: "What machine learning approaches exist for the support of software ar-
chitecting?”. The population is represented by the activities that fall under ”software
architecting” and the intervention is mentioned as "machine learning approaches”.

The review protocol consists of the chapters Research Method B, Results §f and Dis-
cussion H in this thesis. A timeline of the review process can be seen in figure B.2.

3.2 Data Aggregation

In order to gather as many relevant papers as possible, the reviewer has to identify
suitable data sources for the search first. After the data source selection, the reviewer
has to craft a search string which is used on the data sources. This search string can be
based on the structured research question and the considered criteria, which have been

3.2 Data Aggregation

08.04.2024:

Definition of 25.04.2024.

RQ, Search Search of

String and Studies and 16.05.2024:

Data their Data
Sources Acquisition Extraction
18.04.2024: 09.05.2024: 13.06.2024:
Definition of Definition of Data
Selection aData Synthesis
Criteria Extraction
Table

Figure 3.2: Timeline of the review process.

defined in the earlier step. Following the creation of the search string, selection criteria
have to be determined for the search in the data sources. The purpose of the selection
criteria is to identify the studies that provide evidence to answer the research question.
The search itself has also to be sufficiently documented for replication purposes [KC07].

For this review, IEEExplore and Engineering Village have been chosen as data sources
for studies. IEEExplore is a digital platform that enables access to content published
by IEEE with more than six million documents [[EE] and its focus on computer science
makes it a suitable source of studies for a systematic literature review. Engineering
Village is also a digital platform that concentrates on providing access to many scientific
papers regarding engineering by drawing from the content of several databases, such as
Compendex [Vil]. The Compendex database by itself contains more than ten million
papers [Els], thus enabling a wide search of studies regarding the review topic.

In order to craft a search string for the data sources, I have incorporated the population
and intervention, which were determined in the Planning step earlier. The search string
is

("machine learning" OR ml OR ai OR "artificial intelligence")
AND (approach OR application OR tool) AND ("software architect*")

This search string can be split into three parts, based on the parentheses. The first
and second parts list several terms that describe the intervention that is examined in
the review. The third part represents the population of the review.

Applying the search string may yield studies that do not fit the topic of machine
learning approaches that support software architecting. Therefore, selection criteria are
helpful since they can be used to filter out unrelated papers. In the next task, I have
determined which selection criteria to use for filtering the search results. The criteria
were differentiated into inclusion- and exclusion criteria.

3 Research Method

Inclusion criteria:

e The paper has to be about a field in software architecture.

e The paper has to be about a machine learning approach regarding the field.
Ezclusion criteria:

e The paper is a survey, overview or review.

e The paper has no English or German version.

e The paper is not about machine learning approaches in the field of software archi-
tecture.

e The paper is only a proposal without any implementation or testing.

The inclusion criteria ensure that the papers are about the review topic. Naturally,
papers that are not about the research topic are excluded. Meanwhile, surveys, overviews
or reviews have been excluded as well, since their nature as a work that also summarises
other studies requires the analysis of those other studies as well, which is not feasible
with the time and resource limitations of this thesis. The exclusion of papers without
an English or German version stems from the limitations of my personal language skills.
Papers that only offer a proposal for a tool, approach or methodology without any
implementation or testing are excluded since they offer no results that can be considered
in the systematic literature review.

A search was conducted with the search string and a publication and indexing time
range from 2019 to 06.05.2024. 2019 has been used as a cut-off year in order to offer
an overview of the current state of the research. On IEEExplore the Advanced Search
function was used. The search string was split up according to the parentheses into three
sub-search terms; the parentheses were removed and the subterms were linked with the
logical AND operator. Each of the subterms was searched in the index terms of the
database. Once the results of the search were displayed, a publication topic filter was
also used. The publication topics that should be included in the results were ”Software
Architecture” and "Machine Learning”. This superficial search offered 162 results on
IEEExplore. On Engineering Village the Quick Search function was used for the search.
Like on IEEExplore, the search string was split up according to the parentheses, the
parentheses removed and the subterms linked with the logical AND operator. Also,
the same time range as for IEEExplore was used. In addition, the search results were
filtered by using the Controlled Vocabulary filter offered by Engineering Village. The
papers had to include the vocabulary ”Software Architecture” and "Machine Learning”
on Engineering Village which led to 195 search results. It should be mentioned, however,
that since the initial searches, additional papers may have been indexed, which can make
a replication of the searches more difficult.

Since a close examination of more than 300 studies was not feasible for this thesis,
a superficial screening of the title and, if unclear, the abstract was done based on the

3.3 Data Extraction

review topic. One further study was also recommended by a supervisor, and that was
not covered by the database search, fit the review topic, and thus was included.

37 papers are from the search on the databases and one was recommended by the
supervisor of this thesis. Therefore, a total of 38 papers remained as search results. For
the study acquisition, the reference management and knowledge organisation program
Citavi 6 [] and its browser extension was used to download and automatically fill
out the papers and their reference information using, for example, the digital object
identifier of the study.

Finally, the selection criteria were applied to all papers, including the one recom-
mended by the supervisor, to determine the final body of papers for the systematic
literature review. Thus, the final body of research that passed the selection consisted of
25 papers.

3.3 Data Extraction

Once the search is done and the reviewer has applied all selection criteria to the search
results, a data extraction form can be used to gather the information from the selected
studies. The information that is gathered with the form should facilitate finding answers
to the research questions. In addition, the form should include data like the name of the
reviewer, date of the data extraction, title, author and other publication information of
the studies [] The data extraction form was an Excel file, which contained a table
with the relevant data.

= Number of Accepted Papers = Number of Rejected Papers

Figure 3.3: Ratio of studies after initial screening which passed the study selection.

3 Research Method

This data includes the following information:

e ID, which allows an easy and unique identification and reference of the papers
o Title of the paper

e Authors of the paper

e Result of the study selection

o Data source of the paper

e In case of failure, the reason why a paper failed the study selection

o Software architecting activity tackled in the paper

e Maturity of the tool or approach

e Common potential future work directions

e Common perceived challenges

o Existence of efficiency tests or experiments

The extracted data is included as tables in this thesis. In the following, I will present
the information from the data extraction table. The table is split into multiple ones due
to the limitations of the page dimensions. The first two tables, and are to define
an index of the examined papers. They also offer an answer to RQ1. With the index,
any paper can be easily referred to with its respective ID. The authors of the examined
papers are listed in the tables @ and

After the selection criteria were applied to the studies, the results of the selection were
documented alongside a short explanation of why a paper did not pass the selection. The
exact results can be seen in the tables and B.g. Studies that passed the study selection
are marked with the keyword "TRUE” in the second column of the tables.

As mentioned in the Planning chapter, the studies must include any testing or imple-
mentation so that the results can be considered in this review. Thus, any paper that is
only a proposal without any testing or implementation is not examined in this review.
Any studies that do not deal with software architecture or machine learning approaches
directly are excluded since they do not fit the topic of this review. Furthermore, a study
has to be written understandably since ambiguity may lead to misunderstandings. A
diagram of the result is presented in and shows that from the 38 papers that passed
the initial screening, 25 passed the study selection based on the selection criteria de-
fined in B. Among the papers that failed the study selection, five failed since they were
only proposals without any implementation or testing, seven failed since they were not
about the topic of this review and one failed since the language was too ambiguous.
The paper in question with the ID 35 explains software complexity as the required level
of knowledge for understanding the design of a software program or component. Fur-
thermore, the paper states that its contribution is the proposal of a system that can

10

3.4 Data Synthesis

apply machine learning to predict the software complexity level [Aka+22]. This implies
that the proposed system can make some sort of measure that describes the software
complexity level of a given software program or component. However, study 35 trains a
machine learning model on user data, which is then used to predict the user’s software
complexity level [Aka+22] which may be interpreted as the experience and knowledge
of the user. Therefore, it is unclear whether the software complexity level of software or
the experience and knowledge of the user are predicted by the machine learning model.

In addition, the papers were classified for later data synthesis. The classification itself
will be defined in the relevant chapter H.

Furthermore, I attempted to determine the maturity of the proposed tools and ap-
proaches. The term practical means that the paper shows a successful application of the
proposed tool or approach and that the tool or approach may also apply to other exam-
ples, including real-world examples. If a tool or approach is not likely to work easily with
other examples, which may be due to extensive, required adjustments to the example or
the approach, the respective paper is labelled as experimental. Since the understanding
of the terms practical and experimental is still subjective, despite the definition pro-
vided earlier, the categorisation of the machine learning approaches has also a subjective
nature. However, various aspects were considered that steered the categorization. It
was considered what kind of format the initial input requires. If the required format is
common, like when requiring a model to adhere to the rules of the Unified Modelling
Language, then this format requirement is more practical than requiring an input to be
in a for the study newly defined format. Furthermore, it was considered whether the
proposed machine learning tool or approach was tested on a real-world example. Lastly,
the implementation of the tool or definition of the approach was considered in terms of
their completeness.

In order to determine current challenges and future directions of machine learning
approaches that support software architecting, I have summarised the directions and
challenges of the papers in table @ These future directions and challenges are gener-
alised since especially the proposed future work of the papers refers to activities specific
to the application instance of the machine learning tool or approach. These specific
future work activities were cut if they did not apply to any other paper.

During the reading of the papers, two challenges appeared to be relevant in multiple
papers. Firstly, researchers had difficulties when they tried to find high-quality and
quantity data for training and testing their machine learning models. Secondly, due to
limitations in time and resources, several authors decided to limit the application domain
of their machine learning approach. The application domain means, in this case, aspects
like the operating system or programming language. The exact data is available in table

3.4 Data Synthesis

In the last step of the systematic literature review, the reviewer has to perform data
synthesis by summarising and collating the information from the selected studies. The

11

3 Research Method

synthesis itself can be descriptive, quantitative or qualitative in nature. As part of
a descriptive synthesis, the extracted information of the studies should be tabulated
and the differences highlighted. In the quantitative synthesis, data about sample size,
estimates about effect size, differences between mean values for the interventions and
more are tabulated and then compiled into a forest plot. During a qualitative synthesis
of data, the reviewer attempts to integrate studies that use natural language results and
conclusions and translate the cases into each other[KCO07].

The examined papers differ in their application field and the way machine learning is
applied. A quantitative synthesis requires the results of the studies to be comparable to
each other, which is not possible with the papers examined in this review. A translation
of researched cases from one study to the other is also not possible since the application
fields can be entirely different from each other. Due to this heterogeneous nature of
all papers, a quantitative- or qualitative synthesis were not an option, and a descriptive
synthesis was chosen instead. For the data synthesis, diagrams have been created in the
Excel file, which will be included in this thesis.

12

3.4 Data Synthesis

ID | Paper Title

1 A comparison of machine learning-based text classifiers for mapping
source code to architectural modules

2 A Hybrid Approach to MVC Architectural Layers Analysis

3 A Proposed Model-Driven Approach to Manage Architectural Technical
Debt Life Cycle

4 A Sketch of a Deep Learning Approach for Discovering UML Class Di-
agrams from System’s Textual Specification

5 Architecture-based Failure Prediction via LSTM and Bayesian Network
in Service-oriented Systems

6 ArchTacRV: Detecting and Runtime Verifying Architectural Tactics in
Code

7 Artificial Intelligence-Based Centralized Resource Management Appli-
cation for Distributed Systems

8 Automated Planning for Software Architectural Migration

9 Automatic Examining of Software Architectures on Mobile Applications
Codebases

10 | Automatic Quality Attribute Scenarios Identification and Generation
from Quality Attribute Requirements

11 | ExTrA: Explaining architectural design tradeoff spaces via dimensional-
ity reduction

12 | Helping Software Architects Familiarize with the General Data Protec-
tion Regulation

13 | Continuous and Proactive Software Architecture Evaluation: An IoT
Case

14 | Data-driven Adaptation in Microservice-based IoT Architectures

15 | Deep Attentive Anomaly Detection for Microservice Systems with Mul-
timodal Time-Series Data

16 | Detecting architectural integrity violation patterns using machine learn-
ing

17 | Detecting Model View Controller Architectural Layers using Clustering
in Mobile Codebases

18 | From Requirements to Architecture: An Al-Based Journey to Semi-
Automatically Generate Software Architectures

19 | Enhanced Service Point Approach for Microservices Based Applications
Using Machine Learning Techniques

20 | Code Vectorization and Sequence of Accesses Strategies for Monolith
Microservices Identification

21 | A Decision Support System for Pattern-Driven Software Architecture

Table 3.1: First table of the index for the examined papers.

13

3 Research Method

14

ID | Paper Title

22 | Flexible Architecture for Data-Driven Predictive Maintenance with Sup-
port for Offline and Online Machine Learning Techniques

23 | From Prose to Prototype: Synthesising Executable UML Models from
Natural Language

24 | Classifying Model-View-Controller Software Applications Using Self-
Organizing Maps

25 | Using Automatically Recommended Seed Mappings for Machine Learn-
ing-Based Code-to-Architecture Mappers

26 | Identification of Architecturally Significant Non-Functional Require-
ment

27 | InMap: Automated Interactive Code-to-Architecture Mapping Recom-
mendations

28 | Tackling Software Architecture Erosion: Joint Architecture and Imple-
mentation Repairing by a Knowledge-based Approach

29 | Non-Functional Requirements Classification with Feature Extraction
and Machine Learning: An Empirical Study

30 | Evaluation of Move Method Refactorings Recommendation Algorithms:
Are We Doing It Right?

31 | Preprocessing Requirements Documents for Automatic UML Modelling

32 | Quantitative Verification-Aided Machine Learning: A Tandem Ap-
proach for Architecting Self-Adaptive IoT Systems

33 | Deriving Architectural Responsibilities from Textual Requirements

34 | Run-time evaluation of architectures: A case study of diversification in
IoT

35 | Software Complexity Automation Tool for Industrial Practices with
Qualitative and Quantitative Aspects

36 | Towards Automatic Classification of Design Decisions from Developer
Conversations

37 | Where to Handle an Exception? Recommending Exception Handling
Locations from a Global Perspective

38 | Can LLMs Generate Architectural Design Decisions? - An Exploratory

Empirical study

Table 3.2: Second table of the index for the examined papers.

3.4 Data Synthesis

ID | Authors

1 Florean, Alexander; Jalal, Laoa; Sinkala, Zipani Tom; Herold, Sebastian

2 Dobrean, Dragos; Diogan, Laura

3 Perez, Boris; Correal, Dario; Astudillo, Hernan

4 Rigou, Yves; Lamontagne, Dany; Khriss, Ismail

5 Wu, Xin

6 Ge, Ning; Wang, Ze; Zhang, Li; Zhao, Jiuang; Zhou, Yufei; Liu, Zewei

7 Hettiarachchi, Lasal Sandeepa; Jayadeva, Senura Vihan; Bandara,
Rusiru Abhisheak Vikum; Palliyaguruge, Dilmi; Arachchillage, Udara
Srimath S. Samaratunge; Kasthurirathna, Dharshana

8 Chondamrongkul, Nacha; Sun, Jing; Warren, Ian

9 Dobrean, Dragos

10 | Tessema, Amsalu; Alemneh, Esubalew

11 | Camara, Javier; Wohlrab, Rebekka; Garlan, David; Schmerl, Bradley

12 | Colesky, Michael; Demetzou, Katerina; Fritsch, Lothar; Herold, Sebas-
tian

13 | Sobhy, Dalia; Minku, Leandro; Bahsoon, Rami; Kazman, Rick

14 | Sanctis, Martina de; Muccini, Henry; Vaidhyanathan, Karthik

15 | Chen, Yufu; Yan, Meng; Yang, Dan; Zhang, Xiaohong; Wang, Ziliang

16 | Zakurdaeva, Alla; Weiss, Michael; Muegge, Steven

17 | Dobrean, Dragos; Diosan, Laura

18 | Eisenreich, Tobias; Speth, Sandro; Wagner, Stefan

19 | Raj, Vinay; Ravichandra, Sadam

20 | Faria, Vasco; Silva, Anténio Rito

21 | Farshidi, Siamak; Jansen, Slinger

22 | Canito, Alda; Fernandes, Marta; Mourinho, Joao; Tosun, Serkan; Kaya,
Kamer; Turupcu, Aysegul; Lagares, Angel; Karabulut, Huseyin; Mar-
reiros, Goreti

23 | Ramackers, Guus J.; Griffioen, Pepijn P.; Schouten, Martijn B.J.; Chau-
dron, Michel R.V.

24 | Guaman, Daniel; Delgado, Soledad; Perez, Jennifer

25 | Herold, Sebastian; Sinkala, Zipani

26 | Mohammed, Esmael; Alemneh, Esubalew

27 | Sinkala, Zipani Tom; Herold, Sebastian

28 | Knieke, Christoph; Rausch, Andreas; Schindler, Mirco

29 | Haque, Md. Ariful; Abdur Rahman, Md.; Siddik, Md Saeed

30 | Novozhilov, Evgenii; Veselov, Ivan; Pravilov, Mikhail; Bryksin, Timofey

Table 3.3: First table with the authors of the examined papers.

15

3 Research Method

16

ID | Authors
31 | Schouten, Martijn B. J.; Ramackers, Guus J.; Verberne, Suzan
32 | Camara, Javier; Muccini, Henry; Vaidhyanathan, Karthik
33 | Rodriguez, Guillermo; Diaz-Pace, J. Andrés; Berdun, Luis; Misra, San-
jay
34 | Sobhy, Dalia; Minku, Leandro; Bahsoon, Rami; Chen, Tao; Kazman,
Rick
35 | Akalanka, M.H.N; Weerasinghe, W.A.H.T.; Perera, H.K.P.S.; Kumari,
T. N.; Wijendra, D. R.; Krishara, J.
36 | Josephs, Alyssa; Gilson, Fabian; Galster, Matthias
37 | Jia, Xiangyang; Chen, Songqiang; Zhou, Xingqi; Li, Xintong; Yu, Run;
Chen, Xu; Xuan, Jifeng
38 | Dhar, Rudra; Vaidhyanathan, Karthik; Varma, Vasudeva
Table 3.4: Second table with the authors of the examined papers.
ID | Passed? | Reason for failing
1 TRUE
2 TRUE
3 TRUE
4 FALSE only a proposal without any prototype implementation or
preliminary testing
5 TRUE
6 TRUE
7 FALSE only indirectly about software architecture (it is primarily
about deployment optimizations)
8 TRUE
9 FALSE only a proposal without any prototype implementation or
preliminary testing
10 | TRUE
11 | TRUE
12 | FALSE no application of machine learning
13 | TRUE
14 | FALSE only proposal without any prototype implementation or pre-
liminary testing
15 | TRUE
16 | TRUE
17 | TRUE

Table 3.5: First table of selection results and reasons for failing.

3.4 Data Synthesis

ID | Passed? | Reason for failing

18 | FALSE only proposal without any prototype implementation or pre-
liminary testing

19 | TRUE

20 | TRUE

21 | FALSE no application of machine learning

22 | FALSE no application of machine learning

23 | TRUE

24 | TRUE

25 | TRUE

26 | TRUE

27 | FALSE no application of machine learning

28 | FALSE only proposal without any prototype implementation or pre-
liminary testing

29 | TRUE

30 | FALSE no application of machine learning

31 | TRUE

32 | TRUE

33 | TRUE

34 | TRUE

35 | FALSE very difficult to understand due to ambiguous language (it is
unclear whether a machine learning model is used to predict
the complexity of software or the user’s experience regarding
the complexity of software

36 | TRUE

37 | FALSE not about software architecture

38 | TRUE

Table 3.6: Second table of selection results and reasons for failing.

17

3 Research Method

Table 3.7: Common directions for future work or perceived challenges in the papers.

18

ID | Future Work Challenges

1 test more models

2 expand test cases

3 expand use cases, recommendation system | data gathering
4

) expand test cases, test more models data gathering
6 expand use cases

7

8 expand test cases

9

10 | increase dataset, test more models data gathering
11 | expand use cases

12

13 | expand use cases

14

15

16 | expand use cases, test more models

17

18

19 data gathering
20 l. domain

21

22

23 | expand use cases, recommendation system

24 | increase dataset, recommendation system | l. domain

25 | recommendation system data gathering, 1. domain
26 | increase dataset data gathering
27

28

29 | test more models

30

31 | increase dataset data gathering
32 | expand use cases

33

34 | test more models

35

36 | increase dataset data gathering
37

38 data gathering

3.4 Data Synthesis

ID | Software Architecting Activity | Maturity of Tool/Approach
1 Evaluation experimental
2 Evaluation experimental
3 Evaluation practical

5 Quality Assurance experimental
6 Maintenance practical

8 Planning practical

10 | Requirements Engineering experimental
11 | Quality Assurance practical

13 | Evaluation experimental
15 | Maintenance experimental
16 | Evaluation experimental
17 | Evaluation experimental
19 | Planning experimental
20 | System Design experimental
23 | System Design experimental
24 | Evaluation experimental
25 | Evaluation experimental
26 | Requirements Engineering experimental
29 | Requirements Engineering experimental
31 | Requirements Engineering experimental
32 | Evaluation experimental
33 | Requirements Engineering experimental
34 | Evaluation experimental
36 | System Design practical

38 | System Design experimental

Table 3.8: Classification of papers and the maturity of their tool or approach.

19

4 Results

For data synthesis, four diagrams have been created to further highlight the results of
the synthesis.

In order to offer a more structured overview of the studies, which exist in the field of
machine learning approaches that support software architecting, I defined a classification
for the studies. The classification includes the classes Planning, Requirements Engineer-
ing, System Design, Quality Assurance, Maintenance and Evaluation. While Require-
ments Engineering, System Design, Quality Assurance and Maintenance are the same
as their software architecture sub-field counterparts, Planning and Fvaluation require a
more detailed definition. Planning includes the activities that define future activities or
assess aspects of the software project. Future activities can be an evolution path that
software architects have to follow or, an estimation of the required effort for a software
project can be an assessment. The activity field Fvaluation involves the analysis and
assessment of existing software architecture artefacts such as documentation, diagrams,
implementation or deployed instances of the software architecture. Possible examples
may be the evaluation of operation data in real time or the analysis of implementations
regarding the employed architectural patterns. It should be noted that membership in
one class does not always exclude an overlap to different classes, since, for example, a
study classified as Fvaluation may also have overlap to another class like Quality Assur-
ance. Applying the classification to all 25 studies shows that ten are classified as papers
about Fwvaluation, five about Requirements Engineering, four about System Desgin and
two each about Planning, Quality Assurance and Maintenance. This result is visualised
in the diagram {.1l.

Another aspect that has been considered in this review is the practicality of the ap-
proaches or tools that the studies have proposed. For this purpose, the studies are
classified according to their maturity in practical and experimental as defined in section

. As seen in the diagram {.2, five of the studies proposed a tool or approach that can
be considered practical while 20 are experimental.
Figure is a visualisation of the results regarding proposed future work. It should

be mentioned that a study can propose multiple future directions and that propositions
that were unique to the approach or application field were ignored. Thus, the total of all
common, proposed future directions is 24, which is not equal to the number of papers
that passed the study selection. A future direction of seven studies is expanding use cases
for their approach. Expanding use cases means that the tool or approach is adjusted, for
example, through adding functionality or allowing a greater scope of formats an input
can have. Another one is testing more machine learning models, which six papers have
proposed. Increasing the dataset for training the machine learning model or creating
some form of recommendation system are each proposed by four studies. Lastly, three

21

4 Results

4

= Requirements Engineering = System Design = Planning = Quality Assurance = Maintenance = Evaluation

Figure 4.1: Number of papers in each classification class.

papers offer a future direction for the expansion of test cases.

Lastly, the challenges that the studies faced were the limited domain in which their tool
or approach could be applied and the difficulties in gathering data for training and testing
machine learning models. The limitation of the domain can mean, for example, that a
machine learning approach only accepts source code written in a specific programming
language since the machine learning model is only trained on that specific language.
Data gathering is expressed by nine studies to be a challenge and the limitations of the
domain by three. If a challenge of a study was data gathering, it means that finding and
aggregating data for training and testing of machine learning was difficult since such
data was either not available or difficult to find.

22

Number of Papers

m Experimental = Practical

Figure 4.2: Ratio of the practical and experimental approaches.

7
6
4 4
I I |

Expand use cases Test more models Increase dataset Recommendation Expand test cases
system

Future Work Propositions

Figure 4.3: Common future directions, proposed by the studies.

23

4 Results

24

Number of Papers

[ERY
o

o B N W b OO O N © ©

Data Gathering Limited Domain
Most relevant Challenges

Figure 4.4: Common challenges in the papers.

5 Discussion

5.1 Research Question 1

While conducting the systematic literature review, a list of studies that proposed a
machine learning tool or approach to support software architecting was created. The list
is presented in the form of the tables and @ that show which studies are considered
relevant for the review topic. This offers an unorganised overview of what kind of
machine learning approaches exist. It is possible to conclude that the machine learning
approaches are diverse in their application topic. This becomes apparent when the topics
of several studies are compared against each other. Looking at the study by Florean et al.
for example, which explores the potential of using machine learning-based text classifiers
to map source code to architectural modules. Most approaches that combat software
architecture degradation require such a source code-to-architectural modules mapping.
Therefore, these approaches would benefit since automation through machine learning
would replace a challenging and labour-intensive manual mapping [Flo+21]. Another
study that is written by Wu proposes an approach that uses a long short-term memory
network and a Bayesian network to predict time series data of software components and
use the data to predict the failure of the software system. Other approaches are not
well suited to make predictions based on irregular real-world data, which is why using
a long short-term memory network in combination with a Bayesian network improves
the accuracy of software system failures [Wu22]. The topics of those two studies are the
mapping of source code to architectural modules to fight software degradation and the
application of a long short-term memory network and a Bayesian network for software
system failure prediction, which are very different from each other and show the diversity
of the topics. Since the machine learning approaches cover a wide scope of topics, a
classification would be useful for organising the studies and offering a more structured
overview of the current state of research.

5.2 Research Question 2

Due to the wide scope of topics that are tackled by the machine learning tools and
approaches of the examined studies, it is challenging to define a classification that not
only has a level of abstraction that covers all application topics but also is still specific
enough to examine the relationship of the approaches to software architecting. The
classification of the studies into the classes Requirements Engineering, System Design,
Quality Assurance, Maintenance, Planning and Fvaluation is abstract enough to cover
all topics of the examined studies, while still allowing to explore the relationship of the

25

5 Discussion

machine learning tools or approaches to software architecting.

In figure @, the distribution of the specific classes is visible. With 40%, most studies
deal with the Ewvaluation of software architecture artefacts such as implementations or
documentation. This shows a big trend in using machine learning towards the analysis
and assessment of those artefacts. In addition to the aspect of automation, machine
learning’s property to identify abstract relationships seems to also play a part. An
example where machine learning is used to evaluate software architecture artefacts is
paper 1 which has already been mentioned in section @ and deals with the mapping
of source code to architectural modules to combat software architecture degradation
[Flo+21].

Requirements Engineering is the second largest class, with 20% of studies belonging
to the class. In this class, the studies primarily focus on extracting data regarding re-
quirements from documentation or developer conversations. For this purpose, machine
learning is used to identify and classify elements. Study 26 "Identification of Architec-
turally Significant Non-Functional Requirement” examines the performance of a support
vector machine, a naive Bayes model and a k-nearest-Neighbour model in identifying ar-
chitecturally significant non-functional requirements, for example, [MA21].

The class of studies regarding System Design takes up 16% of passed papers or four in
total. A noteworthy mention in this class is study 38 ”Can LLMs Generate Architectural
Design Decisions? - An Exploratory Empirical study”. The study compares the perfor-
mance of several large language models like GPT4 or T5 regarding their architectural
design decision (ADD) generation capabilities and comes to the conclusion that large
language models can generate ADDs and format them in Markdown in an assistive man-
ner [DVV24]. It is noteworthy since in the instance of the study it has been shown that
machine learning can generate non-trivial software architecture artefacts, like ADDs in
Markdown code.

Lastly, the classes Planning, Quality Assurance and Maintenance have two papers or
8% of all papers each. One example for a study in the activity field of Planning is written
by Raj and Ravichandra with ID 19. It proposes the application of the service point
approach, which is used for effort estimation, with a regression model to estimate the
required effort for the migration of an architecture to microservice architecture. This
approach aims to improve and simplify effort estimation of an architectural migration
since good effort estimation is essential for the planning and management of time and
resources [RR22].

An example where machine learning is used for Quality Assurance is the paper "ExTrA:
Explaining architectural design tradeoff spaces via dimensionality reduction” with ID
11. The study proposes an approach that uses principal component analysis to identify
the most relevant design decisions that impact the quality of service and decision tree
learning to identify how design decisions impact system qualities. This makes it possible
to link design decisions to the satisfaction of requirements like quality of service and
understand the trade-off of design decisions. This was not possible before with other
approaches that help in the search for good architecture designs [Cam+23).

As a part of the class Maintenance, study 6 by Ge et al. proposes a tool that detects the

26

5.3 Research Question 3

methods responsible for the interaction behaviour of an implemented architectural tactic
and checks its consistency with the original architectural tactic design. The detection is
done by using five machine learning models, which are compared for performance, and
the consistency checking is done by a runtime verification method [Ge+22].

Based on the distribution of the papers in their activity fields, it becomes apparent
that the fields of Planning, Quality Assurance and Maintenance are researched the least.
Therefore, it is possible to conclude that there is a lack of studies in these software
architecting fields, which can be a reasonable option for future work on the topic.

The maturity of these tools and proposals has been considered for further insight
into the relationship between the proposed machine learning approaches and software
architecting. While the categorisation is partly subjective, which is due to the subjective
nature of the understanding of the terms practical and experimental, it offers nonetheless
a rough estimation of what the current state of the research is in terms of usability.

Figure @ shows that out of 25 papers that passed the study selection, five papers,
or 20% can be considered to propose practical tools or approaches, while 20 papers or
80%, are still in an experimental stage. Among the practical approaches and tools are,
studies 6 and 11, which have already been presented earlier in the thesis.

Study 6 which, is about detecting architectural tactics and runtime verifying them,
has trained and tested successfully the approach on 74 open-source projects and even
offers an implemented tool [Ge+22]. The tool is implemented, has been applied to real-
world examples, and can be tested on other examples as well. It should be considered
however that only 10 architectural tactics have been implemented for detection. Despite
the limitation in detectable architectural tactics, the tool can be considered practical.

Study 11 proposes the explanation of design decision trade-offs with principal compo-
nent analysis and decision tree learning. It tests the approach successfully on a system
specifically designed for research, which includes the implementation of data extraction,
aggregation and normalisation processes. It is only limited to the domain of possible use
cases, which are static component and connector architectures. Therefore, the approach
can be considered practical.

The disparity between the number of practical and experimental proposed tools or
approaches seems to be an indicator of the young age of the research field since most
studies seem to explore new approaches or tools, which is why they are experimental.

5.3 Research Question 3

To answer RQ3, I have aggregated common future work directions and challenges that
appear in the studies. The most common future work proposition with seven papers is
to expand the use cases of the proposed tool or approach. In the case of study 3, "A
Proposed Model-Driven Approach to Manage Architectural Technical Debt Life Cycle”,
which uses machine learning and model checking to identify and manage architectural
technical debt and its repayment strategies, a machine learning model to understand
diagrams or methods for automatic text extraction methods from video or voice record-
ings could be considered for future work [PCA19]. This shows that many approaches

27

5 Discussion

are new and have room for improvement. The second most common future work direc-
tion with six studies is to test more machine learning models for the tool or approach
proposed by the study. The purpose of this research direction is to explore potential
performance improvements by comparing the performance of different machine learning
models. Increasing the dataset and creating some form of recommendation system are
both proposed four times for future work. The future direction of creating some form
of recommendation system implies a more assistive nature of the machine learning ap-
proaches. The proposition to increase the dataset will be further discussed in the part
about challenges in the studies. Finally, three studies proposed to test their approaches
or tools on other examples to further verify their results. This again shows that the
review topic is recent and the approaches are new.

In regards to current challenges, the most common challenge in the studies was the
data gathering for datasets. This is explicitly a limiting factor in nine papers, as seen
in figure B.4. The training and testing of machine learning models require datasets high
in quality and quantity to achieve good performance. A lack of data requires the con-
sideration that the results of a study cannot be generalised since the study may be too
overfitted to the limited dataset. Therefore, it would be a very useful contribution to
create a large dataset of software architecture artefacts from informal developer conver-
sations to formal documentation and implementations. Such a dataset would not only
reduce the effort required to gather data, but it would also form a common basis for
the comparison of research results since the initial dataset can be the same. Another
common challenge of three studies is limitations in the domain in which the proposed
tool or approach can be applied. This challenge stems primarily from the resource and
time limitations of the respective studies and supposedly does not affect the general ap-
plicability of the proposed approaches according to the papers in question. Nonetheless,
a study that verifies the general applicability of these approaches can be considered for
future work.

Unfortunately, a very apparent research gap in the current state of research is the
analysis of the approaches in terms of their efficiency. Efficiency can mean in this context
aspects like the time, computational power or budget that are needed to implement and
use the approaches and tools, compared to their performance. Only the studies with 1D
15, 25 and 32 offer some form of efficiency analysis.

Overall, the current state of research regarding machine learning approaches that
support software architecting implies a positive outlook in terms of the performance of
the approaches and tools. However, there is currently a lack of efficiency analysis in
the performed studies, and the software architecture fields Planning, Maintenance and
Quality Assurance have the potential for more research. Furthermore, the challenge of
limited datasets has to be tackled since machine learning models heavily rely on them.

28

6 Conclusion and Future Work

6.1 Conclusion

This thesis presents the process and results of a systematic literature review with the
goal of offering an overview of the topic of machine learning approaches that support
software architecting.

For this purpose, the guidelines proposed by Kitchenham and Charters were followed
as a basis for the review. In the section B.1|, the current need for a systematic literature
review is explained, and the crafting process of the research question "What machine
learning approaches exist for the support of software architecting?” is shown. Following
that, the choice of the data sources has been explained, the search string for the search
of studies crafted, and relevant selection criteria defined, such that a search and data
aggregation resulted in a body of 38 studies.

Section deals with the presentation of information that has been gathered from
the body of 38 studies. Based on the information from the Data Extraction it is possible
to see, that machine learning approaches exist especially in the fields of Fvaluation with
40%, followed by Requirements Engineering and System Design with 20% and 16%,
respectively, which shows a current trend towards applying machine learning to support
FEvaluation. In contrast, the other fields Planning, Quality Assurance and Maintenance
have fewer studies which, indicates a potential to expand the research in these fields.
Furthermore, the research topic is young since, with 80%, most studies are considered
experimental.

In terms of common challenges, data gathering was considered by nine studies to be
difficult, while also three papers are limited in the application domain of their proposed
approach or tool. Lastly, the review shows a research gap in the efficiency analysis of
the approaches or tools in the papers.

6.2 Future Work

For future work, one can consider expanding existing approaches or tools as described
in their respective studies. The expansion can be an addition of new use cases, testing
of multiple machine learning models for a potential performance benefit, or the imple-
mentation of some form of recommendation system.

Adding new use cases can be, for example, the training of a machine learning model
on a dataset made up of source code in another programming language and the imple-
mentation of a respective parser.

29

6 Conclusion and Future Work

When a study only tests its approach or tool on a certain group of machine learning
models and there is no important reason for the choice of the group, then it is reasonable
to explore other options in the future to determine the model with the best performance.

Since machine learning can offer new insights by evaluating data or generating arte-
facts, it is possible to extend existing approaches by using them as recommendations or
as the basis for recommendations.

Furthermore, exploring more approaches or studies in the fields Planning, Quality
Assurance, or Maintenance might also contribute to the current state of research.

Conducting an efficiency analysis for an approach or tool is also a future direction since
only three of the examined studies performed one. An efficiency analysis is interesting
since machine learning requires a lot of computation power and thus energy, which may
play a role when the approaches are scaled up to match larger and or more difficult cases.
Finally, the creation and sharing of a dataset containing artefacts and documentation of
one or multiple software architectures may be another future work idea.

The contribution of a large dataset containing multiple architectures with many arte-
facts, including documentation, informal developer conversations about the architecture,
description models, operation data or source code, would be very useful since data gath-
ering for machine learning training is the most common challenge in the current state of
research.

30

Bibliography

[Aka+22]

[Bis06]

[BRT20)]

[Cam+-23]

[Cit]
[DVV24]

[Els]

[Flo+21]

[Gar24]

(Ge+22]

[Hu23]

M. Akalanka et al. “Software Complexity Automation Tool for Industrial
Practices with Qualitative and Quantitative Aspects.” In: 2022 jth Interna-
tional Conference on Advancements in Computing (ICAC). 2022, pp. 453
458. DOI: 10.1109/ICAC57685.2022.10025257 (cit. on p. [L1)).

C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006. ISBN:
9780387310732 (cit. on p. [I).

M. Barenkamp, J. Rebstadt, and O. Thomas. “Applications of Al in classical
Software Engineering.” In: Al Perspectives 2 (July 2020). DOI1: 10.1186/
$42467-020-00005-4 (cit. on p. [J).

J. Camara et al. “ExTrA: Explaining architectural design tradeoff spaces via
dimensionality reduction.” In: Journal of Systems and Software 198 (2023).
ISSN: 01641212, URL: %5Curl?7Bhttp://dx.doi.org/10.1016/j. jss.
2022.111578%20%70 (cit. on p. P6).

Citavi. Citavi 6. https://www.citavi.com/en (cit. on p. g)

R. Dhar, K. Vaidhyanathan, and V. Varma. “Can LLMs Generate Architec-
tural Design Decisions? - An Exploratory Empirical study.” In: IEEE ICSA
2024. 2024 (cit. on p. pd).

Elsevier. Compendex on Engineering Village. https://www.elsevier.com/
products/engineering-village/databases/compendex (cit. on p. [1).

A. Florean et al. “A comparison of machine learning-based text classifiers
for mapping source code to architectural modules.” In: CEUR Workshop
Proceedings. Vol. 2978. 2021 (cit. on pp. @, @)

Gartuner. Information technology (IT) spending worldwide from 2012 to
2024, by segment (in billion U.S. dollars). https://www.statista.com/
statistics/268938/global-it-spending-by-segment/. 2024 (cit. on
p. II).

N. Ge et al. “ArchTacRV: Detecting and Runtime Verifying Architectural
Tactics in Code.” In: Proceedings - 2022 IEEFE International Conference
on Software Analysis, Fvolution and Reengineering, SANER 2022. 2022,
pp. 566-576. DOIL: http://dx.doi.org/10.1109/SANER53432.2022.00074
(cit. on pp. @, @)

K. Hu. ChatGPT sets record for fastest-growing user base. https://www.
reuters . com/technology/chatgpt - sets-record-fastest-growing-
user-base-analyst-note-2023-02-01/. 2023 (cit. on pp. E], E)

31

https://doi.org/10.1109/ICAC57685.2022.10025257
https://doi.org/10.1186/s42467-020-00005-4
https://doi.org/10.1186/s42467-020-00005-4
%5Curl%7Bhttp://dx.doi.org/10.1016/j.jss.2022.111578%20%7D
%5Curl%7Bhttp://dx.doi.org/10.1016/j.jss.2022.111578%20%7D
https://www.citavi.com/en
https://www.elsevier.com/products/engineering-village/databases/compendex
https://www.elsevier.com/products/engineering-village/databases/compendex
https://www.statista.com/statistics/268938/global-it-spending-by-segment/
https://www.statista.com/statistics/268938/global-it-spending-by-segment/
https://doi.org/http://dx.doi.org/10.1109/SANER53432.2022.00074
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/

Bibliography

[IEE]

[KCO7]

[LL23]

[MA21]

[MG16]

[PCA19)

[RR22]

[RRW15]

[Rum+21]

[Va09]

Vil]

32

IEEE. About IEEEzplore. https://ieeexplore.ieee.org/Xplorehelp/
overview-of-ieee-xplore/about-ieee-xplore (cit. on p. [1).

B. Kitchenham and S. M. Charters. Guidelines for performing Systematic
Literature Reviews in Software Engineering. Tech. rep. Software Engineer-
ing Group Keele University, Department of Computer Science University of
Durham, 2007 (cit. on pp. ~B, E, @, @)

J. Ludewig and H. Lichter. Software Engineering: Grundlagen, Menschen,
Proze-sse, Techniken. 4th ed. dpunkt. verlag, 2023. 1SBN: 9783864905988
(cit. on p. E])

E. Mohammed and E. Alemneh. “Identification of Architecturally Signifi-
cant Non-Functional Requirement.” In: 2021 International Conference on
Information and Communication Technology for Development for Africa
(ICT4DA). 2021, pp. 24-29. DOI: 10. 1109/ ICT4DA53266 . 2021 . 9672235
(cit. on p. R6).

A. C. Miiller and S. Guido. Introduction to Machine Learning with Python.
O’Reilly Media, Inc., 2016. 1SBN: 9781449369897 (cit. on p. [l)).

B. Perez, D. Correal, and H. Astudillo. “A Proposed Model-Driven Ap-
proach to Manage Architectural Technical Debt Life Cycle.” In: 2019 IEEE /-
ACM International Conference on Technical Debt (TechDebt). 2019, pp. 73~
77. DOIL: 10.1109/TechDebt . 2019.00025 (cit. on p. P7).

V. Raj and S. Ravichandra. “Enhanced Service Point Approach for Mi-
croservices Based Applications Using Machine Learning Techniques.” In:
Communications in Computer and Information Science. Vol. 1575 CCIS.
2022, pp. 78-90. DOL: http://dx.doi.org/10.1007/978-3-031-09469-
9_7 (cit. on p. R§).

J. O. Ringert, B. Rumpe, and A. Wortmann. Architecture and Behavior
Modeling of Cyber-Physical Systems with MontiArcAutomaton. Shaker Ver-
lag, 2015 (cit. on p. [l)).

B. Rumpe et al. “Artifact and Reference Models for Generative Machine
Learning Frameworks and Build Systems.” In: 20th ACM SIGPLAN In-
ternational Conference on Generative Programming: Concepts and FExpe-
riences (GPCE ’21). GPCE 2021. Association for Computing Machinery,
2021. 1SBN: 9781450391122. DOI: 10.1145/3486609.3487199. URL: https:
//doi .org/10.1145/3486609.3487199 (cit. on p. [).

O. Vogel and et al. Software-Architektur. Grundlagen - Konzepte - Praxis.
Spektrum Akademischer Verlag Heidelberg, 2009. 1SBN: 978-3-8274-2267-5.
DOL: https://doi.org/10.1007/978-3-8274-2267-5 (cit. on p. [I).

E. Village. Engineering Village. https://www.elsevier.com/products/
engineering-village (cit. on p. [1).

https://ieeexplore.ieee.org/Xplorehelp/overview-of-ieee-xplore/about-ieee-xplore
https://ieeexplore.ieee.org/Xplorehelp/overview-of-ieee-xplore/about-ieee-xplore
https://doi.org/10.1109/ICT4DA53266.2021.9672235
https://doi.org/10.1109/TechDebt.2019.00025
https://doi.org/http://dx.doi.org/10.1007/978-3-031-09469-9_7
https://doi.org/http://dx.doi.org/10.1007/978-3-031-09469-9_7
https://doi.org/10.1145/3486609.3487199
https://doi.org/10.1145/3486609.3487199
https://doi.org/10.1145/3486609.3487199
https://doi.org/https://doi.org/10.1007/978-3-8274-2267-5
https://www.elsevier.com/products/engineering-village
https://www.elsevier.com/products/engineering-village

Bibliography

[Wan+23]

[Wu22]

[Yan+20]

S. Wang et al. “Machine/Deep Learning for Software Engineering: A Sys-
tematic Literature Review.” In: IEEFE Transactions on Software Engineering
49.3 (2023), pp. 1188-1231. DOIL: 10.1109/TSE.2022.3173346 (cit. on p.).

X. Wu. “Architecture-based Failure Prediction via LSTM and Bayesian Net-
work in Service-oriented Systems.” In: 2022 4th International Conference
on Applied Machine Learning (ICAML). 2022, pp. 36—40. DOI1: 10.1109/
ICAML57167.2022.00015 (Cit. on p.)

Y. Yang et al. “A Survey on Deep Learning for Software Engineering.” In:
CoRR abs/2011.14597 (2020). DOI: https://doi.org/10.48550/arXiv.
2011.14597. URL: https://arxiv.org/abs/2011.14597 (cit. on p. E)

33

https://doi.org/10.1109/TSE.2022.3173346
https://doi.org/10.1109/ICAML57167.2022.00015
https://doi.org/10.1109/ICAML57167.2022.00015
https://doi.org/https://doi.org/10.48550/arXiv.2011.14597
https://doi.org/https://doi.org/10.48550/arXiv.2011.14597
https://arxiv.org/abs/2011.14597

	Introduction
	Related Work
	Research Method
	Planning
	Data Aggregation
	Data Extraction
	Data Synthesis

	Results
	Discussion
	Research Question 1
	Research Question 2
	Research Question 3

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

