
The present work was submitted to
the Research Group
Software Construction

of the Faculty of Mathematics,
Computer Science, and
Natural Sciences

Master Thesis

Conception of a Security
Design Pattern Catalog for

Constraint-based
Recommender Systems

presented by

Dominik Lammers

Aachen, December 12, 2024

Examiner

Prof. Dr. rer. nat. Horst Lichter

Prof. Dr. rer. nat. Bernhard Rumpe

Supervisor

Alex Sabau, M.Sc.

Acknowledgment
First and foremost, I would like to thank Prof. Dr. rer. nat. Horst Lichter for providing
me with the opportunity to write my master’s thesis at his chair. I am also grateful to
him and Prof. Dr. rer. nat. Bernhard Rumpe for reviewing my thesis.

I extend my sincere thanks to my supervisor, M.Sc. Alex Sabau, for his guidance and
constant support. It has always been a pleasure to discuss ideas with him, and I deeply
appreciate his helpful suggestions and constructive feedback throughout the course of
this thesis project.

I am profoundly grateful to my family for the tremendous support and trust they have
given me throughout my studies and in completing this thesis project.

Last but not least, I would like to thank my friends for the wonderful journey we have
shared. Whether collaborating on assignments or enjoying our free time together, your
companionship has made this experience truly memorable.

Thank you to everyone who has been part of this journey.

Dominik Lammers

Abstract
In the rapidly evolving digital landscape, the security of software systems has become
paramount. However, a critical shortage of security experts makes it challenging to
adequately protect these systems. Security patterns provide proven solutions to recurring
security problems, helping architects design secure systems. Despite their potential, their
practical use remains limited due to the lack of security-relevant information necessary
for secure implementation and the limited guidance in selecting appropriate patterns.
This thesis addresses these limitations by introducing the Security Design Pattern De-
scription Metamodel, which enables the creation of Security Design Patterns (SDPs)
that incorporate essential security information and explicit pattern relationships. To
assist architects in selecting suitable SDPs, we introduce the SDP Knowledge Bases
Metamodel, which enables Constraint-based Recommender Systems (CBRSs) to recom-
mend appropriate SDPs. Our methodology involves analyzing security solutions in open
source software to identify essential elements that can contribute to the practical use of
SDPs. Based on these findings, we iteratively developed concrete SDPs and knowledge
bases, capturing their elements and relationships within co-evolving metamodels.
The metamodels are validated through application examples, namely OpenID Connect
Authentication and Password-based Authentication. These examples show how pattern
relationships and important security-relevant information, such as data requirements,
can be effectively represented in SDPs to facilitate the implementation of secure sys-
tems. In addition, a synthetic recommendation example illustrates the effective use of
knowledge bases in a CBRS. By decoupling the pattern description and selection pro-
cess, this thesis makes security patterns accessible to a broader audience and provides a
foundation for advancing research in secure software design.

Contents

1. Introduction 1
1.1. Contribution . 2
1.2. Structure of this Thesis . 3

2. Foundation 5
2.1. Software Engineering . 5
2.2. Security . 6
2.3. Security Solution Pattern . 8
2.4. Recommender Systems . 12

3. Problem Statement and Method 15
3.1. Research Method . 16

4. Related Work 21
4.1. Security Pattern Description . 21
4.2. Security Pattern Selection . 23

5. Security Design Pattern Description Metamodel 25
5.1. SDPDM Structure . 25
5.2. SDPDM Viewpoint Structure . 25
5.3. Conceptual Viewpoint . 27
5.4. Data Viewpoint . 32
5.5. Behavioral Viewpoint . 37
5.6. Structural Viewpoint . 40

6. Application Example of Usage Aspect 43
6.1. OpenID Connect Security Design Pattern 1 43
6.2. OpenID Connect Security Design Pattern 2 54
6.3. Password-based Authentication SDP . 56

7. Security Design Pattern Knowledge Base Metamodel 63
7.1. Security Design Pattern Knowledge Base Structure 63
7.2. Attributes . 65
7.3. Recommendation Factors . 69
7.4. Constraints . 73
7.5. Recommendation Process . 74

i

8. Application Examples of SDP KBs 75
8.1. OpenID Connect SDP KB Attributes . 75
8.2. OpenID Connect SDP KB Recommendation Example 80
8.3. Password-based Authentication SDP KB 84

9. Discussion 87
9.1. Security Design Pattern Usage Aspect . 87
9.2. Security Design Pattern Knowledge Base 89

10.Conclusion 93
10.1. Summary . 93
10.2. Future Work . 94

A. Appendix 97
A.1. OpenID Connect Knowledge Base . 97
A.2. PBA Knowledge Base . 98
A.3. OpenID Connect SDP 1 . 99
A.4. OpenID Connect SDP 2 . 112
A.5. Single-Factor Password-based Authentication SDP 116
A.6. Secret Storage . 131

Bibliography 133

Glossary 139

List of Tables

2.1. Example products in a CBRS KB for buying real estate. 13

8.1. The OIDC SDP KB Attributes (i.e., ai ∈ VP) and their corresponding
Attribute Values. 76

8.2. Consequences associated with the “Identity Provider(s) Used” Attribute
Values. Each column represents an Attribute Value. Each row corre-
sponds to a Quality Attribute (in bold) and its optionally associated
Quality Factors (in italics). Each cell specifies the Effect with its Reason. 77

8.3. Consequences associated with the “Token Type for Subsequent Requests”
Attribute Values. Each column represents an Attribute Value. Each row
corresponds to a Quality Attribute (in bold) and its optionally associated
Quality Factor (in italics). Each cell specifies the Effect with its Reason. . 79

8.4. Two example SDP knowledge aspects that exist in the OIDC SDP KB. . . 80
8.5. The remaining two Attributes to be selected and their Effect on the Se-

curity, Maintainability, and Availability Quality Properties. The numeric
value specifies the value used to calculate the recommendation scores. . . 83

8.6. The PBA SDP KB Attributes (i.e., ai ∈ VP) and their corresponding
Attribute Values. 84

8.7. Consequences associated with the “Password Reset Mechanism” Attribute
Values. Each column represents an Attribute Value. Each row cor-
responds to a Quality Attribute (in bold) and its optionally associated
Quality Factor (in italics). Each cell specifies the Effect with its Reason. . 85

8.8. Consequences associated with the “Password Rotation with History” At-
tribute Values. Each column corresponds to a Quality Attribute. Each
row represents an Attribute Value. Each cell specifies the Effect with its
Reason. 86

A.1. Data Element and Event references for Figure A.2 105
A.2. Data Element and Event references for Figure A.3 106
A.3. Data Element and Event references for Figure A.4 108
A.4. Data Element and Event references for Figure A.5 108
A.5. Data Element and Event references for Figure A.6 109
A.6. Data Element and Event references for Figure A.7 109
A.7. Data Element and Event references for Figure A.13 122
A.8. Data Element and Event references for Figure A.14 123
A.9. Data Element and Event references for Figure A.15 123

iii

A.10.Data Element and Event references for Figure A.16 124

List of Figures

2.1. Hierarchy of Security Patterns extended by SDPs [Aba24]. 9
2.2. Example of an Authentication Hierarchy of ASSPs and SSPs. 11

3.1. Iterative evolutionary process for developing a conceptual model for a non-
trivial problem. The process consists of two steps: information acquisition
and conceptualization [And+04]. 17

3.2. Security solution example for the authentication between the EFGS and
National Backends using mTLS. 18

5.1. The SDPDM’s Viewpoints that define how to represent the Solution and
Example of an SDP. 26

5.2. Overview of an SDP that conforms to the SDPDM Viewpoints. Each
view highlights its main elements and their relationships. 26

5.3. A Role can require other Roles to fulfill its responsibilities. 28
5.4. The types of Role Extensions and their relationship to Roles. 29
5.5. The types of Policy Points and their relationship to Policies. 31
5.6. Policy Point hierarchy showing the relationships between Entities, EPs,

DPs, and IPs. 31
5.7. Classification of data based on Data Origin, Security Level, and Lifespan,

referred to as Data Properties. 32
5.8. The components and relationships of Data Rules. 34
5.9. Example Data Groups required during registration, illustrating Origin

Fields (OFs), a Reference Field (RF), and a Transformation Field (TF). . 35
5.10. Relationship between the different types of Data Fields. 36
5.11. Relationship between Data Groups, Data Fields, Data Properties, and

Data Rules. 36
5.12. High-level elements and relationships of the Behavioral Viewpoint. 37
5.13. Components and relationships of an Event and Error Event. 37
5.14. Behavioral Model consisting of multiple Behavioral Modeling Elements. . 38
5.15. Behavioral Modeling Element models behavior of Roles that can use Data

Elements, reference other Behavioral Models, and can cause Events. . . . 39
5.16. Examples consisting of various Architectural Models and Architectural

Modeling Elements that implement an SDP Solution. Each Example uses
at least one Architectural Pattern. 40

5.17. Architectural Modeling Elements can implement the responsibilities de-
fined by Roles. 41

v

6.1. High-level flow of the OIDC Authorization Code Flow used by the SDPs. 44
6.2. Conceptual View of the OIDC SDP. Each Role is represented by a box,

with Abstract Roles shown using dotted lines. Roles not explicitly marked
as Uncontrolled are considered Controlled. The “Identity Token Verifi-
cation” Policy is referred to as “Token”, and the “OIDC Authentication”
Policy as “Login”. 46

6.3. Subset of the OIDC Data View that illustrates the data required to request
authentication from the IdP. Security Levels are encoded as follows: Secret
(-), Sensitive (#), and Public (+). 48

6.4. Subset of the OIDC Data View that illustrates the response after a suc-
cessful token exchange at the IdP. Security Levels are encoded as follows:
Secret (-), Sensitive (#), and Public (+). 49

6.5. Subset of “Initial Authentication” Behavioral Model starting after the
subject authenticates to the IdP. Log Symbols indicate Events, while
Exclamation Points represent Error Events. Indexes are provided for ref-
erence in the text. 50

6.6. Example of modeling an exceptional case explicitly instead of using an
Error Event. 51

6.7. Static structure of a microservice architecture implementing the OIDC
Roles. Roles are represented by dashed boxes. Each Architectural Mod-
eling Element within a dotted box implements a part of a Role. 52

6.8. Comparison between the Conceptual View of OIDC SDP 1 and SDP 2. . 54
6.9. Comparison of final steps in the “Initial Authentication” Behavioral Model

of OIDC SDP 1 and SDP 2. 55
6.10. Part of the OIDC Data View that models the token exchange data us-

ing a signed JWT. Newly introduced Data Groups and Data Fields are
highlighted in green and italics. Data Fields excluded from the previous
SDP are highlighted in red and underlined. Security Levels are encoded
as follows: Secret (-), Sensitive (#), and Public (+). 56

6.11. Subset of the Conceptual View that shows the Roles responsible for se-
curely applying the “Password Reset” Policy. 57

6.12. Subset of the PBA Data View that illustrates the data responsible for the
email confirmation. Security Levels are encoded as follows: Secret (-),
Sensitive (#), and Public (+). 58

6.13. Architectural Model representing the static structure of a microservice ar-
chitecture that implements the PBA Roles, visualized in a C4 component
diagram. 61

6.14. Part of an Architectural Model that represents the dynamic structure for
user login. 62

7.1. Boundaries of different SDP KBs corresponding to their respective SSPs. 64
7.2. An SDP KB is based on an SSP and contains Attributes (i.e., VP), Rec-

ommendation Factors (i.e., VC), and Constraints. 64

7.3. The set VP of the SDP KB is defined by the Attributes and their possible
Attribute Values. 65

7.4. The knowledge aspect of an SDP is defined by the Attribute Values as-
signed to each Attribute. 65

7.5. Types of Attribute Information that enable reasoning about Attribute
Values and support the recommendation process. Each Attribute Infor-
mation describes exactly one Attribute Value. 66

7.6. Consequences affect the Quality Properties of systems implementing an
SDP, where the Attribute Value is part of the SDP’s knowledge aspect. . 67

7.7. Relationship between Consequence, Quality Property, Effect, and Reason. 68
7.8. An Attribute can optionally have a Default Value assigned to it. 69
7.9. The types of Recommendation Factors that can influence the recommen-

dation of an appropriate SDP. 70
7.10. Example Recommendation Factors considered in this thesis. 71
7.11. Recommendation Factor Classification types and relationship to Recom-

mendation Factor. 72

8.1. Sequence to identify the appropriate Attribute Value for the “Identity
Provider(s) Used” Attribute. Rounded rectangles represent Environmen-
tal Factors (EF) and Security Pattern Factors (SPF). Dotted rectangles
represent the assignment of an Attribute Value (AV) to an Attribute (A). 81

9.1. Example for combining the Roles of a PBA SDP with a Session-based
Authentication SDP. 88

A.1. OIDC SDP 1 Data View Diagram . 103
A.2. OIDC SDP 1 “Initial Authentication Behavior” Behavioral Model 104
A.3. OIDC SDP 1 “Refresh Identity Token” Behavioral Model 106
A.4. OIDC SDP 1 “Verify Identity Token” Behavioral Model 107
A.5. OIDC SDP 1 “Verify Access Token” Behavioral Model 108
A.6. OIDC SDP 1 “Get Identity Provider Configuration” Behavioral Model . . 109
A.7. OIDC SDP 1 “Get Identity Provider JSON Web Key Set” Behavioral Model110
A.8. OIDC SDP 2 Conceptual View Diagram 113
A.9. OIDC SDP 2 Data View Diagram . 114
A.10.OIDC SDP 2 Strucutral View Example Diagram 115
A.11.PBA SDP Conceptual View Diagram . 118
A.12.PBA SDP Data View Diagram . 120
A.13.PBA SDP “Registration” Behavioral Model 122
A.14.PBA SDP “Login” Behavioral Model . 125
A.15.PBA SDP “Password Reset” Behavioral Model 126
A.16.PBA SDP “Email Change” Behavioral Model 127

A.17.Architectural Model representing the static structure of a microservice
architecture that implements the PBA Roles, visualized in a C4 container
diagram. 130

1. Introduction
In today’s digital age, software systems have become indispensable in many fields, includ-
ing finance, healthcare, and entertainment. Consequently, these systems have become
attractive targets for attackers who exploit vulnerabilities to access confidential infor-
mation or disrupt operations. The cost of such attacks is expected to exceed 10.5 trillion
USD annually by 2025 [eSe23]. In addition, the World Economic Forum’s Global Risks
Report 2023 ranks cybercrime and cyber insecurity among the top ten global risks in
both the short and the long term [Wor23]. These trends underscore the critical impor-
tance of security for organizations and their software systems.

To address these threats, architects can employ the Secure by Design approach during
software development. Secure by Design integrates security early in the Software Devel-
opment Lifecycle (SDLC), especially during the analysis and design phases. By applying
Secure by Design, vulnerabilities can be mitigated proactively, increasing resilience to
emerging threats [DJS19]. However, applying Secure by Design requires security experts,
and there is a critical shortage of such professionals, with the cybersecurity workforce
needing to nearly double to meet current demand [ISC23]. Furthermore, the inclusion
of Insecure Design in the OWASP Top Ten, a widely recognized list of the most crit-
ical security risks to web applications, highlights the prevalence of insecure design in
practice [21], indicating limited application of Secure by Design.

One potential solution to mitigate the shortage of security experts and enable archi-
tects to apply Secure by Design is the use of security patterns. In general, patterns can
support the design and implementation of robust systems by providing abstract, proven
solutions to recurring problems [LL13]. Despite the success of patterns in fields such
as architecture or object-oriented design, and the existence of security patterns, their
adoption in the security domain remains limited [vYJ18; Fer13].

One reason for this limited adoption is that existing security patterns are often too
abstract and do not provide the essential information architects need to implement them
securely [Hey+07; vYJ18]. For example, the Authenticator pattern [Sch+06] specifies
that a user should be authenticated by verifying authentication information. However,
the pattern does not specify what the authentication information consists of, such as
passwords, nor how it should be securely stored and verified [vYJ18].

Another issue is that existing security patterns often present a single, rigid solution
and fail to accommodate changing situational needs. They do not consider that some
aspects may be unnecessary in certain contexts, that alternatives may exist, or that so-
lutions not generally considered best practices may still be required in specific situations.
For example, the Password-based Authentication pattern [vYJ22c] discourages periodic
password changes based on general recommendations [Gra+20]. However, the Payment
Card Industry Data Security Standard requires periodic password changes in certain sce-

1

1. Introduction

narios [PCI24]. Therefore, a security pattern that addresses periodic password changes
is needed so that architects can implement it securely when necessary.

Finally, a qualitative study by Langstrof and Sabau [LS24] found that the complexity
of the security domain and the time required to address security are significant challenges
for integrating security into the SDLC. This highlights the need for security patterns
that provide the information relevant to security. Moreover, selecting appropriate secu-
rity patterns should be straightforward, thereby making them accessible to architects.
However, current approaches are often limited to grouping related patterns and provid-
ing informal references between them [vYJ22a]. This requires architects to be familiar
with numerous patterns to use them effectively. In addition, informal references can
make it difficult to understand how patterns integrate with each other.

1.1. Contribution
To address the challenges with current security patterns, this thesis proposes Security
Design Patterns (SDPs) comprising a usage aspect and a knowledge aspect.

The usage aspect, defined by a metamodel based on Heyman et al.’s security pattern
structure [Hey+07], provides architects with the information needed to understand and
implement the pattern. To manage complexity and ensure consistency, we introduce
different views that represent specific aspects of an SDP. For example, the Conceptual
View outlines the roles involved, their responsibilities, and their relationships, while the
Behavioral View models the interactions between these roles. This metamodel enables
the creation of consistent patterns that guide secure design implementations.

Furthermore, rather than offering a single SDP for a solution such as Password-based
Authentication (PBA), we propose multiple SDPs to accommodate different design op-
tions. For instance, one PBA SDP that addresses periodic password changes, while
another does not.

To assist architects in selecting appropriate SDPs, we consider using a Constraint-based
Recommender System (CBRS). While implementing the CBRS is beyond the scope of
this thesis project, we define a metamodel for the Knowledge Bases (KBs) required by
a CBRS to recommend appropriate SDPs. This includes the knowledge aspect of SDPs,
which provides information needed to reason about them, such as quality attributes
describing their impact on a system.

To illustrate the applicability of our concepts, we provide examples of both the usage
and knowledge aspects of SDPs. Evaluating their practical use by architects is beyond
the scope of this thesis project. However, we lay the groundwork for future research to
assess their utility through methods such as case studies.

2

1.2. Structure of this Thesis

1.2. Structure of this Thesis
The structure of this thesis is as follows:

• In Chapter 2, we introduce relevant definitions and terminology within software
engineering, security, and the recommender domain. We also introduce the concept
of Security Solution Patterns as proposed by Abazi [Aba24], which is related to
SDPs.

• In Chapter 3, we present the research questions addressed in this thesis, along
with their motivation and the problems they address. In addition, we present the
methodology used to create the metamodels and the practical examples.

• In Chapter 4, we present related work on security pattern descriptions and support
for selecting appropriate security patterns.

• In Chapter 5, we introduce the metamodel for the usage aspect of SDPs. This
metamodel aims to enable the creation of practical SDPs that assist architects in
designing secure systems.

• In Chapter 6, we evaluate the metamodel by presenting three application exam-
ples. The first example provides a comprehensive overview of an SDP. The second
example considers the same security solution and compares it to the first, illustrat-
ing the need for multiple SDPs. The third example focuses on a different security
solution, demonstrating that the metamodel can be used to create SDPs beyond a
single security solution.

• In Chapter 7, we introduce the metamodel that enables the creation of KBs for use
by a CBRS in recommending appropriate SDPs. This metamodel also integrates
the knowledge aspect of SDPs required for reasoning about appropriate patterns.

• In Chapter 8, we evaluate the metamodel by presenting two KBs for different
security solutions, illustrating the need for different KBs. We also present a rec-
ommendation example that simulates a CBRS and shows that the KBs can be
used effectively.

• In Chapter 9, we discuss our findings from developing the metamodels and appli-
cation examples, and highlight their limitations.

• In Chapter 10, we conclude the thesis by summarizing the main results and out-
lining opportunities for future research.

3

2. Foundation

This chapter introduces the definitions, terminology, and concepts essential to this thesis.
First, we outline common definitions and terminology within software engineering and
security. Next, we introduce Security Solution Patterns as proposed by Abazi [Aba24],
which are related to SDPs. Finally, we introduce the recommender domain, focusing on
the KB required by a CBRS to recommend and reason about appropriate SDPs.

2.1. Software Engineering
This section introduces the necessary definitions and terminology of software engineering.

Definition 2.1 (Design Pattern). A Design Pattern defines an abstract, proven solu-
tion to a recurring design problem that occurs in a particular context. In addition, a
Design Pattern has consequences that detail the strengths and weaknesses of applying
the pattern [Gam+95].

Design patterns offer abstract solutions that can be implemented in different ways
within their context. To demonstrate the general applicability of a design pattern, it
should have multiple concrete implementations; otherwise, it is considered a candidate
pattern [App97].

Definition 2.2 (Software System). A Software System consists of elements designed
to fulfill specified functional and non-functional requirements, along with the hardware
infrastructure required to operate these elements [RW11].

To understand a system, it is necessary to consider its architecture.

Definition 2.3 (Architecture). The Architecture of a system comprises its static and
dynamic structures. The static structure includes structural elements and their orga-
nization, while the dynamic structure includes runtime elements and their interactions.
An Architecture also has externally visible behavior that defines the system’s provided
functionality and its quality properties [RW11].

An architecture can be represented in various ways, such as focusing on the functional-
ity provided to external entities or on how security is maintained in the system [RW11].

Definition 2.4 (Architectural Pattern). An Architectural Pattern specifies an overar-
ching structure and organization of elements in a system [RW11].

5

2. Foundation

The Microservice Architectural Pattern specifies the division of a system into multiple
independently deployable services, each representing a domain or subdomain [RF20].
For example, a microservice architecture in an e-commerce system might have dedicated
services for ordering, payment, and inventory management.

Definition 2.5 (View). A View represents specific aspects of the static or dynamic
structure of an architecture relevant to one or more stakeholders [RW11].

Representing an architecture in a single model is typically impractical, as it would
become unmanageable and provide little value due to its complexity. A view helps
define an understandable architecture by limiting the information to what is relevant for
explaining a specific aspect.

Definition 2.6 (Viewpoint). A Viewpoint defines the elements and modeling rules for
constructing a specific type of view [RW11].

A viewpoint is essential for providing consistent and understandable views by clearly
defining the structure and guidelines that each view must follow. Stakeholders familiar
with a viewpoint can readily understand any view that adheres to it [RW11].

2.2. Security
This section introduces the security principles and terms used in this thesis.

In the context of security, protecting data and systems from unauthorized access,
modification, or disruption is essential. These goals are encapsulated in the three fun-
damental security principles known as the CIA Triad [SC14]:

• Confidentiality: Information is only accessible to authorized entities.

• Integrity: Information is protected from unauthorized modification during storage,
transmission, and processing.

• Availability: Authorized entities have reliable access to information and services.

To meet these fundamental security principles, mechanisms such as authentication
and authorization are essential.

Definition 2.7 (Authentication). Authentication is the process of verifying the identity
of an entity, such as a user, to ensure that the entity is who it claims to be [Sho14].

Authentication methods use information that can be classified into three types of
authentication factors [Sho14]:

• Knowledge Factor: Something you know, such as a password or a PIN.

• Possession Factor: Something you have, such as a smart card or a mobile phone.

• Inherence Factor: Something you are, such as a fingerprint or facial recognition
data.

6

2.2. Security

Authentication methods that use two or more authentication factors of different types
are referred to as Multi-Factor Authentication (MFA).

Definition 2.8 (Authorization). Authorization is the process of determining whether
an authenticated entity is allowed to perform specific actions or access protected re-
sources [Sho14].

There is a strong dependency between authorization and authentication because, to
determine whether an entity is allowed to perform an action, the entity’s identity must
first be authenticated [vYJ22a].

Authentication and authorization are fundamental to ensuring system security. How-
ever, if not implemented correctly, attackers can use different techniques to bypass these
defenses and gain unauthorized access.

Definition 2.9 (SQL Injection Attack). A Structured Query Language (SQL) Injection
Attack is an attack where an attacker inserts an SQL statement as input data which does
not get properly validated or quoted, leading to the statement being executed on the
database. This can result in an attacker being able to read, modify, or delete information,
threatening the confidentiality and integrity of a system [Cla12].

2.2.1. Authentication Methods

The authentication methods considered in this thesis are introduced below.

Definition 2.10 (Password-based Authentication). PBA is a knowledge-based authen-
tication method that uses a secret password associated with a unique user identifier,
such as a username or email address, to verify a user’s identity. Both user identifiers
and passwords are stored by the system to which a user authenticates, with passwords
stored securely using cryptographic hashing functions [CDW04]. To increase security,
PBA is often combined with a different authentication factor to provide MFA.

One of the major problems with PBA is its reliance on the human ability to create
and remember strong passwords, particularly given the large number of applications
used today [CDW04]. The following authentication method can help reduce the number
of passwords a user needs to manage [GN14].

Definition 2.11 (OpenID Connect). OpenID Connect (OIDC) is an authentication
protocol built on top of OAuth 2.0 that enables a Relying Party (RP) to verify the
identity of an entity based on authentication performed by an Identity Provider (IdP).
The IdP provides an identity token in the form of a JSON Web Token (JWT). This
token contains claims that provide details about the authentication event, such as the
authentication time, and information about the entity, such as a unique identifier. The
IdP digitally signs the JWT using a private key known only to the IdP. This enables
the RP to validate the token’s integrity and authenticity using the corresponding public
key, which the IdP makes publicly available [FKS17].

7

2. Foundation

By delegating authentication to an IdP, the RP does not have to manage credentials.
In addition, users can often use the same IdP to authenticate to multiple RPs, reducing
the number of passwords to remember. For example, consumer-facing applications often
allow users to authenticate using social providers such as Google or GitHub [GN14].

Typically, OIDC and PBA are used only for initial authentication, and tokens are
used for subsequent requests. The two Token-based Authentication methods considered
in this thesis are introduced below:

Definition 2.12 (Verifiable Token-based Authentication). Verifiable Token-based Au-
thentication is a stateless authentication method in which tokens directly contain user
information, such as a user identifier, and include a digital signature. The system does
not need to store issued tokens, but must verify the authenticity and integrity of re-
ceived tokens [vYJ22e]. This includes verifying that the token has not expired and that
its digital signature is valid.

Verifiable Token-based Authentication provides good performance because all neces-
sary user information is sent with each request, but it increases the amount of data
exchanged.

Definition 2.13 (Session-based Authentication). Session-based Authentication is a state-
ful authentication method in which a session identifier, the token, is associated with a
session object that contains user information and is stored by the system. The system
must ensure that session identifiers are unguessable to prevent attackers from hijacking
sessions [vYJ22d].

Session-based Authentication has minimal communication overhead and no sensitive
information is exchanged because only the session identifier is sent with requests. How-
ever, accessing the session object for each request can degrade performance.

2.3. Security Solution Pattern

In the existing security pattern landscape, most patterns provide a single, rigid solution
to a problem, without addressing varying situational needs. The SDPs introduced in
this thesis address this limitation by defining a set of SDPs, each focusing on different
ways to design a security solution. For example, in PBA, some systems require periodic
password changes, while others do not.

However, these design details are not relevant when choosing between different security
solution, such as PBA or OIDC authentication. In addition, specifying pattern relation-
ships at the SDP level is impractical because SDPs that belong to the same security
solution often share relationships. For example, all PBA SDPs require a Session-based
Authentication or Verifiable Token-based Authentication SDP to issue tokens upon suc-
cessful authentication.

8

2.3. Security Solution Pattern

Figure 2.1.: Hierarchy of Security Patterns extended by SDPs [Aba24].

2.3.1. Security Pattern Hierarchy

These issues are addressed by Abazi [Aba24], who introduces a concept to define pattern
relationships and provide information that assists in selecting an appropriate security
solution without considering design details. To achieve this, Abazi defines two types of
security patterns.

Definition 2.14 (Abstract Security Solution Pattern). An Abstract Security Solution
Pattern (ASSP) specifies a general security concept at an abstract level that can be
implemented by different concrete security solutions [Aba24].

The Authenticator pattern [Sch+06] and the Authentication pattern [vYJ22b] can be
considered ASSPs. Both patterns address the context of a system that needs to restrict
access to protected resources to known subjects, the problem of malicious subjects po-
tentially masquerading as legitimate subjects, and the solution where a subject must
provide authentication information to access protected resources. These patterns de-
fine the general concept of authentication but lack the specific information needed to
implement an authentication solution [vYJ18].

Definition 2.15 (Security Solution Pattern). A Security Solution Pattern (SSP) speci-
fies a security solution at a conceptual level, providing the general context, the problem,
and the high-level solution to the problem.

In contrast to Definition 2.15, Abazi defines an SSP as a concrete and applicable
pattern that provides detailed information for implementing a security solution in an
architecture [Aba24]. In this thesis, the SSP definition is adapted to emphasize that
SSPs guide architects in selecting appropriate security solutions and provide a high-level
understanding without requiring knowledge of the design details. In contrast, SDPs
focus on the design details and define how to implement them within an architecture.

ASSPs, SSPs, and SDPs form a hierarchical structure, as shown in Figure 2.1. At the
top of the hierarchy is at least one ASSP, and each ASSP can be further detailed by
other ASSPs. An SSP then concretizes exactly one ASSP by defining a concrete security
solution for it. Finally, each SSP is associated with at least one SDP, which specifies
how to securely implement the SSP in an architecture.

PBA is an example of an SSP that concretizes the Authentication ASSP. The pattern
may specify that the subject is identified by an email address, that the authentication
information is a password, and that a password hash is used to verify identity.

9

2. Foundation

2.3.2. Inter-Pattern Relationships
In this thesis, the security pattern relationships introduced by Schumacher [Sch03] are
adapted.

Definition 2.16 (Specializes). Security pattern P1 specializes security pattern P2 if and
only if the context of P1 is more specific or remains the same as P2 and the problem of
P1 is more specific or remains the same as P2 [Sch03].

The Specializes relationship is implicitly included in the security pattern hierarchy in
Figure 2.1 such that the details, concretizes, and implements relationships are special-
izations.

Definition 2.17 (Requires). Security pattern P1 requires security pattern P2 if and only
if there exist a problem in P1 to which the pattern does not provide a solution but P2

does [Sch03].

The Requires relationship is critical for a recommender, as a recommender should
address any problems that arise from recommending a particular security pattern. For
example, the PBA SSP requires a Token-based Authentication ASSP to issue tokens
upon successful authentication. If an architect selects the PBA SSP, the recommender
should recognize this relationship and suggest an appropriate SSP that Specializes the
Token-based Authentication ASSP.

Abazi also introduces inter-pattern relationships, namely the Depends, Benefits, Alter-
native, Impairs, and Conflicts relationships [Aba24]. However, the proposed definitions
are used because they are sufficient for this thesis.

2.3.3. Authentication Hierarchy
This thesis focuses on authentication due to the wide range of available security solutions
and its role as a fundamental component in many security patterns. For instance, most
authorization security patterns rely on secure authentication solutions [vYJ22a].

In the following, we present the authentication hierarchy of ASSPs and SSPs used in
this thesis, along with their interrelationships (see Figure 2.2). While this hierarchy is
not exhaustive, it provides a foundation for introducing and demonstrating SDPs.

• Authentication ASSP: It is applicable in systems that need to restrict access to
protected resources to known subjects and addresses the problem of malicious
subjects masquerading as legitimate ones.

• Single Access Point SSP: It specifies a solution to restrict access to protected
resources to known subjects [Sch+06]. It requires the User Authentication ASSP
to verify the identity of subjects.

• User Authentication ASSP: It specifies that subjects authenticate using authenti-
cation information that is internally compared against evidence [Sch+06; vYJ22b].
It requires the Single Access Point SSP to restrict access to protected resources.

10

2.3. Security Solution Pattern

Figure 2.2.: Example of an Authentication Hierarchy of ASSPs and SSPs.

• PBA SSP: It specifies a solution for authenticating subjects based on an identifier
and password, as introduced in Definition 2.10. It requires the Token-based Au-
thentication ASSP to issue tokens upon successful authentication, eliminating the
need for subjects to provide their password with each request.

• Token-based Authentication ASSP: It specifies that subjects are identified based
on a token. It requires the PBA SSP to authenticate a subject before issuing a
token.

• Verifiable Token-based Authentication SSP: It specifies a solution for identifying
subjects based on a stateless token such as a JWT, as introduced in Definition 2.12.

• Session-based Authentication SSP: It specifies a solution for identifying subjects
based on a session identifier, as introduced in Definition 2.13.

• OpenID Connect Authentication SSP: It specifies a solution for identifying subjects
based on authentication performed by an IdP. The authentication information is
the identity token provided by the IdP, as introduced in Definition 2.11. It does
not require the Token-based Authentication ASSP because the identity token could
be used as a stateless token to authenticate subsequent requests.

When referring to PBA in this thesis, we consider Single-Factor PBA, which does
not include an additional authentication factor unless otherwise stated. In addition, for
brevity, the terms OIDC Authentication SSP and OIDC SSP, as well as the terms OIDC
Authentication SDP and OIDC SDP are used interchangeably.

11

2. Foundation

2.4. Recommender Systems
This section is based on the work of Felfernig and Burke [FB08] and Aggarwal [Agg16].

Recommender systems assist users in selecting appropriate items, such as movies or
music, by providing personalized guidance. Collaborative Recommender Systems use
the collective preferences and interactions of a large community of users to suggest
relevant items. For example, a recommender that recommends hotels based on reviews.
Content-based Recommender Systems, analyze and match key features of items with an
individual user’s profile and historical preferences [FB08]. For example, a recommender
that recommends music based on the genre of previously listened tracks. However,
collecting a large number of user opinions and historical data is impractical for security
patterns due to the limited user base and the infrequent nature of system design tasks.

Knowledge-based Recommender Systems address these issues by giving users more
control, allowing them to explicitly define their requirements, and often providing an
interactive process. Constraint-based Recommender Systems (CBRSs), a subtype of
Knowledge-based Systems, are well suited for domains where recommendations are in-
frequent and items are complex [Agg16]. In such domains, users typically lack complete
knowledge of all item details [FB08]. Since both of these characteristics apply to security
patterns due to the large variety and complexity of the security landscape, this thesis
considers the use of a CBRS for SDPs.

2.4.1. Constraint-based Recommender Systems
This section introduces KBs, which are essential for a CBRS to recommend and reason
about appropriate items. In addition, we briefly describe how a CBRS can use a KB for
recommendations.

Definition 2.18 (Constraint-based Recommender Knowledge Base). A Constraint-
based Recommender Knowledge Base (KB) is defined as a tuple (VP , VC ,PROD,COMP,FILT),
where VP is the set of Product Variables, VC is the set of Customer Variables, PROD is
the set of Product Constraints, COMP is the set of Compatibility Constraints, and FILT
is the set of Filter Constraints.

The following describes each component of a KB and provides examples.

Product and Customer Variables

The Product Variables VP define the properties that describe the products and their
possible values. For example, in a KB for buying real estate, the Product Variables
could be defined as follows. Specific product instances are provided in Table 2.1.

VP = { p1 : Identifier ∈ {prodi | i ∈ N},
p2 : Number of Bedrooms ∈ N,
p3 : Price ∈ N,
p4 : Type ∈ {house, apartment} }

12

2.4. Recommender Systems

Identifier Number of Bedrooms Price Type
prod1 5 500000 house
prod2 3 400000 house
prod3 3 350000 house
prod4 2 200000 apartment

Table 2.1.: Example products in a CBRS KB for buying real estate.

The Customer Variables VC define the user requirements that can be specified by the
users. For example, in a KB for buying real estate, the Customer Variables could be the
following:

VC = { c1 : Property Type ∈ {house, apartment, either},
c2 : Minimum Number of Bedrooms ∈ N,
c3 : Minimum Number of Bathrooms ∈ N,
c4 : Budget ∈ N }

User requirements ci ∈ VC can be categorized into three groups [FB08]:

• Constraint: No recommended item is allowed to violate a constraint. For example,
the “property type” Customer Variable can be classified as a Constraint, because
no apartment should be recommended when searching for a house.

• Preference: May be violated for a good reason. For example, the “budget” Cus-
tomer Variable can be classified as a Preference, because a house that is slightly
over budget but has a large garden and a great location may still be selected.

• Context: External circumstances not directly specified by the user. For example,
the user’s location when recommending restaurants.

Constraints

Product Constraints, i.e., PROD, define conditions between Product Variables that en-
sure that products meet certain inherent criteria [FB08]. For example, the following
Product Constraint represents that each house should have at least two bedrooms:

Type = house ⇒ Number of Bedrooms ≥ 2

Compatibility Constraints, i.e., COMP, define conditions between Customer Variables
to ensure consistency and feasibility [FB08]. For example, the following Compatibility
Constraint ensures practical consistency in user requirements:

Minimum Number of Bedrooms ≥ 5 ⇒ Minimum Number of Bathrooms ≥ 2

Filter Constraints, i.e., FILT, map Customer Variables to Product Variables, defining
how user requirements relate to product properties [FB08]. For example, the following

13

2. Foundation

Filter Constraints map the “property type” Customer Variable to the “type” Product
Variable:

Property Type = house ⇒ Type = house
Property Type = apartment ⇒ Type = apartment

Property Type = either ⇒ Type ∈ {house, apartment}

The advantage of a KB is that user requirements, i.e., ci ∈ VC , and product properties,
i.e., pi ∈ VP , can be defined separately. This allows users to express their requirements
without needing to understand the technical details of the products [FB08]. For example,
consider a “Neighborhood Type” Customer Variable that lets a user specify the type of
neighborhood they prefer to live in:

c : Neighborhood Type ∈ {family friendly, college, . . .}

This Customer Variable can be used to create the following Filter Constraint:

Neighborhood Type = family friendly ⇒ Crime Rate = low ∧
Distance to Nearest School ≤ 1000m ∧
Distance to Nearest Park ≤ 500m

Recommendation Process

This thesis primarily considers KBs for SDPs, which define the knowledge required for
a CBRS to recommend and reason about SDPs. However, as this knowledge must be
usable within the recommendation process, we provide a general overview of the steps a
CBRS takes, as described by Felfernig and Burke [FB08]:

1. Collect user requirements ci ∈ VC and ensure they satisfy all Compatibility Con-
straints.

2. Identify all products that satisfy the Filter Constraints with respect to the user
requirements.

3. If no suitable product is found, identify conflicts within the user requirements and
guide the user to enter feasible requirements.

4. Calculate a recommendation score for all appropriate products to rank them.

For example, Joe wants to buy a house and connects to a real estate buying CBRS. The
CBRS asks a few questions that result in the following user requirements: Property Type =
house, Budget = 450000, and Number of Bedrooms ≥ 4. Based on the requirements, the
CBRS is unable to find any houses in Table 2.1 that meet these requirements. In order to
make a recommendation, the CBRS determines that Joe must either increase the budget
to 475000 or decrease the number of bedrooms required to three. Joe decides that he is
comfortable with only three bedrooms, so prod2 and prod3 can be recommended. The
CBRS ranks both houses by price, so prod3 is ranked above prod2. Joe agrees with the
CBRS and decides to buy house prod3.

14

3. Problem Statement and Method

In their foundational work, Alexander et al. [Ale+77] define patterns for buildings and
towns as core solutions to recurring problems, enabling the creation of multiple concrete
structures. Building upon this concept, patterns in software engineering facilitate the
creation and implementation of robust software systems [Gam+95]. Although patterns
are widely used in various areas such as architecture and object-oriented design, their
application in the security domain remains limited [vYJ18]. This limited adoption is
not due to a shortage of recurring problems or known solutions. Even when focusing
exclusively on authentication, numerous problems and solutions exist [Bar+18]. Further-
more, many security patterns and catalogs are available, indicating that the availability
of patterns is not an issue [Hey+07].

The limited adoption of security patterns suggests that other factors impede their
practical use. One issue is that existing security patterns often provide maintainable
solutions while overlooking security-relevant information [vYJ18]. For example, the Se-
curity Session pattern [Sch+06] specifies how to implement Session-based Authentication
introduced in Definition 2.13. However, the pattern does not explain how to ensure that
session identifiers are unguessable, and even suggests using the user identifier in some
situations, which is insecure [vYJ18]. Similarly, the Authenticator pattern [Sch+06]
accurately represents a high-level authentication process but omits details about the
nature of authentication information and how it should be securely stored and verified
[vYJ18]. These limitations lead to the first research question:

RQ1: What information is essential in a security design pattern, and how
should a pattern description be structured to make it practical for architects?

To address RQ1, we developed a metamodel that defines the elements and relationships
constituting the usage aspect of SDPs. This metamodel ensures that SDPs follow a
consistent structure and include the necessary security-relevant information, thereby
improving their usefulness for architects.

Another issue is that existing security patterns often provide a single, rigid solution.
They overlook that some elements may not be needed in some contexts, that alternatives
may exist, or that solutions not considered best practices may still be required in specific
situations. For example, the Password-based Authentication pattern [vYJ22c] requires
using a static pepper, a secret value added to passwords during hashing, in addition to a
unique salt for each password. While using a pepper can improve security, it introduces
complexity, as the pepper must be stored securely and periodically rotated, which can be
challenging [Meg24]. In addition, the pattern does not specify how side channels such as
email or SMS are involved in password recovery, which is a critical security consideration.

15

3. Problem Statement and Method

We address this issue by providing multiple SDPs, each of which considers different
design options for a security solution. To help architects avoid manually examining ev-
ery available SDP, we consider using a Constraint-based Recommender System (CBRS)
to recommend an appropriate SDP. As introduced in Section 2.4.1, the first step in
a CBRS recommendation process is to collect requirements to determine all feasible
products that can be recommended. Therefore, it is necessary to identify the informa-
tion that influences which SDPs can be recommended. We refer to this information as
recommendation factors, which leads to the second research question:

RQ2: What recommendation factors can influence the selection of an appro-
priate security design pattern?

To further support architects in selecting an appropriate SDP, the CBRS calculates a
recommendation score for each feasible SDP, ranking them according to their suitabil-
ity. However, this requires quantifiable knowledge about SDPs that can be used in the
calculation. This need leads to the third and fourth research questions:

RQ3: What knowledge about a security design pattern must be captured in
order to reason about an appropriate pattern and explain the recommenda-
tion?

RQ4: How should the knowledge be encoded so that a knowledge-based rec-
ommender system can reason about appropriate security design patterns?

To address RQ2, RQ3, and RQ4, we developed a metamodel that specifies the elements
and relationships of a Knowledge Base (KB) for SDPs, including how the knowledge
aspect of SDPs is represented. This metamodel includes both the recommendation
factors and the properties of SDPs that influence the recommendation results.

3.1. Research Method
This section presents the method used to develop the metamodels.

3.1.1. Acquisition and Conceptualization
At a high level, we applied the approach introduced by Andrade et al. [And+04]. Their
approach emphasizes that to solve a non-trivial problem, such as creating metamodels
that describe the usage and knowledge aspects of SDPs, one must acquire information
that is then organized into a conceptual model.

This approach is illustrated in their iterative process shown in Figure 3.1, which we
adapted for our research. It consists of the Acquisition step, where information is gath-
ered, and the Conceptualization step, where the acquired information is used to create
the conceptual model. The iterations are necessary because the acquisition is usually
incomplete or incorrect, which is discovered during the conceptualization [And+04].

16

3.1. Research Method

Figure 3.1.: Iterative evolutionary process for developing a conceptual model for a non-
trivial problem. The process consists of two steps: information acquisition
and conceptualization [And+04].

Acquisition is divided into two steps: acquisition preparation, such as identifying ap-
propriate sources; and acquisition itself, such as collecting information from the sources.
Similarly, conceptualization is divided into two steps: analysis of the acquired informa-
tion, such as extracting concepts from the collected information; and evaluation of the
concepts, such as verifying their general applicability [And+04].

Typically, the focus during the initial iterations is on acquisition, whereas later itera-
tions primarily use acquisition to validate and fine-tune the conceptual model as shown
in Figure 3.1. By following this iterative process, we were able to systematically develop
the metamodels that describe the usage and knowledge aspects of SDPs.

In the following sections, we describe how we conducted acquisition and conceptual-
ization in an initial bottom-up approach followed by a top-down approach.

3.1.2. Bottom-Up Approach

In the bottom-up approach, the acquisition consisted of extracting security solutions
from Open Source Software (OSS). In the conceptualization, these solutions were ana-
lyzed to identify common elements and concepts that could be used in a metamodel.

To achieve this, we identified suitable OSS during the acquisition preparation. The
primary requirement for the OSS under consideration was that they contain explicitly
defined architectural documentation that includes security-related information. While

17

3. Problem Statement and Method

Figure 3.2.: Security solution example for the authentication between the EFGS and
National Backends using mTLS.

such documentation could also be created by analyzing the OSS, this is beyond the scope
of this thesis project.

Sabau [Sab24] identified the Corona-Warn-App (CWA)1, the official COVID-19 expo-
sure notification app for Germany, as suitable for a bottom-up analysis. This is because
data security and privacy were considered from the beginning and were important fac-
tors for its acceptance by the population [Dix20; Las21]. In addition, the CWA contains
well-documented architectural descriptions that explicitly include security solutions.

We identified the European Federation Gateway Service (EFGS)2 as another suit-
able OSS. The EFGS allows different national contact tracing applications, such as the
CWA, to exchange information, enabling interoperability between solutions. Similar to
the CWA, security was an important concern during the design and development of
the EFGS, and the architecture descriptions include security requirements and security
solutions [Dir20].

Other promising OSS include the openDesk Project3, the EUdi-Wallet Project4, and
the National Once-Only-Technical-System5, because they provide architectural descrip-
tions, and security is an important concern for each project. However, these projects
were too early in the development process to be useful in the bottom-up approach. Nev-
ertheless, the openDesk and EUdi-Wallet projects can be useful for future work because
they use OIDC, for which we provide SDPs. Thus, analysis of these projects may reveal
concrete implementations of, or problems with, our OIDC SDPs.

Security Solution and Concept Example

The security solution in Figure 3.2 is an example of the information we gathered, ana-
lyzed, and transformed into concepts.

The example shows the static structure of the authentication between the National
Backends (NBs) and the EFGS. In this process, both parties exchange their certificates
and provide a digital signature based on their private keys. The other party then verifies
the signature using the certificate provided, thereby proving the sender’s identity and

1https://github.com/corona-warn-app
2https://github.com/eu-federation-gateway-service
3https://gitlab.opencode.de/bmi/opendesk
4https://gitlab.opencode.de/bmi/eudi-wallet
5https://gitlab.opencode.de/bmi/noots

18

https://github.com/corona-warn-app
https://github.com/eu-federation-gateway-service
https://gitlab.opencode.de/bmi/opendesk
https://gitlab.opencode.de/bmi/eudi-wallet
https://gitlab.opencode.de/bmi/noots

3.1. Research Method

ensuring the integrity of the communication. The Certificate Revocation List (CRL)
contains potentially compromised certificates that should not be accepted.

This security solution led to a concept to classify data based on whether it can be
publicly known, such as the certificates, or must remain secret, such as the private
keys. In addition, we identified that data often needs to meet specific requirements
to ensure the security of a solution. For example, the private keys in Figure 3.2 must
have a minimum length to prevent attackers from breaking them [Fed24]. Including such
requirements in the SDPs is critical because architects cannot be expected to be aware of
these details due to the complexity and rapid evolution of the security landscape [LS24].

Furthermore, we identified that security solutions typically involve interactions be-
tween entities and are designed to protect specific entities. In this case, the interaction
is between the NB and EFGS, and the security solution protects both the EFGS from
receiving data from a malicious actor and the NB from sending data to one.

Finally, security solutions often include enforcement mechanisms based on decisions
and information. Here, the EFGS enforces that only authenticated NBs are allowed to
communicate based on the decision of whether the signature provided corresponds to the
NB. In addition, the certificate revocation list provides information about compromised
certificates that should not be accepted.

These concepts were iteratively refined by considering various security solutions iden-
tified during the acquisition. During conceptualization, we assessed whether the existing
concepts could be applied to these security solutions, and if not, we evaluated why not
and adapted the concepts accordingly.

3.1.3. Top-down Approach

The goal of the top-down approach was to develop the usage and knowledge aspects of
a concrete SDP and to capture the elements and relationships used in the metamodels.
The bottom-up approach can be viewed as the initial acquisition preparation, as we used
the identified concepts during the creation of the SDPs.

As part of this initial acquisition preparation, we decided to focus on OIDC authen-
tication. We selected OIDC authentication because it is not included in any of the
identified security pattern catalogs, helping to reduce bias. In addition, OIDC is widely
used in practice, as many applications support login via social providers such as Google
or GitHub [GN14], making the pattern relevant to industry

Furthermore, OIDC is a versatile authentication protocol that allows for a variety of
design and implementation approaches. For example, there are different methods to
authenticate the system to the identity provider, and a system may use one or more
identity providers, both of which influence design and implementation. This allowed us
to examine how these different aspects can be integrated into SDPs and what information
a recommender needs to recommend an appropriate SDP.

In the top-down approach, the development of the SDP was the acquisition that, along
with the insights from the identified literature, was used to create the metamodels in
the conceptualization. In addition, we divided the top-down approach into two phases.

19

3. Problem Statement and Method

In the first phase, we developed the usage aspect of an OIDC SDP until only minor
refinements were required for both the SDP and the metamodel. In the second phase,
we focused on the knowledge aspect of the SDP and explored how to incorporate it into
an OIDC SDP KB. This included identifying the different OIDC SDPs that might exist,
as this information is essential to the KB.

Next, we selected a second OIDC SDP from those identified and developed its usage
aspect to demonstrate the need for multiple SDPs implementing a single SSP. We also
used this step to further refine the usage aspect metamodel following the iterative pro-
cess. It was not necessary to develop the knowledge aspect of this second SDP, as it had
already been incorporated into the OIDC SDP KB when we developed the first OIDC
SDP.

Finally, we developed a PBA SDP to demonstrate that our metamodels can be applied
beyond a single security solution. We followed the same two-phase approach: first
focusing on the usage aspect, then addressing the knowledge aspect, which involved
identifying different PBA SDPs and integrating them into a PBA KB. These steps
allowed us to further refine both metamodels.

20

4. Related Work
This chapter reviews existing research on Security Patterns (SPs), with a particular
focus on SP catalogs. This focus aligns with the goal of this thesis to facilitate the
creation of diverse and generally applicable SPs that form an SP catalog.

We examine the catalogs by Schumacher et al. [Sch+06] and Fernandez [Fer13] to-
gether, as they share the same structure and contain overlapping SPs, such as the Au-
thenticator pattern. In addition, we examine a more recent catalog by Van den Berghe
et al. [vYJ22a].

4.1. Security Pattern Description
In this section, we examine the structure and relationships of SPs in these catalogs.
We begin by considering how the catalogs represent and distinguish between patterns
at different levels of abstraction, and how pattern relationships are depicted. We then
consider the pattern descriptions used within the catalogs. Finally, we examine how
these catalogs address different implementation options for a security solution.

4.1.1. Abstraction Levels and Pattern Relationships
The SPs in the catalogs by Schumacher et al. [Sch+06] and Fernandez [Fer13] vary in
their level of abstraction and the information they provide. For example, the Authenti-
cator pattern [Sch+06] describes the general problem and solution of authentication at
a high level. In contrast, the Credential pattern [Fer13] describes how to securely handle
and exchange authentication information between systems, serving as a specific variant
of the Authenticator pattern.

This is consistent with our approach, where we consider different types of SPs, in-
cluding Abstract Security Solution Patterns (ASSPs), which provide information about
general security concepts such as authentication, and Security Design Patterns (SDPs),
which provide the information needed to implement a concrete security solution.

However, the SPs by Schumacher et al. [Sch+06] and Fernandez [Fer13] do not indicate
whether a pattern is a concrete pattern intended for implementation or an abstract pat-
tern providing general information. In addition, the relationships between the abstract
and more concrete patterns are not properly defined, making it difficult to understand
which pattern is based on another. Finally, even the more concrete patterns, such as
the Credential pattern [Fer13], do not provide all the necessary information for secure
implementation [vYJ18].

To address this issue, the pattern hierarchy defined by Abazi [Aba24] and extended by
our SDPs clearly specifies each pattern’s level of abstraction and explicitly illustrates the

21

4. Related Work

pattern relationships. Thus, architects immediately know what information details are
expected based on the type of SP, i.e., ASSP, SSP, and SDP, and where more detailed
information can be found.

The SP catalog of Van den Berghe et al. [vYJ22a] explicitly defines a pattern hierarchy,
where each pattern specifies its parent and child SPs. In contrast to our approach, Van
den Berghe et al. [vYJ22a] include explicit references between the solution of an SP and
its parent. For example, their Authentication pattern [vYJ22b] defines that an entity
authenticates using a credential that is internally compared to evidence. In their PBA
pattern [vYJ22c], the combination of an identifier and a password refers to the credential,
and a password hash refers to the evidence.

These explicit relationships between SPs help in understanding the patterns because
an architect can first become familiar with the abstract pattern and, through the refer-
ences, understand how the concrete pattern implements it. This approach is not adopted
in this thesis because the ASSPs and SSPs defined by Abazi [Aba24] currently only pro-
vide the knowledge aspect required by a CBRS to recommend patterns. Future work
defining the usage aspects of ASSPs and SSPs should consider whether the inclusion of
explicit relationships between pattern elements can and should be applied.

4.1.2. Pattern Description

The SP catalogs by Schumacher et al. [Sch+06] and Fernandez [Fer13] follow a pattern
template that defines the high-level parts of the SPs, such as context and problem,
but do not provide much detail about the elements that make up each part. While
this allows flexibility in structuring the SPs, adopting a more standardized description
enhances consistency and improves understandability. For example, by clearly defining
how inter-pattern relationships are represented within a pattern or how important data
considerations are provided, an architect familiar with the structure can easily identify
these elements.

In addition, explicitly defining how security-relevant information is integrated into SPs
helps architects implement an SP correctly and allows security experts to provide better
feedback. For example, the Security Session pattern [Sch+06] states that a session
identifier should be unguessable. By explicitly specifying methods for generating an
unguessable session identifier, architects can implement this effectively, and security
experts can review the methods to ensure their security or recommend necessary changes.

The catalog by Van den Berghe et al. [vYJ22a], similar to our approach, uses a
metamodel that defines the elements and relationships that make up an SP and integrates
security-relevant information. This ensures that SPs follow a consistent structure, so that
architects familiar with it immediately know where and how information is defined.

However, their metamodel is tailored to use a security-oriented modeling language
to represent the behavior of a pattern, while the remaining parts are based on tex-
tual descriptions. In contrast, our metamodel does not restrict how behavior can be
expressed, allowing the use of common diagrams, such as sequence diagrams, that we
expect architects to be familiar with.

22

4.2. Security Pattern Selection

Furthermore, their metamodel focuses only on the security aspects and provides no
guidance on how to integrate the patterns into an architecture. In contrast, SDPs explic-
itly include practical examples that can help implement the pattern in an architecture.

Moreover, since there can typically be a number of SDPs for an SSP, relying on a
textual description (e.g., for data considerations) can make it difficult to compare two
SDPs. Therefore, our metamodel emphasizes diagrams as central elements that contain
all relevant information or references for clarity. Nevertheless, the catalog and metamodel
of Van den Berghe et al. [vYJ22a] provide important aspects that are considered in our
metamodel.

4.1.3. Pattern Details

The catalogs of Schumacher et al. [Sch+06], Fernandez [Fer13], and Van den Berghe et
al. [vYJ22a] provide only a single, rigid solution for a security mechanism. This approach
simplifies pattern selection and reduces the number of patterns that need to be created.
However, it can lead to patterns that ignore aspects required in specific situations. For
example, the PBA pattern [vYJ22c] discourages the use of periodic password changes
because they are generally not recommended, while some standards and organizations
still require their use [PCI24].

We address this issue by providing multiple patterns that consider specific design
options, such as one PBA SDP that incorporates periodic password changes and another
that does not. A CBRS for SDPs then guides architects in selecting an appropriate SDP.

4.2. Security Pattern Selection
In this section, we consider how to identify an appropriate SP within the catalogs.

Yskout et al. [YSJ12] consider the use of pattern annotations to guide the selection
process. These annotations include key security objectives, such as confidentiality or
availability, and quality tradeoffs that consider quality attributes, such as integrity or
maintainability. In the selection process, architects first consider the security objective,
and if multiple patterns exist, use the quality tradeoffs to decide among them.

While this approach may be effective for SSPs, SDPs typically share the same security
objectives defined by the SSP they implement but provide different variants for that SSP.
In addition, there may be a variety of SDPs for an SSP that address different design
options, such as different password reset mechanisms and whether periodic password
changes are required for PBA. Since SDPs can be quite detailed, an architect cannot be
expected to examine every possible SDP to select the appropriate one.

The SP catalogs of Schumacher et al. [Sch+06] and Fernandez [Fer13] are based on
grouping patterns by their security objective, such as patterns relevant for identification
and authentication or access control methods. Thus, in contrast to the approach of
Yskout et al. [YSJ12], where additional information such as quality tradeoffs supports
selection within a group, this method requires the reader to be familiar with all patterns
in a group. Moreover, due to the relationships between patterns, it is likely that a reader

23

4. Related Work

will need to be familiar with most of the catalog to use it effectively, even if only a few
specific patterns are needed.

The SP catalog by Van den Berghe et al. [vYJ22a] uses a more structured approach
based on a hierarchy that separates the context and problem from the patterns them-
selves. This means that an architect first identifies a context that is applicable to their
system, such as the system interacting with users. Each context then has at least one
associated problem; for example, in this context, a user could pretend to be someone
else. Each problem then references at least one SP that provides a solution for the prob-
lem, such as PBA [vYJ22a]. This approach allows an architect to identify a set of SPs
needed to design a secure system by identifying all relevant contexts and problems and
then selecting a pattern for each.

However, while some problems reference a concrete pattern, other problems only ref-
erence a high-level pattern such as authentication. Although these high-level patterns
specify which patterns implement them there is no further guidance on how to choose
among these child patterns.

This is not an issue in their current catalog, as it only contains a limited number of
patterns. However, considering that there are numerous concrete patterns for authenti-
cation, such as PBA, OIDC Authentication, Biometric-based Authentication, and more,
additional guidance is needed on how to choose between them. The decision becomes
even more complex when considering that each of these patterns may have multiple
SDPs.

Nevertheless, we agree that separating the pattern descriptions, especially the pattern
solution, from the selection process allows architects to identify appropriate patterns
more easily. In this thesis this is achieved by an SDP comprising a usage aspect used
by an architect to implement the pattern, and a knowledge aspect integrated in a KB
allowing a CBRS to recommend an appropriate SDP.

24

5. Security Design Pattern Description
Metamodel

This chapter introduces the Security Design Pattern Description Metamodel (SDPDM),
which defines the usage aspect of SDPs. The SDPDM addresses the limitations of
existing security patterns that are often too abstract and lack the detailed information
required for secure implementation. By clearly specifying the elements and relationships
that make up SDPs, the SDPDM ensures that SDPs follow a consistent structure, making
them easier to understand and apply.

5.1. SDPDM Structure
The SDPDM adapts the security pattern structure proposed by Heyman et al. [Hey+07].
According to Heyman et al., a good security pattern description must include Context
and Problem, which define the situations in which the pattern is applicable and the
problems it addresses.

Next, a security pattern must include a Solution to the Problem within the given
Context. This Solution should specify both the structure and behavior, preferably pre-
sented graphically [Hey+07]. To facilitate this, the following sections introduces the
SDPDM viewpoints that enable the creation of practical and understandable SDP So-
lutions. Furthermore, a security pattern should provide an Example demonstrating how
the Solution can be implemented in practice [Hey+07]; this is included as part of the
SDPDM viewpoints. Lastly, a security pattern should define its Consequences, detailing
both the strengths and weaknesses of the pattern [Hey+07].

Building upon the structure proposed by Heyman et al. [Hey+07], SDPs require a
short non-technical Summary at the beginning. This practice can also be found in the
pattern catalog by Van den Berghe et al. [vYJ22a]. The Summary should include high-
level information covering the Context, Problem, and Solution, and may also highlight
the most important Consequences. This enhances comprehensibility, especially for non-
security experts.

5.2. SDPDM Viewpoint Structure
For the description of the Solution and the Examples within the SDPDM, we adapt the
viewpoint and view concept introduced by Rozanski and Woods [RW11]. This concept is
commonly used to model architectures to capture different aspects where using a single
model is impractical. In the SDPDM, the viewpoint and view concept help manage

25

5. Security Design Pattern Description Metamodel

Figure 5.1.: The SDPDM’s Viewpoints that define how to represent the Solution and
Example of an SDP.

Figure 5.2.: Overview of an SDP that conforms to the SDPDM Viewpoints. Each view
highlights its main elements and their relationships.

the complexity of the security domain by focusing on specific aspects at different levels
of abstraction. To achieve this, we have identified four viewpoints, which are shown
in Figure 5.1.

Before introducing the different Viewpoints, it is essential to note that a viewpoint
outlines the elements, relationships, and modeling conventions used to construct a view.
In contrast, a view describes a specific aspect that adheres to a particular viewpoint
[RW11]. The following provides an overview of each Viewpoint and its main elements,
as shown in Figure 5.2. The remaining sections introduce these elements and their
relationships in more detail. It is important to note that elements labeled as abstract in
a viewpoint do not have concrete manifestations within a view.

Definition 5.1 (Conceptual Viewpoint). The Conceptual Viewpoint specifies how Poli-
cies and Roles are represented. Policies define the rules and conditions required to
resolve the Problems of an SDP. Roles define the responsibilities required to implement
the Policies.

The Conceptual View of an SDP clearly defines the scope of an SDP Solution by
specifying the Policies to be considered and the specific Roles with their responsibilities
and relationships. It serves as the foundation for other views and provides a high-level
understanding of the SDP Solution.

26

5.3. Conceptual Viewpoint

Definition 5.2 (Data Viewpoint). The Data Viewpoint defines how to model the Data
Elements involved in an SDP, including their structure, properties, and security consid-
erations.

The Data View of an SDP specifies which Data Elements are involved in the SDP
Solution, how these Data Elements relate to each other, and assigns security-relevant
information to the Data Elements. This information includes, for example, the impact
that disclosure of a Data Element would have on the security of a user or system. The
Data View is critical to the secure implementation of an SDP because improper data
design can result in an insecure system [DJS19].

Definition 5.3 (Behavioral Viewpoint). The Behavioral Viewpoint specifies how to
model the detailed interactions between Roles and how to represent Events. An Event
represents a specific situation that occurs during these interactions and allows important
security considerations to be defined.

The Behavioral View of an SDP models the behaviors required to securely implement
the Policies. The modeled behavior typically involves sending and receiving data us-
ing the Data Elements modeled in the Data View. Events can highlight and describe
important situations within the modeled behavior, representing both exceptional (e.g.,
“Password Incorrect”) and informational (e.g., “Successful Authentication”) situations.
By using Data Elements and Events, behavior can be modeled in an understandable way
while still containing the security-relevant information defined within these elements.

Definition 5.4 (Structural Viewpoint). The Structural Viewpoint specifies how to rep-
resent the Roles within an architecture. It takes into account both the static structure,
i.e., the specific elements and their arrangement, and the dynamic structure, i.e., the
runtime elements and their interactions [RW11].

The Structural View of an SDP provides practical examples that facilitate the imple-
mentation of the SDP by giving architects a well-documented starting point.

The following sections describe in detail the elements and relationships within each
Viewpoint, as well as their relationships to other Viewpoints. We begin with the Con-
ceptual Viewpoint because it is the foundation of the SDPDM Solution. This is followed
by the Data Viewpoint and the Behavioral Viewpoint due to their interrelationships and
to complete the SDPDM Solution. Finally, the Structural Viewpoint is introduced.

5.3. Conceptual Viewpoint
This section introduces the Conceptual Viewpoint, which outlines the essential elements
for understanding an SDP Solution and serves as the foundation for the other Viewpoints.

Definition 5.5 (Entity). An Entity is any system, component, individual, organization,
or group that interacts with or is part of a system.

27

5. Security Design Pattern Description Metamodel

Figure 5.3.: A Role can require other Roles to fulfill its responsibilities.

This definition is adapted from Rozanski and Woods’ definition of an external en-
tity [RW11]. Examples of Entities include users, user groups such as administrators,
machines or devices, external systems, internal services, and more.

Definition 5.6 (Policy). A Policy defines rules and conditions that apply to Entities
when an action is performed. A Policy is considered satisfied when all of its rules and
conditions have been successfully verified.

For example, in a Password-based Authentication (PBA) SDP, a “Registration” Policy
defines that a user must provide a valid email address and a strong password, and
must complete email verification to register a user account. Satisfying the valid email
requirement involves deciding whether the email format is correct and whether the email
already exists in the system.

Policies form the foundation of an SDP by clearly describing its scope and how security
is maintained.

Definition 5.7 (Role). A Role encapsulates a set of responsibilities necessary for the
secure application of Policies. A Role is characterized by a unique name and a description
of its responsibilities.

For example, in a PBA SDP, the “Password Policy Verifier” Role is responsible for
verifying that a given password is strong, such as having a minimum length.

Adapted from Van den Berghe et al. [vYJ22a], Roles highlight what is required to
securely implement the Policies. In addition, a Role does not need to correspond to a par-
ticular element within an architecture. In practice, multiple Roles may be implemented
by the same element, or multiple elements may implement a single Role [vYJ22a].

Definition 5.8 (Requires Relationship). The Requires relationship between Roles de-
fines that one Role depends on another Role to fulfill its responsibilities.

For example, in a PBA SDP, a “Registrar” Role is responsible for facilitating the
registration, and a “Password Resetter” Role is responsible for facilitating the password
reset. Both Roles Require the “Password Policy Verifier” Role to ensure that users use
strong passwords.

The Requires relationship, shown in Figure 5.3, is critical to defining an understand-
able Conceptual View because it supports the definition of fine-grained Roles and indi-
cates the high-level Role interactions.

28

5.3. Conceptual Viewpoint

Figure 5.4.: The types of Role Extensions and their relationship to Roles.

Definition 5.9 (Role Extension). A Role Extension defines common responsibilities of
Roles or characteristics that describe Roles.

Although the responsibilities of Roles vary between different SDPs, there are com-
mon responsibilities and characteristics that are generally applicable. Introducing Role
Extensions allows for assigning these properties to Roles and enables extensibility by
defining additional Role Extensions. The following details the Role Extensions intro-
duced in this thesis, as shown in Figure 5.4.

Definition 5.10 (Storage Tag). A Storage Tag specifies that a Role requires some type
of storage to fulfill its responsibilities. It enables the definition of different types of
storage and the considerations that come with each type, especially regarding security.

The following Storage Tags are considered in this thesis:

• Persistent Storage is a long-term storage. It requires regular backups to prevent
data loss, and these backups must be stored securely to prevent attackers from
exploiting them.

• Cache is a short-term storage that stores frequently accessed or large data to
increase performance and availability. It requires proper handling of cache misses
and cache invalidation processes.

• Session Storage is a short-term storage that stores data accessible via an identi-
fier. It requires proper session expiration mechanisms and the identifier must be
unguessable.

• Secret Storage is a secure client-side storage. It requires different considerations
depending on the client types. For example a web application should store secret
values using secure cookies and avoid storing them in vulnerable web storage. For
further details, see Appendix A.6.

Data storage typically requires special considerations to ensure its security. Storage
Tags allow these considerations to be defined in a single location. This ensures that
considerations are consistent across SDPs and improves the ability to develop new SDPs.

We provide detailed considerations only for the “Secret Storage” Storage Tag in Ap-
pendix A.6 due to the time constraints of this thesis project.

29

5. Security Design Pattern Description Metamodel

Definition 5.11 (Controlled). A Controlled Role is one whose operations are entirely
under the control of the architects. This means that every operation the Role per-
forms, as well as the effects of any operations it receives from other Roles, are fully
specified [vYJ22a].

Definition 5.12 (Uncontrolled). An Uncontrolled Role is one whose operations are not
entirely under the control of the architects. This means that the operations the Role
performs, and the effects of operations it receives from other Roles, could be influenced
or manipulated by an attacker [vYJ22a].

For example, the “Password Policy Verifier” Role is considered Controlled. This means
that when it verifies that a password is strong, no additional validation is required. A
“User” Role can be considered Uncontrolled because, for example, user input such as an
email address provided during login must be validated to protect against SQL injection
attacks [DJS19].

The distinction between Controlled and Uncontrolled Roles highlights where potential
threats and vulnerabilities may originate. Furthermore, following Van den Berghe et al.
[vYJ22a] using Controlled and Uncontrolled emphasizes that Roles are not elements in
an architecture, but only describe responsibilities. This distinguishes these concepts
from concrete elements where the terms Trusted and Untrusted are typically used. For
example, in a zero-trust microservice architecture, two Controlled Roles can be designed
as separate services. Although both Roles are Controlled, they do not necessarily trust
each other [Ros+20].

Definition 5.13 (Abstract). An Abstract Role is essential to the secure application of
Policies, but its design is not relevant or within the scope of the SDP itself. An Abstract
Role may reference another security pattern, i.e., ASSPs, SSPs as well as SDPs, if that
pattern addresses the Role’s responsibilities.

For example, in a PBA SDP, an Abstract “Token Manager” Role is responsible for
issuing, verifying, and invalidating tokens. This Role is a black box that references
the Token-based Authentication ASSP introduced in Section 2.3.3. Including this Role
indicates which Roles require these responsibilities, while leaving the design details to
another security pattern.

Abstract Roles address a common problem with existing security patterns, where
pattern relationships are often mentioned only informally, despite being critical infor-
mation [Hey+07].

Another example, in a PBA SDP, is an Abstract “Email System” Role that is re-
sponsible for delivering verification and reset emails. The design of the email system is
outside the scope of the SDP and is not defined in a separate security pattern. However,
the Role is important to indicate which Roles need to send email.

Definition 5.14 (Policy Point). A Policy Point describes specific responsibilities re-
quired to ensure an action defined by a Policy is only allowed when all of the Policy’s
rules and conditions have been verified. A Policy Point is classified by one of the following
concrete types, as shown in Figure 5.5:

30

5.3. Conceptual Viewpoint

Figure 5.5.: The types of Policy Points and their relationship to Policies.

Figure 5.6.: Policy Point hierarchy showing the relationships between Entities, EPs, DPs,
and IPs.

• An Enforcement Point (EP) is responsible for ensuring that an action, such as
registration, is only allowed if all rules and conditions of a Policy are verified.

• A Decision Point (DP) is responsible for deciding whether a rule or condition of a
Policy is satisfied. Examples include deciding whether a password is strong.

• An Information Point (IP) is responsible for providing additional information re-
quired to verify a rule or condition of a Policy. Examples include providing the
password hashes of users needed to verify credentials.

For example, in a PBA SDP, the “Registrar” Role is the EP for the “Registration”
Policy because it is responsible for ensuring that registration is allowed only if all rules
and conditions are met. The “Password Policy Verifier” Role is a DP for the “Registra-
tion” Policy because it decides whether a provided password is strong. Finally, a “User
Manager” Role, which is responsible for managing users, is an IP for a “Login” Policy
because the Role provides the password hashes used to verify passwords during login.

By assigning Policies to Roles through Policy Points, as shown in Figure 5.5, it be-
comes clear which Roles are responsible for handling a Policy and what each Role’s
responsibilities are regarding a Policy. While we identified the Policy Point concept
during the bottom-up analysis, it is also commonly used in the context of authoriza-
tion [YT05], and Van den Berghe et al. [vYJ22a] also use this concept in their pattern
catalog, highlighting its practical application.

The Policy Point hierarchy in Figure 5.6 shows how Policy Points relate to each other.
There must always be a single EP that interacts with and protects Entities. Since every
Policy must contain at least one rule or condition, otherwise it would always be satisfied,

31

5. Security Design Pattern Description Metamodel

Figure 5.7.: Classification of data based on Data Origin, Security Level, and Lifespan,
referred to as Data Properties.

the EP must use at least one DP. To allow for cases where a DP groups multiple decisions
made by different DPs, DPs are allowed to use each other. If necessary, a DP can use
an IP to request additional information, and IPs may also use each other.

5.4. Data Viewpoint
This section introduces the Data Viewpoint, which outlines how to model the data
involved in an SDP and defines the security-relevant information that describes data.

5.4.1. Data Properties
Proper handling of data is critical for maintaining security, as attacks often involve the
manipulation or misuse of data. To effectively identify and understand the protection
needs of data, ISO/IEC 27002:2022 [22] recommends classifying data with respect to
its security needs. While ISO/IEC 27002:2022 [22] suggests data classifications within
an organization, we consider general data properties that define characteristics to guide
secure implementation within an architecture. The data properties we consider are
shown in Figure 5.7 and defined below.

Definition 5.15 (Data Origin). A Data Origin classifies data based on the source of
the data within a system.

We consider the following Data Origins:

• External data originates from Uncontrolled Roles, such as users or external services.
Examples include email addresses or passwords provided by users.

• Internal data originates from Controlled Roles, such as internal services. Examples
include internally stored email addresses and password hashes.

Classifying data by its origin is essential for identifying potential threats and vul-
nerabilities because attackers typically interact with a system through External data.

32

5.4. Data Viewpoint

However, Internal data must also be handled with care, as insider attackers may have
access to internal system components, presenting different security challenges.

Definition 5.16 (Security Level). A Security Level classifies data based on the potential
impact of its disclosure on the security of the system or its users.

We consider the following Security Levels:

• Secret data, if disclosed, would significantly reduce the security of the system or
its users. Examples include database passwords, private keys, or tokens.

• Sensitive data, if disclosed, can reveal internal operations or user information,
potentially aiding attackers. Examples include internal service endpoints or user
information such as email addresses.

• Public data can be publicly known without compromising the security of the sys-
tem. Examples include public keys or public API documentation.

Understanding the Security Level of data helps prioritize and implement appropriate
measures to protect critical data.

Definition 5.17 (Lifespan). A Lifespan classifies data based on the duration for which
data is retained and remains accessible within a system.

We consider the following Lifespans:

• Ephemeral data is short-lived, often lasting only for the duration of a single request.
Examples include One-Time Passwords or user credentials submitted during a login
attempt.

• Session data persists for the duration of an active interaction and is used to main-
tain state or context. Examples include temporary password reset tokens.

• Cached data is temporarily stored to improve system performance and reduce
latency by avoiding repeated retrieval or computation. Examples include configu-
ration retrieved from an Identity Provider in OIDC.

• Configuration data consists of system settings that change infrequently. Examples
include private keys or database passwords.

• Persistent data is long-lived and stored for extended periods. Examples include
user information and transaction histories.

The Data Properties are primarily for informational purposes and can be useful in
software security analysis approaches such as threat modeling. In addition, they can
be used to define appropriate countermeasures or security practices for handling data
based on their assigned Data Properties [22]. For example, data classified as Internal,
Secret, and Configuration should be stored using dedicated secret management systems
or encrypted [Bas+22]. Similarly, data classified as Sensitive or Secret and Persistent
can be encrypted to mitigate threats if the data storage is compromised.

33

5. Security Design Pattern Description Metamodel

Figure 5.8.: The components and relationships of Data Rules.

5.4.2. Data Rules
To ensure system security, data must adhere to specific rules that address both syntax
(data format) and semantics (data meaning) [DJS19]. These rules are typically enforced
during input validation to mitigate threats such as SQL injection attacks [DJS19]. This
section introduces Data Rules, which allow syntactic and semantic requirements to be
integrated into the Data View of an SDP.

Definition 5.18 (Data Rule). A Data Rule specifies a syntactic or semantic condition
that a value must satisfy. It consists of a unique and descriptive name and the following
components, as shown in Figure 5.8:

• Parameters: A set of parameters, each with a unique name and a description.

• Condition: A Condition defined using a regular expression, a comparison, or a
simple description. In the Condition, the data to which the Data Rule applies is
denoted by “val”, and the Parameters are referred to by their names.

• Supported Data Properties: The Data Properties that the data must have for the
Data Rule to be applicable.

For example, the “Unique” Data Rule ensures data consistency by requiring that each
data entry is uniquely identifiable within a data store. This Data Rule is applicable to
all Data Properties except for Ephemeral data, due to its short-lived nature. It has no
Parameters, and the Condition states that no two data entries with the same “val” are
allowed in the same data store.

By explicitly incorporating data requirements into the Data View, Data Rules address
a common issue in existing security patterns, which often define conditions informally
or incompletely [vYJ18]. This can cause them to be overlooked and lead to security
vulnerabilities.

5.4.3. Data Groups and Data Fields
This section defines the elements used to model data and explains how these elements
relate to Data Properties and Data Rules.

34

5.4. Data Viewpoint

Figure 5.9.: Example Data Groups required during registration, illustrating Origin Fields
(OFs), a Reference Field (RF), and a Transformation Field (TF).

Definition 5.19 (Data Group). A Data Group defines a general context for related
information. It acts as a container for specific data relevant to that context. Each Data
Group must have a unique and descriptive name.

For example, the “Registration Data” Data Group shown in Figure 5.9 represents data
provided by a user during registration, while the “User Data” Data Group represents
the internally stored user information.

Definition 5.20 (Data Field). A Data Field represents a specific piece of data within a
Data Group. Each Data Field must have a unique and descriptive name within its Data
Group and must be classified by a concrete type. These types are the following:

• Origin Field: Represents the initial occurrence of data. This means the data is
provided by a Role, or defined as a constant value.

• Reference Field: Represents data that originates in other Data Groups but is
relevant in the context of the current Data Group.

• Transformation Field: Represents data derived by applying a Function to one or
more Data Fields. The Function must have a unique name and should include a
description, pseudocode, or practical examples to illustrate the intended transfor-
mation.

For example, in Figure 5.9, the “email_address” and “password” Origin Fields (labeled
as OF) in the “Registration Data” Data Group indicate that the user provides both email
address and password as input during the registration process.

The “email_address” Reference Field (labeled as RF) in the “User Data” Data Group
shows that the email address is stored internally and originates from the “Registration
Data” Data Group.

The “password_hash” Transformation Field (labeled as TF) indicates that a password
hash function must be applied to the password from the “Registration Data” Data
Group. The function can provide practical examples and guidance on how to compute
a password hash, as shown in Appendix A.5.1.

Data Groups and Data Fields follow the structure of Unified Modeling Language
(UML) class diagrams, where Data Groups correspond to classes and Data Fields corre-
spond to attributes. To effectively model relationships between Data Fields, Reference

35

5. Security Design Pattern Description Metamodel

Figure 5.10.: Relationship between the different types of Data Fields.

Figure 5.11.: Relationship between Data Groups, Data Fields, Data Properties, and Data
Rules.

and Transformation Fields are used to extend modeling capabilities. Both Reference
and Transformation Fields allow dependencies between different Data Groups and Data
Fields to be clearly shown, as illustrated in Figure 5.10, which is critical for understand-
ability and maintaining security.

For example, in PBA, storing passwords in plaintext is highly insecure but still occurs
in practice [21; BLL15]. By introducing a Transformation Field, as shown in Figure 5.9,
the relationship between the password and the password hash can be clearly modeled.

Both Data Origin and Lifespan are assigned to Data Groups, as shown in Figure 5.11,
and apply to all Data Fields within that Data Group. In contrast, Security Levels and
Data Rules are assigned to Data Fields, as they can differ between Data Fields within a
Data Group.

The handling of Security Levels and Data Rules differs for Reference and Transforma-
tion Fields. In the case of a Reference Field, the Security Level and the Data Rules must
be the same as those of the referenced Data Field. In the case of a Transformation Field,
both Security Level and Data Rules can change depending on the applied function.

For example, a “credit_card_number” Origin Field is classified as Secret. However, a
“masked_credit_card_number” Transformation Field that takes the “credit_card_number”
Data Field as input and removes all but the last four digits can be classified as Sensitive.

Data Groups support inheritance, aggregation, and composition. In these relation-
ships, the involved Data Groups must share the same Data Origin and Lifespan to
maintain consistency. This restriction aligns with the definition of Data Groups repre-

36

5.5. Behavioral Viewpoint

Figure 5.12.: High-level elements and relationships of the Behavioral Viewpoint.

Figure 5.13.: Components and relationships of an Event and Error Event.

senting a particular context, as Data Groups with different Data Origins or Lifespans
likely describe different contexts. In addition, this approach imposes no limitations since
additional Data Groups can be defined as needed.

5.5. Behavioral Viewpoint
The two main components of the Behavioral Viewpoint, shown in Figure 5.12, are Events
and Behavior. Events define specific situations that can occur within the Behavior,
while the Behavior details the interactions between Roles. The following section first
introduces Events and then explains how to model Behavior.

5.5.1. Events
Definition 5.21 (Event). An Event captures an important situation within the modeled
Behavior. It is defined by a name and a description that details the situation in which
it occurs. An Event contains an optional set of Security Considerations that specify
potential security issues related to the Event and highlights important aspects relevant
to handling the Event.

For example, in a PBA SDP, a “Login Successful” Event occurs when a user has
successfully authenticated to the system. The Event has the following Security Consid-
eration: “A login from a new device or location may indicate an unauthorized access
attempt and users can be notified”.

37

5. Security Design Pattern Description Metamodel

Figure 5.14.: Behavioral Model consisting of multiple Behavioral Modeling Elements.

Definition 5.22 (Error Event). An Error Event is a special Event that indicates the
occurrence of an unexpected or undesired situation. It contains an optional Fallback
Behavior that can protect against the situation. A Fallback Behavior must have two
possible outcomes: either it successfully mitigates the situation, allowing the Behavior
to continue, or it fails, typically resulting in an error message.

For example, a “System Unavailable” Error Event indicates that a system is unrespon-
sive when a Role attempts an action. The “Retry with Exponential Backoff” Fallback
Behavior specifies that the action should be retried a number of times, with increasing
time in between. Either the action succeeds and the Behavior that caused the Error
Event can continue, or it ends.

Events, as shown in Figure 5.13, allow important situations to be defined indepen-
dently of specific occurrences within the modeled Behavior. This separation enables an
Event to be used in multiple locations within an SDP, thereby reducing duplication and
synchronization issues. In addition, Events can serve as a checklist for architects, where
each Security Consideration must be addressed if relevant in the context of the architect.
Finally, Events can guide the implementation of specific log entries within the architects
system.

5.5.2. Behavior
The Behavioral View of an SDP models the interactions between the Roles defined in
the Conceptual View. We adapt the distinction between a model and its elements as
described by Sabau [Sab24], but focus on behavioral aspects as shown in Figure 5.14.

Definition 5.23 (Behavioral Model). A Behavioral Model (BM) represents the behavior
of a specific aspect of an SDP, detailing how Roles interact to implement Policies.

Definition 5.24 (Behavioral Modeling Element). A Behavioral Modeling Element (BME)
is a fundamental component in a BM that represents interactions, conditions, or flows
that illustrate the dynamic behavior of Roles.

For example, in a PBA SDP, a “Registration” BM models the registration process
and includes a “check password strength” BME that models the interaction between a
“Registrar” Role and a “Password Policy Verifier” Role.

A BM can be any type of behavioral diagram, such as UML sequence and activity dia-
grams. This is important because different diagrams are suitable for different scenarios.
The BMEs include all possible model elements that represent interactions, conditions, or
flows, such as messages in sequence diagrams or activity and decision nodes in activity
diagrams.

38

5.5. Behavioral Viewpoint

Figure 5.15.: Behavioral Modeling Element models behavior of Roles that can use Data
Elements, reference other Behavioral Models, and can cause Events.

In addition to the modeling rules specific to the type of diagram of a BM, we extend
BMEs by allowing them to use Events, Data Elements, and references to other BMs, as
shown in Figure 5.15.

Event Integration

Explicitly modeling exceptional cases within a BM can reduce readability without adding
significant value because exceptional cases often result in an error message and the end of
the behavior. Moreover, in the SDPs we developed, BMs frequently contained numerous
exceptional cases.

Therefore, a BME can model exceptional cases by referencing Error Events. These
Error Events describe the exceptional cases that can occur within a BME, including
Security Considerations for handling the Event. In addition, the optional Fallback Be-
havior allows the BM to continue normally if it is successful. By indicating exceptional
cases through references to Error Events, we increase the readability of BMs and ensure
that exceptional cases are handled consistently.

For example, in a PBA SDP, a “Verify that password is strong” BME is modeled in
both “Registration” and “Password Reset” BMs. In both cases, a “Password Policy Vio-
lation” Error Event is referenced, which defines that a provided password does not meet
the system’s password requirements and that users should be advised to use stronger
passwords. These references show that these BMEs can result in an exceptional case,
and the Event itself describes what causes it and what should be done.

However, to not limit what can be modeled, exceptional cases can still be explicitly
modeled in a BM if necessary. Note that general Events, such as a “Successful Regis-
tration” Event, can also be referenced from a BME to indicate an important situation.

Data Element Integration

Roles often send, receive, or use Data Elements, and since BME’s model the behavior of
Roles, this applies to them as well. For example, in a PBA SDP, to login, a “User” Role
needs to send an email address and password, and a “Login Manager” Role needs to

39

5. Security Design Pattern Description Metamodel

Figure 5.16.: Examples consisting of various Architectural Models and Architectural
Modeling Elements that implement an SDP Solution. Each Example uses
at least one Architectural Pattern.

retrieve the stored password hash for the email address from the “User Manager” Role.
Since the Data View of an SDP already defines the Data Elements, a BME can ref-

erence these Data Elements. These references can be to an entire Data Group or to
specific Data Fields within a Data Group. The advantage of this approach is that it
clearly shows where Data Elements are used within the BMs, and the Data Properties
and Data Rules are included directly in the BMEs.

Behavioral Model Integration

A BME may reference another BM for better understanding and readability. For ex-
ample, in an OIDC SDP, verifying the token issued by the identity provider requires
multiple steps and is needed in multiple BMs. By introducing a separate BM for token
verification that is then referenced when needed, we reduce duplication and improve
readability.

However, when a BME references a BM, there are considerations. First, the BME
can cause any Events that the referenced BM may cause. Second, both BMs should
use the same diagram type or compatible types that can be reasonably combined. For
example, referencing an activity diagram within a sequence diagram is reasonable, while
referencing a state machine is not.

5.6. Structural Viewpoint
The Structural Viewpoint defines how to represent Examples that show the implemen-
tation of the SDP Solution within an architecture. These Examples serve as starting
points, allowing architects to adopt specific components and discuss the underlying de-
sign choices.

Definition 5.25 (Architectural Model). An Architectural Model (AM) represents the
static or dynamic structure of specific aspects of the SDP Solution.

Definition 5.26 (Architectural Modeling Element). An Architectural Modeling Element
(AME) is a fundamental component of an AM [Sab24].

40

5.6. Structural Viewpoint

Figure 5.17.: Architectural Modeling Elements can implement the responsibilities de-
fined by Roles.

We adapt the architectural concept model defined by Sabau [Sab24]. In Sabau’s
concept model, a design solution aggregates AMs and AMEs that fulfill an architectural
requirement. In our model, a design solution corresponds to an Example that implements
an SDP’s Solution, as shown in Figure 5.16.

Each Example uses at least one architectural pattern, such as microservice or layered
architectural patterns. This enables architects to use Examples that align with their
chosen architectural patterns and ensures that the Examples adhere to best practices.

The Structural Viewpoint does not restrict how Examples are represented in terms
of AMs and AMEs. An AM can be modeled using UML diagrams, such as component
diagrams for representing the static structure and sequence or activity diagrams for
representing the dynamic structure. Alternatively, other visualization models can be
used, such as the C4 Model1.

5.6.1. Role Realization

While there are no restrictions on how AMs can be modeled, what needs to be modeled
is defined by the SDP Solution, i.e., the Role, Data, and Behavioral Views of an SDP.
To capture this relationship, AMEs can implement Roles, as shown in Figure 5.17.
For example, in a PBA SDP, a “Password Security Component” AME can implement
the “Password Policy Verifier” Role, and the “Hasher” Role, which is responsible for
computing password hashes.

Implementing Roles is sufficient because the Behavioral View models the interactions
of Roles and uses the Data Elements from the Data View. Therefore, if two Roles
interact in a Behavioral Model and exchange some Data Elements, this must also be
represented in an AM. For example, in a PBA SDP, a “Reset Controller” AME im-
plements the “Password Resetter” Role, responsible for facilitating the password reset.
Since the “Password Resetter” Role requires the “Password Policy Verifier” Role to ver-
ify that a password is strong, the “Reset Controller” AME and the “Password Security
Component” AME must also interact.

The relationship between AMEs and Roles is motivated by Rozanski and Woods
[RW11], who specify that an AME should consist of a well-defined set of responsibil-
ities, clearly defined boundaries, and interfaces that describe the functionality an AME
provides to other AMEs. Since a Role encapsulates a set of responsibilities, mapping
Roles to AMEs specifies the responsibilities that make up AMEs.

1https://c4model.com/

41

https://c4model.com/

5. Security Design Pattern Description Metamodel

In addition, the Requires relationship between Roles, which defines that a Role de-
pends on another Role to fulfill its responsibilities, indicates what interfaces an AME
must provide. Consider a Role R1 that is required by a Role R2. Then the AME that
implements Role R1 must provide at least the functionality required by Role R2. For
example, the “Password Security Component” AME must allow other AMEs to send a
password to verify that it is strong.

As specified in Section 5.3, multiple AMEs can implement a Role, or one AME can
implement multiple Roles. This is because Roles are architecture independent and simply
define the responsibilities and interactions that exist within an SDP. For example, in a
PBA SDP, it is not practical to have different Roles for each possible client type, such
as mobile or web. However, within an architecture, the distinction between client types
is relevant and can be represented by two AMEs that implement the appropriate Role.

42

6. Application Example of Usage Aspect

This chapter evaluates the SDPDM by presenting practical examples that illustrate the
concepts introduced in Chapter 5.

We present the usage aspect of two OpenID Connect (OIDC) SDPs and one Password-
based Authentication (PBA) SDP, focusing on their solutions and examples. The other
information, such as context and problem, is mentioned briefly because it is commonly
used within patterns and has proven effective [Hey+07]. The first OIDC SDP provides a
comprehensive overview of the different components of the SDPDM. The second OIDC
SDP illustrates the need to have multiple SDPs for a single SSP, through a comparison
with the first pattern. Finally, the PBA SDP demonstrates the applicability of the
SDPDM beyond a single security solution. For an introduction to OIDC and PBA, see
Section 2.2.1.

To effectively demonstrate the various concepts, only a subset of the usage aspects of
the SDPs are presented, while the full versions are available in Appendix A.

6.1. OpenID Connect Security Design Pattern 1
The summary of this SDP is omitted as it closely resembles Definition 2.11. Instead,
Figure 6.1 illustrates the high-level flow of the Authorization Code Flow used in this
SDP, which goes beyond the general OIDC definition. Note that Figure 6.1 does not
conform to the SDPDM Viewpoints but is provided for understandability. The following
sections introduce the context and problem, followed by the different views.

6.1.1. Context
In this SDP, the Context is defined as follows:

• The system must restrict access to protected resources or actions, making them
available only to authenticated users.

• Users interact with the system from clients equipped with browser and input ca-
pabilities (e.g., mobile devices) to access protected resources or perform protected
actions.

• Communication between users, the system, and the Identity Provider (IdP) takes
place within a protected environment. A protected environment refers to an en-
vironment that is not publicly accessible and that entities must authenticate to
access.

43

6. Application Example of Usage Aspect

Figure 6.1.: High-level flow of the OIDC Authorization Code Flow used by the SDPs.

This SDP uses the identity token to authenticate subsequent requests, rather than
using an internal token such as a session identifier. The restriction to protected environ-
ments underscores that using an identity token is less secure because the Relying Party
(RP) cannot control the contents and lifetime of the token.

6.1.2. Problem
In this SDP, the Problem is defined as follows:

• Malicious attackers may impersonate legitimate users to gain unauthorized access
to protected resources or perform actions on their behalf.

• Requiring separate authentication for multiple applications degrades the user ex-
perience and increases the likelihood of weak passwords and password reuse.

• Managing separate user accounts for different applications complicates user on-
boarding and offboarding within organizations.

The last point relates to the expected use of this SDP in organizational environments
where centralized user management is required for consistent and efficient handling of
user accounts.

6.1.3. Conceptual View
The following introduces the two Policies considered in the SDP and the Roles that
ensure their secure application.

Policy (Identity Token Verification). Access to protected resources is granted only to
users who present a valid identity token issued and signed by the trusted IdP. The RP

44

6.1. OpenID Connect Security Design Pattern 1

must verify that the identity token received from the users is in the expected format,
has a valid signature, and contains valid claims, such as that the token has not expired.

This Policy is required because the identity token authenticates subsequent requests.

Policy (OIDC Authentication). During the authentication process, only the user who
initiated the authentication at the RP and successfully authenticated to the expected
IdP is allowed to receive and use an identity token. The RP must verify that the identity
token received from the IdP is in the expected format, has a valid signature, and contains
valid claims, such as that the token has not expired. In addition, State, Nonce, and Code
Verifier values are sent in the authentication request and must be validated to protect
against attacks.

• The State is echoed by the IdP to ensure that the response matches the original
authentication request, mitigating Cross-Site Request Forgery (CSRF) attacks.

• The Nonce is included in the identity token to prevent replay attacks by ensuring
the token is unique to the authentication request.

• The Code Verifier is sent when exchanging the authorization code for tokens,
preventing attackers from using stolen authorization codes.

In the following, the “Identity Token Verification” Policy is referred to as “Token”,
and the “OIDC Authentication” Policy as “Login”.

The following introduces some of the Roles visualized in Figure 6.2 and their Role
Extensions. This includes the Policy Points that define the responsibilities a Role has in
the context of a Policy. The complete Conceptual View is available in Appendix A.3.4.

The “Subject” Role is responsible for initiating authentication at the RP, authenti-
cating to the IdP, and forwarding the authorization code to the RP upon successful
authentication with the IdP. It has the following Role Extensions associated with it:

• Uncontrolled: The Role may act maliciously, for example, by attempting to access
protected resources using an invalid or modified identity token.

• Secret Storage Tag: The Roles stores a session identifier associated with the inter-
nally stored state, code verifier, and nonce. In addition, after successful authenti-
cation, the identity token is stored because it is used for subsequent requests.

The “Access Manager” Role is responsible for forwarding authentication requests to
the “Authentication Manager” Role and ensuring that identity tokens are valid when
users access protected resources. It requires the “Token Validator” Role to validate
identity tokens. It has the following Role Extensions associated with it:

• Abstract: The Role references the Single Access Point SSP, which defines how to
protect resources based on authentication information such as an identity token.

• Enforcement Point (EP) of the “Token” Policy: The Role enforces that only au-
thenticated users can access protected resources.

45

6. Application Example of Usage Aspect

Figure 6.2.: Conceptual View of the OIDC SDP. Each Role is represented by a box, with
Abstract Roles shown using dotted lines. Roles not explicitly marked as
Uncontrolled are considered Controlled. The “Identity Token Verification”
Policy is referred to as “Token”, and the “OIDC Authentication” Policy as
“Login”.

The “Authentication Manager” Role is responsible for facilitating the authentication
process and validating the state and nonce values. It requires the “Authentication Re-
quest Generator” to generate the authentication request that forwards a user to the IdP
and includes the state, code verifier, and nonce. It has the following Role Extensions
associated with it:

• Session Storage Tag: The Role stores the state, code verifier, and nonce in a session
object, as they are needed for validation after successful authentication at the IdP.

• EP of the “Login” Policy: The Role only returns an identity token if authentication
is successful.

• Decision Point (DP) of the “Login” Policy: The Role validates that the stored
state and nonce values match their counterparts during the token exchange.

The “Identity Provider Configuration Manager” Role is responsible for retrieving the
configuration required for all interactions with the IdP and the JSON Web Key Set
(JWKS), which contains the public keys needed to verify the identity tokens. This Role
is critical in reducing configuration issues, as the system operator only needs to provide
minimal configuration; the rest is dynamically retrieved from the IdP. In addition, dy-
namic retrieval of public key information enhances security, as the IdP can frequently
rotate its private key without requiring changes to the RP. It has the following Role
Extensions associated with it:

46

6.1. OpenID Connect Security Design Pattern 1

• Cache Storage Tag: Both the IdP configuration and the JWKS need to be cached
to prevent performance degradation caused by requesting them for every operation.

• Information Point (IP) for the “Token” and “Login” Policy: The Role provides
the configuration required for each request to the IdP and the JWKS required to
validate identity tokens.

The “Identity Provider” Role is responsible for core OIDC functionalities, such as
exchanging authorization codes for identity tokens. In addition, it provides its configu-
ration and JWKS. It has the following Role Extensions associated with it:

• Abstract: The design of the IdP is irrelevant as long as it provides the required
functionality.

• Uncontrolled: Responses must be validated to ensure authenticity and integrity.
However, the IdP must be trusted because it can issue valid tokens for any user.

• DP of the “Login” Policy: The Role verifies that the code verifier sent during
the token exchange matches the code challenge sent in the initial authentication
request, thereby protecting against code interception attacks.

• IP of the “Login” Policy: The Role provides the configuration and JWKS, and
issues identity tokens that confirm successful authentication.

6.1.4. Data View
This section presents some Data Elements with their Data Properties, Data Rules, and
relationships; the complete Data View is provided in Appendix A.3.5.

The Data Elements shown in Figure 6.3 model the data required to request authen-
tication from the IdP. The “OIDC Session Data” Data Group is assigned the Internal
Data Origin because it is provided by the Controlled “Authentication Request Gener-
ator” Role. In addition, the state, nonce, and code verifier required for validation are
stored within a session object, so the Data Group is assigned the Session Lifespan.

The “Cryptographically Secure Pseudorandom Number Generator” (CSPRNG) Data
Rule specifies that generated values must be unguessable by using a CSPRNG to generate
them. The Data Rule requires an “Entropy” Parameter, where entropy is a measure
of the randomness or unpredictability of an output [VH14]. For example, an entropy
of 128 bits means that there are 2128 possible unique outcomes, making it practically
impossible to guess. Practical examples can simplify the implementation, such as the
following Python example: csprn = secrets.token_urlsafe(nbytes=16)

The “OIDC Authentication Data” Data Group models the data required by the subject
to authenticate at the IdP. The Data Group is classified as Ephemeral because it is
only used to initiate the authentication, and as Internal because it is generated by the
Controlled “Authentication Request Generator” Role.

The “authorization_endpoint” Reference Field defines the authentication endpoint of
the IdP, and the “redirect_uri” Reference Field defines where the subject is redirected
after successfully authenticating to the IdP.

47

6. Application Example of Usage Aspect

Figure 6.3.: Subset of the OIDC Data View that illustrates the data required to request
authentication from the IdP. Security Levels are encoded as follows: Secret
(-), Sensitive (#), and Public (+).

Both Data Fields are Reference Fields because they are required in the context of
the “OIDC Authentication Data” Data Group, but are defined in a different context.
The “authorization_endpoint” Reference Field is dynamically retrieved from the IdP,
as indicated by its reference to the “Identity Provider Dynamic Config Data” Data
Group with its External Data Origin. The “redirect_uri” Reference Field belongs to
the internal configuration, as indicated by its reference to the “Identity Provider Config
Data” Data Group with its Internal Data Origin and Config Lifespan.

In OIDC, a code challenge based on the code verifier can be sent to the IdP during
the initial authentication request. Then, when an authorization code is exchanged for
tokens, the code verifier is sent along. The IdP verifies that the code verifier matches the
code challenge sent during authentication. This ensures that if an attacker gains access
to the authorization code, they cannot exchange it for tokens without the code verifier.
The code challenge can be the same as the code verifier which is less secure because an
attacker who intercepts it can use it directly. In contrast, using a hash computed from
the code verifier prevents this, since it is not feasible to determine the code verifier from
the hash in reasonable time [SBA15].

This information is critical for security and is provided in the Data View by the
“code_challenge” Transformation Field, which uses the “SHA-256” Function with the
“code_verifier” Origin Field as input. The “SHA-256” Function is defined as follows:
BASE64URL-ENCODE(SHA256(code_verifier)) [SBA15].

The “code_challenge” Transformation Field demonstrates that the Security Level can
change based on the applied Function. The “code_verifier” Origin Field is classified
as Secret because an attacker can use it directly, along with the authorization code,

48

6.1. OpenID Connect Security Design Pattern 1

Figure 6.4.: Subset of the OIDC Data View that illustrates the response after a successful
token exchange at the IdP. Security Levels are encoded as follows: Secret
(-), Sensitive (#), and Public (+).

to obtain tokens. In contrast, the “code_challenge” Transformation Field is classified
as Sensitive because it is not feasible to determine the corresponding code verifier in
reasonable time.

The Data Elements shown in Figure 6.4 model the data that is relevant after a suc-
cessful exchange of an authorization code for tokens at the IdP.

The “Token Result Success Data” Data Group models the data returned by the IdP,
so it is assigned the External Data Origin. In addition to the “identity_token” Origin
Field, it includes a “refresh_token” Origin Field, which allows requesting a new identity
token when the current one has expired, and an “access_token” Origin Field, which
may allow requesting additional user information at the IdP. The “Opaque” data type
indicates that the structure of both tokens is unknown, as it depends on the IdP.

The “User Data” Data Group models the data of the local user that is stored persis-
tently, as indicated by the Persistent Lifespan. It consists of an “id” Origin Field, the
local user identifier, and the “idp_id” Reference Field, the user identifier within the IdP.
This Reference Field clearly shows that the local user is associated with the IdP via the
“sub” Origin Field of the identity token provided by the IdP. The “Unique” Data Rule,
applied to both identifiers, specifies that no two data entries with the same value are
allowed within a data store.

The “Identity Token Data” Data Group models the structure of the identity token and
is associated with both the “Token Result Success Data” and “User Request Data” Data
Groups. This aggregation is necessary because the identity token is provided by the IdP
after a successful token exchange and sent by the user to request protected resources.

49

6. Application Example of Usage Aspect

Figure 6.5.: Subset of “Initial Authentication” Behavioral Model starting after the sub-
ject authenticates to the IdP. Log Symbols indicate Events, while Exclama-
tion Points represent Error Events. Indexes are provided for reference in
the text.

6.1.5. Behavioral View

This section presents a part of the “Initial Authentication” Behavioral Model (BM),
shown in Figure 6.5, which begins after the “Subject” Role has successfully authenticated
to the IdP and must now exchange the authorization code for tokens. The complete
Behavioral View is provided in Appendix A.3.6.

An exclamation point next to a label indicates an Error Event, which means that an
exceptional case can occur in that step. Each of these exceptional cases could be modeled
with a UML break fragment that represents the behavior to be executed instead of the
normal flow [OMG23].

For example, in step [1] of Figure 6.5, an exceptional case can occur if no session
exists for a given session identifier. This can be modeled explicitly as shown in Fig-

50

6.1. OpenID Connect Security Design Pattern 1

Figure 6.6.: Example of modeling an exceptional case explicitly instead of using an Error
Event.

ure 6.6. However, most exceptional cases, including this one, simply propagate back to
the “Subject” Role, offering limited value in explicit modeling.

Error Event (Response State Mismatch). The state parameter in the authentication
response does not match the stored state. Security Consideration: A mismatched state
parameter can indicate a CSRF attack, where an attacker attempts to trick a user into
exchanging the attacker’s authorization code for tokens.

Step [2] of Figure 6.5 ensures that the state value received from the “Subject” Role
matches the state value stored internally. The “Response State Mismatch” Error Event
indicates that this step can result in an exceptional case and describes the scenarios in
which it can occur.

In addition, step [2] references two Data Fields that show which values are being
compared. The “response state” refers to the “state” Origin Field of the “Success
Response Data” Data Group, which models the response from the IdP after a successful
authentication. The “session state” refers to the “state” Origin Field of the “OIDC
Session Data” Data Group, shown in Figure 6.3, which is the internally stored state.

Error Event (Invalid Token Signature). The signature of the identity token does not
match the computed signature. Security Consideration: An invalid token signature can
indicate that an attacker has tampered with the identity token. Fallback Behavior: If
the token header does not include a public key identifier, and the JWKS contains only
one public key, refresh the JWKS cache and retry the operation once.

Step [3] of Figure 6.5 references a separate BM defined in Appendix A.3.6. Modeling
identity token validation in a separate BM is advantageous because it involves several
steps that would distract from the focus of initial authentication. In addition, identity
token validation is required to authenticate subsequent requests, so a separate BM must
be provided anyway. Finally, identity token validation is also required in another BM,
so using a separate BM reduces duplication.

The exclamation point for step [3] indicates that the referenced BM can cause excep-
tional cases, such as an “Invalid Token Signature” Error Event. The Fallback Behavior

51

6. Application Example of Usage Aspect

Figure 6.7.: Static structure of a microservice architecture implementing the OIDC
Roles. Roles are represented by dashed boxes. Each Architectural Mod-
eling Element within a dotted box implements a part of a Role.

for this Event allows token validation to succeed even if the initial signature verification
fails. This can happen if the IdP has rotated its private key, but the JWKS cache still
contains the old public key. In this case, refreshing the JWKS cache by requesting the
latest public key from the IdP may resolve the problem.

The log file icons indicate Events that highlight important non-exceptional cases within
the BM. These Events specify which log entries may be used in an architect’s system
and provide possible security issues related to the Events.

For example, in step [4] of Figure 6.5, the “User Created” and “User Information
Updated” Events are referenced. These Events can be used to detect deviations from
typical behavior in a system, such as unusually frequent registrations. Another example
is step [5] of Figure 6.5, which refers to a “Successful User Authentication” Event, where
Security Considerations suggest notifying users of authentication by an unknown device.

52

6.1. OpenID Connect Security Design Pattern 1

6.1.6. Structural View
This section presents an Architectural Model (AM), illustrated in Figure 6.7, that mod-
els the static structure of an Example using the Microservice and Publish-Subscribe
architectural patterns. The Microservice architectural pattern specifies the division of a
system into multiple independently deployable services, each representing a domain or
subdomain [RF20]. The Publish-Subscribe architectural pattern specifies that services
can asynchronously publish messages to a channel, while other services receive those
messages by subscribing to the channel [Ric18].

Roles within the AM are visualized by dashed boxes, and each Architectural Modeling
Elements (AMEs) within a dashed box implements a part of the Role.

The “IdP Configuration Service” demonstrates that a Role can be implemented by
multiple AMEs. The “IdP Config Publisher” AME retrieves the configuration from the
IdP and publishes it. The “JWKS Publisher” AME retrieves the JWKS from the IdP
and publishes it. The “Config and JWKS Cache” AME stores the configuration and
JWKS locally and ensures that they are only used from the cache if they are valid.
Together, these AMEs implement all of the responsibilities of the “IdP Configuration
Manager” Role.

A message broker is used because both the “Token Validation Service” and the “Au-
thentication Service” require the IdP configuration, eliminating the need for each to
individually request and cache the configuration. The “IdP Configuration Service” pro-
vides functionality for the other services to trigger the republication of the configuration
and JWKS, or to request that they be fetched again from the IdP. This is required if
the identity token validation in the “Token Validation Service” fails due to an invalid
signature, which may be caused by an outdated public key.

The “Authentication Controller” AME implements the “Authentication Manager”
Role, so it is responsible for facilitating the authentication process, including storing
the authentication session in a dedicated data store. This illustrates that the Session
Storage Tag assigned to the Role translates to a data store in the AM.

6.1.7. Consequences
This SDP has the following Consequences:

• Strength (Maintainability): There is no need for dedicated token management, in-
cluding issuance, storage, and invalidation. In addition, using a single IdP reduces
the complexity of configuration and user management.

• Weakness (Security, Flexibility): The identity tokens are exposed directly to the
client, allowing an attacker to gain access to the token. This is problematic because
an identity token can contain sensitive information. In addition, the system has
no control over the lifetime of an identity token, so a compromised token may be
valid for an extended period of time.

Similar to the context introduced in Section 6.1.1, which restricts the use of the SDP to

53

6. Application Example of Usage Aspect

(a) Subset of Conceptual View of SDP 1. (b) Subset of Conceptual View of SDP 2.

Figure 6.8.: Comparison between the Conceptual View of OIDC SDP 1 and SDP 2.

protected environments, the Consequences highlight the drawbacks of using the identity
tokens instead of an internal token.

6.2. OpenID Connect Security Design Pattern 2

This section introduces the second OIDC SDP, focusing on the differences from the
previously discussed SDP. To do this, each section introduces a change from the previous
SDP and then explains the impact of that change on each part of the SDP, including the
Context, Problem, and Views. This demonstrates the need for and benefits of considering
multiple SDPs for a single SSP.

Internal Token Usage

This SDP uses an internal token instead of using the identity token directly to authen-
ticate subsequent requests, resulting in the following changes.

The Context no longer includes the restriction that communication between users, the
system, and the IdP must occur within a protected environment. This is because the
system has full control over the contents of the internal tokens, allowing sensitive data to
be reduced to the minimum required, such as a user identifier. In addition, the system
can use shorter token lifetimes, thereby mitigating the impact of a compromised token.
The rest of the Context and Problem remains the same.

The “Identity Token Verification” Policy is excluded because token management, in-
cluding token validation for subsequent requests, is handled by a separate SDP. The
“OIDC Authentication” Policy is extended to specify that an internal token is issued
upon successful authentication.

An additional Abstract “Token Manager” Role is introduced that references the Token-
based Authentication ASSP introduced in Section 2.3.3, as illustrated in Figure 6.8b.
The “Token Manager” Role is responsible for issuing tokens, which can be stateful (e.g.,
a session identifier) or stateless (e.g., a JWT).

The “Authentication Manager” Role requires the new “Token Manager” Role to issue
a token upon successful authentication. In addition, the “Access Manager” Role now

54

6.2. OpenID Connect Security Design Pattern 2

(a) Final steps of “Initial Authentica-
tion” Behavioral Model of SDP 1.

(b) Final steps of “Initial Authentication” Behavioral
Model of SDP 2.

Figure 6.9.: Comparison of final steps in the “Initial Authentication” Behavioral Model
of OIDC SDP 1 and SDP 2.

requires the “Token Manager” Role to handle token validation, replacing the previously
required “Token Validator” Role.

In the Data View, the “User Request Data” Data Group, shown in Figure 6.4, and the
“Token Refresh Data” Data Group are removed. This is because both Data Groups are
used in the previous SDP to request a new identity token when it expires, but since this
SDP only uses the identity token for initial authentication, they are no longer needed.

In the Behavioral View, the “Refresh Identity Token” BM is excluded because it
was only needed to obtain a new identity token when it expired. In addition, the
“Token Manager” Role is included in the “Initial Authentication” BM. It is needed
by the “Authentication Manager” Role to request a token, which is then returned to the
“Subject” Role and stored securely, as shown in Figure 6.9b.

In the Structural View, shown in Figure A.10, the separate “Token Validation Service”
used in Figure 6.7 is integrated into the “Authentication Service” because it is no longer
needed by the “Access Manager”. In addition, a “Token Management Service” that
implements the new Abstract “Token Manager” Role is included. It is used by the
“Authentication Controller” to request tokens for users and by the “Access Manager” to
validate tokens.

Private Key JWT

This SDP uses the Private Key JWT authentication method instead of the Client Secret
Basic method. In the Client Secret Basic method, a shared secret is used to authenticate
the RP to the IdP and is sent with the token requests. In the Private Key JWT method,
a JWT signed by the RP using a private key is sent with the token request, allowing the
IdP to validate authenticity using the RP’s public key. This approach enhances security
by eliminating the need for a shared secret and ensuring the authenticity and integrity
of the token request [Fet21]. This results in the following changes.

55

6. Application Example of Usage Aspect

Figure 6.10.: Part of the OIDC Data View that models the token exchange data using
a signed JWT. Newly introduced Data Groups and Data Fields are high-
lighted in green and italics. Data Fields excluded from the previous SDP
are highlighted in red and underlined. Security Levels are encoded as fol-
lows: Secret (-), Sensitive (#), and Public (+).

The Context, Problem, and Policies remain the same, but the “Token Exchanger” Role,
responsible for exchanging an authorization code for tokens, is now also responsible for
generating the signed JWT required for the token exchange.

In the Data View, within the “Identity Provider Config Data” Data Group, the shared
secret represented by the “client_secret” Origin Field is replaced by the “private_key”
and “public_key” Origin Fields, as illustrated in Figure 6.10.

Furthermore, the “Token Request Data” Data Group previously contained a “client_
secret” Reference Field. In this SDP, this Reference Field has been replaced by the
“client_assertion” Transformation Field, as shown in Figure 6.10. The input for the
“jwt_encode” Function is the “Client Assertion Data” Data Group that models the JWT
payload, and the “private_key” Data Field needed to compute the signature. The
Function uses the input to create a signed JWT; Appendix A.4.5 provides a practical
example.

In the Behavioral View, the creation of the signed JWT is included as a separate step
of the “Token Exchange” Role in the “Initial Authentication” BM shown in Figure 6.5.

In the Structural View, the static structure is not affected by the private key JWT
authentication method. However, the dynamic structure that models the token exchange
needs to incorporate the generation of the signed JWT.

6.3. Password-based Authentication SDP
This PBA SDP demonstrates that the SDPDM introduced in Chapter 5 can be applied
beyond OIDC authentication. It is based on the information from the PBA pattern by

56

6.3. Password-based Authentication SDP

Figure 6.11.: Subset of the Conceptual View that shows the Roles responsible for securely
applying the “Password Reset” Policy.

Van den Berghe et al. [vYJ22c], but we have adapted and extended it to fit our concepts
and fully cover PBA.

In this section, we limit ourselves to the “Password Reset” Policy because it is suffi-
cient to demonstrate the concepts. We also omit the Summary, Context, Problem, and
Consequences, as they are common components in patterns and have been demonstrated
in previous examples.

6.3.1. Conceptual View
Policy (Password Reset). The user initiates the password reset by providing the email
address associated with the registered account. The user must prove access to the email
account by clicking a reset link containing a reset token sent to the email address. If the
reset token is valid, the user must enter a strong password. Upon successful password
reset, all user tokens must be invalidated.

The specific password requirements are defined separately because both “Registration”
and “Password Reset” Policies require them (see Appendix A.5).

The Abstract “Token Manager” Role, shown in Figure 6.11, is responsible for vali-
dating, issuing, and invalidating tokens. It references the Token-based Authentication
ASSP introduced in Section 2.3.3.

The “Password Resetter” Role is responsible for facilitating the password reset, in-
cluding generating and verifying the reset tokens. It requires the “Token Manager” Role
to invalidate all user tokens after a password change to ensure that no one who gained
access using the old password can still access the system. It has the following Role
Extensions associated with it:

• EP of the “Password Reset” Policy: The Role only changes the password if all
rules and conditions of the Policy are verified.

57

6. Application Example of Usage Aspect

Figure 6.12.: Subset of the PBA Data View that illustrates the data responsible for the
email confirmation. Security Levels are encoded as follows: Secret (-),
Sensitive (#), and Public (+).

• DP of the “Password Reset” Policy: The Role verifies that the provided email
address is in the expected format and validates the reset tokens.

The “User Manager” Role is responsible for managing user accounts including their
creation, update, and information retrieval. It has the following Role Extensions associ-
ated with it:

• Persistent Storage Tag: The Role persistently stores the user information.

• DP of the “Password Reset” Policy: The Role verifies that a user exists for a given
email address.

Data View

The “Email Token Session Data” Data Group, shown in Figure 6.12, models the data
stored internally to validate that a user has confirmed an action, such as a password
reset, by clicking on a token link sent to their email address. In contrast, the “Email
Token URL Data” Data Group models the data sent to the user’s email address.

The “token_hash” Transformation Field in the “Email Token Session Data” Data
Group is critical to security because, even if an attacker gains access to the internal
data, they cannot misuse it. This is because the “token” Origin Field sent to the user’s
email address is required to confirm an action, but the “token_hash” Transformation
Field stores only a hash of that token.

The “type” Origin Field specifies the action that a token confirms. This simplifies the
Data View because the data required to confirm actions is the same in each case, and

58

6.3. Password-based Authentication SDP

only the behavior varies depending on the specific action. For example, in the case of a
registration confirmation, the user’s account is set to verified; in the case of a password
reset confirmation, the user’s password is changed.

The “user_id” Reference Field shows how the local user, modeled by the “User Data”
Data Group, is associated with the email token sessions.

Behavioral View

This section focuses on introducing some of the Events used in BMs, omitting detailed
descriptions of the specific BMs. This is because the OIDC SDPs have already demon-
strated how Events and Data Elements are used within BMs. Furthermore, the BMs in
this PBA SDP do not involve any special cases beyond those previously covered. The
complete Behavioral View is available in Appendix A.5.2.

Error Event (User Not Found). The user account associated with the email address
does not exist. This can happen when a user tries to log in or reset a password. Security
Considerations:

• Detailed error messages can help attackers enumerate users; use generic messages to
avoid this (CWE-204: Observable Response Discrepancy1). For example, respond
with “Login failed; Invalid email address or password” or “If that email address is
in our database, we will send you an email to reset your password”.

• Timing differences between the successful and unsuccessful cases can help attackers
enumerate users; avoid fail-fast behaviors, i.e., ensure that both cases take roughly
the same amount of time (CWE-208: Observable Timing Discrepancy2).

The Security Considerations in the “User Not Found” Error Event are difficult to
integrate explicitly into the BMs because they often need to be addressed at the imple-
mentation level. For example, in Python, a == b is vulnerable to timing attacks because
it terminates early when a difference is found [Hal09]. In contrast, using hmac.compare_
digest(a, b) provides a constant-time comparison to protect against this.

This highlights the benefits of using Events, where aspects that are difficult to repre-
sent explicitly and are important to security can be defined in the Security Considera-
tions.

Event (Login Initiated). A user initiates a login attempt by entering their email address
and password. Security Consideration: A high number of login attempts, especially failed
attempts, can indicate brute force or credential stuffing attacks.

The “Login Initiated” Event includes valuable information when transformed into a log
entry within the architect’s system. By capturing the initial login attempt, the successful
login, and the exceptional cases that can occur in between, unusual patterns can be
identified and addressed accordingly. For example, if ten percent of all login attempts
are typically unsuccessful and that number is increasing rapidly, it likely indicates an
active attack.

1https://cwe.mitre.org/data/definitions/204.html
2https://cwe.mitre.org/data/definitions/208.html

59

https://cwe.mitre.org/data/definitions/204.html
https://cwe.mitre.org/data/definitions/208.html

6. Application Example of Usage Aspect

Structural View

This section presents an AM of an Example using the Microservice architectural pattern,
visualized in a C4 component diagram (see Figure 6.13).

In the C4 model, a component groups related functionality that is accessible through
a well-defined interface. Components cannot be deployed separately; they always belong
to exactly one container, in this case a service. A container represents an application or
data store that must be running within the system for it to function properly [RF20].

The “Mobile Application” AME consists of the “Password Service” AME that handles
interactions with the internal system and the “Token Vault Manager” AME responsible
for the secure storage of received tokens. In the case of the “Web Application” AME,
tokens are provided as secure cookies, which is the most secure option as specified in
Appendix A.6. Web browsers automatically store received cookies and append them to
requests, eliminating the need for an additional component to manage token storage.

The “Access Manager” AME must distinguish between the mobile application and
the web application when returning and receiving tokens. Figure 6.14 shows part of the
dynamic structure during user login to illustrate where the distinction needs to be made.
This highlights the need to provide AMs for both the static and dynamic structure.

Similar to the OIDC SDP AM introduced in Section 6.1.6, the AM includes a “Secu-
rity Token Service” AME. This AME is responsible for converting external tokens into
internal tokens, which is critical in a distributed architecture to maintain a consistent to-
ken format across the system. In addition, separating internal tokens from external ones
ensures that even if an internal token is compromised, it cannot be directly exploited to
gain access to the system.

The AME also implements the “Token Manager” Role, making it responsible for issu-
ing, validating, and invalidating external tokens. Centralizing token management in a
single service enhances system maintainability and performance by reducing complexity
and minimizing communication overhead.

In Figure A.17, we provide an additional AM that represents the static structure for
this Example, but uses a C4 container diagram for visualization. This AM offers a high-
level view by showing how different containers interact. Unlike the AM in Figure 6.13,
most of the Roles are assigned to a single AME, the “User Service”. This shows that the
assignment of Roles to AMEs can vary depending on the type and purpose of a diagram,
even when modeling the same Example.

60

6.3. Password-based Authentication SDP

Figure 6.13.: Architectural Model representing the static structure of a microservice ar-
chitecture that implements the PBA Roles, visualized in a C4 component
diagram.

61

6. Application Example of Usage Aspect

Figure 6.14.: Part of an Architectural Model that represents the dynamic structure for
user login.

62

7. Security Design Pattern Knowledge Base
Metamodel

As introduced in Section 2.3, there can be multiple SDPs that provide different imple-
mentation options for a Security Solution Pattern (SSP), which defines a security solu-
tion at a conceptual level. Therefore, a Constraint-based Recommender System (CBRS)
can be used by architects who may not be familiar with the different options to choose
appropriate SDPs.

To enable a CBRS to recommend and reason about appropriate SDPs, this chapter
introduces the knowledge aspect of SDPs. While the usage aspect focuses on the infor-
mation an architect needs to apply SDPs in practice, the knowledge aspect provides the
information that describes and identifies an SDP within a CBRS KB. Returning to the
example of buying real estate introduced in Section 2.4.1, the actual property that one
lives in represents the usage aspect of a property, while information such as the price,
number of bedrooms, or type of property represents the knowledge aspect of a property.

We assume that an architect has chosen an appropriate SSP based on the concepts
defined by Abazi [Aba24] and only needs to choose an appropriate SDP for that SSP. In
addition, we assume that there are at least two SDPs implementing an SSP; otherwise,
the single SDP can be recommended directly. Finally, the use of the KBs within a CBRS
is beyond the scope of this thesis project and is addressed in another work.

7.1. Security Design Pattern Knowledge Base Structure
This section introduces the Security Design Pattern Knowledge Base Metamodel (SDP
KB Metamodel), which follows the structure of a KB as introduced in Section 2.4.1.
This means that the SDPs are described by the product properties pi ∈ VP , while
the requirements an architect needs to provide to receive appropriate recommendations
correspond to the user requirements ci ∈ VC .

The SDP KB Metamodel adheres to the hierarchical structure introduced in Sec-
tion 2.3, which specifies a one-to-many relationship between SSPs and SDPs. Accord-
ingly, for each SSP there is an SDP KB, as shown in Figure 7.1. This KB enables the
recommendation of specific design options for that SSP. Multiple SDP KBs are required
due to the varying characteristics of SDPs and the different factors that influence their
recommendation based on the SSP they implement.

For example, a PBA SDP can be defined by the password reset mechanism used,
while an OIDC SDP can be defined based on whether a single Identity Provider (IdP)
or multiple IdPs are supported. This results in the following sets of Product Variables

63

7. Security Design Pattern Knowledge Base Metamodel

Figure 7.1.: Boundaries of different SDP KBs corresponding to their respective SSPs.

Figure 7.2.: An SDP KB is based on an SSP and contains Attributes (i.e., VP), Recom-
mendation Factors (i.e., VC), and Constraints.

VP , highlighting that the same SDP KB cannot be used to describe both PBA SDPs
and OIDC SDPs:

VP,PBA = {p1 : Password Reset Mechanism ∈ {SMS PIN, . . .}}
VP,OIDC = {p1 : IdP(s) Used ∈ {Single IdP,Multiple IdPs}}

The use of a dedicated SDP KB for each SSP is consistent with the assumption that
an architect has selected an SSP and only needs to choose an appropriate SDP for that
SSP.

As illustrated in Figure 7.2, an SDP KB contains three primary elements: Attributes,
Recommendation Factors, and Constraints. The Attributes correspond to the product
properties pi ∈ VP , the Recommendation Factors correspond to the user requirements
ci ∈ VC , and the Constraints include the Product, Compatibility, and Filter Constraints,
as introduced in Section 2.4.1. We have adapted the terminology to better fit the pattern

64

7.2. Attributes

Figure 7.3.: The set VP of the SDP KB is defined by the Attributes and their possible
Attribute Values.

Figure 7.4.: The knowledge aspect of an SDP is defined by the Attribute Values assigned
to each Attribute.

context, since the requirements in VC refer to the system the architect plans to design,
not to personal preferences, and SDPs are not products.

The following first introduces how Attributes are represented, including the informa-
tion they contain. It then introduces the different Recommendation Factors that may
be required as input for recommending an SDP, and finally introduces Constraints.

7.2. Attributes
This section details how the VP set of an SDP KB is represented to enable recommen-
dation and reasoning about appropriate SDPs.

Definition 7.1 (Attribute). An Attribute describes a specific aspect of the conceptual
solution of the SSP on which the SDP KB is based. An Attribute consists of a finite set
of design options and is an element of VP ; that is ai ∈ VP . Each Attribute must have a
unique and descriptive name.

For example, in a PBA SDP KB, the “Password Reset Mechanism” Attribute describes
different methods for authenticating a user during the password reset process.

Definition 7.2 (Attribute Value). An Attribute Value is a specific design option for an
Attribute; that is vj ∈ ai, where ai ∈ VP . Each Attribute Value must have a unique and
descriptive name within its Attribute.

For example, “Email Token” and “SMS PIN” are Attribute Values for the “Password
Reset Mechanism” Attribute.

Attribute Values define the design options that exist for the solution detail described
by the corresponding Attribute. Each Attribute must consist of at least two Attribute
Values, as shown in Figure 7.3; otherwise, a CBRS would always select the single At-
tribute Value, rendering the Attribute unnecessary.

The knowledge aspect of an SDP is defined by the Attribute Values assigned for each
Attribute, as shown in Figure 7.4. These Attribute Values uniquely identify an SDP.

65

7. Security Design Pattern Knowledge Base Metamodel

Figure 7.5.: Types of Attribute Information that enable reasoning about Attribute Val-
ues and support the recommendation process. Each Attribute Information
describes exactly one Attribute Value.

For example, the “Password Reset Mechanism” Attribute with the “Email Token” and
“SMS PIN” Attribute Values results in two SDPs:

SDPPBA,1 = {a1 : Password Reset Mechanism = Email Token}
SDPPBA,2 = {a1 : Password Reset Mechanism = SMS PIN}

Since the knowledge aspect of an SDP is defined by the assigned Attribute Values,
each Attribute Value must have a unique impact on the usage aspect of an SDP. If
this were not the case, two different assignments of Attribute Values could correspond
to the same SDP. This assumption simplifies the recommendation process because the
CBRS does not need to distinguish between two Attribute Values that lead to the same
SDP. In addition, it does not limit expressiveness because multiple Attribute Values
corresponding to the same SDP can be combined into a single Attribute Value.

For example, consider a “Session Timeout” Attribute, which describes whether users
need to reauthenticate after being inactive for a period of time, with “No Timeout”,
“10 minutes”, and “60 minutes” as Attribute Values. Here, we do not expect that the
exact timeout duration impacts the usage aspect of an SDP; rather, the usage aspect
provides guidance on how to properly choose the timeout duration. Therefore, using
“No Timeout” and “Use Timeout” as Attribute Values that indicate whether a session
timeout is used is sufficient.

7.2.1. Attribute Information
Definition 7.3 (Attribute Information). Attribute Information encompasses any infor-
mation associated with an Attribute Value.

The following details the types of Attribute Information considered in this thesis,
shown in Figure 7.5.
Definition 7.4 (Description). A Description provides detailed information about an
Attribute Value in an unstructured format.

The Description is intended to be provided by a CBRS to the architect to explain a
recommended Attribute Value. However, an advanced CBRS may use Natural Language

66

7.2. Attributes

Figure 7.6.: Consequences affect the Quality Properties of systems implementing an SDP,
where the Attribute Value is part of the SDP’s knowledge aspect.

Processing or require a structured format to extract information from the Description
and use it for the recommendation itself.

Definition 7.5 (Quality Attribute). A Quality Attribute is a high-level property rep-
resenting a broad and essential dimension of software quality. Quality Attributes help
categorize the overall quality of software systems.

Definition 7.6 (Quality Factor). A Quality Factor is a specific, measurable property
that breaks down a Quality Attribute into more detailed aspects.

This thesis uses the ISO/IEC 25010:2023 [23] quality model, where Quality Attributes
correspond to quality characteristics and Quality Factors correspond to quality sub char-
acteristics. For example, “Confidentiality”, which is the degree to which information is
accessible only to authorized entities, is a Quality Factor for the Quality Attribute “Se-
curity” [23].

This terminology aligns with that used by Abazi [Aba24] and emphasizes that while
we use the ISO/IEC 25010:2023 quality model, other quality models may be used or ad-
ditional Quality Attributes and Quality Factors may be included. For instance, ISO/IEC
25010:2023 [23] does not cover Quality Attributes such as Privacy and Sustainability,
which can be included if needed [Gli+23].

Definition 7.7 (Consequence). A Consequence evaluates the impact of using an At-
tribute Value on the Quality Attributes and Quality Factors of a system. It includes an
Effect that defines the type of impact, such as positive or negative, on system quality,
and a Reason that explains the Consequence.

For example, for the “SMS PIN” Attribute Value, a Consequence can evaluate a
negative Effect on the “Confidentiality” Quality Factor for the following Reason: “SMS
PIN is vulnerable to SIM swapping attacks, where an attacker can gain control of the
user’s mobile number and obtain the SMS PINs” [Jov20].

A Consequence describes the impact on the Quality Properties of a system implement-
ing an SDP where the Attribute Value is part of its knowledge aspect, as illustrated in
Figure 7.6.

The Quality Attribute, Quality Factor, and Effect, as shown in Figure 7.7, can be used
by a CBRS to calculate a recommendation score and to show the architect the impact

67

7. Security Design Pattern Knowledge Base Metamodel

Figure 7.7.: Relationship between Consequence, Quality Property, Effect, and Reason.

of a recommended SDP on system quality. The Reason is intended to be provided by
a CBRS to an architect to explain a Consequence. However, a CBRS may use Natural
Language Processing or require a structured format to extract information from the
Reason itself. For example, for the “SMS PIN” Consequence, a CBRS could identify
that the Reason mentions a SIM swapping attack and provide more information about
that attack to an architect.

This thesis considers an ordinal scale for the Effect, similar to the approach of Abazi
[Aba24]. This scale categorizes the Effect as strongly negative (--), negative (-), neutral
(0), positive (+), or strongly positive (++). An ordinal scale simplifies Effect assignment
by focusing on whether one Attribute Value is worse, similar, or better than others, elim-
inating the need to quantify differences. This scale is sufficient for the Attribute Values
considered in this thesis but can be extended to include additional ranks if necessary.

Definition 7.8 (Security Pattern Requirement). A Security Pattern Requirement (SP
Requirement) specifies that an Attribute Value requires the use of another security pat-
tern. Each SP Requirement must reference the required security pattern and may include
a description explaining why this specific Attribute Value requires the pattern.

Security Patterns, i.e., ASSPs, SSPs as well as SDPs, may require other Security
Patterns to provide a secure solution to a problem as defined in Section 2.3.2. These
relationships are incorporated into the usage aspect of an SDP using Abstract Roles.
However, this information is also critical for a CBRS to not only recommend a single
pattern, but to automatically resolve pattern relationships and provide all the Security
Patterns necessary to design a secure system.

If an SSP, or any ASSP in its hierarchy, requires another Security Pattern, this rela-
tionship is assumed to be known by the CBRS. However, if only a subset of the SDPs
that implement an SSP require a different Security Pattern, this information must be
included in the knowledge aspect of an SDP by using the SP Requirements.

For example, in an OIDC KB, a “Token Type for Subsequent Request” Attribute
describes whether the identity token received from the IdP or an internal token is used
to authenticate subsequent requests, with “Identity Token” and “Internal Token” as
Attribute Values. The “Internal Token” Attribute Value has an SP Requirement that
references the Token-based Authentication ASSP introduced in Section 2.3.3, indicating
that the CBRS must also recommend an SDP for this Security Pattern.

68

7.3. Recommendation Factors

Figure 7.8.: An Attribute can optionally have a Default Value assigned to it.

7.2.2. Attribute Default Value

To simplify the recommendation process, an Attribute can be assigned a Default Value,
as shown in Figure 7.8. A Default Value is generally considered the preferred choice for
an Attribute and must include a rationale for its assignment.

For example, in a PBA SDP KB, the “Password Rotation” Attribute specifies whether
users must periodically change their passwords. The “Yes” Attribute Value requires
periodic changes, while the “No” Attribute Value does not require periodic changes. The
“No” Attribute Value is the Default Value because password rotation is generally not
recommended; it can lead to weaker passwords and introduce additional complexity, and
there are more effective methods of protecting against the threats that periodic password
changes address [Gra+20]. Nonetheless, some standards and organizations still require
periodic password changes [PCI24], which are discussed in the next section. Therefore,
it is necessary to provide SDPs for such scenarios to allow secure implementation.

Determining when an Attribute Value should be considered a Default Value is challeng-
ing, as the assignment of Default Values must be carefully reasoned to avoid introducing
bias into the recommendation process [Agg16]. Therefore, Default Values should be used
with caution and assigned by security experts.

In the future, potential Default Values may also be identified based on historical data
if an Attribute Value is almost always recommended. In addition, a CBRS may not
require explicitly defined Default Values, as historical interaction sequences can be used
to dynamically predict them [FB08].

While this thesis does not describe in detail how Default Values are used in the rec-
ommendation process, one approach is for a CBRS to initially recommend all possible
Default Values, focusing on determining appropriate Attribute Values for Attributes
without Default Values. The recommendation can then present the Default Values to
the architect along with the rationale for their assignment, allowing the architect to
accept them or request further recommendations.

7.3. Recommendation Factors
This section describes the requirements ci ∈ VC of an SDP KB that a CBRS may need
to collect from an architect in order to recommend an appropriate SDP.

Definition 7.9 (Recommendation Factor). A Recommendation Factor defines a require-
ment or an inherent system property that can impact the recommendation of appropriate

69

7. Security Design Pattern Knowledge Base Metamodel

Figure 7.9.: The types of Recommendation Factors that can influence the recommenda-
tion of an appropriate SDP.

Attribute Values; that is, fi ∈ VC . Each Recommendation Factor consists of a set of
possible values and must have a unique and descriptive name.

In the following, the terms “Recommendation Factor” and “Factor” are used inter-
changeably.

For example, in a PBA SDP KB, a “PCI DSS” Factor indicates whether the Payment
Card Industry Data Security Standard (PCI DSS) applies to the architect’s system,
represented by the values “Applies” or “Not Applicable”. This Factor is relevant because
PCI DSS mandates the use of periodic password changes [PCI24].

Unlike Attributes, which are typically unique to an SDP KB and have a finite set
of Attribute Values, Factors can be shared across multiple SDP KBs as long as they
influence the recommendation of an SDP within an SDP KB. Moreover, Factors can
be continuous. For example, an “Expected Number of Users” Factor allows the user
to enter any number. This Factor can help determine the importance of scalability or
performance considerations for the system.

7.3.1. Recommendation Factor Types
We define the following types of Factors, as shown in Figure 7.9.

Definition 7.10 (Environmental Recommendation Factor). An Environmental Recom-
mendation Factor is a Factor that describes the general environment or context of the
architect’s system.

In the following, the terms “Environmental Recommendation Factor” and “Environ-
mental Factor” are used interchangeably.

We consider the following Environmental Factors, shown in Figure 7.10a.
The “Application Domain” Environmental Factor specifies the sector in which the

system will be used, with values such as “Financial Technology”, “Healthcare”, or “E-
Commerce”. The application domain can be relevant in determining required standards
or defining Quality Properties that are important in the domain.

The “Standard” Environmental Factor indicates the standards that apply to the sys-
tem, with values such as “PCI DSS” [PCI24] or “NIST 800-63B” [Gra+20]. Security
standards such as PCI DSS may require or prohibit Attribute Values: for example, PCI
DSS requires periodic password changes.

70

7.3. Recommendation Factors

(a) Examples of Environmental Recommenda-
tion Factors.

(b) Examples of Technical Recommendation
Factors.

Figure 7.10.: Example Recommendation Factors considered in this thesis.

The “Access Context” Environmental Factor specifies who accesses the system and
how they interact with it, with the following values:

• Internal Access: Indicates that the system is accessible only to the internal orga-
nization, such as intranet portals.

• Business-to-Business (B2B) Access: Indicates that the system is accessible by
other organizations, such as partner portals.

• Business-to-Customer (B2C) Access: Indicates that the system is accessible by
customers, such as social media applications.

Definition 7.11 (Technical Recommendation Factor). A Technical Recommendation
Factor is a Factor that describes technical aspects of the architect’s system.

In the following, the terms “Technical Recommendation Factor” and “Technical Fac-
tor” are used interchangeably.

We consider the following Technical Factors, shown in Figure 7.10b.
The “Client Type” Technical Factor specifies the type of clients that interact with the

system, with values such as “Mobile”, “Web”, or “Smart TV”. The client type can affect,
for example, the authentication process in OIDC.

The “Quality Property” Technical Factor allows the architect to indicate which Quality
Properties are important to the system, thereby favoring the Attribute Values that have a
positive Effect on those Quality Properties. The values consist of the Quality Properties
themselves and may allow the architect to specify how important each Quality Property
is to the system.

The “Architectural Pattern” Technical Factor allows the architect to indicate which
architectural pattern is used, with values such as “Microservice” or “Layered”. The ar-
chitectural pattern has an impact on the quality of the system, which can guide the
recommendation [RF20]. For example, a microservice architecture offers strong scalabil-
ity due to separately deployable and scalable services, while performance is negatively

71

7. Security Design Pattern Knowledge Base Metamodel

Figure 7.11.: Recommendation Factor Classification types and relationship to Recom-
mendation Factor.

impacted due to communication overhead [RF20]. In this case, a CBRS can favor At-
tribute Values that positively affect scalability while avoiding those that negatively affect
performance to avoid increasing performance issues.

Both Environmental and Technical Factors are designed to be understandable without
requiring detailed knowledge of the Attributes and their Attribute Values. The funda-
mental difference between these two types of Factors is that Technical Factors have an
explicit impact on the architecture of the system, whereas Environmental Factors do not
directly impose architectural constraints.

Definition 7.12 (Security Pattern Recommendation Factor). A Security Pattern Rec-
ommendation Factor is a Recommendation Factor that describes a characteristic or
property of a security pattern.

In the following, the terms “Security Pattern Recommendation Factor” and “Security
Pattern Factor” are used interchangeably.

For example, in an OIDC SDP KB, a “Identity Provider(s) Used” Security Pattern
Factor specifies whether a single IdP or multiple IdPs are supported, indicated by “Single
IdP” and “Multiple IdPs” as values.

The fundamental difference between Security Pattern Factors and Attributes is that
Factors are in the set VC , while an Attribute is in the set VP of an SDP KB. This means
that a CBRS can directly ask the architect a question to identify the specific value of a
Security Pattern Factor that applies to the architect’s system.

Security Pattern Factors are necessary because, in some cases, Environmental or Tech-
nical Factors cannot identify an appropriate Attribute Value for an Attribute. In such
instances, a CBRS could recommend multiple SDPs with varying Attribute Values. How-
ever, this recommendation is only feasible if all these Attribute Values can be used in
the architect’s system. For example, in an organizational environment with a central
IdP, an SDP that considers multiple IdPs should not be recommended.

7.3.2. Recommendation Factor Classification
Similar to the user requirements introduced in Section 2.4.1, i.e. ci ∈ VC , Factors can be
categorized into Constraint Factors, Preference Factors, and Context Factors, as shown
in Figure 7.11.

72

7.4. Constraints

Constraint Factors are those where no SDP should be recommended that violates the
Factor [FB08]. For example, the “Client Type” Technical Factor is a Constraint Factor
because if an SDP is not compatible with a particular client type, a CBRS should never
recommend it.

Preference Factors are those where an SDP that violates the Factor may be acceptable
if it is very good, or if there is no other alternative [FB08]. For example, the “Quality
Property” Technical Factor can be considered a Preference Factor. Suppose performance
and maintainability are preferred, and an SDP offers a highly maintainable and secure
solution with a neutral impact on performance. In such a case, an architect may select
that SDP.

Context Factors are any information not directly provided as input but known to a
CBRS [FB08]. For example, an “Token-based Authentication ASSP Recommended?”
Security Pattern Factor that indicates whether the CBRS has already recommended a
Token-based Authentication ASSP, is a Context Factor.

7.4. Constraints

This section introduces the constraints that are considered in an SDP KB, similar to the
constraints introduced in Section 2.4.1.

Attribute Constraints (PROD) define conditions between Attributes. For example, in
an OIDC SDP KB, an “Allow Fallback IdPs for Users” Attribute describes whether users
can associate their user accounts with multiple IdPs and use any of them to authenticate
to the system. The following Attribute Constraint defines that users can only associate
multiple IdPs to their account if the system supports multiple IdPs:

Allow Fallback IdPs for Users = Yes ⇒ IdP(s) Used = Multiple IdPs

Compatibility Constraints (COMP) define conditions between Factors. For example,
suppose the “Quality Property” (QP) Technical Factor allows specifying a list of Quality
Properties and their importance on a scale from one to six, where one indicates that the
Quality Property is not important and six indicates that it is very important. The fol-
lowing Compatibility Constraint specifies that in a microservice architecture, scalability
is important to leverage its strengths, and performance is important to mitigate issues
caused by communication overhead [RF20]:

Architecture Type = Microservice ⇒ QP = {(Scalability, 5), (Performance, 4)}

Filter Constraints (FILT) define the mapping between Factors and Attributes. For
example, consider the “Quality Property” (QP) Technical Factor as defined above and
the “Password Reset Mechanism” Attribute with “SMS PIN” as a possible Attribute
Value. The following Filter Constraint specifies that SMS PIN should be avoided if the

73

7. Security Design Pattern Knowledge Base Metamodel

system requires high security:∨
x∈{4,5,6}

(Security, x) ∈ QP ⇒ Password Reset Mechanism ̸= SMS PIN

7.5. Recommendation Process
The recommendation process of a CBRS for SDPs is beyond the scope of this thesis
project, but initial concepts and important considerations are provided.

To recommend appropriate SDPs, a CBRS asks the architect questions during an
interactive process (e.g., “What client types does your system support?”). Each question
aims to identify the specific values of a Factor that apply to the architect’s system.
The questions and their sequence can vary depending on the architect’s answers. In
addition, because we expect that the CBRS first recommends an appropriate SSP, it
may already know the answer to a question from a previous recommendation. When
all relevant questions are answered, the CBRS calculates a recommendation score, for
example based on the Consequences assigned to the Attribute Values, and shows the
recommended SDPs.

To reduce the number of questions that need to be asked of an architect, the CBRS
can use default values; an initial concept of how a CBRS can use them is provided in
Section 7.2.2. In addition, it may be possible that no suitable SDP can be identified
based on the architect’s answers. In such cases, a CBRS should provide guidance to the
architect on which Preference Factor values can be adjusted to find an SDP [FB08].

74

8. Application Examples of SDP KBs
This chapter evaluates the SDP KB Metamodel by presenting practical examples that
illustrate the concepts introduced in Chapter 7. In particular, we provide examples of
an OIDC SDP KB and a PBA SDP KB. For an introduction to OIDC and PBA, see
Section 2.2.1.

The OIDC SDP KB is used to demonstrate the Attributes (i.e., ai ∈ VP) that describe
and identify the SDPs, the Factors (i.e., fj ∈ VC) required to recommend appropriate
SDPs, and the Constraints within the KB. This includes a practical recommendation
example where we demonstrate how a CBRS for SDPs can recommend an appropriate
OIDC SDP. The PBA SDP KB is used to demonstrate that different SDP KBs are
required due to the inherently different Attributes.

To effectively demonstrate the various concepts, only a subset of the SDP KBs is
presented here; the full versions are available in Appendix A.

8.1. OpenID Connect SDP KB Attributes
This section introduces some of the Attributes and their Attribute Values from the OIDC
SDP KB, as shown in Table 8.1. These examples demonstrates how the concepts from
Section 7.2 are effectively applied within the KB. This includes Attribute Information,
which describes Attribute Values, Attribute Default Values, which a recommender sys-
tem can use to simplify the recommendation process, and the Attribute Constraints
(PROD) introduced in Section 7.4. Each of the following sections presents a different
Attribute.

8.1.1. OpenID Connect Flow
The “OpenID Connect Flow” Attribute considers the different methods for retrieving
tokens from the Identity Provider (IdP). In this example, the Attribute has two different
Attribute Values with their Descriptions:

• Authorization Code Flow with Proof Key for Code Exchange (PKCE): This flow
requires the user to log in to the IdP using the same device that requires authen-
tication at the Relying Party (RP). The user is redirected to the IdP, and upon
successful authentication, receives an authorization code. This authorization code
is then automatically exchanged for an identity token that confirms authentication
at the IdP [Har12]. PKCE enhances the security of the authorization code flow
and is expected to become mandatory in OAuth 2.1 [HPL24]. This flow is suitable
for devices with adequate input capabilities, such as mobile phones or web clients.

75

8. Application Examples of SDP KBs

Attribute Attribute Values

a1: OIDC Flow Authorization Code Flow with
PKCE Device Flow

a2: Identity
Provider(s) Used Single IdP Multiple IdPs per

User Supported
Multiple IdPs but
Only One per User

a3: Allow Fallback IdP
per User Yes No

a4: Token Type for
Subsequent Requests Identity Token Internal Token

a5: Client
Authentication Method Client Secret Basic Private Key JWT

Table 8.1.: The OIDC SDP KB Attributes (i.e., ai ∈ VP) and their corresponding At-
tribute Values.

• Device Flow: This flow allows the user to log in to the IdP using a different device
from the one that requires authentication at the RP. After initiating authentication
on the primary device, the user must visit the IdP on a secondary device using a
provided URL, enter a token, and authenticate. The primary device polls the IdP
and, upon successful authentication on the secondary device, receives an identity
token. The device flow is appropriate for input-restricted devices, such as smart
TVs or devices without browser support [Den+19].

The only Attribute Information associated with each Attribute Value is the Descrip-
tion. This is because the choice between the two Attribute Values depends primarily on
the type of client device, not on Quality Properties. In addition, neither Attribute Value
requires the use of an additional security pattern, so there are no SP Requirements.

It can be argued that the difference between the Attribute Values is conceptual rather
than design related. Therefore, it may be handled at the Security Solution Pattern (SSP)
level by creating separate SSPs for each Attribute Value. However, it is important to
consider the usage and knowledge aspects of an SSP to determine whether it addresses
OIDC on a general level or focuses on a specific flow. In addition, moving this Attribute
to the SSP level can be easily accomplished by splitting this KB into two KBs and
removing this Attribute.

8.1.2. Identity Providers Used
The “Identity Provider(s) Used” Attribute considers the relationship between the RP
and the IdP(s). In this example, the Attribute has three different Attribute Values with
their Descriptions:

• Single IdP: The RP uses a single IdP, which can be either a general-purpose or an
application-specific IdP. A general-purpose IdP provides application-independent

76

8.1. OpenID Connect SDP KB Attributes

Single IdP Multiple IdPs per User
Supported

Multiple IdPs but Only One per
User

M
ai

nt
ai

na
bi

lit
y

(+) Using a single IdP
greatly reduces the

complexity of
configuration and user

management.

(-) Increased complexity
because multiple IdPs can
be used. However, users
explicitly choose which

IdP to use.

(--) Increased complexity due to
the need to manage multiple IdPs
and determine the correct IdP for

each user based on information
such as their email domain or IP

address.

R
el

ia
bi

lit
y

Av
ai

la
bi

lit
y (-) Single point of

failure, so if the IdP is
unavailable, no users

can authenticate.

(0) If an IdP is
unavailable, some users
can still authenticate.

(0) If an IdP is unavailable, some
users can still authenticate.

Table 8.2.: Consequences associated with the “Identity Provider(s) Used” Attribute Val-
ues. Each column represents an Attribute Value. Each row corresponds to a
Quality Attribute (in bold) and its optionally associated Quality Factors (in
italics). Each cell specifies the Effect with its Reason.

information and is common in organizational environments where user data is
maintained centrally and the same IdP serves multiple RPs. An application-
specific IdP offers application-specific information and often includes advanced
functionalities. For example, such an IdP may act as an identity broker integrat-
ing other IdPs, enforce PBA with MFA, or manage user roles and permissions.

• Multiple IdPs per User Supported: The RP directly supports multiple IdPs, al-
lowing users to choose which IdP to use for login. This approach is common in
consumer-oriented applications as it provides users with convenient login options,
thereby increasing user conversion rates [GN14].

• Multiple IdPs but Only One per User: The RP directly supports multiple IdPs, but
each user is associated with a specific IdP, often determined by the user’s email
domain. This setup is typical in systems that allow external organizations to use
their own IdPs, eliminating the need for manual user creation or synchronization.

The Consequences associated with the Attribute Values are shown in Table 8.2. In
addition, none of the Attribute Values require additional security patterns, so there are
no SP Requirements.

This Attribute is complex because it requires a deeper understanding of OIDC. This
is because a single application-specific IdP can provide functionality similar to the other
Attribute Values. For example, Keycloak1, an open source identity and access manage-
ment system, can enable and manage authentication through multiple social providers
such as Google and GitHub, while the RP only interacts with Keycloak.

1https://www.keycloak.org/

77

https://www.keycloak.org/

8. Application Examples of SDP KBs

8.1.3. Allow Fallback Identity Providers for Users
The “Allow Fallback IdPs for Users” Attribute considers whether users can log in to their
account using multiple IdPs. In this example, the Attribute has two different Attribute
Values with their Descriptions:

• Yes: A user can associate multiple IdPs with their account and authenticate
through any of these IdPs.

• No: A user is associated with a single IdP that must be used for authentication.

The Consequences associated with the Attribute Values are omitted as they do not
offer additional insights and are not relevant to the remainder of the section. In addition,
none of the Attribute Values require additional security patterns, so there are no SP
Requirements.

The “Yes” Attribute Value requires that the RP integrates multiple IdPs, and users
can choose which IdP to use, which is defined by the following Attribute Constraint:

Allow Fallback IdPs for Users = Yes ⇒ IdP(s) Used = Mult. IdPs per User Supported

The Attribute Constraint also suggests a sequence in which a CBRS should first identify
an appropriate Attribute Value for the “Identity Provider(s) Used” Attribute, and only
consider this Attribute if the “Multiple IdPs per User Supported” Attribute Value is
appropriate.

8.1.4. Token Type for Subsequent Requests
The “Token Type for Subsequent Requests” (TTSR) Attribute considers the token used
to authenticate subsequent requests. In this example, the Attribute has two different
Attribute Values with their Descriptions:

• Identity Token: The identity token issued by the IdP is used directly to authenti-
cate subsequent requests.

• Internal Token: The identity token is used only for the initial authentication of a
user, and an internal token is issued for subsequent requests.

The Consequences associated with the Attribute Values are shown in Table 8.3. While
these Consequences may not be exhaustive, it clearly shows that there are limited benefits
to using the identity token directly. Consequently, the “Internal Token” Attribute Value
is the Default Value for this Attribute, emphasizing that the identity token should be
used with caution.

The “Internal Token” Attribute Value has an SP Requirement that references the
Token-based Authentication ASSP introduced in Section 2.3.3. This relationship cannot
be represented at the SSP level because no additional security pattern is required when
the identity token is used directly. Moreover, referencing an ASSP ensures that a CBRS
can recommend an appropriate SSP for this pattern.

78

8.1. OpenID Connect SDP KB Attributes

Identity Token Internal Token

M
ai

nt
ai

na
bi

lit
y

(+) No additional internal token
management is required, including

generation, expiration, verification, and
storage.

(-) Additional token management required,
including generation, expiration,

verification, and storage.

Se
cu

ri
ty

C
on

fid
en

tia
lit

y

(-) Identity tokens are exposed to the
client, potentially allowing an attacker to
access them. This is problematic because

identity tokens may contain sensitive
information and the RP has no control

over the lifetime of the token, so a
compromised token may be valid for an

extended period of time.

(+) The RP has full control over the token,
so the sensitive information it contains can

be minimized and appropriate security
mechanisms, such as short lifetime or token

revocation, can be implemented.

In
te

gr
ity

R
el

ia
bi

lit
y

Av
ai

la
bi

lit
y (-) When the identity token expires, a

new token must be issued by the IdP. If
the IdP is unavailable during this

process, the user loses access to the RP
even though the RP itself is operational.

(+) After successful authentication,
subsequent requests are independent of the
IdP. So if the IdP is unavailable and a token
expires, it can be refreshed without having

to communicate with the IdP.

Table 8.3.: Consequences associated with the “Token Type for Subsequent Requests”
Attribute Values. Each column represents an Attribute Value. Each row
corresponds to a Quality Attribute (in bold) and its optionally associated
Quality Factor (in italics). Each cell specifies the Effect with its Reason.

The “Identity Token” Attribute Value should not be used when the RP integrates
multiple IdPs. This is because identity tokens may not have a consistent format, which
increases complexity and reduces the positive maintainability Consequence of using the
identity token directly. This is addressed by the following Attribute Constraints:

TTSR = Identity Token ⇒ IdP(s) Used /∈ {Multiple IdPs per User Supported,

Multiple IdPs but Only One per User}

This Attribute is motivated by the fact that using the identity token has certain
advantages, such as containing user information, allowing its integrity to be verified,
and not requiring additional components. However, this Attribute also highlights the
significant drawbacks of using the identity token, and discourages architects from using
it. Nevertheless, it is required to provide SDPs that offer secure solutions to ensure that
if an architect chooses to use the identity token, it is implemented securely.

79

8. Application Examples of SDP KBs

Attribute SDP A SDP B

OIDC Flow Authorization Code Flow with
PKCE Device Flow

Identity Provider(s) Used Single IdP Multiple IdPs per
User Supported

Allow Fallback IdP per User No Yes
Token Type for Subsequent Requests Internal Token Internal Token

Client Authentication Method Private Key JWT Client Secret Basic

Table 8.4.: Two example SDP knowledge aspects that exist in the OIDC SDP KB.

8.2. OpenID Connect SDP KB Recommendation Example

In this section, we present a practical recommendation example in which we simulate
the role of a CBRS to identify appropriate SDPs for a synthetic scenario. Two example
OIDC SDPs that can be recommended, defined by their associated Attribute Values,
are shown in Table 8.4.

In the recommendation process, the CBRS must first identify any Attribute Values
that must be used in the architect’s system because they depend on Constraint or Con-
text Factors. For example, if a system must use an organization’s IdP, the “Single IdP”
Attribute Value must be used for the “Identity Provider(s) Used” Attribute. The CBRS
then calculates a recommendation score for all feasible SDPs and provides the architect
with these SDPs ranked by their recommendation score.

8.2.1. Scenario

Joe has worked at several companies where time management systems were too difficult
to use and only accessible through legacy web applications. He decides to create a startup
to develop an easy-to-use time management system for organizations. He plans to sell
the system as a Software-as-a-Service, where he is responsible for running the system,
and organization members can access it through modern web and mobile applications.
Having no prior experience in designing secure systems, Joe connects to a recommender
system for secure system design.

As a first step, the recommender asks Joe some questions to identify an appropriate
SSP. Based on the requirements that different organizations should be able to use the
system and that usability is an important Quality Property, the recommender suggests
using the “OpenID Connect Authentication” SSP. Joe selects the recommended pattern,
and since he does not know how to design a secure system using OIDC authentication,
he asks the recommender for an appropriate SDP.

80

8.2. OpenID Connect SDP KB Recommendation Example

Figure 8.1.: Sequence to identify the appropriate Attribute Value for the “Identity
Provider(s) Used” Attribute. Rounded rectangles represent Environmental
Factors (EF) and Security Pattern Factors (SPF). Dotted rectangles repre-
sent the assignment of an Attribute Value (AV) to an Attribute (A).

8.2.2. Recommendation Process

The following sections present the recommendation process of a CBRS that guides Joe
in selecting the most appropriate OIDC SDP. Each section aims to identify an Attribute
Value for a specific Attribute and may use information provided in previous subsections.

OpenID Connect Flow

To determine the appropriate Attribute Value for the “OIDC Flow” Attribute introduced
in Section 8.1.1, the “Client Type” (CT) Technical Factor is used. The relevant values
considered by the KB are “Mobile”, “Web”, “Desktop”, and “Embedded System with
User Interface” (ES with UI), such as smart TVs or home automation panels.

In this scenario, Joe has already provided the CBRS with the requirement that the
system must support both web and mobile clients during the initial recommendation of
the SSP. Therefore, the CBRS does not explicitly ask Joe and identifies the “Autho-
rization Flow with PKCE” as the appropriate Attribute Value. This is based on the
following Filter Constraint:∨

x∈{Mobile,Web,Desktop}
x ∈ CT ⇒ OIDC Flow = Authorization Flow with PKCE

Identity Providers Used

To determine the appropriate Attribute Value for the “Identity Provider(s) Used” At-
tribute introduced in Section 8.1.2, the “Access Context” Environmental Factor is used,

81

8. Application Examples of SDP KBs

as shown in Figure 8.1. The CBRS asks Joe the following question “Who should be able
to access the system?” with the following response options:

(A) “Internal organization members.” (Internal Access)

(B) “Members of other organizations.” (B2B Access)

(C) “Individual customers.” (B2C Access)

Joe chooses option (B) because his Software-as-a-Service solution will be used by
members of several external organizations.

Joe’s choice means that it must be possible to integrate the external organizations’
IdPs into the system. This can be achieved by having a single application-specific IdP,
such as Keycloak, manage the organizations’ IdPs, and the system only interacts with
that single IdP. Alternatively, the system can directly integrate the organizations’ IdPs
without the need for an additional component.

To determine this, the CBRS uses the “IdP(s) Used B2B” Security Pattern Factor,
which has possible values of “Single Application-specific IdP” and “Multiple IdPs but
One per User”, as shown in Figure 8.1. Joe chooses the “Single Application-specific IdP”
value because using an additional component is acceptable to him, as it reduces system
complexity. This identifies the “Single IdP” as the appropriate Attribute Value for the
“Identity Provider(s) Used” Attribute.

The sequence in Figure 8.1 has the advantage that an architect first only needs to
consider the “Access Context” Environmental Factor. This Factor does not require
knowledge of OIDC and can be easily specified by an architect. The specific Security
Pattern Factors then limit the possible values based on the Access Context. For example,
in this scenario, Joe does not need to know about the “Multiple IdPs per User Supported”
value. This highlights both the benefit of using a CBRS to reduce the technical details
an architect needs to know, and the need for Security Pattern Factors.

Possible Security Design Patterns to Recommend

Based on Joe’s responses, the following Attribute Values must be used:

a1: OIDC Flow = Authorization Flow with PKCE
a2: Identity Provider(s) Used = Single IdP
a3: Allow Fallback IdP per User = No

The Attribute Values for the “OIDC Flow” and “Identity Provider(s) Used” Attributes
are explicitly determined based on the questions asked. In contrast, the Attribute Value
for the “Allow Fallback IdP per User” Attribute is implicitly required because it can only
be “Yes” if multiple IdPs per user are supported, as defined by the Attribute Constraint
in Section 8.1.3.

This means that the “Token Type for Subsequent Requests” and “Client Authentica-
tion Method” Attributes remain to be determined. This leads to the following possible

82

8.2. OpenID Connect SDP KB Recommendation Example

Attribute Attribute Value Security Availability Maintainability

Token Type for
Subsequent Requests

Identity Token - (1) - (1) + (3)
Internal Token + (3) + (3) - (1)

Client Authentication
Method

Client Secret Basic 0 (2) 0 (2) 0 (2)
Private Key JWT ++ (4) 0 (2) - (1)

Table 8.5.: The remaining two Attributes to be selected and their Effect on the Secu-
rity, Maintainability, and Availability Quality Properties. The numeric value
specifies the value used to calculate the recommendation scores.

SDPs that the CBRS could recommend to Joe:

SDPOIDC,1 = {Common Attributes, a4 = Identity Token, a5 = Client Secret Basic}
SDPOIDC,2 = {Common Attributes, a4 = Internal Token, a5 = Client Secret Basic}
SDPOIDC,3 = {Common Attributes, a4 = Internal Token, a5 = Private Key JWT}

Here, the “Common Attributes” represent the Attribute Values shared among the SDPs,
omitted for brevity.

The combination of “Identity Token” and “Private Key JWT” Attribute Values is
prohibited by an Attribute Constraint because it is impractical to use a highly secure
client authentication method with a less secure token type.

Recommendation Scores

The following formula, adapted from Felferning and Burke [FB08], is used to calculate
the recommendation score of the possible SDPs:

score(x) =
∑
q∈QP

eqsq(x) (8.1)

sq(x) =

n∑
i=1

effectq(ai,x) (8.2)

In Equation (8.1), QP represents the set of Quality Properties an architect is interested
in, eq is the importance of a Quality Property q to the system, and sq(x) denotes the
rating of an SDP for a Quality Property q. In Equation (8.2), ai,x is the Attribute
Value of Attribute ai for SDP x, and effectq(ai,x) is the rating of the Attribute Value
for Quality Property q. The rating is based on the Consequences of an Attribute Value,
where Effects are mapped from zero to four, with zero representing a strongly negative
Effect and four representing a strongly positive Effect.

During the initial SSP recommendation, Joe specified that security is paramount and
that availability and maintainability are equally important to the system, i.e., eSecurity =
0.5, eAvailability = 0.25, and eMaintainability = 0.25. Based on the Effects for the Attribute

83

8. Application Examples of SDP KBs

Attribute Attribute Values

a1: Password Reset Mechanism SMS
PIN Email Token Offline Backup

Codes
a2: Password Peppering HMAC Symmetric Encryption No

a3: Password Rotation with
History Yes No

a4: User Account Lockout Yes No

Table 8.6.: The PBA SDP KB Attributes (i.e., ai ∈ VP) and their corresponding At-
tribute Values.

Values shown in Table 8.5, we have the following recommendation scores. We only
consider Attribute Values that differ between the SDPs in the calculation of sq(x).

score(SDPOIDC,1) = eSec · sSec(SDPOIDC,1) + . . .

= 0.5 · (effectSec(Id. Token) + effectSec(Client Secret Basic)) + . . .

= 0.5 · (1 + 2) + 0.25 · (1 + 2) + 0.25 · (3 + 2) = 3.5

score(SDPOIDC,2) = 0.5 · (3 + 2) + 0.25 · (3 + 2) + 0.25 · (1 + 2) = 4.5

score(SDPOIDC,3) = 0.5 · (3 + 4) + 0.25 · (3 + 2) + 0.25 · (1 + 1) = 5.25

Final Recommendation

Based on the recommendation scores, the CBRS recommends the SDPs in the follow-
ing order: SDPOIDC,3, SDPOIDC,2, and SDPOIDC,1. Joe trusts the CBRS and chooses
SDPOIDC,3, so the CBRS returns the usage aspect of the SDP to Joe.

Since the SDP’s “Internal Token” Attribute Value has an SP Requirement for the
Token-based Authentication ASSP, the CBRS asks Joe if he wants to continue the rec-
ommendation process. Joe agrees, and the recommendation process repeats. In the end,
Joe has a set of SDPs that he can use to design a secure time management system.

8.3. Password-based Authentication SDP KB

This section introduces the PBA SDP KB to demonstrate that different SSPs require the
use of a dedicated SDP KB. For this, selected Attributes are explained, where Table 8.6
shows all the Attributes and Attribute Values that make up this KB. These Attributes
show that it is impractical to consider them together with the OIDC SDP KB. A rec-
ommendation example is omitted because the example in the previous section already
covered all cases.

84

8.3. Password-based Authentication SDP KB

SMS PIN Email Token Offline Backup Codes

In
te

ra
ct

io
n

C
ap

ab
ili

ty (+) Users are used to
receiving SMS, so the

process is intuitive and
easy to follow.

(+) Users are used to
receiving email, so the process
is intuitive and easy to follow.

(-) Requires detailed
instructions to explain

their use and ensure that
users keep backup codes

safe.

R
el

ia
bi

lit
y

Av
ai

la
bi

lit
y (0) While cellular service

can be unavailable, it is
quite reliable and often
available in areas with
limited internet access.

(-) If the email service is
unavailable, the email is

delayed, or identified as spam,
a user cannot reset their

password.

(+) Backup codes do not
rely on any additional

services.

Se
cu

ri
ty

(--) SMS PIN is
vulnerable to SIM

swapping attacks, where
an attacker gains control

over the user’s mobile
number and can receive
the SMS PINs [Jov20].

(0) If the user’s email account
is compromised, an attacker

can intercept reset links.
However, using a secure

password and MFA for the
email account mitigates this

risk.

(+) Stealing backup
codes requires physical

access or significant
effort, as such codes are
often stored locally by

the user.

Table 8.7.: Consequences associated with the “Password Reset Mechanism” Attribute
Values. Each column represents an Attribute Value. Each row corresponds
to a Quality Attribute (in bold) and its optionally associated Quality Factor
(in italics). Each cell specifies the Effect with its Reason.

8.3.1. Password Reset Mechanism
The “Password Reset Mechanism” Attribute specifies different methods of authenticating
a user during the password reset process. In this example, the Attribute has three
different Attribute Values with their Descriptions:

• SMS PIN : This mechanism sends a one-time PIN to the user’s registered mobile
phone number. The user must enter this PIN, which the system validates to allow
the password reset.

• Email Token: This mechanism sends a password reset link containing a secure
token to the user’s registered email address. The token associates the user with
the reset link, enabling the password reset upon verification.

• Offline Backup Codes: This mechanism relies on pre-generated one-time backup
codes that are provided to the user after registration. The user can use these codes
to reset their password without relying on external communication channels.

The Consequences associated with the Attribute Values are shown in Table 8.7. In
addition, none of the Attribute Values require additional security patterns, so there are
no SP Requirements.

85

8. Application Examples of SDP KBs

Maintainability Interaction Capability Security
Ye

s
(-) The system must

store password histories,
track password age, and

notify users when a
password change is

needed.

(-) Periodic password
changes frustrate users and
may require password reset

if users forget their new
password.

(--) Periodic password
changes can lead to weaker

passwords, as users may find
it difficult to remember new
strong passwords every few

months.

N
o

(+) No additional
password management

required.

(+) No interruptions during
authentication and a

simplified user experience.

(0) Users can use stronger
passwords, but compromised

passwords may be valid
longer.

Table 8.8.: Consequences associated with the “Password Rotation with History” At-
tribute Values. Each column corresponds to a Quality Attribute. Each row
represents an Attribute Value. Each cell specifies the Effect with its Reason.

8.3.2. Password Rotation with History
The “Password Rotation with History” Attribute specifies whether users are required to
update their passwords periodically and cannot reuse some previous passwords. In this
example, the Attribute hast two Attribute Values with their Descriptions:

• Yes: Users must update their passwords periodically, and the system maintains a
history of previously used passwords to ensure that new passwords are different
from recent ones.

• No: Users do not have to update passwords periodically.

The Consequences associated with the Attribute Value are shown in Table 8.8. The
negative Effect of the “Yes” Attribute Value on security may seem counterintuitive, since
changing passwords periodically reduces the time an attacker has to exploit a compro-
mised password [PCI24]. However, more effective mechanisms, such as slow hashing
algorithms or rejecting common and previously compromised passwords, provide better
security [Sto+21].

Due to the significant drawbacks of using password rotation with history, we assign
the “No” Attribute Value as the Default Value for this Attribute This indicates that the
use of password rotation should generally be avoided. However, certain standards, such
as the Payment Card Industry Data Security Standard, require password rotation with
history in certain situations [PCI24]. Therefore, the Attribute must be part of the KB.

86

9. Discussion
This chapter discusses the results of this thesis with respect to the research questions
defined in Chapter 3. First, we discuss the SDPDM introduced in Chapter 5, which
defines the usage aspect of SDPs that allows architects to effectively implement an SDP in
their system. Second, we discuss the SDP KB Metamodel introduced in Chapter 7, which
defines the elements and relationships of the KBs required by a CBRS to recommend
appropriate SDPs, including the knowledge aspects of SDPs.

9.1. Security Design Pattern Usage Aspect
This section discusses the results used to answer our first research question:

RQ1: What information is essential in a security design pattern, and how
should a pattern description be structured to make it practical for architects?

The SDPDM is based on the security pattern structure of Heyman et al. [Hey+07].
Thus, an SDP consists of context, problem, solution, example, and consequences. These
components provide a strong foundation and ensure that SDPs have a consistent format.

Adopting the viewpoint and view concept to describe the solution and example of an
SDP has several advantages. First, since views are common in software architecture,
architects are likely to be familiar with the concept. Second, because each view focuses
on a specific aspect, architects can find the relevant information more easily, improving
understandability.

The Conceptual View defines the scope of an SDP, with Policies describing what
the solution addresses and Roles specifying what is needed to implement these Policies.
Abstract Roles address the problem that existing security patterns often only reference
each other informally [Hey+07]. By explicitly modeling how other security patterns are
integrated, this approach improves understanding and simplifies combining patterns.

For example, in the PBA SDP introduced in Section 6.3, the “Password Resetter”
Role requires the “Token Manager” Abstract Role to invalidate tokens after a successful
password reset. In a Session-based Authentication SDP, a “Session Invalidator” Role
could be responsible for invalidating user sessions. To combine both SDPs, the rela-
tionship from the “Password Resetter” to the “Token Manager” can be replaced by a
relationship to the “Session Invalidator”, as shown in Figure 9.1. Since the Behavioral
View and the Structural View are based on Roles, this can be applied consistently across
these views.

The SDPDM addresses the limited inclusion of security-relevant information in exist-
ing security patterns in several ways.

87

9. Discussion

Figure 9.1.: Example for combining the Roles of a PBA SDP with a Session-based Au-
thentication SDP.

The Data View models the Data Elements used in an SDP, incorporating data-related
security considerations. Data Properties indicate the protection needs of Data Elements
and can assist in identifying appropriate countermeasures. Data Rules specify conditions
that Data Elements must fulfill to ensure security, and by explicitly including these
rules, we reduce the likelihood of them being overlooked. Practical examples of Data
Rules enhance understanding and help guide implementation. Finally, Data Fields can
effectively model the dynamic nature of data in security solutions.

The Behavioral View provides understandable Behavioral Models (BMs) that shows
interactions between Roles using Data Elements and Events. Events, with their Security
Considerations, clarify how to handle important situations securely and highlight poten-
tial threats. Security Considerations can serve as a checklist for architects, ensuring that
critical aspects are addressed. Finally, Error Events can be effectively used to model
exceptional cases.

Unlike many existing security patterns that only list known uses, the Structural View
provides concrete examples of how to implement an SDP. This gives architects a start-
ing point, enabling them to adapt these examples or discuss their suitability before
implementing the pattern in their own systems.

In summary, the SDPDM is essential for creating practical and understandable SDPs.
By analyzing existing security solutions and security patterns, we included important
security considerations for both data and behavior. The Role concept, adapted from
Van den Berghe et al. [vYJ22a], clarifies how SDPs relate to each other, making it
easier to combine multiple SDPs. The application examples introduced in Chapter 6
demonstrated the SDPDM in practice. Nevertheless, there are limitations and threats
to validity, which we discuss next.

88

9.2. Security Design Pattern Knowledge Base

9.1.1. Limitations
First, the SDPs presented in Chapter 6 are candidate or proto-patterns [App97]. This
is because to qualify as a full pattern, two properties must be met. A pattern must have
concrete implementations that show that it addresses a recurring problem, often referred
to as the rule of three, and a pattern must be useful to architects [App97]. The detailed
nature of SDPs with multiple SDPs for a security solution can make it harder to find
such recurring implementations in practice.

Second, due to the time constraints of this thesis project, the SDPDM has only been
demonstrated with OIDC authentication and PBA. Therefore, we cannot assert that it
is generally applicable. Future work should develop SDPs for other security objectives,
such as authorization or automated attack detection.

Third, while the SDPDM ensures consistency and that security-relevant information
is included in the SDPs, architects must become familiar with it before they can use the
patterns effectively. In addition, security patterns from other catalogs cannot be directly
integrated, as they do not conform to the SDPDM.

Finally, the examples in Chapter 6 were created based on available specifications
and best practices, but we cannot guarantee their correctness and completeness. For
example, a recent conference talk recommended keeping JWTs within internal systems
[Kra]. Thus, providing SDPs using the OIDC identity tokens to authenticate requests
should be carefully evaluated. Nevertheless, the Kubernetes API uses OIDC identity
tokens for authentication, which shows that it is used in practice [DA21] In addition, we
clearly state the negative impact of using the identity token on various quality attributes
such as security.

9.2. Security Design Pattern Knowledge Base
This section discusses the research questions related to the SDP KB Metamodel, which
specifies the elements necessary for a CBRS to recommend appropriate SDPs. The use
of a CBRS is necessary because there can be multiple SDPs for a conceptual security
solution defined by a SSP, and architects cannot be expected to be familiar with all of
them.

9.2.1. Recommendation Factors
We begin by examining the findings that address the second research question.

RQ2: What recommendation factors can influence the selection of an appro-
priate security design pattern?

Existing security pattern catalogs typically group related patterns and consider secu-
rity objectives and quality tradeoffs to support the selection process. In contrast, this
thesis introduces various Recommendation Factors that can influence the selection of an
appropriate SDP.

89

9. Discussion

Among these, Environmental and Technical Factors are essential for simplifying the
recommendation process. They do not require detailed knowledge of specific SDPs,
thereby enabling architects to provide the necessary input more easily. This is particu-
larly beneficial for non-security experts, who may lack the technical knowledge needed
due to the complexity and rapid evolution of the security domain [LS24].

One example is the “Standard” Environmental Factor, which is valuable because stan-
dards are frequently used in practice to derive security requirements [LS24]. By incorpo-
rating standards into a KB, it can be ensured that recommended SDPs conform to those
standards applicable to an architect’s system. In addition, standards can significantly
narrow down the list of feasible SDPs, thereby simplifying the recommendation process.

The introduced Factor Classifications are essential to make these Recommendation
Factors usable in a CBRS. By clearly indicating which Factors can be violated if, for
example, no SDP is found and which cannot, the CBRS can make appropriate recommen-
dations. However, the current concept may be too restrictive by requiring each Factor
to be classified by exactly one Factor Classification. For instance, a standard could be
considered a Constraint Factor, strictly forbidding the recommendation of SDPs that do
not conform to it, or a Preference Factor, allowing the recommendation of SDPs that
may not fully conform but are still acceptable options.

In summary, the introduced Recommendation Factors provide a solid foundation for
identifying the feasible SDPs in an architect’s context. Furthermore, by classifying
the Factors appropriately, we enable the CBRS to suggest changes to the architect’s
requirements when they conflict. The example in Section 8.2.2 illustrates how these
Factors can be effectively utilized by a CBRS.

9.2.2. Security Design Pattern Reasoning
This section discusses the results used to answer the third and fourth research questions:

RQ3: What knowledge about a security design pattern must be captured in
order to reason about an appropriate pattern and explain the recommenda-
tion?

RQ4: How should the knowledge be encoded so that a knowledge-based rec-
ommender system can reason about appropriate security design patterns?

To effectively reason about SDPs, we identified the need for a unique SDP KB for
each SSP. This is due to the different characteristics of SDPs based on the SSP they
implement. Within a KB, we distinguish SDPs using Attributes that address specific
aspects of the SSP, and Attribute Values that define possible design options for these
Attributes. The knowledge aspect of an SDP is defined by the Attribute Values assigned
to each Attribute.

While Recommendation Factors are used to narrow down the list of SDPs to feasible
ones, a CBRS requires quantifiable knowledge to reason about SDPs. To provide such
quantifiable knowledge, we assign Consequences to each Attribute Value, reflecting its

90

9.2. Security Design Pattern Knowledge Base

impact on a system’s quality properties. This approach aligns with existing security
pattern methods and is suitable for the architecture domain, where quality properties
are critical [YSJ12; RF20].

However, this thesis proposes a novel approach in which a CBRS automatically reasons
about SDPs, including the architect’s specific requirements, thereby enabling customized
recommendations. Thus, even if the same set of feasible SDPs is considered, a CBRS
can recommend different SDPs based on varying quality property priorities. To integrate
this into a CBRS, we introduced a five-point scale to quantify the Consequences of each
Attribute Value. This scale is sufficient for the Attribute Values presented in Chapter 8,
but can be extended if needed.

Furthermore, inter-pattern relationships are crucial for the CBRS. By incorporating
these relationships into the KB, the CBRS can automatically recommend all SDPs re-
quired to securely implement a system. We achieve this by introducing SP Requirements
that can be assigned to Attribute Values and reference a required security pattern. Fu-
ture work may consider automatically combining SDPs so that the architect receives a
single integrated pattern instead of multiple separate SDPs.

Since architects must make informed decisions, each Consequence has an associated
reason, and each Attribute Value has a description. While this information is not re-
quired for the reasoning, we expect it to be valuable for architects, allowing the CBRS
to provide both a recommendation score and supporting explanations.

Finally, the goal of having multiple SDPs for a single SSP is to address different
situational needs, but in some cases one Attribute Value may be generally preferable.
For example, periodic password changes are typically not appropriate [Gra+20], but are
mandated in PCI DSS [PCI24]. Such considerations can be represented by Default Values
that the CBRS may recommend unless a Recommendation Factor explicitly requires an
alternative Attribute Value.

In summary, Consequences are essential for a CBRS to reason about appropriate
SDPs, and SP Requirements enable the recommendation of a set of SDPs rather than
a single isolated SDP. The example in Section 8.2.2 illustrates how Consequences, along
with their five-point scale, can be effectively used by a CBRS to recommend appropriate
SDPs.

9.2.3. Limitation
First, each possible combination of Attribute Values results in a unique SDP, ensuring
that architects only need to consider what is relevant in their context. However, this can
lead to a large number of SDPs, which may be difficult to develop and maintain manually.
Future work should consider whether automated tools can assist. For example, it may be
possible to use SDP templates that generate concrete SDPs based on the recommended
Attribute Values.

Second, architects should not be restricted to choosing a single appropriate value for
a Recommendation Factor. For instance, an architect may need authentication for both
mobile devices and smart TVs. This is possible with OIDC authentication, but requires
using both the “Authorization Flow with PKCE” and the “Device Flow” Attribute

91

9. Discussion

Values described in Section 8.1.1. Since an OIDC SDP can currently only have one
of these Attribute Values, the CBRS cannot satisfy this requirement as is. One solution
would be to introduce a third Attribute Value covering both flows, but this would further
increase the number of SDPs. Another solution is for the CBRS to recommend two
SDPs, one for each flow, but then the KB must somehow indicate that this combination
is possible. Alternatively, if multiple SDPs can be automatically combined, a single
integrated pattern could be returned.

Third, Default Values essentially have a weight of one in the recommendation score,
while other Attribute Values have a weight of zero, unless explicitly required by a Rec-
ommendation Factor. However, there can be cases where one Attribute Value is more
suitable than others, but the others are still acceptable. To account for this, a special
type of Filter Constraint could be introduced to map Recommendation Factors to At-
tribute Values, influencing their weight in the recommendation score. For example, in
a PBA SDP KB, if mobile is the only client type, such a Filter Constraint could in-
crease the weight for all SDPs containing the “SMS PIN” Attribute Value. Conversely,
if mobile is not used, a Filter Constraint could lower the weight for those SDPs.

Finally, similar to the usage aspect of SDPs, the SDP KB Metamodel has only been
demonstrated with OIDC authentication and PBA. Therefore, we cannot assert that the
SDP KB Metamodel is generally applicable.

92

10. Conclusion

Security patterns can provide valuable information for implementing secure systems,
especially for non-security experts who often lack the necessary knowledge due to the
complexity and rapid evolution of the security domain. The goal of this thesis is to
present a first concept of practical security patterns. This chapter summarizes the
research methodology and results, and briefly mentions opportunities for future research.

10.1. Summary
This thesis introduces SDPs designed to help architects securely implement a given
security solution and that can be recommended by a CBRS. Using a CBRS is essential,
as multiple SDPs can exist for the same security solution, each addressing different design
options.

To achieve this, a bottom-up approach was first applied to iteratively collect and ana-
lyze security solutions in OSS, identifying common elements that improve the practical
application of SDPs. In parallel, relevant literature was examined to understand existing
security pattern approaches and to identify why their adoption in practice is limited.
Based on these findings, a top-down approach was then used to iteratively develop con-
crete SDPs and capture the involved elements and relationships in two metamodels.

The SDPDM, which defines the usage aspect of SDPs, addresses the lack of security-
relevant information and the often informal inter-pattern relationships found in existing
patterns. It includes critical security considerations for both data and behavior, explic-
itly models inter-pattern relationships, and enables the integration of practical examples.
By adapting the viewpoint and view concept, the SDPDM establishes clear boundaries
between different aspects of an SDP.

The SDP KB Metamodel enables the use of a CBRS to recommend appropriate SDPs.
By decoupling pattern descriptions from the selection process, architects do not need
prior knowledge of SDPs to find an appropriate SDP. In addition, this approach allows
integrating various kinds of information that can be easily provided by architects, such
as applicable security standards, to identify appropriate SDPs.

To evaluate the SDPDM, two OIDC SDPs and one PBA SDP were developed. The
first OIDC SDP evaluated the ability of the SDPDM to be used to create practical SDPs.
The second OIDC SDP demonstrated the need for multiple SDPs for a security solution
by comparing it to the first pattern. The PBA SDP demonstrated that the SDPDM can
be applied beyond a single security solution.

To evaluate the SDP KB Metamodel, an OIDC KB and a PBA KB were developed.
Both KBs illustrate the attributes defining the knowledge aspect of SDPs, demonstrating

93

10. Conclusion

that multiple KBs are required due to the varying characteristics of different security
solutions. In addition, the OIDC KB provides a recommendation example that simulates
a CBRS that recommends an appropriate OIDC SDP for a synthetic scenario. This
demonstrates that the KBs can be effectively used by a CBRS.

These application examples show that the SDPDM can be used to create practical
SDPs, highlight the need for multiple SDPs for a single security solution, and demon-
strate that the SDP KB Metamodel can effectively guide a CBRS in recommending
appropriate SDPs.

In conclusion, the SDPDM appears promising in providing architects with the infor-
mation required for secure implementation, and the SDP KB Metamodel can enhance
how architects select appropriate SDPs. Further research is needed to explore their prac-
tical use for architects and to determine whether these concepts are generally applicable
beyond authentication.

10.2. Future Work

In this section, we present possible future research directions to extend and further
evaluate the results of this thesis.

10.2.1. Further Evaluation

The SDPs and KBs proposed in this thesis have demonstrated the applicability of the
SDPDM and SDP KB Metamodel, but further evaluation is needed to assess their practi-
cal usefulness and soundness. In addition, to be recognized as a full SDP, an SDP must
have concrete implementations and clearly support architects in implementing secure
systems.

Future work could analyze OSS to identify concrete implementations of the SDPs, thus
meeting the first requirement for them to be considered full patterns. Such analysis could
also reveal issues in the SDPs, identify vulnerabilities in the analyzed OSS, or indicate
more fundamental problems in the SDPDM. Potential OSS for evaluating the OIDC
SDPs include the openDesk Project1, the EUdi-Wallet Project2, and two experimental
prototypes3,4. For the PBA SDP, we have not yet identified any suitable OSS.

Another area of future work is to identify relevant security threats for the considered
security solutions and evaluate how effectively the SDPs mitigate these threats. This
may reveal security flaws in the SDPs and, if so, how well they can be addressed with
the SDPDM. For the OIDC SDPs, the studies of Fett et al. [FKS17], Navas and Beltran
[NB19], and Mainka et al. [Mai+17] are valuable, as they analyze the security of OIDC
and identify potential security threats.

1https://gitlab.opencode.de/bmi/opendesk
2https://gitlab.opencode.de/bmi/eudi-wallet
3https://github.com/michaelvl/oidc-oauth2-bff
4https://github.com/michaelvl/oidc-bff-apigw-workshop

94

https://gitlab.opencode.de/bmi/opendesk
https://gitlab.opencode.de/bmi/eudi-wallet
https://github.com/michaelvl/oidc-oauth2-bff
https://github.com/michaelvl/oidc-bff-apigw-workshop

10.2. Future Work

Future work could conduct case studies to determine whether the SDPs support the
implementation of secure systems, thus meeting the second requirement for them to be
considered full patterns. For this, the evaluation method by Yskout et al. [YSJ15] could
be adapted. They conducted a study with student groups required to implement security
requirements in a system, with only some groups having access to security patterns. This
approach could be extended by giving certain groups access to a CBRS that uses the
proposed SDP KBs, allowing for an assessment of how useful a CBRS is in selecting
appropriate SDPs. However, implementing the CBRS and developing additional SDPs
would be necessary to ensure meaningful evaluation results.

In addition, future work can explore the inclusion of additional OIDC SDPs and
PBA SDPs to evaluate whether the identified SDPs in the KBs are both necessary
and distinct. Given the potential for a large number of SDPs, strategies to minimize
the manual effort required for their development and maintenance can be investigated.
One possible approach is the introduction of SDP templates, which could enable the
automatic generation of specific SDPs based on the recommended attribute values.

Finally, since the SDPs in this thesis focus on authentication, future work may explore
SDPs for other security objectives to evaluate the general applicability of the concepts.
Authorization appears particularly promising, as it involves multiple security solutions
and typically depends on authentication. This means that sufficient information should
be available and the integration with the presented SDPs can be explored.

10.2.2. Security Design Pattern Tool Support
Future work could implement a tool that utilizes interactive elements within Behavioral
Model allowing an architect to click on an element to immediately access the necessary
information. This addresses a current limitation where architects must manually look
up the Data Elements and Events referenced in a Behavioral Model.

Furthermore, a tool could use the mapping between Roles and Architectural Modeling
Elements (AMEs) to improve the visualization of an architecture, building on Sabau’s
concepts [Sab24]. For example, architects could select a Role to see the AMEs that
implement it. Similarly, selecting a relationship between two Roles could highlight their
interactions in an Architectural Model (AM).

Sabau’s concepts focus on filtering an traceability of AMs and AMEs based on the
security requirements they fulfill [Sab24]. When an architect provides security require-
ments to a recommender system, the Roles of the selected SDP could automatically be
assigned these requirements. This would allow features such as filtering or highlighting
AMEs based on the security requirement they fulfill.

Finally, a tool could facilitate the automatic combination of multiple SDPs, which
is especially useful if multiple SDPs are recommended. By providing a single pattern
that integrates all these SDPs, architects do not need to switch between them, greatly
enhancing understandability. However, this requires further research, as automatically
combining SDPs is more challenging than manual approaches. Potential challenges in-
clude merging common Roles, such as all Roles responsible for managing users, to a
single Role.

95

A. Appendix

A.1. OpenID Connect Knowledge Base

For the “OIDC Flow” Attribute, see Section 8.1.1.
For the “Identity Provider(s) Used” Attribute, see Section 8.1.2.
For the “Token Type for Subsequent Requests” Attribute, see Section 8.1.4.

A.1.1. Allow Fallback IdPs for Users

Yes: A user can associate multiple IdPs with their account and authenticate through
any of these IdPs.

• (+) Reliability - Availability: Users can authenticate to the application as long as
at least one of their associated IdPs is available.

• (-) Maintainability: A one-to-many relationship between a user and the IdPs com-
plicates user management. For example, synchronizing user information can be
challenging when IdPs provide different user information or format it differently.

No: If the IdP associated with a user is unavailable, the user cannot authenticate to the
application.

• (+) Maintainability: A one-to-one relationship between a user and IdP simplifies
user management.

• (-) Reliability - Availability: If the IdP associated with a user is unavailable, the
user cannot authenticate to the application.

Attribute Constraints

Allow Fallback IdPs for Users = Yes ⇒ IdP(s) Used = Mult. IdPs per User Supported

A.1.2. Client Authentication Method

Client Secret Basic: A shared secret is used to authenticate the RP to the IdP and
is sent with the token requests.

• (0) Security - Confidentiality: Provides easy and secure authentication when using
HTTPS. However, may be vulnerable to eavesdropping if not properly secured.

• (0) Maintainability: Minimal overhead as it simply adds an authorization header.
• (+) Performance: Minimal overhead as it simply adds an authorization header.

Private Key JWT: A JWT signed by the RP using a private key is sent with the
token request, allowing the IdP to validate authenticity using the RP’s public key.

97

A. Appendix

• (++) Security - Confidentiality, Integrity: Uses asymmetric encryption for JWT
signing, eliminating the need for shared secrets.

• (0) Performance: Asymmetric encryption adds some processing overhead com-
pared to symmetric methods.

• (-) Maintainability: It requires the creation and signing of JWT tokens. It also
requires proper handling of private and public keys.

Attribute Constraints

Client Authentication Method = Private Key JWT ⇒ TTSR = Internal Token

A.2. PBA Knowledge Base
For the “Password Reset Mechanism” Attribute, see Section 8.3.1.
For the “Password Rotation with History” Attribute, see Section 8.3.2.

A.2.1. Password Peppering

HMAC: Compute and store a Hash-based Message Authentication Code (HMAC) from
the hash value of the salted password. The resulting hash is not reversible, as HMAC is
a one-way function.

• (++) Security: Adds a robust layer of security to hashed passwords, making it
more difficult for attackers to reverse-engineer passwords, even if they have access
to the hashed password and salt.

• (-) Performance: HMAC adds additional processing, which may impact system
performance, especially under high load.

• (--) Maintainability: Require secure HMAC key generation, storage, and rotation
to maintain security. In particular, key rotation is challenging because the HMAC
is not reversible, i.e., it is a one-way function.

Symmetric Encryption: Compute and store a symmetric ciphertext of the hash value
of the salted password.

• (+) Security: Adds a robust layer of security to hashed passwords, making it
difficult for attackers to reverse-engineer passwords even if they have access to the
hashed password and salt. However, if the key is compromised, an attacker can
simply decrypt the passwords.

• (-) Maintainability: Requires secure management of encryption keys, including
secure storage and rotation. However, key rotation is quite simple, as the encrypted
hashed passwords can simply be decrypted with the old key and re-encrypted with
the new key.

No: Does not implement pepper, i.e. not adding a secret value to the password hash
before storing it.

• (+) Maintainability: No additional components are required, making it easier to
apply changes and test the system.

98

A.3. OpenID Connect SDP 1

• (+) Performance: Faster due to fewer cryptographic operations required during
password hashing.

• (-) Security: If an attacker has access to hashed user passwords and salts, they can
attempt to brute force the password. However, with a proper password policy in
place and the use of slow, memory-intensive hashing algorithms, this will also be
difficult.

Default Value - No: Implementing password peppering using HMAC or symmetric
encryption significantly increases system complexity by requiring management of a secret
key and proper implementation of key rotation. In addition, with a proper password
policy and the use of proven password hash functions, even if password hashes are
leaked, it is quite difficult for an attacker to brute force passwords. Therefore, password
peppering should only be used in systems where security is critical and sufficient resources
can be devoted to properly implementing password peppering.

A.2.2. User Account Lockout
Yes: Locks the user account after a predefined number of consecutive failed login at-
tempts to prevent unauthorized access and mitigate brute force attacks.

• (++) Security: Limits the number of login attempts, reducing the feasibility of
brute force or credential stuffing attacks and ensuring that user accounts remain
secure.

• (-) Reliability - Availability: Attackers can deliberately trigger account lockouts,
effectively denying access to legitimate users.

No: Does not implement account lockout policies, allowing users unlimited login at-
tempts.

• (+) Reliability - Attackers cannot deliberately trigger account lockouts, effectively
denying access to legitimate users.

• (-) Security: Accounts are more vulnerable to brute force or credential stuffing
attacks.

A.3. OpenID Connect SDP 1
A.3.1. Summary
This OpenID Connect pattern allows applications, especially within organizations, to
rely on an Identity Provider (IdP) to securely handle user logins. Instead of manag-
ing usernames, passwords, and other authentication details internally, the application
delegates this responsibility to the identity provider.

When a user needs to log in, the application redirects the user to the trusted IdP.
The IdP authenticates the user, often using credentials the user already has within the
organization. Upon successful authentication, the IdP returns an authorization code,
which the system then exchanges for an identity token. This identity token contains
user claims, such as the user’s unique identifier and email, and is signed by the IdP to
ensure its integrity and authenticity.

99

A. Appendix

The identity token is also used to authenticate subsequent user requests, simplifying
the overall design and allowing for faster development. However, this approach should
only be used when both the application and the IdP operate within a protected envi-
ronment (e.g., accessible only from within an organization’s VPN) to maintain security.
For applications that operate in a broader environment, we recommend using internal
tokens.

For example, an enterprise application on a corporate network can use the organiza-
tion’s existing IdP to authenticate employees, enabling easy onboarding, offboarding,
and access to applications.

A.3.2. Context
• The system must restrict access to protected resources or actions, making them

available only to authenticated users.
• Users interact with the system from clients equipped with browser and input ca-

pabilities (e.g., mobile devices) to access protected resources or perform protected
actions.

• Communication between users, the system, and the IdP takes place within a pro-
tected environment. A protected environment refers to an environment that is not
publicly accessible and that entities must authenticate to access.

• The system uses a single IdP that implements the OpenID Connect Core Speci-
fication to provide basic OIDC functionality, and the OpenID Connect Discovery
Specification to allow dynamic retrieval of the IdP’s configuration.

A.3.3. Problem
• Malicious attackers may impersonate legitimate users to gain unauthorized access

to protected resources or perform actions on their behalf.
• Requiring separate authentication for multiple applications degrades the user ex-

perience and increases the likelihood of weak passwords and password reuse.
• Managing separate user accounts for different applications complicates user on-

boarding and offboarding within organizations.

A.3.4. Conceptual View

Diagram: Figure 6.2

Policy (OIDC Authentication). During the authentication process, only the user who
initiated the authentication at the RP and successfully authenticated to the expected
IdP is allowed to receive and use an identity token. The RP must verify that the identity
token received from the IdP is in the expected format, has a valid signature, and contains
valid claims, such as that the token has not expired. In addition, State, Nonce, and Code
Verifier values are sent in the authentication request and must be validated to protect
against attacks.

100

A.3. OpenID Connect SDP 1

• The State is echoed by the IdP to ensure that the response matches the original
authentication request, mitigating CSRF attacks.

• The Nonce is included in the identity token to prevent replay attacks by ensuring
the token is unique to the authentication request.

• The Code Verifier is sent when exchanging the authorization code for tokens,
preventing attackers from using stolen authorization codes.

Policy (OIDC Authentication (Login)). During the authentication process, only the
user who initiated the authentication at the RP and successfully authenticated to the
expected IdP is allowed to receive and use an identity token. The RP must verify that
the identity token received from the IdP is in the expected format, has a valid signature,
and contains valid claims, such as that the token has not expired.

Role (Subject). An Uncontrolled Role responsible for authenticating to the system to
access protected resources. During the authentication, the subject provides credentials
to the IdP.
Secret Storage: The session identifier associated with the internally stored state, nonce,
and code verifier must be stored. In addition, after successful authentication at the RP,
the identity token and refresh tokens must be stored.

Role (System). A Controlled, Abstract Role that must contain some resources that
require authentication to access.

Role (Access Manager). A Controlled, Abstract Role responsible for forwarding au-
thentication requests to the appropriate roles and protecting the system from unauthen-
ticated access.
Reference: Single Access Point SSP.

Role (Authentication Manager). A Controlled Role responsible for facilitating the au-
thentication process between the different roles. In addition, it performs validations
using the state and nonce.
Session Storage: It stores the state, nonce, and code verifier required for validation after
successful authentication at the IdP.
EP[Login]: Only returns the identity and refresh tokens after a successful authentication
process.
DP[Login]: Ensures that the state received by the subject received after successful au-
thentication matches the state stored, protecting against CSRF attacks. It also verifies
that the nonce in the identity token matches the nonce stored, protecting against replay
attacks.

Role (Authentication Request Generator). A Controlled Role responsible for generating
the dynamic data required for the authentication request to the IdP and combining this
data with IdP configuration data to form a proper authentication request.

Role (Token Exchanger). A Controlled Role responsible for exchanging either an au-
thorization code during initial authentication or refresh token when the identity token

101

A. Appendix

expires for (fresh) tokens.
DP[Login]: Verifies that returned token result is successful.
IP[Login]: Provides the identity, refresh, and access tokens that must be properly vali-
dated.

Role (Token Validator). A Controlled Role responsible for verifying the authenticity
and integrity of the identity token and, if possible, the access tokens issued by the IdP.
DP[Login, Token]: Verifies the authenticity and integrity of the identity token and,
of possible access token during initial authentication and token refresh, and only the
identity token when requesting protected resources.

Role (Identity Provider Configuration Manager). A Controlled Role responsible for
retrieving the dynamic configuration and JWKS of the IdP. In doing so, the role reduces
potential configuration issues because a system operator only needs to provide minimal
configuration and the rest is dynamically retrieved from the IdP. It also facilitates easy
key rotation in general and when a key is compromised, thereby increasing security.
Cache: The dynamic configuration and JWKS is often needed by other roles, so the data
must be cached to ensure availability and performance.
IP[Login,Token]: Provides the configuration required for all interactions with the IdP
and the JWKS required to verify the signature of the identity tokens.

Role (Identity Provider). An Uncontrolled Role responsible for authenticating the sub-
ject. It maintains a separate user list and implements the OIDC core and discovery
specification. The IdP must be trusted, as it can spoof any identity.
DP[Login]: Ensures that the code challenge sent during user authentication matches the
code verifier hash calculated during token exchange.
IP[Login,Token]: Provides its dynamic configuration and JWKS.

Role (User). A Controlled Role responsible for creating new local users if none exist,
or updating existing user information. Each user has a locally unique identifier and is
associated with the IdP identifier.
Persistent Storage: Must store users persistently.

A.3.5. Data View
Diagram: Figure A.1. For Data Rules see Appendix A.5.1.

A.3.6. Behavioral View
For clarity, the “Access Manager” Role is not included in the BMs (i.e., it would just
“forward” every message to and from the “Subject” Role).

Initial Authentication

Behavioral Model: Figure A.2. Data Element and Event references: Table A.1.

102

A.3. OpenID Connect SDP 1

Figure A.1.: OIDC SDP 1 Data View Diagram

Refresh Identity Token

Behavioral Model: Figure A.3. Data Element and Event references: Table A.2.

Verify Identity Token

We recommend not to implement the following validation manually, but to find a suit-
able library for the programming language used. However, make sure that the library
performs all validations; if not, implement the missing validations manually.

Behavioral Model: Figure A.4. Data Element and Event references: Table A.3.

103

A. Appendix

Figure A.2.: OIDC SDP 1 “Initial Authentication Behavior” Behavioral Model

Verify Access Token

We recommend not to implement the following cryptographic operations manually, but
to find a suitable library for the programming language used. It is likely that the library
chosen to verify the identity tokens can also be used here.

Behavioral Model: Figure A.5. Data Element and Event references: Table A.4.

Get Identity Provider Configuration

Behavioral Model: Figure A.6. Data Element and Event references: Table A.5.

Get Identity Provider JSON Web Key Set

Behavioral Model: Figure A.7. Data Element and Event references: Table A.6.

104

A.3. OpenID Connect SDP 1

Step Data Elements Events

1 - System Unavailable, Authentication Initiated

3 OIDCSessionData -

4 OIDCAuthenticationData, OIDCSessionData -

5 OIDCSessionData -

6 OIDCAuthenticationData, OIDCSessionData.id -

7 OIDCAuthenticationData Identity Provider Unavailable

11 AuthenticationResponseData, OIDCAuthenticationData.redirect_url -

12 - Identity Provider Authentication Failure

13 SuccessResponseData System Unavailable

14 OIDCSessionData OIDC Session Missing

15 SuccessResponseData.state, OIDCSessionData.state Response State Mismatch

16 SuccessResponseData.authorization_code, OIDCSessionData.code_verifier -

17 TokenRequestData Identity Provider Unavailable

19 TokenResultData -

20 - Token Exchange Failure

21 TokenResultSuccessData -

22 TokenResultSuccessData.id_token, TokenResultSuccessData.access_token -

26 TokenResultSuccessData.id_token.payload.nonce, OIDCSessionData.nonce Nonce Mismatch

27 TokenResultSuccessData.id_token.payload -

28 TokenResultSuccessData.id_token.payload.sub -

29a TokenResultSuccessData.id_token.payload User Created

29b TokenResultSuccessData.id_token.payload User Updated

30 UserData -

31 TokenResultSuccessData.id_token, TokenResultSuccessData.refresh_token Successful Authentication

32 TokenResultSuccessData.id_token, TokenResultSuccessData.refresh_token -

Table A.1.: Data Element and Event references for Figure A.2

Events

Event (Authentication Initiated). A user initiates the authentication process by re-
questing to log in.
Security Consideration: An authentication request from an unexpected client (e.g., IP
address is outside the protected environment) should be blocked.

Event (Successful Authentication). A user successfully authenticated and obtains an
identity token.

Event (User Created). The user corresponding to the identity token has been success-
fully created.

Event (User Information Updated). The user information were updated.

Error Event (System Unavailable). The system is unresponsive or unavailable when a
user attempts an action. Possible causes include server downtime, network issues with
the protected environment, or infrastructure failures.
Fallback Behavior: Retry with Exponential Backoff with at most three retries and an
initial delay of two seconds.

105

A. Appendix

Figure A.3.: OIDC SDP 1 “Refresh Identity Token” Behavioral Model

Step Data Elements Events

1 UserRequestData System Unavailable

2 UserRequestData.refresh_token -

3 TokenRefreshData Identity Provider Unavailable

4 TokenResultData -

5 - Token Refresh Failure

6 TokenResultSuccessData -

7 TokenResultSuccessData.id_token, TokenResultSuccessData.access_token -

11 TokenResultSuccessData.id_token.payload.nonce, UserRequestData.id_token.payload.nonce Nonce Mismatch

12 TokenResultSuccessData.id_token.payload -

13 TokenResultSuccessData.id_token.payload.sub User Not Found

14 UserData, TokenResultSuccessData.id_token.payload

16 TokenResultSuccessData.id_token, TokenResultSuccessData.refresh_token -

17 TokenResultSuccessData.id_token, TokenResultSuccessData.refresh_token -

Table A.2.: Data Element and Event references for Figure A.3

106

A.3. OpenID Connect SDP 1

Figure A.4.: OIDC SDP 1 “Verify Identity Token” Behavioral Model

107

A. Appendix

Step Data Elements Events

A1 IdentityTokenHeader -

D1 IdentityTokenHeader.kid -

D2 IdentityProviderJWKSData.keys Ambiguous Signing Key

A2 IdentityTokenHeader.kid, IdentityProviderJWKSData.keys Key ID Not Found in JWKS

A3 IdentityProviderJWKSData.keys -

A4 IdentityProviderDynamicConfigData.supported_signing_algs Unsupported Signing Algorithm

A5 - Unknown Cryptographic Algorithm

A7 IdentityTokenData.signature Invalid Token Signature

A8 IdentityTokenPayload.exp Identity Token Expired

A9 IdentityTokenPayload.iss, IdentityProviderConfig.client_id Invalid Issuer

D3 IdentityTokenPayload.aud -

A10 IdentityProviderConfigData.client_id, IdentityTokenPayload.aud Invalid Audience

A11 IdentityProviderConfigData.client_id, IdentityTokenPayload.aud Invalid Audience

D4 IdentityProviderConfigData.untrusted_client_ids -

A12 IdentityProviderConfigData.untrusted_client_ids, IdentityTokenPayload.aud Untrusted Client Audience

Table A.3.: Data Element and Event references for Figure A.4

Figure A.5.: OIDC SDP 1 “Verify Access Token” Behavioral Model

Step Data Elements Events

A1 TokenResultSuccessData.id_token.header.alg Unknown Cryptographic Algorithm

A2 TokenResultSuccessData.access_token -

A4 TokenResultSuccessData.id_token.payload.at_hash Invalid Access Token Hash

Table A.4.: Data Element and Event references for Figure A.5

108

A.3. OpenID Connect SDP 1

Figure A.6.: OIDC SDP 1 “Get Identity Provider Configuration” Behavioral Model

Step Data Elements Events

A1 IdentityProviderDynamicConfigData -

A2 IdentityProviderConfigData.issuer + '/.well-known/openid-configuration' Identity Provider Unavailable

A3 IdentityProviderDynamicConfigData -

A4 IdentityProviderDynamicConfigData.issuer, IdentityProviderConfigData.issuer Invalid Issuer

A5 IdentityProviderDynamicConfigData -

A6 IdentityProviderDynamicConfigData -

Table A.5.: Data Element and Event references for Figure A.6

Step Data Elements Events

A1 IdentityProviderJWKSData -

A2 IdentityProviderDynamicConfig.jwks_uri Identity Provider Unavailable

A4 IdentityProviderJWKSData -

A5 IdentityProviderJWKSData -

A6 IdentityProviderJWKSData -

Table A.6.: Data Element and Event references for Figure A.7

109

A. Appendix

Figure A.7.: OIDC SDP 1 “Get Identity Provider JSON Web Key Set” Behavioral Model

Error Event (Identity Provider Unavailable). The IdP is unresponsive or unavailable
when a user attempts an action, which means that users can no longer authentication to
the system, and authenticated users may lose access when their identity token expire.
Fallback Behavior: Retry with Exponential Backoff with at most three retries and an
initial delay of two seconds.

Error Event (OIDC Session Missing). The system could not find the session data
corresponding to the client’s request. This occurs when a user sends an authorization
code but either fails t o send a session identifier or there is no session for the session
identifier.

Error Event (Response State Mismatch). The state parameter in the authentication
response does not match the stored state.
Security Consideration: Can indicate a CSRF attack attempt, where an attacker tries
to trick a subject into exchanging the attacker’s authorization code for tokens.

Error Event (Token Exchange Failure). Token exchange process failed between the
system and the IdP. Possible causes include the code verifier hash not matching the
code challenge sent in the authentication request (indicated by an invalid_grant error
code), or the client secret used to authenticate the RP to the IdP is incorrect (indicated
by an invalid_client error code). For a complete list of possible causes and resulting
errors, see the Token Error Response.
Security Consideration: A mismatched code verifier can indicate a code interception
attack, where an attacker intercepts an authorization code and attempts to exchange it
for an identity token.

110

https://datatracker.ietf.org/doc/html/rfc6749#section-5.2

A.3. OpenID Connect SDP 1

Error Event (Token Refresh Failure). Token refresh failed between the system and
IdP. Possible causes include the client secret used to authenticate the SP to the IdP
being incorrect (indicated by an invalid_client error code), or the refresh token asso-
ciated with the user being invalid, expired, or granted to another client (indicated by an
invalid_grant error code). For a complete list of possible causes and resulting errors,
see the Token Error Response.

Error Event (Nonce Mismatch). The nonce in the identity token does not match the
none stored in the session.
Security Considerations:

• A nonce mismatch may indicate a replay attack, where an attacker replays a pre-
viously captured token response.

• A nonce mismatch may indicate a token substitution attack, where an attacker
was able to replace the identity token in the response with a different token.

Error Event (Ambiguous Signing Key). Identity token lacks a “kid” and multiple keys
are present in the JWKS, i.e., it is unclear which signing key should be used to compute
the signature of the identity token.
Fallback Behavior: Refresh JWKS cache and retry once.

Error Event (Key ID Not Found In JWKS). The “kid” in the identity token header
does not match any key in the JWKS.
Fallback Behavior: Refresh JWKS cache and retry once.

Error Event (Unsupported Signing Algorithm). The algorithm used in the identity
token is not one of those supported by the IdP.
Fallback Behavior: Refresh IdP Configuration cache and retry once.

Error Event (Unknown Cryptographic Algorithm). The identity token uses an un-
known or unsupported cryptographic algorithm.

Error Event (Invalid Token Signature). The signature of the identity token does not
match the computed signature.
Security Consideration: An invalid token signature can indicate that an attacker has
tampered with the identity token.
Fallback Behavior: If the token header does not contain a “kid” and the JWKS contains
only a single public key, refresh the JWKS cache and retry once.

Error Event (Identity Token Expired). The identity token has expired.
Fallback Behavior: Obtain fresh token(s) using refresh token.

Error Event (Invalid Issuer). The issuer claim in the identity token or dynamic con-
figuration does not match the expected local issuer.

Error Event (Invalid Audience). The audience claim in the identity token does not
match or include the system’s client identifier.
Security Consideration: The identity token may be issued by the IdP but for another
party.

111

https://datatracker.ietf.org/doc/html/rfc6749#section-5.2

A. Appendix

Error Event (Untrusted Client Audience). The audience claim in the identity token
contains at least one identifier that the system does not trust.

Error Event (User Not Found). The user corresponding to the identity token’s “sub”
claim is not found in the local users.

Error Event (Invalid Access Token Hash). The access token hash in the identity token
does not match the computed hash of the access token.

A.3.7. Structural View

Structural Model: Figure 6.7.

A.3.8. Other

Attributes
• OIDC Flow: Authorization Code Flow with PKCE
• Identity Provider(s) Used: Single IdP
• Allow Fallback IdP per User: No
• Token Type for Subsequent Requests: Identity Token
• Client Authentication Method: Client Secret Basic

A.4. OpenID Connect SDP 2

This is only a partial description of the OIDC SDP 2 with its changes from the OIDC
SDP 1. Please refer to the OIDC SDP 1 pattern description (Appendix A.3) and the
discussed changes for more information (Section 6.2).

A.4.1. Summary

This OpenID Connect pattern allows applications, especially within organizations, to
rely on an Identity Provider (IdP) to securely handle user logins. Instead of manag-
ing usernames, passwords, and other authentication details internally, the application
delegates this responsibility to the identity provider.

When a user needs to log in, the application redirects the user to the trusted IdP.
The IdP authenticates the user, often using credentials the user already has within the
organization. Upon successful authentication, the IdP returns an authorization code,
which the system then exchanges for an identity token. This identity token contains
user claims, such as the user’s unique identifier and email, and is signed by the IdP
to ensure its integrity and authenticity. After the identity token has been successfully
verified an internal token such as an stateless JWT or stateful session identifier is issued
and can be used to authenticate subsequent requests.

112

A.4. OpenID Connect SDP 2

Figure A.8.: OIDC SDP 2 Conceptual View Diagram

A.4.2. Context

• The system must restrict access to protected resources or actions, making them
available only to authenticated users.

• Users interact with the system from clients equipped with browser and input ca-
pabilities (e.g., mobile devices) to access protected resources or perform protected
actions.

• The system uses a single IdP that implements the OpenID Connect Core Speci-
fication to provide basic OIDC functionality, and the OpenID Connect Discovery
Specification to allow dynamic retrieval of the IdP’s configuration.

A.4.3. Problem

• Malicious attackers may impersonate legitimate users to gain unauthorized access
to protected resources or perform actions on their behalf.

• Requiring separate authentication for multiple applications degrades the user ex-
perience and increases the likelihood of weak passwords and password reuse.

• Managing separate user accounts for different applications complicates user on-
boarding and offboarding within organizations.

A.4.4. Conceptual View

Role (Token Manager). A Controlled, Abstract Role that issues, and verifies tokens.
Reference: Token-based Authentication ASSP.

113

A. Appendix

Figure A.9.: OIDC SDP 2 Data View Diagram

A.4.5. Data View

jwt_encode:
1 import jwt
2 from cryptography.hazmat.primitives import serialization
3
4 # b"-----BEGIN PRIVATE KEY-----XXXXX-----END PRIVATE KEY-----"
5 pkcs8 = load_private_key_pem()
6
7 private_key = serialization.load_pem_private_key(pkcs8 ,

password=None)
8
9 client_assertion = jwt.encode(

10 payload , private_key, algorithm="RS256"
11)

Behavioral View

Behavioral Model: Figure A.2. Changes:

114

A.4. OpenID Connect SDP 2

Figure A.10.: OIDC SDP 2 Strucutral View Example Diagram

• Between step 16 and 17: Create and signed client assertion
(Data Element: TokenRequestData.client_assertion)

• Between step 30 and 31: See Figure 6.9.
Remaining BMs remain the same, except that the “Refresh Identity Token” BM is
removed.

Structural View

Architectural Model: Figure A.10.

A.4.6. Consequences
• Strength (Security, Flexibility): The use of an internal tokens allows to limit the

information contained to a minimum and enables the use of extended security mea-
sures. Furthermore, the RP authenticates to the IdP using asymmetric encryption,
so no shared secret is required.

• Weakness (Maintainability): Using an internal token increase system complexity
because it is responsible for token management, including issuance, storage, and

115

A. Appendix

invalidation.

A.4.7. Other

Attributes
• OIDC Flow: Authorization Code Flow with PKCE
• Identity Provider(s) Used: Single IdP
• Allow Fallback IdP per User: No
• Token Type for Subsequent Requests: Internal Token
• Client Authentication Method: Private Key JWT

A.5. Single-Factor Password-based Authentication SDP

Summary

This Single-Factor Password-based Authentication pattern verifies the user’s identity
based on the user’s email address and a secret password.

To gain access to the system, the user must first register by providing an email address
and password. After confirming the email address, the user logs in by entering their email
address and password, which the system checks against the stored information to grant
or deny access.

If the user forgets the password, the system can send a password reset link to the
registered email address. After confirming access to this email by clicking on the link in
the email, the user can change their password.

If the user needs to change the registered email address, they must provide their current
password and confirm access to both the old and new email addresses. Confirming the
old email address is necessary to ensure that an attacker cannot change the email if the
user’s password is compromised.

Context

• The system must restrict access to protected resources or actions, making them
available only to authenticated users.

• Users interact with the system from clients equipped with an user interface and
input capabilities (e.g., mobile devices) to access protected resources or perform
protected actions.

Problem

• Malicious attackers may impersonate legitimate users to gain unauthorized access
to protected resources or perform actions on their behalf.

116

A.5. Single-Factor Password-based Authentication SDP

Conceptual View

Common password requirements, based on OWASP Authentication Cheat Sheet, NIST
Special Publication 800-63B, and Best practices for password hashing and storage:

• Minimum Length: At least 8 characters.
• (Optional) Maximum Length: Between 64 and 128 characters to prevent DoS at-

tacks, e.g., Long Password Denial of Service.
• All characters should be allowed including ASCII, spaces, and Unicode
• Block common and previously breached passwords. For example, using the API

or password list of “HaveIBeenPwned”.

Policy (Registration). Users can register by providing a valid email address that is
not already in the system, a strong password, and password confirmation. Upon initial
registration, a confirmation link containing a confirmation token is sent to the provided
email address. After the user clicks on the link, the user account is activated and the
user can log in.

Policy (Login). Login is allowed to a registered user account using the email address
and correct password. Upon successful login, an authentication token is issued.

Policy (Password Reset). The user initiates the password reset by providing the email
address associated with the registered account. The user must prove access to the email
account by clicking a reset link containing a reset token sent to the email address. If the
reset token is valid, the user must enter a strong password. Upon successful password
reset, all user tokens must be invalidated.

Policy (Email Change). To change the email address, a user must be logged in and
provide their user password and new email address. The user must verify access to both
the new and old email by clicking confirmation links containing different confirmation
tokens that are sent to the email addresses. If the change is unexpected, the user can
click a ”Block Email Change” link included in both emails to cancel the email change.
After a successful email change, all user tokens must be invalidated.

Role (Subject). An Uncontrolled Role that wants to authenticate to the system to
access protected resources. During both registration and login, the Subject provides an
email address and password. To confirm registration, reset the password, and change
the email address, the Subject must prove access to the email address by clicking the
token link(s) sent to the address.
Secret Storage: Upon successful authentication, the subject receives a token and must
securely store it.

Role (Access Manager). A Controlled, Abstract Role that forwards registration, login,
password reset, and email change requests to the appropriate roles and protects the
system from unauthenticated access.
Reference: Single Access Point SSP.

117

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#implement-proper-password-strength-controls
https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-3/sp800-63b.html
https://www.ietf.org/archive/id/draft-ietf-kitten-password-storage-04.html
https://www.acunetix.com/vulnerabilities/web/long-password-denial-of-service/

A. Appendix

Figure A.11.: PBA SDP Conceptual View Diagram

Role (System). A Controlled, Abstract Role that must contain some resources that
require authentication to access.

Role (Registrar). A Controlled Role that handles the registration process. It can op-
tionally issue a token directly after email confirmation to improve the user experience,
but can compromise the user if the verification email is intercepted by an attacker.
DP[Registration]: Verifies that the email is in the expected format, that the password
and password confirmation values match, and that a received token corresponds to a
confirmation session.
Session Storage: Stores the account confirmation tokens until a subject confirms their
email address.

Role (Password Policy Verifier). A Controlled Role that verifies that a provided pass-
word meets the minimum password requirements.

Role (Hash Manager). A Controlled Role that generates the password salt used by the
Hasher to compute the password hash for a new password.

Role (Hasher). A Controlled Role that computes a password hash for a given plaintext
password and salt.

Role (User Manager). A Controlled Role that manages the users including their cre-
ation, update, and information retrieval.

118

A.5. Single-Factor Password-based Authentication SDP

DP[Registration, Login, PW Reset]: Checks if a user exists for a given email address.
IP[Login, Email Change]: Provides the password hash and salt to verify provided cre-
dentials.

Role (Email Sender). A Controlled Role that sends email to users.

Role (Email System). An Uncontrolled, Abstract Role that encapsulates all the com-
ponents needed to send email to users, including the systems and client email servers.

Role (Password Resetter). A Controlled Role that handles the password reset process.
DP[Password Reset]: Verifies that the email is in the expected format, that the password
and password confirmation values match, and that a received token corresponds to a
password reset session.
Session Storage: Stores the password reset token until a subject provides the token along
with the new password.

Role (Token Manager). A Controlled, Abstract Role that issues, verifies, and invalidates
tokens.
Reference: Token-based Authentication ASSP.

Role (Email Changer). A Controlled Role that handles the email change process.
DP[Email Change]: Verifies that the new email is in the expected format, that the
password provided is correct, and that the subject has confirmed both the old and new
email addresses.
Session Storage: Stores the old and new email confirmation tokens and the email change
block token until a subject either confirms both or blocks the change.

Role (Login Manager). A Controlled Role that handles the login process.
DP[Login]: Verifies that the email is in the expected format and that the password
provided is correct.

A.5.1. Data View
Diagram: Figure A.12

Data Rule (Email). Ensures data consistency and provides protection against SQL
injection attacks.

• Supported Origins: All
• Supported Lifespans: All
• Supported Types: String
• Condition: The “val” follows at least the syntactic rules defined in Email Address

Validation - OWASP Cheat Sheet

Data Rule (Unique). Ensures data consistency by ensuring that data entries can be
uniquely identified within a data store.

• Supported Origins: All
• Supported Lifespans: Config, Session, Cached, Persistent

119

https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html#email-address-validation
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html#email-address-validation

A. Appendix

Figure A.12.: PBA SDP Data View Diagram

• Supported Types: String, Number
• Condition: No two data entries with the same “val” are allowed in the same data

store.

Data Rule (CSPRNG). The data value must be generated using a Cryptographically
Secure Pseudorandom Number Generator (CSPRNG).

• Supported Origins: All
• Supported Lifespans: All
• Supported Types: String
• Input Parameters

– entropy(Integer): Specifies the entropy in bits that the generated value must
have. Entropy is a measure of the randomness or unpredictability in an
output, indicating how difficult it is to predict the next value.

• Condition: “val” must be generated using a CSPRN that provides “entropy” bits
of entropy (e.g., in Python secrets.token_urlsafe(16) where 16 bytes corresponds
to 128 bits).

SHA-256:

120

A.5. Single-Factor Password-based Authentication SDP

1 import hashlib
2
3 input = "..."
4 sha256_hash = hashlib.sha256(input.encode('utf-8'))
5 hash_dig = sha256_hash.hexdigest()

Password Hash: Generate and verify a password in Python using Argon2. The salt is
automatically generated by argon2id and embedded in the output, i.e. the output must
be saved exactly as generated in the database.

1 import argon2
2
3 ph = argon2.PasswordHasher()
4
5 # Generate Password
6 password_hash = ph.hash("secret password")
7
8 # Validate Password
9 try:

10 ph.verify(password_hash, "provided password")
11 print("Password is correct")
12 except:
13 print("Password verification failed:")

Note: This can be further extended by detailing the various argon2id parameters and
adding additional hashing algorithms with a comparison of when to use which algorithm.

A.5.2. Behavioral View

For clarity, the “Access Manager” Role is not included in the BMs (i.e., it would just
“forward” every message to and from the “Subject” Role).

Registration

Behavioral Model: Figure A.13. Data Element and Event references: Table A.7.

Login

Behavioral Model: Figure A.14. Data Element and Event references: Table A.8.

Password Reset

Behavioral Model: Figure A.15. Data Element and Event references: Table A.9.

Email Change

Behavioral Model: Figure A.16. Data Element and Event references: Table A.10.

121

A. Appendix

Figure A.13.: PBA SDP “Registration” Behavioral Model

Step Data Elements Events

1 RegistrationData Registration Initiated, System Unavailable

2 RegistrationData.email Unexpected Email Format

3 RegistrationData.password, RegistrationData.password_confirm Password Confirm Mismatch

4 RegistrationData.password -

5 RegistrationData.password Password Requirement Violation

7 RegistrationData.password -

8 PasswordUserData.salt -

9 RegistrationData.password, PasswordUserData.salt -

10 RegistrationData.password, PasswordUserData.salt -

11 PasswordUserData.password_hash -

12 PasswordUserData -

13 RegistrationData.email, PasswordUserData -

14 UserData User Already Exist, User Created

15 UserData -

16 EmailTokenSessionData -

17 EmailTokenURLData -

18 - Email Send

23 EmailTokenData System Unavailable

24 EmailTokenData.token Email Token Unknown

25 EmailTokenSessionData.expiration_time Email Token Expired

26 EmailTokenSessionData.user_id -

28 UserData.verified User Email Verified

Table A.7.: Data Element and Event references for Figure A.13

122

A.5. Single-Factor Password-based Authentication SDP

Step Data Elements Events

1 LoginData Login Initiated, System Unavailable

2 LoginData.email Unexpected Email Format

3 LoginData.email -

4 LoginData.email User Not Found

5 UserData -

6 LoginData.password, PasswordUserData.salt -

7 LoginData.password, PasswordUserData.salt -

8 PasswordVerificationData -

9 PasswordVerificationData.password_hash, PasswordUserData.password_hash User Password Wrong

12a - Login Successful

13a - Login Successful

Table A.8.: Data Element and Event references for Figure A.14

Step Data Elements Events

1 InitiatePasswordResetData Password Reset Initiated, System Unavailable

2 InitiatePasswordResetData.email Unexpected Email Format

3 InitiatePasswordResetData.email -

4 InitiatePasswordResetData.email User Not Found

5 UserData -

6 EmailTokenSessionData -

7 EmailTokenURLData -

8 - Email Send

13 PasswordResetData System Unavailable

14 PasswordResetData.token Email Token Unknown

15 EmailTokenSessionData.expiration_time Email Token Expired

16 PasswordResetData.password, PasswordResetData.password_confirm Password Confirm Mismatch

17 PasswordResetData.password -

18 PasswordResetData.password Password Requirement Violation

20 PasswordResetData.password -

21 PasswordUserData.salt -

22 PasswordResetData.password, PasswordUserData.salt -

23 PasswordResetData.password, PasswordUserData.salt -

24 PasswordUserData.password_hash -

25 PasswordUserData -

26 EmailTokenSessionData.user_id, PasswordUserData -

27 EmailTokenSessionData.user_id, PasswordUserData, UserData.password_data -

29 EmailTokenSessionData.user_id -

31 EmailTokenSessionData -

33 - Email Send

35 - Password Reset Successful

Table A.9.: Data Element and Event references for Figure A.15

123

A. Appendix

Step Data Elements Events

1 InitiateEmailChangeData Email Change Initiated, System Unavailable

3 UserData -

4 InitiateEmailChangeData, UserData -

5 InitiateEmailChangeData.new_email Unexpected Email Format

6 InitiateEmailChangeData.password, UserData.password_data.salt -

7 InitiateEmailChangeData.password, UserData.password_data.salt -

8 PasswordVerificationData -

9 PasswordVerificationData.password_hash, UserData.password_data.password_hash User Password Wrong

10 EmailChangeTokenSessionData -

11 EmailChangeTokenSessionData -

12 EmailChangeTokenSessionData -

13 EmailTokenURLData, UserData.email, InitiateEmailChangeData.new_email -

14 UserData.email Email Send

15 InitiateEmailChangeData.new_email Email Send

22a EmailTokenData System Unavailable

23a EmailTokenData.token Email Token Unknown

24a - Email Change Blocked

25a EmailChangeTokenSessionData.user_id -

27a EmailChangeTokenSessionData.user_id -

22b EmailTokenData System Unavailable

23b EmailTokenData.token Email Token Unknown

24b EmailChangeTokenSessionData.expiration_time Email Token Expired

25b EmailChangeTokenSessionData.confirmed -

26b EmailChangeTokenSessionData.confirmed -

29b EmailTokenData System Unavailable

30b EmailTokenData.token Email Token Unknown

31b EmailChangeTokenSessionData.expiration_time Email Token Expired

32b EmailChangeTokenSessionData.confirmed -

33b EmailChangeTokenSessionData.user_id, EmailChangeTokenSessionData.new_email -

34b UserData.email, EmailChangeTokenSessionData.new_email -

36b EmailChangeTokenSessionData.user_id -

38b EmailChangeTokenSessionData.user_id -

Table A.10.: Data Element and Event references for Figure A.16

124

A.5. Single-Factor Password-based Authentication SDP

Figure A.14.: PBA SDP “Login” Behavioral Model

Events

Event (Registration Initiated). A user initiates the registration process by providing
their email address and password.
Security Consideration: A high frequency of registration attempts from the same IP
address or unusual patterns may indicate automated bots or DoS attacks. Implementing
a CAPTCHA or limiting the number of registration attempts per IP address can help
mitigate this.

Event (User Created). A new user account has been successfully created.
Security Consideration: Monitoring account creation patterns can help detect mass ac-
count creation by malicious actors.

Event (User Email Verified). The user has successfully verified their email address

Event (Registration Successful). The user has completed all registration steps, including
email verification, and can now access the system.

Event (Login Initiated). A subject initiates a login attempt by entering their email
address and password.
Security Consideration: A high number of login attempts, especially failed ones, can
indicate brute force or credential stuffing attacks.

Event (Login Successful). A user has successfully authenticated and gained access to
the system.
Security Consideration: Logins from new devices, locations, or IP addresses may indicate

125

A. Appendix

Figure A.15.: PBA SDP “Password Reset” Behavioral Model

126

A.5. Single-Factor Password-based Authentication SDP

Figure A.16.: PBA SDP “Email Change” Behavioral Model

127

A. Appendix

unauthorized access attempts and should be monitored. To reduce risk, notify users of
such logins.

Event (Password Reset Initiated). A user has requested to reset their password, initi-
ating the password reset process.

Event (Password Reset Successful). A user has successfully changed their password.

Event (Email Change Initiated). A user has initiated the process to change their reg-
istered email address.

Event (Email Change Blocked). An attempt to change the user’s email address has
been actively blocked by clicking a Block Email Change link at the old or new email
address.
Security Consideration: Indicates malicious activity that attempts to redirect user com-
munications or compromise accounts. User account may be temporarily disabled pending
identity verification.

Event (Email Change Successful). The user’s email address was successfully updated
after both the old and new email addresses were verified.

Event (Email Send). An email has been sent to the user, such as verification links,
password reset instructions, or notifications.

Error Event (System Unavailable). The system is unresponsive or unavailable when
a user attempts an action. Possible causes include server downtime, network issues, or
infrastructure failures.
Fallback Behavior: Retry with Exponential Backoff with at most three retries and an
initial delay of two seconds.

Error Event (Password Confirm Mismatch). The password and password confirmation
fields do not match during registration or password change attempts.

Error Event (Password Requirement Violation). A provided password does not meet
password requirements, such as minimum length.

Error Event (Unexpected Email Format). An email address does not conform the
defined email format, for example, it contains invalid characters.
Security Consideration: This may indicate a SQL injection attack or other injection
attacks that use crafted input to exploit the system.

Error Event (User Already Exist). A user has attempted to register a new account or
change an email to an email address that is already associated with an existing user.
Security Considerations:

• Detailed error messages can help attackers enumerate users; use generic messages to
avoid this (CWE-204: Observable Response Discrepancy). For example, respond
with “A link to activate your account has been emailed to the address provided”.

128

https://cwe.mitre.org/data/definitions/204.html

A.5. Single-Factor Password-based Authentication SDP

• Timing differences between the successful and unsuccessful cases can help attackers
enumerate users; avoid fail-fast behaviors, i.e., ensure that both cases take roughly
the same amount of time (CWE-208: Observable Timing Discrepancy).

Error Event (User Not Found). The user account associated with the email address
does not exist. This can happen when a subject tries to log in or reset a password.
Security Considerations:

• Detailed error messages can help attackers enumerate users; use generic messages to
avoid this (CWE-204: Observable Response Discrepancy). For example, respond
with “Login failed; Invalid email address or password” or “If that email address is
in our database, we will send you an email to reset your password”.

• Timing differences between the successful and unsuccessful cases can help attackers
enumerate users; avoid fail-fast behaviors, i.e., ensure that both cases take roughly
the same amount of time (CWE-208: Observable Timing Discrepancy).

Error Event (User Password Wrong). The password provided does not match the
stored password for the user account during a login or email change attempt.
Security Considerations:

• Detailed error messages can help attackers enumerate users; use generic messages to
avoid this (CWE-204: Observable Response Discrepancy). For example, respond
with “Login failed; Invalid email address or password” or “If the password is correct,
we will send confirmation emails to both the old and new email addresses”.

• Timing differences between the successful and unsuccessful cases can help attackers
enumerate users; avoid fail-fast behaviors, i.e., ensure that both cases take roughly
the same amount of time (CWE-208: Observable Timing Discrepancy).

Error Event (Email Token Unknown). The email verification, password reset token,
or email change token provided does not match any issued tokens.
Security Consideration: May indicate token tampering or replay attacks where an at-
tacker tries to reuse or forge tokens.

Error Event (Email Token Expired). The email verification or password reset token
has expired and is no longer valid. Tokens typically have a limited validity period for
security reasons.

A.5.3. Structural View
Architectural Model 1: Figure 6.13. Architectural Model 2: Figure A.17.

A.5.4. Consequences
• Strength (Maintainability): Single-Factor Authentication, especially when im-

plemented without requiring user lockout after a number of failed login attempts
and relying only on password salts for secure storage, requires minimal dependen-
cies and fewer components. This simplicity also reduces potential points of failure,
enabling quicker identification and resolution of issues.

129

https://cwe.mitre.org/data/definitions/208.html
https://cwe.mitre.org/data/definitions/204.html
https://cwe.mitre.org/data/definitions/208.html
https://cwe.mitre.org/data/definitions/204.html
https://cwe.mitre.org/data/definitions/208.html

A. Appendix

Figure A.17.: Architectural Model representing the static structure of a microservice
architecture that implements the PBA Roles, visualized in a C4 container
diagram.

130

A.6. Secret Storage

• Weakness (Security): The reliance on a single password makes the system par-
ticularly vulnerable to attacks such as phishing, credential stuffing, or brute force
attacks. Furthermore, users often reuse identical passwords across systems, leading
to cascading breach scenarios where a compromise in one system exposes multiple
others. In addition, many regulatory standards mandate stronger authentication
mechanisms, making Single-Factor Authentication insufficient for compliance in
sensitive environments.

A.5.5. Other

Attributes
• Password Reset Mechanism: Email Token
• Password Peppering: No
• Password Rotation with History: No
• User Account Lockout: No

Sources
• Changing A User’s Registered Email Address
• Authentication Cheat Sheet
• Forgot Password Cheat Sheet
• Password-based Authentication - Security Pattern Catalog

A.6. Secret Storage
Secure client-side storage of sensitive and secret information is critical to maintaining
system security and protecting user data. The following are best practices and recom-
mendations for achieving secure storage for different types of clients:

Web Client

Secure Cookies: Use cookies with appropriate attributes to securely store secrets such
as JSON Web Tokens or session identifiers:

• HttpOnly: Prevents client-side scripts from accessing the cookie, mitigating the risk
of Cross-Site Scripting (XSS) attacks.

• Secure: Ensure that the cookie is only sent over secure HTTPS connections.
• SameSite=Strict: The cookie is only sent with requests that originate from the

same site. This provides protection against Cross-Site Request Forgery (CSRF)
attacks, but it may interfere with legitimate cross-site interactions, such as third-
party authentication or payment gateways.

• SameSite=Lax: The cookie is sent with same-site requests and with top-level navi-
gation to your site (e.g., when a user clicks a link to your site from another site).
This provides a balance between security and usability by providing CSRF protec-
tion while still allowing certain cross-site requests that are likely initiated by the
user.

131

https://owasp.org/www-community/pages/controls/Changing_Registered_Email_Address_For_An_Account
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Forgot_Password_Cheat_Sheet.html
https://securitypatterns.distrinet-research.be/patterns/01_01_002__authentication_pwd/

A. Appendix

• Path: Specifies the subset of URLs that the cookie applies to (e.g., Path=/api/v1),
which limits where the cookie is sent.

• Cookie Prefixes:
– __Secure-: Requires the cookies to have the Secure attribute.
– __Host-: Requires the cookies to have the Secure attribute, no Domain at-

tribute, and a Path attribute set to /.
Web Storage: Avoid storing sensitive data in the browser’s localStorage or sessionStorage
due to vulnerability to XSS attacks. If necessary, consider encrypting the data on the
server side before storing it, but prefer cookies for better security.

Native Mobile Clients

iOS (Keychain): Use the iOS Keychain to store sensitive information. The Keychain
encrypts data and restricts access to the application, ensuring secure storage of tokens
and passwords.
Android (Keystore): Use the Android Keystore to securely generate and store crypto-
graphic keys. The cryptographic key can be used to store the sensitive data.

Desktop Clients

Windows (Data Protection API (DPAPI)): Use DPAPI to encrypt sensitive data before
storing it locally. DPAPI ties the encryption key to the user’s credentials, making it
secure and accessible only to the user who encrypted the data.
macOS (Keychain): Use the macOS Keychain to store sensitive information. The Key-
chain encrypt data and restricts access to the application, ensuring secure storage of
tokens and passwords.

132

Bibliography
[21] A04:2021-Insecure Design. https://owasp.org/Top10/A04_2021- Ins

ecure_Design/. Accessed: 2024-09-22. OWASP Foundation, 2021 (cit. on
pp. 1, 36).

[22] Information security, cybersecurity and privacy protection - Information
security controls. Standard ISO/IEC 27002:2022. International Organization
for Standardization, 2022. url: https://www.iso.org/standard/75652
.html (cit. on pp. 32, 33).

[23] Systems and software engineering - Systems and software Quality Require-
ments and Evaluation (SQuaRE) - Product quality model. Standard ISO/IEC
25010:2023. International Organization for Standardization, 2023. url: ht
tps://www.iso.org/standard/78176.html (cit. on p. 67).

[Aba24] A. Abazi. “Conception of a Security Solution Pattern Catalog for Constraint-
based Recommender Systems.” Available at: https://swc.rwth-aachen
.de/docs/bachelor-master-theses/2024-012-BT_Abazi/2024-11-27
BTArbenAbazi-ThesisReport.pdf. Bachelor’s Thesis. Rheinisch Westfälis-
che Technische Hochschule Aachen, Sept. 2024 (cit. on pp. 3, 5, 9, 10, 21,
22, 63, 67, 68).

[Agg16] C. C. Aggarwal. Recommender Systems. Cham: Springer International Pub-
lishing, 2016. doi: 10.1007/978-3-319-29659-3 (cit. on pp. 12, 69).

[Ale+77] C. Alexander et al. A Pattern Language: Towns, Buildings, Construction.
Oxford University Press, 1977. isbn: 978-0-19-501919-3 (cit. on p. 15).

[And+04] J. Andrade et al. “A Methodological Framework for Viewpoint-Oriented
Conceptual Modeling.” In: IEEE Transactions on Software Engineering 30.5
(2004), pp. 282–294. doi: 10.1109/TSE.2004.1 (cit. on pp. 16, 17).

[App97] B. Appleton. Patterns and software: Essential concepts and terminology.
Available at: https://www.sci.brooklyn.cuny.edu/~sklar/teaching/s
08/cis20.2/papers/appleton-patterns-intro.pdf. 1997 (cit. on pp. 5,
89).

[Bar+18] M. H. Barkadehi et al. “Authentication Systems: A Literature Review and
Classification.” In: Telematics and Informatics 35.5 (2018), pp. 1491–1511.
doi: 10.1016/j.tele.2018.03.018 (cit. on p. 15).

[Bas+22] S. K. Basak et al. “What Are the Practices for Secret Management in Soft-
ware Artifacts?” In: 2022 IEEE Secure Development Conference (SecDev).
2022, pp. 69–76. doi: 10.1109/SecDev53368.2022.00026 (cit. on p. 33).

133

https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://www.iso.org/standard/75652.html
https://www.iso.org/standard/75652.html
https://www.iso.org/standard/78176.html
https://www.iso.org/standard/78176.html
https://swc.rwth-aachen.de/docs/bachelor-master-theses/2024-012-BT_Abazi/2024-11-27 BT Arben Abazi - Thesis Report.pdf
https://swc.rwth-aachen.de/docs/bachelor-master-theses/2024-012-BT_Abazi/2024-11-27 BT Arben Abazi - Thesis Report.pdf
https://swc.rwth-aachen.de/docs/bachelor-master-theses/2024-012-BT_Abazi/2024-11-27 BT Arben Abazi - Thesis Report.pdf
https://doi.org/10.1007/978-3-319-29659-3
https://doi.org/10.1109/TSE.2004.1
https://www.sci.brooklyn.cuny.edu/~sklar/teaching/s08/cis20.2/papers/appleton-patterns-intro.pdf
https://www.sci.brooklyn.cuny.edu/~sklar/teaching/s08/cis20.2/papers/appleton-patterns-intro.pdf
https://doi.org/10.1016/j.tele.2018.03.018
https://doi.org/10.1109/SecDev53368.2022.00026

Bibliography

[BLL15] E. Bauman, Y. Lu, and Z. Lin. “Half a Century of Practice: Who Is Still
Storing Plaintext Passwords?” In: Information Security Practice and Expe-
rience. Springer International Publishing, 2015, pp. 253–267. doi: 10.1007
/978-3-319-17533-1_18 (cit. on p. 36).

[CDW04] A. Conklin, G. Dietrich, and D. Walz. “Password-Based Authentication: A
System Perspective.” In: 37th Annual Hawaii International Conference on
System Sciences, 2004. Proceedings of The. 2004. doi: 10.1109/HICSS.20
04.1265412 (cit. on p. 7).

[Cla12] J. Clarke-Salt. SQL Injection Attacks and Defense. Elsevier, 2012. isbn:
978-1-59749-963-7 (cit. on p. 7).

[DA21] D. D’Silva and D. D. Ambawade. “Building A Zero Trust Architecture Us-
ing Kubernetes.” In: 2021 6th International Conference for Convergence in
Technology (I2CT). 2021. doi: 10.1109/I2CT51068.2021.9418203 (cit. on
p. 89).

[Den+19] W. Denniss et al. OAuth 2.0 Device Authorization Grant. RFC 8628. 2019.
doi: 10.17487/RFC8628 (cit. on p. 76).

[Dir20] Directorate General for Health and Food Safety. European Interoperability
Certificate Governance - A Security Architecture for contact tracing and
warning apps. Tech. rep. European Commission, 2020. url: https://heal
th.ec.europa.eu/publications/european-interoperability-certifi
cate-governance-security-architecture-contact-tracing-and-war
ning_en (cit. on p. 18).

[Dix20] A. Dix. “Die deutsche Corona Warn-App–ein gelungenes Beispiel für Privacy
by Design?” In: Datenschutz und Datensicherheit - DuD 44 (2020), pp. 779–
785. doi: 10.1007/s11623-020-1366-1 (cit. on p. 18).

[DJS19] D. Deogun, D. B. Johnsson, and D. Sawano. Secure By Design. 1st Edition.
Manning Publications, 2019. isbn: 978-1-61729-435-8 (cit. on pp. 1, 27, 30,
34).

[eSe23] eSentire. 2023 Official Cybercrime Report. https://www.esentire.com/r
esources/library/2023-official-cybercrime-report. 2023. (Visited
on 09/22/2024) (cit. on p. 1).

[FB08] A. Felfernig and R. Burke. “Constraint-Based Recommender Systems: Tech-
nologies and Research Issues.” In: Proceedings of the 10th International Con-
ference on Electronic Commerce. ICEC ’08. 2008, pp. 1–10. doi: 10.1145
/1409540.1409544 (cit. on pp. 12–14, 69, 73, 74, 83).

[Fed24] Federal Office for Information Security (BSI). BSI TR-02102-1 Kryptographis-
che Verfahren: Empfehlungen und Schlüssellängen. Tech. rep. Available at:
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikatio
nen/TechnischeRichtlinien/TR02102/BSI-TR-02102. Federal Office for
Information Security (BSI), 2024 (cit. on p. 19).

134

https://doi.org/10.1007/978-3-319-17533-1_18
https://doi.org/10.1007/978-3-319-17533-1_18
https://doi.org/10.1109/HICSS.2004.1265412
https://doi.org/10.1109/HICSS.2004.1265412
https://doi.org/10.1109/I2CT51068.2021.9418203
https://doi.org/10.17487/RFC8628
https://health.ec.europa.eu/publications/european-interoperability-certificate-governance-security-architecture-contact-tracing-and-warning_en
https://health.ec.europa.eu/publications/european-interoperability-certificate-governance-security-architecture-contact-tracing-and-warning_en
https://health.ec.europa.eu/publications/european-interoperability-certificate-governance-security-architecture-contact-tracing-and-warning_en
https://health.ec.europa.eu/publications/european-interoperability-certificate-governance-security-architecture-contact-tracing-and-warning_en
https://doi.org/10.1007/s11623-020-1366-1
https://www.esentire.com/resources/library/2023-official-cybercrime-report
https://www.esentire.com/resources/library/2023-official-cybercrime-report
https://doi.org/10.1145/1409540.1409544
https://doi.org/10.1145/1409540.1409544
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102

Bibliography

[Fer13] E. Fernandez-Buglioni. Security Patterns in Practice: Designing Secure Ar-
chitectures Using Software Patterns. John Wiley & Sons, 2013. isbn: 978-1-
119-97048-4 (cit. on pp. 1, 21–23).

[Fet21] D. Fett. “FAPI 2.0: A High-Security Profile for OAuth and OpenID Con-
nect.” In: Open Identity Summit 2021. Gesellschaft für Informatik e.V., 2021,
pp. 71–82. isbn: 978-3-88579-706-7 (cit. on p. 55).

[FKS17] D. Fett, R. Küsters, and G. Schmitz. “The Web SSO Standard OpenID
Connect: In-depth Formal Security Analysis and Security Guidelines.” In:
2017 IEEE 30th Computer Security Foundations Symposium (CSF). 2017,
pp. 189–202. doi: 10.1109/CSF.2017.20 (cit. on pp. 7, 94).

[Gam+95] E. Gamma et al. Design Patterns. Addison Wesley Professional Computing
Series. 1995. isbn: 9780201633610 (cit. on pp. 5, 15).

[Gli+23] M. Glinz et al. “Towards a Modern Quality Framework.” In: 2023 IEEE 31st
International Requirements Engineering Conference Workshops (REW). 2023,
pp. 357–361. doi: 10.1109/REW57809.2023.00067 (cit. on p. 67).

[GN14] R. Gafni and D. Nissim. “To Social Login or Not Login? Exploring Factors
Affecting the Decision.” In: Issues in Informing Science and Information
Technology 11 (2014), pp. 57–72. doi: 10.28945/1980 (cit. on pp. 7, 8, 19,
77).

[Gra+20] P. A. Grassi et al. Digital Identity Guidelines - Authentication and Lifecycle
Management. Tech. rep. NIST Special Publication (SP) 800-63B. National
Institute of Standards and Technology, 2020. doi: 10.6028/NIST.SP.800-
63b (cit. on pp. 1, 69, 70, 91).

[Hal09] C. Hale. A Lesson In Timing Attacks. Accessed: 2024-11-07. 2009. url:
https://codahale.com/a-lesson-in-timing-attacks/ (cit. on p. 59).

[Har12] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749. 2012. doi:
10.17487/RFC6749 (cit. on p. 75).

[Hey+07] T. Heyman et al. “An Analysis of the Security Patterns Landscape.” In:
Third International Workshop on Software Engineering for Secure Systems
(SESS’07: ICSE Workshops 2007). 2007. doi: 10.1109/SESS.2007.4 (cit.
on pp. 1, 2, 15, 25, 30, 43, 87).

[HPL24] D. Hardt, A. Parecki, and T. Lodderstedt. The OAuth 2.1 Authorization
Framework. Internet-Draft draft-ietf-oauth-v2-1-12. Work in Progress. In-
ternet Engineering Task Force, 2024. url: https://datatracker.ietf.o
rg/doc/draft-ietf-oauth-v2-1/12/ (cit. on p. 75).

[ISC23] ISC2. 2023 ISC2 Cybersecurity Workforce Study. 2023. url: https://med
ia.isc2.org/-/media/Project/ISC2/Main/Media/documents/research
/ISC2_Cybersecurity_Workforce_Study_2023.pdf (cit. on p. 1).

135

https://doi.org/10.1109/CSF.2017.20
https://doi.org/10.1109/REW57809.2023.00067
https://doi.org/10.28945/1980
https://doi.org/10.6028/NIST.SP.800-63b
https://doi.org/10.6028/NIST.SP.800-63b
https://codahale.com/a-lesson-in-timing-attacks/
https://doi.org/10.17487/RFC6749
https://doi.org/10.1109/SESS.2007.4
https://datatracker.ietf.org/doc/draft-ietf-oauth-v2-1/12/
https://datatracker.ietf.org/doc/draft-ietf-oauth-v2-1/12/
https://media.isc2.org/-/media/Project/ISC2/Main/Media/documents/research/ISC2_Cybersecurity_Workforce_Study_2023.pdf
https://media.isc2.org/-/media/Project/ISC2/Main/Media/documents/research/ISC2_Cybersecurity_Workforce_Study_2023.pdf
https://media.isc2.org/-/media/Project/ISC2/Main/Media/documents/research/ISC2_Cybersecurity_Workforce_Study_2023.pdf

Bibliography

[Jov20] R. P. Jover. “Security Analysis of SMS as a Second Factor of Authentica-
tion: The Challenges of Multifactor Authentication Based on SMS, Includ-
ing Cellular Security Deficiencies, SS7 Exploits, and SIM Swapping.” In:
18.4 (2020), pp. 37–60. doi: 10.1145/3424302.3425909 (cit. on pp. 67,
85).

[Kra] M. Kraus. Protect Your Frontend: Why JWTs Should Stay Backstage. Ac-
cessed: 2024-12-03 (cit. on p. 89).

[Las21] W. Lasarov. “Im Spannungsfeld zwischen Sicherheit und Freiheit: Eine Anal-
yse zur Akzeptanz der Corona-Warn-App.” In: HMD Praxis der Wirtschaftsin-
formatik 58.2 (2021), pp. 377–394. doi: 10.1365/s40702-020-00646-3 (cit.
on p. 18).

[LL13] J. Ludewig and H. Lichter. Software Engineering: Grundlagen, Menschen,
Prozesse, Techniken. 3. korr. dpunkt. verlag, 2013. isbn: 978-3-86490-092-1
(cit. on p. 1).

[LS24] T. Langstrof and A. R. Sabau. “The Current State of Security – Insights
from the German Software Industry.” In: CoRR abs/2402.08436 (2024). doi:
10.48550/arXiv.2402.08436 (cit. on pp. 2, 19, 90).

[Mai+17] C. Mainka et al. “SoK: Single Sign-On Security — An Evaluation of OpenID
Connect.” In: 2017 IEEE European Symposium on Security and Privacy
(EuroS&P). 2017, pp. 251–266. doi: 10.1109/EuroSP.2017.32 (cit. on
p. 94).

[Meg24] N. Meganathan. “What Is the Effectiveness of Salt and Pepper in Pre-
venting Rainbow Table Attacks in Modern Password Hashing Algorithms?”
In: International Journal of Innovative Science and Research Technology
(IJISRT) (2024), pp. 242–248. doi: 10.38124/ijisrt/IJISRT24SEP406
(cit. on p. 15).

[NB19] J. Navas and M. Beltrán. “Understanding and Mitigating OpenID Connect
Threats.” In: Computers & Security 84 (2019). doi: 10.1016/j.cose.2019
.03.003 (cit. on p. 94).

[OMG23] O. M. G. (OMG). OMG Unified Modeling Language (UML) Specification.
Tech. rep. Version 2.5.1. Object Management Group, 2023. url: https://w
ww.omg.org/spec/UML (cit. on p. 50).

[PCI24] PCI Security Standards Council. PCI DSS v4.0.1: Payment Card Industry
Data Security Standard. Tech. rep. Available at: https://www.pcisecur
itystandards.org/document_library. PCI Security Standards Council,
2024 (cit. on pp. 2, 23, 69, 70, 86, 91).

[RF20] M. Richards and N. Ford. Fundamentals of Software Architecture: An En-
gineering Approach. O’Reilly Media, 2020. isbn: 978-1492043454 (cit. on
pp. 6, 53, 60, 71–73, 91).

136

https://doi.org/10.1145/3424302.3425909
https://doi.org/10.1365/s40702-020-00646-3
https://doi.org/10.48550/arXiv.2402.08436
https://doi.org/10.1109/EuroSP.2017.32
https://doi.org/10.38124/ijisrt/IJISRT24SEP406
https://doi.org/10.1016/j.cose.2019.03.003
https://doi.org/10.1016/j.cose.2019.03.003
https://www.omg.org/spec/UML
https://www.omg.org/spec/UML
https://www.pcisecuritystandards.org/document_library
https://www.pcisecuritystandards.org/document_library

Bibliography

[Ric18] C. Richardson. Microservice Patterns: With Examples in Java. Manning,
Shelter Island, NY, 2018. isbn: 978-1-61729-454-9 (cit. on p. 53).

[Ros+20] S. Rose et al. Zero trust architecture. Tech. rep. NIST Special Publication
(SP) 800-207. National Institute of Standards and Technology, 2020. doi:
10.6028/NIST.SP.800-207 (cit. on p. 30).

[RW11] N. Rozanski and E. Woods. Software Systems Architecture: Working with
Stakeholders Using Viewpoints and Perspectives. Addison-Wesley, 2011. isbn:
978-0-13-290612-8 (cit. on pp. 5, 6, 25–28, 41).

[Sab24] A. R. Sabau. “A Guided Modeling Approach for Secure System Design.” In:
2024 IEEE 21st International Conference on Software Architecture Com-
panion (ICSA-C). 2024, pp. 105–110. doi: 10.1109/ICSA-C63560.2024.0
0026 (cit. on pp. 18, 38, 40, 41, 95).

[SBA15] N. Sakimura, J. Bradley, and N. Agarwal. Proof Key for Code Exchange by
OAuth Public Clients. RFC 7636. 2015. doi: 10.17487/RFC7636 (cit. on
p. 48).

[SC14] S. Samonas and D. Coss. “The CIA Strikes Back: Redefining Confidentiality,
Integrity and Availability in Security.” In: Journal of Information Systems
Security 10.3 (2014), pp. 21–45 (cit. on p. 6).

[Sch+06] M. Schumacher et al. Security Patterns: Integrating Security and Systems
Engineering. John Wiley & Sons, 2006. isbn: 978-1-118-72593-1 (cit. on
pp. 1, 9, 10, 15, 21–23).

[Sch03] M. Schumacher. “Security Engineering with Patterns : Origins, Theoretical
Model, and New Applications.” In: Springer, 2003. isbn: 978-3-540-45180-8
(cit. on p. 10).

[Sho14] A. Shostack. Threat Modeling: Designing for Security. John Wiley & Sons,
2014. isbn: 978-1-118-81005-7 (cit. on pp. 6, 7).

[Sto+21] A. van der Stock et al. OWASP Application Security Verification Stan-
dard 4.0.3. Tech. rep. Version 4.0.3. Open Web Application Security Project
(OWASP), 2021. url: https://owasp.org/www-project-application-s
ecurity-verification-standard/ (cit. on p. 86).

[VH14] A. Vassilev and T. A. Hall. “The Importance of Entropy to Information
Security.” In: Computer 47.2 (2014), pp. 78–81. doi: 10.1109/MC.2014.47
(cit. on p. 47).

[vYJ18] A. van den Berghe, K. Yskout, and W. Joosen. “Security Patterns 2.0: To-
wards Security Patterns Based on Security Building Blocks.” In: Proceedings
of the 1st International Workshop on Security Awareness from Design to
Deployment. SEAD ’18. 2018, pp. 45–48. doi: 10.1145/3194707.3194715
(cit. on pp. 1, 9, 15, 21, 34).

137

https://doi.org/10.6028/NIST.SP.800-207
https://doi.org/10.1109/ICSA-C63560.2024.00026
https://doi.org/10.1109/ICSA-C63560.2024.00026
https://doi.org/10.17487/RFC7636
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-application-security-verification-standard/
https://doi.org/10.1109/MC.2014.47
https://doi.org/10.1145/3194707.3194715

Bibliography

[vYJ22a] A. van den Berghe, K. Yskout, and W. Joosen. “A Reimagined Catalogue of
Software Security Patterns.” In: Proceedings of the 3rd International Work-
shop on Engineering and Cybersecurity of Critical Systems. EnCyCriS ’22.
2022, pp. 25–32. doi: 10.1145/3524489.3527301 (cit. on pp. 2, 7, 10, 21–
25, 28, 30, 31, 88).

[vYJ22b] A. van den Berghe, K. Yskout, and W. Joosen. Authentication. https://gi
tlab.kuleuven.be/distrinet/research/security-patterns/security
-pattern-catalogue/-/blob/main/docs/patterns/01_01_001__authen
tication.md. Commit Hash: ebfb2eb9cfc800060ea44db5fc9e5d19c6ea7606.
2022 (cit. on pp. 9, 10, 22).

[vYJ22c] A. van den Berghe, K. Yskout, and W. Joosen. Password-based authentica-
tion. https://gitlab.kuleuven.be/distrinet/research/security-pa
tterns/security-pattern-catalogue/-/blob/main/docs/patterns/01
_01_002__authentication_pwd.md. Commit Hash: b0ca944b49c73cccd3
3f6da8a6c5c2d67f4c2b79. 2022 (cit. on pp. 1, 15, 22, 23, 57).

[vYJ22d] A. van den Berghe, K. Yskout, and W. Joosen. Session-based Access Con-
trol. https://gitlab.kuleuven.be/distrinet/research/security-
patterns/security- pattern- catalogue/- /blob/main/docs/patter
ns/01_01_006__session_based_access_control.md. Commit Hash:
c9b8250d1dd7567d29a343ec491f1713cb8f1cdb. 2022 (cit. on p. 8).

[vYJ22e] A. van den Berghe, K. Yskout, and W. Joosen. Verifiable token-based au-
thentication. https://gitlab.kuleuven.be/distrinet/research/sec
urity-patterns/security-pattern-catalogue/-/blob/main/docs/p
atterns/01_01_003__verifiable_token_based_authentication.md.
Commit Hash: 801234a6ec461d716123084903b70b782ba1a72a. 2022 (cit. on
p. 8).

[Wor23] World Economic Forum. Global Risks Report 2023. Accessed: 2024-09-23.
2023. url: https://www3.weforum.org/docs/WEF_Global_Risks_Report
_2023.pdf (cit. on p. 1).

[YSJ12] K. Yskout, R. Scandariato, and W. Joosen. “Does Organizing Security Pat-
terns Focus Architectural Choices?” In: 2012 34th International Conference
on Software Engineering (ICSE). 2012, pp. 617–627. doi: 10.1109/ICSE.2
012.6227155 (cit. on pp. 23, 91).

[YSJ15] K. Yskout, R. Scandariato, and W. Joosen. “Do Security Patterns Really
Help Designers?” In: 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering. Vol. 1. 2015, pp. 292–302. doi: 10.1109/ICSE.2
015.49 (cit. on p. 95).

[YT05] E. Yuan and J. Tong. “Attributed based access control (ABAC) for Web
services.” In: IEEE International Conference on Web Services (ICWS’05).
2005, p. 569. doi: 10.1109/ICWS.2005.25 (cit. on p. 31).

138

https://doi.org/10.1145/3524489.3527301
https://gitlab.kuleuven.be/distrinet/research/security-patterns/security-pattern-catalogue/-/blob/main/docs/patterns/01_01_001__authentication.md
https://gitlab.kuleuven.be/distrinet/research/security-patterns/security-pattern-catalogue/-/blob/main/docs/patterns/01_01_001__authentication.md
https://gitlab.kuleuven.be/distrinet/research/security-patterns/security-pattern-catalogue/-/blob/main/docs/patterns/01_01_001__authentication.md
https://gitlab.kuleuven.be/distrinet/research/security-patterns/security-pattern-catalogue/-/blob/main/docs/patterns/01_01_001__authentication.md
https://gitlab.kuleuven.be/distrinet/research/security-patterns/security-pattern-catalogue/-/blob/main/docs/patterns/01_01_002__authentication_pwd.md
https://gitlab.kuleuven.be/distrinet/research/security-patterns/security-pattern-catalogue/-/blob/main/docs/patterns/01_01_002__authentication_pwd.md
https://gitlab.kuleuven.be/distrinet/research/security-patterns/security-pattern-catalogue/-/blob/main/docs/patterns/01_01_002__authentication_pwd.md
https://gitlab.kuleuven.be/distrinet/research/security-patterns/security-pattern-catalogue/-/blob/main/docs/patterns/01_01_006__session_based_access_control.md
https://gitlab.kuleuven.be/distrinet/research/security-patterns/security-pattern-catalogue/-/blob/main/docs/patterns/01_01_006__session_based_access_control.md
https://gitlab.kuleuven.be/distrinet/research/security-patterns/security-pattern-catalogue/-/blob/main/docs/patterns/01_01_006__session_based_access_control.md
https://gitlab.kuleuven.be/distrinet/research/security-patterns/security-pattern-catalogue/-/blob/main/docs/patterns/01_01_003__verifiable_token_based_authentication.md
https://gitlab.kuleuven.be/distrinet/research/security-patterns/security-pattern-catalogue/-/blob/main/docs/patterns/01_01_003__verifiable_token_based_authentication.md
https://gitlab.kuleuven.be/distrinet/research/security-patterns/security-pattern-catalogue/-/blob/main/docs/patterns/01_01_003__verifiable_token_based_authentication.md
https://www3.weforum.org/docs/WEF_Global_Risks_Report_2023.pdf
https://www3.weforum.org/docs/WEF_Global_Risks_Report_2023.pdf
https://doi.org/10.1109/ICSE.2012.6227155
https://doi.org/10.1109/ICSE.2012.6227155
https://doi.org/10.1109/ICSE.2015.49
https://doi.org/10.1109/ICSE.2015.49
https://doi.org/10.1109/ICWS.2005.25

Glossary
AM Architectural Model

AME Architectural Modeling Element

ASSP Abstract Security Solution Pattern

BM Behavioral Model

BME Behavioral Modeling Element

CBRS Constraint-based Recommender System

CSRF Cross-Site Request Forgery

DP Decision Point

EP Enforcement Point

IdP Identity Provider

IP Information Point

JWKS JSON Web Key Set

JWT JSON Web Token

KB Knowledge Base

MFA Multi-Factor Authentication

OIDC OpenID Connect

OSS Open Source Software

PBA Password-based Authentication

PCI DSS Payment Card Industry Data Security Standard

RP Relying Party

139

Glossary

SDP Security Design Pattern

SDPDM Security Design Pattern Description Metamodel

SP Security Pattern

SQL Structured Query Language

SSP Security Solution Pattern

UML Unified Modeling Language

140

	Introduction
	Contribution
	Structure of this Thesis

	Foundation
	Software Engineering
	Security
	Security Solution Pattern
	Recommender Systems

	Problem Statement and Method
	Research Method

	Related Work
	Security Pattern Description
	Security Pattern Selection

	Security Design Pattern Description Metamodel
	SDPDM Structure
	SDPDM Viewpoint Structure
	Conceptual Viewpoint
	Data Viewpoint
	Behavioral Viewpoint
	Structural Viewpoint

	Application Example of Usage Aspect
	OpenID Connect Security Design Pattern 1
	OpenID Connect Security Design Pattern 2
	Password-based Authentication SDP

	Security Design Pattern Knowledge Base Metamodel
	Security Design Pattern Knowledge Base Structure
	Attributes
	Recommendation Factors
	Constraints
	Recommendation Process

	Application Examples of SDP KBs
	OpenID Connect SDP KB Attributes
	OpenID Connect SDP KB Recommendation Example
	Password-based Authentication SDP KB

	Discussion
	Security Design Pattern Usage Aspect
	Security Design Pattern Knowledge Base

	Conclusion
	Summary
	Future Work

	Appendix
	OpenID Connect Knowledge Base
	PBA Knowledge Base
	OpenID Connect SDP 1
	OpenID Connect SDP 2
	Single-Factor Password-based Authentication SDP
	Secret Storage

	Bibliography
	Glossary

