
The present work was submitted to
the Research Group
Software Construction

of the Faculty of Mathematics,
Computer Science, and
Natural Sciences

Master Thesis

LLM-based Generation of
Realistic Synthetic Software
Requirement Specifications

presented by

Florian Maximilian Braun

Aachen, June 1, 2025

Examiner

Prof. Dr. rer. nat. Horst Lichter

Prof. Dr. rer. nat. Bernhard Rumpe

Supervisor

Alex Sabau, M.Sc.

Acknowledgment
I would like to thank Prof. Dr. rer. nat. Horst Lichter for the opportunity to write my
master thesis at his chair, as well as for his role as the first examiner. I also acknowledge
Prof. Dr. rer. nat. Bernhard Rumpe for serving as the second examiner.

I am especially grateful to my supervisor, M.Sc. Alex Sabau, for his consistent sup-
port and guidance. Our regular discussions were productive and often sparked new
perspectives, and I sincerely appreciated the open exchange of ideas. The collaborative
environment he fostered encouraged active contribution and allowed me to gain valuable
insights throughout the course of the thesis.

I would also like to thank my family for their continuous support throughout my
studies and during the writing of this thesis.

Finally, I’m especially grateful to my girlfriend for her encouragement, patience, and
support along the whole way.

Florian Maximilian Braun

Abstract
Access to realistic system requirement specifications (SyRS) is often limited due to confi-
dentiality, proprietary constraints, or the high cost of expert involvement. This presents
a significant challenge for software engineering tasks that depend on structured, domain-
specific artefacts for evaluation, such as in the context of constraint-based recommender
systems. Recent advances in large language models (LLMs) offer a potential solution
for generating synthetic substitutes for real-world requirements, but systematic methods
for doing so remain under-explored.

This thesis investigates how LLMs can be used to generate high-quality Synthetic
System Requirement Specifications (SSRS) in domains where real-world SyRS or expert
input is unavailable. To address this, a structured, repeatable process called SSRS-
Gen is introduced. The process integrates scientifically grounded prompt engineering
techniques, custom evaluation metrics, and LLM-based self-assessment strategies. It
was applied in the context of the SecuRe security recommender system and tested across
ten distinct industry domains, iteratively generating and evaluating a total of 300 SSRS
instances.

Results show that prompt patterns such as Template and Persona significantly im-
proved structural consistency and contextual plausibility of generated SSRSs. Self-
assessment techniques were effective in capturing structural completeness and identi-
fying internal inconsistencies within the SSRS, but showed limitations when evaluating
realism that requires nuanced and in-depth domain-specific knowledge. Expert evalu-
ation revealed a high degree of alignment with LLM-based assessments in many cases,
while also identifying recurring weaknesses such as oversimplification, generic phrasing,
and overly optimistic requirements.

This work contributes an initial, structured approach to SSRS generation using LLMs
and highlights both the promise and current limitations of automated SSRS genera-
tion. It provides a foundation for future research into the role of LLMs in requirements
engineering and evaluation workflows.

Contents
1. Introduction 1

1.1. Research Questions . 2
1.2. Structure of the Thesis . 2

2. Background 5
2.1. Constraint-based Recommender Systems 5
2.2. Application Context: SecuRe Recommender System 6

3. Conceptual Foundations 9
3.1. Large Language Models . 9
3.2. Prompting Strategies . 14
3.3. Prompt Patterns . 14
3.4. Terminology . 16

4. Methodology 19
4.1. Process Requirements . 19
4.2. Targeted Literature Review . 21
4.3. Process Prototyping . 21

5. Selected Prompting Techniques and Evaluation Metrics 23
5.1. Prompting Strategies . 23
5.2. Prompt Patterns . 24
5.3. Evaluation Metrics . 28

6. The SSRS-Gen Process 31
6.1. High-Level Overview . 31
6.2. Phase 1: SSRS Generation . 33
6.3. Phase 2: Completeness Assessment . 34
6.4. Phase 3: Degree of Realism Assessment 34
6.5. Phase 4: Semantic Similarity Measurement 35
6.6. Iterative Refinement . 35

7. Process Implementation 37
7.1. Tooling and Model Selection . 38
7.2. Stopping Criterion . 38
7.3. Phase 1: SSRS Generation . 39
7.4. Phase 2: Completeness Evaluation . 40
7.5. Phase 3: Realism Evaluation . 40

i

7.6. Phase 4: Similarity Scoring . 41
7.7. Data Analysis and Prompt Refinement Loop 42

8. Process Execution Results 43
8.1. Completeness Results . 48
8.2. Prompt Refinements . 48
8.3. Iteration-Level Insights . 54
8.4. Industry Domain-Level Insights . 58

9. Evaluation by Human Experts 63
9.1. Questionnaire Study Design and Evaluation 63
9.2. Expert Evaluation Results . 65

10.Related Work 73
10.1. Traditional AI Techniques in Requirements Engineering 73
10.2. LLM-Driven Approaches to Requirements Engineering 75
10.3. Summary and Distinction from Related Work 78

11.Discussion 81
11.1. Observed Impact of Prompting Strategies 81
11.2. LLM Self-Assessment and Expert Judgments 83
11.3. Review of the SSRS-Gen Process . 86
11.4. Limitations of the Study . 88
11.5. Research Questions Revisited . 91
11.6. Future Work . 93

12.Conclusion 95
12.1. Summary of Contributions . 95
12.2. Key Insights and Implications . 96
12.3. Reflective Summary of Research Questions 96
12.4. Concluding Remarks . 97

A. Appendix 99

Bibliography 111

Glossary 117

List of Tables
8.1. Changes in the SSRS Template. 48
8.2. Prompt refinements for the SSRS Generation prompt. 49
8.3. Prompt refinements for the SSRS Completeness assessment prompt. . . . 51
8.4. Prompt refinements for the SSRS Degree of Realism assessment prompt. . 52

9.1. Number of evaluations for each industry domain. 65

11.1. Overlap between expert realism ratings and realism issues identified by
the LLM during self-assessments. 84

iii

List of Figures

6.1. High-level overview of the SSRS-Gen process. 32

7.1. Representation of the complete workflow for a single SSRS, showing se-
quential prompt execution for generation, completeness assessment, and
DoR evaluation. 37

8.1. System Overview section of an SSRS generated in the final iteration for
the finance industry domain. 44

8.2. Functional requirements section of an SSRS generated in the final iteration
for the finance industry domain. 45

8.3. Non-functional requirements section of an SSRS generated in the final
iteration for the finance industry domain. 46

8.4. Constraints section of an SSRS generated in the final iteration for the
finance industry domain. 47

8.5. The semantic similarity and degree of realism scores averaged over all 30
SSRS for a given iteration. 54

8.6. Variation in DoR Scores aggregated across all 30 SSRS for each iteration. 55
8.7. Variation in Similarity Scores aggregated across all 30 SSRS for each it-

eration. 56
8.8. The semantic similarity and degree of realism scores averaged over all ten

iterations for each individual industry domain. 59

9.1. Participants self-reported expertise, including years of professional expe-
rience and type of expertise. 66

9.2. Realism ratings per template element, showing the absolute number of
responses marked as realistic or unrealistic. 67

9.3. Realism ratings per template element, normalized and sorted by propor-
tion of responses marked as realistic. 67

9.4. Distribution of participant responses for the overall realism rating of the
SSRS. 69

9.5. Proportion of participant responses for the overall realism rating of the
SSRS. 70

A.1. Final SSRS generation prompt incorporating persona assignment, struc-
tured task instructions and self-refinement steps combined with Chain-of-
Thought prompting. 100

A.2. Completeness assessment prompt used in the final iteration. 101

v

A.3. Final Degree of Realism assessment prompt incorporating persona assign-
ment and structured task instructions. 102

A.4. Similarity and realism scores across all iterations with one sub-plot for
each domain. 103

A.5. Average similarity scores per industry domain across iterations. 104
A.6. Average realism scores per industry domain across iterations. 105
A.7. Subplots for each iteration displaying the realism and similarity scores of

each IndDom. 106
A.8. Variation in realism scores with one subplot for each iteration. 107
A.9. Variation in similarity scores with one subplot for each iteration. 108
A.10.Variability of realism scores across iterations with one sub-plot for each

domain. 109
A.11.Variability of similarity scores across iterations with one sub-plot for each

domain. 110

List of Source Codes
6.1. Basic example prompt for SSRS generation. 33

vii

1. Introduction
Recent advances in large language models (LLMs) have opened new possibilities for gen-
erating complex textual artefacts across diverse industry domains. In software engineer-
ing, one particularly promising application lies in the automated creation of synthetic
system requirement specifications (SSRS). These are structured documents that describe
what a system should do, including its functional behaviour, external interfaces, perfor-
mance parameters, and operational environment. In accordance with ISO/IEC/IEEE
29148:2018 [ISO18], a System Requirement Specification (SyRS) aims to define technical
and non-functional requirements from a domain perspective, acting as a formal bridge
between system acquirers and developers. In this thesis, SSRSs are artificially gener-
ated substitutes for such SyRS documents, intended for use in evaluation and testing
scenarios where real-world specifications are unavailable and access to domain experts
is limited.

The motivation for this work originates from the field of constraint-based recom-
mender systems, particularly in the domain of software security. These systems rely
on a well-defined knowledge base and require realistic input artefacts to validate per-
formance [Fel15; Agg16]. However, acquiring real-world SyRS is often infeasible due to
proprietary restrictions, confidentiality concerns, or because they are simply unavailable
[FSG17]. This challenge is not unique to recommender systems but extends to many
software domains where evaluation and testing depend on realistic and domain-specific
requirement descriptions.

LLMs offer a compelling opportunity to address this gap. Their ability to produce
coherent, domain-specific natural language outputs suggests that they may serve as
substitutes for expert-authored artefacts, both in terms of content generation and eval-
uation. However, their successful deployment for such purposes requires more than just
simple prompts. Instead, a structured process is required, informed by prompt engi-
neering research, to guide model behaviour toward the generation of useful, high-quality
SSRSs [Sch+24; Whi+23].

The process introduced in this thesis was initially developed within the context of
a constraint-based software security recommender system, including the definition of
a SSRS template specific to this application context. However, due to its structured,
repeatable nature and the abstraction of its prompt design, the approach may be trans-
ferable to other domains that face similar challenges of data scarcity and limited expert
access.

1

1. Introduction

1.1. Research Questions
The central challenge addressed in this thesis concerns the generation of realistic and
practically useful SSRS in domains where access to real-world SyRS or domain experts is
limited. In many software engineering contexts SyRS are either inaccessible or unavail-
able. This lack of data poses a significant barrier for evaluation and testing processes
that rely on high-quality SyRS.

Recent advancements in LLMs offer a potential solution. These models can generate
structured, context-sensitive text and may be capable of producing synthetic SyRS that
serve as viable substitutes for real-world documents. However, this potential raises
several open questions: How can such a generation process be systematically designed?
How can the quality of its outputs be meaningfully assessed, especially in the absence
of expert reviewers? And most importantly, how do human experts judge the quality of
artefacts that result from such a process?

To investigate these issues, the following research questions are addressed:

• RQ 1: How can large language models be systematically applied to generate high-
quality synthetic system requirement specifications in contexts where real-world
system requirement specifications are unavailable?

• RQ 2: How can the quality of synthetic system requirement specifications be
defined and measured in the absence of human experts?

• RQ 3: How do human experts evaluate the quality of the LLM-generated synthetic
system requirement specifications?

These questions are addressed through the development of a structured LLM-based
generation process (RQ1), the formulation of automated assessment metrics (RQ2), and
a follow-up expert evaluation study (RQ3).

1.2. Structure of the Thesis
The thesis is organised to build progressively from conceptual foundations to implemen-
tation and evaluation. Chapter 2 provides background on constraint-based recommender
systems in general and a description of the SecuRe recommender system, which serves as
the application context of this thesis. Chapter 3 introduces the foundations relevant to
the thesis, covering large language models, prompt engineering techniques, and impor-
tant terminology. Chapter 4 outlines the methodological approach applied in this thesis,
including requirements for the process to be developed, two targeted literature reviews
and the prototyping approach applied in process development. Chapter 5 presents the
results of the two literature reviews as well as the rationale for which prompt engineering
techniques were selected for the SSRS generation process. Chapter 6 describes the overall
architecture of the generation process, including its four main phases: SSRS generation,
completeness assessment, realism evaluation, and semantic similarity scoring. Chapter
7 explains how this process was implemented in practice, detailing the tools, prompt

2

1.2. Structure of the Thesis

management, and data handling used to ensure reproducibility. Chapter 8 presents the
results from ten iterations of the process, analysing trends in output completeness, re-
alism, and diversity. Chapter 9 reports on a follow-up expert study used to externally
validate the realism of selected SSRSs. Chapter 10 reviews related work focusing on AI
and LLMs and their application in requirement engineering contexts. Finally, Chap-
ter 11 offers a comprehensive discussion of findings, methodological implications, and
limitations, and Chapter 12 concludes the thesis by summarising key contributions and
outlining directions for future research.

3

2. Background

To ground the research presented in this thesis, this chapter outlines the broader appli-
cation context and the specific system that motivated the development of the proposed
process. While the primary focus of the work is the generation of synthetic system re-
quirement specifications (SSRSs) using large language models (LLMs), the initial idea
for this process emerged from challenges encountered in evaluating constraint-based rec-
ommender systems. The chapter begins by reviewing foundational concepts in recom-
mender system design, with particular emphasis on constraint-based approaches. Then
it introduces the SecuRe recommender system and explains how the need for realistic
input data within that system led to the development of SSRSs as evaluation artefacts.

Recommender systems are widely used to support decision-making across domains
such as e-commerce, media consumption, and software engineering. While many rec-
ommender systems rely on user behaviour data to generate personalised suggestions,
constraint-based recommender systems follow a fundamentally different approach. These
systems are particularly suited to domains with complex, high-stakes decision criteria,
such as software security, where user data is limited or unavailable. Instead of learn-
ing from past interactions, constraint-based systems rely on explicitly defined rules and
domain knowledge to guide their recommendations. This dependency on formalised
knowledge creates a significant challenge: acquiring, maintaining, and validating the
underlying knowledge base often requires extensive input from domain experts [Fel15;
Agg16].

In the context of such systems, there is a critical need for realistic and representative
input artefacts that can be used for testing, validating, and improving the recommenda-
tion logic [Fel15]. However, access to real-world data, such as SyRS, is often restricted
[FSG17]. These challenges motivated the development of a process for generating SSRS
as an alternative for real-world artefacts. The following sections explain the role of
constraint-based recommender systems in more detail and outline how this context mo-
tivated the development of the process proposed in this thesis.

2.1. Constraint-based Recommender Systems
Constraint-based recommender systems are a subtype of knowledge-based recommenders
that operate without relying on historical user data. Instead, they derive recommenda-
tions from a formalised set of domain-specific rules and constraints encoded in a knowl-
edge base. This makes them particularly suitable for complex and high-stakes domains,
such as software security, where user interaction data is limited or unavailable and de-
cision criteria are often highly structured and non-negotiable [Fel15; Agg16].

5

2. Background

At the core of such systems lies the knowledge base, which comprises five key compo-
nents:

• Customer Properties VC : Requirements that can be elicited from a user in the
given domain

• Product Properties VPROD: Properties of products in the given domain

• Constraints CR: Restrictions to the possible combinations of VC

• Filter Conditions CF : Describe possible relations between VC and VPROD

• Product Constraints CPROD: Defines constraints to possible combinations of
VPROD

Recommendations are generated by solving a constraint satisfaction problem that
combines the user’s input (VC) with the defined constraints to determine feasible product
configurations. As such, the system’s effectiveness is directly dependent on the accuracy,
completeness, and consistency of the encoded knowledge [Fel15; Agg16].

However, this reliance introduces several critical challenges. First, the development of
a comprehensive knowledge base typically requires substantial expert involvement, rais-
ing concerns about scalability and maintainability in large or evolving domains. Second,
since most of the data is manually defined, it may reflect subjective judgments or incom-
plete information. These factors increase the risk of biases or inaccuracies that could
propagate into the recommendation outcomes. As a result, evaluating the correctness
of the knowledge base becomes essential, but also difficult, due to the lack of available
ground-truth data and the complexity of the domain logic [Fel15].

Given these constraints, the next section introduces the SecuRe recommender system,
which served as the initial application context for this thesis. It highlights the practical
challenges of validating such systems and motivates the need for synthetic evaluation
artefacts like SSRSs.

2.2. Application Context: SecuRe Recommender System
The SecuRe recommender system served as the originating context for the work presented
in this thesis. It addresses critical challenges in the design of secure software systems,
a domain in which security breaches can result in substantial financial and reputational
damage [Mat17]. The increasing complexity of secure system architectures, combined
with a significant shortage of security experts in industry, makes it difficult for software
architects to make informed, domain-appropriate design decisions [FB20]. SecuRe aims
to bridge this gap by recommending suitable security design artefacts based on system-
specific requirements [SLL25].

As SecuRe’s effectiveness relies on an accurate knowledge base, the initial motivation
for this thesis was to support its evaluation through the use of synthetic, yet realistic,

6

2.2. Application Context: SecuRe Recommender System

system requirement specifications. Since real-world SyRSs are often inaccessible or un-
available [FSG17], the idea emerged to generate SSRSs using an LLM. These synthetic
documents were intended to serve as input artefacts for validating the correctness of the
SecuRe knowledge base. In doing so, they reflect the structure and terminology inherent
to SecuRe and served as a concrete application context for which tailored SSRSs could
be developed through the SSRS-Gen process introduced in this thesis.

2.2.1. Objective and Core Concepts

The SecuRe recommender system addresses the challenge of making expert security de-
sign knowledge more accessible, especially for software architects lacking deep expertise
in security. It aims to assist in architectural decision-making by recommending suit-
able security patterns (SPs) based on specific security requirements and the system’s
contextual constraints [SLL25].

At the core of SecuRe’s conceptual model lies a hierarchy of interrelated entities:

• Security Requirement:
A specification of a condition that the system must meet to ensure a particular
aspect of security.

• Security Control:
A concrete action or technique, such as authentication, used to fulfil a security
requirement and reduce system vulnerabilities.

• Security Pattern (SP):
A reusable conceptual solution for realising a security control. SPs are abstract and
implementation-independent but are characterised by a set of pattern properties
such as security strength or usability.

• Security Design Pattern (SDP):
A design-level solution of an SP.

• Realization Context:
The set of environmental, regulatory, and architectural conditions under which the
security requirement must be satisfied. It is characterised by context properties
such as number of users or regulatory constraints.

SecuRe operationalises these concepts by using separate knowledge bases for each
security control and security pattern. These knowledge bases encode the contextual
constraints, filter conditions, and property definitions necessary to compute valid and
contextually appropriate recommendations. This enables the system to solve constraint
satisfaction problems and assign recommendation scores based on weighted utility crite-
ria like cost, performance, or usability [SLL25].

This thesis focuses particularly on the concept of the realization context, which spec-
ifies the conditions under which a system must operate. These contexts serve as input

7

2. Background

to the recommendation logic of SecuRe and influence which security patterns are con-
sidered appropriate [SLL25]. However, acquiring representative and structured data for
such contexts remains difficult due to the lack of publicly available real-world data, such
as SyRS [FSG17]. To address this issue, the SSRSs generated in this work are designed
to simulate diverse and plausible realization contexts across different domains. These
synthetic specifications are then intended to serve as input artefacts for evaluating Se-
cuRe’s knowledge base and its ability to deliver context-appropriate recommendations.
To support this, a dedicated SSRS template was developed, structured as a list of context
properties forming a realization context. Each of these properties is then instantiated
by an LLM to generate detailed, domain-specific data.

8

3. Conceptual Foundations

Having established the application context and motivation in the preceding chapter, this
chapter introduces the conceptual foundation necessary for understanding the remainder
of the thesis. It begins with an overview of LLMs, highlighting their core capabilities
as well as reliability and truthfulness issues that impact their use in complex generation
tasks. Section 3.1.3 then outlines the fundamentals of prompt engineering as a disci-
pline for systematically shaping LLM behaviour through input design. It introduces key
prompting strategies such as zero-shot, one-shot, and few-shot prompting, as well as
broader categories of reusable prompt patterns that support structure, reasoning, and
self-evaluation. Additionally, section 3.4 defines the central terms used throughout the
thesis, including the concept of Synthetic System Requirement Specifications (SSRS),
the structural SSRS template, and the notion of realism as a key quality dimension.
These terms provide the conceptual basis for the following chapters.

3.1. Large Language Models
Large Language Models (LLMs) are advanced artificial intelligence systems capable of
understanding and generating human-like text. Built primarily on transformer architec-
tures, they are trained on vast datasets from the internet to capture complex linguistic
patterns and semantic relationships [Bas+25] [Mai+24]. LLMs excel in tasks such as
summarisation, translation, and question answering, making them invaluable in diverse
domains, including content creation and research [Hua+24a].

Despite their capabilities, LLMs face challenges like bias, misinformation, and halluci-
nation, where outputs deviate from factual accuracy or fail to remain grounded in input
data. Addressing these issues is critical to improving the reliability and trustworthiness
of LLMs [Ji+23] [Hua+24a]. This section delves into the strengths and limitations of
LLMs.

3.1.1. Capabilities of LLMs

LLMs demonstrate remarkable strengths across a wide range of natural language pro-
cessing tasks due to their scale, versatility, and ability to generalise from minimal task-
specific input. They are capable of performing tasks based solely on a textual prompt
that describes the task, without requiring prior training on the specific task at hand .
This enables LLMs to achieve strong performance on challenges such as machine trans-
lation, question answering, and textual entailment, relying entirely on their pre-trained
knowledge and the structure of the input prompt. Moreover, recent work has shown

9

3. Conceptual Foundations

that their reasoning capabilities can be further enhanced by structuring prompts to in-
clude intermediate reasoning steps, which significantly improves accuracy on complex
arithmetic and common-sense reasoning tasks . These characteristics make LLMs par-
ticularly effective for generative tasks that demand adaptability, contextual awareness,
and coherent language generation [Bro+20] [Wei+22] [Qia+22].

3.1.2. Reliability and Truthfulness Issues
While LLMs are powerful tools for generating fluent and contextually relevant text, they
can struggle with reliability and factual accuracy. In this thesis, these limitations are
grouped under the term reliability and truthfulness issues, referring to model behaviours
that result in factually incorrect, misleading, or unjustifiable confident outputs. Three
of the most critical issues in this area are hallucination, overconfidence, and uncertainty.
Understanding and addressing these failure sources is indispensable when trying to gen-
erate reliable and truthful outputs using an LLM. In the following, these three issues are
described in detail, starting with hallucination.

Hallucination

Hallucination in LLMs is defined as the generation of content that is nonsensical, unfaith-
ful to the input source, or unverifiable. This phenomenon poses significant challenges
to the reliability and usability of LLMs, as it undermines their effectiveness in produc-
ing accurate, grounded, and contextually appropriate outputs. Addressing hallucination
is critical for ensuring the trustworthiness of these models, particularly in applications
where factual accuracy is essential [Hua+24a] [Ji+23] [MLG23] [Ton+24].

The impact of hallucination extends across various dimensions. It erodes user trust
in LLM-generated outputs, as users may lose confidence in the system’s reliability when
faced with unfaithful content. Additionally, hallucinations increase the cognitive burden
on users, who must validate and potentially correct outputs, diminishing the efficiency
gains LLMs are intended to provide. Beyond usability, hallucination has ethical and
social implications, as it can propagate misinformation, reinforce biases, or produce
harmful content. The need for manual oversight or advanced verification mechanisms to
manage hallucination further raises operational costs and limits the scalability of LLMs
in broader deployments [Hua+24a] [Ji+23] [Ton+24] [Lia+24].

Hallucination in LLMs can be categorised into two main types. Intrinsic hallucina-
tion occurs when the generated content contradicts the input source, failing to remain
faithful. For example, in summarisation tasks, a model may produce a statement that
inaccurately reflects the source material, such as misreporting key dates or events. Ex-
trinsic hallucination, on the other hand, involves the inclusion of unverifiable content
that is not grounded in the input source. While extrinsic hallucinations may sometimes
be factually correct, their lack of grounding introduces uncertainty, especially in contexts
requiring strict adherence to source material [Hua+24a] [Ji+23] [Ton+24].

The causes of hallucination can be traced to issues at three key stages: data, train-
ing, and inference. Data-related causes often stem from mismatches between source and

10

3.1. Large Language Models

reference in training datasets, which leads to outputs that deviate from the input. Addi-
tionally, heuristic data collection methods can introduce inconsistencies, while duplicate
examples in the dataset may result in models over-fitting and generating memorised,
irrelevant content. Training-related issues include an objective mismatch, where opti-
misation for fluency leads to degenerated outputs that prioritise linguistic coherence
over faithfulness. Furthermore, LLMs often rely excessively on general world knowledge,
generating outputs that are not aligned with the specific input. Inference-related causes
include decoding strategies such as beam search, which tries out several alternative out-
puts before choosing the best one, and temperature, which adjusts how confident or
random the model’s word choices are during generation. These methods can sometimes
favour outputs that sound plausible or fluent over those that are factually accurate or
contextually precise [Hua+24a] [Ji+23] [Ton+24].

Mitigation strategies for hallucination focus on addressing the specific causes identi-
fied at each stage. Data-level interventions include improved dataset curation to ensure
alignment between source and reference, as well as filtering out duplicates and inconsis-
tencies to reduce over-fitting. At the training level, task-specific objectives that prioritise
input alignment and reinforcement learning with human feedback have shown promis-
ing results in reducing hallucination. For inference, tuning decoding parameters, such
as beam width and temperature, and employing post-generation editing tools can help
detect and correct unfaithful content. These strategies, when combined, provide a com-
prehensive approach to mitigating hallucination and enhancing the reliability of LLMs
[Hua+24a] [Ji+23] [Ton+24] [Lia+24].

While the term black-box is not explicitly defined in the paper by Huang et al.
[Hua+24a], the authors describe systems that are ”only accessible via API calls” and
offer no access to internal structures such as model parameters. Based on this charac-
terisation, this thesis adopts the term black-box LLMs, to refer to models with limited
accessibility, where internal components cannot be inspected or modified, and the user
is only able to observe the outputs. This definition also aligns with common terminology
in the overarching field of Artificial Intelligence [Kos24]. Conversely, white-box LLMs
are defined here as models with accessible internals, such as architecture, parameters, or
training configurations. For black-box LLMs such as ChatGPT-4, where data-level or
training-level interventions are not feasible, traditional hallucination mitigation strate-
gies are not applicable. In such cases, alternative approaches must be employed to
address hallucination. These include post-generation techniques such as output verifica-
tion using external knowledge sources, leveraging auxiliary models for fact-checking, or
employing structured prompts that explicitly constrain the model’s output. Addition-
ally, iterative prompting strategies, where the model is asked to self-evaluate and refine
its responses, can help improve faithfulness and reduce hallucinations. These methods
emphasize adaptability and user-level controls to mitigate hallucination without relying
on modifications to the underlying model [Hua+24a] [Lia+24] [MLG23].

11

3. Conceptual Foundations

Overconfidence

Overconfidence in LLMs is defined as the tendency of these models to present information
with high certainty, regardless of whether the content is factually correct or verifiable.
This phenomenon poses a significant risk, especially when overconfidence coincides with
hallucination, resulting in outputs that are not only incorrect but also expressed confi-
dently. Such outputs can be highly misleading, particularly for users who are non-experts
in the domain of the generated content. Unlike systems that are designed to express how
certain they are about their predictions, LLMs typically provide their outputs without
any indication of how confident they are in their correctness. This is largely because
these models are trained to produce text that sounds fluent and coherent, not necessarily
to judge whether what they generate is true or reliable [Sun+25] [Tia+23] [Gen+23].

As shown by Sun et al. [Sun+25], LLMs often present incorrect or fabricated infor-
mation with the same level of confidence as correct information, making it difficult for
users to distinguish between the two. The implications of this overconfidence are multi-
faceted. From a usability perspective, confidently hallucinated outputs reduce a user’s
ability to detect errors, especially in contexts where domain knowledge is limited or
time for verification is constrained. This increases the cognitive burden on users and can
lead to the unintentional propagation of misinformation. Furthermore, overconfidence
impedes transparency, as the model provides no cues to distinguish between reliable
and potentially erroneous content. In safety-critical or high-stakes applications, this be-
haviour can significantly undermine trust in the system. Without mechanisms to reveal
uncertainty or self-reflect on output quality, users may develop misplaced confidence in
model-generated information [Sun+25] [Gen+23].

Efforts to mitigate overconfidence in LLMs include confidence calibration, uncertainty-
aware prompting, and response justification techniques. These approaches aim to align a
model’s expressed certainty with the actual reliability of its outputs. In scenarios where
access to the model’s internals is restricted, strategies such as self-assessment prompts
or structured output formats may help expose uncertainty and reduce the misleading
impact of overconfident responses. In summary, overconfidence is a critical failure mode
that amplifies the risks associated with hallucination and hinders error detection. Ad-
dressing this issue is essential for improving the reliability, transparency, and usability
of LLM-generated outputs [Sun+25] [Xio+23] [Sch+24] [Tia+23] [Hua+24b] [Gen+23].

Uncertainty

Uncertainty in LLMs refers to the variability or inconsistency in outputs given the same
input, caused by ambiguous inputs, model limitations, or the open-ended nature of
the task. Uncertainty is an inherent characteristic of LLMs, impacting their reliability
and interpretability. Understanding the sources and types of uncertainty is essential
to effectively quantify and manage it in LLM-generated outputs. Uncertainty in LLMs
arises from multiple sources. At the input level, ambiguity in user inputs, such as
complex sentence structures, domain shifts, or out-of-vocabulary words, can introduce
uncertainty into the model’s predictions. At the system level, the architecture of the

12

3.1. Large Language Models

model, parameter initialisation, and training processes contribute variability that affects
uncertainty in outputs. Lastly, at the output level, uncertainty is amplified in generative
tasks that require a degree of creativity or the generation of entirely new content, such
as story generation or open-ended question answering. In such tasks, generating longer
sequences or intricate outputs tends to increase uncertainty, making it harder to ensure
the consistency and reliability of the results [Hu+23] [Hou+23] [Sho+24].

In addition to these sources, uncertainty can be further categorised into two types:
aleatoric uncertainty and epistemic uncertainty. Aleatoric uncertainty arises from noise
or ambiguity in the input data itself, such as unclear or contradictory information pro-
vided to the model. In contrast, epistemic uncertainty reflects gaps in the model’s knowl-
edge or its inability to generalise effectively due to insufficient or biased training data.
While aleatoric uncertainty is often irreducible, epistemic uncertainty can potentially be
reduced by improving the training process or expanding the training dataset. By un-
derstanding and addressing both the sources and granularity of uncertainty, LLMs can
be better equipped to handle ambiguous inputs and produce reliable outputs, ensuring
they meet the needs of their intended applications [Hou+23] [Hu+23] [Sho+24].

3.1.3. Prompt Engineering

Understanding the challenges posed by hallucination, overconfidence, and uncertainty
is essential for the responsible use of LLMs. Yet recognising these limitations is only
the first step. Actively mitigating them requires methods for influencing and control-
ling model behaviour. One of the most prominent approaches is encompassed in the
discipline of prompt engineering. Prompt engineering refers to the systematic design,
structuring, and refinement of prompts to improve the accuracy, reliability, and task
alignment of LLM outputs. Rather than modifying the model itself, prompt engineering
works by shaping the input to elicit more desirable responses. It has gained traction as
a practical approach to enhance LLM performance, especially in cases where retraining
or fine-tuning is infeasible. In this thesis, prompt engineering serves as a central mech-
anism for addressing the reliability issues outlined above and for enabling high-quality,
domain-specific generation without relying on external ground truth or expert supervi-
sion. Prompt engineering is particularly important for applications that utilise black box
LLMs, because in these cases users can only control the behaviour of the LLM through
their inputs. Thus writing high-quality prompts is essential and should be supported by
prompt engineering techniques to improve output quality [Sch+24] [Whi+23] [Wei+22].

Prompt engineering encompasses a variety of methods for structuring input. One
foundational subset of these methods is Prompting Strategies, which define the general
approach of how to accurately communicate a task to an LLM to achieve a certain
desired output. Another important concept is a group of techniques called Prompt Pat-
terns, which define reusable design principles for guiding LLM behaviour. The following
sections present both concepts in more detail.

13

3. Conceptual Foundations

3.2. Prompting Strategies
Prompting strategies are overarching approaches used to structure how a task is commu-
nicated to an LLM. These strategies define how much context or guidance is provided
in the input, and play a central role in shaping the model’s ability to produce accu-
rate and relevant outputs for a given task. Different prompting strategies vary in how
explicitly they define the task, whether through input-output examples, direct instruc-
tions, or both. There are three foundational strategies: zero-shot, one-shot, and few-shot
prompting. In the following each approach is introduced [Sch+24] [Bro+20].

Zero-shot prompting is defined as presenting the model with only an instruction or task
description, without any examples of correct outputs. This approach relies entirely on
the model’s internal knowledge and generalization capabilities. It is particularly effective
when tasks are either well-known (e.g., language translation or fact-based questions) or
open-ended and exploratory in nature (e.g., creative generation), where examples may
constrain the model unnecessarily or introduce bias. Zero-shot prompting is also the
only option in cases where a ground-truth is simply not available or hard to establish,
and thus no evaluated examples can be provided to the LLM [Sch+24] [Bro+20].

Few-shot prompting is defined as providing the model with a small number of carefully
selected input-output examples to help it infer both the structure and semantics of the
task. This strategy is well-suited for more complex or unfamiliar tasks where the desired
format or reasoning process is difficult to convey through instructions alone. However,
it assumes the availability of representative examples, which may not always be feasible,
especially in novel or data-scarce domains [Sch+24] [Bro+20].

One-shot prompting sits between the two extremes. It includes a single example of
the desired input-output pair to demonstrate the task format or intent. This strategy
is helpful when a minimal example can clarify ambiguous or under-defined instructions
while avoiding the complexity associated with few-shot prompts [Sch+24] [Bro+20].

While prompting strategies define foundational approaches of how to communicate a
task to an LLM, they do not specify how the actual task description is implemented.
The following section thus introduces the concept of prompt patterns, which can be used
to construct task descriptions based on scientifically evaluated design principles.

3.3. Prompt Patterns
While the prompting strategies presented above are foundational for guiding LLM be-
haviour, their effectiveness can often be enhanced through the application of structured,
reusable design principles. One such approach within the broader field of prompt engi-
neering is the use of prompt patterns. A Prompt pattern is a generalisable template or
heuristic for constructing prompts that is effective across tasks and domains, very similar
to software design patterns, which offer proven solutions to common design problems in
programming. In both domains, patterns encapsulate best practices into modular struc-
tures that promote consistency, adaptability, and efficiency. In the context of LLMs,
prompt patterns are defined as task-agnostic design structures that specify a particular

14

3.3. Prompt Patterns

way of framing input or instructions to guide the model’s response predictably and ef-
fectively. The patterns are not tied to specific tasks or domains, making them broadly
applicable in prompt formulation. [Whi+23] [Sch+24].

3.3.1. General Purpose Patterns

General purpose prompt patterns are a category of reusable prompt structures designed
to improve output quality across a wide variety of tasks and domains. Unlike more
specialised patterns that target specific problem types, general purpose prompt patterns
aim to enhance clarity, structure, and alignment in model responses regardless of the
task at hand. These patterns typically focus on how instructions are framed or how the
model is positioned in the prompt. These techniques may involve assigning the model a
specific role to help it generate more contextually relevant responses, or they may define
the expected output format explicitly to ensure structural consistency. One common
approach is the persona pattern, which assigns the model a specific persona or role, such
as a software engineer or security expert, to guide its tone, expertise, and perspective in
generating more contextually appropriate responses. The primary advantage of general
purpose patterns lies in their versatility. Because they do not rely on task-specific logic
or assumptions, they can be applied in a broad range of use cases. As such, they form a
foundational toolset for prompt engineers looking to improve model performance through
better prompt design [Whi+23] [Sch+24].

The specific general purpose patterns applied in this thesis are introduced in chapter
5.

3.3.2. Structured Reasoning Patterns

While general purpose prompt patterns offer flexible tools for shaping model behaviour
and structuring outputs, complex tasks often require more targeted strategies to sup-
port reasoning and decision-making. Structured reasoning patterns are a category of
prompt design techniques that guide a language model through a complex task by ex-
plicitly breaking it down into intermediate steps or sub-problems. Rather than asking
the model to solve a complex prompt in a single pass, these patterns encourage incre-
mental reasoning, which has been shown to improve coherence, factual accuracy, and
task success rates in multi-step or logic-intensive scenarios. As an example, the Chain-
of-Thought pattern in its simplest version prompts an LLM to ”think step-by-step” to
encourage step-wise reasoning for a given task. These patterns are particularly valuable
in domains where responses require justification, sequencing, or dependencies between
different aspects of the output. They help mitigate common LLM failure modes such as
hallucination, inconsistency, or shallow reasoning by encouraging the model to articulate
intermediate reasoning steps explicitly [Sch+24] [Wei+22] [Zha+22].

The specific structured reasoning patterns investigated in this thesis are introduced
in chapter 5.

15

3. Conceptual Foundations

3.3.3. Self-Criticism Patterns
After highlighting key prompt engineering techniques to support LLMs in output gen-
eration and task solving, this section turns to techniques applied after the initial output
generation. Self-Criticism is a category of prompt patterns encompassing all meth-
ods where an LLM is instructed to assess and potentially refine its own outputs. Self-
Criticism techniques can be further divided into two main types: Self-Assessment, where
the model provides a qualitative or quantitative judgment of its own output, and Self-
Refinement, where the model not only critiques but also refines the original response
based on its own evaluation [Sch+24] [Li+24] [Wei+24] [Mad+23].

All prompt patterns selected and applied in this thesis are discussed in detail in chapter
5.

While the previous sections provided conceptual tools for structuring and evaluating
model behaviour, the following section defines the key terminology that will be used
throughout the remainder of this thesis.

3.4. Terminology
This section defines the essential terminology that forms the basis for the thesis’s main
artefacts and evaluation criteria. It begins by defining the central artefact generated
in this work, along with the template that specifies its structure and content. This is
followed by a definition of the term Realism, which serves as the conceptual basis for
one of the core quality criteria used to evaluate the generated artefacts.

3.4.1. Synthetic System Requirement Specification

Definition

A Synthetic System Requirement Specification (SSRS) is a structured, domain-
specific artefact that represents a natural-language description of a hypothetical
software system. Its content is adapted from the structure and terminology defined
in ISO/IEC/IEEE 29148:2018 [ISO18] for formal System Requirements Specifica-
tions (SyRS).

The adapted SyRS used in this thesis comprises four main sections with the following
content:

1. System Overview:
• System Purpose – High-level description of the system’s main objectives and

goals.
• Domain/Context – The domain or industry in which the system operates.
• Stakeholders – Key individuals or groups that interact with or are affected by

the system (e.g., users, administrators, regulators).

16

3.4. Terminology

• User Base Characteristics – Size, diversity, geographic distribution, and roles
(e.g., employees, customers, administrators).

• Operational Environment – Where and how the system is hosted or accessed
(e.g., cloud-based, on-premise, mobile).

• Usage Scenarios – Common day-to-day user interactions or workflows.

2. Functional Requirements:
• Core Features – Specific functionalities the system must provide (e.g., data

input, process automation).
• Authentication Conditions & Frequency – How often users need to authenti-

cate and under what circumstances (e.g., session expiration, sensitive actions).
• Sensitivity of Actions & Permission Levels – Operations requiring authenti-

cation, their sensitivity levels, and associated user roles or permissions.

3. Non-Functional Requirements:
• Performance – Expected metrics such as response times and system through-

put.
• Scalability – Ability to handle increases in users or data without degradation

in performance.
• Reliability – Expectations for fault tolerance, error handling, and recovery

mechanisms.
• Security – Measures to ensure data protection and access control.
• Usability – Requirements for user accessibility and ease of interaction.
• Audit & Monitoring – Requirements for tracking, logging, and reviewing au-

thentication events or user actions.

4. Constraints:
• Technical Constraints – Hardware, software, or infrastructure limitations.
• Compliance Requirements – Legal, regulatory, or domain-specific obligations

(e.g., GDPR, HIPAA).
• Resource Constraints – Budget, staffing, or time limitations affecting devel-

opment or operation.
• Integration Needs – Whether the system must integrate with existing authen-

tication systems or infrastructure.

The structure and contents of each section are selected to fit the specific requirements
of evaluating the SecuRe recommender system, therefore, detailed information on se-
curity requirements was added. In this context, System Requirements Specifications
(SyRSs) serve as a source from which realization contexts, as described in section 2.2,
can be extracted.

17

3. Conceptual Foundations

3.4.2. SSRS Template

Definition

The SSRS Template is an instantiation of the template prompt pattern, which defines
the content of SSRSs in the context of this thesis. It specifies all elements together
with an explanation or example. The SSRS template is instantiated with content
tailored to specific industry domains.

An Industry Domain (IndDom) denotes a distinct sector such as finance, healthcare,
or logistics and in the following will be abbreviated with IndDom.

While the SSRS template utilised in this thesis is tailored specifically to the evaluation
of the SecuRe constraint-based recommender system, the underlying concept is not tied
to this application context. The SSRS template was adapted from ISO 29148 to address
the specific evaluation needs of the recommender system, incorporating detailed infor-
mation on authentication requirements. This adaptation was desired as, at the time of
writing this thesis, SecuRe focuses exclusively on authentication security patterns. Thus,
the approach can similarly be transferred to other application contexts by tailoring the
SSRS template to their respective evaluation needs.

3.4.3. Realism
In addition to defining the structural template for SSRS instances, it is also necessary to
clarify how the quality of their content is conceptually framed. One key aspect in this
context is the notion of realism, which serves as a guiding principle for evaluating the
plausibility of generated requirements. In the context of this work, the term realism is
understood as ”representing things in a way that is accurate and true to life” [Oxf23].
This notion of realism is based on the definition for the word realistic in the Oxford En-
glish Dictionary. Realism is a crucial aspect in guiding the evaluation of SSRSs, focusing
on whether the generated requirements plausibly reflect real-world system requirements
within their respective industry domains.

After introducing the foundational terminology, the following chapter presents the
methodology applied to design a structured process to generate realistic SSRS based on
the pre-defined SSRS template.

18

4. Methodology

This chapter outlines the methodological basis used to inform the design of a struc-
tured, LLM-based process for generating IndDom-specific Synthetic System Require-
ments Specifications (SSRSs). Rather than starting from an arbitrary implementation,
the approach was grounded in a targeted review of existing literature. Two focused lit-
erature reviews were conducted to support the design. The first one reviewed prompt
engineering strategies aimed at improving the quality and control of LLM-generated out-
puts. The second one examined evaluation techniques suitable for assessing generated
content in scenarios where ground-truth data is scarce or unavailable.

Building on the insights from these reviews, a subsequent prototyping phase was un-
dertaken to iteratively design, validate, and refine a structured process for generating
realistic SSRSs. To support consistent terminology throughout this thesis, the term
SSRS-Gen process is introduced. Synthetic System Requirement Specification Genera-
tor (SSRS-Gen) refers to the LLM-based framework developed in this work to produce
realistic and structured SSRSs. The process was designed to be domain-independent,
scalable, and capable of producing outputs with high structural and semantic quality.

The following section defines the key requirements that shaped the design space of the
SSRS-Gen process. These requirements served as the foundation for selecting, adapting,
and combining techniques during the development phase.

4.1. Process Requirements
The SSRS-Gen process was developed to address the need for generating realistic SSRS
in zero-resource settings. To guide its design, a set of six core requirements was defined.
Each requirement is clearly defined and explained below.

R1 – Realism: The process must generate SSRSs that plausibly resemble real-world
system requirement specifications.

Realism is essential for enabling SSRSs to function as meaningful substitutions for real-
world SyRS in domains where access to this data is limited or unavailable. Outputs
must be realistic to be usable for any evaluation or testing purposes.

R2 – Comparability: The process must produce SSRSs with a consistent structure and
content coverage, enabling meaningful comparison across multiple outputs.

To support objective evaluation, reuse, and downstream analysis, all generated SSRSs
must conform to a predefined content structure. This structure not only enforces struc-

19

4. Methodology

tural consistency but also defines the expected types of content.

R3 – Diversity: The process must generate multiple SSRSs within the same industry
domain that are not redundant, but instead represent distinct and meaningful variations.

Diverse outputs within the same industry domain increase the utility of the generated
SSRSs, particularly for use in testing and evaluation task. Without diversity, the value
of generating multiple SSRS diminishes.

R4 – Domain Independence: The process must support generation across multiple
industrial domains without relying on domain-specific fine-tuning or prior examples.

This requirement was driven by the intended use of SSRSs in evaluating the SecuRe
recommender system, which requires a broad range of realization contexts, as introduced
in section 2.2. As such, SSRS-Gen must be capable of producing SSRSs for a set of
distinct industry domains, without requiring task-specific adaptation or customization.

R5 – Zero-Resource Operation: The process must function in settings where no
labelled datasets or existing SyRS documents are available.

This requirement acknowledges the scarcity of high-quality, publicly available SyRS doc-
uments. Moreover, even when such documents are accessible, their quality cannot be
guaranteed without expert validation, which introduces additional complexity and bias
risk. To ensure applicability in data-constrained environments, the process must operate
without reliance on any external data sources.

R6 – Expert Independence: The process must operate without the involvement of
domain experts at any stage, including generation, evaluation, and refinement.

Relying on expert feedback across multiple iterations would make the process infeasible
due to the high workload involved. Expert independence ensures that SSRS-Gen re-
mains scalable, practical, and applicable in environments where experts are rare or not
available.

These six requirements form the foundation for the design and scope of the SSRS-Gen
process. Together, they define the constraints under which the process must operate and
the qualities that its outputs must satisfy. In particular, the emphasis on zero-resource
conditions and expert independence significantly narrows the space of viable methodolog-
ical approaches. To inform the design of SSRS-Gen under these constraints, a targeted
literature review was conducted to identify existing methods in prompt engineering that
could operate within these boundaries.

20

4.2. Targeted Literature Review

4.2. Targeted Literature Review
To inform the design of SSRS-Gen under the constraints defined in the previous section,
a targeted literature review was conducted to identify generalisable methods, prompting
strategies, and evaluation techniques focused on prompt engineering and the assessment
of LLM-generated content. This review provided a pragmatic and empirically grounded
foundation for the design of a novel generation process aligned with the thesis objec-
tives. By drawing on techniques with demonstrated value, the resulting process aims to
reliably produce high-quality SSRSs, even in domains where access to real-world SyRS
or continuous expert feedback is limited.

The first literature review investigated prompt engineering strategies and prompt pat-
terns. Its objective was to identify techniques capable of improving the quality, structure,
and domain alignment of LLM-generated outputs in complex text generation tasks. Spe-
cial attention was given to strategies aimed at mitigating common limitations of LLMs,
such as hallucinations, overconfidence, and uncertainty, as discussed in section 3.1.2.
The result was a curated list of prompt patterns and engineering techniques that served
as the conceptual foundation for subsequent process design and refinement.

The second literature review focused on evaluation methods for assessing the quality
of LLM-generated text in contexts where no ground truth is available. It explored
existing automatic and model-based metrics, as well as more recent LLM Self-Assessment
approaches. The review emphasized the need for task-specific metrics that could evaluate
SSRS outputs with respect to the three requirements of R1-Realism, R2-Comparability
and R3-Diversity, as these define explicit quality criteria for generated SSRS. Together,
these two reviews established the methodological basis for the design of the SSRS-Gen
process and directly informed the decisions made in subsequent chapters regarding both
the design principles and evaluation strategies used.

It is important to note that the literature review conducted was not intended to be
exhaustive in a systematic review sense. Instead, a targeted manual search strategy
was employed, focusing on literature describing empirically validated prompting strate-
gies and evaluation techniques. The selection emphasized practical applicability and
conceptual relevance over comprehensive coverage, aligning with the exploratory and
design-oriented goals of this thesis.

The following section outlines how the findings from the literature reviews informed
the prototyping of the SSRS-Gen process.

4.3. Process Prototyping
Based on the insights derived from the targeted literature reviews, a prototyping phase
was initiated to validate the feasibility of a structured generation process for SSRSs
subject to the given constraints. In this context, prototyping refers to the iterative design
and partial testing of the process components from scratch, aimed at evaluating whether
the approach fulfilled its intended requirements. Assessing output quality was not part of
the prototyping phase itself, as quality control was integrated into the process through

21

4. Methodology

its inherently iterative structure. The central objective of this phase was to design a
process capable of generating high-quality SSRSs without access to real-world SyRS
or the involvement of human domain experts, as both resources are typically scarce
as highlighted before. The prototyping approach was driven by the goal of meeting
the core quality criteria for generated SSRSs of comparability, realism, and diversity,
while adhering to the process constraints. Accordingly, methods were selected from the
literature that could be operationalised in a fully automated LLM setting. This led to
the inclusion of prompting strategies to enhance generation quality and self-assessment
techniques to enable the LLM to evaluate outputs in the absence of human feedback or
ground-truth references.

Initial process design began with a minimal and logically straightforward structure. A
single SSRS would be generated, followed by a sequence of evaluations targeting each of
the three quality dimensions. This sequence for a single SSRS formed the foundational
unit of the process. However, to align with the broader objective of producing diverse
SSRSs across multiple industrial domains, the scope was extended. The expanded pro-
cess was conceptualized around two parameters, m as the number of distinct IndDoms,
and n the number of SSRSs to be generated per IndDom. These parameters were directly
derived from the core requirements established in in the previous section 4.1. Specifi-
cally, the inclusion of multiple IndDoms (m) addresses R4–Domain Independence, which
was motivated by the need to generate SSRSs across varied domains for the evaluation
of the SecuRe recommender system. Meanwhile, the parameter n with n > 1 for each
IndDom enables the evaluation of R3–Diversity, as multiple outputs are required within
the same domain to assess whether the generated SSRSs exhibit meaningful variation
rather than redundancy. The structure of this multi-domain generation framework was
first formalized through conceptual diagrams and then tested in a single-domain setting
to verify basic functionality. This initial proof of concept focused on evaluating whether
the envisioned sequential workflow for generating multiple SSRSs within a single domain
was practically feasible.

The prototyping phase outlined above established a conceptual and operational foun-
dation for the SSRS-Gen process, grounded in the practical constraints and quality goals
identified at the outset of this thesis. To move from this preliminary framework toward
a fully specified process design, it was necessary to translate the high-level process logic
into concrete prompting and evaluation strategies. The following chapter presents the
results of the targeted literature reviews in detail, outlining the specific techniques iden-
tified and the rationale behind their selection for the process. These findings directly
informed the design choices underlying the final SSRS-Gen process and serve as the
empirical basis for its prompting and assessment components.

22

5. Selected Prompting Techniques and
Evaluation Metrics

This chapter presents the results of the two targeted literature reviews that informed
the design of the SSRS-Gen process. The first review focused on identifying prompt en-
gineering techniques, specifically prompt patterns, that have demonstrated effectiveness
in guiding LLM behaviour, improving output quality, and mitigating known reliability
and truthfulness issues, as introduced in section 3.1.2. The second review addressed
evaluation methods for LLM-generated content, with a focus on identifying metrics that
can assess output quality in contexts where ground-truth references are unavailable. To-
gether, these two reviews provide the empirical and conceptual foundation for selecting
the techniques and evaluation criteria applied throughout this thesis. The findings are
grouped into three main sections: prompting strategies, followed by prompt patterns,
and lastly task-specific evaluation metrics tailored to the requirements for SSRS gener-
ation.

5.1. Prompting Strategies

The design of the SSRS-Gen process began with the fundamental challenge of how to ac-
curately communicate the desired output structure and content to an LLM. This required
not only a precise definition of the intended SSRS format, but also a well-formulated
prompt, capable of consistently eliciting outputs that conformed to this specification. As
introduced in section 3.2, prompting strategies define the fundamental approach used to
instruct an LLM to perform a given task. Based on the three presented core strategies it
had to be evaluated which prompting strategy is the most suitable for this work. In the
context of this thesis, few-shot prompting would necessitate one or more high-quality
SSRS examples created and evaluated by IndDom experts to serve as output examples.
However, access to both real-world SyRS and qualified IndDom experts is limited, which
presents a critical barrier for few-shot prompting, as the approach relies on representa-
tive, high-quality examples to guide generation. Moreover, incorporating unevaluated
or biased examples into the generation pipeline would compromise the validity of the
process, as the model could internalise and amplify these flaws, leading to systematic
errors in output generation and masking the effects of subsequent prompt refinements
intended to improve quality. These constraints render the few-shot approach infeasible
in the context of this thesis. Instead, a zero-shot prompting strategy was adopted. To
support this strategy and ensure that the model could still reliably produce structured
and contextually appropriate outputs, the following sections present the prompt pat-

23

5. Selected Prompting Techniques and Evaluation Metrics

terns identified during the literature review as most suitable for guiding generation in
the absence of examples.

5.2. Prompt Patterns
As outlined in section 3.3, prompt patterns offer structured, reusable approaches to
frame instructions that can enhance the quality and reliability of LLM outputs. Given
that few-shot prompting was not feasible for this thesis due to the lack of available
example data, prompt patterns became a central mechanism for communicating the
desired output structure and intent in a zero-shot setting. They provide a principled
way to guide model behaviour without relying on task-specific examples, making them
particularly well-suited for the SSRS generation context [Whi+23] [Sch+24].

The following sections present the specific prompt patterns identified through the
literature review as most relevant for supporting the zero-shot generation of SSRSs.

5.2.1. General Purpose Patterns

This subsection presents general-purpose prompt patterns identified in the literature
that are applicable across a wide range of tasks. These patterns were selected for their
potential to address core challenges of the SSRS-Gen process, including format consis-
tency, contextual realism, and zero-shot applicability.

Template Pattern

The Template pattern is a prompt engineering technique where the user specifies the
desired output format and content type through a template, which is then filled with
actual content by the LLM. The template is often defined using structured text contain-
ing placeholders for the LLM to fill with information in the final output. This pattern
is useful in applications where the LLM output is used in any subsequent tasks that
require a specific input format, or in cases where the same template-based prompt is
executed multiple times. In the latter case, the template pattern supports comparability
between outputs of the same prompt as it ensures consistency in output format [Sch+24]
[Whi+23].

In the context of the SSRS-Gen process, the template pattern was selected as a core
mechanism for defining the desired structure of generated outputs. As introduced in
section 3.4, the SSRS template specifies the expected content and format. The use of
this pattern was motivated by two main factors. First, the process has to rely on zero-
shot prompting, which precludes the use of SSRS examples to convey output format. The
explicit template thus provides the necessary structural guidance to the model. Second,
structural consistency across outputs was considered essential to support systematic
evaluation and iterative refinement. The template pattern was therefore selected based
on the assumption that explicitly specifying the desired structure, defined by the SSRS
template, would help elicit outputs that adhered to this format. This, in turn, was

24

5.2. Prompt Patterns

expected to support the process requirement of R2-Comparability as introduced in section
4.1, and therefore enabling a meaningful analysis across domains and prompt versions.

Persona Pattern

The persona pattern is a textual instruction that prompts an LLM to adopt a specific
role or viewpoint in generating its output. This persona can represent a profession, a
domain expert or even a fictional character. The pattern intends to shape the model’s
perspective in producing responses that reflect, most importantly, the knowledge, style
and decision-making typical of the specified role. For instance, instructing the LLM to
”act as a security expert” leads it to emphasise security-focused observations in code
reviews. This pattern is particularly useful when users know the type of perspective
or expertise needed for a task but may lack the technical detail to specify the desired
output directly themselves. This also applies to the context of this thesis, as the goal
is to generate IndDom-specific SSRS in the absence of human experts that could design
output examples or a ground truth. By defining a relevant persona, the LLM is prompted
to generate contextually aligned and detailed outputs. The effectiveness of this pattern
depends on how accurately the persona is defined with regard to the task the LLM
should perform and the underlying domain context [Whi+23] [Sch+24].

Based on the insights of the literature review, the persona pattern was selected for
the planned use in the SSRS-Gen process as a means to enhance the contextual depth
and domain relevance of the generated SSRS. In the context of the chosen zero-shot
prompting strategy, the persona pattern was assumed to help compensate for the lack of
detailed SSRS examples by prompting the model to adopt the perspective of a relevant
domain expert. This, in turn, was expected to increase the level of detail and realism in
the generated requirements, particularly in relation to the given IndDom.

5.2.2. Structured Reasoning Pattern
Structured reasoning techniques are particularly relevant in this thesis because the gener-
ation of SSRSs involves filling multiple interdependent sections of a predefined template
with realistic and logically coherent content. To support the model in handling this com-
plexity, the literature review identified three structured reasoning patterns applied in
prompt engineering: Chain-of-Thought, Tree-of-Thought, and Least-to-Most prompting.
Each of these strategies encourages the model to approach complex tasks in a stepwise
fashion but differs in how intermediate steps are generated and utilised.

Chain-of-Thought prompting is a structured reasoning approach that instructs an LLM
to explicitly generate a sequence of intermediate reasoning steps before producing a final
answer. It can be applied as a zero-shot approach by using general cues such as “think
step-by-step” or by including the specific sub-steps of a given task and prompting the
LLM to solve these sub-tasks sequentially before arriving at a final solution. The latter
approach can also be adapted to a few-shot version, by demonstrating the specific sub-
steps using concrete examples, for instance by showing all solving steps of a mathematical
problem. Chain-of-Thought prompting is particularly effective for tasks that require

25

5. Selected Prompting Techniques and Evaluation Metrics

multi-step reasoning, such as mathematical or logical problem solving, but also common-
sense reasoning or planning and decision-making tasks. By additionally prompting the
LLM to output all intermediate steps, this technique can also be used for getting insights
into how an LLM arrives at solutions for a given task, which can help to more easily
identify flaws in its reasoning process [Sch+24] [Wei+22] [Zha+22].

Among the three identified structured reasoning patterns, Chain-of-Thought prompt-
ing was selected for planned use in the SSRS-Gen process. This pattern was selected
due to the inherent complexity of generating SSRSs: each section of the output must
be populated with realistic, domain-specific content while maintaining logical coherence
across sections, as defined by the SSRS template. Literature on prompt engineering
indicates that chain-of-thought prompting can help LLMs break down intricate tasks
into smaller, more manageable sub-problems, thereby improving output coherence and
contextual plausibility [Sch+24] [Wei+22] [Zha+22].

In contrast, Tree-of-Thought prompting was not selected due to its significantly higher
implementation complexity. Tree-of-Thought extends Chain-of-Thought reasoning by
exploring multiple reasoning paths in parallel and evaluating them to choose the most
promising solution branch. Applying it in the SSRS context would require the model to
generate and evaluate multiple alternative instantiations for each section of the SSRS
template, followed by a selection step to determine the most suitable path. This process
would not only be time-consuming but would also require the model to evaluate the
quality of these instantiations itself and select the best option. It was assumed that
delegating the evaluation and selection process to the LLM could introduce uncontrolled
biases into the generated SSRS, as only the final selected output would be available
for review, making it difficult to trace or assess the influence of discarded alternatives
[Sch+24] [Yao+23].

Similarly, Least-to-Most prompting was excluded because of its complexity. Least-
to-Most prompting is a technique where the model is instructed to first solves simpler
sub-problems before using those intermediate solutions to tackle a more complex, over-
arching problem. This approach of first solving each sub-task independently would likely
result in logically incoherent outputs. Since each SSRS section must align logically with
the others, generating them in isolation and merging them afterwards poses a substantial
risk of internal contradictions. Chain-of-Thought prompting offered a more pragmatic
balance between reasoning support and structural coherence, making it the most appro-
priate choice within the scope of this thesis [Sch+24] [Zho+22].

5.2.3. Self-Criticism Patterns
After highlighting key prompt engineering techniques to support LLMs in output gen-
eration and task solving, this section turns to Self-Criticism patterns, as introduced in
section 3.3. In the following the Self-Assessment pattern is presented in detail along
with the rationale for its selection for the SSRS-Gen process.

Self-Assessment is a category of prompting techniques encompassing all methods
where an LLM is instructed to evaluate or critique its own previously generated output.
This internal evaluation may involve scoring the output’s quality, ranking it against

26

5.2. Prompt Patterns

alternatives, or commenting on aspects such as correctness, coherence, or factual ac-
curacy. In this thesis, self-assessment is employed as a mechanism for evaluating the
quality of generated SSRSs without requiring external ground truth or expert review.
Prior research has shown that LLMs can conduct self-assessments with a degree of sen-
sitivity and semantic nuance that surpasses traditional automatic metrics. For instance,
Li et al. [Li+24] demonstrate how prompting a model to reflect on its own outputs can
yield useful quality judgments through scoring or ranking strategies. This is especially
valuable in open-ended tasks where reference-based evaluation is infeasible. However,
self-assessment techniques also exhibit inherent limitations that must be carefully con-
sidered when applying them in practice. As Wei et al. [Wei+24] point out, LLMs can
exhibit biases such as favouring longer responses, showing sensitivity to output order,
and producing inconsistent evaluations across repeated assessments. Despite these chal-
lenges, self-assessment remains a scalable and practical approach for quality estimation
in LLM-driven workflows, provided that the prompting is carefully designed to minimize
known biases and maximize consistency [Li+24] [Wei+24].

For generating and evaluating SSRS in this thesis the Self-Assessment prompt pattern
was chosen. This approach was selected to enable automation and scalability without
requiring continuous involvement from human industry domain experts. Relying on ex-
pert reviewers would have substantially limited the feasibility of an iterative refinement
process and contradicted the overarching goal of developing a methodology suitable for
settings in which real-world SyRS documents and qualified expert feedback are scarce
or unavailable. While using a separate model for evaluation might improve the inde-
pendence of the assessment process, this option was not pursued due to concerns about
inconsistent domain understanding, greater operational complexity, and increased com-
putational cost. Self-assessment was therefore adopted as a practical and internally
consistent mechanism to maintain reproducibility, reduce human involvement, and sup-
port the refinement loop throughout SSRS-Gen. The inclusion of a self-refinement step
was not pursued, as the accuracy of self-assessments for complex and domain-specific
artefacts such as SSRSs could not be reliably assessed in advance. Incorporating poten-
tially flawed self-assessments into the generation process risked reinforcing inaccuracies
and further degrading the overall quality of the output.

Together, the identified prompting strategies and selected prompt patterns form the
conceptual foundation for the design of the SSRS-Gen process. These techniques were
selected based on their demonstrated potential to improve the quality, specificity, and co-
herence of LLM-generated outputs. With this prompting foundation established through
the first literature review, the next step was to define appropriate evaluation mechanisms
capable of assessing the generated SSRSs against the requirements of R1-Realism, R2-
Comparability and R3-Diversity as introduced in section 4.1.

The following section presents the findings of the second literature review, which
focused on identifying suitable evaluation metrics in the context of missing ground-truth
references.

27

5. Selected Prompting Techniques and Evaluation Metrics

5.3. Evaluation Metrics
Evaluating the outputs of LLMs is essential to assess their quality, reliability, and suit-
ability for specific tasks. In the context of text generation, evaluation metrics serve
as instruments to quantify different dimensions of output quality. Evaluation met-
rics for text generation can be broadly categorised into reference-based and reference-
free approaches. Reference-based metrics evaluate generated content by comparing it
to one or more predefined ground-truth references. These metrics typically focus on
surface-level lexical overlap or shallow syntactic similarity. Common examples include
BLEU [Pap+02], which measures n-gram precision; ROUGE [Lin04], which emphasises
recall over overlapping sequences; and METEOR [BL05], which incorporates stemming
and synonym matching. These metrics have been widely used in machine translation,
summarisation, and other natural language generation tasks where high-quality refer-
ence texts are available. However, such metrics often fail to capture deeper seman-
tic similarity or to function effectively in open-ended tasks without a reliable refer-
ence. In response, more recent methods have adopted embedding-based metrics, such
as BERTScore [Zha+19a] and MoverScore [Zha+19b], which compare contextualised
representations of the texts rather than their surface forms. Additionally, learned eval-
uation metrics such as BLEURT [SDP20] and COMET [Rei+20] are trained on human
judgment data and better align with human preferences in evaluating generation quality.
Finally, a growing class of reference-free methods leverage LLMs themselves to assess
output quality. These Self-Criticism methods, as introduced in section 5.2.3, allow LLMs
to reason about their own outputs directly without relying on a ground-truth.

To address the specific demands of SSRS generation, this thesis defines three custom
evaluation metrics tailored to the quality dimensions most relevant for this task. Stan-
dard metrics such as BLEU, ROUGE, or BLEURT were not adopted, as they either
assume the availability of a ground truth or prioritise surface-level similarity, which is
insufficient for capturing the structural and semantic fidelity required in SSRS evalua-
tion. Instead, the following task-specific metrics are introduced: Completeness, Degree of
Realism, and Semantic Similarity. These metrics are formally defined in the subsequent
sections.

5.3.1. Completeness
Completeness is a structural evaluation metric used to assess whether a generated out-
put fully conforms to an expected format or schema. In the context of text generation,
this typically involves verifying the presence of all required components or sections as
defined by an external standard, template, or prompt instruction. In this thesis, Com-
pleteness addresses the process requirement of R2–Comparability introduced in section
4.1, ensuring that all generated SSRSs follow a uniform structure suitable for systematic
evaluation. Specifically, it assesses whether each SSRS contains every element defined in
the SSRS template, as introduced in section 3.4. The template is implemented using the
template prompt pattern described in section 3.3, which explicitly outlines the expected
content and section structure. Completeness is assessed using a binary value: an SSRS

28

5.3. Evaluation Metrics

is classified as true (complete) if all required elements defined by the SSRS template
are present, and as false (incomplete) if even a single element is missing. This strict
interpretation reflects the structural nature of the Completeness criterion, and unlike
more subjective quality attributes, it does not admit partial fulfilment. Since the under-
lying purpose of this metric is to guarantee comparability across SSRSs, any deviation
from the defined structure would undermine their usefulness in subsequent evaluation
or testing contexts. As such, the binary formulation is not merely a design choice but a
direct consequence of the definition and intended function of the metric.

5.3.2. Degree of Realism
Degree of Realism (DoR) is a qualitative evaluation metric that captures the extent
to which a generated output plausibly resembles something that could exist in a real-
world context. Unlike structural metrics, which operate in binary terms, DoR assesses
more subjective qualities such as plausibility, coherence, and domain alignment. As
such, it represents a continuous and interpretable quality dimension that admits partial
fulfilment. In the context of this thesis, DoR measures how accurately a generated SSRS
reflects real-world SyRS within its intended industry domain and thus directly maps to
the defined process requirement of R1–Realism, as defined in section 4.1. This includes
the credibility of the described system, the feasibility of its stated requirements, and the
alignment with commonly accepted practices and constraints within the domain. The
metric directly reflects the concept of Realism as defined in section 3.4.3, where realism
is understood as the extent to which an SSRS aligns with domain-specific expectations
and resembles documents that would plausibly be authored by human experts. DoR
therefore serves as a critical indicator of whether synthetic SSRSs can act as effective
substitutes for real specifications in evaluation and testing contexts where ground-truth
data is unavailable.

While DoR captures the plausibility of individual SSRSs, it does not account for
redundancy or variation across multiple outputs. However, in order for the generation
process to be practically useful, it must not only produce realistic SSRSs, but also ensure
that these are meaningfully distinct within the same IndDom. This dimension of quality
is addressed by the third metric: Semantic Similarity.

5.3.3. Semantic Similarity
Semantic Similarity is a quantitative evaluation metric that measures the degree of
semantic equivalence between two textual artefacts, independent of exact wording or
surface-level structure. Unlike structural metrics such as Completeness, or qualitative
metrics such as Degree of Realism, this metric is comparative in nature, relying on
pairwise analysis of outputs to identify redundant or overly similar content. In the
context of this thesis, Semantic Similarity is used to evaluate the extent to which multiple
SSRSs generated for the same IndDom are semantically distinct and thus directly links
to the process requirement of R3–Diversity, as presented in section 4.1. The underlying
assumption is that SSRSs intended to support evaluation and testing tasks must not

29

5. Selected Prompting Techniques and Evaluation Metrics

only be complete and realistic, but also diverse. Generating several SSRSs that express
nearly identical requirements would diminish their value for such downstream uses. The
Semantic Similarity metric therefore helps to ensure that the generated outputs span a
broader range of plausible requirements within each domain.

Combined, the three metrics Completeness, Degree of Realism, and Semantic Similar-
ity form an integrated evaluation framework, each targeting a distinct but complemen-
tary dimension of SSRS quality. This framework provides the foundation for assessing
whether the generated artefacts fulfil their intended role as realistic, comparable, and
diverse substitutes for real-world SyRS.

5.3.4. Rationale for Metric Selection
The evaluation metrics introduced in the preceding sections were selected to align di-
rectly with the overarching process requirements defined in this thesis: R2-Comparability,
R1-Realism, and R3-Diversity as defined in section 4.1. Each metric operationalises one
of these requirements in a manner that supports both the analysis and refinement of the
SSRS generation process. Specifically, Completeness ensures that all generated SSRSs
conform to a shared structural template, thereby enabling consistent evaluation and
comparison. Degree of Realism addresses the plausibility and contextual fidelity of the
generated specifications, which is essential for their intended role as stand-ins for real-
world system requirement documents. Semantic Similarity, finally, is employed to assess
the distinctiveness of SSRSs generated within the same domain, thereby supporting the
criterion of diversity and preventing redundant outputs. Together, these three metrics
form a coherent and task-specific evaluation framework tailored to the unique require-
ments of generating and assessing SSRS. No additional metrics were introduced, as these
were found to sufficiently capture the essential quality dimensions necessary for the scope
and objectives of this thesis.

30

6. The SSRS-Gen Process

In the context of this thesis, a structured generation process was conceptually designed
to create Synthetic System Requirements Specifications (SSRSs) using an LLM. This
chapter presents the SSRS-Gen process model on a conceptual level. To fulfil the de-
fined requirements presented in chapter 4, the process was divided into distinct phases
that collectively enable the generation of SSRSs, their automated evaluation along the
dimensions of completeness, realism, and semantic diversity, and the iterative refine-
ment of prompts based on evaluation results. Each phase is described in detail, includ-
ing its objectives, rationale, and relation to the overall process structure. The chapter
thereby provides a comprehensive overview of the logical architecture and reasoning be-
hind SSRS-Gen. The subsequent Chapter 7 then presents the concrete implementation
of this conceptual process using a real LLM system.

6.1. High-Level Overview
As illustrated in figure 6.1, the SSRS-Gen process is structured as a three-level iterative
framework designed to meet the requirements defined in section 4.1. At the highest level,
the entire process is executed for a pre-defined number of global iterations. This outer
loop allows for prompt refinement and progressive improvement over time, addressing
R5–Zero-Resource Operation and R6–Expert Independence. Since no high-quality SyRS
documents or domain experts are available, early outputs are expected to be suboptimal
and require iterative adjustment.

Each global iteration consists of two distinct sub-processes, which are visually repre-
sented in blue and green in the figure. The blue sub-process handles the core generation
pipeline, while the green sub-process includes post-generation analysis and prompt re-
finement tasks. Within the blue sub-process, a middle iteration loop runs over a fixed
number of m industry domains. This per-domain loop directly reflects R4–Domain In-
dependence by ensuring that SSRS-Gen can produce outputs for a diverse set of industry
domains. For each of these m domains, a third-level inner loop generates n SSRSs, with
n > 1. This is necessary to support R3–Diversity, as multiple outputs are required
within the same domain to assess and ensure semantic diversity.

The blue sub-process contains four sequential activities. Activity 1, Generate SSRS,
is the core generative step and produces a single SSRS for a given industry domain using
a structured prompt based on a pre-defined SSRS template. Activity 2, Assess Com-
pleteness, directly supports R2–Comparability by evaluating structural adherence to this
template, ensuring consistent structure and content coverage across outputs. Activity
3, Assess Degree of Realism, addresses R1–Realism by evaluating whether the generated

31

6. The SSRS-Gen Process

Start next iteration

Select next IndDom

1: Generate SSRS

2: Assess Completeness

3: Assess DoR

4: Calculate Semantic Similarity
Scores

Analyse data of finished
iteration

Refine Prompts

Activity

All m IndDoms finished?

All n SSRS for IndDom generated?

Next iteration planned?

Yes

Yes

No

yes

No

No

Powered By�Visual Paradigm Community Edition

Figure 6.1.: High-level overview of the SSRS-Gen process.

32

6.2. Phase 1: SSRS Generation

SSRS plausibly resembles a real-world SyRS. Once n SSRSs have been generated for a
given domain, Activity 4, Calculate Semantic Similarity Scores, is used to compute all
m×

(
n
2

)
pairwise similarity values among the outputs, providing a quantitative basis for

assessing semantic diversity.
After all blue activities are completed for all m domains, the process transitions to

the green sub-process. This begins with Analyse Data of Finished Iteration, a manual
review of the m × n SSRSs, their completeness and realism assessments, and the m ×(
n
2

)
similarity scores. Based on this analysis, Refine Prompts is performed to adjust

and improve the prompts used in the next iteration. It is important to note, that
within each global iteration, the same version of the SSRS generation prompt is used
across all selected IndDoms. Prompt refinements are applied only between iterations,
based on a combination of quantitative evaluation results and qualitative observations.
This iterative feedback loop enables progressive improvement in output quality without
relying on external training data or expert feedback. Over successive iterations, prompt
refinements accumulate, gradually enhancing the generation process. This design choice
is particularly important in the black-box setting of LLMs, where the model itself cannot
be modified, and prompt engineering is the only lever available to influence output
behaviour.

To provide a deeper understanding of the SSRS-Gen process, the following sections
examine each of the four blue activities in detail. These include the SSRS generation,
completeness assessment, DoR evaluation, and semantic similarity analysis.

6.2. Phase 1: SSRS Generation

You are a highly experienced Requirements Engineer.
Generate an SSRS based on the following template for the Industry
Domain <insert IndDom here >.

Template:
<insert template here>

Source Code 6.1: Basic example prompt for SSRS generation.

The first of the four sequential phases in SSRS-Gen focuses on the initial generation of
SSRSs using a structured, zero-shot prompting approach. The objective of this phase
is to generate SSRS for a given IndDom. As the core generative step of the SSRS-Gen
process, this phase provides the foundation for all subsequent evaluation phases. SSRS
generation requires three primary inputs: (1) a selected IndDom, (2) a predefined SSRS
template that constrains the structure and types of requirements to be included, and (3)
a zero-shot prompt used to initiate the generation process. A simplified instance of an
SSRS generation prompt is displayed in listing 6.1 including placeholders for the selected
IndDom and the predefined SSRS template as well as task instructions. The SSRS
template, defined in section 3.4, specifies the expected structural format and requirement

33

6. The SSRS-Gen Process

categories to ensure consistency and comparability of SSRSs generated across different
domains. The SSRS-Gen process does not impose strict limitations on IndDom selection,
as the approach is intended to be domain-independent. This, however, assumes that the
LLM used has been trained on sufficient data relevant to the chosen IndDom. Otherwise
epistemic uncertainty effects can degrade SSRS quality, especially regarding their degree
of realism.

All SSRSs are generated and evaluated without human intervention, ensuring that the
results exclusively reflect the behaviour of the language model and the applied prompting
strategy.

6.3. Phase 2: Completeness Assessment

Once an SSRS has been generated, the next step is to assess its structural integrity
by verifying whether all required template elements are present. The objective of this
phase is thus to evaluate whether a generated SSRS includes all elements specified in the
predefined SSRS template. For instance, the template specifies sections such as System
Purpose or Stakeholders, thus corresponding content must be present in the SSRS for
it to be considered complete. Completeness is assessed exclusively with respect to the
structural coverage of all required sections. The evaluation does not account for the
quality of the generated section content. Assessment is conducted in binary terms: an
SSRS is classified as complete if all required sections are present, and as incomplete if even
a single required element is missing. This strict all-or-nothing criterion was adopted due
to its alignment with the overarching goal of producing structurally comparable SSRSs.
Incomplete outputs would undermine this comparability, thereby reducing the usefulness
of the generated data for downstream evaluation or testing tasks.

All SSRSs proceed to the next phase regardless of their completeness classification.
The results of these assessments are collected and analysed after the completion of each
iteration and inform subsequent prompt refinements.

6.4. Phase 3: Degree of Realism Assessment

After verifying structural completeness, the next step is to evaluate the degree of realism.
Specifically, whether a generated SSRS plausibly reflects a real-world SyRS within its
respective IndDom. In the first iterations the DoR score was measured as a boolean value
of realistic or unrealistic. However, during the iterative development of the SSRS-Gen
process, the binary evaluation was found to be too shallow, as it offered little insight into
the actual degree of realism. Consequently, it was replaced with a continuous value on
a rational scale from 0 to 1 to enable a more nuanced assessment. No manual filtering
or human intervention is applied.

All SSRSs proceed to the next phase regardless of their DoR classification. The results
of the DoR assessment are collected and analysed after the completion of each iteration
and inform subsequent prompt refinements.

34

6.5. Phase 4: Semantic Similarity Measurement

6.5. Phase 4: Semantic Similarity Measurement
With structural completeness and realism assessed, the final phase evaluates the semantic
similarity between SSRSs generated within the same IndDom. This phase is essential to
ensure that the SSRS-Gen process produces a diverse set of SSRSs rather than redundant
outputs, as semantic redundancy would diminish their value for downstream tasks such
as evaluation and testing. The input to this phase consists of the three SSRSs generated
for a single IndDom. Pairwise comparisons are conducted to quantify the semantic
similarity between each SSRS pair. The resulting scores reflect the degree of semantic
overlap and serve to identify whether the generated outputs are meaningfully distinct or
redundant.

6.6. Iterative Refinement
Following the execution of all four core phases for each industry domain within a given
iteration, the SSRS-Gen process proceeds with an iterative refinement step. As outlined
in section 6.1, the purpose of this refinement loop is to improve output quality over
multiple iterations, in alignment with the process requirements.

The refinement process is fully manual and centres on improving prompt design based
on a systematic analysis of the collected evaluation results. These results include com-
pleteness and realism classifications, as well as semantic similarity scores. Prompt modifi-
cations are informed by three prioritized sources of feedback: (1) quantitative evaluation
metrics and their variability, (2) qualitative issues surfaced during realism assessments,
and (3) language-level concerns such as generic phrasing, reviewed by a non-expert hu-
man reader.

Refinements are implemented through the gradual introduction of scientifically val-
idated prompt engineering techniques and prompt patterns from the list of selected
patterns presented in chapter 5. Because the effects of individual patterns cannot be
reliably predicted in advance, their prioritisation is based on an informed estimation of
likely benefit, drawing from findings in the prompt engineering literature. Rather than
exhaustively exploring all possible combinations of techniques and patterns, a pragmatic,
iterative approach is adopted. Refinements are introduced sequentially and selectively,
based on weaknesses identified in prior iterations. A comprehensive exploration of all
possible combinations of prompt patterns and techniques is impractical due to the sub-
stantial variation involved, not only in the choice of patterns themselves, but also in
their concrete formulation and application (e.g., the selection of different professional
roles in the persona pattern). Given this complexity, the iterative refinement strategy
represents a pragmatic and targeted approach. It enables the systematic improvement of
prompt design based on observed weaknesses in the generated outputs, while maintaining
methodological focus and feasibility.

35

7. Process Implementation
This chapter presents the technical implementation of the SSRS-Gen process outlined in
chapter 6. While the previous chapter described the conceptual structure and rationale
of the iterative generation, evaluation, and refinement framework, the current chapter
details how this framework was operationalised using specific models, tools, and work-
flows. The implementation adheres to the exact same structure and iterative loops, as
illustrated in figure 6.1. For each of the core generation and evaluation steps highlighted
in blue, a dedicated section outlines the implementation details, describing how these
activities were operationalised using an LLM and supporting tools.

In addition, this chapter includes supporting components essential for the overall
execution of the SSRS-Gen process. These comprise the selection of tools and an LLM,
the definition of a stopping criterion, and the setup of the iterative refinement loop based
on data-driven prompt adjustments. Together, these components ensure transparency
and reproducibility, and offer a comprehensive foundation for applying or adapting the
SSRS-Gen process in comparable contexts.

1: Execute SSRS
Generation Prompt

SSRS
2: Execute Completeness

Assessment Prompt
Boolean

3: Execute Degree
of Realism Prompt

Degree of Reallism
Assessment Prompt

SSRS Generation Prompt Completeness Assessment Prompt

DoR
assessment

Activity2
Powered By�Visual Paradigm Community Edition

Figure 7.1.: Representation of the complete workflow for a single SSRS, showing sequen-
tial prompt execution for generation, completeness assessment, and DoR
evaluation.

The activity diagram in figure 7.1 illustrates the sequential execution of prompts
involved in processing a single SSRS. This detailed view corresponds directly to the
first three blue activities of Generate SSRS, Assess Completeness, and Assess Degree of
Realism, from the high-level process diagram in figure 6.1, outlining the internal structure
of a single SSRS generation procedure. In this implementation, a single LLM is used
not only for generating SSRSs, but also for evaluating them through a Self-Assessment
approach. Specifically, the same model is prompted to assess both the completeness and
DoR of the SSRS it generated. The workflow begins with the execution of the SSRS
generation prompt, which produces an SSRS for the current IndDom. This output is
then passed to the completeness assessment prompt, which verifies whether all required
template elements are present and returns a binary result. Finally, the DoR assessment
prompt is applied to evaluate the plausibility of the SSRS content, also yielding a boolean

37

7. Process Implementation

outcome.
The fourth blue activity of Calculate Semantic Similarity Scores is not depicted in

this diagram, as it operates on the set of all n SSRSs generated within a domain and
requires pairwise comparisons. Unlike the first three activities, which process a single
SSRS in sequence, this step is performed in batch after the full set of domain-specific
outputs has been generated.

7.1. Tooling and Model Selection
The implementation of the proposed SSRS-Gen process relies on a combination of web-
based tooling, local processing, and structured version control to ensure traceability and
reproducibility. ChatGPT-4o is employed as the sole LLM for all stages of the process,
including SSRS generation, completeness assessment, and DoR evaluation. All model
interactions are conducted via the OpenAI web interface. To maintain isolation and
traceability, a new conversation is initiated for each IndDom, and these conversations
are organised by iteration using the ”projects” feature of the interface. This setup allows
all generated data to be reconstructed if needed. ChatGPT-4o was selected because it
was the most recent ChatGPT model publicly available at the start of this thesis and
is extensively researched in scientific literature. The web interface was chosen over the
API due to budget constraints. All prompt versions used during the iterative process,
covering generation, completeness assessment, and realism evaluation, are maintained
in a version-controlled format. Generated SSRSs are stored in individual text files, and
all corresponding evaluation outputs are stored in a structured JSON file. A GitLab
repository is used to manage all project artefacts, including prompt versions, generated
SSRSs, evaluation results, and analysis scripts, thereby supporting reproducibility and
organised data management.

Semantic similarity scoring was performed in a local Python environment using the
sentence_transformers library. The pre-trained all-mpnet-base-v2 model was se-
lected due to its high accuracy across a range of semantic textual similarity tasks, as
documented in the library’s official benchmark evaluations. Cosine similarity is used as
the default metric to compute pairwise similarity scores between SSRS instances. The
resulting decimal scores range from 0 to 1, where a value of 1 indicates complete semantic
equivalence and 0 indicates no semantic similarity [RG19].

7.2. Stopping Criterion
The SSRS-Gen process was executed for a total of ten iterations. Each iteration pro-
duced 30 SSRSs, three per IndDom across ten selected IndDoms, resulting in a final
dataset of 300 generated SSRSs. The decision to use ten IndDoms was motivated by
the need to ensure sufficient contextual diversity without introducing overly niche or
highly specialised domains. To compile this list, ChatGPT-4o was prompted to pro-
pose ten reasonably distinct and broadly applicable industry domains. The resulting list
was manually reviewed to confirm that each domain was unique, widely relevant, and

38

7.3. Phase 1: SSRS Generation

understandable without further modification. This approach ensured a balanced set of
IndDoms suitable for evaluating the generalisability of the SSRS-Gen process. Within
each IndDom, three SSRSs were generated per iteration to enable pairwise semantic
similarity comparisons. This design yields three unique comparisons per domain, pro-
viding an adequate basis for assessing semantic diversity while keeping the evaluation
workload manageable. Since the evaluation involves open-ended, semantic data rather
than categorical or numerical labels, it was necessary to strike a balance between an-
alytical depth and human feasibility. A total of 300 SSRSs is considered a reasonable
sample size for initial exploration, allowing for the identification of trends and process
effects without exceeding the practical limits of prompt execution, data handling, and
qualitative interpretation. Expanding the dataset further was not pursued, as it would
have incurred disproportionately higher effort without a guaranteed increase in analyt-
ical value, particularly in the absence of a validated ground truth. The lack of such a
ground truth also ruled out the application of conventional supervised evaluation metrics
such as precision, recall, or F1-score. Constructing a reliable ground truth would have
required extensive input from domain experts to generate, verify, and annotate a large
set of high-quality SSRSs. Given the exploratory nature of this work and the complexity
of the data, the expected benefit of creating such a reference did not justify the required
effort.

7.3. Phase 1: SSRS Generation

Phase 1 constitutes the core generative step of the SSRS-Gen process, where individual
SSRS documents are produced using a structured prompting approach grounded in a
fixed template. The SSRS template, defining the expected structure and content of each
SSRS, remains constant throughout the process, except for a single early revision to
incorporate additional content. This updated version is used consistently in all subse-
quent iterations. The complete SSRS template, including detailed descriptions for each
section, is documented in section 3.4. Prompt execution is performed manually using
the OpenAI ChatGPT-4o web interface. For each IndDom, a temporary text file is
prepared that contains the current versions of the SSRS generation, completeness as-
sessment, and DoR prompts. Before execution, IndDom-specific placeholders within the
prompt are manually replaced with the current IndDom name. The resulting IndDom-
specific prompts were copied and pasted into the web interface three times in a row. This
manual process supports efficient execution while adhering to OpenAI’s usage policy1

prohibiting automated use of ChatGPT’s web interface.
All three SSRSs for a given IndDom, along with their corresponding completeness and

DoR assessments, are generated within a single conversation. This design choice ensures
that the model retains contextual memory across multiple outputs, allowing it to con-
sider previously generated SSRSs when creating subsequent ones. This setup facilitates
semantic diversity within each domain, as the model can be explicitly instructed to avoid

1https://openai.com/policies/usage-policies/

39

https://openai.com/policies/usage-policies/

7. Process Implementation

repetition or encourage variation based on prior responses. No post-processing or man-
ual filtering is applied to the generated outputs. This non-intervention policy ensures
that the results of the completeness and DoR evaluations reflect only the effectiveness
of the prompt design and model behaviour, free from human correction or bias.

7.4. Phase 2: Completeness Evaluation

The completeness metric is assessed using an LLM self-assessment strategy. This de-
cision is based on the nature of the task, which involves checking whether a generated
SSRS contains all required sections defined in the SSRS template. Given that LLMs
are well-suited for structured text analysis and pattern recognition, this task presents
relatively low complexity and aligns with the model’s inherent capabilities. Moreover,
automating this evaluation significantly increases time efficiency, as the model can per-
form structural comparisons far faster than a human evaluator. The only inputs to this
phase are the SSRS generated in Phase 1 and a dedicated prompt instructing the model
to verify whether the output fully instantiates the SSRS template. Completeness assess-
ment is executed immediately after the SSRS generation and within the same ChatGPT
conversation for a given industry domain. The model is instructed to give a final assess-
ment as a binary classification: true if all required sections are present, or false if any
required element is missing. All evaluation results are recorded and subsequently used
to inform prompt refinements at the end of each iteration. No manual intervention or
correction is applied during this phase, ensuring that the recorded outcomes reflect the
autonomous behaviour of the model under the given prompt configuration.

7.5. Phase 3: Realism Evaluation

Due to the limited availability of real SyRS data and feedback from IndDom experts, the
degree of realism is assessed using an LLM self-assessment approach. A dedicated prompt
instructs ChatGPT to evaluate the realism of its own previously generated SSRS. An
overview of the research underpinning self-assessment approaches is provided in chap-
ter 5. This evaluation strategy was selected because involving human IndDom experts
throughout the iterative process would introduce significant delays and render the pro-
cess impractical. More importantly, such reliance would contradict the primary objective
of this thesis: to develop an SSRS LLM generation process suited for settings where ac-
cess to expert knowledge and real SyRS data is inherently scarce. The DoR assessment
is executed immediately after the completeness evaluation within the same ChatGPT
conversation. A structured prompt is used to determine whether the SSRS is plausible,
coherent, and representative of a realistic SyRS within the specified industry domain.
The evaluation produces a binary result: true (realistic) or false (not realistic). As
mentioned in the previous chapter, the boolean format was replaced with a continuous
value on a rational scale from 0 to 1 after the first iterations, to enable a more nuanced
assessment.

40

7.6. Phase 4: Similarity Scoring

The results are stored in a structured JSON format for each SSRS. While the complete-
ness and DoR assessments are designed to operate independently, both are conducted by
the same LLM within a shared conversation context. As a result, implicit dependencies
may arise due to the model’s internal state or reasoning, despite no such dependencies
being explicitly defined in the prompts. The implications of this setup are discussed
further in chapter 11. To support prompt refinement, qualitative feedback generated by
the LLM during the DoR assessment is reviewed and analysed by a human non-IndDom
expert. This feedback informs adjustments not only to the SSRS generation prompt but
also to the DoR evaluation prompt itself. As with all process phases, no manual filtering
or correction is applied to the generated outputs during this step.

7.6. Phase 4: Similarity Scoring
Once three SSRSs are generated for a given IndDom, semantic similarity scoring is con-
ducted independently of the LLM-based workflow. This phase is implemented locally in
a Python environment using the sentence_transformers library, which has been vali-
dated in scientific literature for computing embedding-based semantic similarity between
natural language texts [RG19]. The process is fully automated and does not require any
manual review or intervention.

Semantic similarity is assessed for each of the three SSRS pairs within the domain.
For each pair, a continuous score in the range [0, 1] is computed, where 1.0 indicates
high semantic equivalence and 0.0 denotes complete dissimilarity. The resulting scores,
along with metadata identifying the corresponding SSRS pairs, are stored in the struc-
tured JSON file associated with the respective IndDom. In addition, the average of the
three pairwise scores is calculated and recorded as a summary metric representing overall
semantic diversity within the domain. To contextualise the interpretation of similarity
scores, a baseline analysis was conducted in which ten SSRSs, one from each IndDom,
were compared to an ”empty” SSRS template. This template included only the section
headings without any explanatory or content-specific text. The resulting similarity scores
averaged at approximately 0.45, indicating that structural overlap of shared headings
alone introduces a non-negligible baseline similarity. This implies that semantic similar-
ity scores generated during the iterative process should not be interpreted relative to a
theoretical minimum of 0.0, but rather to this empirical lower bound of 0.45. However,
this structural baseline does not account for domain-specific similarities that are likely to
occur naturally within a given IndDom. For instance, in the Healthcare domain, many
SSRSs will inevitably reference recurring entities such as “patients” as stakeholders or
refer to common compliance requirements. Such domain-inherent commonalities fur-
ther elevate the minimum achievable similarity score, even in otherwise diverse outputs.
Consequently, the true lower bound for semantic similarity within a single domain is
likely to lie above 0.454. This re-framing ensures a more accurate and context-sensitive
interpretation of semantic diversity in the generated SSRS sets.

Similarity scores are not used to exclude or filter SSRSs during iteration. All outputs
are retained regardless of similarity level. As with completeness and realism evaluations,

41

7. Process Implementation

similarity results are analysed post-iteration to inform subsequent prompt refinements.

7.7. Data Analysis and Prompt Refinement Loop
Upon completion of each full iteration of SSRS generation and evaluation across all ten
IndDoms, the resulting data is systematically analysed to assess the effectiveness of the
current prompt configurations. For each of the three evaluation metrics, completeness,
degree of realism, and semantic similarity, average scores are computed across all do-
mains. Additionally, domain-specific metric scores and their variability are examined to
identify inconsistencies, outliers, or domain-dependent patterns. To facilitate this anal-
ysis, a custom Python script is employed to visualise metric trends across current and
previous iterations, enabling comparative evaluation and clearer insight into the effects of
prior prompt modifications. Prompt refinement is informed by a layered feedback frame-
work. First, quantitative signals such as low DoR scores, high semantic similarity scores
or highly fluctuating metric scores are examined. Second, qualitative insights are drawn
from the model’s feedback during DoR assessments, which can reveal important issues
in content plausibility or specificity. Third, human judgment is incorporated through
targeted review by a non-IndDom expert, with particular attention paid to superficial
or generic phrasing (e.g., vague statements such as ”the system should be reliable” that
lack concrete, domain-specific detail). Notably, changes in evaluation metrics are not
interpreted purely numerically: a worsening of an evaluation metric, such as a lower av-
erage DoR score, may reflect increased scrutiny or higher assessment granularity rather
than a true decline in realism. For example, a more refined DoR prompt may highlight
issues previously overlooked, thereby lowering scores while simultaneously improving di-
agnostic value. Accordingly, both positive and negative changes in metric values are
interpreted in the broader context of output quality, informativeness, and their utility
for guiding further refinement.

Refinements target not only the SSRS generation prompt but also the evaluation
prompts for completeness and DoR. Particular attention is given to the DoR assessment
prompt, which is considered equally critical in the refinement loop. Inaccurate realism
evaluations risk distorting the feedback cycle and may result in ineffective or counter-
productive prompt adjustments. To support traceability, all prompt versions are stored
independently, and for each iteration, the exact combination of prompt versions used is
recorded. Based on the insights derived from metric trends, model-generated feedback,
and human review, targeted prompt modifications are implemented before starting the
next iteration. These refinements may involve the introduction of new prompt engi-
neering techniques or patterns from the pre-defined set of patterns defined in chapter
5, or the rewording and extension of existing prompt instructions. Special emphasis is
placed on the precise formulation of prompt pattern and technique implementations,
as the effectiveness of a prompt pattern or technique is not inherent to its presence
alone, but depends critically on how it is articulated. Therefore, each refinement cycle
includes a focused effort to improve prompt phrasing, ensuring clearer task descriptions
and minimising ambiguity regarding both the desired and undesired model behaviours.

42

8. Process Execution Results
This chapter presents the results of ten iterative runs of the SSRS generation process
as presented in chapter 7, including evaluations of completeness, degree of realism, and
semantic similarity. Each iteration introduced prompt refinements aimed at improving
output quality, ranging from revised SSRS generation instructions to updates in the
evaluation prompts. The metrics, completeness, degree of realism, and semantic simi-
larity, are reported across all iterations to illustrate how successive prompt adjustments
influenced the quality of the generated SSRSs. Table 8.2.2 documents the evolution of
the SSRS generation prompt, from the initial version (v1.0) containing basic instructions
to the final version (v1.9), which incorporates more advanced constraints and structural
guidance. Tables 8.2.3 and 8.2.4 provide corresponding version histories for the com-
pleteness and realism evaluation prompts. The following sections present and describe
the metric trends observed over the course of the iterations, with a focus on how these
correlate with prompt updates.

To support the interpretability of the reported metric outcomes, Figures 8.1 to 8.4
illustrate a complete SSRS generated in the final iteration for the finance industry do-
main. The example demonstrates full adherence to the SSRS template structure, with
each section and sub-element populated by contextually appropriate content. ChatGPT-
generated responses are formatted as concise, domain-specific bullet points, reflecting the
model’s ability to instantiate structured requirements in alignment with the provided
SSRS template. This example serves as a concrete reference for illustrating the struc-
tural format and level of detail produced in the final iteration of the process. It serves as
a contextual background for interpreting the structural trends reported in the following
sections.

To preserve the readability of this section, large and detailed charts are displayed in
the Appendix A instead.

43

8. Process Execution Results

Figure 8.1.: System Overview section of an SSRS generated in the final iteration for the
finance industry domain.

44

Figure 8.2.: Functional requirements section of an SSRS generated in the final iteration
for the finance industry domain.

45

8. Process Execution Results

Figure 8.3.: Non-functional requirements section of an SSRS generated in the final iter-
ation for the finance industry domain.

46

Figure 8.4.: Constraints section of an SSRS generated in the final iteration for the finance
industry domain.

47

8. Process Execution Results

8.1. Completeness Results

Completeness is evaluated as a binary metric (true/false) by ChatGPT to determine
whether all required sections specified in the SSRS template are present in a generated
SSRS. During the iterative process, two minor adjustments were made to the complete-
ness assessment prompt, both aimed at reducing unnecessary verbosity in the model’s
output. Specifically, changes focused on discouraging the model from repeating the
entire SSRS content point-by-point, as this was not required to support the binary clas-
sification task. As mentioned in section 7.2, a total of 300 SSRSs were generated. From
the first iteration onward, all completeness evaluations yielded a result of true, so none
of the 300 completeness assessments resulted in an incomplete classification. Given
the complete consistency of this result, no further quantitative analysis of this metric is
provided in the subsequent sections. The implications and possible limitations of this
outcome are addressed in detail in chapter 11.

8.2. Prompt Refinements

Throughout the iterative execution of the SSRS generation process, prompts were refined
in response to observed limitations in output structure, realism, and diversity. Rather
than applying all prompt engineering techniques at once, changes were introduced incre-
mentally, enabling the identification of their individual effects. This section summarizes
the most relevant refinements made to each prompt as well as the SSRS template.

8.2.1. SSRS Template

Version Iteration Key Changes / Notes
v1.0 1-4 Initial version of the SSRS template.
v1.1 5-10 Added new points to the template: ”Operational Environ-

ment”, ”Usage Scenarios” and more authentication related
details.

Table 8.1.: Changes in the SSRS Template.

The changes made to the SSRS template are displayed in table 8.2.1. It remained un-
changed during the first four iterations, with version v1.0 defining the initial structure
used to guide generation. In iteration five, version v1.1 was introduced, expanding the
template to include the new elements of Operational Environment, Usage Scenarios, and
more granular authentication-related requirements. These additions were not informed
by deficiencies observed in earlier outputs, but were introduced to better align the SSRS
content with the evaluation scope of the SecuRe constraint-based recommender system.
The updated template was used consistently in all subsequent iterations to ensure com-
parability.

48

8.2. Prompt Refinements

8.2.2. SSRS Generation Prompt

Version Iteration Key Changes / Notes
v1.0 1 Initial basic prompt, no prompt patterns or prompt engi-

neering techniques
v1.1 2 Added the textual cue ”Ensure that the scenario is distinct.”
v1.2 3 Introduced an ”expert persona” of ”a highly experienced

Requirements Engineer and Business Analyst specializing
in <insert sector here> software systems.” and clarified the
textual cue to ”Ensure that the scenario is distinct from any
previously generated scenarios.”

v1.3 4 Improved phrasing and emphasis on prioritising realism over
enforcing diversity.

v1.4 5 Added chain-of-thought reasoning by prompting to go
through ”each section of the template step by step.”

v1.5 6 Added instruction to exclude explicit references to authen-
tication methods; added a self-assessment for contradictory
requirements.

v1.6 7 Changed self-assessment instructions to focus solely on
matching allocated resources with the requirements and con-
straints.

v1.7 8 Expanded and clarified instructions for SSRS diversity.
v1.8 9 Removed the overly narrow and specific focus of the self-

assessment on allocated resources.
v1.9 10 Finalized version based on analysis of effects of prompt

changes in all previous versions.

Table 8.2.: Prompt refinements for the SSRS Generation prompt.

The SSRS generation prompt was refined iteratively across ten versions, with each
change addressing observed issues or adding prompting techniques from the pre-defined
list to improve output quality. Version v1.0 served as a baseline, containing only a
minimal instruction to generate an SSRS based on a provided template for a specified
industry domain: ”Generate a scenario, in plain-text format, based on the following
template for the sector <insert sector here>. Template: <insert template here>”. In
v1.1, a basic cue was added to encourage diversity in outputs. This was strengthened
in v1.2 by introducing the persona pattern, prompting ChatGPT to answer from the
viewpoint of ”a highly experienced Requirements Engineer and Business Analyst special-
izing in <insert sector here> software systems”. Additionally the diversity instructions
were clarified, prompting ChatGPT to explicitly distinguish new SSRSs from previ-
ously generated ones. In v1.3, the emphasis shifted toward realism by de-emphasizing
forced diversity when it conflicted with plausibility. Version v1.4 introduced a chain-of-
thought prompting approach by instructing the model to proceed step by step through

49

8. Process Execution Results

the SSRS template, thereby promoting more thorough and structured content genera-
tion. Version v1.5 introduced two notable changes: a restriction prohibiting references
to specific authentication methods, and a self-assessment component to detect contra-
dictory requirements. The restriction was added because generated SSRS are intended
to be used for evaluating the SecuRe recommender system in subsequent projects. In
v1.6, the self-assessment component was revised to focus exclusively on evaluating the
consistency between allocated resources and the declared requirements. This refinement
was motivated by repeated observations from the DoR self-assessments, which frequently
highlighted discrepancies between stated resource availability and the feasibility of the
specified requirements. In v1.7, the diversity instructions were revised for greater clarity
and specificity. Version v1.8 subsequently removed the narrow self-assessment related to
resource adequacy due to its limited impact on output quality. The final version, v1.9,
integrated and consolidated all effective changes based on an analysis of the previous
iterations.

Figure A.1 presents the final version of the SSRS generation prompt employed in the
tenth iteration. The prompt is composed of several structured components designed
to guide ChatGPT effectively through the SSRS generation process. It begins with
the application of the persona pattern, assigning the model the role of a highly experi-
enced Requirements Engineer and Business Analyst specializing in the target industry
domain. This is followed by a main task description, instructing ChatGPT to generate
a highly realistic and unique SSRS tailored to the challenges and goals of the specified
IndDom. The core instructions are organized into clearly defined bullet points. First,
the model is instructed to use the predefined SSRS template and ensure that all required
sections are present, thereby supporting structural completeness. This is followed by an
explicit constraint prohibiting references to authentication methods, introduced due to
the intended application of the generated SSRSs in evaluating the SecuRe recommender
system. Instructions regarding SSRS diversity, which in earlier iterations were framed in
vague terms such as “Ensure that the scenario is distinct,” were revised to include more
concrete and interpretable guidance. In the final prompt version, the model is directed
to generate SSRSs that differ from previous outputs, explicitly encouraging variation in
system purposes and core features. A similar approach was taken to clarify the concept
of realism. General instructions such as “Generate a realistic scenario” were replaced
with a more specific definition of realism, emphasizing alignment with best practices
and typical requirements relevant to the target IndDom. The prompt also incorporates
a self-refinement mechanism combined with chain-of-thought prompting. This mecha-
nism consists of two sequential sub-tasks: (1) verifying the coherence between allocated
resources and the stated requirements and constraints, and (2) confirming that the newly
generated SSRS is sufficiently distinct from previously generated SSRSs within the same
conversation. ChatGPT is explicitly instructed to evaluate the drafted SSRS against
these criteria and revise it accordingly if deficiencies are identified. The final instruction
specifies that only the refined SSRS should be output, with all intermediate reasoning
and evaluation steps omitted.

50

8.2. Prompt Refinements

8.2.3. Completeness Evaluation

Version Iteration Key Changes / Notes
v1.0 1 Initial basic prompt for a boolean assessment plus justifica-

tion.
v1.1 2 Clarified instructions to give a justification only for missing

points.
v1.2 3 - 10 Reduced output verbosity and defined a structured output

format.

Table 8.3.: Prompt refinements for the SSRS Completeness assessment prompt.

The initial version of the completeness assessment prompt (v1.0) served as a minimal
baseline, containing only the essential task instructions. The model was instructed to
verify whether the generated SSRS fully implemented the predefined template and re-
turn a boolean result accordingly. Additionally, it was asked to provide a justification to
gain insight into its reasoning, particularly for possible cases where the SSRS is deemed
incomplete. In version v1.1, the instructions were revised to address issues with excessive
verbosity. Specifically, ChatGPT frequently responded by paraphrasing or restating the
entire SSRS to prove completeness. To mitigate this, the prompt was modified to request
justifications only when specific template elements were missing. However, the verbosity
issue persisted, with the model continuing to produce unnecessarily long outputs that
repeated much of the SSRS content. To improve clarity and enforce consistency, version
v1.2 introduced a structured output format. This format required the model to list each
template element and sub-element alongside a corresponding ”<True|False>” label, fol-
lowed by an overall completeness verdict. Justifications were only required for elements
marked as missing. This revision substantially enhanced the readability, consistency,
and interpretability of the model’s assessments. The final version of the prompt, used
from iteration 3 onward, is shown for reference in Figure A.2.

8.2.4. Degree of Realism Assessment
The initial version (v1.0) of the DoR assessment prompt served as a simple baseline
without the application of any prompt patterns or techniques. It instructed ChatGPT
to evaluate whether a given SSRS was realistic for its respective industry domain by
responding with a binary true/false value, followed by a justification. No explicit criteria
were defined for what constitutes realism, nor were any structured evaluation procedures
included at this stage.

After the first two iterations the scale was changed from binary to decimal in version
v1.1. The switch to a decimal DoR score between 0 and 1 was motivated by the limita-
tions of true/false judgments in capturing partial realism. A binary assessment enforces
an implicit threshold: SSRSs with minor but non-negligible flaws may still be marked
as “realistic,” suppressing valuable diagnostic information. By contrast, a decimal score
reflects realism as a spectrum, allowing the model to account for varying degrees of

51

8. Process Execution Results

plausibility and internal coherence. This shift enables more granular feedback, supports
better comparability, and facilitates targeted refinements in subsequent iterations.

Version Iteration Key Changes / Notes
v1.0 1 - 2 Basic prompt for a true/false realism evaluation with justi-

fication.
v1.1 3 Changed to a decimal realism score (0-1). 0 unrealistic, 1

realistic.
v1.2 4 Added persona: ”Senior Requirements Engineer and Busi-

ness Analyst with broad experience across various industries,
specializing in the evaluation and analysis of business and
technical requirements”.

v1.3 5 Persona refined to domain expert: ”[...] with extensive ex-
perience in <insert domain here> [...]”

v1.4 6 Extended instructions to deduct score points for each iden-
tified realism issue and not just provide an overall score.

v1.5 7 Added focus on resource alignment (time, budget, team)
with SSRS requirements. Prompt the LLM to focus just on
information within the confines of the template and nothing
”missing” that is outside the template.

v1.6 8 Emphasized deductions to be proportional to the identified
realism issue and to give a reasoning for the amount of de-
duction.

v1.7 9 Required step-by-step checking of all template points/sub-
points and to use 0.01 increments for score deductions.

v1.8 10 Finalized version based on analysis of effects of prompt
changes in all previous versions.

Table 8.4.: Prompt refinements for the SSRS Degree of Realism assessment prompt.

In version v1.2, a professional persona was introduced to improve the quality and
depth of the realism evaluations. The prompt now instructed ChatGPT to act as a “Se-
nior Requirements Engineer and Business Analyst with broad experience across various
industries, specializing in the evaluation and analysis of business and technical require-
ments.” This addition aimed to provide stronger domain-context awareness.

In version v1.3, the persona introduced in the previous iteration was refined to rep-
resent a domain-specific expert, described as having “extensive experience in <insert
domain here>.” This adjustment was made to better ground the realism evaluation in
the specific context of each industry domain. By aligning the evaluator persona more
closely with the IndDom of the SSRS under assessment, the goal was to improve the
contextual relevance and accuracy of the evaluations.

In version v1.4, the prompt was modified to instruct the LLM to explicitly deduct score
points for each identified realism issue, rather than providing only a single overall score.
This change was introduced to encourage more detailed and structured feedback. It also

52

8.2. Prompt Refinements

enabled a clearer distinction between minor and major realism violations, supporting
a more nuanced interpretation of the realism score and helping to prioritize refinement
efforts based on severity.

In version v1.5, two major adjustments were made. First, an explicit instruction
was added to evaluate only the information provided within the SSRS, not to penalize
missing information outside the defined template. This change was necessary because
earlier evaluations often cited the absence of specific details as flaws, which distorted
the realism score. The goal of the DoR self-assessment is to evaluate only the realism
of the information provided, not its completeness, as the scope of included information
is limited by the SSRS template. Second, the prompt was refined to increase focus on
resource alignment, instructing the model to assess whether budget, timeline, and team
size were appropriate for the functional and non-functional requirements. This emphasis
was motivated by recurring feedback from earlier assessments that frequently identified
unrealistic resource allocations.

In version v1.6, the prompt was revised to emphasize that score deductions should be
proportional to the severity of the identified realism issues. This change was introduced
in response to inconsistent and seemingly disproportionate deductions observed in earlier
iterations. For instance, similar types of issues in different SSRS led to different score
penalties. To mitigate this, the prompt was updated to require not only a list of issues
but also a justification for the magnitude of each deduction. This was intended to guide
the LLM toward more deliberate, calibrated scoring and to promote internal consistency
across evaluations.

Version v1.7 introduced two key refinements to the DoR assessment prompt. First,
the LLM was explicitly instructed to assess the SSRS step by step, covering all main
template sections and their respective elements. This addition was motivated by the
observation that previous assessments tended to focus disproportionately on a few sec-
tions, while others were rarely or never mentioned. This could of course just be due
to the sections being realistic and thus not mentioned, but nevertheless it should be
ensured that ChatGPT actually assesses each individual section of the generated SSRS.
Second, the prompt mandated the use of 0.01 point increments for score deductions.
This was implemented to overcome the coarse granularity observed in prior iterations,
where ChatGPT often defaulted to 0.05 steps. The goal was to enable more fine-grained,
precise evaluations and ensure that minor and major issues could be more accurately
distinguished in the scoring.

In version v1.8, a finalized prompt was compiled by systematically analysing the effects
of all prior prompt changes across the first nine iterations. The final version incorporated
the most effective elements identified in earlier versions, aiming to maximize evaluation
consistency, scoring precision, and IndDom-relevant feedback quality.

The final Degree of Realism (DoR) assessment prompt, shown in Figure A.3, incor-
porates several established prompt engineering techniques to support a structured and
reliable evaluation process. It begins with the application of the Persona Pattern, as-
signing ChatGPT the role of a domain-specific expert with extensive experience in the
corresponding industry. This persona is intended to enhance contextual sensitivity and

53

8. Process Execution Results

evaluation relevance. The task is clearly scoped to focus exclusively on the content of
the SSRS, explicitly instructing the model not to penalize information that is absent
but outside the defined template. The prompt continues with a detailed set of evalu-
ation criteria, including instructions to assess each section and sub-point of the SSRS
individually. A proportional scoring method is defined, requiring the model to deduct
points in 0.01 increments based on the severity of identified realism issues. For each
deduction, the model is instructed to provide a corresponding justification, promoting
transparency and interpretability. The prompt concludes with an explicit output speci-
fication: the response must include a structured summary of identified issues, rationales
for deductions, and a final aggregated realism score for the entire SSRS. This format
aims to ensure scoring consistency, facilitate traceability, and support iterative prompt
refinement.

8.3. Iteration-Level Insights

Figure 8.5.: The semantic similarity and degree of realism scores averaged over all 30
SSRS for a given iteration.

This section presents aggregated trends in DoR and semantic similarity scores across
all ten iterations of the SSRS generation process. Each iteration consists of 30 SSRSs,
three per IndDom, serving as the basis for computing iteration-level averages and score
distributions for the two metrics. Figure 8.5 visualizes the evolution of DoR and seman-

54

8.3. Iteration-Level Insights

tic similarity scores over the course of the process. It is important to note that high
similarity scores indicate low semantic diversity among SSRSs within the same IndDom
and are therefore considered undesirable. In contrast, lower similarity scores suggest
greater variation and are aligned with the objective of generating diverse outputs. The
subsequent sections provide a detailed examination of how SSRS quality, as quanti-
fied by DoR and semantic similarity, developed across iterations in response to prompt
refinements.

Figure 8.6.: Variation in DoR Scores aggregated across all 30 SSRS for each iteration.

8.3.1. Early Phase (Iterations 1 to 3)
In the first iteration, only similarity scores were assessed numerically; realism evaluation
was conducted using a binary scale (true/false) and is therefore not represented in the ag-
gregate metrics until iteration 3 as shown in figure 8.5. Besides the absolute score values
it is also important to look at the variability of both metrics displayed in figure 8.6 and
8.7. For score variability small boxplots are desired as they display little variation, which
indicates more consistent outputs by the SSRS generation process. With this context
established, the following paragraphs examine the evolution of both metrics across itera-
tions. The initial similarity average was relatively high, at 0.86, but decreased markedly
to 0.71 by iteration 3. The second iteration showed the highest variability across the
entire process, with similarity scores ranging from nearly 0.95 down to approximately
0.4. Iteration 3 introduced a decimal score for DoR, with an average of approximately
0.95, but again accompanied by substantial variation, with scores ranging from 0.8 to

55

8. Process Execution Results

Figure 8.7.: Variation in Similarity Scores aggregated across all 30 SSRS for each itera-
tion.

1.0. IndDom-specific patterns from the similarity heatmap, displayed in figure A.5 show
that in the first iteration, IndDoms such as Education, Finance, Manufacturing, and
Retail and Supply Chain scored particularly high, with values exceeding 0.9, reaching
up to 0.96. E-commerce, by contrast, scored notably lower at 0.62. In iteration 2, most
IndDoms experienced substantial score drops, for example Finance fell from 0.95 to 0.68,
and Media and Entertainment dropped from 0.88 to 0.6. This shift occurred following
a minimal prompt modification: the addition of the sentence “Ensure that the scenario
is distinct.”

In iteration 3, average similarity scores improved again down to a local minimum
of 0.72, only surpassed by the last iteration thus displaying the second best average
similarity scores of all iterations. Domain-level scores ranged from a low of 0.57 in
Government and Public Services to a high of 0.84 in Logistics. No IndDoms exceeded a
score of 0.9 in this iteration. The range remained high, with a 0.27 spread between the
lowest and highest values. In this iteration, the SSRS generation prompt was extended
with the Expert Persona pattern, instructing the LLM to adopt the role of a “highly
experienced Requirements Engineer and Business Analyst.”

The iteration subplots of similarity and realism scores, displayed in figure A.7, reveal
that iteration 1 displayed fairly consistent similarity scores across most IndDoms, except
for E-commerce. Iteration 2 introduced significant fluctuation in similarity across Ind-
Doms. In iteration 3, realism scores began to appear, ranging from 0.85 to 1.0. In this

56

8.3. Iteration-Level Insights

same iteration, similarity scores were generally lower than realism scores, with Health-
care being a notable exception. The magnitude of the gap between similarity and realism
also varied considerably, with IndDoms such as Finance showing nearly a 0.4 point gap,
while others such as E-commerce and Logistics had much smaller disparities.

The Boxplots for realism displayed in figure A.8, confirm that iteration 3 started
with mixed levels of variability in realism: some IndDoms displayed near-zero variation,
while others had significantly wider ranges. Similarity boxplots showed narrow score
ranges for five to six IndDoms in iteration 1, while 3–4 IndDoms already exhibited
broader variability. Variability increased in iterations 2 and 3, with higher ranges in
most IndDoms.

8.3.2. Mid Phase (Iterations 4 to 7)

In the mid-phase, a general drop in realism averages was observed. Iterations 4 and
5 showed reduced average realism scores between 0.85 and 0.9, coupled with declining
variability. However, iteration 6 marked a significant turning point, with realism drop-
ping to a process-wide low of 0.79. This iteration also saw a major increase in score
variability, with values ranging from 0.65 to 0.9. This high level of fluctuation persisted
into iterations 7 and 8, although average scores were slightly higher than in iteration 6.
Similarity trends during this phase show a gradual increase in average scores, peaking
at a local high of 0.81 in iteration 7. Variability in similarity scores remained largely
stable throughout iterations 4 to 7. The similarity heatmap in figure A.5 reveals that in
iterations 4 and 5, domain-level scores continued to range broadly from 0.57 for Finance
in iteration 4 to 0.93 for Healthcare in iteration 5. In iteration 5, the Chain-of-Thought
pattern was introduced in the prompt, leading to a slight average score improvement,
but also contributing to increased variability.

In iterations 6 and 7, average similarity scores declined again, positioning them among
the lowest across all iterations except for the first. For instance, in iteration 6, Finance
achieved a score of 0.55, the best individual similarity score overall, though this came
with a wide internal range from approximately 0.48 to 0.69. Prompt modifications in
these iterations aimed to improve realism, but appeared to negatively impact similarity
in some IndDoms. Subplot analysis with figure A.7 shows that realism scores remained
fairly stable across IndDoms in iterations 4 and 5. Similarity scores, however, continued
to vary significantly. Notably, similarity exceeded realism scores in one IndDom in
iteration 4, two IndDoms in iteration 5, five IndDoms in iteration 6, and four in iteration
7. Realism score stability diminished in iteration 6 and even more so in iteration 7 which
displays highly fluctuating scores. Realism boxplots, shown in A.8, for iterations 4 and 5
display uniform variation and small score ranges, consistently below 0.05. By iteration 6,
this consistency had eroded, with score ranges becoming comparable to those in iteration
1. Five IndDoms showed near-zero variability, while two had ranges equal to or exceeding
0.1. Similarity boxplots, shown in A.9, continued to show moderate variability in most
IndDoms in iterations 4 and 5, and a shift toward smaller score ranges in iterations 6
and 7.

57

8. Process Execution Results

8.3.3. Late Phase (Iterations 8 to 10)

The late phase is marked by clear improvements in realism and a final decline in simi-
larity. Realism scores rose to a peak in iteration 9, where all 30 SSRSs received a score
of 1.0, as confirmed by the corresponding boxplot. In the final iteration, the realism
average declined slightly to 0.9 but exhibited the smallest score range among all itera-
tions (excluding iteration 9), suggesting the highest output consistency. In comparison,
similarity scores, after reaching a local high in iteration 7, began to decline and thus
improve. The final iteration had the lowest average similarity score across the entire
process, at 0.66. In addition to displaying the lowest and thus best score, the variability
in iteration 10 was also reduced compared to earlier iterations, with a range from 0.5 to
0.8. The similarity heatmap in figure A.5 showed a substantial average score improve-
ment in iteration 8, with 8 out of 10 IndDoms having scores of 0.8 or lower. However
variability remained high, with scores ranging from 0.57 for E-commerce to 0.88 for
Manufacturing. For this iteration, explicit prompt instructions were added to ensure
greater SSRS diversity. In iteration 9, scores worsened slightly on average, with Logis-
tics scoring highest at 0.9 and Education reaching a new domain-specific low of 0.57.
This iteration also had a high score range of 0.33. The final iteration produced the best
average similarity scores across all iterations combined also with low variability. The
highest similarity score was 0.73 (Healthcare), and the lowest was 0.59 (Government),
yielding the smallest range of 0.14. For this final iteration, insights from previous rounds
were synthesized to construct a refined generation prompt version.

The subplots in figure A.7 show that similarity scores in iteration 7 fluctuated mod-
erately, but with a smaller score range than in earlier iterations. In iterations 8 and 9,
variability increased again. In iteration 10, similarity results were the most consistent on
average, with lower score ranges and fewer fluctuations. Realism remained consistently
high, and in iteration 9, all scores were perfect (1.0). The final iteration also showed
minimal realism variation and high consistency. Realism boxplots shown in figure A.8
further confirm that iteration 9 achieved full score consistency across all IndDoms. Itera-
tion 8 showed no variation in five IndDoms, compared to three in iteration 7. Iteration 10
followed closely behind iteration 9 in consistency, with minimal score variability across
all IndDoms. Similarity boxplots shown in figure A.9 indicate a reversal of the trend
seen in iteration 7: iteration 8 showed increased variability, while iteration 9 reverted to
the pattern observed in iteration 1, with most IndDoms displaying low variability and
only two to three IndDoms showing wider ranges. Iteration 10 exhibited slightly higher
similarity variation within individual IndDoms but displays a much smaller score range
across all IndDoms compared to earlier iterations.

8.4. Industry Domain-Level Insights

To better understand if and how results differ between different IndDoms throughout
the ten iterations, an in-depth analysis of domain-specific trends was conducted in both
degree of realism and semantic similarity scores. Figure A.4 displays the results for

58

8.4. Industry Domain-Level Insights

Figure 8.8.: The semantic similarity and degree of realism scores averaged over all ten
iterations for each individual industry domain.

both metrics across all iterations for each individual industry domain while figure 8.8
displays the average scores across all iterations for each individual industry domain. For
the variability of metric scores figures A.10 and A.11 give a detailed overview for each
individual industry domain.

8.4.1. Realism Variability

Analysis of the realism score variability, displayed in figure A.10, across IndDoms and
iterations reveals distinct consistency patterns. IndDoms such as Education, Finance,
Healthcare, Logistics, Retail and Supply-Chain, and Telecommunications exhibit com-
paratively low variability throughout most iterations. In Education, the initial iterations
demonstrate perfect or near-perfect consistency, with only a slight increase in range ob-
served mid-cycle, particularly in iteration 7, followed by a return to near-zero variation
in the later iterations. Finance shows near-perfect consistency in the first iteration and
again from iterations 6 through 9. Although iteration 4 exhibits the highest variation
for the Finance IndDom, the score range still remains under 0.05 which is comparatively
low. For Healthcare, iterations 3 through 7 show comparatively modest variation with a
score range of approximately 0.05. The final three iterations demonstrate near-perfect
consistency, though iteration 10 shows a marginally larger range than its immediate pre-
decessors. In Logistics, variation remains relatively stable during iterations 3, 4, 5, and
7. Iterations 6, 8, and 9 display near-perfect consistency, while iteration 10 introduces a
marginal increase in variation compared to the prior two iterations, though still within
a narrow range. Retail and Supply-Chain presents similar behaviour, with relatively
equal variation in iterations 3, 5, 7, and 8, maintaining ranges around 0.05. Iterations 6,

59

8. Process Execution Results

9, and 10 exhibit near-perfect consistency. In Telecommunications, score variability is
near-perfect in iterations 3 and 5 through 7 and again in iteration 9. Iteration 8 shows
the highest variability in this IndDom, with a range exceeding 0.1. Iterations 4 and 10,
in contrast, show minor variation with ranges around 0.05.

IndDoms demonstrating moderate to high variability in realism include E-commerce,
Government and Public Services, Manufacturing, and Media and Entertainment. In
E-commerce, early iterations present moderate variation, ranging from 0.05 to 0.15.
Iteration 6 shows a temporary phase of zero variation, followed by a spike in variability
during iteration 8. The final iterations, however, converge to very tight clustering with
minimal range. Government and Public Services shows modest variation in iterations
3 through 5 and again in iteration 7, with ranges around 0.05. Iteration 6 has the
highest variation in this IndDom, reaching a range of approximately 0.1. Variability
significantly diminishes in iterations 8 and 9 and remains low, though slightly elevated,
in iteration 10. Manufacturing exhibits low variation in iterations 3, 6, 9, and 10, with
slightly higher ranges in the latter two. Other iterations in this IndDom show moderate
variability, with iteration 7 reaching a maximum range slightly above 0.1. Finally, in
Media and Entertainment, variability starts high at approximately 0.1 in the initial
iteration. Iterations 7 and 9 return to near-perfect consistency, while iteration 10 sees
a slight increase in range. Iteration 6 again exhibits elevated variability, comparable to
the first iteration.

8.4.2. Similarity Variability
Similarity score variability, displayed in figure A.11 across IndDoms and iterations shows
somewhat different trends. IndDoms such as E-commerce, Government and Public Ser-
vices, Healthcare, and Logistics generally exhibit consistently low variability. In E-
commerce, modest variation is observed in early iterations, followed by a minor increase
mid-cycle. The final iterations show tight score clustering with minimal variation. For
Government and Public Services, higher variation is evident in iterations 1, 2, and 4,
each with a range of approximately 0.2. Iterations 3 and 9 display the most consistent
scores. Iterations 5, 6, 7, and 10 maintain moderate variation, each with a range of
roughly 0.1. In Healthcare, the highest variability appears in iteration 3 with a range of
approximately 0.2. Iteration 5 exhibits the best consistency, while iterations 6 through
10 maintain modest variation with ranges near 0.1. The Logistics IndDom shows a
gradual increase in variation from iteration 1 to iteration 10, culminating in the highest
range at the end. Exceptions occur in iterations 7 and 9, both of which show notably
less variation compared to other iterations.

IndDoms such as Education, Finance, Manufacturing, Media and Entertainment, Re-
tail and Supply-Chain, and Telecommunications exhibit high or fluctuating variability in
similarity scores. In Education, the first two iterations show high consistency. However,
iterations 4, 6, and 8 exhibit substantial variation, while iterations 3, 5, and 9 show
moderately elevated variability. Iterations 7 and 10 return to lower variability, though
not reaching the level observed at the beginning. Finance begins with high consistency
but demonstrates a peak in variation during iteration 5. Iterations 2, 3, 4, and 6 main-

60

8.4. Industry Domain-Level Insights

tain modest variation around 0.2. Iterations 7 through 9 show reduced variation, but
the final iteration again displays an increased range of approximately 0.2. In Manufac-
turing, iterations 1 and 2 exhibit little variation, and iterations 4 and 6 to 9 maintain
low variability with slightly elevated ranges. However, iteration 10 exhibits the highest
variation in this IndDom, with a range approaching 0.3. In Media and Entertainment,
the first iteration shows good consistency, but iterations 2, 5, 7, and 8 exhibit signifi-
cantly higher variation with ranges around 0.3. Variability decreases again in iterations
9 and 10. Retail and Supply-Chain starts with low variability in iteration 1, increasing
until iteration 4, which shows the highest score range. Iterations 6 and 7 demonstrate
the best consistency, with ranges comparable to the initial iteration. The final iteration
again shows increased variability with a range of approximately 0.2. Telecommunications
shows relatively low variation in iterations 1, 2, 4, 6, 8, and 9, each with ranges around
0.1. The highest variation occurs in iteration 3 with a range of about 0.2. Iteration 7
presents the most consistent results, while the final iteration shows the second highest
range, slightly below 0.2.

8.4.3. Iterative Trend Patterns in Metric Scores
Trend analysis of realism and similarity scores across iterations reveals several recurring
patterns. In certain IndDoms, similarity scores intersect or cross realism scores during
the mid-iterations. This pattern is observed in Healthcare, Manufacturing, Retail and
Supply-Chain, Telecommunications, and E-commerce. In Healthcare, realism begins at
0.88 in iteration 3 and remains stable in iterations 4 and 5, followed by a dip to 0.72 in
iteration 6, then increasing to 1.0 in iteration 9, and ending at 0.91 in the final iteration.
Similarity starts at 0.82, declines to 0.7 in the following iteration, rises to 0.93 by iteration
5, and then steadily drops to 0.73 by iteration 10. In Manufacturing, realism starts at
1.0 in iteration 3, drops to approximately 0.85 in iterations 4 to 7, reaches a low of 0.73
in iteration 8, and concludes at 0.91. Similarity begins at 0.96, falls to 0.83 in iteration
3, and stabilizes between 0.85 and 0.9 in subsequent iterations, aside from a low of 0.75
in iteration 5 and a final score of 0.67. In Retail and Supply-Chain, realism starts at
0.93–0.94, then decreases to 0.73 by iteration 7, rises to 0.78 in iteration 8, and finishes
at 0.9. Similarity starts high at 0.95, drops to 0.76 in iteration 3, increases to 0.93 in
iteration 7, and then declines to 0.7 by the final iteration. For Telecommunications,
realism decreases steadily from 1.0 in iteration 3 to 0.75 in iteration 9, finishing at
0.9. Similarity begins at 0.88, drops sharply to 0.63 in iteration 4, increases to 0.95
in iteration 7, and then falls again to 0.71 in the final iteration. E-commerce shows
relatively stable realism scores around 0.85 in iterations 3 to 5, dipping slightly to 0.8
in iteration 6, peaking near 1.0 in iterations 7 to 9, and ending close to 0.9. Similarity
begins at 0.6, rises to 0.76 by iteration 4, falls to 0.6 in iteration 5, peaks at 0.87 in
iteration 6, dips to 0.57 in iteration 8, rises again to 0.76, and ends at 0.67. Some
IndDoms exhibit a persistent gap between similarity and realism. In Finance, realism
begins at 1.0 in iteration 3, fluctuates between 0.8 and 1.0 until iteration 9, and ends
at 0.89. Similarity starts at 0.95, declines to 0.68 in iteration 4, remains around 0.6
through iteration 6, briefly rises to 0.71 in iteration 7, and then drops again to 0.6 in the

61

8. Process Execution Results

final iteration. Education shows realism starting at 1.0, declining to 0.86 in iterations 4
to 6, rising to 1.0 in iterations 8 and 9, and dropping to 0.9 in iteration 10. Similarity
begins at 0.92, then stabilizes around 0.75, drops to 0.6 in iteration 6, peaks at 0.82 in
iteration 7, and finishes at 0.62. Government and Public Services mirrors the trend in
Finance, with realism showing high and stable values and similarity dropping from 0.84
to around 0.6, with minor peaks at 0.7 in iterations 6 and 8, and a final value of 0.59. In
Media and Entertainment, realism is steady at 0.86 initially, drops to 0.65 in iteration
6, and returns to approximately 0.9 afterward. Similarity starts at 0.88, drops sharply
to 0.6, rises to 0.74 by iteration 5, then fluctuates between 0.6 and 0.7, and ends at 0.62.
The Logistics IndDom is a notable case where realism and similarity scores are closely
aligned. Realism begins at 0.93, remains around 0.9 through iteration 6, peaks at 0.97 in
iteration 7, dips to 0.8 in iteration 8, and ends at 0.89. Similarity starts at 0.85, remains
between 0.8 and 0.9 for most of the process, with lows of 0.77 in iteration 5 and 0.71 in
the final iteration.

62

9. Evaluation by Human Experts

This chapter presents the results of a human IndDom expert study conducted to assess
the realism of SSRSs generated by the SSRS-Gen process. While previous chapters fo-
cused on automated evaluation using LLM-based metrics, this study provides an external
validation of the realism criterion using domain-specific human judgment. A total of 60
participants took part in the evaluation, with responses collected across all ten industry
domains included in the SSRS-Gen process. Each expert was asked to assess at least
one complete SSRS. For every instantiated section of the SSRS template, participants
assigned a binary label of ”realistic” or ”unrealistic”. Following this section-wise evalua-
tion, participants provided an overall realism judgment on a 5-point Likert scale. These
two levels of granularity enable both detailed and holistic validation of the generated
outputs. The following sections detail the structure of the questionnaire, report key
findings from the section-level and overall ratings, and analyse patterns across domains.

9.1. Questionnaire Study Design and Evaluation
This section details the design and implementation of the expert study conducted to
validate the realism of SSRSs generated in the final iteration of the SSRS-Gen process.
As previously established, realism represents the most critical quality dimension for eval-
uating SSRS usefulness in downstream tasks. To assess this, a small-scale questionnaire
study was administered, focusing exclusively on expert judgments of realism without re-
quiring participants to evaluate completeness or other structural features. The following
describes the study’s design, participant recruitment strategy, questionnaire structure,
and pre-test adjustments.

The goal of the expert study was to conduct an initial realism evaluation of the SSRSs
generated in the last iteration. Realism is the most critical metric, as unrealistic SSRS
are unsuitable for any potential downstream tasks. The study was administered via
an online questionnaire using SoSci Survey and was conducted in a fully anonymous
manner. Only non-identifying metadata was collected, focusing on participants’ profes-
sional background and self-assessed domain expertise. To be eligible for participation,
individuals were required to have prior professional experience with software projects.
Additionally, participants were asked to indicate whether they considered themselves
technical experts, domain experts, or both, how many years of work experience they
have, and to specify the industry domains in which they felt most confident to evaluate
an SSRS. The list of ten IndDoms used in the process execution was provided, and par-
ticipants were required to select at least one they feel confident in. Those who selected
“None of the listed domains” or reported no relevant experience were excluded from

63

9. Evaluation by Human Experts

the study. Each participant was then randomly assigned to one of the their selected
IndDoms. For each of the ten IndDoms one of the three generated SSRS was chosen at
random for evaluation in the study. In total this results in a fixed sample of 10 out of
30 SSRS. This sample size was deliberately chosen in order to keep the study feasible
in terms of the overall time frame and the manual effort required to analyse the re-
trieved data set within the scope of this thesis. The SSRS evaluation questionnaire was
structured around the four sections of the SSRS template: System Overview, Functional
Requirements, Non-Functional Requirements, and Constraints. For each element of the
four sections, participants were asked to indicate whether the content appeared to them
as rather “Realistic” or rather “Unrealistic” using a binary radio button. The default
selection was set to “Unrealistic”. If a section was marked as “Unrealistic,” an optional
text field was provided for participants to write a justification. No response fields were
mandatory. The four SSRS sections and their individual elements were presented in the
same order as specified in the SSRS template and were not randomized. After com-
pleting all four main sections section, the participant was asked to provide a realism
assessment of the SSRS as a whole using a Likert-Scale from 1 to 5 labelled with ”Very
Artificial” to ”Very Realistic” as well as a ”Not Sure” option and an optional text field
for justification.

Before starting the study an initial pre-test was conducted with five participants spread
across four IndDoms. Based on the insights an additional page was added before the
actual questionnaire which contained two information boxes that a participant has to
confirm before being able to proceed. First that they have to label each section of
a given SSRS with either ”Realistic” or ”Unrealistic” and that these options reflect
tendencies (rather realistic vs. rather unrealistic), not absolute right or wrong answers.
Second that they should evaluate only the realism of the information provided, not its
completeness, because the content follows a predefined template that limits the scope
of included information. After confirmation the main questionnaire then starts. These
additions were made because it was observed that participants in the pre-test frequently
remarked missing requirements or information that they would expect in an SSRS but
which are not defined in the SSRS template.

Initially participants were also asked to specify their specific job role, but this ques-
tion was replaced after the pre-test by the domain and/or technical expert question,
because for this small-scale study there is little benefit or use for retrieving this data.
The study was estimated to reach around 50 participants and thus would not have a
large enough data set to gain statistically significant insights on differences in realism
perception based on job role. In the pre-test the average completion time of the whole
study was approximately 15 minutes which was then subsequently communicated to the
participants of the main study as the expected completion time. Participants were then
recruited through purposive sampling and snowball sampling with a combination of pro-
fessional and personal networks, mailing lists such as the SWT GI specialists group and
targeted outreach via LinkedIn. This recruitment strategy was intended to reach prac-
titioners with relevant technical and/or domain-specific experience. Prior to beginning
the questionnaire, participants were required to provide explicit informed consent.

64

9.2. Expert Evaluation Results

Industry Domain No. of Evaluations
Finance 21

E-Commerce 10
Education 8

Government 5
Logistics 4

Manufacturing 4
Healthcare 3

Media-Entertainment 2
Telecommunications 2
Retail-Supply-Chain 1

Table 9.1.: Number of evaluations for each industry domain.

This small-scale study is intended as a preliminary validation of the results from the
last iteration. While it offers early insights into the perceived realism and practical
plausibility of the generated SSRS, it does not constitute a comprehensive evaluation.
A more extensive follow-up study is proposed as a direction for future research.

9.2. Expert Evaluation Results

This section presents the results of the expert study conducted to assess the perceived
realism of the SSRSs generated in the final iteration of the SSRS-Gen process. The
evaluation focused exclusively on realism, as it represents the most critical dimension
for determining the practical utility of SSRSs in downstream applications. The results
are structured into four subsections. First, an overview of the participant distribution is
provided, including the number of responses per industry domain. This is followed by a
detailed analysis of the binary section-level realism ratings, which reflect how individual
SSRS elements were judged across the four main SSRS template sections. The third
subsection reports on participants’ overall realism assessments using a five-point Likert
scale. Finally, selected qualitative justifications are analysed to offer descriptive insights
into recurring themes or concerns raised by participants. Together, these results provide
a multifaceted view of how domain-experienced practitioners perceived the realism of
the generated SSRSs.

9.2.1. Participation Overview

The study was conducted over a period of one month. In total 60 questionnaires were
answered by 52 participants, as two participants did the maximum of three evaluations
and four participants evaluated a second SSRS. The number of SSRS evaluations differs
greatly across Industry domains. As shown in table 9.1 the IndDom of Finance has by
far the most evaluations with 21 followed by E-Commerce with 10 and Education with

65

9. Evaluation by Human Experts

8. All other IndDoms have 5 or less evaluations with Retail-Supply-Chain only having
a single one.

9.2.2. Participant Expertise

Less than 1 year

3.7%

1 3 years

14.8%

4 6 years
16.7%

7 10 years

53.7%

10+ years

11.1%

Years of Experience

Technical expert
53.7% Both Domain

 and
 Technical expert

37.0%

Domain expert

9.3%

Participant Expert Type

Figure 9.1.: Participants self-reported expertise, including years of professional experi-
ence and type of expertise.

To contextualise the expert evaluations, this subsection provides an overview of the
professional background and self-assessed expertise of the study participants. Under-
standing participants’ experience and expertise levels is essential for interpreting the
realism assessments and identifying potential sources of bias or variation in judgement.

Figure 9.1 displays two pie charts, one for the years of experience and one for the
expert type, as self-reported by each participant. The first pie chart on the left presents
the years of professional experience. Most participants reported substantial experience,
with 53.7% having between 7 and 10 years, and 11.1% reporting more than 10 years.
Participants with 4–6 years of experience made up 16.7%, while 14.8% had 1–3 years.
Only a small fraction (3.7%) had less than one year of experience. This data suggests that
the sample is composed primarily of experienced professionals, supporting the credibility
of the realism judgments provided.

The second pie chart on the right illustrates the distribution of participants by type of
expertise. A majority of respondents identified as technical experts (53.7%), while 37%
indicated expertise in both technical and domain-specific areas. The remaining 9.3%
considered themselves domain experts only. This mix suggests a participant pool with
predominantly technical or hybrid expertise.

9.2.3. Section-Level Binary Evaluation Results

Each SSRS questionnaire was composed of 17 predefined sections as specified in the
SSRS template introduced in section 3.4. These sections were independently evaluated
by participants for their perceived realism using a binary assessment as described in

66

9.2. Expert Evaluation Results

Sy
ste

m Pu
rpo

se

Sta
keh

old
ers

User
 Base

 Cha
rac

ter
isti

cs

Ope
rat

ion
al

En
vir

on
men

t

Usag
e S

cen
ari

os

Core
 Fe

atu
res

Auth
en

tic
ati

on

Per
for

man
ce

Sca
lab

ilit
y

Re
liab

ilit
y

Se
cur

ity

Usab
ilit

y

Aud
it &

 Mon
ito

rin
g

Tec
hn

ica
l C

on
str

ain
ts

Com
plia

nce
 Re

qu
ire

men
ts

Re
sou

rce
 Con

str
ain

ts

Int
eg

rat
ion

 Nee
ds

0

10

20

30

40

50

60

Nu
m

be
r o

f A
ns

we
rs

Realistic vs Unrealistic Ratings per Section
Realistic
Unrealistic

Figure 9.2.: Realism ratings per template element, showing the absolute number of re-
sponses marked as realistic or unrealistic.

Sy
ste

m Pu
rpo

se

Sta
keh

old
ers

Aud
it &

 Mon
ito

rin
g

Com
plia

nce
 Re

qu
ire

men
ts

Usag
e S

cen
ari

os

Se
cur

ity

Core
 Fe

atu
res

Ope
rat

ion
al

En
vir

on
men

t

Usab
ilit

y

Int
eg

rat
ion

 Nee
ds

Auth
en

tic
ati

on

Tec
hn

ica
l C

on
str

ain
ts

Per
for

man
ce

Re
liab

ilit
y

Sca
lab

ilit
y

User
 Base

 Cha
rac

ter
isti

cs

Re
sou

rce
 Con

str
ain

ts
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Normalized Realistic vs Unrealistic Ratings per Section
Realistic
Unrealistic

Figure 9.3.: Realism ratings per template element, normalized and sorted by proportion
of responses marked as realistic.

67

9. Evaluation by Human Experts

the previous section. The sections System Purpose and Domain/Context were assessed
jointly as one evaluation item, as were both authentication-related requirements under
Functional Requirements. All other sections were rated individually. The elements of
the System Overview category received a full 60 responses. The two Functional Require-
ments items were evaluated 54 times, while the remaining sections under Non-Functional
Requirements and Constraints categories were rated 53 times each. Thus in total there
are 53 complete datasets, and seven partially complete datasets. All available datasets
were included in the analysis, as each SSRS template element was evaluated indepen-
dently. This independence allows for the use of partial responses without introducing
any dependency-related bias.

The resulting dataset is displayed in figures 9.2 and 9.3. Figure 9.2 displays the abso-
lute count of assessments for each individual SSRS element while figure 9.3 normalizes
the data to 100% of retrieved answers for the given element. For ease of comparison
figure 9.3 is also sorted by the proportion of ”Realistic” ratings. Both figures clearly
show that the individual SSRS elements exhibit varying proportions of ratings marked
as ”Realistic”. It directly stands out that the elements ”System Purpose” and ”Stake-
holders” received the highest realism assessment with over 90% of answers marking it as
”Realistic. In comparison the element ”Resource Constraints” by far received the least
”Realistic” ratings with only 23%. Across all elements the average proportion of ”Re-
alistic” ratings was 0.71. When grouped by their respective SSRS template categories,
System Overview received the highest average realism score at 0.79, followed by Func-
tional Requirements with 0.74, Non-Functional Requirements at 0.71, and Constraints
at 0.61. The individual sections with the highest realism ratios were System Purpose
(0.92), Stakeholders (0.90), Audit & Monitoring (0.85), and Compliance (0.81). In con-
trast, the lowest realism ratings were observed for Resource Constraints (0.23), User Base
Characteristics (0.57), Scalability (0.59), and Reliability (0.64). The standard deviation
from the overall mean realism percentage across all 17 sections was 0.15, which suggests
that most sections had realism proportions that fell within the interval of approximately
0.56 to 0.86, reflecting moderate dispersion around the mean and indicating that while
realism was generally perceived positively, some sections showed significantly higher or
lower realism consistency.

9.2.4. Overall SSRS Realism Assessment Results
To assess the overall perceived realism of each SSRS, participants were asked to pro-
vide a rating using a 5-point Likert-scale with the options: Very Artificial, Somewhat
Artificial, Neutral, Somewhat Realistic, and Very Realistic. Out of 60 total responses,
nine participants did not answer this question, and none selected ”Not Sure” so in total
there are 51 overall assessments. The absolute distribution of responses is depicted in
figure 9.4, which shows eight participants rated their given SSRS as ”Very Realistic”,
26 as ”Somewhat Realistic”, nine as ”Neutral”, four as ”Somewhat Artificial”, and two
as ”Very Artificial”. In figure 9.4 there are only two participants displayed that did
not answer this question instead of actual number of nine missing answers. This is,
because those participants exited the study before navigating to the last page of the

68

9.2. Expert Evaluation Results

Very artifi
cial

Somewhat artifi
cial

Neutral

Somewhat re
alisti

c

Very realisti
c

Not su
re

Not answered
0

5

10

15

20

25

Nu
m

be
r o

f R
es

po
ns

es

2

4

9

26

8

0

2

Overall Perceived Realism of Generated Scenarios

Figure 9.4.: Distribution of participant responses for the overall realism rating of the
SSRS.

69

9. Evaluation by Human Experts

Very artificial
3.9%

Somewhat artificial
7.8%

Neutral

17.6%

Somewhat realistic51.0%

Very realistic

15.7%
Not sure

0.0%

Not answered

3.9%

Overall Perceived Realism of Generated Scenarios (Percentage)

Figure 9.5.: Proportion of participant responses for the overall realism rating of the
SSRS.

questionnaire. This distribution shows that a majority of participants (34 out of 51;
∼67%) viewed the SSRSs positively, selecting one of the two highest realism levels. In
contrast, only six out of 51 responses (∼12%) reflected a negative perception, and ∼18%
of respondents assessed the SSRS as neither particularly artificial nor realistic. The
corresponding bar chart illustrates that moderately positive realism ratings were most
common, while extreme responses on either end of the scale were relatively rare.

The pie chart in figure 9.5 further reinforces this trend by visually emphasizing the
overall positive perception of the generated SSRSs. These findings suggest that the
generation methodology was generally effective in producing SSRS that were perceived
as realistic by participants. Nonetheless, the presence of neutral and critical responses
indicates that further refinements may be required to consistently align with expert
expectations.

70

9.2. Expert Evaluation Results

9.2.5. Descriptive Overview of Justification Responses
To complement the quantitative realism ratings, participants could provide optional tex-
tual justifications for any SSRS section they evaluated as ”Unrealistic.” While comments
varied in depth and specificity, a thematic analysis revealed several recurring concerns.
This qualitative data provides important insights into realism issues of generated SSRS
and allow for a direct comparison with realism issues identified by the LLM itself through
its Self-Assessment. The following paragraphs highlight the most important remarks
made by the IndDom Experts.

Oversimplification and Generic Phrasing

A substantial number of comments indicated that the requirements appeared overly
generic, undermining their perceived authenticity. These responses suggest that gener-
ated SSRSs sometimes failed to capture the complexity and variability typical of real-
world specifications. For example, one participant remarked: ”Look like textbook ex-
amples”, while another commented: ”It’s very generic or broad”.

Lack of Detail and Ambiguity

Another common theme was insufficient specificity. Participants flagged vague state-
ments that lacked the technical depth needed to assess plausibility. One respondent
wrote: ”I would expect some more detail here”, and another noted: ”That is very vague.
[...] more information [...] should be defined”. These responses point to a gap between
expected and actual granularity in domain-specific content.

Logical Incoherence Between Requirements

Another issue raised by participants was the presence of internal contradictions within
some SSRSs. These comments highlighted inconsistencies between different require-
ments or contextual assumptions. For instance, one expert questioned the applicability
of European data protection laws in a non-European context, stating: ”gdpr is for eu-
rope, which wasn’t a target (unlike americas and africa)”. Another similarly remarked:
”I am not sure if the GDPR regulations are realistic here, as the tool ”Focuses on North
America, South America, and regions in Africa where hybrid education is rapidly grow-
ing.” Would GDPR be required there?” Such feedback reveals the presence of logical
incoherence between individual requirements.

Overly Optimistic and Ambitious Requirements

Several expert comments pointed to requirements that appeared overly optimistic or
ambitious. These responses suggest that some SSRSs include assumptions that may not
hold under realistic conditions, reflecting an underestimation of complexity or overconfi-
dence in execution capacity. One participant for example noted: ”The 12 month with a
total staff of 30 is very optimistic,” highlighting concerns about the feasibility of delivery

71

9. Evaluation by Human Experts

within the proposed constraints. Another expert remarked: ”15.000 users for an initial
round seems too ambitious,” pointing to unrealistic expectations about user adoption
rates.

72

10. Related Work

Having presented both the data gathered during the execution of the SSRS-Gen process
and the results of expert study, this chapter positions the thesis within the broader con-
text of AI-supported requirements engineering, with a particular focus on the emerging
role of LLMs in automating the generation and analysis of software requirements.

The application of AI and especially LLMs in software requirements engineering (RE)
has gained increasing attention, particularly as researchers explore ways to automate
traditionally manual, expert-driven activities. Prior studies have demonstrated the
potential of LLMs to assist with tasks such as requirements elicitation, classification,
transformation, and even generation. Additionally, several machine learning and nat-
ural language processing (NLP) pipelines have been proposed to extract or structure
requirements from stakeholder input or user feedback. This chapter reviews and anal-
yses a representative set of these works to position this thesis in the broader research
landscape. Each reviewed study is evaluated in terms of its objectives, methods, use of
LLMs, and treatment of software requirements, followed by a summary that highlights
how this thesis extends and differentiates itself from the existing body of work.

10.1. Traditional AI Techniques in Requirements Engineering
Before the rise of large language models, a wide range of traditional AI techniques, par-
ticularly machine learning, deep learning, and classical NLP, were applied to automate
various tasks in requirements engineering. These approaches focused largely on extract-
ing, classifying, or summarizing requirements based on structured or semi-structured
data sources such as user feedback or meeting transcripts. While these methods laid
important groundwork for automation in RE, they often required domain-specific train-
ing data, relied on predefined rules or classifiers, and typically addressed only narrow
subtasks such as feature suggestion or requirement categorization. The following two
works illustrate representative approaches from this category and serve as a conceptual
foundation for understanding how newer LLM-based methods differ.

10.1.1. Generating Requirements Out of Thin Air: Towards Automated
Feature Identification for New Apps

The work by Iqbal et al. [ISM19] presents a conceptual framework for automatically gen-
erating software requirements for new mobile applications by mining app store content
and competitor feedback. The approach is motivated by the difficulty of engaging users
or domain experts in early-stage software projects. It proposes an automated pipeline

73

10. Related Work

to identify relevant features through data mining, sentiment analysis, and clustering,
aiming to infer what a new app should support by learning from existing ecosystems.

This study aligns closely with the motivational framing of the SSRS-Gen process.
Both works seek to address scenarios where real-world requirement specifications or
expert input are unavailable, and both aim to generate substitute artefacts that can
support downstream software processes such as validation, testing, or recommendation.
However, the techniques differ fundamentally. Iqbal et al. propose a pipeline based on
traditional NLP and machine learning, whereas SSRS-Gen leverages zero-shot prompting
with LLMs to generate fully structured SSRSs directly.

Importantly, the work by Iqbal et al. also explores the use of AI to generate re-
quirements, using NLP and traditional machine learning techniques to identify discrete
feature candidates from unstructured user feedback. In contrast, this thesis investigates
whether and how LLMs can be applied to address similar goals. Compared to their focus
on extracting isolated features, SSRS-Gen generates entire structured specifications, in-
cluding system overviews, functional and non-functional requirements, and constraints.
Furthermore, SSRS-Gen integrates automated quality evaluation and iterative prompt
refinement, expanding the scope from feature-level suggestions to the generation and
assessment of complete requirement specifications.

In summary, this work is highly relevant as conceptual precedent and motivational
support for automated requirement generation in data-scarce settings, but differs in
both granularity and technical approach from the LLM-driven strategy proposed in this
thesis.

10.1.2. Requirements-Collector: Automating Requirements Specification
from Elicitation Sessions and User Feedback

The Requirements-Collector tool, proposed by Panichella and Ruiz [PR20], automates
the process of extracting and classifying requirements from elicitation session transcripts
and user reviews. It combines machine learning (ML) and deep learning (DL) techniques
to identify and categorize functional and non-functional requirements, and ultimately
produce structured outputs like user stories. The tool aims to reduce the manual effort
typically involved in analysing stakeholder input and user feedback.

This work is relevant to the thesis in that it also targets automation of requirements
engineering tasks using AI, particularly in data-intensive and time-constrained contexts.
However, the approach relies on traditional ML/DL models, not LLMs. Its focus is on
extracting requirements from human-generated content, whereas the SSRS-Gen process
creates entirely SSRSs using zero-shot LLM prompting without any human-generated
source material.

Despite this methodological difference, Requirements-Collector provides a useful con-
trast. It highlights the limits of conventional ML pipelines, such as the need for labelled
training data, lower flexibility across domains, and limited support for structured doc-
ument generation, which the SSRS-Gen process addresses by leveraging LLMs’ general-
ization and text generation abilities.

74

10.2. LLM-Driven Approaches to Requirements Engineering

In summary, this work is valuable for contextualizing the evolution from ML-based
automation of RE tasks toward LLM-based generative approaches like the one proposed
in this thesis. While it does not employ LLMs itself, it represents a significant predecessor
in the push toward automated requirement pipelines.

10.2. LLM-Driven Approaches to Requirements Engineering
With the emergence of LLMs, the landscape of AI-assisted requirements engineering
has evolved significantly. These models provide general-purpose language understand-
ing and generation capabilities, enabling zero-shot or few-shot application to RE tasks
that previously required domain tuning or extensive training data. Recent research has
explored how LLMs can support requirement generation, assessment, classification, and
transformation. This section reviews key studies that apply LLMs to RE, highlight-
ing how they expand the scope of automation and how they compare to the SSRS-Gen
process proposed in this thesis.

10.2.1. An Automated Model of Software Requirement Engineering Using
GPT-3.5

This work by Yeow et al. [YRA24] investigates the use of GPT-3.5 to automate parts of
the requirements engineering process, specifically the generation of survey and interview
questions for requirements elicitation across different industrial domains. The authors
evaluate the linguistic quality and contextual relevance of GPT-generated questions using
metrics like Flesch Reading Ease and expert judgment. Their findings confirm that GPT-
3.5 can produce coherent, domain-aligned elicitation artefacts, although the results vary
depending on the specificity of the prompts and domain.

This study shares a key motivation with the present thesis: addressing the lack of
accessible, high-quality domain-specific requirements artefacts through LLM-based gen-
eration. However, Yeow et al.’s focus lies in supporting the requirements elicitation
process for a known, predefined idea of a system such as a ”banking system” as they
show in their example prompt [YRA24]. Their prompts to GPT-3.5 are framed around
generating survey and interview questions tailored to specific, named systems, with the
intent of collecting stakeholder input. In contrast, this thesis is concerned with generat-
ing the requirements themselves, and not for an existing system, but for an entirely new
and synthetic system that the LLM is asked to invent within a given industry domain.
In this sense, the prior work addresses the preparation for the actual requirements doc-
umentation, while SSRS-Gen targets the creation of the documentation itself, including
all functional, non-functional, and contextual elements, without assuming any predefined
software scope.

Another notable distinction lies in evaluation methodology. Yeow et al. rely largely on
readability metrics and manual inspection, whereas this thesis introduces a multi-metric
evaluation pipeline combining LLM-based self-assessment, addressing the defined process
requirements of R2-Comparability, R1-Realism, and R3-Diversity, as well as a follow-up

75

10. Related Work

expert study focusing on R1-Realism. In summary, while the two approaches differ in
their specific outputs and use cases, they share a broader objective: demonstrating that
LLMs can function as viable supports for expert-driven RE tasks in contexts where data
is limited or unavailable.

10.2.2. Improving Requirements Completeness: Automated Assistance
through Large Language Models

In this paper, Luitel et al. [LHS24] explore the use of BERT, a transformer-based lan-
guage model, to improve the external completeness of natural language requirements.
By masking parts of existing requirements and analysing BERT’s predictions for plausi-
ble missing terms, the approach aims to identify omissions and enhance the clarity and
thoroughness of requirement documents. The proposed system combines masked lan-
guage modelling with domain-specific corpora and machine learning classifiers to filter
and validate BERT’s suggestions.

This study is particularly relevant to the evaluation phase of the SSRS-Gen pro-
cess. While the generation strategies differ as BERT is used to assess and enhance
existing human-written requirements, not to create them, both works use LLMs as ex-
ternal knowledge sources to approximate what might be missing in a requirement. A
key distinction lies in the modelling approach: this paper uses BERT in a white-box
fashion, whereas SSRS-Gen operates with ChatGPT in a black-box setting, using zero-
shot prompting and self-assessment techniques to generate and evaluate full documents.
Nonetheless, both works validate that pre-trained LLMs can act as substitute for expert
judgment in RE quality assessment, especially when direct access to domain specialists
is limited.

In summary, this paper complements the SSRS-Gen approach by demonstrating how
LLMs can be used not only to generate, but also to systematically evaluate and enhance
the completeness of software requirements, supporting the credibility of automated RE
assistance in practice.

10.2.3. Assessment of ChatGPT’s Proficiency in Software Development

The study by Kim et al. [Kim+23] evaluates ChatGPT’s capability to support tasks
across the entire software development lifecycle, including requirements analysis, mod-
elling, and implementation. Within the requirements phase, the authors prompt Chat-
GPT to identify ambiguities, generate functional and non-functional requirements, and
produce use case specifications based on an informal problem description. They also
assess the coherence and completeness of these outputs and discuss the tool’s strengths
and limitations in mimicking expert behaviour.

This work is relevant to this thesis, as it validates the ability of LLMs to generate
structured requirement artefacts, not just support ideation or brainstorming. However,
their focus is more exploratory and project-based: a single predefined system is used
as a case study, and the evaluation remains qualitative and task-centric. In contrast,

76

10.2. LLM-Driven Approaches to Requirements Engineering

this thesis introduces SSRS-Gen as a process intended to be generalisable and domain-
independent for systematically generating and assessing SSRS across multiple industry
domains using an LLM, though this remains to be empirically verified.

Additionally, while Kim et al. rely on manual expert evaluation and informal judg-
ments, the SSRS-Gen process integrates automated, structured self-assessment grounded
in scientifically evaluated prompt engineering techniques. This allows for scalable eval-
uation and refinement without constant human expert involvement, which is a key dif-
ferentiating aspect of this thesis in data-scarce settings.

In summary, while both works investigate the feasibility of LLM-based requirements
generation, this thesis builds on and extends that idea by introducing a repeatable,
self-assessing generation pipeline with custom evaluation metrics and iterative prompt
refinement.

10.2.4. Extracting Domain Models from Textual Requirements in the Era of
Large Language Models

This paper by Arulmohan et al. [AMM23] investigates the use of GPT-3.5 to extract
domain-specific elements from unstructured user stories, with the goal of transforming
informal requirements into structured domain models. The authors compare the GPT-
based extraction pipeline to a rule-based tool and a supervised NLP model, using an
annotated benchmark dataset for evaluation.

This study is relevant for this thesis, because it applies LLMs to transform unstruc-
tured RE artefacts into structured outputs, a goal that aligns with the template-based
SSRS generation process proposed here. Both works leverage prompt engineering and
constrained outputs to guide LLM behaviour, reinforcing the value of prompt structure
in controlling LLM output quality.

However, their goal is transformational, focusing on restructuring existing user gener-
ated stories, whereas SSRS-Gen is generative, producing full requirement specifications
from scratch. Additionally, while this paper compares LLMs to white-box NLP tools us-
ing benchmark datasets, SSRS-Gen emphasizes self-assessment and prompt refinement
in zero-shot settings where no annotated data is available.

In summary, this work strengthens the thesis’s positioning by showing that LLMs
outperform traditional tools in structuring requirements-related content, even though
the two works target different phases of the requirements engineering pipeline.

10.2.5. NLP4ReF: Requirements Classification and Forecasting – From
Model-Based Design to Large Language Models

The NLP4ReF framework by Peer et al. [PMR24] presents two distinct approaches for
automating requirement classification and forecasting: one based on traditional NLP
and machine learning (NLP4ReF-NLTK), and another leveraging large language models
(NLP4ReF-GPT) to generate new, potentially overlooked requirements from an existing
set.

77

10. Related Work

It compares a traditional NLP pipeline with a GPT-3.5-based alternative. The GPT
model is used both to classify requirements into Functional Requirements (FR)/ Non-
Functional Requirements (NFR) categories and to generate additional requirements that
complement the input set. The work includes both quantitative metrics and human
evaluations of the generated outputs.

This paper is relevant to the present thesis for several reasons. First, it is one of
the few studies to explicitly explore requirement generation using ChatGPT. Second,
their use of automated quality metrics and expert validation is comparable to SSRS-
Gen. However, unlike this thesis, which applies structured prompt design techniques to
guide LLM behaviour, their approach does not explicitly incorporate prompt engineering
methods.

Additionally, the framing of NLP4ReF differs in scope. It assumes the presence of a
seed list of requirements, from which GPT generates additional ones. By contrast, the
SSRS-Gen process generates requirements entirely from scratch, based only on an indus-
try domain and a structured prompt. Moreover, SSRS-Gen extends beyond requirement
statements to produce full SSRSs, covering system overview, constraints, and both FR
and NFR dimensions in a format adapted from ISO 29148 [ISO18].

In summary, NLP4ReF offers a strong technical and conceptual precedent for this
thesis, particularly in its use of GPT for requirement generation and evaluation. It
complements SSRS-Gen by demonstrating that LLMs can enrich existing RE artefacts,
while this thesis shows they can also fully generate and iteratively refine those artefacts
in the absence of any ground truth.

10.3. Summary and Distinction from Related Work
While the reviewed literature demonstrates growing interest in applying AI techniques
to various aspects of requirements engineering, this thesis makes a distinct contribution
by introducing a structured, end-to-end process for the zero-shot generation and self-
assessment of full Synthetic System Requirement Specifications. Compared to both tra-
ditional machine learning pipelines and more recent LLM-based approaches, the SSRS-
Gen process offers a unique combination of generative scope and built-in evaluation.

Traditional AI-based approaches, such as those by Iqbal et al. [ISM19] and Panichella
and Ruiz [PR20], focus on automating classification and feature extraction tasks from
elicitation sessions or user feedback using conventional NLP or supervised learning tech-
niques. While they also pursue the automation of requirements-related tasks, their
methods are limited to isolated aspects, such as identifying discrete feature candidates,
and depend heavily on training data and structured input. In contrast, SSRS-Gen
generates complete and cohesive requirement documents from scratch and operates in
zero-resource settings, leveraging pre-trained LLMs without domain-specific fine-tuning.

More recent work explores the use of LLMs to support requirement generation, trans-
formation, and evaluation. For example, Yeow et al.[YRA24] and Kim et al.[Kim+23]
use LLMs to generate survey questions, use case specifications, or classify RE tasks, but
their approaches focus on predefined systems or isolated artefacts and lack a repeatable

78

10.3. Summary and Distinction from Related Work

evaluative pipeline. In contrast, SSRS-Gen is designed to generate entire SSRS docu-
ments for entirely new systems and includes automated self-assessment mechanisms for
completeness and realism.

Works like NLP4ReF (Peer et al. [PMR24]) come closer in spirit by using GPT to
forecast new requirements. However, they depend on existing partial input sets, whereas
SSRS-Gen does not assume any prior system specification. Furthermore, while Peer et
al. evaluate their outputs using automated metrics and expert validation, SSRS-Gen
additionally employs structured prompt engineering and LLM-based self-assessment,
extending the scope of automation to include both document generation and quality
control.

Finally, while many reviewed papers rely on human judgment or basic readability
metrics for evaluation, SSRS-Gen introduces scalable, automated assessment using self-
assessment prompting. This enables evaluation for both comparability and realism with-
out requiring continuous expert oversight.

In summary, this thesis distinguishes itself by proposing a prompt-engineered gener-
ation process for SSRSs that functions in zero-resource contexts, integrates LLM-based
quality self-evaluation, and shifts the focus from narrow RE tasks to the automated
production of structured, full-scope requirement specifications.

79

11. Discussion

This chapter synthesises the key findings of the SSRS-Gen process, drawing on both
the iterative prompt refinement results and the external expert evaluation. It begins
by analysing the observed effects of individual prompting strategies and design choices,
followed by a detailed assessment of how the model’s self-evaluation capabilities align
with human expert judgments. The subsequent sections provide a broader review of the
SSRS-Gen process, reflect on the terminology used throughout, and highlight critical
limitations of the approach. Finally, directions for future research are outlined to guide
continued development and validation of the proposed SSRS-Gen process.

11.1. Observed Impact of Prompting Strategies
The SSRS-Gen process underwent ten iterations of prompt refinement, during which a
variety of prompting strategies were tested, adjusted, and evaluated for their effect on
output quality as measured by the defined metrics. This section discusses the insights
gained from those iterations, focusing on the observed impact of specific prompt pat-
terns on the quality of generated SSRS. In addition to pattern-specific evaluations, some
general insights into prompt design are presented to inform future prompt engineering
practices in complex generative tasks.

11.1.1. Template Pattern

From the outset, the use of the template pattern in the form of the predefined SSRS
template was highly effective in ensuring that generated SSRSs adhered to the expected
structure. Even without complex instructions or patterns as in the first iterations, the
usage of the pattern led to complete format adherence across all outputs. Across all
ten iterations there was not a single SSRS that was incomplete. This result indicates
that the template pattern is an effective and consistent measure in zero-shot settings to
accurately communicate the desired output format and content to an LLM.

11.1.2. Persona Pattern

The introduction of an expert persona in Iteration 3 coincided with a further drop
in similarity scores and a notable decrease in similarity score variability, suggesting
more consistent diversity across outputs. However, its specific impact on the DoR score
remains difficult to isolate, as in this iteration the change from boolean to decimal
realism scoring was conducted and thus there is no comparison to previous scores. Thus

81

11. Discussion

the exact effect of the persona pattern for the realism of generated SSRS cannot be
clearly determined from the available data.

In contrast, when the persona pattern was introduced in the realism self-assessment
prompt in iteration 4, its effects were more directly observable. The addition led to a
noticeable drop in DoR scores but also resulted in more detailed and critical evalua-
tions of SSRSs. Moreover, DoR score variability decreased, indicating more consistent
assessments across outputs. These effects suggest that the persona pattern improved
the depth and reliability of realism self-assessments by framing the model’s judgment
through a more domain-aware and critical lens. This points to a potential design insight:
combining an expert persona with a self-assessment prompt may be an effective strategy
for eliciting more nuanced and consistent quality evaluations from an LLM.

11.1.3. Self-Criticism
Three distinct forms of self-criticism were employed in the SSRS-Gen process: self-
assessment for completeness, self-assessment for realism, and self-refinement during SSRS
generation. The completeness self-assessment, which involved verifying whether all
points of the template were fully instantiated, proved highly effective. As a straightfor-
ward structural check, it leveraged the LLMs strength in pattern matching and consis-
tently produced reliable results.

The realism self-assessment was initially implemented in a boolean form during Iter-
ations 1 and 2, but all outputs were marked as ”realistic,” offering only limited insights.
Later iterations adopted a more granular scoring approach using a decimal score, which
revealed useful observations. However self-assessments often focused extensively on re-
source constraints and less on other parts of the generated SSRS. A detailed comparison
between realism self-assessment and human expert evaluations is provided in a subse-
quent section.

Finally, the integration of self-refinement logic directly into the SSRS generation
prompt yielded mixed outcomes. Its introduction in Iteration 6 coincided with a sharp
drop in DoR scores, but this cannot be solely attributed to the self-refinement, as the
DoR self-assessment itself also was changed to be more critical at this point. In Iteration
7, the self-refinement was adjusted to focus specifically on resource-constraints and their
alignment with other requirements, which was a frequently identified weakness high-
lighted in earlier realism self-assessments. This change led to a substantial improvement
in DoR scores. While causal attribution on the effects of this approach remains uncer-
tain, these findings suggest that targeted self-refinement mechanisms may help address
specific recurring quality weaknesses in LLM-generated content.

11.1.4. Chain-of-Thought Pattern
The Chain-of-Thought pattern was first introduced into the SSRS generation prompt
in Iteration 5 with the intention of improving coherence and realism by prompting the
model to reason step-by-step through each section of the SSRS template. This addition
had no direct measurable effect on DoR scores. In Iteration 7, the Chain-of-Thought

82

11.2. LLM Self-Assessment and Expert Judgments

pattern was combined with the targeted self-refinement instructions described in the
previous section. This combination contributed to a notable improvement in DoR scores.
However, in subsequent iterations, DoR scores fluctuated, both decreasing and increasing
significantly, despite continued use of Chain-of-Thought. Based on these mixed results
the effectiveness of Chain-of-Thought can not be assessed clearly for its effect on the
generation of SSRS.

The limited effectiveness of Chain-of-Thought in this context may be attributed to
the nature of SSRS generation task itself, because it is not easily decomposable into
independent sub-steps. All template elements are linked together and must be developed
in logical coherence with one another. This inherent interdependence likely reduces the
utility of sequential reasoning strategies, making Chain-of-Thought a less suitable fit for
this type of generative task and potentially also results in rather negative than positive
effects on SSRS quality.

11.1.5. General Prompt Design Insights

Two key insights emerged during the iterative prompt refinement process. First, instruc-
tion clarity and conciseness is essential. Early vague formulations such as the generic
cue to ”ensure that the scenario is distinct” yielded a noticeable improvement over hav-
ing no diversity instruction at all, but also resulted in the highest overall variability in
similarity scores across all iterations. Since it is not explicitly stated what defines a
“distinct scenario”, the model is forced to interpret this instruction on its own, and due
to the inherent randomness in LLM outputs, this interpretation can vary significantly
across the 30 generated SSRSs, as reflected in the high score variability. This highlights
a key lesson: prompts must be formulated so the model is left with no room for inter-
pretation. Everything that is expected but also everything that is undesired must be
precisely defined for the LLM. This is also reflect in the data. In the last iteration of
the process a precise set of instructions was given to the LLM of how to generate diverse
SSRSs, which resulted in the by far best average similarity score out of all iterations.

Second, the results highlighted that prompt overload can significantly diminish output
quality. From iteration 3 to 7 there is a continuous worsening of semantic similarity
scores, as the prompt grew significantly in size and complexity. While the results can
not solely be attributed to the size and complexity of the prompt it is worth mentioning
that the prompt of the last iteration contains 31% less words in the task instructions for
generating an SSRS compared to the largest prompt. When comparing the data it gets
evident that the shorter prompt of the last iteration produced SSRS with significantly
better DoR and semantic similarity scores than the largest prompt used in iteration 8.

11.2. LLM Self-Assessment and Expert Judgments
The previous section analysed the general effectiveness and limitations of the employed
prompting techniques primarily through the effects on the defined evaluation metrics.
To more robustly assess the capabilities of LLM self-assessment, this section focuses

83

11. Discussion

Template Element Expert Realism Rating Flagged by LLM Match Type
Resource Constraints 22.6% 10/10 Match

User Base Characteristics 56.7% 0/10 Missed
Scalability 58.5% 9/10 Match
Reliability 64.2% 3/10 Match

Performance 67.9% 3/10 Match
Technical Constraints 69.8% 1/10 Partial

Authentication 70.4% 0/10 Missed
Integration Needs 71.7% 4/10 Match

Table 11.1.: Overlap between expert realism ratings and realism issues identified by the
LLM during self-assessments.

on a direct comparison between the model’s DoR self-assessments and domain-expert
judgments. The goal of the following discussion is to examine the alignment between
LLM-detected issues and expert-identified realism flaws, uncover potential blind spots
in the model’s self-assessment, and derive insights into when and how self-assessment
can be a reliable mechanism in LLM-based generation workflows.

Table 11.1 presents a comparative analysis between the expert realism ratings and the
LLMs self-assessment for the eight least realistic template elements in the expert study.
For each element, the table reports the proportion of expert reviewers who rated it as
“realistic,” the number of times the LLM flagged that element as containing a realism
issue across the same ten SSRSs evaluated in the expert study, and a qualitative match
classification (Match, Partial, Missed) indicating alignment between expert and LLM
judgments.

The “Flagged by LLM” values were derived by manually analysing the LLMs realism
self-assessments for the same ten SSRSs rated by experts. For each self-assessment, any
critique referencing a specific template element was recorded, and counts were aggre-
gated across the dataset. It is important to note that the LLM often identified issues
involving interdependencies, such as “Scalability and Budget Alignment” or “Reliabil-
ity vs. Development Resources,” rather than critiquing individual template elements in
isolation.

The table reveals several notable patterns. First, for the template element of Resource
Constraints with the lowest expert realism rating at 22.6%, the LLM also consistently
flagged issues in all 10 SSRSs, indicating a complete match. A similar high alignment
was observed for Scalability (58.5%), flagged in 9 out of 10 SSRSs. For Reliability,
Performance, and Integration Needs, rated as realistic by 64.2% to 71.7% of experts, the
LLM also flagged issues in 3 to 4 SSRSs, suggesting a generally consistent alignment
between LLM and experts. However, for Technical Constraints, the LLM flagged an
issue only for a single SSRS, while expert ratings suggest broader concerns with only
69.8% of experts marking it as realistic. In contrast, for the two elements of User Base
Characteristics and Authentication the LLM failed to flag any issues at all, despite expert

84

11.2. LLM Self-Assessment and Expert Judgments

realism scores of 56.7% and 70.4% respectively, indicating clear misses. These results
suggest that while the LLM can detect certain types of realism issues effectively, it also
exhibits blind spots.

As described there is a clear alignment between expert ratings and LLM self-assessments
for the template element of Resource Constraints. While this may initially appear to
demonstrate the LLMs ability in detecting feasibility issues related to budget, team
size, or project timelines, a closer examination suggests a different interpretation. Un-
like domain-specific features, resource-related aspects can not be considered an inherent
properties of a software system but are solely depended on the context in which the
software system should be developed. For example a given software system could be im-
plemented under the constraints of a high budget, a large team size but a small timeline,
or with a small team, a small budget and a long timeline. Additionally, it is plausible that
information on the resource constraints of real-world software systems is rarely available
in publicly accessible sources. Consequently, such data is likely to be sparsely reflected
in the LLMs training data, limiting the model’s ability to draw on accurate or contextu-
ally grounded examples when generating these aspects for a given SSRS. As a result, the
LLM is likely to rely on assumptions or estimations when generating the resource con-
straints. These assumptions mostly lean towards overly optimistic values, as reflected in
the expert evaluations, where budget and timeline estimates were frequently described
as ”too low” and team sizes as ”too large”. However, this issue does not only affect SSRS
generation but also the DoR self-assessment as clearly displayed in the data, as the LLM
identified realism issues with resource constraints for every single SSRS. With the before
mentioned data-scarcity in mind this also leads to the likely explanation that because
of missing reference data the LLM is not well equipped to assess whether the presented
resource constraints are realistic. Under these conditions of limited reference data the
LLM is more prone to hallucination, generating critique or realism feedback that appears
plausible but is not grounded in actual domain knowledge or reference data. This may
explain why the model systematically flags resource-related issues as it attempts to com-
pensate for informational gaps by producing assessments that mimic critical evaluation,
despite lacking the necessary context to substantiate them. This leads to an important
insight for self-assessment approaches. When presenting an LLM with domain-specific
content to assess, it should be evaluated, whether the LLM is likely to possess sufficient
underlying knowledge, based on its training data, to give an accurate judgement.

In contrast to the consistent, but potentially inaccurate critique of resource con-
straints, the LLM failed to flag any issues for the template elements User Base Charac-
teristics and Authentication, despite both ranking among the least realistic elements in
the expert study. This divergence reveals an important asymmetry in the model’s self-
assessment behaviour. While resource-related aspects were frequently critiqued, even in
the likely absence of large training data, elements such as user base or authentication
received no critique at all under similarly uncertain conditions. A plausible explanation
is again rooted in data limitations: for authentication, detailed and domain-specific con-
figurations are unlikely to be publicly shared due to security concerns, reducing their
presence in the training data. For user base characteristics, publicly available figures,

85

11. Discussion

if shared, are possibly rather vague, overgeneralised, or inflated for marketing purposes,
further degrading the reliability of any learned reference data. Thus, while both areas
likely suffer from insufficient or skewed training data, the model displays a completely
different behaviour, compared to the resource constraints, by not identifying a single
realism issue across all ten SSRS.

The contrasting behaviour observed between the LLMs frequent critique of resource
constraints and its complete omission of issues in user base characteristics and authenti-
cation likely stems from fundamental differences in how these elements relate to domain
knowledge. Resource constraints are largely domain-independent as discussed before,
therefore the LLM relies on internal consistency within the SSRS itself instead of assess-
ing alignment with domain specific data. For example the identified resource constraints
were almost exclusively criticised in conjunction with other requirements and not in
isolation. This allows the LLM to detect possible realism issues without requiring any
domain-specific knowledge.

In contrast, user base characteristics and authentication mechanisms are domain-
specific data. For example software systems in the finance domain are likely to have
stricter authentication requirements than an e-commerce software system, which in turn
is likely to have a larger user base than a financial system. Assessing the realism of these
elements thus requires external reference data and can not solely be assessed by internal
comparison with other requirements. As probably only limited reference data on these
elements is available in the LLMs training data, and because their realism cannot be
meaningfully evaluated through internal consistency checks alone, the model appears to
systematically avoid critiquing them. However, this remains a speculative hypothesis
and cannot be verified due to the black-box nature of ChatGPT.

This observation highlights an important consideration for the design and interpre-
tation of LLM-based self-assessments: one should be aware that the model’s ability to
identify issues depends on whether an element can be evaluated through internal con-
sistency or requires external reference knowledge. In cases where external references are
necessary, the absence of identified issues should not be taken as evidence of correctness.
Instead, it may simply reflect the model’s limited knowledge. Recognising this limitation
is crucial when using self-assessment outputs to guide validation or prompt iteration.

Having examined how LLM self-assessments align with expert evaluations for the
individual template elements, it is also important to consider the SSRS-Gen process as a
whole. The following section examines the overall expert realism ratings in conjunction
with the comments they provided for justification. Additionally for full transparency,
changes in terminology during the execution of the SSRS-Gen process are discussed.

11.3. Review of the SSRS-Gen Process
Following the analysis of individual prompting strategies and the comparison between
LLM self-assessments and expert evaluations, this section provides a broader review
of the SSRS-Gen process as a whole. It reflects on both the perceived quality of the
generated outputs. particularly their realism as judged by human experts, and on foun-

86

11.3. Review of the SSRS-Gen Process

dational aspects of the prompt design itself. Special attention is given to the terminology
used during generation, especially the consistent use of the term ”scenario” rather than
”SSRS”, which may have subtly influenced the model’s interpretation of the task.

11.3.1. Output Realism and Expert Perception

An important dimension in evaluating the SSRS-Gen process concerns the quality of
the generated outputs, particularly their degree of realism. Based on the expert study
results, the overall realism of the generated SSRSs can be considered relatively high. A
majority of participants rated the scenarios as either “somewhat realistic” (51%) or even
“very realistic” (15.7%). However, deeper analysis of the received expert comments re-
veals a critical insight: experts who engaged in more thorough assessments consistently
identified significant realism flaws, particularly in areas such as resource feasibility, au-
thentication, or user base estimates. To give a concrete example, 70% of experts rated
the section of authentication as realistic, while the other 30% of experts, as their com-
ments suggest, did a more in-depth analysis and revealed important realism issues. This
introduces a key cautionary insight: the confident tone and surface-level plausibility of
LLM-generated outputs may create an illusion of realism that can mislead even expe-
rienced reviewers unless they actually perform an in-depth analysis of the generated
content. This gets even more evident when inspecting the comments these participants
wrote. Experts who rated their presented SSRS as overall “very artificial” or “somewhat
artificial” frequently highlighted realism flaws that appear both reasonable and grounded
in domain expertise. These comments pointed to a range of specific issues, including in-
feasible budget and timeline estimates, vague or unrealistic authentication mechanisms,
inflated or unsupported user base assumptions, and inconsistencies in described system
architectures. For instance, several participants noted that proposed development bud-
gets would barely cover personnel costs, or that suggested timelines were incompatible
with the described scope and integration needs. These observations suggest that, despite
high overall realism ratings, deeper scrutiny reveals a pattern of recurrent and substan-
tive issues. Thus, the LLM-generated SSRSs, while often convincing on first glance, may
fail to withstand detailed professional evaluation. This insight underscores that LLMs
are not yet fully capable of replacing the in-depth domain knowledge of experienced
human experts, particularly when it comes to identifying nuanced or context-specific
realism flaws in generated artefacts like SSRS. This is especially important in areas such
as software security, where real-world data for topics such as authentication is likely to
be rarely available in public sources and thus also likely under-represented in the model’s
training data. A summary of this insight is highlighted in the following warning box.

87

11. Discussion

Caution: Plausible and Confident Outputs Can Mislead Human Ex-
perts

LLM-generated SSRSs can appear realistic at first glance, yet still contain critical
flaws. The confident tone and surface-level plausibility of LLM outputs can cause
even experienced experts to overlook issues unless the content is examined in detail.

In addition to evaluating the realism and expert assessments of the generated SSRSs,
it is also important to reflect on the terminology used throughout the process, as this
may have subtly influenced how the model interpreted the generation task.

11.3.2. Terminology During Process Execution

An important consideration in the SSRS-Gen process concerns the evolution of termi-
nology and conceptual framing during the early stages of the project. At the outset, the
artefacts targeted for generation were referred to as ”evaluation scenarios,” rather than
SSRS. This naming reflected the preliminary understanding of the task, as well as the
absence of a formalised artefact definition at the start of the thesis.

As the process matured, it became clear that the desired outputs aligned closely with
system requirement specifications, resulting in the shift in terminology to SSRS. Despite
this change in terminology, all ten iterations used the word “scenario” when instructing
the model. This persistent use of the term ”scenario” raises the question of whether
the model may have interpreted the task differently, potentially generating outputs that
are more narrative or abstract in nature, rather than structured and specification-like
as intended for an SSRS. However, this risk is likely mitigated by the use of the SSRS
template throughout all iterations. The template functioned as a structural and seman-
tic foundation, consistently guiding the LLM to instantiate a fixed set of requirement
categories regardless of the surrounding prompt wording. Thus, while the term “sce-
nario” may have introduced some ambiguity, the template itself constrained the model’s
generative behaviour to remain within the intended SSRS format.

Still, future work could further investigate the sensitivity of generation outcomes to
such terminology. For example, a direct comparison between prompts using the term
“scenario” versus “SSRS” could help evaluate whether naming conventions impact model
behaviour or the perceived realism of generated outputs.

11.4. Limitations of the Study
While the findings of this work offer valuable insights into the capabilities and chal-
lenges of using LLMs for SSRS generation and evaluation, several limitations must be
acknowledged. These span technical constraints related to the used LLM, methodolog-
ical boundaries of the prompt engineering process, and the design of the expert study
used for validation. The following sections detail these constraints and their implications
for the generalisability and robustness of the presented findings.

88

11.4. Limitations of the Study

11.4.1. LLM Model Limitations

The SSRS-Gen process relied exclusively on ChatGPT-4o, accessed through the public
web interface. This imposes several structural limitations on transparency and inter-
pretability. As a proprietary black-box model, ChatGPT offers no visibility into its
internal architecture, training data composition, or parameter configuration. Conse-
quently, users cannot assess the representativeness, quality, or domain coverage of the
model’s training data, which is a significant concern for domain-specific generation tasks
like SSRS-Gen. This lack of transparency is especially problematic for SSRS generation
tasks, where it is unclear whether the model for example has sufficient training data on
real-world authentication practices to generate plausible specifications and subsequently
also assess their realism reliably.

Additionally, using the web-based interface of ChatGPT does not allow for control over
any generation settings, such as how much variation or randomness the model introduces
during output creation. Although the prompting procedure was equivalent for all SSRS,
the model’s inherent variability may have influenced individual outputs. Since identical
prompts may still yield different responses, this limits the reproducibility of results and
complicates their evaluation.

Another limitation arises from the evolving nature of the ChatGPT platform itself.
The underlying specific model version may be updated by OpenAI at any time with-
out explicit notice to users. As a result, it is highly likely that different versions of
the model were used during the course of the ten SSRS-Gen iterations, even though
the interface remained the same. For example, the version employed in Iteration 1 was
almost certainly not identical to that used in Iteration 10. This lack of version trans-
parency introduces further uncertainty into the evaluation process, as observed changes
in output quality may be partially attributable to model updates rather than the applied
prompting strategies alone.

11.4.2. Prompt Engineering Constraints

The prompt engineering process in SSRS-Gen followed a manual approach, where prompt
modifications were guided iteratively by observation of the metric data and intuition
rather than a fully systematic approach. As described in section 6.6, the SSRS-Gen
process employed an iterative refinement strategy guided by observed weaknesses and
informed by the prompt engineering literature. This approach was chosen over a sys-
tematic or combinatorial method due to the sheer complexity of the design space: not
only are there numerous prompt patterns to consider, but each pattern’s effect can vary
significantly depending on its specific formulation and contextual integration, for exam-
ple which expert role is used in a persona prompt. As a result, exhaustively exploring
all pattern combinations and their implementations is practically infeasible. While this
selective and adaptive strategy is well-justified for exploratory research, it limits the abil-
ity to isolate the individual contribution of each pattern or formulation. Consequently,
conclusions about the effectiveness of specific prompting strategies must be viewed in
the context of the trade-off made between achieving precise, isolated measurements of

89

11. Discussion

each prompt pattern and maintaining a practical, manageable experimental process.
Additionally, the prompts were evaluated solely within the SSRS generation context

and across a fixed set of industry domains. It remains unclear whether the prompts
developed in this process would generalise effectively to other types of system specifi-
cation tasks or different domain contexts. While it is reasonable to assume that the
process could be adapted to other domains by replacing the content of the template and
adjusting the prompts accordingly, this assumption currently lacks empirical support.
The generalisability of the designed prompts beyond the scope of SSRS-Gen thus re-
mains limited and would require further experimentation and validation in alternative
contexts.

Another limitation concerns the use of fine-grained scoring scales in LLM-based self-
assessment prompts. In this work, a decimal scale from 0.00 to 1.00 was employed
to encourage nuanced realism evaluations. However, recent findings suggest that large
language models may struggle to consistently and meaningfully utilise high-resolution
scales. Specifically, Liu et al. [SAS24] demonstrate that when LLMs are prompted
to score on a 1–100 scale, the models tend to exhibit round-number biases, overusing
values like 90 and 95 while neglecting much of the lower range. This leads to skewed and
less informative distributions, reducing the practical benefits of higher granularity. This
behaviour was also observed in the execution of the process, as ChatGPT often used 0.05-
steps when providing a DoR score. This issue was not known during the development
of this process. Thus attempts were made to encourage the model to use finer 0.01-
step increments instead of 0.05, without being aware of the potential drawbacks. This
decision was instead based on the assumption that greater granularity would improve
scoring accuracy. However, this intervention may have further amplified inconsistencies
in the DoR self-assessment. [SAS24].

11.4.3. Expert Study Design
A key limitation of the expert study relates to participant sampling and qualification
verification. The study employed purposive sampling with additional snowball recruit-
ment, deliberately targeting individuals with relevant professional backgrounds. While
this approach aimed to attract qualified experts, it does not allow for full verification of
participant expertise. Although several screening questions were used, including filters
for professional software experience, self-identification as a domain and/or technical ex-
pert, years of experience, and domain-specific confidence, these relied on self-reporting
and could not be independently verified. Consequently, while the participant pool likely
included mostly qualified experts, the possibility remains that some respondents lacked
the depth of expertise required for a rigorous realism evaluation. This limitation intro-
duces some uncertainty regarding the consistency and reliability of the expert judgments,
though the study design aimed to minimise this risk through targeted recruitment and
domain and expertise filtering.

Another limitation arises from the selection of SSRSs evaluated in the expert study.
Out of the 30 SSRSs generated in the final iteration, only one per industry domain was
randomly selected for expert review, so a sample size of ten SSRS in total. Although

90

11.5. Research Questions Revisited

the selection was randomised by domain, the reduced sample size introduces the risk
that the evaluated SSRSs may not fully reflect the quality of all other SSRS within the
entire set. However, this risk is considered rather minimal, as realism self-assessments
for all SSRSs within the last iteration showed a high degree of consistency, suggesting
limited variation in output quality. Nonetheless, future studies could be employed for
evaluating the full set of generated SSRSs.

A further limitation concerns potential fatigue effects during the expert evaluation
process. The SSRS presented for review are relatively long and complex, requiring
sustained attention across multiple detailed sections. This may have introduced cognitive
fatigue, particularly for participants attempting to complete the entire assessment in a
single session. Evidence of this effect is reflected in the decreasing response count across
sections: in all 60 questionnaires the first section was completed, but only 53 cases
completed all four sections. Additionally in just 51 cases an answer was provided for
the overall realism assessment at the end. This drop-off suggests that some participants
may have disengaged toward the end of the evaluation, which could affect the consistency
and depth of their judgments. Future studies might mitigate this risk by distributing
the assessment over multiple sessions, limiting the scope per session, or implementing
engagement checks.

Another limitation arises from the potential influence of confirmation bias in expert
evaluations. Because participants were informed that the SSRSs were generated by an
LLM, their judgments may have been unconsciously shaped by pre-existing attitudes
toward AI-generated content. Given the ongoing public discourse around AI and LLMs,
it is plausible that participants held differing preconceptions about the reliability of
LLM-generated content, which may have influenced their judgments. Professionals with
a more positive outlook on the capabilities of LLMs may have evaluated the outputs
more favourably, while experts with a rather sceptic view on LLMs may have applied a
higher level of scrutiny, regardless of the actual quality.

These limitations not only constrain the current findings but also highlight important
opportunities for refinement and expansion, which are discussed in the following section
on future work.

11.5. Research Questions Revisited

This section revisits the three central research questions introduced at the beginning of
this thesis, integrating findings from the SSRS-Gen process implementation, the LLM
self-assessments, and the follow-up expert study.

RQ1: How can large language models be systematically applied to generate high-quality
synthetic system requirement specifications in contexts where real-world system require-
ment specifications are unavailable?

To address this question, a structured generation process was developed based on
a targeted literature review on prompt engineering techniques and evaluation metrics.

91

11. Discussion

The process leverages zero-shot prompting in combination with prompt patterns such as
the template pattern, persona pattern, and structured reasoning techniques. Addition-
ally, self-assessment prompts were integrated to support iterative refinement. Together,
these components enabled the generation of domain-specific SSRSs in the absence of
real-world examples or evaluation by human experts. The process was designed to be
repeatable, scalable, and adaptable across different industry domains and application
contexts, demonstrating that LLMs can be applied systematically to produce artefacts
approximating the structure and content of real SyRSs.

RQ2: How can the quality of synthetic system requirement specifications be defined and
measured in the absence of human experts?

To enable quality assessment without relying on expert review, the thesis defined a
set of evaluation metrics, based on the process requirements of R2-Comparability, R1-
Realism and R3-Diversity, as defined in section 4.1. Each process requirement was ad-
dressed by a custom metric: completeness for structural adherence to the SSRS template,
degree of realism for the plausibility of generated content, and semantic similarity for
output diversity. The metrics of completeness and DoR were measured using LLM self-
assessment prompting the model to evaluate its own outputs. While this approach does
not replace expert judgment, it provided a scalable and automated means of identifying
both structural adherence and possible realism issues within the generated artefacts.

RQ3: How do human experts evaluate the quality of the LLM-generated synthetic system
requirement specifications?

To evaluate how human experts perceive the quality of the generated SSRSs, a ques-
tionnaire expert study was conducted covering a sample of 10 out of 30 SSRS generated
in the last iteration of the process execution, covering each of the ten industry domains
once. Overall, half of the participants rated their presented SSRS as ”somewhat realis-
tic”, and nearly 16 percent of participants even as ”very realistic”. These results indicate
that the SSRSs were often convincing and perceived as realistic, at least at a surface
level. However, qualitative feedback revealed that this impression did not always hold
under closer scrutiny. Experts identified recurring weaknesses such as vague phrasing,
overly generic content, unrealistic assumptions, and inconsistencies between requirement
sections. These issues often became apparent only when reviewers examined the outputs
critically and in detail. Notably, the confident tone and fluent structure of the SSRSs
occasionally led to the overestimation of their quality, suggesting that LLMs can pro-
duce outputs that appear credible but contain subtle or significant flaws. These findings
highlight two key takeaways. First, that review by experienced human experts remains
essential and can currently not be replaced by automated assessment alone. Second,
that the SSRS-Gen process can be further improved based on the concrete weaknesses
observed in the study. This latter point directly informs the directions for future work
presented in the next section.

92

11.6. Future Work

11.6. Future Work

While the SSRS-Gen process presented in this thesis demonstrates promising results
in generating realistic SSRSs using LLMs, there are still several directions for further
research and development. These include expanding the scope of expert evaluations to
cover all 30 SSRS of the last iteration, exploring the adaptability of the SSRS-Gen frame-
work to new domains and system specification contexts, and enhancing the generation
and self-assessment mechanisms through refined prompting strategies. Together, these
directions aim to strengthen the reliability, generalisability, and practical utility of the
proposed SSRS-Gen process.

11.6.1. Full-Scale Expert Evaluation

A key direction for future work involves conducting a full-scale expert evaluation en-
compassing all 30 SSRSs generated in the final iteration. In the present study, only one
SSRS per domain was randomly selected for expert review, limiting the generalisability
of the findings across the complete dataset. While the same target group of domain
and technical experts would likely be appropriate, revisiting the evaluation design could
help reduce fatigue effects observed in the current setup. A broader evaluation would
not only enable more statistically robust findings but also offer the opportunity to en-
courage more in-depth, critical reviews from all participants. This could help surface
nuanced realism issues across the entire SSRS set and provide deeper insights into the
current limitations of LLM-generated SSRSs.

11.6.2. Generalisation to Other Task Contexts

While the SSRS-Gen process in this work focused specifically on generating SSRSs across
a fixed set of industry domains and for the application context of the SecuRe recom-
mender system, the SSRS-Gen process offers potential for broader application. The
approach could be adapted by modifying the content of the SSRS template according to
the specific needs for a given evaluation and testing task. For practitioners interested in
adapting this process, it is also recommended to begin with the final iteration prompts
developed in this thesis and modify them according to their specific goals, rather than
restarting from a minimal prompt and re-running the full iterative design loop. The fi-
nal prompt versions already integrate tested strategies such as expert persona, targeted
self-assessment, and detailed task instructions, and thus should offer a robust starting
point for extension or domain adaptation.

While the SSRS-Gen process offers strong potential to be adaptable, this remains a
hypothesis. No tests were conducted outside the defined context, and the generalis-
ability of the process must therefore be validated empirically. Given the realism issues
uncovered through expert evaluation in this work, any future use of the process in a new
context should still include external review by qualified experts to verify plausibility and
alignment with real-world expectations.

93

11. Discussion

11.6.3. Enhancing Prompts and Self-Assessment
The expert evaluation revealed several shortcomings in the realism of certain SSRS sec-
tions. Additionally, the direct comparison between LLM-generated self-assessments and
expert feedback uncovered multiple blind spots, where the model either overlooked un-
realistic elements or critiqued aspects it was poorly equipped to evaluate. While the
current self-assessment prompts represent a promising step toward output validation,
they require further refinement to improve diagnostic accuracy and alignment with hu-
man expert standards. Future research should explore the further refinement of the
SSRS-Gen process focusing on both the SSRS generation as well as the realism self-
assessment. Although the overarching goal remains to enable reliable SSRS generation
without human intervention, expert review should still be employed in future iterations
to verify both the realism and overall quality of model outputs until the self-assessment
process and the SSRS generation quality itself are sufficiently robust for practical de-
ployment.

94

12. Conclusion

This concluding chapter synthesizes the findings and insights developed throughout the
thesis, reflecting briefly on the core research questions and their outcomes. It emphasizes
key implications of the presented work and points toward future research opportunities,
aiming to provide a clear, final perspective on the contributions and limitations of using
large language models in structured requirements engineering tasks.

12.1. Summary of Contributions

This thesis investigated the application of large language models (LLMs) for generat-
ing realistic, domain-specific Synthetic System Requirement Specifications (SSRSs) in
contexts where access to real-world system requirement specifications (SyRS) or do-
main experts is limited. Addressing this challenge, the work introduced and validated
the SSRS-Gen process: a structured, repeatable methodology that leverages zero-shot
prompting, prompt engineering techniques, and self-assessment strategies to generate
and evaluate SSRSs across multiple industry domains.

To support this process, an SSRS template was developed, grounded in the stan-
dard ISO/IEC/IEEE 29148:2018 [ISO18] and extended with authentication-relevant at-
tributes tailored to the SecuRe recommender system, which served as a concrete appli-
cation context. The methodology incorporated targeted literature reviews to identify
effective prompting strategies and evaluation metrics, which were operationalized in a
four-phase process comprising generation, completeness assessment, realism evaluation,
and semantic similarity measurement.

The process was implemented using ChatGPT as a black-box LLM and iteratively
refined across ten prompt iterations, generating 300 SSRSs in total. Output quality
was evaluated both through LLM self-assessments and a follow-up expert questionnaire
study. The results indicate that with scientifically evaluated prompting techniques,
LLMs are able to generate SSRSs that are structurally consistent and contextually plau-
sible. Additionally, the use of LLM self-assessment showed potential as a scalable com-
plement to human expert evaluation, but it is also subject to limitations, which must be
carefully considered .

Collectively, this work proposes a structured approach to the generation of SSRSs, with
potential applicability in evaluation and testing tasks in software engineering domains
where access to real-world SyRS or human experts is limited. It lays a conceptual
foundation for future investigations into LLM-assisted requirements engineering beyond
the specific context explored in this thesis.

95

12. Conclusion

12.2. Key Insights and Implications
This thesis offers several key insights into the use of LLMs for generating structured
artefacts in domains characterized by limited access to real-world data and expert input.
While the initial motivation arose from the specific needs of a constraint-based software
security recommender system, the findings carry broader relevance for evaluation-driven
workflows in software engineering and beyond.

A central insight is that zero-shot prompting, when supported by carefully selected
prompt patterns, such as the Template and Persona patterns, can guide LLMs toward
producing SSRS that are structurally complete and contextually plausible. The in-
tegration of structured reasoning and self-assessment techniques further improved the
quality and consistency of outputs, particularly when applied in iterative refinement
loops. These findings suggest that prompt engineering should be employed as a funda-
mental component in shaping LLM behaviour for structured and domain-specific text
generation tasks.

Another important implication is the demonstrated potential of LLM self-assessment
techniques to support initial quality evaluation of generated SSRS. While not being a
replacement for human expertise, especially in complex or safety-critical domains, these
techniques offer a scalable way to flag issues in settings where expert input is limited.
The study showed that LLM-based assessments aligned with expert judgments in many
cases, particularly when issues were detectable through general reasoning or internal
consistency. However, the model also exhibited blind spots, failing to identify certain
unrealistic assumptions and occasionally overestimating the plausibility of ambiguous or
oversimplified content. These discrepancies highlight the uneven reliability of LLMs in
evaluative roles and reinforce both the need for hybrid evaluation strategies by combining
automated feedback with targeted expert review and the opportunity to further improve
and refine the self-assessment approach introduced in this thesis.

Together, these insights point to a promising but cautious path forward for the inte-
gration of LLMs into requirements engineering and evaluation tasks. Their effectiveness
depends not only on model capabilities, but on the surrounding process architecture
including prompt design, refinement, and output quality assessment, all of which must
be systematically engineered to ensure reliability and usefulness.

12.3. Reflective Summary of Research Questions
This thesis was guided by three central research questions addressing the generation,
evaluation, and expert perception of Synthetic System Requirement Specifications pro-
duced by an LLMs. The first question explored how LLMs can be systematically applied
to generate high-quality SSRSs in the absence of real-world data. Through the develop-
ment and iterative refinement of the SSRS-Gen process, which incorporated scientifically
grounded prompt engineering techniques, a structured approach was proposed and tested
within the context of the SecuRe recommender system and across ten distinct industry
domains.

96

12.4. Concluding Remarks

The second research question concerned how the quality of SSRSs can be assessed with-
out relying on human experts. In response, a combination of LLM-based self-assessment
techniques, automated evaluation, and custom metrics was introduced. These methods
were effective in capturing structural completeness and semantic diversity, and provided
a practical means of evaluating realism without relying on expert feedback. However,
the findings also revealed important limitations, particularly in the consistency and sen-
sitivity of realism assessments. This highlights both the continued necessity of expert
involvement in evaluating nuanced quality aspects and the need for further refinement
of self-assessment techniques.

Finally, the third question examined how domain experts perceive the outputs gener-
ated by the process. The expert evaluation revealed that overall SSRSs were viewed as
realistic, validating the general plausibility of the approach. However, critical feedback
also highlighted recurring weaknesses, such as generic phrasing, over-ambitious require-
ments, and occasional logical inconsistencies. This finding underscores the continued
importance of human oversight in high-stakes applications.

Taken together, the findings provide an initial answer to each of the guiding questions,
while also pointing to open challenges and opportunities for refinement in future work.

12.4. Concluding Remarks
This thesis explored the use of LLMs to generate Synthetic System Requirement Spec-
ifications in domains where access to real-world data and expert input is limited. By
designing, implementing, and evaluating the SSRS-Gen process, it demonstrated that
structured prompt engineering and self-assessment techniques can support the creation
of realistic and diverse artefacts suitable for evaluation and testing applications.

While the results are promising, they also emphasize the limitations of current LLM-
based methods, particularly in reliably judging realism and nuance without human over-
sight. These findings reinforce the importance of continuing to refine self-assessment
techniques and for treating LLMs as supportive tools, rather than replacements for ex-
pert judgment.

Ultimately, this work contributes a foundation for further research into how LLMs can
be thoughtfully embedded into requirements engineering workflows. As language models
continue to evolve, the need for careful process design, transparency, and evaluation will
remain critical to their responsible use in structured, high-stakes domains.

97

A. Appendix

99

A. Appendix

Figure A.1.: Final SSRS generation prompt incorporating persona assignment, struc-
tured task instructions and self-refinement steps combined with Chain-of-
Thought prompting.

100

Figure A.2.: Completeness assessment prompt used in the final iteration.

101

A. Appendix

Figure A.3.: Final Degree of Realism assessment prompt incorporating persona assign-
ment and structured task instructions.

102

Figure A.4.: Similarity and realism scores across all iterations with one sub-plot for each
domain.

103

A. Appendix

Figure A.5.: Average similarity scores per industry domain across iterations.

104

Figure A.6.: Average realism scores per industry domain across iterations.

105

A. Appendix

Figure A.7.: Subplots for each iteration displaying the realism and similarity scores of
each IndDom.

106

Figure A.8.: Variation in realism scores with one subplot for each iteration.

107

A. Appendix

Figure A.9.: Variation in similarity scores with one subplot for each iteration.

108

Figure A.10.: Variability of realism scores across iterations with one sub-plot for each
domain.

109

A. Appendix

Figure A.11.: Variability of similarity scores across iterations with one sub-plot for each
domain.

110

Bibliography
[Agg16] C. C. Aggarwal. Recommender Systems: The Textbook. 1st ed. 2016. Cham:

Springer International Publishing, 2016. isbn: 9783319296593 (cit. on pp. 1,
5, 6).

[AMM23] S. Arulmohan, M.-J. Meurs, and S. Mosser. “Extracting Domain Models
from Textual Requirements in the Era of Large Language Models.” In: 2023
ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems Companion (MODELS-C). 2023, pp. 580–587. doi:
10.1109/MODELS-C59198.2023.00096 (cit. on p. 77).

[Bas+25] L. Bass et al. Engineering AI Systems: Architecture and DevOps Essentials.
Addison-Wesley Professional, 2025 (cit. on p. 9).

[BL05] S. Banerjee and A. Lavie. “METEOR: An automatic metric for MT evalu-
ation with improved correlation with human judgments.” In: Proceedings of
the acl workshop on intrinsic and extrinsic evaluation measures for machine
translation and/or summarization. 2005, pp. 65–72 (cit. on p. 28).

[Bro+20] T. B. Brown et al. Language Models are Few-Shot Learners. May 28, 2020.
url: http://arxiv.org/pdf/2005.14165v4 (cit. on pp. 10, 14).

[FB20] S. Furnell and M. Bishop. “Addressing cyber security skills: the spectrum,
not the silo.” In: Computer fraud & security 2020.2 (2020), pp. 6–11 (cit. on
p. 6).

[Fel15] Felfernig, Alexander and Friedrich, Gerhard and Jannach, Dietmar and
Zanker, Markus. “Constraint-Based Recommender Systems.” In: Recom-
mender Systems Handbook. Ed. by Ricci, Francesco and Rokach, Lior and
Shapira, Bracha. Boston, MA: Springer US, 2015, pp. 161–190. isbn: 978-
1-4899-7637-6. doi: 10.1007/978-1-4899-7637-6{\textunderscore}5
(cit. on pp. 1, 5, 6).

[FSG17] A. Ferrari, G. O. Spagnolo, and S. Gnesi. “PURE: A Dataset of Public
Requirements Documents.” In: 2017 IEEE 25th International Requirements
Engineering Conference (RE). 2017, pp. 502–505. doi: 10.1109/RE.2017.
29 (cit. on pp. 1, 5, 7, 8).

[Gen+23] J. Geng et al. A Survey of Confidence Estimation and Calibration in Large
Language Models. Nov. 14, 2023. url: http://arxiv.org/pdf/2311.
08298v2 (cit. on p. 12).

111

https://doi.org/10.1109/MODELS-C59198.2023.00096
http://arxiv.org/pdf/2005.14165v4
https://doi.org/10.1007/978-1-4899-7637-6{\textunderscore }5
https://doi.org/10.1109/RE.2017.29
https://doi.org/10.1109/RE.2017.29
http://arxiv.org/pdf/2311.08298v2
http://arxiv.org/pdf/2311.08298v2

Bibliography

[Hou+23] B. Hou et al. “Decomposing uncertainty for large language models through
input clarification ensembling.” In: arXiv preprint arXiv:2311.08718 (2023)
(cit. on p. 13).

[Hu+23] M. Hu et al. Uncertainty in Natural Language Processing: Sources, Quan-
tification, and Applications. June 5, 2023. url: http://arxiv.org/pdf/
2306.04459v1 (cit. on p. 13).

[Hua+24a] L. Huang et al. “A Survey on Hallucination in Large Language Models:
Principles, Taxonomy, Challenges, and Open Questions.” In: ACM Trans-
actions on Information Systems 39 (2024), p. 324. issn: 1046-8188. doi:
10.1145/3703155. url: http://arxiv.org/pdf/2311.05232v2 (cit. on
pp. 9–11).

[Hua+24b] Y. Huang et al. Calibrating Long-form Generations from Large Language
Models. Feb. 9, 2024. url: http://arxiv.org/pdf/2402.06544v2 (cit. on
p. 12).

[ISM19] T. Iqbal, N. Seyff, and D. Mendez. “Generating Requirements Out of Thin
Air: Towards Automated Feature Identification for New Apps.” In: 2019
IEEE 27th International Requirements Engineering Conference Workshops
(REW). 2019, pp. 193–199. doi: 10.1109/REW.2019.00040 (cit. on pp. 73,
78).

[ISO18] ISO/IEC/IEEE. ISO/IEC/IEEE 29148:2018 – Systems and software en-
gineering – Life cycle processes – Requirements engineering. International
Standard. 2018. url: https://www.iso.org/standard/72089.html (cit.
on pp. 1, 16, 78, 95).

[Ji+23] Z. Ji et al. “Survey of Hallucination in Natural Language Generation.” In:
ACM Computing Surveys 55.12 (2023), pp. 1–38. issn: 0360-0300. doi:
10.1145/3571730 (cit. on pp. 9–11).

[Kim+23] D.-K. Kim et al. “Assessment of ChatGPT’s Proficiency in Software De-
velopment.” In: 2023 Congress in Computer Science, Computer Engineer-
ing, & Applied Computing (CSCE). 2023, pp. 2637–2644. doi: 10.1109/
CSCE60160.2023.00421 (cit. on pp. 76, 78).

[Kos24] M. Kosinski. What is black box artificial intelligence (AI)? Oct. 2024. url:
https : / / www . ibm . com / think / topics / black - box - ai (visited on
05/27/2025) (cit. on p. 11).

[LHS24] D. Luitel, S. Hassani, and M. Sabetzadeh. “Improving requirements com-
pleteness: Automated assistance through large language models.” In: Re-
quirements Engineering 29.1 (2024), pp. 73–95 (cit. on p. 76).

[Li+24] D. Li et al. From Generation to Judgment: Opportunities and Challenges
of LLM-as-a-judge. Nov. 25, 2024. url: http://arxiv.org/pdf/2411.
16594v3 (cit. on pp. 16, 27).

112

http://arxiv.org/pdf/2306.04459v1
http://arxiv.org/pdf/2306.04459v1
https://doi.org/10.1145/3703155
http://arxiv.org/pdf/2311.05232v2
http://arxiv.org/pdf/2402.06544v2
https://doi.org/10.1109/REW.2019.00040
https://www.iso.org/standard/72089.html
https://doi.org/10.1145/3571730
https://doi.org/10.1109/CSCE60160.2023.00421
https://doi.org/10.1109/CSCE60160.2023.00421
https://www.ibm.com/think/topics/black-box-ai
http://arxiv.org/pdf/2411.16594v3
http://arxiv.org/pdf/2411.16594v3

Bibliography

[Lia+24] X. Liang et al. Internal Consistency and Self-Feedback in Large Language
Models: A Survey. July 19, 2024. url: http://arxiv.org/pdf/2407.
14507v3 (cit. on pp. 10, 11).

[Lin04] C.-Y. Lin. “Rouge: A package for automatic evaluation of summaries.” In:
Text summarization branches out. 2004, pp. 74–81 (cit. on p. 28).

[Mad+23] A. Madaan et al. Self-Refine: Iterative Refinement with Self-Feedback. Mar. 30,
2023. url: http://arxiv.org/pdf/2303.17651v2 (cit. on p. 16).

[Mai+24] P. Maini et al. “LLM Dataset Inference: Did you train on my dataset?”
In: Advances in Neural Information Processing Systems. Ed. by A. Glober-
son et al. Vol. 37. Curran Associates, Inc., 2024, pp. 124069–124092. url:
https://proceedings.neurips.cc/paper_files/paper/2024/file/
e01519b47118e2f51aa643151350c905- Paper- Conference.pdf (cit. on
p. 9).

[Mat17] R. Matulevičius. Fundamentals of secure system modelling. Springer, 2017
(cit. on p. 6).

[MLG23] P. Manakul, A. Liusie, and M. J. F. Gales. SelfCheckGPT: Zero-Resource
Black-Box Hallucination Detection for Generative Large Language Models.
Mar. 15, 2023. url: http://arxiv.org/pdf/2303.08896v3 (cit. on pp. 10,
11).

[Oxf23] Oxford University Press. Realistic, adj., sense 1.a. Oxford English Dictio-
nary. Retrieved May 26, 2025. July 2023 (cit. on p. 18).

[Pap+02] K. Papineni et al. “Bleu: a method for automatic evaluation of machine
translation.” In: Proceedings of the 40th annual meeting of the Association
for Computational Linguistics. 2002, pp. 311–318 (cit. on p. 28).

[PMR24] J. Peer, Y. Mordecai, and Y. Reich. “NLP4ReF: Requirements Classifica-
tion and Forecasting: From Model-Based Design to Large Language Mod-
els.” In: 2024 IEEE Aerospace Conference. 2024, pp. 1–16. doi: 10.1109/
AERO58975.2024.10521022 (cit. on pp. 77, 79).

[PR20] S. Panichella and M. Ruiz. “Requirements-Collector: Automating Require-
ments Specification from Elicitation Sessions and User Feedback.” In: 2020
IEEE 28th International Requirements Engineering Conference (RE). 2020,
pp. 404–407. doi: 10.1109/RE48521.2020.00057 (cit. on pp. 74, 78).

[Qia+22] S. Qiao et al. Reasoning with Language Model Prompting: A Survey. Dec. 19,
2022. url: http://arxiv.org/pdf/2212.09597v8 (cit. on p. 10).

[Rei+20] R. Rei et al. COMET: A Neural Framework for MT Evaluation. Sept. 18,
2020. url: http://arxiv.org/pdf/2009.09025v2 (cit. on p. 28).

113

http://arxiv.org/pdf/2407.14507v3
http://arxiv.org/pdf/2407.14507v3
http://arxiv.org/pdf/2303.17651v2
https://proceedings.neurips.cc/paper_files/paper/2024/file/e01519b47118e2f51aa643151350c905-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/e01519b47118e2f51aa643151350c905-Paper-Conference.pdf
http://arxiv.org/pdf/2303.08896v3
https://doi.org/10.1109/AERO58975.2024.10521022
https://doi.org/10.1109/AERO58975.2024.10521022
https://doi.org/10.1109/RE48521.2020.00057
http://arxiv.org/pdf/2212.09597v8
http://arxiv.org/pdf/2009.09025v2

Bibliography

[RG19] N. Reimers and I. Gurevych. “Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks.” In: Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computa-
tional Linguistics, Nov. 2019. url: https://arxiv.org/abs/1908.10084
(cit. on pp. 38, 41).

[SAS24] R. Stureborg, D. Alikaniotis, and Y. Suhara. Large Language Models are
Inconsistent and Biased Evaluators. May 2, 2024. url: http://arxiv.
org/pdf/2405.01724v1 (cit. on p. 90).

[Sch+24] S. Schulhoff et al. The Prompt Report: A Systematic Survey of Prompt
Engineering Techniques. June 6, 2024. url: http://arxiv.org/pdf/
2406.06608v6 (cit. on pp. 1, 12–16, 24–26).

[SDP20] T. Sellam, D. Das, and A. P. Parikh. BLEURT: Learning Robust Metrics
for Text Generation. Apr. 9, 2020. url: http://arxiv.org/pdf/2004.
04696v5 (cit. on p. 28).

[Sho+24] O. Shorinwa et al. A Survey on Uncertainty Quantification of Large Lan-
guage Models: Taxonomy, Open Research Challenges, and Future Direc-
tions. 2024. arXiv: 2412.05563 [cs.CL]. url: https://arxiv.org/abs/
2412.05563 (cit. on p. 13).

[SLL25] A. R. Sabau, D. Lammers, and H. Lichter. “SecuRe–An Approach to Rec-
ommending Security Design Patterns.” In: arXiv preprint arXiv:2501.14973
(2025) (cit. on pp. 6–8).

[Sun+25] F. Sun et al. Large Language Models are overconfident and amplify human
bias. May 4, 2025. url: http://arxiv.org/pdf/2505.02151v1 (cit. on
p. 12).

[Tia+23] K. Tian et al. Just Ask for Calibration: Strategies for Eliciting Calibrated
Confidence Scores from Language Models Fine-Tuned with Human Feedback.
May 24, 2023. url: http://arxiv.org/pdf/2305.14975v2 (cit. on p. 12).

[Ton+24] S. M. T. I. Tonmoy et al. A Comprehensive Survey of Hallucination Mit-
igation Techniques in Large Language Models. 2024. arXiv: 2401.01313
[cs.CL]. url: https://arxiv.org/abs/2401.01313 (cit. on pp. 10, 11).

[Wei+22] J. Wei et al. Chain-of-Thought Prompting Elicits Reasoning in Large Lan-
guage Models. Jan. 28, 2022. url: http://arxiv.org/pdf/2201.11903v6
(cit. on pp. 10, 13, 15, 26).

[Wei+24] H. Wei et al. Systematic Evaluation of LLM-as-a-Judge in LLM Alignment
Tasks: Explainable Metrics and Diverse Prompt Templates. Aug. 23, 2024.
url: http://arxiv.org/pdf/2408.13006v1 (cit. on pp. 16, 27).

[Whi+23] J. White et al. A Prompt Pattern Catalog to Enhance Prompt Engineering
with ChatGPT. 2023. doi: 10.48550/ARXIV.2302.11382 (cit. on pp. 1, 13,
15, 24, 25).

114

https://arxiv.org/abs/1908.10084
http://arxiv.org/pdf/2405.01724v1
http://arxiv.org/pdf/2405.01724v1
http://arxiv.org/pdf/2406.06608v6
http://arxiv.org/pdf/2406.06608v6
http://arxiv.org/pdf/2004.04696v5
http://arxiv.org/pdf/2004.04696v5
https://arxiv.org/abs/2412.05563
https://arxiv.org/abs/2412.05563
https://arxiv.org/abs/2412.05563
http://arxiv.org/pdf/2505.02151v1
http://arxiv.org/pdf/2305.14975v2
https://arxiv.org/abs/2401.01313
https://arxiv.org/abs/2401.01313
https://arxiv.org/abs/2401.01313
http://arxiv.org/pdf/2201.11903v6
http://arxiv.org/pdf/2408.13006v1
https://doi.org/10.48550/ARXIV.2302.11382

Bibliography

[Xio+23] M. Xiong et al. Can LLMs Express Their Uncertainty? An Empirical Eval-
uation of Confidence Elicitation in LLMs. June 22, 2023. url: http://
arxiv.org/pdf/2306.13063v2 (cit. on p. 12).

[Yao+23] S. Yao et al. Tree of Thoughts: Deliberate Problem Solving with Large Lan-
guage Models. May 18, 2023. url: http://arxiv.org/pdf/2305.10601v2
(cit. on p. 26).

[YRA24] J. S. Yeow, M. E. Rana, and N. A. Abdul Majid. “An Automated Model of
Software Requirement Engineering Using GPT-3.5.” In: 2024 ASU Inter-
national Conference in Emerging Technologies for Sustainability and Intelli-
gent Systems (ICETSIS). 2024, pp. 1746–1755. doi: 10.1109/ICETSIS61505.
2024.10459458 (cit. on pp. 75, 78).

[Zha+19a] T. Zhang et al. BERTScore: Evaluating Text Generation with BERT. Apr. 22,
2019. url: http://arxiv.org/pdf/1904.09675v3 (cit. on p. 28).

[Zha+19b] W. Zhao et al. MoverScore: Text Generation Evaluating with Contextualized
Embeddings and Earth Mover Distance. Sept. 5, 2019. url: http://arxiv.
org/pdf/1909.02622v2 (cit. on p. 28).

[Zha+22] Z. Zhang et al. Automatic Chain of Thought Prompting in Large Language
Models. Oct. 7, 2022. url: http://arxiv.org/pdf/2210.03493v1 (cit. on
pp. 15, 26).

[Zho+22] D. Zhou et al. Least-to-Most Prompting Enables Complex Reasoning in
Large Language Models. May 21, 2022. url: http://arxiv.org/pdf/
2205.10625v3 (cit. on p. 26).

115

http://arxiv.org/pdf/2306.13063v2
http://arxiv.org/pdf/2306.13063v2
http://arxiv.org/pdf/2305.10601v2
https://doi.org/10.1109/ICETSIS61505.2024.10459458
https://doi.org/10.1109/ICETSIS61505.2024.10459458
http://arxiv.org/pdf/1904.09675v3
http://arxiv.org/pdf/1909.02622v2
http://arxiv.org/pdf/1909.02622v2
http://arxiv.org/pdf/2210.03493v1
http://arxiv.org/pdf/2205.10625v3
http://arxiv.org/pdf/2205.10625v3

Glossary
IndDom Industry Domain

SSRS Synthetic System Requirement Specification

SSRS-Gen Synthetic System Requirement Specification Generator

SyRS System Requirement Specification

117

	Introduction
	Research Questions
	Structure of the Thesis

	Background
	Constraint-based Recommender Systems
	Application Context: SecuRe Recommender System

	Conceptual Foundations
	Large Language Models
	Prompting Strategies
	Prompt Patterns
	Terminology

	Methodology
	Process Requirements
	Targeted Literature Review
	Process Prototyping

	Selected Prompting Techniques and Evaluation Metrics
	Prompting Strategies
	Prompt Patterns
	Evaluation Metrics

	The SSRS-Gen Process
	High-Level Overview
	Phase 1: SSRS Generation
	Phase 2: Completeness Assessment
	Phase 3: Degree of Realism Assessment
	Phase 4: Semantic Similarity Measurement
	Iterative Refinement

	Process Implementation
	Tooling and Model Selection
	Stopping Criterion
	Phase 1: SSRS Generation
	Phase 2: Completeness Evaluation
	Phase 3: Realism Evaluation
	Phase 4: Similarity Scoring
	Data Analysis and Prompt Refinement Loop

	Process Execution Results
	Completeness Results
	Prompt Refinements
	Iteration-Level Insights
	Industry Domain-Level Insights

	Evaluation by Human Experts
	Questionnaire Study Design and Evaluation
	Expert Evaluation Results

	Related Work
	Traditional AI Techniques in Requirements Engineering
	LLM-Driven Approaches to Requirements Engineering
	Summary and Distinction from Related Work

	Discussion
	Observed Impact of Prompting Strategies
	LLM Self-Assessment and Expert Judgments
	Review of the SSRS-Gen Process
	Limitations of the Study
	Research Questions Revisited
	Future Work

	Conclusion
	Summary of Contributions
	Key Insights and Implications
	Reflective Summary of Research Questions
	Concluding Remarks

	Appendix
	Bibliography
	Glossary

