Sl I l Software
Construction

BACHELOR THESIS

Implementation of a Metamodel
for Viewpoint-based Security
Pattern Descriptions

presented by
Michael Zerbe

Aachen, September 22, 2025

RWTH

The present work was submitted to
the RESEARCH GROUP
SOFTWARE CONSTRUCTION

of the FACULTY OF MATHEMATICS,
COMPUTER SCIENCE, AND
NATURAL SCIENCES

EXAMINER
Prof. Dr. rer. nat. Horst Lichter

Prof. Dr. rer. nat. Bernhard Rumpe

SUPERVISOR

Alex Mattukat, M.Sc.

Acknowledgment

| would like to begin by thanking Prof. Dr. rer. nat. Horst Lichter for the opportunity to
pursue this bachelor’s thesis at the Chair of Software Construction. | also appreciate that he
and Prof. Dr. rer. nat. Bernhard Rumpe agreed to examine my work.

| am deeply grateful to my supervisor, Alex Mattukat, M.Sc., whose guidance combined
expertise, lightness, and humor. Working with him and discussing ideas was a pleasure, and

his constructive feedback strengthened this thesis.

| am profoundly thankful to my family for their unwavering support throughout my bachelor’s
studies and in bringing this thesis to completion.

My heartfelt thanks go to my beloved girlfriend, whose constant encouragement brightened
my days.

A special thanks goes to Moritz Wehr, Diyar Tetik, and Lukas Wang, whose camaraderie
and humor made the journey through my studies all the more enjoyable.

Finally, sincere thanks to everyone who supported me along the way.

Michael Zerbe

Abstract

The security of software systems is a critical requirement in today's digital environment.
Security patterns are a well-established means of supporting architects and developers in
designing and developing secure software systems. However, their application remains lim-
ited. The reasons for this include suboptimal abstractions in existing pattern catalogs and
limited modeling approaches for modeling security-relevant information in its entirety in the
pattern description. To close this gap, as part of the SCAM research project by the Research
Group Software Construction at RWTH Aachen University, a security design pattern descrip-
tion metamodel (SDPDM) was developed. As part of the project's future work, this thesis
provides a reference implementation of the SDPDM, which allows practitioners to collect,
create, and review security patterns. \We operationalize the SDPDM by implementing it
in a graph database. Following an incremental process, we implement each viewpoint and
iteratively refine the implementation until all elements and modeling rules are faithfully repre-
sented. We demonstrate correctness by fully instantiating the Single-Factor Password-based
Authentication security pattern, yielding 286 nodes and 744 relationships that conform to
the SDPDM and exercise the implementation. The instance serves as an example of how to
use and work with the implementation. By implementing the SDPDM, this thesis provides
practitioners in the secure design of software systems with an accessible means to use the
SDPDM to collect, create, and review security patterns. Furthermore, this work establishes
a structured foundation for future research on security patterns.

Contents

U_Introduction

L.2. Research Question

1S | hesis structurd

2 _Relafed Work

b._1heoretical Foundation

b.1l. Security Pattern .

3.2. Security Design Pattern Description Metamodel (SDPDM)

B.3. Inter-view Relationshipgo

3.4. Password-based Authentication Security Pattern (PBASP)

4. NMethodology

BT, Technical Requirem

enty e

B2 SDPDM Implement

ation s

B.5. Case Study Procesy

9. Neod4) Graph Databas¢g
b.I. Why Neo4d|q . . .
b.2. Query Builded . .

b.3. lechnology Landscapg

b.4. Change of the SDP

DM . . .

0. Implementation
p.l. lechnologieg . . .

p.2. Password-based Authentication (PBA) as a Suitable Security Pattern

p.3. Implementation ot the Schema

p.4. Implementation ot |

D structurd

p.5. Query Builded . .

IL._Demonstration

Il.1. Instantiating FPBA SH s

II.2. Query lemplateg

15
15
16
19

21
21
25
26
26

. Case Study

g_Discussion
How the SDFPDM can be implemented in a graph databasg

p.l.

p.2.

Limitations and Challengey

p.o.

IMlethodological Reflection

N

Lo 3 Future work

APP

<

AL

Implementation ot the ID structurg

A2

How tao build concrete Instancesi

A3

Neo4| GraphQL Mutation Exampleg

43
43

49
49
49
50

53
53
53
53

55
55
57
60

65

List of Figures

B.1. The SDFDM’s viewpoints that derine _how to represent the Solution and

Example of an SP [Lam24[|. 10
p.2. Overview orf an SF that contorms to the SDFDIM Viewpoints. Each view|

highlights its main elements and their relationships [Lam24f] 13
B.3. PBA SP Conceptual View Diagram taken from Lammers™ MT report [Lam?24]] 14
BT Structure of the Overall Process in a BPMN diagram] 17
B2 Refinement Phase of the Overall Process in a BPMN diagram] 17
b.l. An example Neo4] GraphQL schema containing the type definition of thg

hodes Student and Chair and writes Bachelor Thesis at relationship]. 23
b.2Z. An example UML sequence diagram to illustrate the mapping in Neo4j] . . . 25
b.5. lhe languages, tools, and the database which were used or developed during

Ehe process of this thesis. Explaining which language and tool IS used tg

pperate which tasks on the database) 27
b.4. The changed Figure to clarity the ralse aggregation rrom AME to Example]

II'he original Figure i1s taken trom Lammers M| report [Lam24|) 27
p.l. |he part of the schema where we detined the type SecurityPattern which

[s_a node with its properties and relationships] 30
p.2. T'he part of the schema where we defined the type Role which IS a node with

[ts properties and relationships] L. 31
b.3. The enum StorageTag for the correct values in the type Role] 31
p.4. 1he part orf the schema where we defined the type SequenceBehaviorall

ModeTingEIlement which is a node with its properties and relationships] . . . 32
p.5>. T'heunion tor a type Data, to represent every type or data element which can

pe reterenced and the intertface option tor the ditferent UIVIL diagram typeg

of the BMI e 33
p.6. I'he part of the schema where we derined the workaround for the interaction

plock of a UL sequence diagram) 34
p./. The Query builder website showing a Cypher query tor a Kole which 1s 3§

gdecision and enforcement point for the same Folicy) 35
p.o. I'he Neo4| result graph ot the Cypher query tor a Kole which 1S _a_decision

gnd enforcement point for the same Folicy| 36
[.1. The PBA SF Instantiated in Neo4(l 38

Ir.2.

I'he Neod| SDFDIVI database property graph part which includes the FBA

BF node, the Conceptual View node, the Password Reset Folicy node, thg
Password Resetter and Password Policy Verifier Kole nodes and thqg

felationships between these nodes] 38
[(.3. _The complete Conceptual View of the PBASP in Neo4j] 39
[(-4. _The SHA-256 Function node with the correctly formatted pseudocode] 40
Il.5. I'he messages of the Login behavioral Model that are Inside an interaction
plock and the message which started the interaction block) 40
I(.6. T'he combination of (Mobile Application and User)or (Web Application
bnd User) implement the Role Subject]. 41
B.I. ThePassword Resetter Role with its Node details and outgoing relationships] 44
o.2. lhe Email Token URL Data with the label Normal Data Group with Ity
Node details and outgoing relationships] 44
p.3. Number ot SequencebGIMIE In the behavioral View) 46
p.4. | he Password Security Component with 1ts Node details and 1ts relation
....................................... 47
Bh The Structural Raoles Nodes] s, 47
A.L. An example create mutation in the Neo4| GraphQL Toolbox) 58
A.2. An example update mutation in the Neo4| GraphQL loolbox) 58
A-37"An example delete and update mutation in the Neo4] GraphQL Toolbox]. . . 59
A.4. The Neod| GraphQWL mutation to Instantiate the Password Based Authen-
Eication Conceptual View and the Password Reset Folicy. |he FEA
becurityFattern node gets also Its relationship to the new Conceptual View
nodel . . . L L L 61
A.D. The Neod| GraphQL mutation to Instantiate the Password Resetter and
Password Policy Verifier Role with their requires relationship] 62
A.6. I'he mutation to create the SHA-256 Function node with the triple ", to keep

List of Source Codes

#.1. Refinement Phase (textual pseudocode)

1. Introduction

Nowadays, the security landscape is vast and complex, a reality that is reflected in the stag-
gering cost of security breaches, which is estimated to reach 10.5 trillion dollars worldwide
by 2025 [Cyb22]. To overcome this problem, research presented the idea of "Security-
by-Design", aiming that security is a fundamental requirement throughout the process of
software development, instead of only considering security after finishing the software prod-
uct development. This process is also known as "Shift-left". Security Patterns (SPs) are
an established means for Security-by-Design, as they present reusable solutions for secu-
rity requirements on a conceptual level without concrete implementation details. However,
the application of SPs remains limited, because they are often too abstract and not easily
applicable in real-world contexts [SLL25]. The Improvement of SPs and their usability is
recognized as a state-of-the-art goal, as also emphasized by OWASP in their Top Ten cate-
gory A04:2021 Insecure Design [OWAZT]. The SCAM research project of the SWC group is
trying to achieve Security-by-Design, contributing by providing secure modeling approaches
and making security models more accessible to system architects [Sot?3]. To address the
problem that SPs are often too abstract and difficult to apply in real-world contexts, Lam-
mers proposed in his Master's thesis "Conception of a Security Design Pattern Catalog for
Constraint-based Recommender Systems" [[am?4], conducted within the SCAM research
project, a division of SPs into usage and knowledge aspects. For the usage aspect, he
introduced the Security Design Pattern Description Metamodel (SDPDM), which aims to
improve the structure, completeness, and usability of SPs. It also enables the possibility of
providing a tool that can collect, create, and review SPs in a consistent model. Based on
this foundation, the contributions of this thesis are presented in the following section.

1.1. Contribution

This thesis will be part of the SCAM research project and contributes by implementing
the Security Design Pattern Description Metamodel (SDPDM) [Lam24], as presented by
Lammers. The SDPDM uses viewpoints to describe the necessary aspects of a security
feature to enable its correct implementation. Viewpoints define the elements and modeling
rules of views, which describe the different aspects of the SP. To comprehensively cover
all important elements of an SP, the SDPDM defines four viewpoints: Conceptual, Data,
Behavioral, and Structural Viewpoint. Each of these captures different aspects of a security
feature in a simplified manner, making it easier to select an appropriate technique for a
given system, thus aligning with the goals of the SCAM research project. Furthermore, it
establishes relations between the viewpoints, illustrating detailed usage scenarios, such as how
a Role, which represents the responsibilities to implement the rules and required conditions

1. Introduction

to resolve the problem of an SP, behaves and the data it uses during that behavior [Lam?4].
We will implement these viewpoints and their relations according to the descriptions provided
by Lammers. In addition, we will instantiate an example SP of Lammers’ SP catalog from
his MT report [Lam?4], enabling the usage of our implementation and future scientific work.
Due to time restrictions, we will not evaluate the SDPDM and do not provide a profound
conformance check on the SDPDM implementation and data instance of the SP.

Furthermore, this thesis will also contribute to the SECURE Approach, which aims to
simplify decision making when choosing an SP by providing design recommendations based
on security requirements [SCL25]. Our contribution lies in providing a database that contains
an initial SP and that allows the collection, creation, and review of SPs. This supports
the conclusion of SECURE that a foundation for the reuse of security design knowledge is
essential [SCI25], since our goal is to offer this database for scientific work, allowing further
use and extension of the achievements of this thesis.

1.2. Research Question

Given the contributions we want to achieve, namely the implementation of the SDPDM to
enable the collection, creation, and review of SPs, we want to examine in this thesis whether
a graph database is able to host the implementation of the SDPDM. Accordingly, this thesis
focuses on the following Research Question:

RQ: How can the SDPDM be implemented in a graph database while supporting its funda-
mental concepts and preserving its semantics?

With "supporting its fundamental concepts," we mean the viewpoint structure of the SDPDM
that SPs are strictly divided into different aspects and relationships between the views enable
capturing security-relevant information. By "preserving its semantics," we refer to the correct
and, therefore, intended implementation of the elements, relationships, and constraints the
SDPDM presents. The study aims to determine feasibility and to provide key limitations
and workarounds.

1.3. Thesis structure

The structure of this thesis is as follows:

= |n Ehapter 2, we present the relevant related work for this thesis and explain how this
thesis extends or contributes to that work.

= |n Ehapter 3, we introduce definitions and terminology that are important in the context
of this thesis. We will first clarify the concept of Security Pattern (SP), then explain
what the Security Design Pattern Description Metamodel (SDPDM) from Lammers'
MT report [Lam?4] is, describe its structure and introduce the definitions relevant to
this thesis.

1.3. Thesis structure

In chapter 4, we present the technical requirements for the graph database, which
were extracted from Lammers’ MT report [Lam?24]. Then we explain the process of
implementing the SDPDM and how to instantiate SPs in the database.

In chapter 5, we explain why Neo4j was chosen as the graph database for implementing
the SDPDM. We introduce Neo4j and show a feasibility analysis of Neo4j, with respect
to the technical requirements we assessed in Chapter 4.

In Ehapter 6, we present the concrete implementation of the SDPDM in a Neo4j
GraphQL schema. We first introduce the technologies used, introduce which SP was
selected as an example SP, and then show the implementation of the SDPDM schema.
We also present the implementation of a design choice we made and introduce the
Query Builder, whose purpose is to improve the usability of the implementation.

In Ehapter 1, we demonstrate the Neo4j GraphQL schema of the SDPDM from Ehap]
Eerd, by showing certain parts of the instantiated PBA SP in the Neo4j property
graph.

In chapter g, we validate the SDPDM schema by validating the instantiated PBA SP.
We follow the validation approach introduced in Ehapter 4, by concretizing the idea of
the approach and performing it.

In chapter 9, we critically evaluate the implementation of the SDPDM. In addition,
strengths, limitations, and potential improvements of the approach are discussed.

In Ehapter 10, we summarize the methodology and results of this thesis and highlight
the directions for future research and development.

2. Related Work

In this chapter, we present the relevant related work for this thesis and explain how this
thesis extends or contributes to that work.

2.1. The Security Design Pattern Description Metamodel
(SDPDM)

The foundation of this thesis is the SDPDM proposed by Lammers. In his MT report, the
metamodel is formally described, and we will use this description to implement the meta-
model in Neo4j, a graph database management system. The SDPDM is a viewpoint-based
approach for SP, which seeks to describe SP in greater detail than previous approaches
[Cam?24]. Viewpoints are defining elements and modeling rules of views, which are repre-
senting specific aspects of an architecture, such as the static and dynamic structure [[am?24].
The viewpoint-based approach for an SP separates the SDPDM from previous approaches,
as views are well known in software architecture and therefore easier to understand for ar-
chitects and because the views separate the security-relevant information into smaller pieces
which improves understandability and usability [[am?24]. Lammers defined four viewpoints,
which describe an SP with its four corresponding views: Conceptual, Data, Behavioral, and
Structural Viewpoint. The SDPDM and its viewpoints will be explained in more detail in
Ehapter 3.

Our contribution to Lammers MT report [Lam?4] is concerned with the implementation of
all these viewpoints by a technical solution. We will extend the application of this metamodel
by implementing it, enabling both the practical use of the metamodel and the ability to
leverage its benefits. Furthermore, this implementation will facilitate the collection, creation,
and review of SPs.

2.2. Sehbaoui’'s Bachelor Thesis

This thesis will collaborate with the thesis of Sehbaoui, who is developing a tool to graph-
ically visualize the viewpoints of SPs based on the SDPDM. lts goal is to bridge the gap
between the theoretical concept of the SDPDM and the practical application, providing a
GUI that helps software architects without deep security expertise to understand and apply
SPs. Further details can be found in his thesis [Seh?5].

Sehbaoui's work is closely related to this thesis. While our contribution lies in imple-
menting the SDPDM in a graph database and providing the corresponding implemented
metamodel and instantiation of an example SP, Sehbaoui builds on this foundation by using

2. Related Work

the metamodel implementation to define the necessary metadata for SVG files generated by
his tool. He will also use the instantiated SP example to visualize it with his tool. Together,
both theses contribute to the SCAM research project by operationalizing the SDPDM and
making SPs more accessible to practitioners.

2.3. Ontologies and Conceptual Metamodels on Graph
Databases

Our implementation lies in the field of using a graph database to implement ontologies.
In this section, we review work that shares the same intersection of ontologies and graph
databases. We cover the storing and querying of domain ontologies on Neo4j and translating
conceptual models, such as UML/OCL, into property graph implementations.

Gong et al. efficiently stored and retrieved an oilfield domain ontology expressed in RD-
F/OWL (Resource Description Framework/Web Ontology Language) in Neo4j by defining
explicit mapping rules from RDF/OWL ontology files to a Neo4j labeled property graph rep-
resentation. They realized the conversion from RDF to Neo4j with the Java Jena API. To
achieve a satisfactory result, Gong et al. proposed a two-tier index architecture, including
object and triad indexing. They also proposed a retrieval method based on these indices to
match different query patterns, including relational degree retrieval. In their evaluation, the
approach reduces 13.04% storage compared to relational database methods and yields more
than 30 times faster retrieval [Gon+18].

Spasov, Lazarova, and Petrova-Antonova state that the data for research on Alzheimer's
disease (AD) are heterogeneous in naming, granularity, and format. Therefore, they motivate
the construction of an Alzheimer's disease knowledge graph to aid in analysis. They built
a Neo4j-based AD knowledge graph based on the AD-DPC domain ontology (Alzheimer’s
disease Ontology for Diagnosis and Preclinical Classification), which they proposed in earlier
work. This medical domain ontology incorporates the knowledge of medical experts in a way
that is understandable for non-experts [CPK23]. They populated the knowledge graph with
ADNI (Alzheimer's Disease Neuroimaging Initiative) data. The resulting knowledge graph
includes 2,996 diagnoses, 154,953 psychometric, 24,102 blood, 12,471 CSF (Cerebrospinal
Fluid), and 14,703 brain imaging findings. The nodes were annotated with 259,260 labels and
673,325 relations based on the AD-DPC ontology. Spasov, Lazarova, and Petrova-Antonova
conclude that ontologies provide an effective semantic modeling basis for graph databases
with straightforward querying and visualization [SLP24].

Daniel, Sunyé, and Cabot note that, while mappings from conceptual schemas to relational
databases are well-studied, only a few solutions target NoSQL databases and even fewer focus
on graph databases. They further state that this holds particularly for mapping business
rules and constraints. Therefore, they provide a systematic path from UML/OCL (Unified
Modeling Language/Object Constraint Language) conceptual schemas to property graph
implementations. They propose UMLtoGraphDB, a systematic pipeline from UML/OCL to
property graph implementations. It consists of three main elements. Class2GraphDB which
maps UML class diagrams to an abstract property graph metamodel, OCL2Gremlin, which
translates OCL constraints and queries from the conceptual schema into Gremlin traversals,

2.3. Ontologies and Conceptual Metamodels on Graph Databases

and Graph2Code, which generates Java middleware using the Blueprints API to access and
update the target graph database and enforce the modeled rules. Daniel, Sunyé, and Cabot
provide tool support and report that the UML/OCL in code transformation runs in a few
seconds on several examples. A detailed scalability study is stated as future work [DSCTH].

In contrast to these works, which map and query domain ontologies in Neo4j and provide
a general UML/OCL to property graph pipeline, this thesis implements a security-specific
viewpoint-based metamodel (SDPDM) on a graph database and focuses on making SPs
collectible, creatable, reviewable for practitioners in the secure design of software systems
and consumable for visualization tools. In this thesis, we operationalize a security domain
ontology rather than a medical domain ontology or UML mapping.

3. Theoretical Foundation

In this chapter, we introduce definitions and terminology that are important in the context
of this thesis. We will first clarify the concept of Security Pattern (SP), then explain what
the Security Design Pattern Description Metamodel (SDPDM) from Lammers’ MT report
[Cam?24] is, describe its structure and introduce the definitions relevant to this thesis.

3.1. Security Pattern

The Security Pattern (SP) was introduced by Yoder and Barcalow in 1998 [YR]. Since then
many research efforts have been made in the field of SPs, such as non-exhaustive SP catalogs
from Schumacher et al., Fernandez-Buglioni, or van den Berghe, Yskout, and Joosen. In its
core, an SP is a description of a recurring security problem in a given context and provides
a solution to this security problem, for example, in the form of UML diagrams [Sch+086]
[Eer13]. However, Heyman et al. found that even 12 years after the first SP catalog was
published by Schumacher et al. their adoption in practice still remains limited. The reasons
found in the referenced paper are, for example, that some SPs are too abstract, give too
low-level mechanism descriptions, or that SP solutions often describe what should be the
outcome instead of presenting the strategy to achieve the outcome [Hey+07]. To address
this problem and improve the adoption of SPs in practice, Sabau, Lammers, and Lichter
introduced a novel concept-model for SPs. To define the concept-model for SPs, we first
need to define what a security control is. A security control addresses security requirements,
which specify a security condition that a system should meet, following the security-by-
design paradigm. The security control reduces the vulnerability of a software system by
being an action, procedure, technique, or other measure [NISO6]. An example of this is
authentication. To group the various options that exist for each security controls realization
the SECURE approach used the concept of SP. SP is a reusable solution for a security
control on the conceptual level without concrete implementation details. We only use the
term Security Pattern (SP) in this thesis and not Security Design Pattern (SDP), as we
refer to the SECURE approach, which says that SDPs are just special SPs. In the context
of authentication (AuthN) an SP represents a conceptual solution of AuthN, for example,
password-based or passkey-based AuthN [STT25].

3.2. Security Design Pattern Description Metamodel
(SDPDM)

Looking at the definition of SP we can see the need for a structured way to work with this
concept, and that is where Lammers' MT report [Lam?4] introduced the SDPDM, with the

3. Theoretical Foundation

<<abstract>>
Viewpoint

Conceptual Data Behavioral Structural
Viewpoint Viewpoint Viewpoint Viewpoint

Figure 3.1.: The SDPDM'’s viewpoints that define how to represent the Solution and Example
of an SP [Lam?4].

goal of addressing the lack of a structured and accessible tool for reviewing security features
[Cam?24]. With the SDPDM we can work in a structured way with the concept of a SP. To
begin with, Lammers defines views and viewpoints as follows.

Definition 3.1 (Architecture). The Architecture of a system comprises its static and dynamic
structures. The static structure includes structural elements and their organization, while
the dynamic structure includes runtime elements and their interactions. An Architecture also
has externally visible behavior that defines the system’s provided functionality and its quality
properties [Lam?24] [RWTT].

Definition 3.2 (View). A View represents specific aspects of the static or dynamic structure
of an architecture relevant to one or more stakeholders [Lam?24] [RW1T]].

Relevant to note here is that a view only helps to understand an architecture by explaining
a specific aspect and limiting the information to what is relevant to achieve that. Describing a
whole architecture in a single model would make it unmanageable due to complexity [Cam?24].

Definition 3.3 (Viewpoint). A Viewpoint defines the elements and modeling rules for con-
structing a specific type of view [[am?4] [RW1T].

This is very important in the context of the SDPDM as it defines viewpoints to have
structured and consistent views which can easily be understood, if a stakeholder is familiar
with the viewpoint [Cam?24] [RWTT].

3.2.1. SDPDM Viewpoint Structure

Lammers identified four viewpoints to achieve focusing on specific aspects at different levels

of abstraction. taken from Lammers’ MT report [[Lam?4] shows the identified
viewpoints. taken from Lammers’ MT report [Cam24], recreated as the SP

version, shows the main elements and the inter-view relationships between the viewpoints
[Cam?4].

10

3.2. Security Design Pattern Description Metamodel (SDPDM)

Before we describe each viewpoint, note that Lammers defined the SDPDM on SDP. As
already mentioned, the SECURE approach states that a SDP is only a special SP [SLL25]. In
addition, there exists a not yet published version of the SDPDM that uses only SP to define
the SDPDM. Therefore, we also define the metamodel for SP, not SDP. Due to defining it
on SP we need to recreate the Figure 3.2, to stay consistent in this thesis with fonts and
diagram styles, every figure taken from Lammers is recreated. We are using the SDPDM in
this thesis for its implementation, therefore we need to introduce the SDPDM in this thesis,
but we do not cover all the details. For details of the SDPDM please read Lammers’ MT
report [Lam?4].

Conceptual Viewpoint

Definition 3.4 (Conceptual Viewpoint). The Conceptual Viewpoint specifies how Policies
and Roles are represented. Policies define the rules and conditions required to resolve
the problems of an SP. Roles define the responsibilities required to implement the Policies
[Cam?24].

The Conceptual View serves as the foundation for other views as it provides a high-level
understanding of the SP solution [Lam?4]. Lammers’ MT report [Lam?4] does not cover an
explanation which Unified Modeling Language (UML) diagram the Conceptual View follows.
But in regard to the view, we have Roles that maintain relationships to each other as well
as to Policies. The Conceptual View can be associated with a modified version of the UML
class diagram, in which Roles are modeled as Classes without attributes or methods. The
relationships between the Roles are represented as associations between the corresponding
Role Classes. Policies and the relationship between Roles and Policies can be represented
as further information about the UML class diagram, for example, notes.

Data Viewpoint

Definition 3.5 (Data Viewpoint). The Data Viewpoint defines how to model the Data
Elements involved in an SP, including their structure, properties, and security considerations
[Fam?4].

The Data View of an SP specifies which Data Elements are involved in the SP Solution,
how these Data Elements relate to each other, and assigns security-relevant information
to the Data Elements. The impact that disclosure of a Data Element would have on the
security of a user or system is part of that information. Improper data design can result in
an insecure system, because of that the Data View is critical for the secure implementation
of an SP [[am?4] [DISTY].

Data Group serves as a container for similar data. Data Fields are a specific piece of data
with all their defined properties. Data Groups and Data Fields follow the Unified Modeling
Language (UML) class diagrams, where Data Groups correspond to classes and Data Fields
correspond to attributes [Cam?4].

11

3. Theoretical Foundation

Behavioral Viewpoint

Definition 3.6 (Behavioral Viewpoint). The Behavioral Viewpoint specifies how to model
the detailed interactions between Roles and how to represent Events. An Event represents
a specific situation that occurs during these interactions and allows important security con-
siderations to be defined [Cam?4].

The Behavioral View of an SP models the behaviors required to securely implement the
Policies. The modeled behavior typically involves sending and receiving data using the Data
Elements modeled in the Data View. Events can highlight and describe important situations
within the modeled behavior, representing both exceptional (e.g., "Password Incorrect")
and informational (e.g., "Successful Authentication") situations. Behavior can be modeled
by using Data Elements and Events in an understandable way, while still containing the
security-relevant information defined within these elements [Cam?4].

A Behavioral Model (BM) represents a specific aspect of an SP, detailing how Roles inter-
act to implement Policies. The Behavioral Modeling Element (BME) represents interactions,
conditions, or flows that illustrate the dynamic behavior of Roles and are the fundamental
component of the BM. We can model BM in any type of behavioral diagram, such as UML
sequence and activity diagrams. The BMEs include all possible model elements that rep-
resent interactions, conditions, or flows, such as messages in sequence diagrams or activity
and decision nodes in activity diagrams [Lam?4].

Structural Viewpoint

Definition 3.7 (Structural Viewpoint). The Structural Viewpoint specifies how to repre-
sent the Roles within an architecture. It takes into account both the static structure, i.e.,
the specific elements and their arrangement, and the dynamic structure, i.e., the runtime
elements and their interactions [[am?4] [RW1T].

The Structural View of an SP provides practical Examples that facilitate the implemen-
tation of the SP by giving architects a well-documented starting point. The Structural
Viewpoint defines how to represent Examples that show the implementation of the SP So-
lution within an architecture. These Examples serve as starting points, allowing architects
to adopt specific components and discuss the underlying design choices [[am24].

The Architectural Model (AM) represents the static and dynamic structure of specific
aspects of the SP solution. The Architectural Modeling Element (AME) is the fundamental
component of the AM. There is no restriction from the Structural Viewpoint how Exam-
ples are represented in terms of AMs and AMEs. An AM can be modeled using UML
diagrams, such as component diagrams to represent the static structure and sequence or
activity diagrams to represent the dynamic structure [Lam?4|.

3.3. Inter-view Relationships

Inter-view relationships are a fundamental improvement for the structure of SPs. It provides
security-relevant information between each view of an SP, such as how a Role behaves and

12

3.4. Password-based Authentication Security Pattern (PBA SP)

Security Pattern Views

Structural View Conceptual View

Architectural | =" 0..* 1.4 1.4 1% 0..*
~— Example = Role = - Polic
Pattern uses P implements responsible for Y

1.%

details interactions

Data View Behavioral View
’|“*

0..* * 1.% 0..*
Data L. Behavior Event
Element exchanges uses

Figure 3.2.: Overview of an SP that conforms to the SDPDM Viewpoints. Each view high-
lights its main elements and their relationships [Lam?4].

which data elements it uses during that behavior. This allows the SDPDM to separate
aspects of an SP and keep boundaries between the views to reduce complexity. We now
explain the inter-view relationships that can be found in Figure 3-2. The figure shows the main
elements of each view and overviews an SP that conforms to the SDPDM Viewpoints. The
Conceptual View has Roles and Policies. The Roles are being implemented by the Examples,
which are in the Structural View. The Examples provide architects with an overview on how
to implement the SP solution, which conforms to the Conceptual, Data and Behavioral View
and uses a specific Architectural Pattern, such as the microservice architecture. The detailed
interactions of Roles are depicted by the Behavior, which can cause Events, of the Behavioral
View. The Behavioral View also exchanges Data Elements from the Data View [Lam?24].

3.4. Password-based Authentication Security Pattern (PBA
SP)

To ground this chapter, we briefly present one view of the PBA SP from Lammers’ MT
report. We chose the Conceptual View as our example because it provides a single UML
class diagram that covers all aspects of the PBA SP, including its four Policies. This example
shows what a concrete view of a concrete SP looks like in the SDPDM and foreshadows our
methodology, in which the PBA SP serves as the reference SP for the initial implementation
of the SDPDM. For further details on PBA SP, we refer to Lammers’ MT report [Lam?4].

In PBA the authentication of a user is done using a secret password, which is associated
in our context with the user’'s email address. To gain access to the system, the user needs
to register by providing an email address and password. The Registration is an Policy in
the case of PBA SP in the SDPDM. Login is a further Policy, in which the user can log
in to the system, providing the email address and password of the user. The password

13

3. Theoretical Foundation

can also be reset, when the user forgets it, this is the third Policy Password Reset. This
procedure involves further implementation, such as a password reset link to enable the user
to change their password. The fourth Policy is the Email Change, which allows the user to
change the registered email address by providing their password and confirming the access
of the new and old email addresses. To visualize PBA SP we can find in the
Conceptual View of the PBA SP, illustrated as a UML class diagram, taken from Lammers’
MT report. As mentioned earlier, the UML classes without attributes and methods are the
Roles, which define the required responsibilities to implement the four mentioned Policies.
The associations between the Roles represent the requires relation, which states that a Role
depends on another Role to fulfill its responsibilities. The relations between Policy and Roles
are depicted by notes, as well as the Role’s properties. For further detail on the Conceptual
View and PBA SP we refer to Lammers’ MT report [CLam?4].

Subject

receive emails

;
1Email System ! perform registration,

]
System
bo-ee- S login, password reset, protect resources | T
| and email change
send emails
handle email changes 4 mmmmeme- A, S,

hande user logins

handle user registralions «-—- o -——-- - _____-

0 ’
send email change emails Email Sender

Y, verlfy tokens
send password / \

Send password resel emails

confirmation emails. /ﬁ‘andle password rasels "\

N EP[Logi

s = P 3 T
i Token ' Login
i Manager issue lrens | Manager

.| Password
~| Palicy Verifier [~

validate
password
strengths

validate
password
strengths

invalidale tokens
i

Email
‘ Changer ‘ Registrar

provide password
haghes and salie

Drovide password
hashes and salls

Hash
as relrieve user ids and update

Manager passward hashes and salls invalidate tokens
calculate the hash for
a password and a salt
Hasher calculate the hash for a password and a sall

calculate the hash for

2 pasgword and a zalt IF E ngal I- T -
i el user password hash and salt
«creale user and update confirmalion stalus s|user Manager|< g b
retrieve user information and update email addressas

Figure 3.3.: PBA SP Conceptual View Diagram taken from Lammers’ MT report [CLam?4].

14

4. Methodology

Our goal in this thesis is to implement the SDPDM and by that being able to instantiate
example SPs in a graph database. To achieve this goal, we present in this chapter the
methodology we used to implement the SDPDM and instantiate example SPs in a database.
Important for the correct implementation of the SDPDM was to analyze Lammers proposed
SDPDM to extract technical requirements, which our chosen graph database needed to
satisfy. Therefore, the implementation of the SDPDM and the instantiation of example
SPs can be separated into two phases. The first phase was the extraction of technical
requirements, where we extracted the technical requirements our graph database needed to
meet. The second phase was the actual development, where we proposed our method to
implement the SDPDM and instantiate SPs in a graph database.

4.1. Technical Requirements

To achieve a satisfactory technical solution for the implementation of the SDPDM in a graph
database, we analyzed the SDPDM in regard to requirements, which our graph database
should be able to satisfy.

In the following, the extracted requirements are presented along with their rationale:

TR1: The viewpoint hierarchy of an SP must be realizable in the graph database.

Explanation: As the viewpoint and view concept is fundamental in the SDPDM, we
need to be able to realize the viewpoint hierarchy in our graph database to ensure that
we explain specific aspects of an SP at different levels of abstraction and to have clear
boundaries between different aspects of an SP [[Lam?4|.

TR2: The Inter-view relationships of an SP must be realizable in the graph database.

Explanation: Inter-view relationships are crucial as they connect the different aspects
of an SP. Lammers stated in his MT report that existing patterns lack this, because
the inter-view relationships are often given informally [Cam24]. Therefore, enabling
this in our graph database is critical to achieve an improvement on how descriptive
SPs are and to correctly implement the SDPDM.

TR3: All elements and modeling rules defined for all different viewpoints must be realizable
in the graph database.

Explanation: A viewpoint defines the elements and modeling rules to construct a
specific type of view, as we can read in the definition in [Cam?4]. Therefore,

15

4. Methodology

we need to be able to realize this in our graph database to have the different types of
views for an SP from the SDPDM to represent the different aspects of an SP and to
connect them by their inter-view relationships.

TR4: The graph database must be able to realize SDPDM conform SP instances, which are
consumable by visualization tools to operationalize them.

Explanation: Lammers proposed for every viewpoint type except the Conceptual
Viewpoint UML diagram types, which the views follow. The specific types can be
seen in Ehapter 3. The graph database must be able to provide SP instances that
conform to the SDPDM and whose information is complete such that visualization
tools are able to operationalize the instantiated SPs. In the context of the proposed
UML diagram types from Lammers it means that the visualization tool is able to
generate UML diagrams out of the SP instances.

4.2. SDPDM Implementation

After finishing the extraction of technical requirements phase, we continue now with the de-
velopment of the SDPDM implementation and the instantiation of SPs in a graph database.
In order to break down the complex SDPDM and its example into simpler chunks, we first
decided to select a SP as an example. This SP served as a template for implementing
the SDPDM. For this SP, we designed an incremental, iterative approach to develop all
viewpoints of the SDPDM and example views of the selected SP. The overall process is
depicted in Figure 4&.1. We denote the "graph dataset" as the persisted as graph stored
data, for example, a set of vertices and edges, optionally with associated attributes, which
are independent from any specific graph data model.

4.2.1. Security Pattern Selection

To meet the requirements of our technical solution and to persist the SDPDM in a graph
database, it was necessary to select a SP from the Security Pattern catalog provided by Lam-
mers [Lam?4]. The selected SP needed to satisfy three criteria: It should cover all four views
of the SDPDM to fully exercise the implementation, be simple enough to be instantiated in
a reasonable amount of time, and be sufficiently relevant to justify its instantiation.

4.2.2. Incremental Approach

After selecting a suitable SP, we proceed with an incremental approach. For this purpose,
we define an increment as a selected part or functionality of the SP, described through views,
which can then be instantiated. To begin with a suitable choice, we decided on a simple
but representative increment. The first increment has the purpose of initially creating an
initial implementation for each viewpoint and to initially create the graph dataset for the
views of the viewpoints that should be instantiated there. All subsequent increments use the
already existing metamodel implementation and graph dataset. All increments go through
the Development Phase and Refinement Phase for each viewpoint.

16

4.2. SDPDM Implementation

(B
()
Development Phase
Lammers' MT Does a
Report Implementation Does a Graph
for this Viewpoint Dataset already

already exist?

Add initially
one View to the
Graph Dataset

Implement Create Graph

Security Pattern

selection Viewpoint Dataset initially :
Metamodel :
Implementation GraphDataset | foreereroreiniiinnnns _.O
\. : J
........ > B
suitable Security Refinement
Pattern Phase
~ J

Eorall SDPDM Viewpaoints

Figure 4.1.: Structure of the Overall Process in a BPMN diagram.

Refinement Phase

Are sufficiently Do the newly
many Yiews developed Views
correctly Are all Views conform to the
Is the Metamodel instantiated in instantiated in SDPDM and
Implementation the Graph the Graph selected Security

Dataset? Dataset? ' 3 Pattern?

comect?

Refine newly
developed
Views

Refine Develop new
Implementation Views

—

Add Views to,
or modify, the J&----
Graph Dataset 1]

| — new Views

Figure 4.2.: Refinement Phase of the Overall Process in a BPMN diagram.

17

4. Methodology

Development Phase

The goal of this phase is to create an initial metamodel implementation and graph dataset
and, if done already, choosing an initial view of the current viewpoint to prepare the first iter-
ation of the Refinement Phase. We first check whether an implementation of the metamodel
already exists for this viewpoint or not. If it exists then we need to check whether a graph
dataset already exists. If so, we can initially add one view of the viewpoint of the selected
SP increment to the graph database and continue with the Refinement Phase, as described
in Figure 4.7. If an implementation for the viewpoint does not exist, we need to implement
the viewpoint. After that we check whether there exists a graph dataset already, if not, we
need to create one initially, which can then be used by every view of every viewpoint and
after creating the graph dataset we initially add one view of the viewpoint from the selected
SP increment. We continue with the Refinement Phase, as described in Figure 4.2.

Refinement Phase

The goal of the Refinement Phase is to add all remaining views of the viewpoints to the
graph dataset and to test the implementation of the metamodel and, if necessary, to refine
it. With the initial metamodel implementation and the graph dataset, we continue with the
Refinement Phase, which follows a decision-oriented process, which can be summarized in
following pseudocode:

1 WHILE true DO

2

3 ASK: "Does the current metamodel implementation allow
correct implementation of the current viewpoint and its
views?" YES/NO

4 IF answer = NO THEN

5 ACTION: Refine the implementation.

6 ELSE

7 ACTION: Skip the implementation refinement.

8 ENDIF

9

10 // "Sufficient views" means if every wvariant of the

viewpoint is represented

11 // (e.g., Behavioral Viewpoint represented as modified UML
Activity Diagram OR modified UML Sequence Diagram)

12 ASK: "Are sufficiently many views correctly instantiated in
the graph dataset?" YES/NO

13 IF answer = YES THEN

14 RETURN: Exit the Refinement Phase.

15 ENDIF

16

17

18

19

20

21

18

4.3. Case Study Process

22 nds = newly developed views

23 REPEAT

24 ASK: "Are all views of the current viewpoint (from Lammers

MT report or nds) instantiated in the graph dataset?"
YES/NO

25 IF answer = YES THEN

26 REPEAT

27 ACTION: Develop nds (that conform to the SDPDM and the
selected SP).

28 ASK: "Do the nds conform to the SDPDM and the selected
SP?" YES/NO

29 IF answer = NO THEN

30 ACTION: Refine nds.

31 ENDIF

32 UNTIL answer = YES

33 ENDIF

34 UNTIL answer = NO

35

36 // Not all wiews are instantiated in the graph dataset

37 // Modifying the graph dataset means here that we might be

able to correct a partly instantiated view because the
implementation of the metamodel got refined

38 ACTION: Add missing views to the graph dataset or modify the
graph dataset

39

40 ENDWHILE

Source Code 4.1: Refinement Phase (textual pseudocode)

Note in Bairce Cade 47T that clearly when new views have just been developed, they
are not yet instantiated, and Lammers’ MT report [Lam?4] does not provide infinite views.
Because of that, there cannot occur an infinite loop. In the beginning of Bairce Code 41
we also see why it was necessary in the Development Phase to initially add one view of the
viewpoint from the selected SP increment, because it is the base for the first Refinement
Phase iteration, after which we add all remaining views in the Refinement Phase.

4.3. Case Study Process

After finishing the development of the SDPDM implementation and the instantiation of
the example SP we conducted a small case study, whose goal is to manually validate the
instantiation of the example SP and by that also validate the correctness of the implemented
SDPDM. Due to time restrictions, we were unable to provide a large scale validation, such
as validating the inter-view relationships as described in Chapter 3.

We chose to manually validate each view of the example SP. That means that we validate
the views separately. For the Conceptual View we decided to count the elements contained
and compare the counted number against the expected number of elements, and we also

19

4. Methodology

validate the connection of the elements. We also depict certain elements and validate them
further. For the validation of the Data View we chose to select certain elements and inspect
them in further detail. As explained in the Behavioral View is separated in different
Behavioral Model (BM) which contain a number of Behavioral Modeling Elements (BME).
We decided to count each number of elements for each BM and add them up for the complete
Behavioral View and compare the number with the expected number of elements for the
Behavioral View. We also decided to select certain elements and validate them in further
detail. A similar approach is taken for the Structural View, here we also count the elements
for certain Architectural Model (AM) and compare the number to the expected number of
elements. We also select certain elements for further inspection.

20

5. Neod4j Graph Database

In this chapter we explain why Neo4j was chosen as the graph database for implementing
the SDPDM. We introduce Neo4j and show a feasibility analysis of Neo4j, with respect to
the technical requirements we assessed in Chapter 4.

5.1. Why Neo4j?

For the selection of Neo4j, we relied on the popularity ranking of graph databases. This
ranking clearly shows that Neo4j is the most widely used graph database engine, with a
score of 54.47 [DB-253]. Neo4j is 31.63 points higher than the second most popular option,
Microsoft Azure Cosmos DB [DB=253]. The popularity score is derived from several factors:
the number of mentions of the system on websites, the general level of interest in the system,
the frequency of technical discussions, the number of job postings referencing the system,
the number of professional profiles that mention it and its relevance on social networks [DB=
P5h]. After choosing Neo4j, we now introduce Neo4j and then show the feasibility of Neo4;j
as a suitable graph database for implementing the SDPDM.

5.1.1. Neodj

To be able to conduct the feasibility analysis, we need to explain Neo4j, to understand and
use its concepts and methods. Neo4j is a native graph database, which means that they use
a graph model all the way down to the storage level [Neo?5h]. In the Neo4j graph database
data gets stored as property graphs, these have following components:

= Nodes which represent entities
= Relationships that connect two nodes
= Properties which are key-value pairs for nodes and relationships

Nodes can have labels, which represent a group of nodes. Relationships have types, are
always directed in Neo4j, and need a start and end node [Neo?5f] [Neo?5a]. Neo4j has
a query language with the name Cypher. As the data is represented as a property graph,
which means that it contains nodes, relationships, and properties, the core syntax struc-
ture is (:nodes)-[:relationships]->(:other_nodes). Nodes are represented in round
brackets, and behind the : we write the already introduced label of the node. As we
can see, the relationships are represented as square brackets, with their type after the :.
Important to note here is that we can also see the direction of the relationships, which
is indicated with the -> after the square brackets, of course we could also set <- on the

21

5. Neo4j Graph Database

other side of the square brackets to show the other direction of the relationship. With
this syntax structure and keywords, such as MATCH, which tries to find the presented struc-
ture, we can perform CRUD (create, read, update, and delete) operations on our database.
We can also only query nodes by removing the syntax structure behind the first closing
round bracket, the same for relationships, where we have to remove the content of the
round brackets. Nodes and relationships can also have assigned variables, by writing a
string before the :, this way we can, for example, only return the node with a certain re-
lationship and not both nodes with the relationship which connects both nodes [NeoZ5g].
To illustrate Cypher queries we want to make a small example, the Cypher query MATCH
(n:Student)-[r:writes_Bachelor Thesis_at]->(n2:Chair) RETURN n, r, n2 ret-
urns all Student and Chair pairs, which are connected through the relationship of writing
a bachelor thesis at the Chair. As we can see in the example, we used the variables before
the : to return the nodes and relationship at the end. We can also see the direction of the
relationship.

5.1.2. Neodj GraphQL Toolbox

In the following feasibility analysis, we will see that plain Neo4j is not capable of fulfilling all
technical requirements. For that reason, we will need to use the Neo4j GraphQL Toolbox.
We will first introduce GraphQL and then continue with the Neo4j GraphQL library which is
used by the Neo4j GraphQL Toolbox. GraphQL is a query language for APIs where we can
define a type system for our data. The GraphQL specifications are open source, and many
companies have created their own GraphQL APIs with tools that use them, such as Neo4j
[Gra25]. This is also the reason why we do not build our own GraphQL APl and connect it
to the Neo4j graph database, as Neo4j built their own one which suits our purpose perfectly.
The Neo4j GraphQL Library is the official toolkit for building a GraphQL API over Neo4j
databases. It allows one to create GraphQL APls with a type system suitable for Neo4j graph
databases [Neo?5d]. Instead of building our own APl with the Neo4j GraphQL Library, we
use the Neo4j GraphQL Toolbox because it provides a user interface (Ul) for schema design,
validation, and direct data manipulation in the Neo4j graph database without additional
server setup. The Neo4j GraphQL Toolbox uses the Neo4j GraphQL Library and allows us
to connect to our Neodj graph database, define a Neo4j GraphQL schema, where all type
definitions for our data are contained, and perform data manipulation on our Neo4j graph
database, which conform to the defined schema [Nea25¢].

In we can see the earlier mentioned Student writes a bachelor thesis at Chair
example as a Neo4j GraphQL schema. The Neo4j GraphQL schema contains the type
definitions of Student and Chair. We can see in line 1 how a type with a name is defined
and the @ declares this type definition as a node for the Neo4j graph database. The attributes
of the type Student and Chair are the defined properties that the node Student can have
in the Neo4j graph database. The relationship is defined in the type Student, and we can
see that this is a relationship because of the @ declaring it as a relationship. We can also
see then the already mentioned type of the relationship in Neo4j and the direction of the
relationship. The direction states in this example OUT, which means that the relationship is
outgoing for the node Student. In the square brackets, we can see the type that is allowed

22

5.1. Why Neo4j?

to be connected with this relationship, in our case it is the node Chair. The ! declares
that the property cannot be null. When we build this schema, we can use mutations, which
is the operation to create, update, and delete data that conform to the schema. In Neo4;j
GraphQL Toolbox we get auto-generated mutations based on our built schema [Nea?5d]. In
the context of our previous example, we would have create, update, and delete mutations
for the nodes Student and Chair.

Number: Int!

ring!

bachelorThesisAt: [Chair!]! @relationship(type: "writes Bachelor Thesis_at", direction: OUT)

name:

Figure 5.1.: An example Neo4j GraphQL schema containing the type definition of the nodes
Student and Chair and writes_Bachelor_Thesis_at relationship.

5.1.3. Feasibility Analysis

For the feasibility analysis, we evaluated Neo4j against each requirement defined in
Eion 2T, which will be presented in the following:

TR1: Neodj meets this requirement, as a graph database, it is able to take advantage of
the graph database concept, which means it can connect nodes with relationships and
define properties, which can be different for every node. In this way, we can express
different aspects of an SP. Furthermore, we are able to create disconnected graph
components, to ensure clear boundaries between different aspects of an SP [Nea?5a4].

TR2: In the context of graphs, the inter-view relationships, as explained in Ehapter 3, connect
the disconnected graph components. They ensure that all security-relevant information
remains available and we still have clear boundaries for each view so that the complexity
is reduced [Lam24]. Neo4j is able to meet this requirement as it is capable of connecting
disconnected graph components by relationships [Nea?5al].

TR3: To meet this requirement, Neo4j must allow the definition of constraints on the node
attributes, the permissible attribute values, and the types of edges to which nodes
may be connected. A major issue is that plain Neo4j and its Cypher query language
are not capable of enforcing a schema with strict constraints, which is necessary to
implement the viewpoints of the SDPDM, representing all elements and modeling
rules. However, as explained above we are able to overcome this limitation using the
Neo4j GraphQL Toolbox. This Neo4j library allows us to define types that correspond
to nodes in Neo4j and to restrict them to have specific relationships and properties
[Nlea256]. Therefore, we are able to create a schema for Neo4j that restricts the nodes’
attributes, their permissible attribute values, and the types of relationships to which

23

5. Neo4j Graph Database

TR4:

24

it may be connected. The Neo4j GraphQL Toolbox extends Neo4j here to meet the
technical requirement.

This technical requirement is not obviously met for Neo4j, as we need to ensure that
Neo4j is able to represent the views of an SP in a consumable way for visualization
tools. Therefore, we decided to adopt the proposed UML diagrams in and
chose two diagrams to test whether Neo4j is capable to represent the structure of
the UML diagrams. We are using the introduced concepts of Neo4j and the Neo4j
GraphQL Toolbox to model both UML diagram concepts, with respect to the SDPDM,
as we need to make SDPDM conform data consumable for visualization tools.

To show this, we depict an easy UML diagram and explain how we tested this and
then a UML diagram with workarounds needed. The UML Class Diagram is used
in the Conceptual Viewpoint [Cam24]. It includes Roles, which are represented as
classes without attributes or methods, and the requires relation, which is depicted as
association between classes. Typically, the associations of a class diagram represent
semantic relationships, such as inheritance or aggregation. However, in our case, they
represent messages within the requires relation between Roles.

In the Neo4j GraphQL Toolbox, we can easily construct the type Role with all its
properties. For example, the storageTag property, which states if a Role needs some
kind of storage to fulfill its responsibilities [Lam?4], requires a selection from predefined
types such as session or cache, and must be restricted to exactly one of these types.
All of this is representable using constraints in the Neo4j GraphQL Toolbox starting
with the type and its name, followed by its properties, an enum to define the possible
values for storageTag, and a restriction to ensure that the value is not a list. The
requires relation between Roles is modeled as a relationship between Role nodes. This
relationship can also have its own properties, which is especially useful in this case, as
it includes a message. When examining the UML Class Diagram within the Conceptual
Viewpoint, we observe that Neo4j and Neo4j GraphQL Toolbox are fully capable of
creating a schema that defines all the required types, properties, and relationships.

On the other hand, when considering the UML Sequence Diagram used in the Be-
havioral Model and the dynamic part of the Architectural Model workarounds are
necessary to represent it within the schema. The basic structure of a Sequence Dia-
gram is straightforward. We can define a message type containing the message text
and its type (e.g., Response or Asynchronous). The participants or actors in the Be-
havioral Model correspond to the previously defined Roles. To illustrate that we want
to provide a small example, which illustrates the mapping of an UML sequence dia-
gram in Neo4j. In we can see an example UML sequence diagram. System
and User are in our example Roles, which are part of the Conceptual View of an
arbitrary SP. These are nodes in Neo4j, which are used in the UML sequence diagram
representation of the Behavioral View as participants in this case. The messages in
the UML sequence diagrams, which are the arrows are represented as nodes in Neo4;j,
they contain the message text and their type, such as in our example for the first two
messages Asynchronous and for the third message Response. Given all these nodes we

5.2. Query Builder

System User
| |

| Provide Password and Email Address ‘:

il

:J Providing Password and Email Address |

&

| Grant Access to System

.
T -~

System | | User
| |

Figure 5.2.: An example UML sequence diagram to illustrate the mapping in Neo4j.

need to connect them using relationships. In this example the System sends the mes-
sage Provide Password and Email Address to the User. To map this in Neo4j we
would have a relationship of the type sent from System to the message node, which
contains the mentioned message. From this message node we have a relationships of
type received to User. This is how we map the basic structure of the UML sequence
diagram in Neo4j. The other two messages follow the same structure. After creating
all relationships, we would have correctly modeled the example UML sequence diagram
in Neo4j.

However, representing Interaction Blocks, such as alternative blocks and their nesting
capability, requires additional modeling. To address this, we defined two additional
types: one for the Interaction Block itself and one for the Parts within an Interaction
Block. An Interaction Block begins with a message, that is, the last message not inside
the block. It also has an operator (such as alternative) and references its parts through
a relationship. Each part contains its own messages and may include a guard condition.
Both types also have parent and child block relationships. These relationships allow
us to handle nested Interaction Blocks. Although this constitutes a workaround, it
demonstrates that the Neo4j GraphQL Toolbox is capable of representing the concept
of the UML Sequence Diagram. With this test we can conclude that Neo4j is capable
of representing the views of an SP in a for a visualization tool consumable way and
therefore meets this technical requirement.

Based on that evaluation, we concluded that Neo4j is feasible for the purpose of imple-
menting the SDPDM. Given its feasibility and its popularity lead of 31.63 score points, we
decided to adopt Neo4j as our database engine rather than extending the feasibility analysis
to alternative graph database systems.

5.2. Query Builder

During the process of implementing the SDPDM and instantiating an example SP, we cap-
tured that there is a need for a tool to allow non-experts to view the data of our implemen-
tation. The main reason behind that is the usability of the SDPDM implementation, we

25

5. Neo4j Graph Database

noticed that SPs have a lot of data to store, and queries to read certain data became quite
complex. Therefore, we decided to provide a Query Builder that can build queries to read
nodes, relationships, and properties in our database, as it builds Cypher queries. We go into
more detail on the Query Builder in Ehapter @.

5.3. Technology Landscape

The technology landscape resulting from our feasibility analysis is shown in Figure 5.3. It
groups the stack into languages, tools, and database. As explained before, there are two
main languages that were mainly used in the implementation, namely GraphQL and Cypher.
We use Cypher to read data in Neo4j. Because queries become complex, the Query Builder
helps users to build Cypher queries. The Neo4j graph database provides a console for direct
execution of Cypher queries.

Neo4j does not natively support the GraphQL language. Therefore, we use the Neo4;j
GraphQL Toolbox, which builds on the Neo4j GraphQL Library, to connect to the Neo4;j
graph database, host the GraphQL API, and execute mutations for creating, updating, and
deleting data. We also define a Neo4j GraphQL schema in the Toolbox, which implements
the concrete elements and modeling rules of the SDPDM.

In short, we read data in the Neo4j graph database using Cypher, while we write on the
graph database using GraphQL. This separation keeps the graph database conform to the
defined SDPDM schema.

5.4. Change of the SDPDM

As explained in Eubsecfion 3771, an Example facilitates an example implementation of an
SP solution within an architecture. The Architectural Model (AM) represents the static and
dynamic structure of specific aspects of the SP solution. The Architectural Modeling Element
(AME) is the fundamental component of the AM [Cam?4]. However, in the implementation
of the SDPDM in Neo4j we identified a modeling error in the SDPDM. We had to adjust
the idea behind an Example for the Structural View of an SP from Lammers’ MT report
[Cam?4]. In Lammers’ MT report [Lam?4| the aggregation between Example and AM, was
also present between Example and AME. However, this is incorrect and should not be the
case. As the definition of an AME says that it is a fundamental component of the AM
thapter 3. The AME should not be able to refer to an Example without being part of an
AM. This would also not work for the structure of instantiating the AMs of SPs as UML
Sequence, Activity, or Component diagrams. The AME would be able to exist without being
part of an AM, which causes that we have no correct possibility to represent this AME, as
it is not part of any UML diagram type. For this reason, we changed the SDPDM here. In
we can see the corrected version of the figure.

26

5.4. Change of the SDPDM

Language Tool Database

GraphQL

1

uses 1 Neod; 1 create, update, delete
GraphQL ate, up — <

data and define schema\/g_*

Toolbox :

has query language 1
1 Graph
Database
0 *
1 read data -
Cypher
0..*
builds
Cypher queries 1 Query
Builder

Figure 5.3.: The languages, tools, and the database which were used or developed during
the process of this thesis. Explaining which language and tool is used to operate
which tasks on the database.

Architectural 1..*| Architectural Modeling
Model (AM) Element (AME)

1.%

*

Architectural 1. 0.*

Pattern uses implements

1
Example }1“ [SP Solution }

Figure 5.4.: The changed Figure to clarify the false aggregation from AME to Example. The
original Figure is taken from Lammers’ MT report [Lam?24].

27

6. Implementation

In this chapter, we present the concrete implementation of the SDPDM in a Neo4j GraphQL
schema. We first introduce the technologies used, introduce which SP was selected as an
example SP, and then show the implementation of the SDPDM schema. We also present the
implementation of a design choice we made and introduce the Query Builder, whose purpose
is to improve the usability of the implementation. All artifacts, namely the Neo4j GraphQL
schema of the SDPDM, an export of the graph database containing the example SP, and the
accompanied descriptions, queries, and implementations are available in the public GitLab
repository "Query Builder".!

6.1. Technologies

The database was hosted in Neo4j AuraDB, which is Neo4j's fully managed cloud graph
database [Neo?5h], with version 2025.08. The Aura console was used for reads and in-
spection in Cypher version 5. For creating a schema and data manipulation, we used the
Neo4j GraphQL Toolbox, which used GraphQL type definitions and executed auto-generated
GraphQL mutations to create, update, and delete data in the AuraDB instance. The Toolbox
relies on the Neo4j GraphQL Library version 7. The introduction to Neo4j and the Neo4;
GraphQL Toolbox can be found in Ehapter 5. Versions as observed on 5 September 2025.

6.2. Password-based Authentication (PBA) as a Suitable
Security Pattern

As explained in Becfion 34, we selected PBA SP as the reference SP to implement the
SDPDM. It was chosen because it satisfies all three criteria mentioned in Ehapter 4. PBA SP
covers all four viewpoints of the SDPDM, we have for each viewpoint modified UML diagrams
from Lammers’ MT report [Cam?4] with detailed descriptions on every node, property, and
relationship. Therefore, it was straightforward to choose PBA as SP, as it is described in
such detail that it can be instantiated directly in the database, which satisfies our simplicity
criteria of having sufficient time to instantiate it. The PBA SP is also relevant enough, as
Jump Cloud’s 2024 IT Trend Report found that 83% of organizations use password-based
authentication for some IT resources, 83% with multi-factor authentication, still indicating
that PBA is widely used [Jum25]. PBA is for this reason a suitable SP for our purpose of
implementing the SDPDM [[am?24].

! https://git.rwth-aachen.de/michi.zerbe/query-builder-for-sdpdm-neo4j-database

29

https://git.rwth-aachen.de/michi.zerbe/query-builder-for-sdpdm-neo4j-database

6. Implementation

6.3. Implementation of the Schema

In this section, we will describe the implementation of the schema. The schema is the
persistence of the SDPDM, as it implements the four viewpoints, which define the elements
and modeling rules for the views of an SP as described in Ehapter 3. We will show example
parts of the schema and describe the concrete implementation done. As introduced in
Ehapter 4, we use the Neo4j GraphQL Toolbox to define the SDPDM schema. The following
listings present the Neo4j GraphQL type definitions. If additional context is needed, we
refer to which introduces and explains the Neo4j GraphQL Toolbox. In
we described that we used an incremental and iterative approach, where we implement the
SDPDM viewpoint per viewpoint and also instantiate functional independent parts of the
example SP after implementing the SDPDM for the individual viewpoints. However, since
describing this approach here would lead to mixing implementation and demonstration, we
just refer to the finished schema of the SDPDM and introduce certain aspects of it.

type SecurityPattern @node {
name: String!
summary: String

has_ConceptualView: [ConceptualView!]! @relationship(type: "has_ConceptualView", direction: OUT)
has_DataView: [DataView!]! @relationshi /pe: "has_Dataview", direction: OUT)

has_BehavioralView: [BehavioralView!]! @relationship(type: "has_BehavioralView", direction: OUT)
has_Structuralview: [StructuralvView!]! @relationship(type: "has_StructuralvView", direction: OUT)

Figure 6.1.: The part of the schema where we defined the type SecurityPattern which is
a node with its properties and relationships.

To begin implementing the SDPDM we have implemented the type SecurityPattern
which represents the SP, as we can see in we implemented it as a node for Neo4;j,
it contains the necessary name, indicated with the !, which means that this property cannot
be null and a summary. It also contains the outgoing relationships that refer to the four
views of the SP.

Continuing with the Conceptual View where we have the type Role, which contains the
responsibilities necessary for the secure application of Policies. In we can see that
it is implemented as a Neo4j node and contains all its elements, which Lammers defined
in his MT report. For example, the storageTag which specifies if the Role needs certain
type of storage to fulfill its responsibilities. This property requires the implementation of
an enum, as we only have certain types of storage. The enum can be seen in Figure 6.3,
containing the four storage types defined by Lammers for a Role. We can see that the enum
name is the data type for this property, and it is also not in square brackets, indicating that
only one type can be used for one Role. The implementation of the Role also contains the
important relationship required between Roles, which states the dependency of another
Role to fulfill its responsibilities [Lam24]. The inter-view relationships are also implemented
in the schema, as we can see the Role implementation contains relationships, which are used
in the Behavioral View. Namely, the sent and received relationships for the implementation

30

6.3. Implementation of the Schema

"RequiresProp")

: "ReguiresProp™)
"decisionPointFor", directi
"enforcementPointFor”, d
"informationPointFor"”, d

"sent", direction: OUT)
: "received”, direction: IN)

Figure 6.2.: The part of the schema where we defined the type Role which is a node with
its properties and relationships.

enum S5to ag i
PERSISTENT_STORAGE
CACHE

SESSTON_STORAGE
SECRET_STORAGE

Figure 6.3.: The enum StorageTag for the correct values in the type Role.

of the UML sequence diagram structure for the Behavioral View.

The implementation of the Behavioral View contains implementing Behavioral Model
(BM) and the Behavioral Modeling Elements (BME) of the BM. In we can see
the implementation of the SequenceBME, which represent the UML sequence diagram part
of a Behavioral View. We refer here to the proposed UML diagram representations of the
SDPDM views in thapter 3. The SequenceBVME is implemented as a Neo4j node, represent-
ing the message of a UML sequence diagram, which connects Roles interacting and showing
their behavior. It can also cause Events, this can be seen in the implemented relationships.
Relationships are not always necessary, but the Neo4j GraphQL Toolbox enforces the im-
plementation of them in the schema as non-empty lists, which means it is a type in square
brackets with ! in and outside the brackets to indicate the value should not be null. We used
an interface to implement the BME, we can see in the implemented interface,
which contains properties which both UML diagrams share, namely the UML sequence and
component diagram. In we can see that this type implements the interface and
extends its properties and relationships. We can also see in that we implemented
a union type which represents multiple types as one. In our context, it represents all types
of data, which the Behavioral View could use.

As a last example, we want to show the implementation of the workaround which was
introduced in the feasibility analysis in Ehapter 5. The implementation is used for the parts

31

6. Implementation

ioralModelingElement @node

type:

interactionOperato

"contains_message", direction: IN)

"started_by", direction: IN)

e: "can_cause™, direction: OUT)
vioralModel: [BehavicralM ' @ tionship(type: "ref_BehavioralModel", direction: OUT)

uses_DataElement: [Datal]! @ ationship "uses_DataElement”, direction: OUT)

Figure 6.4.: The part of the schema where we defined the type SequenceBehavioral
ModelingElement which is a node with its properties and relationships.

of the SDPDM that are represented as a UML sequence diagram, namely in the Behavioral
and Structural View. This can also be seen in where we implemented the union
type for both use cases. We implemented two Neo4j nodes, which represent the Interaction
Block with its operator and referring to its parts with relationships, which have possible
guard conditions. Nesting is implemented through relationships, which refer to their parents
and children. The enum contains all types of operators for a UML sequence diagram. The
types are taken from the "UML 2 Glasklar" book [RQS12].

6.4. Implementation of ID structure

We made a design choice that does not follow common graph database modeling patterns.
In a graph database, node references are typically expressed through relationships. For our
case, this would mean that the view node, for example, the Conceptual View node, would
need to have a relationship to each element it contains. Another example is the BM, it
would need to reference all BMEs it has. To solve this exponential growth of relationships,
we decided to add an ID structure for the purpose of referencing elements, but only in parts
of the SDPDM where we reference from top level elements like the BM referencing its BMEs
or the Data View referencing its Data Groups. To view the complete ID structure for all
elements considered, we refer to Bection A1, Here we will cover only three examples to give
an overview on how the ID structure looks like. In the following, we list the examples and
their ID structure:

= Conceptual View

— cv_##

= ComponentArchitecturalModelingElement (ComponentAME)

— sv_##-am_##-name

32

6.4. Implementation of ID structure

ationship

1t eRelationship

uses_DataElement: [Datal]! ationship

Figure 6.5.: The union for a type Data, to represent every type of data element which can
be referenced and the interface option for the different UML diagram types of
the BM.

— the first ## is the number of the associated structural view.

— the second ## is the number of the associated architectural model.
— name is the name of the component.

— special case: sv_##t—am_##-## name

— the third ## references the elements which are only able to implement a role in
this combination.

— if part of multiple of these combination then of structure: sv##-am_##-##_. ..
_## _name
= StructuralRole
— name
— name stands for the name of the structural role.

— special case: ##_name

the first ## references the elements which are only able to implement a role in
this combination.

— if part of multiple of these combination then of structure: ##_..._##_name

We take a closer look at the ComponentAME and StructuralRole ID structures. We first
define why we have Structural Roles. In the context of an AM there are some Controller,
Services, Stores and more that are part of the AM, but are not AME, because of that we
needed the workaround to introduce the type StructuralRole as a node. For example,
Structural Roles are in the UML component diagram elements that are within one com-
ponent. The component is an AME, but as nesting is allowed also AMEs can be part of
another AME (component). We now explain why we need the proposed ID structure. As

33

6. Implementation

BREAK
NEG

LOOP

PAR

SEQ
STRICT
CRITICAL
IGNORE
CONSIDER

lingElement

pe: "child™, direction: OUT)
as_parts", direction: OUT)

: "parent”, direction: IN)
contains_message", direction: OUT)
e: "child", direction: OUT)

Figure 6.6.: The part of the schema where we defined the workaround for the interaction
block of a UML sequence diagram.

explained in Chapter 3, AM is part of an Example, and this Example implements the Roles
of the Conceptual View of an SP. There are three possibilities:

1. One or more Roles are implemented by multiple AMEs or AMEs and Structural Roles.
2. One AME or Structural Role can implement multiple Roles.

3. One AME or Structural Role can implement one Role.

We need the proposed ID structure for the first case, as only multiple elements in combination
are able to implement this one Role and we decided to choose the ID structure, as we can
see in the second list, as a workaround to represent this context.

6.5. Query Builder

The Query Builder is a web-based tool for building Cypher queries for the SDPDM database.
The main reason behind that is the usability of the SDPDM database, as we found that SPs

34

6.5. Query Builder

Current Query

Query Parts:
(r : Role) [dpf : decisionPointFor J-> (p : Policy)
Connection Type:
MATCH v

(r Role) - epf enforcementPointFor 1> | (p Policy) | @ |

Complete Query:

MATCH (r:Role)-[dpf:decisionPointFor]->(p:Policy) MATCH (r:Role)-[epf:enforcementPointFor]->(p:Policy) RETURN p, r, epf, dpf ‘ () Copy ‘

Figure 6.7.: The Query Builder website showing a Cypher query for a Role which is a decision
and enforcement point for the same Policy.

contain a lot of data and therefore the Cypher queries got complex and the graph visualization
got cluttered, which may appear overwhelming for non-experts. For the implementation of
the Query Builder it was important to be able to represent the structure of the SDPDM,
we are not implementing a Query Builder for any Neo4j graph database. We have a Query
Builder that is specific for the SDPDM schema, which defined the nodes, relationships, and
properties of the SDPDM. It is also important that the ID structure that we decided to model
is usable in the Query Builder, as we can easily refer to components of the views by that.
The main reason for the Query Builder is as already mentioned the usability, and therefore
the Query Builder needs to have a well-chosen Ul for the User, intuitive design and on-page
information that the User can easily use and build Cypher queries with it. But we also need
to restrict the User to only perform read operations, as we manipulate our data with the
Neo4j GraphQL Toolbox.

6.5.1. Technologies Query Builder

We used Java 11 as the language for the Query Builder. The build tool for our project is
Maven from Spring Boot 2.7.5 which was also used in the Backend. In the Frontend we used
Bootstrap 5.1.3, jQuery 3.6.0 and Bootstrap lcons 1.8.1.

6.5.2. Example Queries of current state Query Builder

In this subsection, we show an example of the already implemented part of the Query Builder.
A description of how to use and what is implemented for the Query Builder can be found in
the GitLab repository.l

For example, we can see in a Cypher query which was built on the website of the
Query Builder. The query returns every Role, which is a decision point and an enforcement
point of the same Policy. We can see in the resulting graph. This shows that the
Query Builder is able to set multiple restrictions that must hold for the same node.

35

6. Implementation

) MATCH (r:R

Graph Table Results overview

enforcementPointFor Nodes (8) N
Registra- [uumuenmumemmmmmr el Registra-
& —edsionpontar - (RN [8) X Policy (4) X Role (4)

Relationships (8)

m decisionPointFor (4)

enforcementPointFor (4)
enforcementPointFor
- I
Cooii PointFor
(VELELT ——————>

Email intFo
Changer = Change

enforcementPointFor
Passwo- PointFor Passwo-
rd... ——Sesoe T > rd...

Started streaming 4 r nd completed after 49

Figure 6.8.: The Neo4j result graph of the Cypher query for a Role which is a decision and
enforcement point for the same Policy.

36

7. Demonstration

In this chapter we demonstrate the Neo4j GraphQL schema of the SDPDM from Ehapter 6,
by showing certain parts of the instantiated PBA SP in the Neo4j property graph. As this
chapter covers only the demonstration of the schema, we will show only Neo4j queries and
the resulting part of the Neo4j property graph. We refer to Eecfion A3 for chosen Neo4j
GraphQL mutations, which instantiate the PBA SP. We introduced Neo4j and the Neo4;j
GraphQL Toolbox in chapter 5, we refer to that chapter for further details on Neo4j and
the Neo4j GraphQL Toolbox. To demonstrate the Neo4j GraphQL schema we will show the
instantiated PBA SP. We will begin by showing the complete PBA SP, then we will go into
more detail and show example parts of every view of the PBA SP. We will also demonstrate
certain implementations that we have done, such as an example for the ID structure we have

implemented in Chapter @.

7.1. Instantiating PBA SP

In this section, we will demonstrate the PBA SP instantiation. In we described an
incremental approach for the instantiation of an example SP, in this demonstration we will
not demonstrate the instantiation step by step, we will refer in the beginning to the complete
PBA SP instance in the Neo4j graph database which conforms to the Neo4j GraphQL schema
and we will show certain parts of the Neo4j property graph as described earlier in this chapter.

We begin by presenting the complete PBA SP. The PBA SP yields 286 nodes and 744
relationships and can be seen in Figure 7.1. The density and heterogeneity of the resulting
property graph make ad-hoc querying difficult. Therefore, it motivates the implementation
of the Query Builder mentioned in and the use of Query Templates by users of the
database. An introduction and explanation of the Query Templates will follow later in this
chapter.

Regarding the Conceptual View we have Roles and Policies, we want to demonstrate an
example on how Roles and Policies as nodes look like in the Neo4j property graph and what
relationships they have. In we can see the Password Policy Verifier (PPV)
and Password Resetter (PR) nodes with the label Role. We can see on the right the
properties of the PPV node, for example, we can see there that it is a DECISION_POINT for
a Policy. In the property graph, we can then verify that the PPV node is the decision point
for the Password Reset node with the label Policy, this can be seen by the relationship
between these two nodes. We can also see that the PR node requires the PPV node to
fulfill its responsibilities. The property graph also shows the PBA SP node and the node
for the Conceptual View. To see how an example Neo4j GraphQL mutation would look
like to instantiate the mentioned PBA SP, Conceptual View, Role and Policy nodes and

37

7. Demonstration

MATCH p = ()-[r]->()
RETURN p AS g

UNION

MATCH (n)

WHERE NOT (n)--()
RETURN n AS g;

Graph Table RAW Results overview

Nodes (286)

AggregationDataGroup (1)

ArchitecturalModel (2)

ArchitecturalPattern (1)

CETEIEETD
ComponentAMEMessage (23)
o hi d

ConceptualView (1) X DataRule (3)
DataView (1) X ErrorEvent (9)
InherantDataGroup (5)

InteractionBlock (3)

InteractionBlockPart (6)

OriginField (14) K Parameter (1)

Figure 7.1.: The PBA SP instantiated in Neo4;j.

MATCH (sp n ctor Password-based Authentication”})
MATCH (cv:Co o ed Authentication Conceptual View"})
MATCH

MATCH (r1

MATCH (r2

OPTIONAL MATCH (sp)-[hcv:ha

OPTIONAL MATCH (r1)-[

OPTIONAL MATCH (r1)-[.

OPTIONAL MATCH (r1)-[e:en tFor]->(policy)

OPTIONAL MATCH (r2)-[d2:decisio 1->(policy)

RETURN sp, cv, policy, rl, r2, hev, r, d, e, d2

Graph Table RAW &) (@) Node details

Parzsl\.l\./or Key Value

Sl o — <id> 4:73¢09bd4-970c-4faa-973d-4
Faclor... rd Base.... 7ef746672¢6:10

controlled true ©

description "A Controlled Role that verifies ©
that a provided password meets
Passwo- the minimum password require

rd Polic... "
ments.
id "cv_01-ppv"
name "Password Policy Verifier"

policyPoint ["DECISION_POINT"]

Figure 7.2.: The Neo4j SDPDM database property graph part which includes the PBA
SP node, the Conceptual View node, the Password Reset Policy node, the
Password Resetter and Password Policy Verifier Role nodes and the
relationships between these nodes.

38

7.1. Instantiating PBA SP

MATCH (n)

WHERE n.id STARTS WITH "cv_(

OPTIONAL MATCH (n)-[r]-(m)

WHERE type(r) IN [“has_ConceptualView”, "requires”, "decisionPointFor”, "enforcementPointFor”, "informationPointFor"]
RETURN n, r, m

Graph Table RAW Results overview

Nodes (20) N

SecurityPattern (1)

Relationships (44)

m decisionPointFor (9)

enforcementPointFor (4) has_ConceptualView (1)
informationPointFor (4) requires (26)
~Facior

Started streamin, s after 66 ms and completed after 155 ms.

Figure 7.3.: The complete Conceptual View of the PBA SP in Neo4j.

relationships, we refer to Eecfion A73.

We also want to demonstrate the complete Conceptual View of the PBA SP in Figure 7.3,
it yields 14 Roles and four Policies, namely Login, Password Reset, Email Change, and
Registration. These are the four parts into which we divided the complete PBA SP. They
are also the increments used, as described in Ehapter 4.

For the Data View we want to demonstrate a special node. The Function node is used by
transformation data fields, which are data fields that derive their data by applying a function
to one or more data fields [Cam?24]. In we can see the SHA-256 node with the label
Function. This node can contain examples. These examples are, pseudocode, descriptions,
or practical examples to illustrate the intended transformation [Cam24]. In our case, the
pseudocode has a code-style structure, so we must preserve the original input formatting.
We refer to Bection A3 for the Neodj GraphQL mutation, which is able to preserve the
original input format.

As already mentioned in Ehapter 8, we have implemented a workaround for UML sequence
diagrams, which are used in, for example, the Behavioral View, as proposed in
by Lammers. We want to demonstrate the interaction block structure as it looks in the
Neo4dj property graph. In Eigure 7.5, we can see the nodes that are part of an interaction
block. This example shows a part of the Login BM and its BME represent messages in a
UML sequence diagram. The interaction block was started by a message, and all subsequent
messages are contained in one of the two parts of the interaction block. The parts of the
interaction block are the blue nodes.

We also want to demonstrate the implemented ID structure as mentioned in Ehapter 6. In
the Structural View we are implementing Roles, as the view serves to represent an example
implementation solution for the SP [Lam?4]. It can occur that only specific combinations

39

7. Demonstration

tion) WHERE n.name = "

Graph Table RAW Node details

Key Value
<id> 4:73c09bd4-970c-4faa-973d-47ef746e72c6:34
examples ["import hashlib
inpu!
sha256_hash = hashlib.sha256(input.encode('utf-8'))
hash_dig = sha256_hash.hexdigest()"]
examples_type ["Pseudocode”]
function_input ["EmailTokenURLData.token"]

name "SHA-256"

Started streaming 1record after 26 ms completed after

Figure 7.4.: The SHA-256 Function node with the correctly formatted pseudocode.

MATCH (ib:Inte ock) WHERE ib.id STARTS WITH "block2"
OPTIONAL MATCH (ib)-[hp:t - (ibp:InteractionBlockPart)
OPTIONAL MATCH (x)-[r]-(y) WHERE x IN [ib, ibp]

OPTIONAL MATCH (y)-[s:ser r1)

OPTIONAL MATCH (y)-[r3:rec

RETURN ib, ibp, hp, x, r, y, rl, r2, s, r3;

Graph Table RAW & Node details

InteractionBlock
Value

4:73c09bd4-970c-4faa-973d-47ef746e72c6:205 ©

"block2" ©

operator "ALT" ©

Started streaming 14 recc

Figure 7.5.: The messages of the Login Behavioral Model that are inside an interaction
block and the message which started the interaction block.

40

7.2. Query Templates

1_01-01_mapp” OR n.id = "sv_e

OPTIONAL MATCH (n)-[i
OPTIONAL MATCH (s)-[i

RETURN n, s, i, i2, r

Graph Table RAW

<id> 4:73c09bd4-970c-4faa-97 @
3d-47ef746e72c6:135

- Node details
<
mplemented_ROIS
implomented. R = =

Mobile
Applicat...

box_type "CLASS" ©
id "sv_01-am_01-01_mapp" ©

"Mobile Application™ ©

Web
Applicat...

Figure 7.6.: The combination of (Mobile Application and User) or (Web Application
and User) implement the Role Subject.

of AME and Structural Roles can implement a Role. In we can see one of
these examples. Here only the combination of Mobile Application and User or Web
Application and User can implement the Role Subject. On the right we can see the
ID of the Mobile Application node with the label ComponentAME. sv_01 refers to the
Structural View node, am_01 refers to the AM node this AME is part of, and the last
01 refers to another node with the label ComponentAME or Structural Role indicating
that only the combination of these is able to implement the Role which is indicated by the
implemented_Roles relationship. The Web Application has the same ID structure, only
with 02 at the end. The ID of the User node with the label Structural Role starts with
01_02, as it needs to represent that it is part of two combinations for a Role implementation.

7.2. Query Templates

To maintain usability of the SDPDM database and the instantiated PBA SP, we provide a set
of Query Templates for users of the SDPDM database. The Query Templates are pre-created
Cypher Queries, which show relevant parts of the PBA SP. For example, in we
used one of these Query Templates, as it is the Query Template to show only the Conceptual
View of the PBA SP. We have created the following Query Templates for the PBA SP that
can be found in the Query Builder GitLab repository:[

= "Everything": Representing the complete PBA SP.
= Conceptual View

= Data View

41

7. Demonstration

= Behavioral View

"Password Based Authentication": Complete Behavioral View

Behavioral Model: Password Reset

Behavioral Model: Registration

Behavioral Model: Login

Behavioral Model: Email Change

= Structural View
— "Password Based Authentication": Complete Structural View
— Architectural Model: User Login

— Architectural Model: Password Based Authentication Roles implemented

42

8. Case Study

In this chapter we validate the SDPDM schema by validating the instantiated PBA SP.
We follow the validation approach introduced in Ehapter 4, by concretizing the idea of the
approach and performing it. Due to time restrictions, this is only a manual and rather small
validation of the instantiated PBA SP and the SDPDM schema.

8.1. Test of PBA SP instance

After being finished instantiating the PBA SP in Neo4j we need to validate that we inserted
the views from Lammers’ MT report [[am24] correctly. Due to time restrictions, we decided
to validate the PBA SP instance by hand and state a precise validation as a future work.
We tested the validation of the instance by checking each view for itself. An evaluation of
whether all inter-view relations, meaning the relationships between the views, are instantiated
correctly for the PBA SP was infeasible due to time restrictions.

8.1.1. Conceptual View

The Conceptual View was manually checked by comparing each message, which was repre-
sented by the requires relation between Roles in our instance and each node represented by
the node type Role in our instance with its properties, to the Conceptual View of Lammers'
MT Report [Cam24]. In Lammers’ MT Report we got 14 nodes, in our instance we got 14
Role nodes. For example the Role Password Resetter has the properties to have the stor-
age tag session storage, it is an Enforcement and Decision Point for the Password
Reset Policy and it has outgoing requires relations to the Password Policy Verifier
Role, Email Sender Role, Hash Manager Role, Token Manager Role and User Manager
Role. All these properties and relations can be seen in to validate that we correctly
instantiated the Password Resetter Role in our instance of the PBA. We did that with
every Role and also evaluated the message attribute in the requires relationship. As a
result, we conclude that we instantiated the data of the Conceptual View of PBA correctly
by manually checking it.

8.1.2. Data View

We manually checked the Data View by verifying that each variant of each element of
the Data View is present in our instance. For example, we checked whether we have ev-
ery Inherent Data Group, in Lammers’ MT report [[am?4] we have five Inherent Data
Groups: Password Reset Data, Registration Data, Initiate Email Change Data,

43

8. Case Study

MATCH (n)-[r]->(
WHERE n.nam

decisionPointFol nforcementPointFor"]
RETURN n, r, m

Graph Table Node details

hiash Passwo.
R rd Polic... { Rotc]

Key Value

<id> 4:73c09bd4-970c-4faa-973d- @
47ef746e72c6:7

controlled true ®

description "A Controlled Role that handle @
ementPointFor s ‘ s the password reset process.
Passwo- : P— Parffw"' e Si’ﬁs‘e'r DP[Password Reset]: Verifies t
rd... hat the email is in the expected
format, that the password a...
Show all

id “cv_Ol-pwr” =]
name "Password Resetter” =]

policyPoint ["ENFORCEMENT_POINT", "DE @
Ukar CISION_POINT"]
MToken Manage.. storageTag "SESSION_STORAGE"
lanager)

"PARTICIPANT"

Figure 8.1.: The Password Resetter Role with its Node details and outgoing relationships.

MATCH (n)-[r]->(m)

WHERE n.id ©1-ETURLD" AND type(r) IN ["has_DataField”, “uses_DataGroup"]
RETURN n, r, m

Graph Table Node details

NormalDataGroup

Value

4:73c09bd4-970c-4faa-973d-4 ©
7ef746e72c6:51

"dv_01-ETURLD"
(GEELED "EPHEMERAI

"Email Token URL Data"

"INTERNA

"NORMAL"

arted streamin fter 74 m: completed after 86 ms.

Figure 8.2.: The Email Token URL Data with the label Normal Data Group with its Node
details and outgoing relationships.

44

8.1. Test of PBA SP instance

Login Data and Email Change Token Session Data. All five of them are also instanti-
ated in our instance. Important to note here is that we also have captured in our instance
on which Data Group they inherit. Looking at the Password Reset Data, we see in Lam-
mers’ MT report [Lam?4] that it inherits from Password Management Data, which is also
instantiated like this in our instance by the relationship base_DataGroup from Password
Reset Data to Password Management Data. A further element with variants is the Data
Field, here we checked, for example, if we have instantiated every Transformation (Data)
Field, in Lammers’" MT report [Lam?4] we see that there are two Transformation (Data)
Fields: token_hash and password_hash. password_hash is present two times, but they
just differ from the heritage of the password Data Field, therefore we only instantiated it one
time, from which heritage the password Data Field comes is represented, by the relation-
ship has_DataField, the relationship references, which Data Group has which Data Field
and therefore, we can trace back the password Data Field heritage. Also important for the
Transformation (Data) Field is that we have instantiated the Function they use correctly. The
password_hash uses the Function password_hash in Lammers’ MT report [Lam?24]. We
have correctly instantiated this Function. For the token_hash Transformation (Data) Field
we have also instantiated the Function SHA-256 correctly. The Functions also have provided
Pseudocode in Lammers’ MT report [Lam?4], we provide that Pseudocode by using the
triple ", to keep the format of the Pseudocode untouched. After finishing the check of every
variants of elements in the Data View, we checked further elements, such as Data Rule, the
relationships and properties of every element of the Data View, for example the relationships
and properties of Email Token URL Data, we can see in Lammers’ MT report [Fam?4]
that it has Internal Data Origin, its Lifespan is Ephemeral, it has token as String and
email_token_endpoint as String as Data Fields and it uses Email Token Config Data,
because it has a Reference (Data) Field email_token_endpoint which comes from the
Email Token Config Data endpoint Data Field. All these relationships and properties
are correctly instantiated by our instance, as you can see in Figure 8.7. After finishing the
manual check, we can conclude that we have correctly instantiated the data of the Data
View of PBA in our instance.

8.1.3. Behavioral View

Here we counted the messages of each Behavioral Model (BM) and when we query the
complete Behavioral View the number of messages should add up perfectly, because the
Behavioral View contains each BM. In our case we have in the BM Registration 29
Sequence Behavioral Modeling Elements (SequenceBME) which correspond to a message,
this corresponds to the given modified Sequence Diagram of Lammers’ MT report [[am?4]
for the Registration BM. For the BM Login we have 15 SequenceBME, in Lammers’
MT report [Lam?4] we will count only 14 numbered messages, but in our instance we also
instantiated the "..." self-message from Token Manager which is our 15th message. The
BM Password Reset has 37 SequenceBME in our instance of the PBA. We have in the
BM Password Reset a self-message "..." from Token Manager which is not counted in
Lammers’ MT report [[Cam?4], but which is instantiated in our instance and therefore we
have one Sequence Behavioral Modeling Element more than stated in Lammers’ MT report

45

8. Case Study

MATCH (n)

WHERE n.id STARTS WITH "bv_e1"

OPTIONAL MATCH (n)-[r

WHERE type(r) IN ["cai ", "has_BehavioralView", "received”, "sent", "uses_DataElement"]
RETURN n, r, m

Graph Table RAW Results overview

Nodes (196)
@ AggregationDataGroup (1)

TransformationField (1)

Relationships (494)

m can_cause (48) has_BehavioralView (1)
received (131) sent (131)
uses_DataElement (183)

Started strea er 61 ms and completed after 208 ms.

Figure 8.3.: Number of SequenceBME in the Behavioral View.

[Cam?4]. In Lammers’ MT report [Lam?24] we have 47 messages in the Email Change
BM, in our instance we have 50 SequenceBME, because we have the already mentioned
self-message from Token Manager three times. Summing all SequenceBME from each BM
up leads to 131 SequenceBME which can also be seen in Figure 8-3. A further check of
elements in the Behavioral View were made by selecting a few random elements and checking
the correct instantiation of the required properties due to time restrictions. Therefore, we
manually checked whether we inserted the data of the Behavioral View of PBA correctly.

8.1.4. Structural View

For the Structural View we manually checked both Architectural Models (AMs) we have for
PBA. For the AM PBA Roles implemented, we picked a few random Component Architec-
tural Modeling Elements (CompAME) and Component AME Messages to check their proper-
ties and relationships. For example, the Password Security Component, in Lammers’ MT
report [Lam?4)] it implements the Password Policy Verifier Role, the Hash Manager
Role and the Hasher Role. It also receives four Component AME Messages, one from
the Login Controller, one from the Registration Controller, one from the Reset
Controller and one from the Email Change Controller. The Password Security
Component is part of the User Service Component, which is also needed to be instan-
tiated. We have instantiated all the properties of the Password Security Component
correctly in our instance of PBA as we can see in [Figure 8.4. For the AM User Login we
checked every element due to the small size of the UML Sequence Diagram. Important for
the Structural View is that we also have Structural Roles, these are elements that are used as
Participants or Components in AMs, but do not occur as Role in our Conceptual View due

46

8.1. Test of PBA SP instance

MATCH (n)-[r]

WHERE n.id = 1-am_ mp” AND type(r) IN [“implemented_Roles”, "re ", "component_isPart0f0therComponent”]
RETURN n, r, m AS g

UNION

MATCH (n:StructuralRole)-[r: -(m)

MATCH (m)-[k]-(h)

WHERE h. v_81-am_01-pwseccomp”

RETURN n, r, m AS g

Graph Table RAW Node details

sent Email
calculat- i
sh T Change
Value

i Login 4:73¢09bd4-970c-4faa-973d-4 ©
= \ " 7ef746672¢6:133

"COMPONENT" ©

Passwo-
rd Polic.

Hash
Manager
"sv_01-am_01-pwseccomp” =]
Reset

verify P Controll.. "Password Security Componen

passwo... t

Registra-
tion.

Figure 8.4.: The Password Security Component with its Node details and its relation-
ships.

MATCH (n ctural) RETURN n

Graph Table RAW &) () Results overview

Nodes (12)

m StructuralRole (12)

Token Reset Login
Vault M... Controll.... Controll...

Passwo-
rd...

Registra- Email Applicat- Security
ion

Login

tion.... Change... Controll

Token...

Figure 8.5.: The Structural Roles Nodes.

47

8. Case Study

to them not being a Role, but of relevance to be depicted in the Structural View, such as a
Service or a Store. Because of that, we also checked how many of these Structural Roles were
in the two AM in Lammers’ MT report [Lam?4] and counted them distinctly. We counted 12
in Lammers’ MT report: the Application, the Login Controller, the Security Token
Service, the User Store, the Registration Controller, the Reset Controller, the
Email Change Controller, the Email Token Store, the (Protected) Services, the
Email Service, the Password Service and the Token Vault Manager. All Structural
Roles are instantiated in our instance of the PBA as we can see in Figure 8.5. We manually
checked the Structural View and inserted the data of the Structural View of PBA correctly.

48

9. Discussion

In this thesis, our goal was to implement the SDPDM. We did that by implementing a
schema, as described in and by demonstrating the schema with an example SP
that was instantiated into the Neo4j database, as described in Ehapter 7. In this chapter,
we critically evaluate the implementation of the SDPDM. In addition, strengths, limitations,
and potential improvements of the approach are discussed.

9.1. How the SDPDM can be implemented in a graph
database

The research question of this thesis asks how a graph database can implement the SDPDM
while preserving its semantics and supporting its fundamental concepts. We answer this by
outlining the concrete mechanisms we used.

Using Neo4j together with the Neo4j GraphQL Toolbox, we mapped the SDPDM to a
schema that implements the viewpoint hierarchy, including all relevant elements, modeling
rules, and inter-view relationships. Concretely, we defined Neo4j GraphQL types that corre-
spond to nodes in Neo4j and relationship fields that correspond to relationships in Neo4j. We
specified constraints within the schema to enforce the required properties, value restrictions,
cardinalities, and relationship directions. We also instantiated an example SP, which served
as a schema validation. A targeted small case study then manually verified that the instan-
tiated SP conforms to the intended elements, relationships, and constraints, thus preserving
the semantics of the SDPDM for the example. To support usable access, we provide users
with Query Templates and a prototype Query Builder. Although the Query Builder does not
cover all the features needed, it already enables simple Cypher queries.

9.2. Limitations and Challenges

Neo4j was able to host the SDPDM, but several limitations became apparent during the
process.

First, there is the already mentioned restriction to Neo4j GraphQL Toolbox for data ma-
nipulation. Although this might not be concerning, it would be better in a usability context
to have one query language or tool for all CRUD operations. Non-experts can easily get
confused in the beginning and create data using Cypher queries instead of Neo4j GraphQL
mutations and by that make the SDPDM database not conform to the SDPDM.

Second, we were unable to test the UML activity diagram, and as we described in Ehapter 4,
the refinement of the schema is a crucial part for implementing a correct schema, as the first

49

9. Discussion

idea might not be the correct one. This is especially important because, for example, for
the elements of the views we had a strict and detailed description by Lammers’ MT report
[Cam?4], but for the view structure to be in a UML diagram style, we had to research the
UML standards and had to interpret them for the schema. This can lead to mistakes in the
implementation of the schema.

Third, the validation of the schema and the instantiated PBA SP were done manually
in a small case study. We declare the schema as correctly implemented and the PBA SP
instance as correct, but the manual validation is not substantive, as errors can occur during
verification. For the schema, it is also not representative to have only one instantiated SP,
since we might have only considered caveats in the schema implementation for this one SP
instance and not for all SPs in general.

Fourth, we proposed the ID structure workaround that is unusual for graph databases,
as we use an ID structure to get rid of high-level elements referencing their elements. The
problem about that is that it is not consistent because we have decided that for a chosen
number of elements to provide the ID structure, there are also elements that do not need
the ID structure, as they do not meet our requirement of possibly many relationships that
make the graph appear even more cluttered. Therefore, further data should be added with
caution, as the ID structure should remain consistent for further SPs instantiated in the
SDPDM database.

Fifth, the Query Builder does not satisfy all the important parts mentioned in Chapter .
To this point, we cannot query the introduced ID structure that we proposed in Chapter §.
Therefore, non-experts are able to view every view of the PBA SP through the Query
Templates, but the Query Builder for now is only capable of simple Cypher queries, as shown
in Ehapter .

Finally, the process of manually inserting SPs into the database involves a lot of effort, as
the scope of our example PBA SP is 286 nodes and 744 relationships. Considering that PBA
SP is a rather simple SP, as we declared it as such in Ehapter §, we underline the high effort
the instantiation of SPs has. This challenge highlights the potential value of developing a
tool or automation for SP instantiation and also highlights the need for a performance and
scalability test of the SDPDM database.

9.3. Methodological Reflection

The process we described in was appropriate for the implementation of the schema
and the instantiation of an example SP. The incremental approach was especially helpful as it
allowed us to extend the schema and validate the correctness of the schema by instantiating
examples in the database in small steps, and we were able to directly refine the schema
if necessary. The selection of Neo4j as graph database engine was appropriate. The only
restriction we had is that the constraints necessary for the implementation of the SDPDM
had to be done in the Neo4j GraphQL Toolbox. But with the Neo4j GraphQL Toolbox
we had a powerful tool to describe constraints in an efficient way and to insert, update,
and delete data with auto-generated mutations. The tool extended the Neo4j database and
made the work with the database more efficient. As we only considered Neo4j as a possible

50

9.3. Methodological Reflection

candidate, because it met our requirements and performed well in our feasibility analysis, we
do not have a reference to argue if another graph database, such as Microsoft Azure Cosmos
DB, would be a better option for the purpose of implementing the SDPDM.

51

10. Conclusion and Future Work

This chapter summarizes the methodology and results of this thesis and highlights the direc-
tions for future research and development.

10.1. Summary

The goal of this thesis was to implement the SDPDM. We have done that by proposing
an incremental approach to implement a schema and instantiating an example SP in the
database to demonstrate the correctness of the schema. The first step was to extract
technical requirements from the SDPDM that our graph database engine needed to meet.
Neodj was identified as a suitable graph database engine considering popularity and the
positive feasibility analysis outcome. After selecting a suitable SP, we proposed the process
of implementing the schema and instantiating the chosen SP. We implemented the schema
viewpoint per viewpoint and instantiated the SP by splitting it into functionally independent
parts. The development phase of the process was the initial step for creating the schema and
adding an initial view to the schema. The refinement phase added all remaining views until
sufficiently many were instantiated. It also refined the schema, if necessary. The concrete
implementation of the schema consisted of defining the schema according to the SDPDM.
We also implemented an ID structure to reduce relationships across the graph database.
The instantiation of the PBA SP served as a demonstration that the schema is correct. We
have shown examples of the instantiated PBA SP. As a last step, we answered the research
question of this thesis and highlighted key limitations and challenges.

10.2. Main contributions

The main contributions of this thesis are that we first formalized the SDPDM as a Neo4j
GraphQL schema and provided a reference implementation. This operationalization estab-
lishes a SDPDM conform way to create, collect, and review SPs, laying a foundation for
future research on SPs. Second, we present a fully instantiated Password-based Authenti-
cation security pattern (PBA SP) that demonstrates how to use the schema and database
in practice. Third, we conduct a small case study that manually validated both the schema
and the PBA SP instance.

10.3. Future work

The implemented schema, which represents the SDPDM serves as a solid foundation for
future work on persisting and collecting SPs. But there is still a need for improvement.

53

10. Conclusion and Future Work

Considering the usability of the database, future work needs to improve and extend the
Query Builder, as it enables the usage of the SDPDM database for non-experts. The impor-
tant aspects proposed in can serve as a guide to extend the Query Builder. There
should also be additional Query Templates for more SP instances, as they allow quick access
to views and the most important parts of the SP.

There is a need to reduce the effort of instantiating SPs in the database. We got a solid
foundation with the auto-generated GraphQL mutations from the Neo4j GraphQL Toolbox,
but a tool or automation of the instantiation would decrease the effort and allow for easier
extension of the database.

There is also the need to validate the schema and instantiated PBA SP in more detail,
we have manually verified the schema and PBA SP instance, but manual verification is not
substantive, as errors can occur during verification. For example, in future work a SP should
be chosen which consists of the UML activity diagram to test the schema to see whether it
is able to represent a UML activity diagram correctly. Further SP instances should be also
added to the database to test the scalability and performance of the database.

54

A. Appendix

A.1. Implementation of the ID structure

The following list shows the considered candidates which, instead of referencing their ele-
ments through relationships, do so in our schema implementation by using IDs. The top
level items in this list are the top level elements of the SDPDM. The low level items are then
the relationships that we canceled by using the ID structure.
= For the Conceptual View:
— has_Role

— has_Policy

= Data View:

— has_DataGroup

= Behavioral View:

— has_BehavioralModel

= Behavioral Model:

— has_BehavioralModelingElement

= Structural View:

— has_ArchitecturalModel

= Architectural Model:

— has_ArchitecturalModelingElement

The following list shows the ID structure for all elements in the schema. We understand
that not all elements used in the following list were introduced in this chapter to this point,
but for the purpose of keeping the ID structure in this format for future work on the SDPDM
database it is important to write down every special ID structure. To view every type
definition of the schema, we refer to the GitLab repository of the Query Builder, where all
database files and also the schema are part of.l The top level items are the names of the
elements, the low level items the id structure they should have. # is a number from 0-9 for
every # in this whole list.

= Conceptual, Data, Behavioral and Structural View

— xv_##

55

A. Appendix

— xis c,d,b or s for the corresponding first letter of the views name.

= Policy
— cv_##-p-name
— name is the name of the policy.

— p stands for policy.

is the number of the associated conceptual view.

= Role, Data Group, Data Field and Data Rule

— kv_##-name

k is either c (conceptual view) or d (data view).

— name is the name of the element.

is the number of the associated conceptual or data view.

= Behavioral and Architectural Model

hv_##-um_##

h stands for b (behavioral view) and s (structural view).

u stands for b (behavioral model) and a (architectural model).

the first ## is the number of the associated behavioral or structural view.

= SequenceBehavioralModelingElement and SequenceArchitecturalModelingElement

— hv_##-um_##-##

h stands for b (behavioral view) and s (structural view).

u stands for b (behavioral model) and a (architectural model).

the first ## is the number of the associated behavioral or structural view.

the second ## is the number of the associated behavioral or architectural model.

= [nteractionBlock

— block##

= |nteractionBlockPart
— block##_part##

— the first ## is the number of the associated block it is a part of.
= ComponentArchitecturalModelingElement

— sv_##-am_##-name

— the first ## is the number of the associated structural view.

— the second ## is the number of the associated architectural model.

56

A.2. How to build concrete Instances?

name is the name of the component.

special case: sv_##t—am_##-## name

the third ## references the elements which are only able to implement a role in
this combination.

if part of multiple of these combination then of structure: sv##-am_##-##_. ..
_##_name
= StructuralRole

— name

— name stands for the name of the structural role.

— special case: ##_name

the first ## references the elements which are only able to implement a role in
this combination.

— if part of multiple of these combination then of structure: ##_..._##_name

= ComponentAMEMessage
— sv_##-am_##-M##

the first ## is the number of the associated structural view.

the second ## is the number of the associated architectural model.

M stands for message.

A.2. How to build concrete Instances?

In this section, we explain how to build concrete instances using the schema created in
D 0.

To create, update, and delete data in our database, we use the Neo4j GraphQL Toolbox.
To read data, we use Cypher. To build Cypher queries, we can also use the Query Builder.
In the GitLab repository of the Query Builder, we can also find the SDPDM schema and an
export of the SDPDM database from Neo4j with the instantiated example SP. There is also
a description on how to use all the proposed tools, for example, also a description on how
to use the Neo4j GraphQL Toolbox, as we do here now.l

To use the Neo4j GraphQL Toolbox we first need to log in with "Neo4j" as user and the
connection URL and password from our database. This only holds if we did not change the
default user and if we use a Neo4j database. To be able to use the schema that we built in
Ehapter d, we need to build the schema in the Neo4j GraphQL Toolbox. After that we can
choose to build and execute Queries or Mutations. In our case, we only need the GraphQL
mutations, as they allow us to create, update, and delete data for our database [Neo25d].
We can select every type defined in the Explorer on the left side of the screen to use an
auto-generated mutation for creation, update, and deletion of this type. When we choose,

57

A. Appendix

¥ createRoles
* input®
abstract: true
controlled* falze v
» decisionPointFor
description
» enforcementPointFor:
id™role
» informationPointFor:

» messagesReceived:
» messagesSent:
name*:"Role Hello World
& policyPoint: DECISION_POINT
» requiredRole:
v requires:
¥ connect:
» connect:
v edge®:

(4 message*:"Hello World, Ro

¥ where
* node™
» AND:
» NOT:
r OR
» abstract
abstract_EQ

query.graphgl

Hello World™
: false

1

¥

r

L

info {
nodesCreated

relationshipsCreated

Figure A.1.: An example create mutation in the Neo4j GraphQL Toolbox.

v updateRoles
¥ update:
» abstract:
abstract_SET:
» controlled:
controlled_SET:
v decisionPointFor:
w connect
v where
v node™:
» AND
» NOT.
» OR
» description:
description_CONTAINS:
description_ENDS_WITH
description_EQ
description_IN:
description_STARTS_WI
vid:§
contains:
endsWith:
eq:policy1
in
startsWith:

query.graphql

mutation L
updateRoles(
where: { id: { "rolel™ } }
update

1
i
I
L
info {

nodesCreated

relationshipsCreated

Figure A.2.: An example update mutation in the Neo4j GraphQL Toolbox.

58

A.2. How to build concrete Instances?

v deleteRoles
v delete

query.graphgl

¥ decisionPointFor
¥ where: mutation My
» AND

» NOT:

» OR. de e: or: { where: { node: { id: { eq: "policyl™ } } } } }
¥ node:
» AND: nodesDeleted
» NOT: relationshipsDeleted
» OR:
» description: updateRoles(
description_CONTAINS: where: { id: { " S
description_ENDS_WITH u e: { poli t: { pop: DECISION POINT } }
description_EQ
description_IN: infe {
description_STARTS_WITk nodesCreated
vid: 5 relationshipsCreated

1
contains !
endsWith:

Eeq: 5 policy1

1
¥

1
I

Figure A.3.: An example delete and update mutation in the Neo4j GraphQL Toolbox.

for example, to create a Role, we then see the properties and relationships that the type
Role can have. We can insert values into the properties and connect to other nodes in the
database, by, for example, using the id of another Role to connect the requires relationship.
We use a running example in the following description on how to use the three mutation
types in the Neo4j GraphQL Toolbox that is introduced in the following. We have two Roles,
the first Role is the Hello World Role which says "Hello World!" to the other Role. The
Hello World Role is not a policy point for any Policy.

In we can see an example of the explained creation of a Role with the name
Role Hello World. It connects a relationship to the Role with the id role2 and its message
to role2 is "Hello World, Role2!". In we can also see the Explorer on the
left side, which shows every valid property or relationship for a type Role. As we can see
in Figure A1 we defined the Role Hello World as DECISION_POINT. But we forgot to
connect a relationship to a Policy declaring to which Policy the Role Hello World is a
decision point. For this purpose, we can use the update mutation. In we see
an update mutation where we connect our Role Hello World by referencing it with its id
rolel to the Policy with the id policy1 to declare that the Role Hello World is a decision
point for the Policy with the id policyl. When we get to the case where we have to delete a
property, relationship, or a complete node from the database, we can use the delete mutation.
In our example case, we remember in our example specification that the Role Hello World
Role is not a decision point for the Policy with the id policy1l, as it is not a policy point
for any Policy. In this case, we need to delete the relationship decisionPointFor between
Role Role Hello World and the Policy with the id policyl. But we also need to delete
the entry DECISION_POINT in property policyPoint for the Role Role Hello World, we
can do that by using an update mutation. In the Neo4j GraphQL Toolbox we are able to
concatenate multiple mutations, as we can see in Figure A.3. When we execute the mutation,
we get a response.json on the right side of the window. It shows the name of the action

59

A. Appendix

and the chosen information, requiring at least one information to be selected. An info is,
for example, how much nodes got created by executing the mutation. The purpose of this
example is to explain the use of auto-generated Neo4j GraphQL mutations. Although it is
not specific to creating SPs, the approach can be adapted to instantiate an SP and to carry
out data manipulation in the database.

A.3. Neodj GraphQL Mutation Examples

In this section, we show example Neo4j GraphQL mutations, which are instantiating concrete
parts of the PBA SP.

In Figure A4, we see a create mutation in the Neo4j GraphQL Toolbox. It creates the
Conceptual View node with the corresponding ID structure introduced in chapter 8. The
newly created view node gets connected with the PBA SP node which can be seen in
the update mutation. We also see the creation of one of the four Policy nodes which are
contained in the Conceptual View, here it is the Password Reset Policy also with the
corresponding ID structure.

In Figure A’H, two nodes with the type Role get created, namely the Password Resetter
and Password Policy Verifier Roles. We can see the properties of the Roles and also
the update mutation, which connects both Roles, by creating a relationship of the type
requires from the Password Resetter Role to the Password Policy Verifier Role.
The relationship contains a message stating that the Password Policy Verifier Role
should validate the password strength for the Password Resetter Role.

In we can see the mutation for the SHA-256 node of the type Function.
Important to note here is that we need to use the triple " to preserve the format of the
pseudocode. The way this property looks in the Neo4j graph database can be seen in

60

A.3. Neo4j GraphQL Mutation Examples

query.graphgl

mutation M tata {
createConceptualViews(

info {
nodesCreated

relationshipsCreated

: {
: "cv_01-p-pw-reset”
Password Reset"
tion: """The user initiates the password reset by providing the email address associated
with the registered account.[...]"""

1
J
) £

info {

-

nodesCreated
relationshipsCreated
}
updateSecurityPatterns(
where: { name: { eq: "Single-Factor Password-based Authentication™ } }
upda

info {
nodesCreated

relationshipsCreated

Figure A.4.: The Neo4j GraphQL mutation to instantiate the Password Based Authen-
tication Conceptual View and the Password Reset Policy. The PBA Secu-
rityPattern node gets also its relationship to the new Conceptual View node.

61

A. Appendix

query.graphgl

mutation
createRoles(

input: [

A Controlled Role that handles the password reset process.[...]"
[DECISION POINT, ENFORCEMENT POINT]
eTag: SESSION_STORAGE

: "ecv_01-ppv"
ssword Policy Verifie

A Controlled Role that verifies that a provided password meets the minimum password requirements."
DECISION_POINT

info {
nodesCreated

relationshipsCreated

updateRoles(

where: { id: { eq: “cv_01-pwr™ } }

: "validate password strength™ }

{ id: { "cv_81-ppv" } } }

info {
nodesCreated

relationshipsCreated

Figure A.5.: The Neodj GraphQL mutation to instantiate the Password Resetter and
Password Policy Verifier Role with their requires relationship.

62

A.3. Neo4j GraphQL Mutation Examples

query.graphgl

mutation utation {
createFunctions(
input: {
name: “SHA-256"
function_input: "EmailTokenURLData.token"
examples:
import hashlib

input =
sha256_hash = hashlib.sha256(input.encode(utf-8'))
hash_dig = sha256_hash.hexdigest()
examples_type: "Pseudocode"

}

) A

info {
nodesCreated
relationshipsCreated

Figure A.6.: The mutation to create the SHA-256 Function node with the triple ", to keep
the Pseudocode in the correct format.

63

Bibliography

[Cyb22]

[DB-25a]

[DB-25b]

[DJS19]

[DSC16]

[Fer13]

[Gon+18]

[Gra25]

[Hey+07]

[Jum?25]

Cybersecurity Ventures. Cybercrime To Cost The World 8 Trillion Annually In
2023. https://cybersecurityventures.com/cybercrime-to-cost-the-
world-8-trillion-annually-in-2023/. Accessed: 2025-04-23. Oct. 2022
(cit. on p.).

DB-Engines. DB-Engines Ranking of Graph DBMS. https://db-engines.co
m/en/ranking/graph+dbms. Accessed: 2025-08-24. Ranking updated monthly.
2025 (cit. on p. 2I).

DB-Engines. Method of calculating the scores of the DB-Engines Ranking. http
s://db-engines.com/en/ranking definition. Accessed: 2025-08-24. 2025
(cit. on p.).

D. Deogun, D. B. Johnsson, and D. Sawano. Secure By Design. 1st. Manning
Publications, 2019. 1SBN: 978-1-61729-435-8 (cit. on p. [).

G. Daniel, G. Sunyé, and J. Cabot. "UMLtoGraphDB: Mapping Conceptual
Schemas to Graph Databases.” In: Conceptual Modeling (ER 2016). Vol. 9974.
Lecture Notes in Computer Science. Springer, 2016, pp. 430—444. DOI: FO100
7/978-3-319-46397-1 33 (cit. on pp. B, 0).

E. Fernandez-Buglioni. Security Patterns in Practice: Designing Secure Archi-
tectures Using Software Patterns. Wiley Software Patterns Series. Wiley, 2013.
ISBN: 9781119998945 (cit. on p. H).

F. Gong et al. “Neo4j graph database realizes efficient storage performance of
oilfield ontology.” In: PLOS ONE 13.11 (Nov. 2018), pp. 1-16. DOIL: 101371
/journal .pone.0207595. URL: https://doi.org/10.1371/journal.pone
~0207595 (cit. on p. B).

GraphQL Foundation. Introduction to GraphQL. https://graphql.org/lear
n/. Accessed: 2025-09-18. GraphQL Foundation, 2025 (cit. on p. 22).

T. Heyman et al. "An Analysis of the Security Patterns Landscape.” In: Proceed-
ings of the Third International Workshop on Software Engineering for Secure
Systems (SESS'07), in conjunction with ICSE 2007. |EEE Computer Society,
2007, pp. 3-10. 1SBN: 0-7695-2952-6. DOI: 10.1109/SESS . 2007 . 4 (Cit. on
p. B).

JumpCloud. Multi-Factor Authentication Statistics. https://jumpcloud. com
/blog/multi-factor-authentication-statistics. Accessed: 2025-08-29.
JumpCloud Inc., 2025 (cit. on p. P9).

65

https://cybersecurityventures.com/cybercrime-to-cost-the-world-8-trillion-annually-in-2023/
https://cybersecurityventures.com/cybercrime-to-cost-the-world-8-trillion-annually-in-2023/
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking_definition
https://db-engines.com/en/ranking_definition
https://doi.org/10.1007/978-3-319-46397-1_33
https://doi.org/10.1007/978-3-319-46397-1_33
https://doi.org/10.1371/journal.pone.0207595
https://doi.org/10.1371/journal.pone.0207595
https://doi.org/10.1371/journal.pone.0207595
https://doi.org/10.1371/journal.pone.0207595
https://graphql.org/learn/
https://graphql.org/learn/
https://doi.org/10.1109/SESS.2007.4
https://jumpcloud.com/blog/multi-factor-authentication-statistics
https://jumpcloud.com/blog/multi-factor-authentication-statistics

Bibliography

[Lam?24]

[LPK23]

[Neo25a]

[Neo25b]
[Neo25c]

[Neo25d]

[Neo25e]

[Neo25f]

[Neo25g]

[Neo25h]

[NISO06]

[OWA21]

[RQS12]

66

D. Lammers. Conception of a Security Design Pattern Catalog for Constraint-
based Recommender Systems. https://swc.rwth-aachen.de/theses/conc
eption-of-a-security-design-pattern-catalog-for-constraint-bas
ed-recommender-systems/. Mar. 2024 (cit. on pp. I-3, §, B-I8, 09, X3, 3,

S. Lazarova, D. Petrova-Antonova, and T. Kunchev. “Ontology-Driven Knowl-
edge Sharing in Alzheimers Disease Research.” In: Information 14.3 (2023),
p. 188. por: 10.3390/info14030188. URL: https://doi.org/10.3390
/info014030188 (cit. on p. B).

Neodj. Graph database concepts. https://neodj.com/docs/getting-star
ted/appendix/graphdb-concepts/. Accessed: 2025-08-24. Neo4j, Inc., 2025
(cit. on pp. £, 23).

Neodj. Neo4j AuraDB (Classic). https://neo4j.com/docs/aura/classic/a
uradb/. Accessed: 2025-09-18. Neo4j, Inc., 2025 (cit. on p. 29).

Neodj. Neodj GraphQL Library Introduction. https://neodj.com/docs/gra
phgl/current/. Accessed: 2025-09-18. Neo4j, Inc., 2025 (cit. on p. P2).

Neodj. Neo4j GraphQL Library: Mutations. https://neo4j.com/docs/grap
hgl/current/mutations/. Accessed: 2025-08-26. Neo4j, Inc., 2025 (cit. on
pp. 3, B3).

Neodj. Neo4j GraphQL Library: Toolbox. https://neod].com/docs/graphq
1/current/getting-started/toolbox/. Accessed: 2025-08-26. Neo4j, Inc.,
2025 (cit. on pp. 22, 23).

Neodj. What is a graph database. https://neo4j.com/docs/getting-start
ed/graph-database/. Accessed: 2025-09-18. Neo4j, Inc., 2025 (cit. on p.).

Neodj. What is Cypher. https://neodi.com/docs/getting-started/cyph
er/. Accessed: 2025-09-18. Neo4j, Inc., 2025 (cit. on p. P2).

Neodj. What is Neo4j? https://neodj.com/docs/getting-started/whats
-neo4j/. Accessed: 2025-09-18. Neo4j, Inc., 2025 (cit. on p. E).

NIST. Minimum security requirements for federal information and information
systems. U.S. Department of Commerce, Gaithersburg, MD, Tech. Rep. FIPS
PUB 200. https://csrc.nist.gov/publications/detail/fips/200/fin
al. Mar. 2006 (cit. on p. B).

OWASP Foundation. OWASP Top Ten 2021 — A04:2021-Insecure Design. Ac-
cessed: 2025-09-15. 2021. URL: https://owasp.org/Top10/A04_2021-Inse
cure Design/ (cit. on p.).

C. Rupp, S. Queins, and die SOPHISTen. UML 2 glasklar: Praxiswissen fiir

die UML-Modellierung. 4., aktualisierte und erweiterte Auflage. Miinchen: Carl
Hanser Verlag, 2012, p. 580. 1sBN: 978-3-446-43057-0 (cit. on p. B2).

https://swc.rwth-aachen.de/theses/conception-of-a-security-design-pattern-catalog-for-constraint-based-recommender-systems/
https://swc.rwth-aachen.de/theses/conception-of-a-security-design-pattern-catalog-for-constraint-based-recommender-systems/
https://swc.rwth-aachen.de/theses/conception-of-a-security-design-pattern-catalog-for-constraint-based-recommender-systems/
https://doi.org/10.3390/info14030188
https://doi.org/10.3390/info14030188
https://doi.org/10.3390/info14030188
https://neo4j.com/docs/getting-started/appendix/graphdb-concepts/
https://neo4j.com/docs/getting-started/appendix/graphdb-concepts/
https://neo4j.com/docs/aura/classic/auradb/
https://neo4j.com/docs/aura/classic/auradb/
https://neo4j.com/docs/graphql/current/
https://neo4j.com/docs/graphql/current/
https://neo4j.com/docs/graphql/current/mutations/
https://neo4j.com/docs/graphql/current/mutations/
https://neo4j.com/docs/graphql/current/getting-started/toolbox/
https://neo4j.com/docs/graphql/current/getting-started/toolbox/
https://neo4j.com/docs/getting-started/graph-database/
https://neo4j.com/docs/getting-started/graph-database/
https://neo4j.com/docs/getting-started/cypher/
https://neo4j.com/docs/getting-started/cypher/
https://neo4j.com/docs/getting-started/whats-neo4j/
https://neo4j.com/docs/getting-started/whats-neo4j/
https://csrc.nist.gov/publications/detail/fips/200/final
https://csrc.nist.gov/publications/detail/fips/200/final
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/Top10/A04_2021-Insecure_Design/

Bibliography

[RW11]

[Sch+06]

[Seh25]

[SLL25]

[SLP24]

[Sof23]

[vYJ22]

[YB]

N. Rozanski and E. Woods. Software Systems Architecture: Working with Stake-
holders Using Viewpoints and Perspectives. Addison-Wesley, 2011. 1SBN: 978-0-
13-290612-8 (cit. on pp. [, [2).

M. Schumacher et al. Security Patterns: Integrating Security and Systems En-
gineering. Wiley Software Patterns Series. Wiley, 2006. 1SBN: 9780470858844
(cit. on p. B).

J. Sehbaoui. “Development of a Graphical User Interface for Viewpoint-based
Security Design Pattern Descriptions.” expected to be published in 2025. 2025
(cit. on p. B).

A. R. Sabau, D. Lammers, and H. Lichter. SecuRe — An Approach to Recom-
mending Security Design Patterns. 2025. arXiv: 2501 .14973 Tcs.SEl. URL:
https://arxiv.org/abs/2501.14973 (cit. on pp. O, B, [, IT).

I. Spasov, S. Lazarova, and D. Petrova-Antonova. “Alzheimers Disease Knowl-
edge Graph Based on Ontology and Neo4j Graph Database.” In: Proceedings
of Data Analytics and Management (ICDAM 2023). Ed. by A. Swaroop et al.
Vol. 785. Lecture Notes in Networks and Systems. Springer, 2024, pp. 71-80.
DOI: 10.1007/978-981-99-6544-1 6. URL: https://link.springer.com
/chapter/10.1007/978-981-99-6544-1 6 (cit. on p. B).

Software Construction, RWTH Aachen University. SCAM — Security-Centric Ar-
chitecture Modelling. https://swc.rwth-aachen.de/research/projects/s
cam-security-centric-architecture-modelling/. Accessed: 2025-09-15.
Project description. 2023 (cit. on p.).

A. van den Berghe, K. Yskout, and W. Joosen. “A Reimagined Catalogue of Soft-
ware Security Patterns.” In: Proceedings of the 3rd International Workshop on
Engineering and Cybersecurity of Critical Systems (EnCyCriS '22). Association
for Computing Machinery, 2022, pp. 25-32. por: 10.1145/3524489.3527301
(cit. on p. B).

J. W. Yoder and J. Barcalow. Architectural patterns for enabling application
security. in 4th Pattern Languages of Programming Conference. https://wu
w . plopcon . org/pastplops/plop97/Proceedings/yoder . pdf 3-5 Sept.
1997 (cit. on p. @).

67

https://arxiv.org/abs/2501.14973
https://arxiv.org/abs/2501.14973
https://doi.org/10.1007/978-981-99-6544-1_6
https://link.springer.com/chapter/10.1007/978-981-99-6544-1_6
https://link.springer.com/chapter/10.1007/978-981-99-6544-1_6
https://swc.rwth-aachen.de/research/projects/scam-security-centric-architecture-modelling/
https://swc.rwth-aachen.de/research/projects/scam-security-centric-architecture-modelling/
https://doi.org/10.1145/3524489.3527301
https://www.plopcon.org/pastplops/plop97/Proceedings/yoder.pdf
https://www.plopcon.org/pastplops/plop97/Proceedings/yoder.pdf

	Introduction
	Contribution
	Research Question
	Thesis structure

	Related Work
	The Security Design Pattern Description Metamodel (SDPDM)
	Sehbaoui's Bachelor Thesis
	Ontologies and Conceptual Metamodels on Graph Databases

	Theoretical Foundation
	Security Pattern
	Security Design Pattern Description Metamodel (SDPDM)
	Inter-view Relationships
	Password-based Authentication Security Pattern (PBA SP)

	Methodology
	Technical Requirements
	SDPDM Implementation
	Case Study Process

	Neo4j Graph Database
	Why Neo4j?
	Query Builder
	Technology Landscape
	Change of the SDPDM

	Implementation
	Technologies
	Password-based Authentication (PBA) as a Suitable Security Pattern
	Implementation of the Schema
	Implementation of ID structure
	Query Builder

	Demonstration
	Instantiating PBA SP
	Query Templates

	Case Study
	Test of PBA SP instance

	Discussion
	How the SDPDM can be implemented in a graph database
	Limitations and Challenges
	Methodological Reflection

	Conclusion and Future Work
	Summary
	Main contributions
	Future work

	Appendix
	Implementation of the ID structure
	How to build concrete Instances?
	Neo4j GraphQL Mutation Examples

	Bibliography

