
QuASoQ 2020
8th International Workshop on
Quantitative Approaches to Software Quality

co‐located with APSEC 2020
Singapore, December 1st , 2020

Editors:

Horst Lichter, RWTH Aachen University, Germany
Selin Aydin, RWTH Aachen University, Germany
Thanwadee Sunetnanta, Mahidol University, Thailand
Toni Anwar, University Petronas, Malaysia

PREPRINT

Table of Content

Sousuke Amasaki
Augmenting Window Contents with Transfer Learning for Effort Estimation

Syed Fatiul Huq, Md. Aquib Azmain, Nadia Nahar and Md. Nurul Ahad Tawhid
On the Evolutionary Properties of Fix Inducing Changes

Alejandra Duque‐Torres, Dietmar Pfahl, Anastasiia Shalygina and Rudolf Ramler
Using Rule Mining for Automatic Test Oracle Generation

Konrad Fögen and Horst Lichter
An Industrial Case Study on Fault Detection Effectiveness of Combinatorial
Robustness Testing

Azeem Ahmad, Ola Leifler and Kristian Sandahl
An Evaluation of Machine Learning Methods for Predicting Flaky Tests

Barry‐Detlef Lehmann, Peter Alexander, Horst Lichter and Simon Hacks:
Towards the Identification of Process Anti‐Patterns in Enterprise Architecture
Models

Benyamin Shafabakhsh, Robert Lagerström and Simon Hacks
Evaluating the Impact of Inter Process Communication in Microservice Architectures

Toukir Ahammed, Moumita Asad and Kazi Sakib
Understanding the Involvement of Developers in Missing Link Community Smell: An
exploratory Study on Apache Projects

Hina Anwar, Iffat Fatima, Dietmar Pfahl and Usman Qamar
Detection and Correction of Android‐specific Code Smells and Energy Bugs: An
Android Lint Extension

Kristiina Rahkema and Dietmar Pfahl
Comparison of Code Smells in iOS and Android Applications

Augmenting Window Contents with Transfer Learning
for Effort Estimation
Sousuke Amasakia

aOkayama Prefectural University, 111 Kuboki, Soja, 719-1197, Japan

Abstract
BACKGROUND: Some studies showed filtering out old completed projects with a window was effective for preparing a train-
ing dataset of an effort estimation model. Other studies showed selecting completed projects similar to a target project was
also effective. The application of the similarity-based selection after the windowing approach was failed to synthesize their
effects. The shortage of similar projects in the windowed pool was a potential cause of the failure. AIMS: To examine whether
augmenting the window pool is effective to improve the estimation accuracy. METHOD: The moving windows approach was
used for preparing a window pool. The similarity-based selection was applied to augment the pool. The selection assumes
that projects in the pool form a set of virtual target projects. Old projects outside the pool were assumed to form a set of
cross-company projects to be selected. The empirical study with a single-company ISBSG data was conducted to evaluate
the effect. RESULTS: A positive synergistic effect was observed. The augmented window could synthesize the windowing
approach and the similarity-based selection. It could also be combined with the similarity-based selection without perfor-
mance degradation. CONCLUSIONS: Practitioners should consider adding projects similar to recently completed projects
when effort estimation is based on historical data.

Keywords
effort estimation, moving windows, augmenting windows

1. Introduction
The success of software projects relies on many fac-
tors. The accuracy of software effort estimation is an
serious influential factor at early project phase. Over-
estimation and underestimation have caused serious
consequences for decades. Researchers have studied
data-driven software effort estimation models while
experts’ judgment is still a primary choice in actual.
The accuracy of the software effort estimation models
is considered insufficient among not a few managers.

Software effort estimation models are affected by
the adequacy of historical data from past projects. For
instance, an organization’s productivity is not station-
ary nor monotonic due to changes in the environment
and the organization itself. Inaccurate effort estima-
tion models would be obtained with the historical data
that might not reflect the present productivity. A key
to accurate software effort estimation is to prepare his-
torical data that reflect the characteristics of a target
project to be estimated.

A past study [1] examined two filtering techniques,
namely, chronological filtering and relevancy filtering.
The chronological filtering [2] removes too old project
data. The relevancy filtering [3] removes dissimilar

QuASoQ 2020: 8th International Workshop on Quantitative
Approaches to Software Quality, December 01, 2020, Singapore
email: amasaki@cse.oka-pu.ac.jp (S. Amasaki)
orcid: 0000-0001-8763-3457 (S. Amasaki)

© 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

project data regarding metrics used for estimation. The
study found that the combination of those techniques
might be worse than the independent application.

The negative synergistic effect can be reasoned, at
least, in two aspects. First, the relevancy filtering was
applied after applying the chronological filtering. The
chronological filtering does not care about feature vari-
ables and may select a subset that does not hold enough
projects similar to a target project. It would be better
to augment the subset with old but resemble projects
using the relevancy filtering. Second, the simple aver-
age and median were used as effort estimation models
as discussed in [1]. The simple models only used the
effort variable for estimation and were insensitive to
the change in the distribution of feature variables af-
ter the relevancy filtering.

This paper proposed an augmented chronological
filtering based on the chronological filtering and the
relevancy filtering. Its effects were investigated with
a software effort estimation model using feature vari-
ables, in addition to the simple average and median
models. The augmented filtering was also evaluated
as alternative chronological filtering in the past com-
bination method. The following questions were asked:

RQ1: Does augmenting moving windows with a rele-
vancy filtering affects the estimation accuracy?

RQ2: Does using the augmentation as a chronologi-
cal filtering affect the estimation accuracy of the
past combination method?

mailto:amasaki@cse.oka-pu.ac.jp
https://orcid.org/0000-0001-8763-3457
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Related Work

2.1. Chronological Filtering
Although research in software effort estimation mod-
els has a long history, relatively few studies have taken
into consideration the chronological order of projects.
Therefore, chronological filtering has not been studied
well compared with other topics in effort estimation.

To our knowledge, Kitchenham et al. [4] were first
to suggest the use of chronological filtering. They built
four linear regression models with four subsets, each
of which comprised projects from different ranges of
time duration. As the coefficients of the models were
different from each other, they allowed to drop out
older project data. Lokan and Mendes [2] were the first
to study the effect of using moving windows in detail.
They used linear regression (LR) models and a single-
company dataset from the ISBSG repository. Training
sets were defined to be the 𝑁 most recently completed
projects. They found that the use of a window could
affect accuracy significantly; predictive accuracy was
better with larger windows; some window sizes were
particularly effective. Amasaki and Lokan also inves-
tigated the effect of using moving windows with Esti-
mation by Analogy [5] and CART [6]. They found that
moving windows could improve the estimation accu-
racy, but the effect was different than with LR.

Recent studies showed the effect and its extent could
be affected by windowing policies [7] and software or-
ganizations [8]. Lokan and Mendes [7] investigated
the effect on accuracy when using moving windows of
various ranges of time duration to form training sets
on which to base effort estimates. They also showed
that the use of windows based on duration could affect
the accuracy of estimates, but to a lesser extent than
windows based on a fixed number of projects [8].

2.2. Relevancy Filtering
Relevancy filtering is a type of transfer learning ap-
proach. While many filtering approaches have been
proposed for cross-project defect prediction (e.g., [9]),
a few studies on cross-company effort estimation have
evaluated the effects of relevancy filtering approaches.

Turhan and Mendes [3] applied brings a so-called
NN-filter [10] to cross-company effort estimation of
web projects. They showed that an estimation model
based on raw cross-company data was worse than that
based on within-company data but was improved as
comparable one by using the NN-filter. Kocaguneli et
al. [11, 12, 13] also introduced a transfer learning ap-
proach called TEAK for improving cross-company ef-

fort estimation. They applied it to transfer old project
to a new project and found that TEAK was effective
not only for cross-company effort estimation but also
for cross-time effort estimation [14].

NN-filter is based on a nearest neighbor algorithm.
In that sense, a study by Amasaki and Lokan [5] can
be considered an evaluation study of the combination
of the relevancy filtering and the chronological filter-
ing. In that study, the combination worked well to im-
prove estimation accuracy for a narrow range of win-
dow sizes. While that study used a wrapper approach
for feature selection and logarithmic transformation in
addition to the nearest neighbor algorithm, our study
aims to explore the effects of the combination with-
out such complicated factors. For that purpose, we
adopted two simple estimation techniques that were
not adopted in [5], described in the next section.

3. Methodology

3.1. Effort Estimation Techniques
In [1], average and median were used as software ef-
fort estimation models. The average was adopted be-
cause it uses the whole training set and is sensitive to
the distribution of effort values in the training set. The
median was adopted because it is robust to the distri-
bution and contrasts with the average. These models
estimate efforts without adjustments based on feature
variables of projects.

To examine the difference in the use of feature vari-
ables in software effort estimation, we also adopted
Lasso [15] for our experiment. Lasso is a kind of pe-
nalized linear regression models. Past studies on the
chronological filtering used Lasso and showed that the
chronological filtering was effective with it. Our ex-
periment used LassoLarsIC of scikit-learn library.

3.2. Chronological Filtering
This study adopted fixed-size moving windows [2] and
fixed-duration moving windows [8]. The latest 𝑁 fin-
ished projects were selected as a training set by the
fixed-size moving windows. The fixed-duration mov-
ing windows selected the latest projects finished within
𝑁 months. As 𝑁 influences on the effectiveness of
moving windows, we explored various values as well
as past studies.

3.3. Relevancy Filtering
This study used a nearest neighbor algorithm as a rele-
vancy filtering approach. It is also called NN-filter [10].

The procedure of NN-filter is as follows:

1. Select 𝑘 closest instances of history data to each
instance of target project data in terms of un-
weighted Euclidean distance.

2. Combine the selected instances without dupli-
cation.

Note that each feature of project data was normalized
with min-max normalization before the distance cal-
culation.

As the synergistic effect could be observed with ef-
fective filtering, the relevancy filtering had to be con-
figured as effective. For average and mean effort esti-
mation models, we roughly fixed 𝑘 = 3, which is the
smallest number which can make average and median
estimations give distinct efforts. For lasso, we roughly
fixed 𝑘 = 10, half of the minimum of the window sizes
we explored. In general, increasing 𝑘 would lead to
worse estimation if NN-filter works well. Hence, these
values could not be the best but were expected more
reasonable than larger 𝑘s.

3.4. Augmentation
The augmentation adds old projects selected by the
relevancy filtering into a subset obtained by the chrono-
logical filtering as follows:

1. Recently completed projects are selected with
the moving windows approach.

2. NN-filter is applied to select projects from the
remained old projects. The most similar project
to each project of the recently completed projects
is selected. The set of selected projects has no
duplicate.

3. The selected projects and the recently completed
projects are combined.

4. The combined projects are used to train a soft-
ware effort estimation model.

Note that NN-filter uses the effort variable in addition
to feature variables. As efforts of the past projects are
known, it is possible to use the effort variable in the
augmentation process.

The augmentation shares the same assumption as
the chronological filtering that the recently completed
projects resemble a target project to be estimated. Re-
sults of NN-filter are also expected to pretend to be as
fresh as the recently completed projects. Therefore,
the selected projects are considered to keep the simi-
larity to the target project.

3.5. Combination
The combination of the chronological filtering and the
relevancy filtering was investigated in [1]. The chrono-
logical filtering and the relevancy filtering were com-
bined as follows:

1. Recently completed projects are selected with
the moving windows approach. The remained
old projects are discarded.

2. NN-filter is applied to select projects from the
recently completed projects. The selected projects
resemble a target project to be estimated.

3. The selected projects are used to train a software
effort estimation model.

The combination method was found less effective than
each of the filtering methods in [1] with mean and me-
dian models.

The augmentation can be considered a variation of
moving windows approach while it is a way to com-
bine moving windows and NN-filter. In this paper,
this combination was also examined using a subset ob-
tained by the augmentation. As the augmentation has
more projects, NN-filter might bring better neighbors
from an augmented subset.

3.6. Experiment procedure
As the chronological filtering relies on the time prox-
imity, our experiment needs to assume a situation that
a development organization needs to respond to con-
tinuously coming new projects. The size of windows
influences on where our experiment starts. As same as
the past studies, our experiment with a specific win-
dow size was conducted as follows:

1. Sort all projects by starting date.
2. For a given window size𝑁 , find the earliest project

𝑝0 for which at least 𝑁 + 1 projects were com-
pleted prior to the start of 𝑝0 (projects from 𝑝0
onwards are the ones whose training set is af-
fected by using a window, so they form the set
of evaluation projects for this window size. For
example, with a window of 20 projects, at least
21 projects must have finished for the window
to differ from the growing portfolio.)

3. For every project 𝑝𝑖 in chronological sequence,
starting from 𝑝0, form a training set using mov-
ing windows and the growing portfolio (all com-
pleted projects).

• For no filtering, the training set is all projects
that finished before 𝑝𝑖 started.

Table 1
Summary statistics for ratio-scaled variables in data from
single ISBSG organization

Variable Min Mean Median Max StDev

Size 10 496 266 6294 699
Effort 62 4553 2408 57749 6212
PDR 0.53 16.47 8.75 387.10 31.42

• For fixed-size moving windows, the train-
ing set is the 𝑁 most recent projects that
finished before 𝑝𝑖 started. If multiple projects
finished on the same date, all of them are
included.

• For fixed-duration, the training set is the
most recent projects whose whole life cy-
cle had fallen within a window of𝐷 months
prior to the start of 𝑝𝑖 .

4. Estimate an effort of a target project based on
past project data.

• For no filtering, the training set from the
previous step is used.

• For relevancy filtering, a subset selected by
a nearest neighbor from the training set is
used.

• For the augment method, an augmented set
of the training set with the projects not se-
lected in the previous step is used.

5. Evaluate the estimation results.

This study used the single-company subset of the
ISBSG dataset that was analyzed in [2, 7, 8, 5, 6, 16]. Ta-
ble 1 shows summary statistics. We explored window
sizes from 20 to 120 projects for the size-based moving
windows and from 12 to 84 months for the duration-
based moving windows as well as the past study [17].
No filtering, called the growing portfolio in past stud-
ies, was used as a baseline for comparing the filtering
methods.

3.7. Performance Measures
The accuracy statistics that we used to evaluate the
effort estimation models are based on the difference
between estimated effort and actual effort. We used
Mean Absolute Error (MAE), which is widely used to
evaluate the accuracy of effort estimation models, as
it is an unbiased measure that favours neither under-
nor over-estimates.

We concentrate first on the statistical significance of
differences in accuracy that arise from using the filter-
ing approaches. To test for statistically significant dif-
ferences between accuracy measures, we use the two-
sided Wilcoxon signed-rank test (wilcoxon function
of the scipy package for Python) and set the statisti-
cal significance level at 𝛼 = 0.05. The setting of this
study is a typical multiple testing, and the p-values of
the tests must be controlled. Bonferroni correction is a
popular method for this purpose. However, the adop-
tion of this simple correction results in the lack of sta-
tistical power, especially for not large effects. We thus
controlled the false discovery rate (FDR) of multiple
testing [18] with the “multipletests” function of
the statsmodels package in Python. FDR is a ratio
of the number of falsely rejected null hypotheses to
the number of rejected null hypotheses.

4. Results and Discussion

4.1. Comparisons between Moving
Windows and Augmentation

Figure 1 has 6 plots showing the difference in mean
absolute error against window sizes using the fixed-
size moving windows (baseline) and the augmentation
with it. The x-axis of each figure is the size of the
window, and the y-axis is the subtraction of the accu-
racy measure value with the growing approach from
that with the moving windows at the given x-value.
The moving windows and the augmentation with it
were advantageous where the line is below 0. Circle
points mean a statistically significant difference, with
the moving windows or the augmentation with it, be-
ing better than the growing portfolio. At these points,
the corresponding FDR-controlled p-value was below
𝛼 = 0.05.

Figure. 1 revealed the effect of using the fixed-size
moving windows and the augmentation, compared to
always using the growing portfolio as follows:

• With average effort estimation, statistically sig-
nificant differences were found for almost all win-
dow sizes. The augmentation did not bring clear
changes except for small window sizes, where
additional statistically significant differences were
found.

• With median effort estimation, no statistically
significant difference was found for all window
sizes. The augmentation improved the perfor-
mance a bit for smaller window sizes but wors-
ened it a bit for larger window sizes. The ef-

20 40 60 80 100 120

Window Size (number of projects)

−30

−20

−10

0

10

20

30

40

50

60

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(a) MW (average)

20 40 60 80 100 120

Window Size (number of projects)

−30

−20

−10

0

10

20

30

40

50

60

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(b) MW (median)

20 40 60 80 100 120

Window Size (number of projects)

−30

−20

−10

0

10

20

30

40

50

60

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(c) MW (lasso)

20 40 60 80 100 120

Window Size (number of projects)

−30

−20

−10

0

10

20

30

40

50

60

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(d) Augmentation(average)

20 40 60 80 100 120

Window Size (number of projects)

−30

−20

−10

0

10

20

30

40

50

60

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(e) Augmentation (median)

20 40 60 80 100 120

Window Size (number of projects)

−30

−20

−10

0

10

20

30

40

50

60

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(f) Augmentation (lasso)

Figure 1: The difference in mean absolute error against moving windows (growing portfolio vs. fixed-size MW and Aug-
mentation)

fects never caused a statistically significant dif-
ference.

• With lasso, statistically significant differences were
found when window size is between 85 and 95
or is more than 110. The augmentation made
the advantages in other window sizes statisti-
cally significant. The significant differences in
larger window sizes disappeared instead. Note
that lasso was more accurate than the others even
when used with the growing portfolio.

These observations suggested that the augmentation
could bring a positive synergistic effect on the estima-
tion accuracy when the augmentation was applied to
fixed-size windows with average or lasso.

Figure 2 plotted the same comparisons but using the
fixed-duration moving windows. In the figure, square
points mean a statistically significant difference, with
the fixed-duration moving windows being worse than
the growing portfolio. These figures revealed the ef-
fects of the fixed-duration moving windows and the
augmentation with it, compared to always using the
growing portfolio as follows:

• With average effort estimation, the effective win-
dow range was between 20 months and less than
30 months. The growing portfolio got advanta-
geous for more than 53 months. The augmenta-
tion extended the advantageous range to more

than 40 months. The growing portfolio was no
longer advantageous for larger window sizes.

• With median effort estimation, the effective win-
dow range was more than 60 months. Disadvan-
tageous window sizes are between 55 months
and 60 months. The augmentation made the sta-
tistically significant differences disappeared.

• With lasso, there was no significant difference.
There was no clear advantage nor disadvantage.
The augmentation made no statistically signifi-
cant difference while the difference got closer a
bit.

These observations suggested that the augmentation
could improve the estimation accuracy when the aug-
mentation was applied to fixed-duration windows with
average effort estimation.

The answer to RQ1 is yes: Augmenting moving win-
dows with a relevancy filtering was useful. It did not
cause an apparent negative synergistic effect, at least.
It sometimes made positive synergistic effects.

4.2. Evaluation of Combination of
Augmented MW and NN-filter

The combination of the augmented moving windows
and the NN-filter was evaluated under the same situ-
ations. The number of neighbors was set to 3 for av-

20 30 40 50 60 70 80

Window Size (calendar months)

−30

−20

−10

0

10

20

30

40

50

60

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(a) MW (average)

20 30 40 50 60 70 80

Window Size (calendar months)

−30

−20

−10

0

10

20

30

40

50

60

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(b) MW (median)

20 30 40 50 60 70 80

Window Size (calendar months)

−30

−20

−10

0

10

20

30

40

50

60

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(c) MW (lasso)

20 30 40 50 60 70 80

Window Size (calendar months)

−30

−20

−10

0

10

20

30

40

50

60

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(d) Augmentation(average)

20 30 40 50 60 70 80

Window Size (calendar months)

−30

−20

−10

0

10

20

30

40

50

60

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(e) Augmentation (median)

20 30 40 50 60 70 80

Window Size (calendar months)

−30

−20

−10

0

10

20

30

40

50

60

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(f) Augmentation (lasso)

Figure 2: The difference in mean absolute error against moving windows (growing portfolio vs. fixed-duration MW and
Augmentation)

20 40 60 80 100 120

Window Size (number of projects)

−40

−30

−20

−10

0

10

20

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(a) NN (average)

20 40 60 80 100 120

Window Size (number of projects)

−40

−30

−20

−10

0

10

20

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(b) NN (median)

20 40 60 80 100 120

Window Size (number of projects)

−40

−30

−20

−10

0

10

20

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(c) NN (lasso)

20 40 60 80 100 120

Window Size (number of projects)

−40

−30

−20

−10

0

10

20

30

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(d) AG + NN (average)

20 40 60 80 100 120

Window Size (number of projects)

−40

−30

−20

−10

0

10

20

30

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(e) AG + NN (median)

20 40 60 80 100 120

Window Size (number of projects)

−40

−30

−20

−10

0

10

20

30

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(f) AG + NN (lasso)

Figure 3: The difference in mean absolute error against moving windows (growing portfolio vs. fixed-size MW + Augmen-
tation + NN-filter)

erage and median effort estimation models and 10 for
lasso because lasso models, as described in Section 3.3.

Figure 3 has 6 plots showing the difference in mean
absolute error against fixed-size window sizes using
the NN-filter and using the combination of the aug-
mented windows and the NN-filter. These figures re-
vealed the effects of using the NN-filter and the aug-

mented moving windows with it, compared to always
using the growing portfolio as follows:

• With average effort estimation, the NN-filter made
statistically significant differences for almost all
window sizes. Combining the augmented mov-
ing windows with the NN-filter made no clear
change except for small window sizes, where the

20 30 40 50 60 70 80

Window Size (calendar months)

−40

−30

−20

−10

0

10

20

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(a) NN (average)

20 30 40 50 60 70 80

Window Size (calendar months)

−40

−30

−20

−10

0

10

20

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(b) NN (median)

20 30 40 50 60 70 80

Window Size (calendar months)

−40

−30

−20

−10

0

10

20

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(c) NN (lasso)

20 30 40 50 60 70 80

Window Size (calendar months)

−40

−30

−20

−10

0

10

20

30

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(d) AG + NN (average)

20 30 40 50 60 70 80

Window Size (calendar months)

−40

−30

−20

−10

0

10

20

30

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(e) AG + NN (median)

20 30 40 50 60 70 80

Window Size (calendar months)

−40

−30

−20

−10

0

10

20

30

D
iff

er
en

ce
s

in
m

ea
n

A
E

(%
)

(f) AG + NN (lasso)

Figure 4: The difference in mean absolute error against moving windows (growing portfolio vs. fixed-duration MW +
Augmentation + NN-filter)

differences got smaller from about -30% to -20%.
The significance of the differences was retained,
though.

• With median effort estimation, the NN-filter made
no clear change while it caused positive effects
as depicted by the line running below the zero
line for a wide window range. Combining the
augmented moving windows with the NN-filter
made no clear change except for small window
sizes. No statistically significant difference ap-
peared.

• With lasso, the NN-filter made no statistically
significant change though it worsened the per-
formance. Combining the augmented moving
windows with the NN-filter mitigated the degra-
dation. Note that the augmentation made the
significant improvement as shown in Fig. 1(f).
The NN-filter canceled the improvement.

In [1], the combination of the moving windows and
NN-filter caused a negative synergistic effect. For ex-
ample, less than half of the window sizes could achieve
the improvement of -30% or more where mean effort
estimation was applied. The augmentation made the
performance improvement of -30% or more for more
than a half of the range as shown in Fig. 3(d). There-
fore, these observations suggested that the augmented
moving windows did not result in a negative synergis-

tic effect caused by the combination of fixed-size mov-
ing windows and NN-filter.

Figure 4 plotted the same comparison but using the
fixed-duration moving windows. These figures revealed
the effects of using the NN-filter and the augmented
moving windows with it, compared to always using
the growing portfolio as follows:

• With average effort estimation, NN-filter made
statistically significant differences for almost all
window sizes. Combining the augmented mov-
ing windows with the NN-filter made no clear
change.

• With median effort estimation, NN-filter made
no clear change while it caused positive effects
as depicted by the line running below the zero
line for a wide window range. Combining the
augmented moving windows with the NN-filter
made no clear change.

• With lasso, NN-filter made no statistically sig-
nificant change though it worsened the perfor-
mance. Combining the augmented moving win-
dows with the NN-filter mitigated the degrada-
tion by NN-filter.

Therefore, these observations suggested that the aug-
mentation did not result in a negative synergistic effect
caused by the combination of fixed-size moving win-
dows and NN-filter. Rather the degradation by NN-
filter could be mitigated.

The answer to RQ2 is as follows: The combination
of the augmented chronological filtering and the rele-
vancy filter did not bring a negative synergistic effect
except for small window sizes. Rather, the negative ef-
fect caused by the relevancy filtering was mitigated by
the augmentation.

5. Conclusion
We explored the effects of the augmentation and its
combination with a relevancy filtering for effort esti-
mation. We confirmed the augmentation was a useful
way to bring a positive synergistic effect of the chrono-
logical filtering and the relevancy filtering. Combining
the augmented windows with the relevancy filtering,
as well as in [1] also diminished the negative syner-
gistic effect caused by the combination of the moving
windows and NN-filter found in a past study. We thus
concluded that the augmentation can be a good way to
combine the two filtering approaches and also a good
extension of the moving windows, which can be safely
combined with the relevancy filtering.

Further investigation considering other transfer learn-
ing approaches is in future work. The NN-filter used
for augmentation is a type of transfer learning, it is
interesting to examine the effects of other approaches
such as [14] for augmentation. Some transfer learning
approaches for cross-project defect prediction [19] can
also be applied. The threat to external validity can be
mitigated with additional project data.

Acknowledgments
This work was partially supported by JSPS KAKENHI
Grant #18K11246.

References
[1] S. Amasaki, Exploring Preference of Chronolog-

ical and Relevancy Filtering in Effort Estimation,
in: Proc. of Profes 2019, Springer, 2019, pp. 247–
262.

[2] C. Lokan, E. Mendes, Applying moving windows
to software effort estimation, in: Proc. of ESEM
2009, 2009, pp. 111–122.

[3] B. Turhan, E. Mendes, A Comparison of Cross-
Versus Single-Company Effort Prediction Models
for Web Projects, in: Proc. of SEAA, IEEE, 2014,
pp. 285–292.

[4] B. Kitchenham, S. Lawrence Pfleeger, B. McColl,
S. Eagan, An empirical study of maintenance and

development estimation accuracy, The Journal of
Systems & Software 64 (2002) 57–77.

[5] S. Amasaki, C. Lokan, The Effects of Moving
Windows to Software Estimation: Comparative
Study on Linear Regression and Estimation by
Analogy, in: Proc. of IWSM-MENSURA 2012,
IEEE, 2012, pp. 23–32.

[6] S. Amasaki, C. Lokan, The Effect of Moving Win-
dows on Software Effort Estimation: Compara-
tive Study with CART, in: Proc. of IWESEP 2014,
IEEE, 2014, pp. 1–6.

[7] C. Lokan, E. Mendes, Investigating the Use
of Duration-Based Moving Windows to Improve
Software Effort Prediction, in: Proc. of APSEC
2012, 2012, pp. 818–827.

[8] C. Lokan, E. Mendes, Investigating the use
of duration-based moving windows to improve
software effort prediction: A replicated study,
Inf. Softw. Technol. 56 (2014) 1063–1075.

[9] S. Herbold, CrossPare: A tool for bench-
marking cross-project defect predictions, in:
Proc. of 30th IEEE/ACM International Confer-
ence on Automated Software Engineering Work-
shops (ASEW), IEEE, 2016, pp. 90–95.

[10] B. Turhan, T. Menzies, A. B. Bener, J. Di Ste-
fano, On the relative value of cross-company and
within-company data for defect prediction, Em-
pirical Software Engineering 14 (2009) 540–578.

[11] E. Kocaguneli, T. Menzies, How to Find Relevant
Data for Effort Estimation?, in: Proc. of ESEM,
IEEE, 2011, pp. 255–264.

[12] E. Kocaguneli, G. Gay, T. Menzies, Y. Yang, J. W.
Keung, When to use data from other projects for
effort estimation, in: Proc. of ASE, ACM, 2010,
pp. 321–324.

[13] E. Kocaguneli, T. Menzies, A. B. Bener, J. W. Ke-
ung, Exploiting the Essential Assumptions of
Analogy-Based Effort Estimation, IEEE Transac-
tions on Software Engineering 38 (2012) 425–438.

[14] E. Kocaguneli, T. Menzies, E. Mendes, Transfer
learning in effort estimation, Empirical Software
Engineering 20 (2015) 813–843.

[15] R. Tibshirani, Regression shrinkage and selection
via the lasso, J. Roy. Statist. Soc. Ser. B (1996) 267–
288.

[16] S. Amasaki, C. Lokan, Evaluation of Moving
Window Policies with CART, in: Proc. of IWE-
SEP 2016, IEEE, 2016, pp. 24–29.

[17] S. Amasaki, C. Lokan, A Replication of Compar-
ative Study of Moving Windows on Linear Re-
gression and Estimation by Analogy, in: Proc. of
PROMISE, ACM Press, 2015, pp. 1–10.

[18] Y. Benjamini, D. Yekutieli, The control of the false

discovery rate in multiple testing under depen-
dency, Annals of statistics 29 (2001) 1165–1188.

[19] S. Herbold, Training data selection for cross-
project defect prediction, in: Proc. of PROMISE
’13, ACM, 2013, pp. 6:1–6:10.

On the Evolutionary Properties of Fix Inducing Changes

Syed Fatiul Huqa, Md. Aquib Azmainb, Nadia Naharc and Md. Nurul Ahad Tawhidd

Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh

Abstract
A major aspect of maintaining the quality of software systems is the management of bugs. Bugs are commonly fixed in
a corrective manner; detected after the code is tested or reported in production. Analyzing Fix-Inducing Changes (FIC) —
developer code that introduces bugs — provides the opportunity to estimate these bugs proactively. This study analyzes
the evolution of FICs to visualize patterns associated with the introduction of bugs throughout and within project releases.
Furthermore, the association between FICs and complexity metrics, an important element of software evolution, is extracted
to quantify the characteristics of buggy code. The findings indicate that FICs become less frequent as the software evolves
and more commonly appear in the early stages of individual releases. It is also observed that FICs are correlated to longer
Commit intervals. Lastly, FICs are found to be more present in codes with fewer lines and less cyclomatic complexity, which
corresponds with the law of growing complexity in software evolution.

Keywords
software evolution, fix-inducing changes, data mining,

1. Introduction
Software projects evolve over time [1] to introduce new
features while fixing bugs [2] that appear in parallel. The
conventional way of handling the bugs is by detecting
faulty codes with test cases [3] based on user reports and
writing patches [4] that eliminate the fault. In this way,
a bug is fixed only after it is written. Another way of
managing bugs is proactively understanding how bugs
occur in systems. In this preventive process, Fix-Inducing
Changes (FICs) — code that introduces bugs which in-
duce a later fix [5] — are analyzed. FICs can be tracked
from a project’s change history by looking for instances
of bug fixes and the code changed in these fixes. An FIC
provides information about the code changes, the devel-
oper writing the bug, and the state of the development
process at the time of introducing the bug. These can
unveil important characteristics of the project, processes
and developers that potentially cause bugs.

Studies analyzing FICs have observed how these are
related to or affected by properties of the software devel-
opment lifecycle. For instance, Sliwerski et al. [5], apart
from coining the term, related FICs with two developer
activities: the day of coding and the amount of code in
a single Commit. Yin et al. [6] observed how bug fixes
themselves can introduce new bugs. Other studies in-
clude relations with code smells[7], code coupling [8],
developer sentiment [9, 10] and more.

Since FICs are a component of the software’s history,

QuASoQ 2020: International Workshop on Quantitative Approaches to
Software Quality, 1st December 2020, Singapore
email: bsse0732@iit.du.ac.bd (S. F. Huq); bsse0718@iit.du.ac.bd
(Md. A. Azmain); nadia@iit.du.ac.bd (N. Nahar);
tawhid@iit.du.ac.bd (Md. N. A. Tawhid)

© 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

these hold information about the software’s evolution.
As software evolves, so does its management, personnel,
design and code. This changing environment can affect
the introduction of bugs and vice versa. The existence
and properties of such correlations can be established by
analyzing the evolution of FICs. Observing the evolution
of FICs can also help uncover its relation with other evo-
lutionary factors, for instance, the system’s complexity
[11]. With this aim, this study answers the following
Research Questions (RQs):

RQ1: Howdo FICs evolvewith the software? This
RQ observes how FICs change in frequency and ratio
as the software system evolves. The evolution of the
software is measured with its releases.

RQ2: How do FICs exist within releases? A sin-
gle release depicts the software team’s complete flow of
activities. The flow starts with the team taking in new re-
quirements to update the features of the software to their
finalization, testing and deployment. This RQ observes
how FICs appear and change in this flow.

RQ3: How do FICs relate to Commit interval?
The interval between Commits signify the amount of
tasks assigned to developers, along with gaps between
activities. This RQ answers whether FICs behave differ-
ently than regular Commits in terms of these intervals.

RQ4: How do FICs relate to system complexity?
According to Lehman’s law of evolution, system complex-
ity is a vital part of a software’s evolution [11]. The law
dictates that complexity increases as the software evolves.
Since FICs are instances where bugs are introduced, and
bugs can be affected by system complexity, this RQ ob-
serves the relation between the two entities. Specifically,
in this RQ, FIC is correlated to Lines of Code (LoC) and
Cyclomatic Complexity (CC) as commonly used metrics
to quantify complexity [12, 13].

mailto:bsse0732@iit.du.ac.bd
mailto:bsse0718@iit.du.ac.bd
mailto:nadia@iit.du.ac.bd
mailto:tawhid@iit.du.ac.bd
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

For this study, eight Java repositories from GitHub
with a total of 142,555 Commits have been analyzed.
From the Commits, FICs are detected, release information
are extracted and relevant metrics are calculated. The
findings show that FICs decrease as the software evolves,
while remaining more prevalent early in release cycles.
Statistically analyzing the data shows that FICs contain
larger intervals and their code reduced LoC and CC than
regular Commits.

2. Related Work
Sliwerski et al.[5] introduced the term Fix-Inducing Changes
(FIC), providing a process that detects FICs in version
history from Concurrent Versions System (CVS) with
bug reports from Bugzilla. Moreover, they showed a
relation between FICs and number of files changed. An-
toniol et al.[14] showed that FICs create adverse effect
and produce unexpected results. They presented a robust
approach to detect groups of co-changing files in CVS
repositories.

Yin et al.[6] identified and analyzed incorrect bug fixes
which introduce new ones instead. They analyzed the
code of operating systems namely, FreeBSD, Linux and
OpenSolaris. This approach also combined version con-
trol systems and bug repository to categorize changes.
They proved that Fix Inducing Fix (FIF) can cause crashes,
hangs, data corruption or security problems.

Bavota et al.[7] showed that 15% refactoring tasks in-
duce bugs, analyzing 52 kinds of refactoring on 3 Java
projects. They detected inheritance related refactoring
as the most error-prone refactoring.

In order to analyze FICs, various works focused on dif-
ferent properties of change that would induce the bugs.
Levin et al.[15] and Menzies et al.[16] focused on source
code changes of affected files. Fukushima et al. [17] intro-
duced developer experience, time of day, time interval of
commit and some other properties of change that would
induce bugs. Sadiq et al. [8] related FICs with change
couplings to find that recent change couples provide bet-
ter insight on new errors. Huq et al. [9] showed that
developer sentiment is related with FICs, where positive
comments and reviews in Pull Requests can lead to buggy
Commits.

Weicheng et al.[18] explored the relation between de-
veloper Commit patterns in GitHub and software evo-
lution. They used four metrics to measure the Commit
activity of developers and code evolution: changes, inter-
val, author and source code dependency. Moreover, this
paper showed techniques to visualize these metrics for
a given project. They developed a tool named Commits
Analysis Tool (CAT) that finds that the changes in previ-
ous versions can affect the file which is dependent on it
in the next version.

Osman et al.[19] extracted bug-fix patterns by mining
change history of 717 open source projects. They man-
ually inspected the patterns to retrieve the context and
reasons that cause those bugs.

So far, FICs have been analyzed to derive relationships
with different project metrics. While the evolution of
Commits has been observed, the evolutionary properties
of FICs have yet been studied.

3. Methodology
This study observes how Fix-Inducing Changes (FIC)
evolve throughout the lifetime of software projects and
how these relate to complexity metrics. The methodol-
ogy of the study is divided into three parts, described as
follows.

3.1. Fix-Inducing Change (FIC) Detection
FICs are changes to code that causes problems to the
software system. FICs are the introduction of bugs or
errors to the software, inducing fixes in the future. Hence,
these can be detected from the changes that fix bugs and
errors.

This study utilizes Commits, the documented changes
in software projects that are managed through version
controlling. Commits contain the exact lines and files
where changes are made along with information of and
message from the developer who posted these. The de-
tection of FICs through Commits is conducted in the
following steps, influenced by the process of [7]

1. All Commits are fetched from GitHub reposito-
ries.

2. Commit messages are extracted to detect terms
such as “bug”, “fix” or “patch”. These terms sig-
nify that the aim of the Commit is related to the
management of bugs.

3. Now the changes in these Commits are analyzed.
Since the study deals with Java projects, it is first
checked whether the changes occur in “.java” files.
Commits with no changes to such files indicate
that the Commits dealt with non-code entities of
the software (configuration files, documentation
etc.). Furthermore, the changes made in “.java”
files are analyzed to seewhether the changeswere
code comments, which also signifies the absence
of code entities.

4. Then, the type of the edit made by the Commit
is checked. There are three types of edit: Insert,
Delete and Replace. An Insert edit means that a
patch code is added onto the existing code base.
However, it does not help to track which part of
the previous code was buggy. There is no way
of tracking back to a Commit that introduced a

Figure 1: The methodology for identifying FICs from Com-
mits

bug. Hence, Commits with Insert edit types are
discarded from further consideration.

5. After the filtering process, the remaining Com-
mits are labeled as “Fixing Commits” or “Fixes”.
These are the Commits that removed buggy code.

6. Next, origin of each legitimate change in the Fix
is tracked using the blame function, which re-
turns the Commit where a specified changed line
was last added or modified. These Commits are
labeled as FICs.

3.2. Evolution Analysis
To understand the evolution of FICs, the projects’ re-
lease tags are analyzed. Release tags define iterative final
versions of the software in the project’s lifetime. Since
Commits are assigned these tags, it is possible to catego-
rize Commits based on releases.

To analyze releases, first non-release tags are filtered
out based on naming structures. Usually the release tags
in most projects abide by the pattern: “v #.#.#”. The
rest are tags depicting other information like branches
or experiments. However, the structure of naming tags
can vary with projects. For instance, patterns in projects
like ElasticSearch or Commons-lang are “Elasticsearch
#.#.#” and “commons-lang-#.#.#” respectively. Hence, tags
are manually analyzed for each repository. Additionally,
versions that are release candidates are discarded since
these do not depict final releases.

Figure 2: The methodology for extracting complexity metrics
from Commits

Next, Commits are labeled based on their assigned tags.
However, since Commits are automatically assigned all
future tags, the labeling was conducted in two parts. First,
Commits are extracted from all tags. Then, for every tag,
only those Commits that were posted after the previous
release tag are assigned to the current one.

As Commits are segmented into releases, analysis for
Research Question (RQ) 1 is conducted. For each release,
the number of FIC and non-FIC is calculated based on
section 3.1. This segmentation is further elaborated for
RQ2, by dividing each release into three equal parts. The
three divisions are extracted to better understand the
early, middle and late stages of a single release.

3.3. Metrics Extraction
To analyze the relation between FICs and complexity
metrics — Line of Code (LoC) and Cyclomatic Complex-
ity (CC) — first the changes to code are extracted. This
includes the content of the changed files and numbers
of lines which are modified or deleted. In the case of file
contents, along with that of the current Commit, con-
tents of its parent Commit are also extracted. Parent
Commit is referred to the Commit directly prior to the
current Commit. The contents of the parent Commit
provides information of the state of code before the cur-
rent Commit’s changes. For FICs, their parents retains
the properties of the code where the bug was introduced.
With the contents of the current and parent Commits,
the two metrics are calculated in the following manner:

1. LoC: To calculate the line of code, without consid-
ering comments, first the Abstract Syntax Tree
(AST) [20] of a program is generated from the

changed files using JavaParser1. It is verified
whether the changes have been conducted on
executable code or not. Therefore, blank spaces
are eliminated. Next, the modified lines in the
current content are checked to identify whether
these are comments based on the AST. If none of
the changed lines are executable code, then the
file is not further considered. Otherwise, the LoC
of the parent content is calculated.

2. CC: To calculate cyclomatic complexity, themethod
in which change was introduced is first identified.
This is done by taking each changed line of the
current content and tracing its state back in the
parent content. The generated AST of the parent
content is traversed for each line. Each changed
line of executable code is individually assessed
and provided an associated method. This pro-
vides a list of changed methods for a single file.
Each of their cyclomatic complexities are calcu-
lated, aggregating all possible paths (If-else, loops,
switch statements).

4. Experimentation and Findings
Description of the dataset and the results observed for
the 4 Research Questions (RQs) are described as follows.

4.1. Dataset
To conduct this research, eight well known Java projects
are chosen fromGitHub’s repositories. These projects are
open source and use GitHub as their primary medium of
code storage and version control, enabling the extraction
of all necessary Commits. Details of the repositories are
displayed in Table 1. The projects comprise of a total
of 142555 Commits to analyze. All eight repositories
are used to analyze Research Questions (RQ) 1, 2 and 3.
RQ4, which requires the source code, utilizes the first
five repositories.

4.2. RQ1: Evolution of FICs
The 1st RQ aims to understand how FICs evolve, in terms
of frequency and ratio, throughout the lifetime of soft-
ware projects. The graphs in Figure 3 showcase the evo-
lution of FICs in the eight software repositories analyzed.
The different repositories show different types of patterns.
In the majority of patterns, as seen in Figures 3(b, c, d, g,
h) for projects Guava, Mockito, Commons-lang, Elastic-
search and Spring-framework respectively, FICs appear
in the early stages of the projects’ lifetime and decrease
in newer versions. This indicates that earlier changes

1https://javaparser.org/

Table 1
Repository description of the eight projects

Project Name Commits Lifetime
(Years)

Contri-
-butors

Apache Tomcat 19360 8.5 21
Google Guava 4798 5 187
Mockito 5019 6.7 155
Commons-lang 5396 10 115
Apache Hadoop 21435 4.8 191
Selenium 23550 9.3 435
Elastic Search 44975 8.5 1216
Spring Framework 18022 6.4 369
Total 142555 59.1 2689

to the system tend to contain more instances of bug in-
troduction. This can be due to a rapidly changing and
volatile initial requirement, formative and incomplete
development processes, lack of collaborative experience
among the developers, or an insufficiency of reviewing
and testing resources. But as the software evolves, the
FICs get reduced, as an indication of bolstered testing
and quality assurance processes, and project maturity.

On the other hand, projects Tomcat and Hadoop in
Figures 3(a, e) show the opposite trend, where FICs are
more predominant in later versions. This could happen
due to a decreased level of scrutiny in reviewing efforts,
a overhaul of new requirements, or other project and
personnel related events. Only Figure 3(f) showcases
a slightly more uniform pattern of FICs for the project
Selenium. Although there are spikes of FICs occurring
in specific versions, there is no apparent progression in
the appearance of FICs.

Such visualizations of the evolution of FICs help in
observing the history of the project in terms of buggy
changes. This can be related to other aspects of projects
that coincide with the decrease and increase of FICs to
understand what affects the introduction of bugs from a
high level perspective.

4.3. RQ2: FICs in Releases
In RQ2, the pattern of FICs within individual releases
is observed. In Figure 4, the appearance of FICs within
releases is displayed as black circles, where the size of
the circle is determined by the proportion of FIC on the
total number of Commits in that stage. The releases are
divided into three stages: early, middle and late, and for
some projects, versions are merged for visibility.

It can be seen that for almost all the projects, FICs are
more predominant in early and middle stages of releases
compared to late ones. The exceptions are Tomcat and
Spring framework, where FICs are similarly or more pre-
vailing in the late stages. The high level of appearance of
FICs in early and middle stages of a release can be con-

(a) Project: tomcat

(b) Project: guava

(c) Project: mockito

(d) Project: commons-lang

(e) Project: hadoop

(f) Project: selenium

(g) Project: elasticsearch

(h) Project: spring-framework

Figure 3: Evolution of FICs: FIC frequency, Non-FIC frequency and FIC ratio

Figure 4: FICs in releases: early, middle and late stages

tributed to a higher emphasis on adding and updating
features in those stages. The late stages are more focused
on debugging and deployment efforts.

4.4. RQ3: FIC Interval
The 3rd RQ deals with the relation between Commit in-
tervals and FICs. Table 2 shows that, on average, the
interval (in minutes) for FICs is longer than that for reg-
ular Commits. The p-value of < 2.2𝑒−16 solidifies this
difference as significant. This indicates that either a large
amount of work relates to FICs (as shown by [5]), or that
the developer introduces bug when they are away from
the code for a long time.

The finding can help in preemptively detecting buggy
code. Commits posted after a longer period than average
can be given extra emphasis in reviews. Additionally,
developers should be suggested not to disassociate from
the code for a long time.

4.5. RQ4: FIC and Complexity Metrics
The last RQ observes whether FICs are related to the
complexity metrics of software evolution: Line of Code
(LoC) and Cyclomatic Complexity (CC). It can be seen in
Table 2 that the average LoC of code where FICs occur
is lower than that of regular Commits, with a p-value of
< 2.2𝑒−16, making this difference significant. The result
says that a lower LoC relates to buggy code. Hence the
smaller, less busy components need to be given more
emphasis in coding correctly and reviewing for bugs.

Next, as seen in Table 2, FICs occur in methods with
significantly less CC than regular Commit, based on the
6.48𝑒−10 p-value. A lower CC means that the tasks in
methods are logically simpler. And yet, bugs, as statis-
tically shown, tend to be introduced in such methods.
Similar to LoC, this result prompts for a higher level of
scrutiny when dealing with smaller and simpler methods.

Both of these findings support the evolution of FICs
compared to complexitymetrics. As described by Lehman’s
law of evolution[11], complexity rises as software evolves,
hence increasing LoC and CC. Similarly, based on RQ1,
FICs decrease in ratio in most cases, which is solidified
by its inverse relation with the complexity metrics.

5. Result Discussion
From the findings generated in this study, the following
interpretations and applications can be estimated:

1. Early bugs: From both Research Questions (RQs)
1 and 2, it can be seen that bugs appear mostly
in the early stages of versions and release cy-
cles. This finding solidifies the intuition that early
code tends to cause more bugs than later ones

Table 2
Results for RQ3 and RQ4

Metric Commit
Type Average Standard

Deviation P-value

Interval
FIC 285.54 2027.59 < 2.2𝑒−16
Regular 177.13 1113.37

LoC
FIC 508.63 507.94 < 2.2𝑒−16
Regular 636.6 760.61

CC
FIC 3.49 3.64 6.48𝑒−10
Regular 4.04 4.42

whenmaintenance starts to outrank development,
and the software stabilizes. With this intuition
proven through data, the finding can be applied
to change the way software is developed. A more
test-driven approach can be adopted in software
projects from the beginning to mitigate the large
influx of bugs.

2. Comparative history: By graphically extract-
ing the evolution of FICs in software projects, the
appearance of bugs can be historically analyzed.
This history can unearth valuable insight, for ex-
ample periods of time or certain releases where
FICs peaked in number. These exceptions can
be comparatively analyzed with other metrices
related to the project. The metrices can range
from code properties like components developed,
design patterns used etc, or project aspects like
type of assignment, assigned developer, developer
turnover etc. The proponents may vary from
project to project, hence the historical data of
FICs can be used as a constant reference to such
differing metrices.

3. Intervals and bugs: RQ3 provides insight into
the correlation betweenCommit interval and FICs,
showing the tendency of larger intervals causing
bugs. This finding can be applied in project man-
agement, by monitoring the absences of develop-
ers. Developers who have been absent from the
development process for longer periods should
be assigned to tasks that are less sensitive and
their work be reviewed more intensely. Further-
more, as also observed by Sliwerski et al. [5],
large amount of changes in a single Commits that
cause higher time for completion should be regu-
lated for FICs.

4. Software evolution and complexity: The last
finding demonstrates how FICs are correlated
with line of code (LoC) and cyclomatic complex-
ity (CC). These metrices, referred to as complex-
ity metrices in the domain of software evolution,
are important in understanding the evolution of
FICs. As graphically shown in RQ1, FICs tend to
decrease as the software evolves. On the other

hand, complexity increases with the software’s
age [11]. This indicates an inverted relationship
between the two metrices, which is proven in
RQ4 where FICs are found to be related with a
larger LoC and CC in the code.

6. Conclusion
This study analyzes GitHub repositories to extract Fix-
inducing Changes (FICs) — changes that introduce buggy
code— and observes its evolution and characteristics. It is
seen that FICs tend to occur in earlier versions and stages
of releases. There is also a significant delay in posting
FICs than regular Commits. Lastly, when relating with
complexity metrics, FICs show up in code with less LoC
and less CC than regular Commits. This corresponds
with the decreasing FIC and increasing complexity of
software evolution.

References
[1] M. M. Lehman, L. A. Belady, Program evolution:

processes of software change, Academic Press Pro-
fessional, Inc., 1985.

[2] M. Monperrus, Automatic software repair: a bib-
liography, ACM Computing Surveys (CSUR) 51
(2018) 1–24.

[3] N. Chauhan, Software Testing: Principles and Prac-
tices, Oxford University, 2010.

[4] T. Ackling, B. Alexander, I. Grunert, Evolving
patches for software repair, in: Proceedings of
the 13th annual conference on Genetic and evolu-
tionary computation, 2011, pp. 1427–1434.

[5] J. Śliwerski, T. Zimmermann, A. Zeller, When do
changes induce fixes?, in: ACM sigsoft software
engineering notes, volume 30, ACM, 2005, pp. 1–5.

[6] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, L. Bairava-
sundaram, How do fixes become bugs?, in: Pro-
ceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations
of software engineering, ACM, 2011, pp. 26–36.

[7] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta,
R. Oliveto, O. Strollo, When does a refactoring
induce bugs? an empirical study, in: 2012 IEEE
12th International Working Conference on Source
Code Analysis and Manipulation, IEEE, 2012, pp.
104–113.

[8] A. Z. Sadiq, M. J. I. Mostafa, K. Sakib, On the evolu-
tionary relationship between change coupling and
fix-inducing changes (2019).

[9] S. F. Huq, A. Z. Sadiq, K. Sakib, Understanding
the effect of developer sentiment on fix-inducing
changes: An exploratory study on github pull re-
quests, in: 2019 26th Asia-Pacific Software En-

gineering Conference (APSEC), IEEE, 2019, pp.
514–521.

[10] S. F. Huq, A. Z. Sadiq, K. Sakib, Is developer sen-
timent related to software bugs: An exploratory
study on github commits, in: 2020 IEEE 27th Inter-
national Conference on Software Analysis, Evolu-
tion and Reengineering (SANER), IEEE, 2020, pp.
527–531.

[11] M. M. Lehman, Laws of software evolution revis-
ited, in: European Workshop on Software Process
Technology, Springer, 1996, pp. 108–124.

[12] C. F. Kemerer, S. Slaughter, An empirical approach
to studying software evolution, IEEE transactions
on software engineering 25 (1999) 493–509.

[13] G. Xie, J. Chen, I. Neamtiu, Towards a better under-
standing of software evolution: An empirical study
on open source software, in: 2009 IEEE Interna-
tional Conference on Software Maintenance, IEEE,
2009, pp. 51–60.

[14] G. Antoniol, V. F. Rollo, G. Venturi, Detecting
groups of co-changing files in cvs repositories, in:
Eighth International Workshop on Principles of
Software Evolution (IWPSE’05), IEEE, 2005, pp.
23–32.

[15] S. Levin, A. Yehudai, Boosting automatic commit
classification into maintenance activities by utiliz-
ing source code changes, in: Proceedings of the
13th International Conference on Predictive Models
and Data Analytics in Software Engineering, ACM,
2017, pp. 97–106.

[16] T. Menzies, J. Greenwald, A. Frank, Data min-
ing static code attributes to learn defect predictors,
IEEE transactions on software engineering 33 (2006)
2–13.

[17] T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita,
N. Ubayashi, An empirical study of just-in-time de-
fect prediction using cross-project models, in: Pro-
ceedings of the 11th Working Conference on Min-
ing Software Repositories, ACM, 2014, pp. 172–181.

[18] Y. Weicheng, S. Beijun, X. Ben, Mining github:
Why commit stops–exploring the relationship be-
tween developer’s commit pattern and file version
evolution, in: 2013 20th Asia-Pacific Software Engi-
neering Conference (APSEC), volume 2, IEEE, 2013,
pp. 165–169.

[19] H. Osman, M. Lungu, O. Nierstrasz, Mining fre-
quent bug-fix code changes, in: 2014 Software Evo-
lution Week-IEEE Conference on Software Main-
tenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), IEEE, 2014, pp. 343–347.

[20] I. Neamtiu, J. S. Foster, M. Hicks, Understanding
source code evolution using abstract syntax tree
matching, in: Proceedings of the 2005 international
workshop on Mining software repositories, 2005,
pp. 1–5.

Using Rule Mining for Automatic Test Oracle Generation
Alejandra Duque-Torresa, Anastasiia Shalyginaa, Dietmar Pfahla and Rudolf Ramlerb

aInstitute of Computer Science, University of Tartu, Tartu, Estonia
bSoftware Competence Center Hagenberg GmbH, Hagenberg, Austria

Abstract
Software testing is essential for checking the quality of software but it is also a costly and time-consuming activity. The
mechanism to determine the correct output of the System Under Test (SUT) for a given input space is called test oracle.
The test oracle problem is a known bottleneck in situations where tests are generated automatically and no model of the
correct behaviour of the SUT exists. To overcome this bottleneck, we developed a method which generates test oracles
by comparing information extracted from object state data created during the execution of two subsequent versions of the
SUT. In our initial proof-of-concept, we derive the relevant information in the form of rules by using the Association Rule
Mining (ARM) technique. As a proof-of-concept, we validate our method on the Stack class from a custom version of the
Java Collection classes and discuss the lessons learned from our experiment. The test suite that we use in our experiment to
execute the different SUT version is automatically generated using Randoop. Other approaches to generate object state data
could be used instead. Our proof-of-concept demonstrates that our method is applicable and that we can detect the presence
of failures that are missed by regression testing alone. Automatic analysis of the set of violated association rules provides
valuable information for localizing faults in the SUT by directly pointing to the faulty method. This kind of information
cannot be found in the execution traces of failing tests.

Keywords
Software testing, test oracle, association rule mining, test oracle automation, machine learning methods in software testing

1. Introduction
Software testing is an essential activity for quality assur-
ance in software development process as it helps ensure
the correct operation of the final software [1]. However,
software testing has historically been recognised to be a
time-consuming, tedious, and expensive activity given
the size and complexity of large-scale software systems
[2]. Such cost and time involved in testing can be man-
aged through test automation. Test automation refers to
the writing of special programs that are aimed to detect
defects in the System Under Test (SUT) and to using these
programs together with standard software solutions to
control the execution of test suites. It is possible to use
test automation to improve test efficiency and effective-
ness.

Software testing, automated or not, has four major
steps: test case generation, predicting the outcomes of the
test cases, executing the SUT with the test cases to obtain
the actual outcome, and comparing the expected outcome
against the actual outcome to obtain a verdict (pass/fail)
[3]. In these steps there are two major challenges: find
effective test inputs, i.e., inputs that can reveal faults in

QuASoQ’20: 8th International Workshop on Quantitative Approaches
to Software Quality, December 1, 2020, Singapore
" duquet@ut.ee (A. Duque-Torres);
anastasiia.shalygina@gmail.com (A. Shalygina);
dietmar.pfahl@ut.ee (D. Pfahl); rudolf.ramler@scch.at (R. Ramler)
� 0000-0002-1133-284X (A. Duque-Torres); 0000-0003-2400-501X
(D. Pfahl); 0000-0001-9903-6107 (R. Ramler)

© 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

the SUT, and determine what should be the correct output
after execution of the test cases. The second challenge
refers to the the test oracle problem. A test oracle is a
mechanism that determines the correct output of SUT
for a given input [4]. Although substantial research has
been conducted to provide test oracle automatically, apart
from model-driven testing, the oracle problem is largely
unsolved.

Motivated by the above, we developed a method to
derive test oracles based on information contained in
object state data produced during the execution of the
SUT. Object state data is the set of the values of all defined
attributes of an object at a certain point of time. We
assume that most programs have objects with a mutable
state, and the execution of methods can modify the state
of the program. The idea of using the state information
roots in the assumption that relations contained in the
state data when testing a new version of the SUT should
remain unchanged as compared to a previous version.

Our proposed method employs Association Rule Min-
ing (ARM). In our context, the purpose of ARM is to mine
interesting relations in the state data of the SUT. ARM is
an unsupervised machine learning (ML) method [5]. The
algorithms used in ARM attempt to find relationships or
associations between categorical variables in large trans-
actional data sets [6]. In particular, we were interested in
understanding whether the information provided by the
resulting model can help to verify the correct operation
of new versions of the SUT to which we normally apply
existing tests for regression testing. More specifically,
we wonder if we can detect and locate faults in new ver-

mailto:duquet@ut.ee
mailto:anastasiia.shalygina@gmail.com
mailto:dietmar.pfahl@ut.ee
mailto:rudolf.ramler@scch.at
https://orcid.org/0000-0002-1133-284X
https://orcid.org/0000-0003-2400-501X
https://orcid.org/0000-0001-9903-6107
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

sions of the SUT. We tackle our goal by answering the
following research questions:

RQ1: How effective is the rule mining approach?. This
research question investigates to what extent ARM is
able to detect failures.

RQ2:What information regarding fault localisation can
the method offer? This research question explores to what
extend the information contained in association rules
helps developers locate faults in the code.

In our experiments, we use the Stack Class of the Java
Collection framework as SUT. This class was chosen as
its state behaviour is well known and easy to manipulate.

2. Association Rule Mining
ARM is a rule-based unsupervised ML method that al-
lows discovering relations between variables or items
in large databases. ARM has been used in other fields,
such as business analysis, medical diagnosis, and census
data, to find out patterns previously unknown [6]. The
ARM process consists of at least two major steps: finding
all the frequent itemsets that satisfy minimum support
thresholds and, generating strong association rules from
the frequent derived itemsets by applying minimum con-
fidence threshold.

A large variety of ARM algorithms exist. [7]. In our
experiments, we use the Apriori algorithm from Python3
Efficient-Apriori library [8]. It is well known that the
Apriori algorithm is exhaustive, that is, it finds all the
rules with the specified support and confidence. In addi-
tion, ARM doesn’t require labelled data and is, thus, fully
unsupervised. Below we define important terminology
regarding ARM:

Itemset: Let 𝐼 ={𝑋, . . . , 𝑌, 𝑍} be a set of different
items in the dataset 𝐷. Itemset is a set of 𝑘 different
items.

Association rule: Consider a dataset 𝐷, having 𝑛
number of transactions containing a set of items. An
association rule exposes the relationship between the
items.

Support: The support is the percentage of transaction
in the dataset D that contains both itemsets X and Y. The
support of an association rule 𝑋 → 𝑌 :

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 → 𝑌) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∪𝑌) = 𝑃 (𝑋 ∪𝑌)
Confidence: The confidence is the percentage of trans-

actions in the database D with itemset X that also con-
tains the itemset Y. The confidence is calculated using
the conditional probability which is further expressed
in terms of itemset support: 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 → 𝑌) =
𝑃 (𝑌 |𝑋) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∪ 𝑌)/𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)

Lift: Lift is used to measure frequency 𝑋 and 𝑌 to-
gether if both are statistically independent of each other.
The lift of rule (𝑋 → 𝑌) is defines as 𝑙𝑖𝑓𝑡(𝑋 → 𝑌) =
𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 → 𝑌)/𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑌).

A lift value one indicates𝑋 and𝑌 appear as frequently
together under the assumption of conditional indepen-
dence.

3. Method
Figure 1 presents an overview of the method for rule-
mining based tests oracles generation. Overall, the pro-
posed method comprises two phases. Phase I is responsi-
ble for the ruleset generation, i.e., the rule mining part.
The output of this phase is the ruleset. Phase II is in
charge of applying the ruleset to the new SUT versions.
Thus, the output of this phase could be seen as a fault
report for new SUT versions. Below we describe them in
detail:

3.1. Phase I - Rule Set Generation
Phase I starts with the extraction of the state data. Then,
feature selection and encoding are performed so that
all the features become appropriate to use for the rule
mining. The features should be encoded as categorical if
there is a need. When all the required operations with
the raw data are performed, the state data from the first
version of SUT is received, and the rule mining process
starts. After that, one gets a set of rules. All the process
can be split into three main steps which are detailed
below:

Step 1.1 - State data acquisition: This step com-
prises two activities:

Activity 1.1.1 (Produce test) is responsible for the gen-
eration of tests. To perform this activity, we use Randoop
to generate unit tests automatically. Randoop is a popular
random unit test generator for Java1. Randoop creates
method sequences incrementally by randomly selecting
a method call to apply and using arguments from previ-
ously constructed sequences. When the new sequence
has been created, it is executed and then checked against
contracts. Two important parameters that we use in
our experiments are test limit and a random-seed. The
test limit parameter helps to limit the number of tests
in the test suite. The random seed parameter allows us
to produce multiple different test suites since Randoop
is deterministic by default. Therefore, these two param-
eters allow us to generate many test suites of different
size containing various test cases.

Activity 1.1.2 (Execute the test suite) is responsible for
state tracking and saving raw data. To track the states
of the SUT while running the test suite and save it to
the text file for later analysis, we built a special program
that helps to track and save the information of the state
of the SUT. We call this program Test Driver. The idea
behind the Test Driver is that the methods of the SUT

1https://randoop.github.io/randoop/

Figure 1: Overview of the method for rule-mining based test oracles generation

can be logically divided into two categories: methods
that change a state of the class instance of the SUT, and
methods that reflect the state. These methods are so-
called state methods. The test driver tracks and stores
the information returned by state methods if they are
called immediately after the test case execution. The
information is saved in a CSV file.

Step 1.2 - State data pre-processing: This data pre-
processing step is made up of three activities:

Activity 1.2.1 (Sorting, augmenting and cleaning) is re-
sponsible for ensuring that the data is correct, consistent
and useable. This activity has three main functions: sort,
aug, and clean. The sort function is responsible for sort-
ing the dataset based on the TestId and InstanceId, this is
done to find interesting sequences in the data, and be able
to model those sequences. When the dataset is ordered, it
is possible to add more information. e.g., it is possible to
add characteristics that indicate the previous state. This
is made trough aug function. The clean function removes
the rows that are no needed or inconsistent rows.

Activity 1.2.2 (Encoding) is in charge of preparing the
data according to the requirements of the rule mining
algorithm. For example, Apriori [9], which is the algo-
rithm used in this paper, works only with categorical
features. Thus, Activity 1.2.2 categorises and generalises
the numerical inputs into string representations.

Activity 1.2.3 (Feature selection) is an extra activity
which allows to explore the different performance of the
method when different features are used. For instance, in
this paper we used five different datasets which contain
different numbers of features.

Step 1.3 - Rule mining: This step is responsible for
generating the set of rules by using the Apriori ARM
algorithm.

3.2. Phase II
Phase II is in charge of applying the ruleset to the new
versions. Like Phase I, Phase II comprises three steps

Step 2.1 - State data acquisition: Unlike Step 1.1,
this step has only one activity, the test execution activity.
In phase one, we assume that the first version of the SUT
is correct; then, we build test suites using Randoop and
the test driver. In Step 2.1, the same tests generated in
Activity 1.1.1 are used to test the new versions of the
SUT.

Step 2.2 - State data pre-processing: This step per-
forms the same activities as Step 1.2 to prepare the state
dataset of the new SUT version.

Step 2.3 - Apply the ruleset to the new SUT version:
This step comprises three activities. Activity 2.3.1 is in
charge of comparing and selecting the rows that are exclu-
sively different from the first version of the SUT. Activity
2.3.2 removes duplicate rows. This is done for optimisa-
tion. If two or more rows are the same, then they will
have the same results.

Activity 2.3.3 (apply the ruleset against the new unique
rows) is responsible for applying the rule-set against the
new unique rows. A rule will have two sides, e.g., let’s
consider the rule (𝑋 → 𝑌), in this rule, 𝑋 is a left-hand
side (LHS) of the rule, and 𝑌 is a right-hand side (RHS).
The procedure for applying the ruleset against the new
unique rows works as follows: 𝑖) pick a rule from the
set of rules, 𝑖𝑖) use LHS, 𝑖𝑖𝑖) select values which match
LHS, 𝑖𝑣) check whether these values match the RHS, 𝑣)
save the values which don’t match, and 𝑣𝑖) repeat steps
𝑖− 𝑣 for every rule. In the end, we know that whenever
the state dataset contains values that violate rules, the
new version of the SUT is not correct. Since only those
rows in the state dataset corresponding to the modified
SUT that are different from rows in the state dataset
corresponding to the unmodified (correct) SUT have the
potential to violate rules, it makes sense to only analyze
the different rows.

4. Results
The full set of data generated during our experiments
as well as all scripts can be found in our GitHub repo2.
In our experiment, we use the Stack Class of the Java
Collection framework as SUT. This class was chosen as
its state behaviour is well known and easy to manipulate.
The Stack implementation contain seven public methods:
push() which puts an item on the top of the stack, pop()
removes and returns an item from the top, clear() clears
the stack, peek() returns an item from the top of the stack
without deleting it, isEmpty() tests if stack is empty, size()
returns size of the stack and, finally, toString() returns a
string representation of the object.

The methods push(), pop() and clear() modify instances
of the Stack class when they are called. On the other hand,
peek(), isEmpty(), size() and toString() provide informa-
tion about the Stack object state when they are called
and, thus, peek(), isEmpty(), size() and toString() are state
methods. The test driver for Stack class creates an in-
stance of the Stack class and contains public methods
push(), pop() and clear() which call the original push(),
pop() and clear() using the instance of the Stack class. Ad-
ditionally, the driver implements peek(), isEmpty(), size()
and toString() but these methods are private. Further-
more, the driver has a method for writing states to the
CSV file. This method is used whenever push(), pop() or
clear() methods are called during test execution. This
set-up allows us to run Randoop test suite generation not
on the original Stack class but on the driver class, where
the public methods are the ones that modify the Stack
objects. Thus, only push(), pop(), and clear() methods are
called in the test sequences, and the state data captured
by peek(), isEmpty(), size() and toString() is saved to a
CSV file.

4.1. Phase I - Rule Set Generation
Step 1.1 - State data acquisition: Two different re-
ports are the output of this step, Test Report (pass / failed)
and State Report. The regression testing generates the
Test Report . Test Driver generates the State Report. The
State Report provides seven main features testID, intan-
ceID, size, isEmpty, peek_obj_type, pushInput, and called-
Method. The features testID and instanceID provide an
identification of the test generate by Randoop. One test
can have multiples instances. Thus, instanceID is the
identification of those instance belonging to the same
test. The feature size tells the size of the Stack, and is a
numerical feature. isEmpty feature contains the values
"True" or "False". isEmpty is "True" when the Stack is
empty, otherwise it will be "False". peek_obj_type tells us

2https://github.com/aduquet/Using-Rule-Mining-for-
Automatic-Test-Oracle-Generation

the element at the top of the Stack. calledMethod tells us
which method was called, i.e., push, pop, or clear.

Table 1
Summary of the support and lift metrics of the rule-set ex-
tracted from the Stack class data using ARM with different
number of feature

DS† NR∤ Support Lift
Max Mean Min Max Mean Min

FS-3 14 0.403 0.381 0.283 2.539 2.391 1.946
FS-4 36 0.337 0.273 0.225 2.539 2.475 2.243
FS-8 439 0.269 0.227 0.205 3.808 3.404 2.545
FS-9 676 0.305 0.231 0.201 4.392 3.237 2.169
FS-10 1450 0.279 0.225 0.203 4.404 3.492 2.442
†Data Set, ∤Number of rules

Step 1.2 - State data pre-processing: In this step, we
sorted the dataset based on the testID and intanceID, this
is done to find the sequence of Stack size, and be able
to model those sequences. When the dataset is ordered,
it is possible to add more information. For example, it
is possible to add characteristics that indicate the previ-
ous state. To distinguish from the original features, we
add a _𝑝 at the end of the feature name, this means "pre-
vious". Then, the previous states are named as: size_𝑝,
isEmpty_𝑝, peek_obj_type_𝑝, calledMethod_𝑝. Then, we
removed the unnecessary rows, this is, rows whit not
state information. For instance, the Test Driver writes a
rows with the name "Constructor" in the feature called-
Method which indicates that a new Stack was created.
This information it is not related to the state, thus, should
be dropped. Finally, we encoded the features should be
encoded as categorical if there is a need. In the context
of our data, we encoded the feature size, and size_𝑝 since
they are not categorical features.

We create five different datasets which contain dif-
ferent numbers of features. The created dataset are
named with the prefix 𝐹𝑆, which stands for Feature Se-
lection. To distinguish the different dataset, they have
been named with the number of characteristics that were
used, i.e., FS-X where X is the number of features. The
datasets created are the following: FS-3 comprises the
features size, isEmpty, and peek_obj_type. FS-4 contains
the features used in FS-3 plus called_Method. FS-8 com-
prises the features used in FS-4 and their previous val-
ues, which are size_𝑝, isEmpty_𝑝, peek_obj_type_𝑝, and
calledMethod_𝑝. FS-9 uses the FS-8 features and the fea-
ture pushIputh. Finally, FS-10 uses all the features.

Step 1.3 - Rule mining: We apply the Apriori algo-
rithm with minimal support and maximum confidence
thresholds, i.e., 0.2 and 1, to each dataset. Table 1 pro-
vides a comparison between the number of rules, support
and lift values for each dataset. As per Table 1, we can
observe that the average support ratio decrease when
the number of features used is increased. The average is
closer to the threshold value set up. Table 1 also shows

the number of rules that can be generated does not have
linear behaviour since it depends on the number of items
belonging to each feature. From Table 1 column lift, we
can observe that the lift ratio is increasing when the num-
ber of features used is increased. This is the opposite of
the support ratio. A lower lift ratio means that the prob-
ability of occurrence of a determinate rule is weak since
the LHS and RHS are near to be independent between
themselves.

4.2. Phase II
Step 2.1 - State data pre-processing: In this step, we
created new versions of the Stack class. We introduce
defects to the class under test. For example, in the
Stack class we use three state methods: peek(), size() and
isEmpty(). We modify each of them individually and also
make all possible combinations of these modifications.
Table 2 summarises the main modifications made to the
SUT, and it provides the meaning of the terminology
used to refers to the different version of the SUT. These
modifications are done on purpose and manually, as we
want to understand the potential of ARM to detect and
locate faults using the state information of the SUT.

Table 2
Summary of the modifications injected to the Stack class

Modification 𝑝𝑒𝑒𝑘() 𝑖𝑠𝐸𝑚𝑝𝑡𝑦() 𝑠𝑖𝑧𝑒()

Mod1−𝑝 ✓ – –
Mod2−𝑒 – ✓ –
Mod3−𝑠 – – ✓
Mod4−𝑝𝑒 ✓ ✓ –
Mod5−𝑝𝑠 ✓ – ✓
Mod6−𝑒𝑠 – ✓ ✓
Mod7−𝑝𝑒𝑠 ✓ ✓ ✓

Some of the modifications affect the state such that
it will be quite easy to detect that something is wrong.
For example, isEmpty() method is modified such that it
returns isEmpty=True in the cases when size of the Stack
class instance is 2 or 0. Thus, we would get an obviously
faulty state size="2.0", is_empty="true". The modification
of peek() will not return the object on the top of a Stack
class instance but the previous one in the cases when
stack size is greater or equal than 2. Modification of size()
would return incorrect size for the Stack class instances
that contain one or more objects. Thus, the states would
look like the correct ones, and the dataset would not
contain faulty-looking rows.

Step 2.2 - State data pre-processing: In this step, the
same process of Step 1.2 was performed on the new data.

Step 2.3 - Apply the rule-set to the new SUT ver-
sions: We applied the ruleset against the state data of
new versions by following the activities described in Sec-
tion 3.2.

4.3. RQ1: How effective is the rule
mining approach?

Table 3 summarises the not modified version and the
seven modifications of the Stack class regarding the re-
sults obtained by the regression test, columns Regression
test (pass / failed), and the information obtained during
the test execution generated by the Test Driver, i.e., the
State Data. We notice from Table 3 that some datasets
that correspond to modifications, e.g., Mod2−𝑒, Mod4−𝑝𝑒,
Mod6−𝑒𝑠, and Mod7−𝑝𝑒𝑠, do not have the same number
of rows as in the No-Mod dataset. This is because some
tests from the test suite are failed during the test execu-
tion the state in these cases will not be written to the CSV
file. When no tests from the suite are failed, all the states
will be written to the file. Therefore, the number of rows
will be equal to the Not-Mod data since we execute the
same test suite both for the Not-Mod and for the modified
data extraction, e.g., Mod1−𝑝, Mod3−𝑠, and Mod5−𝑝𝑠.

As Table 3 column "Regression test" shows, only four of
seven modifications have failed tests (Mod2−𝑒, Mod4−𝑝𝑒,
Mod6−𝑒𝑠, and Mod7−𝑝𝑒𝑠). We see that the number of
failed tests is the same for Mod2−𝑒 and Mod4−𝑝𝑒 datasets.
Also, the number of failed tests are the same for Mod6−𝑒𝑠

and Mod7−𝑝𝑒𝑠. The state data columns also shows the
same behaviour, but regarding the number of rows gen-
erated. The common aspect between all these datasets
is isEmpty method modification. In particular, Mod2−𝑒

and Mod4−𝑝𝑒 have 1452 failed test. The Mod4−𝑝𝑒 modi-
fication is the combination of the modified methods peek
and isEmpty. However, it seems that the regression test
spots the fault related to "isEmpty" only. Furthermore,
the Mod1−𝑝, which is the modification of Peek, none
regression tests failed. This fact confirms the regression
tests failed of Mod4−𝑝𝑒 are belonging to isEmpty modifi-
cation only.

Same as Mod1−𝑝, none regression test failed in
Mod3−𝑠. In this modification "size" method is modified.
The number of tests failed in Mod7−𝑝𝑒𝑠 and Mod6−𝑒𝑠

are different from Mod2−𝑒 and Mod4−𝑝𝑒. Are the regres-
sion tests spotting faults in the other modified methods, i.e.,
"peek" and "size" when combined in this way? The modi-
fication of size() returns the incorrect size for the Stack
class instances that contain one or more objects, i.e., when
the size of the Stack is greater than 0, the modification
would return the correct size plus one. For instance, if
the 𝑠𝑖𝑧𝑒 = 1, the modified version will return 𝑠𝑖𝑧𝑒 = 2.
That is why Mod6−𝑒𝑠 increase the number of failed tests
because the size modified method increases the number
of 𝑠𝑖𝑧𝑒 = 2, then triggers the modified isEmpty() when
the size of the Stack class is 2 or 0. From the Table 3
we can ask ourself, why the regression tests are failing
only in the isEmpty() method? When analysing in detail
the report provided by regression test, we can find that
during the execution of the test, there is an exception

Table 3
Summary of the no modified version and the seven modifications of the Stack class regarding the results obtained by the
regression test, and the information obtained during the test execution generated by the test driver

Dataset

Regression test State data

Pass Failed

Total Total
Total # of UR† Total # of different UR† Total # of new UR† that violate rules# of # of

rows different (hereinafter, new unique rows)
rows FS-3 FS-4 FS-8 FS-9 FS-10 FS-3 FS-4 FS-8 FS-9 FS-10 FS-3 FS-4 FS-8 FS-9 FS-10

No-Mod 2037 0 71604 0 47 76 320 320 320 0 0 0 0 0 0 0 0 0 0
Mod1−𝑝 2037 0 71604 11882 45 73 232 308 398 28 43 97 166 189 0 0 0 38 38
Mod2−𝑒 585 1452 37786 6390 25 33 108 108 108 1 2 20 20 20 1 2 20 20 20
Mod3−𝑠 0 0 71604 43405 47 76 320 320 320 46 74 237 237 237 0 0 19 19 19
Mod4−𝑝𝑒 585 1452 37786 7792 26 33 106 119 133 14 20 46 59 66 1 2 31 42 49
Mod5−𝑝𝑠 2037 0 71604 43405 44 73 232 308 398 44 71 156 232 279 0 0 19 50 57
Mod6−𝑒𝑠 25 2012 7160 5497 5 9 17 17 17 5 7 8 8 8 1 2 6 6 6
Mod7−𝑝𝑒𝑠 25 2012 7160 5497 3 7 14 16 17 3 5 6 8 8 1 2 4 7 7
†Unique rows

that checks if the Stack is empty or not. By making the
modification in the IsEmpty() method, we generate the
situation where the exception is generated, thus allow-
ing the test to not finish its execution and report it as a
failure.

Table 4
Percentage of new unique rows (among all-new unique rows)
that violate at least one rule

Dataset % of new unique rows that violate rules
FS-3 FS-4 FS-8 FS-9 FS-10

No-Mod - - - - -
Mod1−𝑝 0 0 0 22.89 20.11
Mod2−𝑒 100 100 100 100 100
Mod3−𝑠 0 0 8.02 8.02 8.02
Mod4−𝑝𝑒 7.14 10 67.39 71.19 74.24
Mod5−𝑝𝑠 0 0 12.18 21.55 20.43
Mod6−𝑒𝑠 20 28.57 75 75 75
Mod7−𝑝𝑒𝑠 33.33 40 66.67 87.50 87.5

In Table 3, the column "Total # of unique rows" indi-
cates that the number of unique rows increases when the
number of features increases. This is because by adding
more features, we increase the heterogeneity in the data.
The number of new unique rows refers to those rows
that are different from the unmodified SUT version. The
idea of using state information is based on the assump-
tion that the relationship in state when testing a new
version of the SUT must remain unchanged or must not
change significantly. Therefore, we can conclude that
the rows of the modified versions that are different from
the unmodified version are failures. Up to this point our
method is capable of detecting failures without the need
to use ARM.

We are interested in understanding whether the in-
formation provided by the resulting ARM model would
have confirmed the failure detection that is already given
when identifying new rows in the state dataset of a modi-
fied SUT. Therefore, we measured the proportion of rules
that are violated by new rows. In Table 3, the column
"Total # of new unique rows that violate rules" shows the

total number of new unique rows that violate at least one
rule. It turns out that only for the isEmpty() modification
always all rows also trigger a rule violation. It is less
often the case when other methods are modified (either
individually or in combination). Only when the largest
feature sets (FS-9 and FS-10) are used, there is always at
least one new row in the dataset that also violates at least
one rule. This result is weaker than what we can already
see by just looking at new rows but, recalling that none
of the regression tests failed when only methods size()
and peek() were modified, rule violations seem to occur
in a more balanced way. This let us hope that we might
be able to exploit this when answering research question
RQ2.

4.4. RQ2: What information regarding
fault localisation can the method
offer?

Regarding the first research question, we concluded that
failure detection effectiveness improves by comparing
state data even without using ARM. However, neither
analyzing the traces of failing tests (all of them failed
when executing the pop() nor inspecting the information
provided in the new unique rows provided any helpful in-
formation that would guide fault localization. Therefore,
we set our hopes in a systematic analysis of the rules that
are violated by new unique rows.

As a starting point for fault localization, it is necessary
that at least one rule be violated by at least one new
single row. Table 5 summarises the total number of rules
generated per dataset, and the number of rules violated
among all the rules generated. As Table 5 shows, from FS-
8 to FS-10, more than a hundred rules need to be analysed
to be able to localise the fault. To reduce and optimize
the number of rules, we construct a rule hierarchy. Let
us consider the following set of rules: (i) 𝐴,𝐵,𝐶 → 𝐷
(ii) 𝐴,𝐵 → 𝐷 (iii) 𝐶,𝐵 → 𝐷, and (iv) 𝐶 → 𝐷. The
rule (i) contains the same items of rules (ii), (iii), (iv) in
implicitly. Therefore, having only rule (i) is sufficient for

Table 5
Total number of rules generated per-each dataset, and the number of rules violated among all the rules generated

DS RG† Total # of rules Violated (the row match with LHS but NOT with RHS)
Mod1−𝑃 Mod2−𝑒 Mod3−𝑠 Mod4−𝑝𝑒 Mod5−𝑝𝑠 Mod6−𝑒𝑠 Mod7−𝑝𝑒𝑠

RV⊥ OSR⋆ RV⊥ OSR⋆ RV⊥ OSR⋆ RV⊥ OSR⋆ RV⊥ OSR⋆ RV⊥ OSR⋆ RV⊥ OSR⋆

FS-3 14 0 0 3 - 0 0 3 - 0 0 3 - 3 -
FS-4 36 0 0 4 - 0 0 4 - 0 0 4 - 4 -
FS-8 439 0 0 73 16 95 95 73 56 95 95 113 98 113 98
FS-9 676 12 10 142 61 95 95 224 191 307 297 297 269 297 272
FS-10 1450 12 10 224 65 285 285 236 191 297 397 314 269 325 272
†Rules generated, ⊥ Number of rules violated ⋆ Optimal set of rules

interpretation purposes.
Once the number of rules is reduced, we can analyse

them more efficiently. The key to being able to anal-
yse the set of rules violated is to answer the follow-
ing question: Which item is violating the rule?; A rule
violation occurs when some items in a row match the
LHS of the rule, but at least one items in the same row
do not match the RHS of the same rule. Based on the
above, the item that generate the violation of the rule
must be present more frequently in the RHS than in
the LHS of the set of violated rules. Then, to locate the
fault, we quantify the occurrence of the main methods in
the LHS with respect to their occurrence in RHS. If the
𝐿𝐻𝑆/𝑅𝐻𝑆 ratio approaches zero, the fault has been
located. Let’s consider Table 6 the set of rules violated
by Mod1−𝑝 of FS-9, the total number of rules violated
are 10. Please note the following nomenclature: A: peek,
B: isEmpty, C: size. D: calledMethod, and E: inputPush.
Let’s compute the relation 𝐿𝐻𝑆/𝑅𝐻𝑆 per each item,
i.e., A, B, D and E. 𝐴 = 3/7 = 0.428, 𝐵 = 2/2 = 1,
𝐷 = 6/2 = 3, and 𝐸 = 6/3 = 3. The value closest
to zero is 𝐴 = 3/7 = 0.428, which corresponds to the
peek method. We can conclude that the fault has been
located, and that it corresponds to the peek method.

Table 7 reports modifications located using our ap-
proach. According to the results shown in the table, six
out of seven modifications could be located when using
nine or ten features. An interesting aspect that stands
out from the results is the localization of the modifica-
tions where the isEmpty method is involved. When using

Table 6
Set of violated rules of Mod1−𝑝 with FS-9

LHS RHS

D = push, E = objType A = objType
E = objType D = push, A = objType
B = True, E = objType A = objType
D = push B = True, A = objType
D = push, B = False, E = objType A = objType
E = objType D = push, B = False, A = objType
D = push, A = objType E = objType
D = push, B = False, A = objType E = objType
D = push, A = objType E = objType, B = False
E = objType A = objType

Table 7
Fault localised using ARM approach

Modification Modification localised by ARM
"Bug" FS-3 FS-4 FS-8 FS-9 FS-10

Mod1−𝑝 ✗ ✗ ✗ 𝑝 𝑝
Mod2−𝑒 - 𝑒 𝑒 pushInput pushInput
Mod3−𝑠 ✗ ✗ 𝑠 𝑠 𝑠
Mod4−𝑝𝑒 ✗ 𝑒 method 𝑝 𝑝
Mod5−𝑝𝑠 ✗ ✗ 𝑠 𝑠 𝑠
Mod6−𝑒𝑠 - 𝑒 𝑠 𝑠 𝑠
Mod7−𝑝𝑒𝑠 - 𝑒 𝑠 𝑠 𝑠

fewer features, e.g., FS-4, the isEmpty modification is al-
ways located, which is not the case when using more
features.

Note that our method can only point out one fault
per analysis. Therefore, one must apply the analysis
repeatedly. Once a fault has been located, it must be
removed, the tests must be run again, and if there are
still new unique rows in the state dataset, we must try to
spot the next fault. Thus, if we had started out with the
case where all three methods were modified, and we had
used models with 8, 9, and 10 features, we would have
first located the fault in (with all feature sets), then in
peek() (with FS-9 and FS-10), and then in isEmpty() (with
FS-8).

5. Threats to Validity
In the context of our proof-of-concept validation, two
types of threats to validity are most relevant: threats to
internal and external validity.

With regards to internal validity, it is not fully clear in
which situations the iteratively applied heuristic that we
propose to localize faults is successful, i.e., points to a rule
element that carries useful information. It is clear that
our method only can capture behaviour of the program
that has not been changed and, thus, behaves equal at
the level of granularity at which we capture object states.
In addition, our positive results might depend on the
number and type of faults injected. A more systematic
and more comprehensive analysis is required to explore
the limitations of our method with regards to both failure
exposure and fault localization.

With regards to external validity our study is rather
limited since we only use one well-understood class in
our experiments. Thus, the actual scope of effectiveness
of our proposed method for object-oriented programs is
yet to be determined.

6. Related Work
A good overview of methods proposed to automatically
generate test oracles can be found in [2] and [4]. As
far as we know, ARM has not yet been used for this
purpose by other researchers. A field that has recently
received attention in the context text oracle generation
is metamorphic testing as metamorphic relations can be
used as test oracles[10].

7. Conclusion
We presented a new ARM-based method for the detection
and localization of faults using the state data from SUT
executions. In our proof-of-concept, we used the Stack
class from the Java collection framework as the SUT. To
test our method, we generated seven faulty versions of
the SUT. The results obtained have shown that our ap-
proach is capable of detecting failures and locating faults.
The ARM-approach mainly benefits fault localization.

An advantage of our method is that our method tested
not on the SUT with only integer inputs and outputs but
on the class under test where we can have any type of
inputs, and the state data consequently is also of mixed
types of data. Thus, our method can be generalized for
inputs of any type, not only for integers. It removes some
limitations on the type of SUT that can be analyzed.

One of the weaknesses of our method is the need of
a test driver that we use to extract state data during the
test suite execution. To generate the test driver for the
SUT, we have to identify the state extracting methods
manually. For efficiency reasons, it would be better to
have an automatic identification of state extracting meth-
ods. Unfortunately, there is no simple way to do this.
Also, in the case of the manual identification, for some
classes, it may not be so clear what methods should be
marked as state extracting methods.

Given the limitations of our study, more experiments
have to be conducted to empirically test our proposed
method for fault detection and localization. We are cur-
rently focusing on extending our experiments in two
directions. First, we will add more kinds of fault injec-
tions to test the sensitivity of our method with regards to
the type of faults in a program. We will systematize this
by using mutation. Second, we will apply our proposed
method to more classes in the Java collections framework
and beyond.

Acknowledgments
This research was partly funded by the Estonian Center
of Excellence in ICT research (EXCITE), the IT Academy
Programme for ICT Research Development, the Austrian
ministries BMVIT and BMDW, and the Province of Up-
per Austria under the COMET (Competence Centers for
Excellent Technologies) Programme managed by FFG,
and by the group grant PRG887 of the Estonian Research
Council.

References
[1] T. M. Abdellatif, L. F. Capretz, D. Ho, Software ana-

lytics to software practice: A systematic literature
review, in: 2015 IEEE/ACM 1st Int’l Workshop on
Big Data Software Engineering, 2015, pp. 30–36.

[2] R. Braga, P. S. Neto, R. Rabêlo, J. Santiago, M. Souza,
A machine learning approach to generate test or-
acles, in: Proc. of the XXXII Brazilian Symp. on
Softw. Eng., SBES ’18, Association for Computing
Machinery, New York, NY, USA, 2018, p. 142–151.

[3] K. Patel, R. M. Hierons, A partial oracle for uni-
formity statistics, Softw. Quality Journal 27 (2019)
1419–1447.

[4] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz,
S. Yoo, The oracle problem in software testing: A
survey, IEEE Trans. on Softw. Eng. 41 (2015) 507–
525.

[5] L. Zhou, S. Yau, Efficient association rule mining
among both frequent and infrequent items, Com-
puters and Mathematics with Applications 54 (2007)
737 – 749.

[6] S. K. Solanki, J. T. Patel, A survey on association
rule mining, in: 2015 Fifth Int’l Conf. on Advanced
Computing Communication Technologies, 2015, pp.
212–216.

[7] R. Agrawal, R. Srikant, Fast algorithms for mining
association rules in large databases, in: Proc. of the
20th Int’l Conf. on Very Large Data Bases, VLDB ’94,
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1994, p. 487–499.

[8] G. McCluskey, Efficient-apriori documentation,
2018.

[9] A. Bhandari, A. Gupta, D. Das, Improvised apriori
algorithm using frequent pattern tree for real time
applications in data mining, Procedia Computer
Science 46 (2015) 644 – 651.

[10] B. Zhang, et al., Automatic discovery and cleans-
ing of numerical metamorphic relations, in: Proc.
35th IEEE International Conference on Software
Maintenance and Evolution (ICSME 2019), 2019, pp.
235–245.

An Industrial Case Study on Fault Detection Effectiveness
of Combinatorial Robustness Testing
Konrad Fögen, Horst Lichter

Research Group Software Construction, RWTH Aachen University, Aachen, Germany
https://www.swc.rwth-aachen.de

Abstract
Combinatorial robustness testing (CRT) is an extension of combinatorial testing (CT) to separate test suites with valid and
strong invalid test inputs. Until now, only one controlled experiment using artificial test scenarios was conducted to compare
CRT with CT. The results indicate advantages of CRT when much exception handling is involved. But, it is unclear if these
advantages are also valid in the real-world. In this paper, we present the results of a case study conducted to compare the
fault detection effectiveness of CRT and CT by testing an industrial system with 31 validation rules and 13 injected faults.

Keywords
Software Testing, Combinatorial Testing, Robustness Testing

1. Introduction
Robustness is an important property of software. It de-
scribes “the degree to which a system [...] can function
correctly in the presence of [invalid inputs]” [1]. Invalid
inputs are caused by external faults, i.e. faults in other
systems or made by users interacting with a system. Ex-
amples are inputs to the system under test (SUT) that
contain invalid values like a string value when a numeri-
cal value is expected, or invalid value combinations like
a begin date which is after the end date. When invalid
inputs remain undetected, they can propagate to failures
in the SUT resulting in abnormal behavior or crashes [2].

Developers attempt to improve robustness of systems
by implementing exception handling (EH) to detect and
recover from invalid inputs. Unfortunately, EH is itself
a significant source of faults (cf. [3, 4]). Therefore, it is
important to test the exceptional behavior as well.

Combinatorial testing (CT) is a black-box test method
that is based on an input parameter model (IPM) [5].
When considering the exceptional behavior, an IPMmust
describe invalid values and invalid value combinations
that trigger EH. Unfortunately, invalid values and invalid
value combinations can cause input masking (cf. [6, 7, 8]).
When a SUT is stimulated with an invalid input, the EH
is expected to detect it, to respond with an error message,
and to terminate the SUT without resuming the normal
behavior. Consequently, the remaining values and value
combinations of the test input remain untested as they
are masked.

QuASoQ 2020: 8th International Workshop on Quantitative
Approaches to Software Quality, December 01, 2020, Singapore
Envelope-Open foegen@swc.rwth-aachen.de (K. Fögen);
lichter@swc.rwth-aachen.de (H. Lichter)
Orcid 0000-0002-3440-1238 (H. Lichter)

© 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

To avoid input masking, combinatorial robustness test-
ing (CRT) is developed as an extension to CT using a
robustness input parameter model (RIPM) being an ex-
tension of an IPM with additional semantic information
to annotate values and value combinations as invalid [7].
With this semantic information, valid test inputs can be
selected which do not cover any invalid value or invalid
value combination. Further on, strong invalid test inputs
can be selected which contain exactly one invalid value
or one invalid value combination.

Due to the separation of valid and strong invalid test
inputs, the input masking effect can be avoided when
testing the normal behavior and the exceptional behavior.
However, in comparison to CT which does not separate
valid and strong invalid test inputs, CRT requires effort
to model the additional semantic information.

Despite the presence of input masking, CT can still
be effective in detecting faults as a previous controlled
experiment indicates [8]. Nevertheless, the fault detec-
tion effectiveness (FDE) of CT decreases for systems with
much EH. Even for high testing strengths and large test
suites, the FDE of CT deteriorates. For systems with
much EH, CRT is a promising approach that can achieve
a higher FDE while requiring fewer test inputs than CT
[7]. For systems with little EH, CRT is at least as effective
as CT.

Although, the current assessment is solely based on
one controlled experiment with artificial test scenarios (cf.
[7]). Therefore, our objective is to further compare CRT
with CT guided by the following two research questions.

RQ 1 Is the CRT test method applicable in real-world
test scenarios?

RQ 2 How does the CRT test method compare with CT
in real-world test scenarios?

mailto:foegen@swc.rwth-aachen.de
mailto:lichter@swc.rwth-aachen.de
https://orcid.org/0000-0002-3440-1238
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

To answer these research questions, we conducted a
case study. According to Kitchenham et al. [9], a case
study helps to evaluate the benefits of methods and tools
in industrial settings. When applied to compare methods
and tools, a case study is of explanatory nature “seek-
ing an explanation of a situation or a problem” [10]. As
Runeson & Höst state, a case study “will never provide
conclusions with statistical significance” [10]. But it can
provide sufficient information to help you judge if spe-
cific technologies will benefit your own organization or
project” [9]. Since a case study has, by definition, a higher
degree of realism than a controlled experiment [10], a
case study that compares CRT with CT can provide addi-
tional insights that complement and extend the findings
of the previously conducted controlled experiment.

The paper is structured as follows. Section 2 intro-
duces basic concepts of CT and CRT. Related work is
discussed in Section 3. Next, the design of the case study
is introduced (Section 4) and its results are presented
(Section 5). Afterwards, threats to validity are discussed
(Section 6) before the paper is concluded in Section 7.

2. Background
In the following, CT and CRT are briefly introduced. For
more information, please refer to [11, 5, 7].

2.1. Combinatorial Testing
CT is a black-box test method [5]. It is based on an input
parameter model (IPM) which declares 𝑛 parameters
and each parameter is associated with a non-empty set
of values. A schema is a set of parameter-value pairs
for 𝑑 distinct parameters [12]. A schema with 𝑑 = 𝑛
parameter-value pairs is a test input. A schema 𝑎 covers
another schema 𝑏 if and only if schema 𝑎 includes all
parameter-value pairs of schema 𝑏.

Real-world systems are often constrained and certain
values should not be combined to schemata and test in-
puts [5]. These schemata are irrelevant because they are
not of any interest for the test. Test inputs that cover
irrelevant schemata are irrelevant as well and their test
results have no informative value. Hence, they should be
excluded from testing.

Constraint handling is often used to exclude irrelevant
schemata [13]. Therefore, irrelevant schemata are ex-
plicitly modeled by a set of logical expressions (called
exclusion-constraints). A schema is relevant if it sat-
isfies all exclusion-constraints. A schema is irrelevant
if at least one exclusion-constraint remains unsatisfied.

A coverage criterion is a condition that must be sat-
isfied by a test suite. A test selection strategy describes
how values are combined to test inputs such that a given
coverage criterion is satisfied [11]. Test suites resulting

from a test selection strategy that supports constraint
handling, e.g. IPOG-C [13], satisfy the 𝑡-wise relevant
coverage criterion. This criterion is satisfied if the rele-
vant test inputs of a test suite cover all relevant schemata
of degree 𝑑 = 𝑡 that are described by an IPM [11, 5].

2.2. Combinatorial Robustness Testing
To avoid input masking, CRT is developed as an exten-
sion to CT that separates valid and invalid test inputs [7].
To better separate the concepts, we say that CT relies on
IPMs while CRT relies on robustness input parameter
models (RIPM). A RIPM contains additional error-con-
straints which is another set of constraints to annotate
relevant schemata as invalid. A relevant schema is also
a valid schema if it satisfies all error-constraints. A
relevant schema is an invalid schema if at least one
error-constraint remains unsatisfied. Further on, an in-
valid schema is a strong invalid schema if exactly one
error-constraint remains unsatisfied.

Test selection strategies like ROBUSTA [7] not only con-
sider exclusion-constraints to exclude irrelevant schema-
ta, they also consider error-constraints and exclude in-
valid schemata from valid test inputs. Further on, strong
invalid test inputs are selected such that each invalid
value and invalid value combination that is modeled by
error-constraints appears in strong invalid test inputs.

Valid test inputs are selected to satisfy 𝑡-wise valid
coverage. The 𝑡-wise valid coverage criterion is an ex-
tension of the 𝑡-wise relevant coverage criterion. It is
satisfied if all valid schemata with a degree of 𝑑 = 𝑡 that
are described by a RIPM are covered at least once by a
valid test input.

Strong invalid test inputs are selected to satisfy 𝑏-wise
strong invalid coverage where 𝑏 denotes the robust-
ness interaction degree. Without robustness interaction
(𝑏 = 0), the coverage criterion is called single error cover-
age (cf. [11, 7]). It is satisfied if each invalid schema that
is described by an error-constraint appears in a strong
invalid test input. With robustness interaction (𝑏 ≥ 1),
each described invalid schema is combined with all valid
schemata of degree 𝑑 = 𝑏. The coverage criterion is satis-
fied if all combinations of invalid schemata and 𝑏-sized
valid schemata are covered by strong invalid test inputs.

Following these brief introductions of CT and CRT,
the conceptual difference between the two approaches
should become clear. CT and CRT use the same param-
eters and values. But CT does not distinguish between
valid and invalid schemata. Instead, both types of schema-
ta are mixed and the FDE purely relies on the combina-
torics, i.e. different testing strengths 𝑡. In contrast, CRT
distinguishes valid and invalid schemata to avoid the
effect of input masking. Here too the FDE relies on com-
binatorics but the avoidance of input masking has an
additional influence.

CRT requires the effort to model error-constraints.
Test selection strategies that consider error-constraints
also become more complex. This raises the question
whether the avoidance of input masking outweighs the
additional effort and complexity of CRT. Until now, only
artificial test scenarios are used to compare CT with CRT
(cf. [7]) and it remains unclear if indicated advantages of
CRT can be transferred to real-world scenarios. There-
fore, this case study was conducted.

3. Related Work
To the best of our knowledge, Sherwood [6] first men-
tioned invalid values in the context of CATS which is a test
selection strategy and tool for CT. Cohen et al. [14] and
Czerwonka [15] also acknowledged the necessity to sep-
arate valid and strong invalid test inputs. They also pub-
lished test selection strategies and tools and the IPMs con-
tain semantic information to distinguish relevant from
irrelevant schemata and to distinguish valid from invalid
values. However, invalid value combinations are not di-
rectly supported. Therefore, we proposed ROBUSTA and
the structure of RIPMs with error-constraints [7].

Many studies exist that demonstrate the usefulness and
effectiveness of CT (cf. [16, 17, 18]). But most studies
do not distinguish between relevance and validness and
focus on testing the normal behavior.

One case study by Wojciak & Tzoref-Brill [19] reports
on applying CT and also considers testing with invalid
inputs. They report that single error coverage was not
sufficient because EH depended on interactions between
invalid and valid values. In particular, “the same [excep-
tion] would often be handled differently depending on
the firmware in control [...] or depending on the config-
uration of the system”. A further remark is concerned
with the ratio of valid versus invalid test inputs: “Since
a lot of attention was given to [robustness] testing [...]
where full recovery in the presence of [exceptions] was
expected, the [test suite] contained a ratio of up to 2:1
[invalid test inputs vs. valid test inputs].”

4. Case Study Design
In this section, the case under analysis and the data col-
lection procedure are introduced.

4.1. Case Under Analysis
The case is a development project conducted by an IT
service provider of an insurance company, where a new
software was developed to manage the life-cycle of life
insurance contracts. One subsystem of the software is
concerned with the validation of insurance application

data according to a set of validation rules and with for-
warding the data when it satisfies the validation rules. It
is the same project which we analyzed in a previous case
study (cf. [18]).

Altogether, 31 validation rules are defined to check
insurance application data. The order of the validation
rules is predefined and all validation rules are traversed
for each insurance application data. Whenever a valida-
tion rule is not satisfied by an insurance application, a
corresponding error code is returned and the remaining
validation rules are skipped. If all validation rules are
satisfied, the subsystem returns SUCCESS and the insur-
ance application data is further processed. Although, the
further processing is out of scope for this case study.

Each validation rule is built as an implication consist-
ing of two parts:

isApplicable(application) ⇒ isValid(application)

The first part determines whether a given validation rule
is applicable to the insurance application data or not. If
a rule is applicable, the insurance application must not
violate the rule, i.e. isValid(application). Otherwise, the
validation rule is ignored.

Because details of the case are confidential, a generic
example is given to provide further illustration of vali-
dation rules. The example depicts two validation rules
to define maximum sums that can be insured depending
on the permissions of the insurance agents. The first
validation rule is applicable to all applications created
by insurance agents with the highest level of permission.
The second validation rule is applicable to all applica-
tions that are created by insurance agents with lower
permission level.

The distinction between the two validation rules is
made by the first part of the implication:

Rule 1: isApplicable(application) ∶
application .agent .permission = highest_level

Rule 2: isApplicable(application) ∶
application .agent .permission ≠ highest_level

The second part of the implication is used to enforce
themaximum insured sum. As an applicationmay consist
of several partial contracts, the individual insured sums
of all partial contracts are collected first. Afterwards,
it is checked whether the total sum exceeds the thresh-
old. While the structure of both rule’s isValid() parts is
the same, different values for the maximum_insured_sum
constant are used:

isValid(application) ∶

total_sum = ∑
partial ∈ application

partial .insured_sum

total_sum ≤ maximum_insured_sum

This example shows that many parameters may be
involved in a validation rule, that intermediate calcula-
tions may be required, and that intermediate calculations
may be reused in different validation rules. Therefore,
all validation rules should be tested thoroughly.

For this case study, we consider the current set of vali-
dation rules as correct and treat them as our specification.
By browsing the source code repository, we have iden-
tified 13 changes that have been made to the validation
rules in order to correct them. Each change documents a
fault that existed previously but is fixed prior to release.
Based on these 13 changes, we reconstructed 13 imple-
mentation versions of which each contains one fault.

The 13 faults can also be classified according to our ro-
bustness fault classification (cf. [7]). Five faults can only
be detected by invalid test inputs, while eight faults can
be detected by both valid and invalid test inputs. Two of
these five faults can be classified as faults in error-signal-
ing. To reveal them, invalid test inputs must trigger EH
which responds with an incorrect error code. The other
three faults can be classified as faults in error-detection
conditions. The conditions are too weak and do not detect
invalid test inputs. Hence, the SUT incorrectly continues
with its normal behavior.

The remaining eight faults can be detected by both
valid and invalid test inputs. They are faults in error-de-
tection conditions. Four of theses faults have conditions
that are too strong and therefore incorrectly detect ex-
ception occurrences for valid test inputs. The other four
faults have characteristics of being too weak and too
strict at the same time because wrong parameters with
similar characteristics are used in the exception condi-
tion. As a consequence, an invalid test input may not
violate the condition (too weak) while a valid test input
may not satisfy the condition (too strong).

4.2. Data Collection Procedure
Data collection refers to themeasurement and calculation
of metric values from test execution. Therefore, metrics
are defined in this section. Furthermore, the modeling of
the IPM and RIPM as well as the selection and execution
of test inputs is described.

4.2.1. Metrics

The resources available from the software development
project are not directly analyzed and compared. Instead,
they are used to reconstruct the implementation versions
for test execution and to create a RIPM and an IPM that
represent variations of insurance application data.

Based on the RIPM and IPM, test inputs are selected
using a CT and a CRT test selection strategy. Then, the
test inputs are executed on the 13 reconstructed imple-
mentations to assess the effectiveness.

A common metric to assess the effectiveness is fault
detection effectiveness (FDE) [11, 16]. A test suite 𝑇
is denoted as failing for a test scenario 𝑆𝐶 if at least one
of the test inputs 𝜏 ∈ 𝑇 detects the fault in 𝑆𝐶.

failing(𝑇 , 𝑆𝐶) = { 1 if ∃𝜏 ∈ 𝑇 that fails for 𝑆𝐶
0 otherwise

Using the failing function, FDE is defined as the ratio
between the number of test suites 𝑇 of a test suite family
𝑇 ∗ that fail for a test scenario 𝑆𝐶 and the number of all test
suites in the family 𝑇 ∗. In this case study, the family of
test suites contains 20 different variants. In other words,
the FDE is based on 20 randomized test suites that all
satisfy the same coverage criterion for the same IPM or
RIPM. They all test the same test scenario.

FDE(𝑇 ∗, 𝑆𝐶) =
∑𝑇∈𝑇 ∗ failing(𝑇 , 𝑆𝐶)

|𝑇 ∗|

Further on, the average fault detection effective-
ness (AFDE) denotes the average FDE over a family of
test scenarios 𝑆𝐶∗. In our case study, the family of test
scenarios 𝑆𝐶∗ consists of the 13 reconstructed implemen-
tations. The AFDE represents the average effectiveness
of CRT and CT equally distributed over the 13 faults.

AFDE(𝑇 ∗, 𝑆𝐶∗) =
∑𝑆𝐶∈𝑆𝐶∗ FDE(𝑇 ∗, 𝑆𝐶)

|𝑆𝐶∗|

4.2.2. Modeling of IPM and RIPM

Since the FDE and AFDE metrics highly depend on the
quality of the RIPM and IPM, a systematic modeling ap-
proach is necessary. We model the IPM first and later
extend it with error-constraints to get a RIPM.

The IPM is modeled iteratively for one validation rule
at a time. In each iteration, parameters and values are
added to ensure that test inputs with the following three
characteristics can be detected: (1) test inputs that are
not applicable; (2) test inputs that are applicable and
valid; (3) test inputs that are applicable but not valid. In
addition, some exclusion-constraints are introduced to
ensure syntactic correctness of selected test inputs. The
IPM is considered as complete once the IPM contains
all parameters and values necessary to satisfy branch
coverage of each validation rule.

For the RIPM, the modeling of additional error-con-
straints is required. The error-constraints are modeled
iteratively and we add new or update existing ones until
the separation of valid and strong invalid test inputs con-
forms to the responses of the SUT, i.e. the SUT returns
SUCCESS for each valid test input and the SUT returns an
error code for each strong invalid test input.

In total, the IPM and RIPM consist of 32 parameters
and 106 values. Most parameters have two, three, or four
values each. But two parameters have six values each

and one parameter has even nine values. Three exclu-
sion-constraints of which each restricts combinations of
two parameters are required to ensure syntactical cor-
rectness of the insurance applications. Furthermore, the
RIPM contains 31 error-constraints. 15 error-constraints
annotate single values as invalid. The remaining 16 er-
ror-constraints annotate schemata with 2, 3, or 5 values.

The complete IPM and RIPM are described below in ex-
ponential notation. For parameters and values, 𝑥𝑦 refers
to 𝑦 parameters with 𝑥 values. For exclusion- and error-
constraints, 𝑥𝑦 refers to 𝑦 constraints with 𝑥 parameters.

Parameters & Values: 9162514838212

Exclusion-Constraints: 23

Error-Constraints: 523628115

4.2.3. Selecting and Executing Test Inputs

After creating the IPM and RIPM, both models are used to
select sets of test inputs. Since we compare CRT with CT,
two different test selection strategies are used. ROBUSTA
is used to select test inputs for the RIPM and IPOG-C is
used to select test inputs for the IPM.

To compare the FDE and AFDE of CRT with CT, test
suites that satisfy different coverage criteria are used.
We apply IPOG-C to select test suites that satisfy 𝑡-wise
relevant coverage for 𝑡 ∈ {1, ..., 5}. Furthermore, we ap-
ply ROBUSTA to select test suites that satisfy 𝑡-wise valid
coverage with 𝑡 ∈ {1, ..., 3} and that satisfy 𝑏-wise strong
invalid coverage with 𝑏 ∈ {0, 1}.

To reduce the effect of accidental fault detection caused
by ordering, the order of parameters and values of the
input parameter models is randomly reordered and 20
different model variants are used to select test suites for
each coverage criteria.

Table 1 depicts the average sizes of test suites that
satisfy the different coverage criteria. Since ROBUSTA en-
compasses two coverage criteria (𝑡-wise valid coverage
and 𝑏-wise strong invalid coverage), the test suites are
considered both, separately and combined.

The largest test suite is selected by IPOG-C which is
required to satisfy 𝑡-wise relevant coverage with 𝑡 = 5
(15023.70 test inputs). The second-largest test suite is also
selected by IPOG-C to satisfy 𝑡-wise relevant coveragewith
𝑡 = 4 (2813.45 test inputs). The third-largest test suite
is selected by ROBUSTA and satisfies 𝑡-wise valid coverage
with 𝑡 = 3 and 𝑏-wise strong invalid coverage with 𝑏 = 1
(2224.30 test inputs).

When comparing the test suite sizes of 𝑡-wise relevant
coverage of IPOG-C with 𝑡-wise valid coverage of ROBUSTA ,
it can be seen that the error-constraints drastically reduce
the number of valid test inputs.

After test input selection, the test suites are used to
stimulate the SUT in 13 different versions. Therefore, the
13 reconstructed implementations of which each contains

Table 1
Test suite sizes of test suites for different coverage criteria

Coverage Criteria t b Size
𝑡-wise relevant 1 - 9.00
coverage 2 - 68.10

3 - 480.10
4 - 2813.45
5 - 15023.70

𝑡-wise valid coverage 1 - 7.00
2 - 48.30
3 - 267.95

𝑏-wise strong - 0 301.00
invalid coverage - 1 1956.35
𝑡-wise valid coverage 1 0 308.00
and 𝑏-wise strong 1 1 1963.35
invalid coverage 2 0 349.30

2 1 2004.65
3 0 568.95
3 1 2224.30

one fault are tested to determine which test suite is able
to detect which fault. The results are discussed in the
following section.

5. Results & Discussion
In this section, the case study results regarding the com-
puted FDE and AFDE values are reported and discussed.

5.1. Fault Detection Effectiveness
Table 2 lists the FDE values of all test suites families
applied to all 13 implementations. For better readability,
+ is used to indicate an FDE value of 1.00. The faults nos.
1 to 8 can all be detected by both valid and invalid test
inputs, while the faults nos. 9 to 13 can only be detected
by invalid test inputs. Again, the shown FDE value is an
average value for one test suite family with 20 different
test suites that are created by randomizing the order of
parameters and values before selecting test inputs. As
an example, in the first row for fault no. 3, an FDE value
of 0.05 means that one out of 20 test suites detected the
fault at least once per test suite.

As can be observed, 𝑡-wise relevant coverage is not
able to detect all faults reliably. The FDE values increase
when testing strength 𝑡 grows. But even with 𝑡 = 5
(15023.70 test inputs), only 7 faults are detected reliably
(FDE value of 1.00). Further on, fault no. 10 remains
undetected (FDE value of 0) and faults nos. 9 and 13 are
only detected by one out of 20 test suites (FDE value of
0.05).

The CRT coverage criteria are characterized by avoid-
ing the invalid input masking effect. Since all invalid
schemata are excluded by 𝑡-wise valid coverage, the faults

Table 2
FDE values for different coverage criteria

Coverage FDE values for faults nos. 1 to 13 AFDE
Criteria t b 1 2 3 4 5 6 7 8 9 10 11 12 13 values
𝑡-wise relevant 1 - 0 0 0.05 0.05 0 0 0 0 0 0 0.25 0.05 0 0.03
coverage 2 - 0.10 0.10 0.45 0.20 0.10 0 0 0 0 0 0.65 0.20 0 0.14

3 - 0.75 0.75 + + 0.65 0.05 0.10 0.05 0.05 0 + 0.65 0 0.47
4 - + + + + + 0.15 0.10 0.05 0 0 + + 0 0.56
5 - + + + + + 0.50 0.35 0.15 0.05 0 + + 0.05 0.62

𝑡-wise valid 1 - 0.75 0.75 + + 0.50 0.50 + 0.80 0 0 0 0 0 0.48
coverage 2 - + + + + + + + + 0 0 0 0 0 0.62

3 - + + + + + + + + 0 0 0 0 0 0.62
b-wise strong - 0 + + + + + + 0.90 0.80 + + + + + 0.98
invalid - 1 + + + + + + + + + + + + + +
𝑡-wise valid 1 0 + + + + + + + + + + + + + +
coverage and 1 1 + + + + + + + + + + + + + +
b-wise 2 0 + + + + + + + + + + + + + +
strong invalid 2 1 + + + + + + + + + + + + + +
coverage 3 0 + + + + + + + + + + + + + +

3 1 + + + + + + + + + + + + + +

nos. 9 to 13 cannot be detected. But for all other faults,
𝑡-wise valid coverage has higher FDE values for the same
testing strength 𝑡 when compared to 𝑡-wise relevant cov-
erage. Because invalid input masking is avoided, a testing
strength of 𝑡 = 2 is sufficient to detect faults nos. 1 to 8
reliably (FDE values of 1.00).

Using 𝑏-wise strong invalid coverage with 𝑏 = 0, 11
out of 13 faults can already be detected reliably and the
two remaining faults have high FDE values of 0.90 and
0.80. The effectiveness of robustness interactions is even
higher and all faults can be detected reliably with 𝑏 = 1.

Four faults that have too strong error detection con-
ditions and that actually require valid test inputs to be
detected are also reliably detected by 𝑏-wise strong in-
valid coverage. We could observe that a strong invalid
test input that is expected to violate the error detection
condition of the 𝑙-th validation rule is also expected to
satisfy all prior validation rules from 1 to 𝑙 − 1. Therefore,
strong invalid test inputs can be considered as “partially-
valid” test inputs that are able to accidentally detect faults
that require valid test inputs. This effect is strengthened
by robustness interactions because more test inputs are
selected and more interactions are covered by them.

ROBUSTA combines 𝑡-wise valid coverage and 𝑏-wise
strong invalid coverage and the FDE values show that test
suites for both coverage criteria complement each other.
Since valid and strong invalid test inputs are able to detect
faults nos. 1 to 8, the FDE values are complemented by
the combination of both test suites. For faults nos. 9 to 13,
the FDE values are not complemented by the combination
of both test suites. This is because test suites that only
satisfy 𝑡-wise valid coverage cannot detect these faults.
Therefore, the FDE values of the combined test suites are
the same as the FDE values of the test suites that satisfy
𝑏-wise strong invalid coverage.

In order to detect all faults reliably, the 𝑏-wise strong
invalid coverage must be selected because faults nos. 9
to 13 remain undetected otherwise. Either robustness
interaction (𝑏 > 0) or the combination of 𝑏-wise strong
invalid coverage with 𝑡-wise valid coverage is required
to reliably detect faults nos. 1 to 8. Even though 𝑡 = 1
is only sufficient to detect three of the first eight faults
reliably, the combination with 𝑏-wise strong invalid cov-
erage improves the FDE and all faults can be detected
reliably.

The discussion of the FDE shows which coverage cri-
teria are appropriate to reliably detect different types of
faults. Next, we discuss the AFDE over all 13 faults.

5.2. Average Fault Detection
Effectiveness

Because AFDE values are average values over a set of
faults, AFDE allows making general statements about
both the effectiveness and the efficiency of coverage cri-
teria. First, we discuss the effectiveness in terms of AFDE
values of different coverage criteria. Therefore, Table 2
lists the AFDE values for test suites that satisfy different
coverage criteria. Afterwards, we discuss the efficiency
in terms of AFDE values in relation to test suite sizes
(listed in Table 1).

The AFDE values reflect what we discussed before
since they aggregate FDE values. Because of the invalid
input masking effect, test suites that satisfy 𝑡-wise rele-
vant coverage only reach an AFDE value of 0.62.

In direct comparison, test suites that satisfy 𝑡-wise
valid coverage reach a maximum AFDE value of 0.62 as
well. The same AFDE value can be reached because they
prevent invalid input masking. However, the AFDE value
cannot be further improved by increasing the testing

strength because faults nos. 1 to 8 are already detected
reliably and faults nos. 9 to 13 cannot be detected by valid
test inputs. Comparing the two coverage criteria for each
testing strength individually shows that the AFDE value
of 𝑡-wise valid coverage is always higher than the AFDE
value of 𝑡-wise relevant coverage.

For 𝑏-wise strong invalid coverage, the lowest AFDE
value is 0.98 (no robustness interactions) which is always
higher than the AFDE values of 𝑡-wise relevant and valid
coverage. Furthermore, 𝑏-wise strong invalid coverage
with robustness interactions has an AFDE value of 1 and
therefore detects all faults reliably.

Overall, the combination of 𝑡-wise valid coverage and
𝑏-wise strong invalid coverage performs the best and
always detects all faults reliably.

When putting the AFDE values in relation to test suite
sizes, it can be noted that 𝑡-wise relevant coverage has
the worst efficiency as it requires 15023.70 test inputs for
an AFDE value of 0.62. In contrast, 𝑡-wise valid coverage
only requires 48.30 test inputs for an AFDE value of 0.62.

The best efficiency is offered by the combination of
𝑡-wise valid coverage with 𝑡 = 1 and 𝑏-wise strong invalid
coverage with 𝑏 = 0 which requires 308.00 test inputs
for an AFDE value of 1.00. When using an AFDE value
of 0.92 as a lower boundary (12 out of 13 faults), 𝑏-wise
strong invalid coverage with 𝑏 = 0 is sufficient and only
requires 301.00 test inputs for an AFDE value of 0.98.

This discussion about efficiency is, of course, influ-
enced by the characteristics of the 13 faults and cannot
be generalized. But as more general statements, it can be
observed that 𝑡-wise relevant coverage requires more test
inputs to reach a similar AFDE value than 𝑡-wise valid
coverage, 𝑏-wise strong invalid coverage, or the combi-
nation of both. At the same time, the combination of
𝑡-wise valid coverage and 𝑏-wise strong invalid coverage
always has an AFDE value of 1.00 while at most 2224.30
test inputs are used. This finding is also consistent with
our prior experimental evaluation (cf. [7]).

Therefore, we draw the conclusion that 𝑡-wise valid
coverage, 𝑏-wise strong invalid coverage, and the combi-
nation of both perform as well as or better than 𝑡-wise
relevant coverage in terms of effectiveness and efficiency.
Although, the findings are only derived from one partic-
ular case. Therefore, we do not consider this to be true
for all SUTs but for SUTs with many validation rules.

6. Threats to Validity
We compare the effectiveness of CRT using an imple-
mentation of the ROBUSTA test selection strategy with CT
using an implementation of the IPOG-C test selection strat-
egy. To ensure an unbiased implementation, both imple-
mentations follow the guidelines of Kleine & Simos [20].
Further on, the source code of the test selection strate-

gies is published as part of the coffee4j open-source test
automation framework1.

The effectiveness of CRT and CT highly depend on the
IPM and RIPM. Furthermore, the effectiveness depends
on the faults that are considered in this case study.

Unfortunately, details of the case, i.e. source code
of the validation rules and detailed descriptions of the
faults, are confidential. To improve transparency and
reproducibility, we describe the faults and make the char-
acteristics of the IPM and RIPM explicit.

To avoid any bias, both the IPM and RIPM are modeled
systematically and share the same set of parameters and
values. To prevent falsified results due to accidental fault
triggering, the orders of parameters and values are ran-
domized and 20 different variants are used in test input
selection. All presented FDE values are average values.

Since this is a case study with only one case, it is diffi-
cult to generalize the findings [10]. Further on, it has to
be noted that the archival data of this case study is only a
snapshot and the ground truth, i.e. the existing and pre-
viously existing faults, is unknown. Hence, the data can
be biased towards simpler faults that are easier to detect.
To prevent too far-reaching conclusions, we describe the
characteristics of the SUT and also limit our conclusions
to similar systems with many validation rules.

7. Conclusion
CRT extends CT to generate separate test suites with
valid and strong invalid test inputs in order to avoid input
masking that is caused by EH. Therefore, CRT requires
additional effort to model error-constraints and intro-
duces additional complexity to test selection strategies
because error-constraints must be considered. This raises
the question about the usefulness of CRT and whether
the avoidance of input masking outweighs the additional
effort and complexity. Until now, only artificial test sce-
narios are used to compare CT with CRT and it remains
unclear if indicated advantages of CRT can be transferred
to real-world scenarios.

In this paper, we therefore present the results of a case
study based on a real-world system with 31 validation
rules and 13 previously existing faults. To compare CT
with CRT, we construct a IPM and a RIPM, select test
inputs, and stimulate 13 implementations of the real-
world system of which each implementation contains one
of the 13 previously existing faults. For the subsequent
discussion, we introduce the FDE and AFDE metrics.

To summarize the findings of this case study, we dis-
cuss both research questions individually.

Research Question 1: Our results indicate that the
CRT test method is applicable in real-world test scenar-
ios. This case study demonstrated that RIPMs with 32

1See https://coffee4j.github.io for more information.

parameters and 31 error-constraints can be constructed.
Further on, the ROBUSTA test selection strategy is capable
of selecting test suites for RIPMs with 32 parameters and
31 error-constraints.

Research Question 2: The comparison of CRT with
CT is consistent with the findings of our previously con-
ducted controlled experiment with artificial test scenarios
(cf. [7]). Since the case under analysis has much EH, CRT
performs better than CT in terms of FDE. Further on, it
requires fewer test inputs to achieve better AFDE values
than CT.

Therefore, we draw the conclusion that 𝑡-wise valid
coverage, 𝑏-wise strong invalid coverage, and the combi-
nation of both perform as well as or better than 𝑡-wise
relevant coverage in terms of effectiveness and efficiency.

Although, the FDE and AFDE values are influenced by
the characteristics of the 13 faults and cannot be general-
ized. Therefore, we do not consider this to be true for all
SUTs but for SUTs with much EH.

In future work, we plan to conduct further case studies
to learn more about the FDE of CRT and CT.

References
[1] IEEE, IEEE Standard Glossary of Software Engi-

neering Terminology, IEEE Std 610.12-1990 (1990).
[2] A. Avižienis, J. Laprie, B. Randell, C. E. Landwehr,

Basic concepts and taxonomy of dependable and
secure computing, IEEE Trans. Dependable Sec.
Comput. 1 (2004) 11–33.

[3] C. Marinescu, Are the classes that use exceptions
defect prone?, in: Proceedings of the 12th Interna-
tional Workshop on Principles of Software Evolu-
tion and the 7th annual ERCIM Workshop on Soft-
ware Evolution, EVOL/IWPSE 2011, Szeged, Hun-
gary, September 5-6, 2011., 2011, pp. 56–60.

[4] P. Sawadpong, E. B. Allen, B. J. Williams, Exception
handling defects: An empirical study, in: 2012 IEEE
14th International Symposium on High-Assurance
Systems Engineering, 2012, pp. 90–97.

[5] C. Nie, H. Leung, A survey of combinatorial testing,
ACM Comput. Surv. 43 (2011) 11:1–11:29.

[6] G. B. Sherwood, Effective testing of factor combi-
nations, in: Proceedings of the Third International
Conference on Software Testing, Analysis and Re-
view, Washington, DC, 1994, pp. 151–166.

[7] K. Fögen, H. Lichter, Combinatorial robustness
testing with negative test cases, in: Proceedings of
the 19th IEEE International Conference on Software
Quality, Reliability and Security, QRS 2019, Sofia,
Bulgaria, July 22-26, 2019, 2019, pp. 34–45.

[8] K. Fögen, H. Lichter, An experiment to compare
combinatorial testing in the presence of invalid
values, in: Proceedings of the 7th International

Workshop on Quantitative Approaches to Software
Quality co-located with 26th Asia-Pacific Software
Engineering Conference (APSEC 2019), Putrajaya,
Malaysia, December 2, 2019., 2019, pp. 27–36.

[9] B. A. Kitchenham, L. Pickard, S. L. Pfleeger, Case
studies for method and tool evaluation, IEEE Softw.
12 (1995) 52–62.

[10] P. Runeson, M. Höst, Guidelines for conducting
and reporting case study research in software engi-
neering, Empirical Software Engineering 14 (2009)
131–164.

[11] M. Grindal, J. Offutt, S. F. Andler, Combination test-
ing strategies: a survey, Softw. Test., Verif. Reliab.
15 (2005) 167–199.

[12] C. Nie, H. Leung, The minimal failure-causing
schema of combinatorial testing, ACM Trans. Softw.
Eng. Methodol. 20 (2011) 15:1–15:38.

[13] L. Yu, Y. Lei, M. N. Borazjany, R. Kacker, D. R. Kuhn,
An efficient algorithm for constraint handling in
combinatorial test generation, in: Sixth IEEE In-
ternational Conference on Software Testing, Ver-
ification and Validation, ICST 2013, Luxembourg,
Luxembourg, March 18-22, 2013, 2013, pp. 242–251.

[14] D.M. Cohen, S. R. Dalal, M. L. Fredman, G. C. Patton,
The AETG system: An approach to testing based on
combinatiorial design, IEEE Trans. Software Eng.
23 (1997) 437–444.

[15] J. Czerwonka, Pairwise testing in real world, in:
24th Pacific Northwest Software Quality Confer-
ence, volume 200, Citeseer, 2006.

[16] J. Petke, M. B. Cohen, M. Harman, S. Yoo, Practical
combinatorial interaction testing: Empirical find-
ings on efficiency and early fault detection, IEEE
Trans. Software Eng. 41 (2015) 901–924.

[17] H. Wu, n. changhai, J. Petke, Y. Jia, M. Harman,
An empirical comparison of combinatorial testing,
random testing and adaptive random testing, IEEE
Transactions on Software Engineering (2018) 1–1.

[18] K. Fögen, H. Lichter, A case study on robust-
ness fault characteristics for combinatorial test-
ing - results and challenges, in: Proceedings of
the 6th International Workshop on Quantitative
Approaches to Software Quality co-located with
25th Asia-Pacific Software Engineering Conference
(APSEC 2018), Nara, Japan, December 4, 2018., 2018,
pp. 22–29.

[19] P. Wojciak, R. Tzoref-Brill, System level combina-
torial testing in practice - the concurrent mainte-
nance case study, in: Seventh IEEE International
Conference on Software Testing, Verification and
Validation, ICST 2014, March 31 2014-April 4, 2014,
Cleveland, Ohio, USA, 2014, pp. 103–112.

[20] K. Kleine, D. E. Simos, An efficient design and im-
plementation of the in-parameter-order algorithm,
Mathematics in Computer Science 12 (2018) 51–67.

An Evaluation of Machine Learning Methods for
Predicting Flaky Tests
Azeem Ahmada, Ola Leiflera and Kristian Sandahla

aLinköping University, 581 83 Linköping, Sweden

Abstract
The quality of the product is uncertain if the test cases change their outcome(i.e., from pass to fail or vice versa) without
modifications in the codebase. Tests that change their outcome without any modification in the code base are called flaky
tests. The common method to detect test flakiness is to re-run the test cases to ensure if test cases outcomes are deterministic.
The cost of re-running tests is often high. In addition to re-running tests, developers put effort and time to investigate
the root causes of test flakiness. The need for prevention of flaky tests is evident before adding it to a test suite. In this
paper we have investigated as a means of prevention the feasibility of using machine learning (ML) classifiers for flaky
test prediction in project written with Python. This study compares the predictive accuracy of the three machine learning
classifiers (Naive Bayes, Support Vector Machines, and Random Forests) with each other. We compared our findings with the
earlier investigation of similar ML classifiers for projects written in Java. Authors in this study investigated if test smells
are good predictors of test flakiness. As developers need to trust the predictions of ML classifiers, they wish to know which
types of input data or test smells cause more false negatives and false positives. We concluded that RF performed better when
it comes to precision (> 90%) but provided very low recall (< 10%) as compared to NB (i.e., precision < 70% and recall >30%)
and SVM (i.e., precision < 70% and recall >60%).

Keywords
Improve Software Quality, Flaky Test Detection, Machine Learning Classifiers, Experimentation, Test Smells

1. Introduction
Developers need to ensure that their changes to the
code base do not break existing functionality. If test
cases fail, developers expect test failures to be con-
nected to the changes. Unfortunately, some test fail-
ures have nothing to do with the code changes. Devel-
opers spend time analyzing changes trying to identify
the source of the test failure, only to find out that the
cause of the failure is test flakiness (TF). Many stud-
ies [1, 2, 3, 4] have been conducted to determine the
root causes of test flakiness. These studies concluded
that the main root cause of TF is the test smells. Test
smells are poorly written test cases and their presence
negatively affect the test suites and production code
or even the software functionality [5]. Another defi-
nition is "poor design or implementation choices applied
by programmers or testers during the development of test
cases" [2] . Asynchronous wait, input/output calls, and
test order dependency are some of the test smells that
have been found to be the most common causes of TF
[1]. The results presented by Luo et al. [1] were par-

8th International Workshop on Quantitative Approaches to Software
Quality in conjunction with the 27th Asia-Pacific Software
Engineering Conference (APSEC 2020) Singapore, 1st December 2020
" azeem.ahmad@liu.se (A. Ahmad); ola.leifler@liu.se (O. Leifler);
kristian.sandahl@liu.se (K. Sandahl)
� 0000-0003-3049-1261 (A. Ahmad)

© 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

tially replicated by Palomba and Zaidman [2], leading
to the conclusion that the most prominent causes of
TF are test smells such as asynchronous wait, concur-
rency, and input output issues. There is strong evi-
dence that the main reasons for test flakiness are spe-
cific test smells. Luo et al. suggested that "developers
should avoid specific test smells that lead to test flak-
iness". Authors in [2] investigated the question: "To
what extent can flaky tests be explained by the presence
of test smells?" They concluded that the "cause of 54%
of the flaky tests can be attributed to the characteristics
of the co-occurring test smell".

Mapping test smells to flaky test resemble the prob-
lem of mapping words to spam/ham email. Certain
words (i.e., sale, discount etc.) are more frequent in
spam emails. Many studies [6, 7, 8, 9, 10, 11, 12, 13,
14, 15] have been conducted to predict email class (i.e.,
spam or ham) based on email contents. We adopted a
similar approach in this study to determine the flak-
iness of test cases based on the test case code. Ma-
chine Learning approaches have been widely studied
and there are lots of algorithms that can be used in
e-mail classification including Naive Bayes [16][17],
Support Vector Machines [18][19][15, 14], Neural Net-
works [20][21], K-nearest neighbor [22].

Recently, Pinto et al. evaluated five machine learn-
ing classifiers (Random Forest, Decision Tree, Naive
Bayes, Support Vector Machine, and Nearest Neigh-
bour) to generate flaky test vocabulary [23]. They con-

mailto:azeem.ahmad@liu.se
mailto:ola.leifler@liu.se
mailto:kristian.sandahl@liu.se
https://orcid.org/0000-0003-3049-1261
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

cluded that Random Forest and Support Vector Ma-
chine provided best prediction of flaky tests. The in-
vestigated test cases were written in Java and the au-
thors concluded that: "future work will have to investi-
gate to what extent their findings generalize to software
written in other programming languages [23].

In this study, we implemented supervised ML classi-
fiers to detect if the test case is flaky or not based on the
contents of a test cases written in Python. We com-
pared our findings with what was presented by Pinto
et al. [23]. We looked for evidence if machine learning
classifiers are applicable in predicting flaky tests and
the results can be generalized to test cases written in
other languages. In addition to this, our unique contri-
bution is to investigate if test smells are good predic-
tors of test flakiness. Through manual investigation of
false positives and false negatives, we concluded a list
of test smells that are strong and weak predictors of
test flakiness. We investigated the following research
questions in this study.

RQ1: What are the predictive accuracy of Naive Bayes,
Support Vector Machine and Random Forest concerning
flaky test detection and prediction?

RQ2: To what extent the predicting power of machine
learning classifiers vary when applied on software writ-
ten in other programming language?

RQ3: What can we learn about the predictive power of
test smells using machine learning classifiers mentioned
in RQ1?

2. Data Set Description and
Prepossessing

We wrote a script to extract the contents of all test
cases from open-source projects, mentioned in Table
1. After the test case content’s extraction, we checked
which of the test cases, in our database, has been men-
tioned in [24] as flaky. After this mapping, we finalized
a database with the project name, test case name, test
case content and a label. There are many keywords in
the test case code that are irrelevant for the identifi-
cation of test flakiness. We performed extensive data
cleaning such as removing punctuation marks, digits
and specific keywords (i.e., int, string, array, assert*)
as well as converting text to lower case.

2.1. Classifiers:
An NBC, first proposed in 1998, is a probabilistic model
which can determine the outcome (i.e., flaky or not

flaky) of an instance (i.e., test case) based on the con-
tents of its features (i.e., test case code). In our case,
the outcome of NBC is binary. NBC is widely applied
in classification and known to obtain excellent results.
[25].

The attractive feature of SVM is that it eliminates
the need for feature selections, which makes spam clas-
sification easy and faster [14]. SVM deals with the dual
categories of classification and can find the best hyper-
plane to partition a sample space [15].

RF is an ensemble classification method (a technique
that combines several base models to produce an opti-
mal predictive model) suitable for handling problems
that involve grouping data into different classes. RF
predicts by using decision trees. Trees are constructed
during training which can later be used for class pre-
diction. There is a vote associated with each tree and
once the class vote has been produced for all individ-
ual trees, the class with the highest vote is considered
to be the output.

2.2. Performance Metrics and
Parameters Tuning

To evaluate the predictive accuracy of classifiers, accu-
racy as the only performance indices is not sufficient
[16]. We must consider precision, recall, F1-score, ROC
curve, false positives and false negatives [16]. There is
always some cost associated with false positives and
false negatives. When a non flaky test wrongly clas-
sified as flaky, it gives rise to a some what insignifi-
cant problem, because an experienced user can bypass
the warning by looking at test case code. In contrast,
when a flaky test is wrongly classified as non flaky test,
this is obnoxious, because it indicates the test suite still
have test cases whose outcome cannot be trusted.

The experiment started with the implementation of
simple NB without Laplace smoothing. The results did
not provide good accuracy or precision, because with-
out Laplace smoothing, the probability of appearing a
rare test smell (i.e., test smell that was not in the train-
ing set) in the test set is set to 0, given the formula

𝜃𝑗 = 𝑛𝑗𝑐/𝑛𝑐

where the 𝜃 is the probability that an individual test
smell is present in a flaky test, 𝑛𝑗𝑐 represents the num-
ber of times that particular test smell appeared in a
test case and 𝑛𝑐 represents the number of times that
test smell appeared in any test case. Laplace smooth-
ing refers to the modification in the equation:

𝜃𝑗 = (𝑛𝑗𝑐 + 𝛼)/(𝑛𝑐 + 𝛼)

Table 1
Open-source project names provided by [24] with number
of total test cases and flaky tests

Project Name Total Number of
TCs

Flaky
Tests

apache-qpid-0.18 2357 284
hibernate 4 3231 273
apache-wicket-1.4.20 1250 216
apache-karaf-2.3 163 102
apache-struts 2.5 2346 60
apache-derby-10.9 3832 40
apache-lucene-solr-3.6 764 7
apache-cassandra-1.1 523 4
apache-nutch-1.4 7 4
apache-hbase-0.94 29 2
apache-hive-10.9 23 2
jfreechart-1.0.18 2292 0

where we set the 𝛼 = 1 so that classifier adds 1 to the
probability of rare test smells that were not present in
the training set. Another step is to identify the thresh-
old (i.e., 0.0 - 1.0) which will increase the predictive ac-
curacy of the outcome. As far as SVM was concerned,
although the feature data set space was linear, we de-
cided to use both kernels (i.e., linear and poly) for the
sake of experiment. For random forest, we used ntree
between 300 - 700 as well as restricting number of vari-
ables available for splitting at each tree node known as
mtry between 25 and 100.

3. Results
This section discusses the performance of NBL, SVM
and RF with different parameters. We compared our
results with the findings of Pinto et al. to discuss how
results vary between Java and Python projects. We
also discussed why some classifiers do not perform as
expected and what can we learn about the predictive
power of test smells for test flakiness detection and
prediction.

3.1. RQ1: Performance of Naive Bayes
Classifier, Support Vector Machine
and Random Forest

Table 2 shows the 20 features with the highest infor-
mation gain together with their frequency with respect
to flaky and non-flaky tests. We assigned the features
to the categories presented by Luo et al. in [1]. We
manually traversed the code of flaky and non-flaky
tests to understand the context and how features were
used in the tests to assign categories. The top fea-
ture "conn" appeared in 1361 flaky tests and only 15

non-flaky tests. This feature is associated with exter-
nal connection to input/output devices and lies under
the category of "IO", presented by Luo et. al in [1].
The second top feature is "double" which appeared in
1190 flaky tests and 12 non-flaky tests assigned to the
category of "IO" followed by "floating points opera-
tions". The top 3rd feature "tabl" was related to table
creation during runtime for databases queries and ap-
peared 1150 times in flaky tests and 52 times in non-
flaky tests.

Figure 1 (A) represents the ROC curve [26] concern-
ing NBC with Laplace smoothing denoted as NBL with
different threshold (i.e., from 0.0 to 1.0). We conducted
different experiments with different training and test
data sets such as 50/50, 60/40, 70/30, 80/20 and 90/10.
We found similar values for k-fold cross validation.
ROC curve provides a comparison between sensitivity
and specificity helping in organizing classifiers and vi-
sualizing their performance [26]. Sensitivity also known
as the true positive rate represents a benefit of predict-
ing flaky tests correctly and specificity also known as
false positive rate represents the cost of predicting non
flaky tests as flaky tests. In the case of false positive,
developers need to spend effort and time, just to find
out that this is a classifier mistake and the test case is
not flaky. The optimal target, in the ROC curve, is to
rise vertically from origin to the top left corner (higher
true positive rate) as soon as possible because then the
classifier can achieve all true positives with the cost
of committing a few false positive. The diagonal line,
in Figure 1 (A), represents the strategy of randomly
guessing the outcome. Any classifier that appears in
the lower right triangle performs worse than a ran-
dom guessing and we can see that NBL lies in the up-
per left triangle. Looking at 1 (A), NBL with 70/30 data
partition is suitable to proceed further with 0.4 prob-
ability score. NBL, as shown in 1 (A), has stopped is-
suing positive classification (i.e., flaky test prediction)
around 0.76 - 0.87 threshold. After 0.87, it commits
more false positive rate.

We tuned different parameters in NBL, SVM and RF
before conducting further experiments. We do not in-
tend to provide the results of all experiments because
those experiments were only conducted to find the op-
timal parameters. The rest (i.e., simple NB, SVM with
radial and sigmiod kernels) were not included in fur-
ther experiments and discarded. Figure 1 (A-E) pro-
vides comparisons of NBL, SVM-Linear and SVM-Poly
(i.e., different kernels) for accuracy, precision, recall
and F1-score. All classifiers have achieved good ac-
curacies ranging from 93% - 96%. NBL outperformed
SVM although the difference between them is not dra-
matic. Looking only at the accuracy results of classi-

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

name

NBL−50/50L

NBL−60/40L

NBL−70/30L

NBL−80/20L

NBL−90/10L

A

●

●

●
●

●

93

94

95

50/5060/4070/3080/2090/10
Data Partitions

A
cc

ur
ac

y
V

al
ue

s
(%

)

Classifier

● NBLaplace=1

SVM−Linear

SVM−Poly

B
●

●
●

●

●

20

30

40

50

60

50/5060/4070/3080/2090/10
Data Partitions

P
re

ci
si

on
 V

al
ue

s
(%

)

Classifier

● NBLaplace=1

SVM−Linear

SVM−Poly

C

●
●

●

●
●

20

30

40

50

60

50/5060/4070/3080/2090/10
Data Partitions

R
ec

al
l V

al
ue

s
(%

)

Classifier

● NBLaplace=1

SVM−Linear

SVM−Poly

D

●

●

●
●

●

20

30

40

50

60

50/5060/4070/3080/2090/10
Data Partitions

F
1

S
co

re

Classifier

● NBLaplace=1

SVM−Linear

SVM−Poly

E

Figure 1: Performance comparison among classifiers. (A) represents the ROC curve of NBL classifier with different data
partition and probability score. (B-E) represents the accuracy, precision, recall and F1-score of different classifiers with a
different data partition, respectively.

fiers can be deceiving. The important factor for classi-
fier selection is to ask the right question and motivate
the choice of using specific classifier such as are we
interested in detecting flaky tests correctly (i.e.,
precision) or marking a non flaky test as flaky
is not cost effective (i.e, recall). It is important to
look at precision, recall and accuracy all together for
classifier selection. We can assume that practitioners
are more interested in precision than recall because
the test suite size, in many organizations, is very large
and they cannot inspect all test cases. In this partic-
ular case, any classifier that correctly flag flaky tests
will be encouraged. Precision can answer the question;
"If the filter says this test case is flaky, what’s the
probability that it’s flaky?”. Figure 1 (C,D) provides
precision and recall values for NBL and SVM. It can be
noticed that NBL precision is increasing (in C) with the
gradual decrease in recall (in D). NBL precision of 65%
dictates that 35% of what was marked as flaky was not
flaky. Recall is also lower in NBL as compared to SVM-
Linear. SVM-Poly performs worst in terms of precision
and recall as expected due the fact that the input data
set is not polynomial and is well suited for image pro-
cessing whereas linear kernel performs better for text
classification.

F1-score, as presented in Figure 1 (E), is the har-
monic mean of precision and recall. F1-score is use-

ful and informative because of prevalent phenomenon
of class imbalance in text classification [27]. NBL is a
suitable candidate although it has a lower F1-score as
compared to SVM-Linear because NBL performs bet-
ter with short documents as in our case, the training
test case consists of 6-15 lines of code [28]. NBL pro-
vides higher precision and lower recall as compared
to SVM-linear. Another disadvantage of SVM is that
it requires high computation and are very sensitive to
noisy data [29].

RF provides lesser classification error and better F1-
scores as compared to decision trees, NBL and SVM.
The precision, in which we are most interested, is usu-
ally better than that of SVM and NBL. Authors in [16]
also concluded that RF performs better than NBL and
SVM. The class outcomes are based on "votes" which
are calculated by each tree in the forest. The outcome
(i.e., flaky or not flaky) is selected based on the higher
votes. Figure 2 presents the performance of RF with re-
spect to selected metrics. mtry represents the number
of variables randomly sampled as candidates at each
split while ntree is the number of trees to grow. There
is no way to find an optimal mtry and ntree, so we ex-
perimented with different settings, as shown in Figure
2. The mtry has a direct effect on precision and recall
as shown in Figure 2. With an increase in mtry, the
precision is decreasing and recall in increasing; an un-

Accuracy F1−Score Precision Recall

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

25

50

75

mtry

V
al

ue
s

300

400

500

600

700

ntree

Figure 2: Performance of RF with different parameters (i.e., number of trees and mtry).

Table 2
Top 20 features and assigned category

Features #FT #Non
-FT

Assigned category
from Luo et. al [1]

conn 1361 15 IO
double 1190 12 floating point
tabl* 1150 54 -
rsnext 500 22 Unordered collec-

tions
for 241 15 -
jdbcassertfullresultsetr 900 0 IO
messag 1101 87 concurrency
null 334 88 -
sclose 360 0 IO
select 1080 15 IO
sgettransactioncommit 700 15 IO
expr 162 2 -
tcommit 134 5 -
true 700 11 -
epsilon 383 0 floating point
fail 269 13 -
jdbcassertcolumnnamesr 366 0 IO
throw* 592 49 -
rsclose 300 0 IO
row 161 3 -

wanted situation. The optimal value of mtry is 5 where
precision is higher and recall is lower regardless of the
number of trees. The change in mtry did not affect the
accuracy but as we discussed earlier, we are not only
interested in accuracy but precision too.

We performed several experiments to find optimal
parameters within a classifier before comparing it to
other classifiers. After these experiments, we identi-
fied three unique classifiers with unique and optimal
parameters. Since, we are most interested in higher
precision, we can see that RF with mtry = 5 and ntree=250

outperforms all other classifiers only for precision. RF
has achieved more than 90% precision with less than
10% recall. We did not achieve high precision (i.e.,
>90%) in all classifiers. NBL provides unexpected re-
sults although it holds a good reputation in terms of
detecting spam emails [29]. As compared to NBL and
SVM, RF have distinct qualities such as 1) it can work
with thousands of different input features without any
feature deletion 2) it calculates approximation of im-
portant features for classification and 3) it is very ro-
bust to noise and outliers [30]. Caruana in [17] com-
pared 10 different ML classifiers and concluded that
decision trees and random forest outperform all other
classifiers for spam classification.

3.2. RQ2: Predicting Power of ML
Classifiers with Respect to Other
Languages

In comparison of our findings with what was presented
by Pinto et al. [23], we observed two differences. First,
the top 20 features are very different in both studies.
Only two features such as "tabl" and "throw" marked
as star (*) in Table 2 were similar in both the find-
ings. However, we noticed that most of the our fea-
tures were related to "IO" output category, as presented
in Table 2, which complemented the findings of Pinto
et al. stating "that all projects manifesting flakiness
are IO-intensive" [23]. Second, we have a very lower
precision, recall and f1-score as compared to Pinto et
al. except at a instance where random forest provided
0.92 precision. Table 3 provides detail statistics of pre-
cision, recall, and f1-score of three algorithms for com-

Table 3
Comparison of Precision, Recall and F1-Score between our
findings (A) and Pinto et al. (B)

Precision Recall F1-Score Diff
Algo. A B A B A B
Random Forest 0.92 0.99 0.4 0.91 0.09 0.95 ↘
Naive Bayes 0.62 0.93 0.15 0.8 0.24 0.86 ↘
Support Vector 0.51 0.93 0.61 0.92 0.57 0.93 ↘

parison. The algorithms on Python language contin-
uously performed worst contrary to what pinto et al.
claimed: "Although the studied projects are mostly writ-
ten in Java, we do not expect major differences in the re-
sults if another object-oriented programming language
is used instead, since some keywords maybe shared among
them" [23].

We speculate that there could be several reasons as-
sociated with these performance reduction such as (1)
We implemented the code ourselves using R libraries
for aforementioned classifiers whereas pinto et al. used
Weka [31] which is an open source machine learn-
ing software that can be accessed through a graphi-
cal user interface, standard terminal applications [32],
(2) Number of features were very high in the training
samples and in these cases other models should be con-
sidered (i.e., regularized linear regression) that might
performed better, (3) the versatility offered by param-
eter tunning can become problematic and require spe-
cial considerations that can impact the classifiers, etc.

3.3. RQ3: Test Smells Analysis and their
Predictive Power for Test Flakiness
Detection and Prediction

We investigated manually different cases of true pos-
itives (i.e., correct flaky test prediction), false positive
(i.e., flaky test cases marked as non flaky) and false
negative (i.e., non flaky test cases marked as flaky) and
true negatives (correct non flaky test prediction) to an-
swer RQ3. We observed that it is not only the fre-
quency of test smell that makes a test case flaky but
its co-existence with the class code or external factors
such as operating systems or specific product. For ex-
ample, The test smell ’Conditional Test Logic’ as men-
tioned in [3] refers to nested and complex ’if-else’ struc-
ture in the test case. Depending on which branch of
’if-else’ is executed, the system under test may require
specific environment settings. Failing to set the envi-
ronment, during different executions, will flip the test
case outcome, thus making it flaky.

After manual investigation of all true/false positives
and true/false negatives, we come up with a list of

test smells that are strong or weak predictors of test
flakiness, as shown in Table 4. Strong predictors refer
to those test smells that existed in true positives and
true negatives cases whereas weak predictors only ex-
isted in false negatives and false positives. Test smells
that are classified as weak predictors in this study are
still useful and can help in identification of test flak-
iness, but they are not useful with machine learning
classifiers because they require additional information
such as what operating system they are running on
and whether or not specific configurations should be
deployed. Test smells that are classified as strong pre-
dictors are very useful with machine learning classi-
fiers because they only exist in test case function as
one unit and do not require additional information.

4. Lesson Learned
ML and AI algorithms in recent years have established
a good reputation for predicting diseases based on symp-
toms, spam emails based on email contents and many
more. We believe that given a proper input data set
which clearly distinguishes between flaky and non flaky
tests, ML and AI can provide high prediction capabil-
ities saving effort, time and resources. We strongly
believe that practitioners, during training of data set,
should not consider complete test cases as an input but
only the test codes (i.e., only few lines) that reveal test
flakiness.

It is inconclusive that predicting power of machine
learning vary with respect to software written in an-
other languages. Investigation on Java test cases [23]
revealed good results while findings for Python test
cases performed unexpected, thus requiring more in-
vestigations whether lexical information can be traced
to flakiness.

Async wait, precision, randomness and IO test smells
are string predictors can be predicted by machine learn-
ing classifiers with 100% precision because they only
exist in test case code and do not require additional in-
formation from test class or operating system. Whereas
all other test smells mentioned in Table 4 are weak pre-
dictors of test flakiness and require additional sources
of information. We are only aware of test smells that
are investigated in open-source repositories and liter-
ature on test smells in closed-source software is scarce.

5. Discussion and Implication
Valuable Indicators for Testers These classifiers can
increase the awareness about flaky test vocabulary among

Table 4
Test Smells as Strong and Weak Predictors Together with Source of their Existence

Test Smell Category Prediction Cate-
gory

Test
Case

Test
Class

Operating
System

External
Libraries

Hardware/Product

Async wait Strong [✔] - - - -
Precision (float operations) Strong [✔] - - - -
Randomness Strong [✔] - - - -
IO Strong [✔] - - - -
Unordered Collection Weak [✔] [✔] [✔] - -
Time Weak [✔] [✔] [✔] - [✔]
Platform Weak [✔] [✔] [✔] [✔] -
Concurrency Weak [✔] [✔] [✔] - -
Test order dependency Weak [✔] [✔] [✔] [✔] [✔]
Resource Leak Weak [✔] [✔] [✔] - -

testers. When a new test is added to a test suite, it
will be easy to identify whether this test case contains
specific test smells that were known to increase test
flakiness during previous executions. Testers can take
advantage of these types of information to reduce test
flakiness. Testers can easily identify test smells that
are independent of their environment with the help of
Table 4.

Precision Depends on Data Set: In the literature
of ML, particularly with spam detection, it is acknowl-
edged that precision is a function of the combination
of the classifier and the data set under investigation.
Classifier’s precision, in isolation of data set, does not
make sense. The right question is "how precise a clas-
sifier is for a given data set". Unfortunately, there
is no data available that provides test case contents
and an associated label thus, limiting the use of ad-
vanced ML and AI algorithms. In addition to lack of
flaky test data, all research has been conducted with
open-source software and we know a little about what
test smells are present in closed-source software. Ah-
mad et. al. concluded that there are specific test smells
that are associated with the nature of the product [33]
known as ’company-specific’ test smells. The classifier
which are trained on a specific data set or a domain
cannot be generalized to be used with another data set
or domain. There is a long road ahead to explore the
best classifier given different data sets.
Beyond Static Analysis of Test Smells and their
Frequency: ML is capable of incorporating different
sources of information to increase predictive accuracy
as compared to the limited experiment in this study
where we only utilized the frequency of test smells in
the test case. During the investigation of the cases of
’false negative’ and ’false positive’, it has been observed
that the frequency of test smells in the test case will not
be sufficient for prediction. Some test case code (i.e.,
seeds()) will cancel the effect of test smell (i.e., ran-

dom()), no matter how frequent the random() function
appears in the test case. Some test smell, even with
single appearance, will weight more than a test smell
for higher frequency.
Precision Vs Recall: When a test suite grows in size,
developers would like any indications of tests that are
more likely to be flaky rather than adopting an ap-
proach of re-run which of-course is not cost effective
in terms of time and resources. Developers like to in-
crease precision at the expense of recall. When en-
countering ’false negative’, an experienced developer,
having sufficient knowledge of the test smells, will by-
pass the outcome, however, with ’false positive’, de-
velopers are unaware of the fact that test suite still
contains flaky tests. The motivation of employing ML
classifiers (i.e., higher precision - low recall vs balances
precision and recall) should be made clear before pro-
ceeding with implementation.
Multi-Factor Input Criteria for Flaky Test Detec-
tion: We observed that the ML algorithm should in-
clude different sources of information to increase pre-
dictive accuracy. These sources may include 1) assign-
ing specific weight (i.e., in numbers) to specific test
smells or test code, 2) developer’s experience (i.e., new
developer, unaware of the test design guidelines are
more likely to write flaky tests), 3) company-specific
test smells.

6. Related Work
Luo et al., in [1], investigated 52 open-source projects
and 201 commits and categorized the causes of test
case. Asynchronous wait (45%), concurrency (20%),
and test order dependency (12%) were found to be the
most common causes of TF. Palomba and Zaidman in
[2] partially replicated the results presented by Luo et
al. concluding that the most prominent causes of TF

are asynchronous wait, concurrency, and input output
and network issues. Authors investigated, in [3], the
relationship between smells and TF. Another empiri-
cal study of the root causes of TF in Android Apps was
conducted by Thorve et al. [4] by analyzing the com-
mits of 51 Apache open-source projects. Thorve et al.
[4] complement the results of Luo et al. and Palomba
and Zaidman, but they also report two additional test
smells (user interface and program logic) that are re-
lated to TF in Android Apps. Bell et al. in [34] and pro-
posed a new technique called DeFlaker, which moni-
tors the latest code coverage and marks the test case
as flaky if the test case does not execute any of the
changes. Another technique called PRADET [35] does
not detect flaky tests directly, rather it uses a system-
atic process to detect problematic test order dependen-
cies. These test order dependencies can lead to flak-
iness. King et al. in [36] present an approach that
leverages Bayesian networks for flaky test classifica-
tion and prediction. This approach considers flakiness
as a decease mitigated by analyzing the symptoms and
possible causes. Teams using this technique improved
CI pipeline stability by as much as 60%. To best of our
knowledge, no study has been conducted to evaluate
the predictive accuracy of machine learning classifiers
that can help developers in flaky test case prediction
and detection.

Dutta et al. [37] and Sjobom [38] investigated projects
written in Python language to classify test smells that
increase test flakiness. Their study is limited to list
the test smells and their effect on test flakiness. Our
study worked with the test smells identified in [38].
Pinto et al. evaluated five machine learning classifiers
(Random Forest, Decision Tree, Naive Bayes, Support
Vector Machine, and Nearest Neighbour) to generate
flaky test vocabulary written in Java [23]. The con-
cluded that Random Forest and SVM performed very
well with high precision and recall. They concluded
that features such as "job", "action", and "services" were
commonly associated with flaky tests. We replicated
the similar experiment with different programming lan-
guage and extended the current knowledge by answer-
ing RQ2 and RQ3.

7. Validity Threats
The authors in this study selected only those ML clas-
sifiers which have established a good reputation of high
accuracy in spam detection thus reducing the selection
bias.

The authors in this study reduced the experimenter
bias by performing several experiments with different

thresholds (i.e., probability scores, kernels, number of
trees, etc.) before selecting a champion.

External validity refers to the possibility of gener-
alizing the findings, as well as the extent to which the
findings are of interest to other researchers and practi-
tioners beyond those associated with the specific case
being investigated. Since the precision strongly de-
pends on the data set under investigation, we have an
external validity threat. We cannot generalize the find-
ings of this study for other data set.

8. Conclusion
At the moment of writing this paper, literature is scarce
on test flakiness (i.e., root causes, challenges, mitiga-
tion strategies, etc.) which requires significant atten-
tion from researchers and practitioners. We extracted
flaky and non flaky test case contents from open source
repositories. We implemented three ML classifiers such
as Naive Bayes, Support Vector Machine and Random
Forest to see if the predictive accuracy can be increased.
The authors concluded that only RF performs better
when it comes to precision (i.e., > 90%) but the recall
is very low (< 10%) as compared to NBL (i.e., preci-
sion < 70% and recall >30%) and SVM (i.e., precision
< 70% and recall >60%). The authors concluded that
predicting accuracy of ML classifiers are strongly as-
sociated with the lexical information of test cases (i.e.,
test cases written in Java or Python). The authors in-
vestigated why other classifiers failed to produce ex-
pected results and concluded that; 1) it is a combina-
tion of the test smell and an external environment that
makes a test case flaky, and in this study, the exter-
nal environment was not taken into consideration, 2)
ML classifiers should not only consider the frequency
of test smells in the test case but other important test
codes that have an ability to cancel the effect of test
smells.

References
[1] Q. Luo, F. Hariri, L. Eloussi, D. Marinov, An Empir-

ical Analysis of Flaky Tests, in: Proceedings of the
22Nd ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, FSE 2014, ACM, New York,
NY, USA, 2014, pp. 643–653. URL: http://doi.acm.org/10.1145/
2635868.2635920. doi:10.1145/2635868.2635920, event-
place: Hong Kong, China.

[2] F. Palomba, A. Zaidman, Does Refactoring of Test Smells In-
duce Fixing Flaky Tests?, in: 2017 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME), 2017,
pp. 1–12. doi:10.1109/ICSME.2017.12.

[3] F. Palomba, A. Zaidman, The smell of fear: on the relation
between test smells and flaky tests, Empirical Software En-

http://doi.acm.org/10.1145/2635868.2635920
http://doi.acm.org/10.1145/2635868.2635920
http://dx.doi.org/10.1145/2635868.2635920
http://dx.doi.org/10.1109/ICSME.2017.12

gineering 24 (2019) 2907–2946. URL: https://doi.org/10.1007/
s10664-019-09683-z. doi:10.1007/s10664-019-09683-z.

[4] S. Thorve, C. Sreshtha, N. Meng, An Empirical Study of Flaky
Tests in Android Apps, in: 2018 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME), 2018,
pp. 534–538. doi:10.1109/ICSME.2018.00062.

[5] V. Garousi, B. Küçük, Smells in software test code: A survey of
knowledge in industry and academia, Journal of Systems and
Software 138 (2018) 52–81. URL: http://www.sciencedirect.
com/science/article/pii/S0164121217303060. doi:10.1016/j.
jss.2017.12.013.

[6] R. Shams, R. E. Mercer, Classifying Spam Emails Using Text
and Readability Features, in: 2013 IEEE 13th International
Conference on Data Mining, 2013, pp. 657–666. doi:10.1109/
ICDM.2013.131, iSSN: 2374-8486.

[7] S. K. Tuteja, N. Bogiri, Email Spam filtering using BPNN classi-
fication algorithm, in: 2016 International Conference on Auto-
matic Control and Dynamic Optimization Techniques (ICAC-
DOT), 2016, pp. 915–919. doi:10.1109/ICACDOT.2016.
7877720, iSSN: null.

[8] E. Sahın, M. Aydos, F. Orhan, Spam/ham e-mail classification
using machine learning methods based on bag of words tech-
nique, in: 2018 26th Signal Processing and Communications
Applications Conference (SIU), 2018, pp. 1–4. doi:10.1109/
SIU.2018.8404347, iSSN: null.

[9] K. Mathew, B. Issac, Intelligent spam classification for mo-
bile text message, in: Proceedings of 2011 International
Conference on Computer Science and Network Technology,
volume 1, 2011, pp. 101–105. doi:10.1109/ICCSNT.2011.
6181918, iSSN: null.

[10] A. B. M. S. Ali, Y. Xiang, Spam Classification Using Adaptive
Boosting Algorithm, in: 6th IEEE/ACIS International Confer-
ence on Computer and Information Science (ICIS 2007), 2007,
pp. 972–976. doi:10.1109/ICIS.2007.170, iSSN: null.

[11] R. K. Yin, Case study research design and methods, 4th ed ed.,
Thousand Oaks, Calif Sage Publications, 2009. URL: https://
trove.nla.gov.au/work/11329910.

[12] A. A. Alurkar, S. B. Ranade, S. V. Joshi, S. S. Ranade, P. A.
Sonewar, P. N. Mahalle, A. V. Deshpande, A proposed data
science approach for email spam classification using machine
learning techniques, in: 2017 Internet of Things Business Mod-
els, Users, and Networks, 2017, pp. 1–5. doi:10.1109/CTTE.
2017.8260935, iSSN: null.

[13] S. Vahora, M. Hasan, R. Lakhani, Novel approach: Naïve Bayes
with Vector space model for spam classification, in: 2011
Nirma University International Conference on Engineering,
2011, pp. 1–5. doi:10.1109/NUiConE.2011.6153245, iSSN:
2375-1282.

[14] M. R. Islam, W. Zhou, M. U. Choudhury, Dynamic Fea-
ture Selection for Spam Filtering Using Support Vector Ma-
chine, in: 6th IEEE/ACIS International Conference on Com-
puter and Information Science (ICIS 2007), 2007, pp. 757–762.
doi:10.1109/ICIS.2007.92, iSSN: null.

[15] T.-Y. Yu, W.-C. Hsu, E-mail Spam Filtering Using Support Vec-
tor Machines with Selection of Kernel Function Parameters,
in: 2009 Fourth International Conference on Innovative Com-
puting, Information and Control (ICICIC), 2009, pp. 764–767.
doi:10.1109/ICICIC.2009.184, iSSN: null.

[16] E. G. Dada, J. S. Bassi, H. Chiroma, S. M. Abdulhamid, A. O.
Adetunmbi, O. E. Ajibuwa, Machine learning for email
spam filtering: review, approaches and open research prob-
lems, Heliyon 5 (2019) e01802. URL: http://www.sciencedirect.
com/science/article/pii/S2405844018353404. doi:10.1016/j.
heliyon.2019.e01802.

[17] R. Caruana, A. Niculescu-Mizil, An empirical comparison of
supervised learning algorithms, in: Proceedings of the 23rd in-

ternational conference on Machine learning, ICML ’06, Asso-
ciation for Computing Machinery, Pittsburgh, Pennsylvania,
USA, 2006, pp. 161–168. URL: https://doi.org/10.1145/1143844.
1143865. doi:10.1145/1143844.1143865.

[18] C.-Y. Chiu, Y.-T. Huang, Integration of Support Vector Ma-
chine with Naïve Bayesian Classifier for Spam Classification,
in: Fourth International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD 2007), volume 1, 2007, pp. 618–
622. doi:10.1109/FSKD.2007.366, iSSN: null.

[19] Z. Jia, W. Li, W. Gao, Y. Xia, Research on Web Spam Detec-
tion Based on Support Vector Machine, in: 2012 International
Conference on Communication Systems and Network Tech-
nologies, 2012, pp. 517–520. doi:10.1109/CSNT.2012.117,
iSSN: null.

[20] A. S. Katasev, L. Y. Emaletdinova, D. V. Kataseva, Neural Net-
work Spam Filtering Technology, in: 2018 International Con-
ference on Industrial Engineering, Applications and Manufac-
turing (ICIEAM), 2018, pp. 1–5. doi:10.1109/ICIEAM.2018.
8728862, iSSN: null.

[21] M. K., R. Kumar, Spam Mail Classification Using Combined
Approach of Bayesian and Neural Network, in: 2010 Interna-
tional Conference on Computational Intelligence and Commu-
nication Networks, 2010, pp. 145–149. doi:10.1109/CICN.
2010.39, iSSN: null.

[22] L. Firte, C. Lemnaru, R. Potolea, Spam detection filter us-
ing KNN algorithm and resampling, in: Proceedings of
the 2010 IEEE 6th International Conference on Intelligent
Computer Communication and Processing, 2010, pp. 27–33.
doi:10.1109/ICCP.2010.5606466, iSSN: null.

[23] G. Pinto, B. Miranda, S. Dissanayake, What is the Vocabulary
of Flaky Tests? (2020) 11.

[24] W. Lam, R. Oei, A. Shi, D. Marinov, T. Xie, iDFlakies: A
Framework for Detecting and Partially Classifying Flaky Tests,
in: 2019 12th IEEE Conference on Software Testing, Valida-
tion and Verification (ICST), 2019, pp. 312–322. doi:10.1109/
ICST.2019.00038, iSSN: 2159-4848.

[25] M. Sasaki, H. Shinnou, Spam detection using text clustering,
in: 2005 International Conference on Cyberworlds (CW’05),
2005, pp. 4 pp.–319. doi:10.1109/CW.2005.83, iSSN: null.

[26] T. Fawcett, An introduction to ROC analysis, Pattern Recogni-
tion Letters 27 (2006) 861–874. URL: http://www.sciencedirect.
com/science/article/pii/S016786550500303X. doi:10.1016/j.
patrec.2005.10.010.

[27] D. Zhang, J. Wang, X. Zhao, Estimating the Uncertainty of
Average F1 Scores, in: Proceedings of the 2015 International
Conference on The Theory of Information Retrieval, ICTIR ’15,
Association for Computing Machinery, Northampton, Mas-
sachusetts, USA, 2015, pp. 317–320. URL: https://doi.org/10.
1145/2808194.2809488. doi:10.1145/2808194.2809488.

[28] Wang, Baselines and bigrams | Proceedings of the 50th An-
nual Meeting of the Association for Computational Linguis-
tics: Short Papers - Volume 2, ???? URL: https://dl-acm-org.e.
bibl.liu.se/doi/10.5555/2390665.2390688.

[29] S. Abu-Nimeh, D. Nappa, X. Wang, S. Nair, A compari-
son of machine learning techniques for phishing detection,
in: Proceedings of the anti-phishing working groups 2nd
annual eCrime researchers summit on - eCrime ’07, ACM
Press, Pittsburgh, Pennsylvania, 2007, pp. 60–69. URL: http:
//portal.acm.org/citation.cfm?doid=1299015.1299021. doi:10.
1145/1299015.1299021.

[30] L. Breiman, Random Forests, Machine Learning 45 (2001) 5–32.
URL: https://doi.org/10.1023/A:1010933404324. doi:10.1023/
A:1010933404324.

[31] I. H. Witten, E. Frank, Data mining: practical machine learn-
ing tools and techniques with Java implementations, ACM
SIGMOD Record 31 (2002) 76–77. URL: https://doi.org/10.1145/

https://doi.org/10.1007/s10664-019-09683-z
https://doi.org/10.1007/s10664-019-09683-z
http://dx.doi.org/10.1007/s10664-019-09683-z
http://dx.doi.org/10.1109/ICSME.2018.00062
http://www.sciencedirect.com/science/article/pii/S0164121217303060
http://www.sciencedirect.com/science/article/pii/S0164121217303060
http://dx.doi.org/10.1016/j.jss.2017.12.013
http://dx.doi.org/10.1016/j.jss.2017.12.013
http://dx.doi.org/10.1109/ICDM.2013.131
http://dx.doi.org/10.1109/ICDM.2013.131
http://dx.doi.org/10.1109/ICACDOT.2016.7877720
http://dx.doi.org/10.1109/ICACDOT.2016.7877720
http://dx.doi.org/10.1109/SIU.2018.8404347
http://dx.doi.org/10.1109/SIU.2018.8404347
http://dx.doi.org/10.1109/ICCSNT.2011.6181918
http://dx.doi.org/10.1109/ICCSNT.2011.6181918
http://dx.doi.org/10.1109/ICIS.2007.170
https://trove.nla.gov.au/work/11329910
https://trove.nla.gov.au/work/11329910
http://dx.doi.org/10.1109/CTTE.2017.8260935
http://dx.doi.org/10.1109/CTTE.2017.8260935
http://dx.doi.org/10.1109/NUiConE.2011.6153245
http://dx.doi.org/10.1109/ICIS.2007.92
http://dx.doi.org/10.1109/ICICIC.2009.184
http://www.sciencedirect.com/science/article/pii/S2405844018353404
http://www.sciencedirect.com/science/article/pii/S2405844018353404
http://dx.doi.org/10.1016/j.heliyon.2019.e01802
http://dx.doi.org/10.1016/j.heliyon.2019.e01802
https://doi.org/10.1145/1143844.1143865
https://doi.org/10.1145/1143844.1143865
http://dx.doi.org/10.1145/1143844.1143865
http://dx.doi.org/10.1109/FSKD.2007.366
http://dx.doi.org/10.1109/CSNT.2012.117
http://dx.doi.org/10.1109/ICIEAM.2018.8728862
http://dx.doi.org/10.1109/ICIEAM.2018.8728862
http://dx.doi.org/10.1109/CICN.2010.39
http://dx.doi.org/10.1109/CICN.2010.39
http://dx.doi.org/10.1109/ICCP.2010.5606466
http://dx.doi.org/10.1109/ICST.2019.00038
http://dx.doi.org/10.1109/ICST.2019.00038
http://dx.doi.org/10.1109/CW.2005.83
http://www.sciencedirect.com/science/article/pii/S016786550500303X
http://www.sciencedirect.com/science/article/pii/S016786550500303X
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1145/2808194.2809488
https://doi.org/10.1145/2808194.2809488
http://dx.doi.org/10.1145/2808194.2809488
https://dl-acm-org.e.bibl.liu.se/doi/10.5555/2390665.2390688
https://dl-acm-org.e.bibl.liu.se/doi/10.5555/2390665.2390688
http://portal.acm.org/citation.cfm?doid=1299015.1299021
http://portal.acm.org/citation.cfm?doid=1299015.1299021
http://dx.doi.org/10.1145/1299015.1299021
http://dx.doi.org/10.1145/1299015.1299021
https://doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/507338.507355

507338.507355. doi:10.1145/507338.507355.
[32] Weka 3 - Data Mining with Open Source Machine Learning

Software in Java, ???? URL: https://www.cs.waikato.ac.nz/ml/
weka/index.html.

[33] A. Ahmad, O. Leifler, K. Sandahl, Empirical Analysis of Fac-
tors and their Effect on Test Flakiness - Practitioners’ Percep-
tions, arXiv:1906.00673 [cs] (2019). URL: http://arxiv.org/abs/
1906.00673, arXiv: 1906.00673.

[34] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, D. Mari-
nov, DeFlaker: Automatically Detecting Flaky Tests, in: 2018
IEEE/ACM 40th International Conference on Software Engi-
neering (ICSE), 2018, pp. 433–444. doi:10.1145/3180155.
3180164.

[35] A. Gambi, J. Bell, A. Zeller, Practical Test Dependency De-
tection, in: 2018 IEEE 11th International Conference on Soft-
ware Testing, Verification and Validation (ICST), 2018, pp. 1–
11. doi:10.1109/ICST.2018.00011.

[36] T. M. King, D. Santiago, J. Phillips, P. J. Clarke, Towards
a Bayesian Network Model for Predicting Flaky Automated
Tests, in: 2018 IEEE International Conference on Soft-
ware Quality, Reliability and Security Companion (QRS-C),
IEEE Comput. Soc, Lisbon, 2018, pp. 100–107. doi:10.1109/
QRS-C.2018.00031.

[37] S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, S. Misailovic,
Detecting flaky tests in probabilistic and machine learning ap-
plications, in: Proceedings of the 29th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, ISSTA
2020, Association for Computing Machinery, New York, NY,
USA, 2020, pp. 211–224. URL: https://doi.org/10.1145/3395363.
3397366. doi:10.1145/3395363.3397366.

[38] A. Sjöbom, Studying Test Flakiness in Python Projects : Orig-
inal Findings for Machine Learning, 2019. URL: http://urn.kb.
se/resolve?urn=urn:nbn:se:kth:diva-264459.

https://doi.org/10.1145/507338.507355
http://dx.doi.org/10.1145/507338.507355
https://www.cs.waikato.ac.nz/ml/weka/index.html
https://www.cs.waikato.ac.nz/ml/weka/index.html
http://arxiv.org/abs/1906.00673
http://arxiv.org/abs/1906.00673
http://dx.doi.org/10.1145/3180155.3180164
http://dx.doi.org/10.1145/3180155.3180164
http://dx.doi.org/10.1109/ICST.2018.00011
http://dx.doi.org/10.1109/QRS-C.2018.00031
http://dx.doi.org/10.1109/QRS-C.2018.00031
https://doi.org/10.1145/3395363.3397366
https://doi.org/10.1145/3395363.3397366
http://dx.doi.org/10.1145/3395363.3397366
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264459
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264459

Towards the Identification of Process Anti-Patterns in
Enterprise Architecture Models
Barry-Detlef Lehmann

a
, Peter Alexander

a
, Horst Lichter

a
and Simon Hacks

b

aRWTH Aachen University, Research Group Software Construction, Aachen, Germany
bKTH Royal Institute of Technology, Network and Systems Engineering, Stockholm, Sweden

Abstract
IT processes constitute the backbone of an integrated enterprise architecture (EA). The model thereof sustains the develop-

ment and management of the EA. Nevertheless, the quality of such models tends to degrade over time due to, e.g. improper

modeling practices or ineffective evaluation. In this regard, the knowledge of relevant modeling anti-patterns can help iden-

tify, mitigate, and prevent the occurrence of sub-optimal or adverse constructs in the model. In the field of business process

modeling (BPM), a plethora of BPM anti-patterns has been defined and compiled in various taxonomies. However, these BPM

anti-patterns mostly focus on technical issues, which thus are applicable for evaluating workflows but not EA-level processes.

We strongly argue that the concept of process anti-pattern in EA domain can facilitate EA analyses on process-related issues.

To address this gap, this paper presents a catalogue of 18 EA process modeling anti-patterns, which we derived from the

existing BPM anti-patterns. Our result should serve as food for thought and motivation for future research in this context.

Keywords
enterprise architecture, process anti-pattern, model quality

1. Introduction
IT processes transform fragmented capabilities within an

enterprise architecture (EA) into consolidated business

assets. The models thereof often need to be consulted or

even adapted in the efforts of managing and evolving the

EA. Nevertheless, these process models are often devel-

oped with less consideration of quality due to, e.g. time

pressure, little awareness of good modeling practices, or

inadequate evaluation of the models. The uncontrolled

development in this manner will eventually render the

process models useless or even misleading [1]. This sit-

uation may hamper the sustainability of EA practices

within the organization.

To avoid this, the development and evaluation of pro-

cess models must be guided by the knowledge of relevant

patterns and anti-patterns. In general, the modeling pat-
tern is defined as a proven solution to a recurring model-

ing problem whereas the modeling anti-pattern is defined

as a modeling solution that is known to pose risks [2].

The understanding of these concepts can help identify,

mitigate, and prevent the occurrence of sub-optimal or

adverse constructs within the models [1]. In this study,

we focus on the concept of process anti-pattern in the con-

QuASoQ 2020: 8th International Workshop on Quantitative
Approaches to Software Quality, December 01, 2020, Singapore
" barry.lehmann@rwth-aachen.de (B. Lehmann);

alexander@swc.rwth-aachen.de (P. Alexander);

lichter@swc.rwth-aachen.de (H. Lichter); shacks@kth.se

(S. Hacks)

� 0000-0001-6534-278X (P. Alexander); 0000-0002-3440-1238

(H. Lichter); 0000-0003-0478-9347 (S. Hacks)

© 2020 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

text of EA modeling, specifically the application thereof

in the evaluation of EA models.

In the field of business process modeling (BPM) re-

search, a plethora of BPM anti-pattern taxonomies have

been proposed [1, 3, 4]. However, these BPM anti-

patterns mostly address rather technical aspects like the

use of syntax or layout in the process model, which are

very specific to the modeling notations in use. Moreover,

discussions of BPM anti-patterns have mostly been pre-

sented in workflow modeling notations [5] (e.g. BPMN).

These situations hinder the application of BPM anti-

pattern to EA practices, in which processes are viewed

from rather strategic perspectives and modeled in EA

modeling notations. We strongly argue that transferring

the existing BPM anti-patterns into process anti-patterns

in the domain of EA can help improve the development

of processes and their quality that underlie the EA.

The effort of transferring an existing concept into the

domain of EA is not new. Salentin and Hacks introduced

the concept of EA smell, which is defined as a hint to

a bad habit that impairs the quality of the EA [6]. In

their work, they transferred the concept of code smell

into the context of EA through conceptual derivation and

transformation methodology. Inspired by their work, the

same methodology is applied in this study to answer the

following research question (RQ):

RQ What process anti-patterns can be defined to sup-

port EA modeling activities through the analysis

of published process anti-patterns?

The remainder of this paper is structured as follows:

Section 2 gives an overview of previous studies on anti-

pattern or other related concepts (e.g. smell) in the fields

mailto:barry.lehmann@rwth-aachen.de
mailto:alexander@swc.rwth-aachen.de
mailto:lichter@swc.rwth-aachen.de
mailto:shacks@kth.se
https://orcid.org/0000-0001-6534-278X
https://orcid.org/0000-0002-3440-1238
https://orcid.org/0000-0003-0478-9347
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

of BPM and EA modeling research; section 3 describes our

methodology for obtaining process anti-patterns for EA

modeling problems; section 4 elaborates our findings and

the analysis thereof; section 6 demonstrates our results

and discusses the implications as well as threats to the

validity thereof; and section 7 motivates future research

directions and concludes this paper.

2. Related Work
The concept of anti-pattern was coined in 1995 by Koenig

[7] to describe a common solution to a recurring problem

which poses risks of being counterproductive. Although

an anti-pattern may serve as a practical short-term solu-

tion, the use of it sets a context in which certain changes

may become more expensive or impossible. The (unin-

tentional) use of anti-pattern is highly influenced by, e.g.

time pressure, inadequate knowledge of best practices,

or unforeseen changes.

The spectrum of studies about anti-patterns covers a

wide-range of software engineering topics, such as soft-

ware development and modeling. In the domain of BPM,

a number of taxonomies of process anti-patterns have

been proposed, each of the taxonomies addresses a spe-

cific area of concern. In 2019, a bibliography of all these

taxonomies was published based on a literature review

study [1]. Therein, the collected taxonomies are divided

into seven categories based on the addressed modeling

problems. Furthermore, this study suggests several rules

of thumb in documenting process anti-patterns. The au-

thors of this study advocate the use of this bibliography

in the efforts to increase the quality of BP models.

Analogous with the concept of process anti-pattern,

the concept of process anomaly is also known in BPM

research. Vidacic and Strahonja present a literature

review of this concept in which the collected process

anomalies are divided into three categories: structural,

semantical, and syntactical anomalies [8]. They also sug-

gest approaches to the mitigation or prevention thereof.

Suchenia et al. provide a brief overview of BPM anti-

patterns, present these in BPMN models, and categorize

these into three categories: syntactic, structural, and

control flow anti-patterns [9]. Trcka et al. present data-

flow anti-patterns and an approach to identifying these

[10]. Further in this topic, Sadiq et al. identify seven

common data-flow anti-patterns and provide the basic

algorithm to address these [11]. Finally, Döhring and

Heublein present a taxonomy of control-flow, rule-based,

and data-flow anti-patterns; demonstrate examples of

such anti-patterns in BPMN; and suggest detection as

well as prevention mechanisms thereof [12].

In the domain of EA modeling, the concept of anti-

pattern remained unknown until the recent suggestion

of an EA smell taxonomy by Salentin and Hacks. Therein,

the authors provide a catalog of 45 EA smells that origi-

nated from code smells. In their approach, they transform

a catalog of well-known code smells into EA smells and

categorize the EA smells based on the three concerns of

EA: business, application, and technology. Furthermore,

they present a tool that can detect 14 EA smells. As an

extension to their work, this study explores the current

knowledge about process anti-pattern to obtain a new

understanding thereof in the EA domain.

Finally, the idea of looking at different abstraction lev-

els in processes to address different stakeholders is not

new. Several studies have been conducted to decom-

pose processes into different abstraction levels. Giachetti

proposes to divide the process hierarchy into functions,

processes, sub-processes, activities, and tasks [5]. This

study argues that the natural hierarchical attribute of

the process should be used. Viljoen, on the other hand,

decomposes it into enterprise model, macro, business

process, sub-process, activity, and task [13]. Koschmider

and Blanchard propose a semiautomatic detection for dif-

ferent process abstraction levels with processes modeled

with Petri Nets [14]. Their goal is to detect a process

hierarchy in a process model. All these studies com-

monly advocate that the levels of abstraction applied to

processes should meet the goals of relevant stakeholders.

3. Methodology
To transfer the existing knowledge about process anti-

pattern into the EA domain, this study follows the

methodologies proposed by Peffers et al. and Hevner

et al. for the Design Science Research (DSR) [15], [16]:

a type of research which aims to devise an artifact that

addresses a "heretofore unsolved and important business

problem" by drawing on the existing knowledge. The

resulting artifact must be rigorously evaluated in terms

of its "utility, quality, and efficacy" and effectively com-

municated to the relevant audience.

This study is performed as follows: At first, we col-

lected knowledge about the 336 already-published BPM

anti-patterns in scientific literature, which have been

compiled in [1] and are publicly accessible on [17]. Based

on a mapping of modeling notations between BPMN and

ArchiMate, we processed these BPM anti-patterns and

finally derived 18 process anti-patterns of EA relevance,

which are then documented in a structured template and

exemplified in ArchiMate models. A closer look into this

procedure is provided in the following subsections.

3.1. Notation Mapping
Most BPM anti-patterns have been analyzed and visu-

alized in BPMN. While BPMN provides a full-fledged

framework to create graphical business processes mod-

BPMN ArchiMate Source

Business Process Diagram, Pool, Lanes Process [21, 19]
Activities, Task, Sub-Process Function [21]
Collaboration Diagram Interaction [21]
Event Event [21, 18, 19]
Data Object Object [21, 19]
Lane Business Role, Business Actor, Application Component [21, 19]
Sequence flow Triggering, Flow [20]
Data association Access [20]
Inclusive and parallel gateways And-Junction [20, 18]
Exclusive and event-based gateways Or-Junction [20, 18]

Table 1
Mapping from BPMN elements to ArchiMate

els, BPMN is intended for rather detailed business process

modeling, such as the modeling of conversation, chore-

ography, and collaboration models. However, such busi-

ness process models constitute only a small area within

the broad view of EA. Therein, processes are analyzed

from rather strategic perspectives, e.g. the connection

of all high-level processes to the surrounding organiza-

tion units to achieve strategic targets. The modeling of

such perspectives has been facilitated by a number of EA

modeling languages; the most popular one is ArchiMate.

We strongly argue that method supports for analyzing

EA processes must be built on top of an EA modeling

language. Therefore, to transfer the existing BPM anti-

patterns into the EA domain, we first need to create a

mapping between BPMN and ArchiMate to figure out

the possibilities of deriving something of EA relevance.

Previous studies have suggested several mappings be-

tween BPMN and ArchiMate [18, 19, 20, 21]. They show

that both modeling languages share some conceptual

similarities. Firstly, both provide similar notations for

connecting process elements (e.g. the sequence, default,

and conditional flows) and regulating these with gate-

ways or junctions. Secondly, both support the modeling

of similar relationships between processes and the related

elements [19]. For example, BPMN’s support for creating

relationships between e.g. activities and data objects is

similar to ArchiMate’s support for creating relationships

between e.g. business processes and business objects. In

table 1, we list the mappings of notations which we use

as a basis to conduct the next steps.

3.2. Transformation Design
From our analysis of related studies in BPM research,

we found several taxonomies which collect in total of

336 BPM anti-patterns and classify these based on the

characteristics thereof [1] [17]. From the perspective of

our study, we argue that the depth of these taxonomies

stretches beyond the context of EA analysis. For example,

the various situations of deadlock are addressed by differ-

ent BPM anti-patterns. While such specialized modeling

problems are indeed identifiable within BPMN models,

such detailed problems are not visible through the high-

level notations of ArchiMate. Therefore, we pruned such

detailed branches of classification within the selected

taxonomies, thereby reducing the size of our analysis to

200 BPM anti-patterns.

Next, this study follows a defined procedure to derive

process anti-patterns of EA relevance, which is as follows:

Firstly, BPMN elements found in the names and descrip-

tions of the BPM anti-patterns are translated into Archi-

Mate elements based on the notation mapping shown in

table 1. Secondly, each translated description is evalu-

ated to determine whether it is comprehensible within

the context of EA. Through this step, we derived 18 pro-

cess anti-patterns of EA relevance, while excluding the

rest because the translated descriptions thereof do not de-

scribe relevant EA modeling problems (e.g. anti-patterns

related to syntax errors such as the sequence flow crosses
process boundary [3]). Among the derived process anti-

patterns, some are directly applicable in the EA domain

only after applying the notation mapping (e.g. the Layout
Deficit [1]), while some other require broad modification

in the description thereof to depict valid EA modeling

problems (e.g. Useless Test).

4. An initial catalogue of process
anti-patterns in EA

To support the usability of our contribution, we have

organized the resulting 18 process anti-patterns in a cata-

logue, which is publicly accessible on our [22]. Since this

catalogue is still in its initial stages, we encourage further

extensions and improvements to it. A detailed discussion

on future research directions is given in section 7.

In this section, we first introduce the categorization

used in the catalogue. Next, we provide a deeper look

into one process anti-pattern under each category. Lastly,

we describe the template used to document some general

attributes of the process anti-patterns.

4.1. Categorizing process anti-patterns
To present the proposed catalogue in an organized and

systematic manner, we divide the contained process anti-

patterns into the following five categories that we derived

from some selected categories in [1].

The category of semantic error includes process anti-

patterns that address the semantically error or inconsis-

tent parts of the model under analysis. These problems

are commonly caused by the improper or deficient use of

modeling notations, which may distort the understanding

of the model. It is worth to mention that such semantic

errors should not be confused with syntax errors as the

latter addresses the violation against the rules of assem-

bling the notations, whereas the earlier addresses the

false or ambiguous impression conveyed by the model

[3]. Due to the gap between the syntactic rules of BPMN

and ArchiMate, we derived no process anti-patterns of

EA relevance under the syntax error category.

The category of control-flow problem includes pro-

cess anti-patterns that address the flawed concurrency of

process flows which raises unpredictability in the final

outcome. Such issue occurs when the modeled processes

are split or joined without properly considering the in-

fluence thereof to the final outcome.

The category of understandability problem in-

cludes process anti-patterns that address the excessive or

lack of complexity within the model, thereby requiring

excessive efforts to understand the process under analy-

sis in its full context. Such an issue is commonly caused

by the improper/inconsistent level of information gran-

ularity or inadequate/imprecise coverage of the actual

process in reality.

The category of rule-related defect includes process

anti-patterns that address the contradictions among the

rules specified within the model. Such an issue may

occur when e.g. the actual process is not well-defined,

well-communicated, or well-understood among some

contributors to the rules specification in the model.

The category of data-flow related defect includes

process anti-patterns that address the proneness to con-

flicts when the same data object is concurrently used

for different kinds of transactions. These issues are com-

monly caused by the overlapping data responsibilities

among different processes or the centralization of too

many data in a single data object.

4.2. Demonstrating process anti-patterns
Next, we name the 18 process anti-patterns and map these

under the aforementioned categories, as listed in table 2.

Table 2
Categories of EA anti-pattern

Category Anti-pattern
Semantic Error End event missing

Start event missing
Control-flow Dead Element
Problem Deadlock

Infinite loop
Lack of synchronization
Undefined junction condition

Understand- Junction named as element
ability Problem Layout deficit

Language deficit
Missing negative case
The word And in element name
The word Or in element name
Useless test

Rule-related Contradiction in input
Defect
Data-flow Inconsistent data
related Defect Mismatched data

Missing data

Furthermore, to give a closer look into the catalogue, we

elaborate one process anti-pattern under each category

and provide an example thereof.

Under the category of semantic error, the end event
missing occurs when the modeled process does not

clearly specify the end events [3] [23], which then causes

confusion or misinterpretation about the valid conditions

to finalize or abort the process execution. An example

of this problem is when multiple high-level processes of

different organization bodies are integrated within the

EA model without specifying the points when the collab-

orative outcomes have been achieved or any disruptions

have to be handled. A solution to this anti-pattern would

be to simply introduce end event elements that clearly

signal all possible ways to end the process.

Under the category of control-flow problem, the lack
of synchronization refers to the situation when the

modeled process does not specify a proper synchroniza-

tion among concurrent process flows, thereby showing

no predictable outcome. An example of such a situation

is when the modeled process is split by an AND junction
and later joined by an OR junction [24, 25]. A solution to

this anti-pattern is to ensure the highest test coverage of

all points of synchronization specified in the model.

Under the category of understandability problem, the

useless test is identified when the modeled process ful-

fills only some of all the possible cases in reality [26],

thereby making it impossible to identify and test the

real extent of the supported problem domain. An exam-

ple thereof is when the handling of possible mistakes or

disruption during the process execution is not specified

within the model. As a solution, the model should be

Attribute Meaning

Name Gives the anti-pattern a meaningful designator
Problem Describes why the anti-pattern leads to problems
Consequences Describes what the consequences of the anti-pattern are
Solution Describes a solution to the anti-pattern
Graphical Definition Shows a graphical representation of the anti-pattern to re-

duce misinterpretations

Table 3
Documentation attributes of EA process anti-pattern (adopted from [1]).

incrementally and iteratively developed along with the

continuous identification of relevant test cases until it

reaches a reasonable level of complexity and covers the

complete problem domain [27].

Under the category of rule-related defect, the contra-
diction in input occurs when some rules applied to the

modeled process may contradict with each other, thereby

hindering the process execution to continue as intended

[12]. An example thereof is when a certain data object

passes the input validations specified on a junction de-

spite being actually invalid for the supplied process. A

solution to this anti-pattern is to continuously perform a

rigorous combinatorial testing of all possible input types

and all the rules applied to the modeled process.

Under the category of data-flow-related defect, the in-
consistent data describes the situation in which data

objects (e.g. customer records or insurance claim) are

accessed by concurrent process flows, thereby making it

prone to data handling mistakes. An example thereof is

when multiple processes work on duplicates of the same

data object, and a (manual) synchronization procedure

between the duplicates is required after every modifica-

tion on one side. To mitigate this, the strategy of handling

the data must be carefully defined and implemented.

4.3. Documenting process anti-patterns
In general, the documentation of modeling anti-patterns
includes many attributes of modeling patterns [28] to-

gether with some other attributes like cause and detection
[29]. To document the process anti-patterns identified

in this study, we derive some attributes from the tem-

plates for documenting BPM anti-patterns introduced in

[1], as shown in table 3. Please note that, at the time

of this writing, not all attributes have been completed

for each process anti-pattern due to the need of further

information and analysis.

5. Applying process anti-patterns
in EA

In order to illustrate the concept and the usage of process

anti-pattern in the context of EA, we analyze a slightly

modified ArchiMate EA model and annotate it with anti-

pattern information. The model used, depicted in fig. 1,

is contained in a publicly accessible collection of Archi-

Mate example EA models [30]. This model defines how

new orders are processed. After a new order is received,

planning the order and evaluating the customers’ credi-

bility are done in parallel. After an approved proposal is

available, the customer signs the respective contract to

accept the proposal.

When analysing the model, it can be observed that the

processes Evaluate customer credit and Plan order

do not wait for each completion before continuing to the

Develop approved proposal process, which may lead

to undesired results (e.g. the contract does not consider

the customer’s credibility). These are consequences of

the lack of synchronization anti-pattern.

When analyzing the usage of the OrderData element,

we identify the inconsistent data anti-pattern because

this data can be changed without rerunning dependent

processes (e.g. Evaluate customer credit).

Furthermore, the Evaluate customer credit process

exhibits the useless test anti-pattern, as only the positive

test result is modeled.

Next, we can identify the anti-pattern end event miss-
ing because no clear termination is defined for this EA

process model. The process could end in Refuse pro-

posal or in Accept proposal.

Finally, we detect the contradiction in input anti-

pattern at the Or-Junction that splits the control flow

after Develop approved proposal. There, the incorrect

condition will never lead to the Refuse proposal process

and therefore makes it a dead process.

6. Discussion
Some of the main goals of applying the EA discipline

within an enterprise is to ensure the business-IT align-

New order
received

Enter order

Order Data

Evaluate
customer credit

Plan order

Develop
approved proposal

Refuse
proposal

Accept
proposal

Contract

Customer
signature

CRM ERP

Useless test

Lack of

Inconsistent data

Contradiction in input

Process does

synchronization

contain end event

Figure 1: An example EA ArchiMate model with annotated process anti-patterns

ment [31] and to develop solid IT strategies that can help

achieve strategic targets [32]. For this reason, this section

seeks to answer the ultimate question of this study: "how

can enterprise architects benefit from the contribution

of this study?" In this section, we describe the use of the

proposed process anti-patterns to support both research

and practice of EA methods. Following to this, we discuss

the threats to the validity of our results.

6.1. Implication for researchers &
practitioners

The concept of EA debt has recently been introduced as

the deviation between the current state and the hypo-

thetical ideal state of the enterprise [33]. Factors to such

deviation in EA (e.g. sub-optimal or adverse solution

design) are likely to be identifiable within the EA models

created or used during the planning, development, eval-

uation, or communication of the EA [6]. Therefore, the

ability to recognize the existence of such deviation in EA

models is needed, and the concept of process anti-pattern

proposed in this study is intended to support such ability

with sharp focus on processes. In this case, practitioners

can use the process anti-patterns catalogue to scan the

EA models for potential EA Debt. In any case, it is bene-

ficial that the practitioners are aware of the potentially

vulnerable parts of the EA Model as further development

could be hindered if these remain ignored [6].

Furthermore, we also intend to impart food for thought

into the EA research community and provide a basis for

further research works in this topic. For example, the

process anti-patterns identified in this study might help

researchers to extend the automatic detection of EA anti-

patterns in an EA model, as has been drafted in a program

that currently detects 14 EA smells [6].

6.2. Threats to validity
The results of this study have to be seen in the light of

some limitations. The limitations that affect the results

of this paper are the lack of previous research and bias

during the anti-pattern transformation.

Lack of previous research. There is little research

on transforming low-level process methods to be applica-

ble for high-level processes and even much less on bring-

ing together the modeling notations for such processes.

In addition, the already suggested mappings between the

modeling notations for low-level and high-level processes

are rather described as informal and lack of theoretical

foundations, thereby leaving room for interpretation or

different mapping solutions. This might reduce the va-

lidity of our results because our approach relies on the

existing mapping between BPMN and ArchiMate.

Bias during the anti-pattern transformation. To

reduce bias when selecting the relevant BPM anti-

patterns to be transformed, we first need to establish ob-

jective selection criteria. Thus, we defined a mapping of

notations and apply it on the collected BPM anti-patterns

to prune the ones that do not fit in the new domain.

Despite this, subjective assessment is still inevitably in-

volved during the process, thereby leaving room for in-

terpretation and may not produce unique results.

7. Conclusion & Future Works
The concept of anti-pattern has been long known to help

recognize common solutions that are not sustainable for

the future development. However, little emphasis has

been put on studying this concept in the context of EA.

The first step in this direction has recently been made to

transfer the existing code smells into the EA domain, out

of which an initial catalogue of 45 EA smells has been de-

veloped and proposed [6]. To pursue a meaningful exten-

sion to this result, this study focuses on transferring the

existing BPM anti-patterns [1] into process anti-patterns

for EA modeling problems, with reference to a mapping

between the notations of BPMN and ArchiMate.

The process anti-patterns identified in this study are

compiled in a catalogue that is publicly accessible on our

[22]. Therein, the process anti-patterns are categorized

and documented in a well-known template to ease the use

or extension thereof by EA practitioners and researchers.

The practical use of this catalogue covers a broad range

of topics, starting from the identification of flaws in EA

models to the identification of EA debt. Nevertheless,

this catalogue is still in its initial stages. Much more in-

formation and analyses are needed before this catalogue

can be evaluated in real industrial contexts. Therefore,

to motivate further research in this topic, the rest of this

section outlines some ideas of future research directions.

The future research directions in this topic can be di-

vided into three main topics: to pursue different methods

for defining new EA anti-patterns, to perform empiri-

cal studies for improving both conceptual and practical

knowledge in this context, and to develop tool supports

for the automatic detection of the anti-patterns in EA

models. In terms of analyzing more methods to find EA

anti-patterns, we suggest to investigate new domains (e.g.

documentation, data, or requirement anti-patterns) to ex-

tend the catalogue with adapted or new EA anti-patterns.

Also, the investigation of cause-and-effect relationships

among the identified EA anti-patterns may provide in-

sights on the possible propagation of impacts thereof. In

terms of empirical studies, evaluations using real EA mod-

els from different business domains can help to verify and

improve the quality of the catalogue and the proposed

method supports. Finally, tool supports can be developed

to support the continuous detection of EA anti-patterns

or the (early) signs of their occurrences.

References
[1] A. Koschmider, R. Laue, M. Fellmann, Business

process model anti-patterns: a bibliography and

taxonomy of published work, in: J. vom Brocke,

S. Gregor, O. Müller (Eds.), 27th European Confer-

ence on Information Systems - Information Sys-

tems for a Sharing Society, ECIS 2019, Stockholm

and Uppsala, Sweden, June 8-14, 2019, 2019. URL:

https://aisel.aisnet.org/ecis2019_rp/157.

[2] M. Fellmann, A. Koschmider, R. Laue,

A. Schoknecht, A. Vetter, Business process model

patterns: State-of-the-art, research classification

and taxonomy, Business Process Management Jour-

nal (2018). doi:10.1108/BPMJ-01-2018-0021.

[3] T. Rozman, G. Polančič, R. V. Horvat, Anal-

ysis of most common process modelling mis-

takes in bpmn process models, in: EuroSPI

2007, Industrial Proceedings, 2007, pp. 1.21 – 1.31.

URL: https://2020.eurospi.net/images/proceedings/

EuroSPI2007-ISBN-978-3-9809145-6-7.pdf.

[4] S. Von Stackelberg, S. Putze, J. Mülle, K. Böhm, De-

tecting data-flow errors in bpmn 2.0, Open Journal

of Information Systems (OJIS) 1 (2014) 1–19.

[5] R. E. Giachetti, Design of Enterprise Systems: The-

ory, Architecture, and Methods, 1st ed., CRC Press,

Inc., USA, 2010.

[6] J. Salentin, S. Hacks, Towards a catalog of enter-

prise architecture smells, in: N. Gronau, M. Heine,

H. Krasnova, K. Poustcchi (Eds.), Entwicklun-

gen, Chancen und Herausforderungen der Digi-

talisierung: Proceedings der 15. Internationalen

Tagung Wirtschaftsinformatik, WI 2020, Potsdam,

Germany, March 9-11, 2020. Community Tracks,

GITO Verlag, 2020, pp. 276–290. doi:10.30844/
wi∖_2020∖_y1-salentin.

[7] A. Koenig, Patterns and antipatterns, J. Object

Oriented Program. 8 (1995) 46–48.

[8] T. Vidacic, V. Strahonja, Taxonomy of Anomalies

in Business Process Models, 2014, pp. 283–294.

doi:10.1007/978-3-319-07215-9_23.

[9] A. Suchenia, T. Potempa, A. Ligęza, K. Jobczyk,

K. Kluza, Selected Approaches Towards Taxon-

omy of Business Process Anomalies, volume

658, 2017, pp. 65–85. doi:10.1007/978-3-319-
47208-9_5.

[10] N. Trcka, W. M. P. van der Aalst, N. Sidorova,

Data-flow anti-patterns: Discovering data-flow er-

rors in workflows, in: P. van Eck, J. Gordijn,

R. J. Wieringa (Eds.), Advanced Information Sys-

tems Engineering, 21st International Conference,

CAiSE 2009, Amsterdam, The Netherlands, June 8-

12, 2009. Proceedings, volume 5565 of Lecture Notes
in Computer Science, Springer, 2009, pp. 425–439.

doi:10.1007/978-3-642-02144-2∖_34.

[11] S. W. Sadiq, M. E. Orlowska, W. Sadiq, C. Foulger,

Data flow and validation in workflow modelling,

in: K. Schewe, H. E. Williams (Eds.), Database Tech-

nologies 2004, Proceedings of the Fifteenth Aus-

tralasian Database Conference, ADC 2004, Dunedin,

New Zealand, 18-22 January 2004, volume 27 of

CRPIT, Australian Computer Society, 2004, pp. 207–

https://aisel.aisnet.org/ecis2019_rp/157
http://dx.doi.org/10.1108/BPMJ-01-2018-0021
https://2020.eurospi.net/images/proceedings/EuroSPI2007-ISBN-978-3-9809145-6-7.pdf
https://2020.eurospi.net/images/proceedings/EuroSPI2007-ISBN-978-3-9809145-6-7.pdf
http://dx.doi.org/10.30844/wi_2020_y1-salentin
http://dx.doi.org/10.30844/wi_2020_y1-salentin
http://dx.doi.org/10.1007/978-3-319-07215-9_23
http://dx.doi.org/10.1007/978-3-319-47208-9_5
http://dx.doi.org/10.1007/978-3-319-47208-9_5
http://dx.doi.org/10.1007/978-3-642-02144-2_34

214. URL: http://crpit.scem.westernsydney.edu.au/

abstracts/CRPITV27Sadiq.html.

[12] M. Döhring, S. Heublein, Anomalies in rule-adapted

workflows - a taxonomy and solutions for vbpmn,

in: 2012 16th European Conference on Software

Maintenance and Reengineering, 2012, pp. 117–126.

[13] S. Viljoen, Reflections on business process

levelling, white paper, 2012. URL: https:

//realirm.com/sites/default/files/whitepapers/

reflections_on_business_process_leveling_0.pdf.

[14] A. Koschmider, E. Blanchard, User assistance for

business process model decomposition, in: Proceed-

ings of the 1st IEEE International Conference on

Research Challenges in Information Science, 2007,

pp. 445–454.

[15] K. Peffers, T. Tuunanen, M. Rothenberger, S. Chat-

terjee, A design science research methodology

for information systems research 24 (2007) 45–77.

doi:10.2753/MIS0742-1222240302.

[16] A. R. Hevner, S. T. March, J. Park, S. Ram, Design

science in information systems research, MIS Q. 28

(2004) 75–105. URL: http://misq.org/design-science-

in-information-systems-research.html.

[17] Business process model patterns classification,

15.11.2020. URL: http://www.bpmpatterns.org/.

[18] Archimate® 3.1 specification, 27.06.2020.

URL: https://pubs.opengroup.org/architecture/

archimate3-doc/.

[19] D. Orlovskyi, A. Kopp, Enterprise architecture

modeling support based on data extraction from

business process models, in: S. Subbotin (Ed.),

Proceedings of The Third International Workshop

on Computer Modeling and Intelligent Systems

(CMIS-2020), Zaporizhzhia, Ukraine, April 27-May

1, 2020, volume 2608 of CEUR Workshop Proceed-
ings, CEUR-WS.org, 2020, pp. 499–513. URL: http:

//ceur-ws.org/Vol-2608/paper38.pdf.

[20] M. Lankhorst, Combining archimate® 3.0

with other standards – bpmn, 6.9.2016.

URL: https://bizzdesign.com/blog/combining-

archimate-3-0-with-other-standards-bpmn/.

[21] L. Penicina, Linking bpmn, archimate, and BWW:

perfect match for complete and lawful business

process models?, in: J. Grabis, M. Kirikova,

J. Zdravkovic, J. Stirna (Eds.), Short Paper Pro-

ceedings of the 6th IFIP WG 8.1 Working Confer-

ence on the Practice of Enterprise Modeling (PoEM

2013), Riga, Latvia, November 6-7, 2013, volume

1023 of CEUR Workshop Proceedings, CEUR-WS.org,

2013, pp. 156–165. URL: http://ceur-ws.org/Vol-

1023/paper15.pdf.

[22] B.-D. Lehmann, Enterprise process anti-

pattern, 05.10.2020. URL: https://ea-anti-

pattern.pages.rwth-aachen.de/process-anti-

patterns/.

[23] C. Dias, V. Stein Dani, J. Mendling, L. Thom,

Anti-patterns for Process Modeling Problems: An

Analysis of BPMN 2.0-Based Tools Behavior, 2019,

pp. 745–757. doi:10.1007/978-3-030-37453-
2_59.

[24] Z. Han, P. Gong, L. Zhang, J. Ling, W. Huang, Defi-

nition and detection of control-flow anti-patterns

in process models, in: 2013 IEEE 37th Interna-

tional Computer Software and Applications Con-

ference Workshops (COMPSACW), IEEE Computer

Society, Los Alamitos, CA, USA, 2013, pp. 433–438.

doi:10.1109/COMPSACW.2013.111.

[25] R. Laue, A. Awad, Visualization of business pro-

cess modeling anti patterns, ECEASST 25 (2010).

doi:10.14279/tuj.eceasst.25.344.

[26] R. Laue, W. Koop, V. Gruhn, Indicators for open

issues in business process models, in: International

Working Conference on Requirements Engineering:

Foundation for Software Quality, Springer, 2016, pp.

102–116.

[27] P. Desfray, G. Raymond, Chapter 5 - key mod-

eling techniques, in: P. Desfray, G. Raymond

(Eds.), Modeling Enterprise Architecture with TO-

GAF, The MK/OMG Press, Morgan Kaufmann,

Boston, 2014, pp. 67 – 91. doi:https://doi.org/
10.1016/B978-0-12-419984-2.00005-7.

[28] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design

Patterns, volume 47 of Addison Wesley Professional
Computing Series, 1995.

[29] J. Bogner, T. Boceck, M. Popp, D. Tschechlov,

S. Wagner, A. Zimmermann, Towards a collabo-

rative repository for the documentation of service-

based antipatterns and bad smells, in: 2019

IEEE International Conference on Software Ar-

chitecture Companion (ICSA-C), 2019, pp. 95–101.

doi:10.1109/ICSA-C.2019.00025.

[30] P. Beauvoir, A collection of archimate® models.,

27.06.2020. URL: https://github.com/archimatetool/

ArchiModels.

[31] J. Gøtze, The changing role of the enterprise archi-

tect, in: 2013 17th IEEE International Enterprise Dis-

tributed Object Computing Conference Workshops,

2013, pp. 319–326. doi:10.1109/EDOCW.2013.42.

[32] C. Strano, Q. Rehmani, The role of the enterprise

architect, Inf. Syst. E-Business Management 5 (2007)

379–396. doi:10.1007/s10257-007-0053-1.

[33] S. Hacks, H. Höfert, J. Salentin, Y. C. Yeong,

H. Lichter, Towards the definition of enterprise

architecture debts, in: 23rd IEEE International

Enterprise Distributed Object Computing Work-

shop, EDOC Workshops 2019, Paris, France, Oc-

tober 28-31, 2019, 2019, pp. 9–16. doi:10.1109/
EDOCW.2019.00016.

http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV27Sadiq.html
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV27Sadiq.html
https://realirm.com/sites/default/files/whitepapers/reflections_on_business_process_leveling_0.pdf
https://realirm.com/sites/default/files/whitepapers/reflections_on_business_process_leveling_0.pdf
https://realirm.com/sites/default/files/whitepapers/reflections_on_business_process_leveling_0.pdf
http://dx.doi.org/10.2753/MIS0742-1222240302
http://misq.org/design-science-in-information-systems-research.html
http://misq.org/design-science-in-information-systems-research.html
http://www.bpmpatterns.org/
https://pubs.opengroup.org/architecture/archimate3-doc/
https://pubs.opengroup.org/architecture/archimate3-doc/
http://ceur-ws.org/Vol-2608/paper38.pdf
http://ceur-ws.org/Vol-2608/paper38.pdf
https://bizzdesign.com/blog/combining-archimate-3-0-with-other-standards-bpmn/
https://bizzdesign.com/blog/combining-archimate-3-0-with-other-standards-bpmn/
http://ceur-ws.org/Vol-1023/paper15.pdf
http://ceur-ws.org/Vol-1023/paper15.pdf
https://ea-anti-pattern.pages.rwth-aachen.de/process-anti-patterns/
https://ea-anti-pattern.pages.rwth-aachen.de/process-anti-patterns/
https://ea-anti-pattern.pages.rwth-aachen.de/process-anti-patterns/
http://dx.doi.org/10.1007/978-3-030-37453-2_59
http://dx.doi.org/10.1007/978-3-030-37453-2_59
http://dx.doi.org/10.1109/COMPSACW.2013.111
http://dx.doi.org/10.14279/tuj.eceasst.25.344
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-419984-2.00005-7
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-419984-2.00005-7
http://dx.doi.org/10.1109/ICSA-C.2019.00025
https://github.com/archimatetool/ArchiModels
https://github.com/archimatetool/ArchiModels
http://dx.doi.org/10.1109/EDOCW.2013.42
http://dx.doi.org/10.1007/s10257-007-0053-1
http://dx.doi.org/10.1109/EDOCW.2019.00016
http://dx.doi.org/10.1109/EDOCW.2019.00016

Evaluating the Impact of Inter Process Communication
in Microservice Architectures
Benyamin Shafabakhsha, Robert Lagerströmb and Simon Hacksb

aSchool of Electrical Engineering and Computer Science,
KTH Royal Institute of Technology,
Stockholm, Sweden
bDivision of Network and Systems Engineering,
KTH Royal Institute of Technology,
Stockholm, Sweden

Abstract
With the substantial growth of cloud computing over the past decade, microservice architectures have gained significant
popularity and have become a prevalent choice for designing cloud-based applications. Microservices based applications are
distributed and each service can run on a different machine. Due to its distributed nature, one of the key challenges when
designing applications is the mechanism by which services communicate with each other. There are several approaches
for implementing inter process communication (IPC) in microservices; each comes with different advantages and trade-offs.
While theoretical and informal comparisons exist between them, this paper has taken an experimental approach to compare
and contrast the popular forms of IPC communications. Several load test scenarios have been executed to obtain quantitative
data related to performance efficiency, and availability of each method. The evaluation of the experiment indicates that,
although there is no universal IPC solution that can be applied in all cases, the asynchronous pattern offers various advantages
over its synchronous rival.

Keywords
Microservices, Inter Process Communication, IPC, Inter-Service Communication, Distributed Systems, gRPC, RabbitMQ

1. Introduction
Over the past few years, microservices have earned
enormous attention and gained popularity from the in-
dustry. They helped large organisation such as Ama-
zon and Netflix to serve millions of requests per min-
utes [1]. Microservice architecture is a style of devel-
oping software as a collection of independent services.
Each service is running on its own process that is in-
dependent from other processes and can be deployed
separately from other services [2]. Designing a soft-
ware based on microservices involves answering ques-
tions and overcoming technical challenges that often
do not exist in monolithic architecture, like inter pro-
cess communication (IPC) [3], service discovery [4],
decomposition strategy [5], or managing ACID trans-
actions [6].

Despite the growth and importance of microser-
vices in industry, there has not been sufficient research
on microservices, partly due to lacking a benchmark
system that reflects the characteristics of industrial mi-

Woodstock’20: Symposium on the irreproducible science, June 01–05,
2020, Woodstock, NY
email: bensha@kth.se (B. Shafabakhsh); robertl@kth.se (R.
Lagerström); shacks@kth.se (S. Hacks)
orcid: 0000-0003-3089-3885 (R. Lagerström); 0000-0003-0478-9347
(S. Hacks)

© 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

croservice systems [7]. IPC is one of the important
challenges of microservice architectures [8]. In mono-
lithic based systems, components can call each other
at the language-level while in microservices each com-
ponent is running on its own process and possibly on
a different machine than other services. The choice
of IPC mechanism is an important architectural deci-
sion which can impact the software’s non-functional
requirements [8].

As of today, there are no concrete explanations or
any standardized approach that can help to decide the
right IPC method when designing microservice based
applications. Due to this reason, there is an abun-
dant confusion around the question of when to use
which method and what are the trade-offs for choos-
ing that method. Deciding between a synchronous and
asynchronous approach is an important decision to
take in regards to how services collaborate with each
other [9].

There are two questions this paper is working to-
wards answering:

1. From performance efficiency standpoint, what
are the implications for utilizing available
synchronous and asynchronous methods for im-
plementing IPC in microservice architectures?

2. How does the IPC method choice impact avail-
ability of the system?

mailto:bensha@kth.se
mailto:robertl@kth.se
mailto:shacks@kth.se
https://orcid.org/0000-0003-3089-3885
https://orcid.org/0000-0003-0478-9347
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

The motive behind selecting the performance effi-
ciency, and availability as the two criteria for this re-
search is that the choice of IPC method directly im-
pacts these two non-functional requirements in a mi-
croservices based system, while other non-functional
requirements such as security [10] and maintainabil-
ity [11] can span over few other areas and goes beyond
IPC. Being able to measure these qualities in the sys-
tem are critical in order to achieve an efficient manage-
ment of any software system [12, 13]. Moreover, the
chosen quality attributes are among the top priorities
for most modern applications [14, 15].

In this work, we describe a systematic approach for
selecting IPC method when designing microservices
based software. The remainder of this paper focuses
on state of the art in identifying different IPC models
in section 2. Next, in section 3, we discuss the develop-
ment of the prototypes built for the purpose of discov-
ering the relationship between each IPC method and
its impact on performance efficiency and availability.
We then run a test against each prototype to investi-
gate its outcome and discuss previous work conducted
in this domain. Finally, we draw a conclusion in sec-
tion 6.

2. State of the Art
When designing IPC mechanism, there are two type
of interaction style to choose from: synchronous and
asynchronous, which we will shortly introduce next.

2.1. Synchronous Communication
Synchronous communication is often regarded as re-
quest/response interaction style. One microservice
makes a request to another service and waits for the
services to process the result and send a response back.
In this style, it is common that the requester blocks its
operation while waiting for a response from the re-
mote server. Representational state transfer (REST)
application programming interfaces (API) [16] and
gRPC1 are the most common framework for imple-
menting Synchronous form of communication in mi-
croservices [8].

• REST API: REST is an architectural style that is
commonly used for designing APIs for modern
web services [17]. In a system that uses REST
API for its IPC communication, each service
typically has its own web-server up and run-
ning on a specific port such as 8080 or 443, and

1https://grpc.io

each service exposes a set of endpoints to enable
the interactions with other microservices and
exchange of information between them. The
server interacts directly with client through its
interface also known as Web API.

• gRPC: gRPC is an open source high perfor-
mance RPC framework designed an developed
by Google. Remote procedure call (RPC) is a
mechanism used in many distributed applica-
tions to facilitate inter process communication.
RPC was first implemented by Birrell and Nel-
son [18] and it has been regarded as a proto-
col that enables a message exchange between
two process with characteristics of low over-
head, simplicity and transparency [19]. By de-
fault, when a client sends a request to a server
it halt the process and waits for the results to be
returned. RPC is therefore considered as synch-
ronous form of communication [20]. Figure 1
presents the operational process between client
and server in gRPC. In this model, the client im-
plements the same method as its correspond-
ing server through local objects also known as
stubs.

2.2. Asynchronous Communication
The asynchronous form of communication can be im-
plemented in microservices when services exchange
messages with each other through a message broker.
In this form of interaction, the message broker acts as
an intermediary between services to coordinate the
request and responses [8]. One of the fundamental
differences in asynchronous communication as com-
pared to the synchronous mode is that in asynchro-
nous communication the client no longer makes a di-
rect call to the server and expect an immediate answer.
Instead, other services subscribe to the same broker to
pick-up the available requests and process them fur-
ther before placing them back to the message queue.

Figure 2 provides an example of the asynchronous
pattern. In this sample, when a new order is created,
the customer service publishes a request to the bro-
ker with some metadata such as customer id, customer
email address, etc. Other services such as loyalty, post,
and email service subscribe to that broker and take the
request from there without having to communicate
with Customer service directly.

https://grpc.io

Figure 1: gRPC architecture [21].

Figure 2: High-level architecture of Asynchronous pattern
[9].

3. Implementation
To identify the quality attributes of each IPC method,
we have designed and developed a set of microservices
for an e-commerce scenario. In this scenario, the goal
is to simulate fetching all the information required
to display a product page of an e-commerce website.
A client requests a product page to be displayed on
his/her device and behind the scenes the following mi-
croservices work together to serve that request:

• Product Information Service: This microser-
vice is responsible for fetching the primary
metadata associated with the requested prod-
uct. Information such as product name, price,
description, color, and image are stored in this
microservice database.

• Product Review Service: This microservice is
responsible for fetching the customer reviews

associated with the requested product from its
database.

• Product Recommendation Service: This mi-
croservice is responsible for fetching the prod-
uct recommendations based on the requested
productId from its database.

• Product Shipping Service: This microservice
is responsible for fetching available shipment
options and the delivery estimates based on the
given product from its database.

• Customer Shopping Cart Service: This mi-
croservices is responsible for fetching the exist-
ing items in the customer’s shopping cart in or-
der to display them to the customer.

All the microservices have been developed using
NodeJS2. A non-relational database system, Mon-
goDB3, has been used as the database solution for all
the microservices except for the service responsible for
providing shipment information. Due to the nature
of data required by shipping service, the shipping ser-
vice uses MYSQL4. Docker5 has been utilized to con-
tainerize all the microservices. In order to run the test
system, the services have been deployed to Microsoft
Azure Kubernetes Cluster Service6. Table 1 shows the

2https://nodejs.org/en/
3https://www.mongodb.com/
4https://www.mysql.com/
5https://www.docker.com/
6https://azure.microsoft.com/sv-se/services/kubernetes-

service/

Table 1
Kubernetes Cluster specification of the test system.

Instance Type Azure DS2-v2
vCPU 2
Memory 7 GiB
Storage 8 GiB, SSD, 6400 IOPS
Kubernetes Version 1.14.8
Node Count 3

hardware specification of the testing system used for
this research.

In the synchronous mode both REST API, and gRPC
have an identical architecture; in both methods, there
is a direct communication between API Gateway7 and
each microservice. Each microservice acts as server,
and the API Gateway acts as a client of those server.
The key difference between REST API and gRPC is the
underlying communication protocol as well as the for-
mat of the messages they exchange. gRPC has adopted
protocol buffer8 as its proprietary message format,
while the REST API uses JSON [22] format to exchange
data.

The asynchronous architecture uses RabbitMQ as
message broker. In this pattern, the communication
between API gateway and other services does not take
place directly, rather it goes through a mediator also
known as message queue. In both synchronous and
asynchronous methods, the API Gateway is the entry
point to the system, which receives a request with spe-
cific product id from client’s device such mobile app or
web browser over HTTPS protocol. The gateway then
communicates back and forth with each microservice
depending on the IPC method the system uses.

4. Results and Evaluation

4.1. Performance Efficiency
Three test cases have been designed and executed us-
ing Apache JMeter9. All test cases aim to measure
the throughput of each IPC method. Throughput is
an essential attribute for calculating performance effi-
ciency. In all three test experiments, the test duration
was 180 seconds, while the number of concurrent vir-
tual users that continuously send requests to the sys-
tem and wait for response has been varied. The motive
behind having test duration as a constant variable and
number of virtual users as the controlled variable is

7https://microservices.io/patterns/apigateway.html
8https://developers.google.com/protocol-buffers
9https://jmeter.apache.org/

to understand how each IPC method reacts differently
when the concurrent requests and traffic to the system
increase or decrease.

Throughput is calculated by the total number of re-
quests and responses the method managed to make
within the specified duration of 180 seconds; the
higher the number, the higher the throughput and the
better it is.

The results are presented in figure 3. The data in-
dicates that gRPC has outperformed REST API, and
RabbitMQ in the first case with 50 users by being
able to process 43 requests higher than REST API, and
147 requests more than RabbitMQ; this signifies that
synchronous form of communication can offer higher
throughput than the asynchronous method in the sit-
uation when the load to the system is relatively low.
Meanwhile, the result of the first case also reveals
that synchronous form of communication can process
requests slightly faster than asynchronous form and,
therefore, has lower latency when the number of con-
current threads10 in the system is low.

The second case has double the number of virtual
users as compared to the first one. Increasing the num-
ber of virtual users causes the number of concurrent
threads in the system to grow and results in longer
processing time. The same data imply that gRPC has
the highest throughput by processing a higher num-
ber of requests compared to RabbitMQ and REST API;
however, the gap between gRPC and RabbitMQ is now
more narrowed than in the first case. In this test, gRPC
managed to score the best average response time than
REST API and RabbitMQ by 200 milliseconds. The
processing time between REST API and RabbitMQ are
equal to each other; however, RabbitMQ managed to
process extra 25 requests than its synchronous rival.

The number of virtual users in the third case has
increased four times as compared to the first case.
The outcome of the third testing experiment im-
plies considerable difference between synchronous
versus asynchronous form of communication both in
throughput and latency when the number of paral-
lel requests increases. In this test, asynchronous form
of communication using RabbitMQ has outperformed
the other two methods by being able to process a
total of 4480 requests within the given period while
gRPC managed to process 132 requests lower than
RabbitMQ, and REST API processed 146 less requests
than its asynchronous rival. What makes the asynch-
ronous pattern to operate better in the third test case
is that, in asynchronous form the performance decline
take place more gradually while in the synchronous

10Each virtual user occupies one thread in the system.

Figure 3: Throughput comparison.

pattern the performance begins to drop radically as
soon as the load to the system intensifies.

4.2. Availability
There are variety of parameters that can affect avail-
ability of a system –even hardware components can
play a role in determining the availability rate of a sys-
tem. For this measurement, all the parameters out-
side IPC has been ignored. The availability of each
IPC method has been calculated by using the following
equation [23]:

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇 𝑇𝐹

𝑀𝑇 𝑇𝐹 + 𝑀𝑇 𝑇𝑅
,

with MTTF standing for "Mean Time to Failure," and
MTTR for "Mean Time to Recovery." MTTF represents
the duration that the system is expected to last in op-
eration before failure occurs. In contrast, MTTR rep-
resents the duration the system requires to return to
operation after a failure has occurred. The higher the
MTTR, the longer it takes for the system to recover
from a failure, which consequently reduces the avail-
ability of the system.

Based on this formula, three other tests were exe-
cuted using Apache Jmeter against all the three differ-
ent IPC methods to discover which one offers higher
availability. Unlike the previous test cases that had a
fixed duration, these test cases had no specific dura-
tion. They ran as long as the services became unavail-
able due to the high number of requests coming to the
system. Further, in this test, the average response time,

and the number of requests/responses were not been
tracked since they do not contribute to determining
the availability of the method. The first case ran with
200 virtual users, the second with 300 virtual users,
and third with 400 virtual users. Without having a
high number of parallel users measuring availability
becomes more challenging as the system remains op-
erational for a significantly longer duration.

Figure 4 provides a summary of the conducted tests.
During the first test, it took about seven minutes for
the services to become unavailable using RabbitMQ,
while gRPC went down after about five minutes, and
the REST API took approximately four and a half
minutes. These numbers were then dropped in each
method in the subsequent tests as the number of par-
allel requests were doubled. After the services became
unavailable, the Kubernetes cluster has been manu-
ally restarted. From that moment, both gRPC and
REST API took about 20 seconds only to become avail-
able again, while RabbitMQ took ten extra seconds.
The main reason behind RabbitMQ taking longer than
synchronous form to return back to operation is the
fact that it has an extra component known as a mes-
sage broker that requires to be refreshed and establish
a new connection with each service. From this exper-
iment, it is possible to infer that an asynchronous ap-
proach offers higher availability than its synchronous
opponents.

Consequently, if microservices use a synchronous
based communication both client and server must be
responsive at all time, otherwise the request will fail
after a specific duration depending on the configura-

Figure 4: Availability comparison.

tion. In contrast, a temporary outage of the server in
an asynchronous setting causes minimal to no impact
to the consumer, since the consumer is loosely coupled
with the server. The requests can stay in the message
queue and be processed at the later timing when the
server is back to operation. The asynchronous pattern
offers capabilities that can help the system to improve
its availability and resiliency from outage. It allows
continuous operation even if there is a failure in one of
the system’s components without compromising the
availability of the entire system.

4.3. Discussion and Threats to Validity
In addition to the two non-functional requirements
that have been evaluated throughout this work, it is
important to take into account the functional require-
ments for which microservices are being developed
for. It is essential to distinguish whether the scenario
requires an immediate response back from services or
not. To elaborate further on this, in the proof of con-
cept scenario that was built during this work, display-
ing a product page for an e-commerce was simulated.
In this scenario, the client sends a request to load the
product page and expects an immediate result back.
The result of the request can either be the product page
or an error that indicating the request was failed. The
key point in this scenario is that the client expects an
immediate result. In such scenarios the synchronous
form of communication can be more suitable as these
scenarios cannot take advantage of the features that
an asynchronous form can offer.

Furthermore, our research incorporates some

threats to validity. First, we performed our experi-
ments just with single technologies as representatives
for certain principles (synchronous vs. asynchro-
nous). Therefore, our results can just indicate certain
advantages of these principles. Second, we simulated
no complete system but just a small part of a bigger
system, e.g., there is no communication between the
microservices during our requests. However, this
ensures that we are not testing other effects, but
only the interaction between the gateway and the
microservices. Third, we were using technologies that
are highly configurable, thus a completly different
configuration could lead to other results. However, as
we just changed configurations where necessary, we
assume that others can reproduce our results, espe-
cially as they are in accordance with our theoretical
expectations.

5. Related Work
Sufficient work has been done to benchmark the per-
formance of microservices, and compare and contrast
it with other architectures such as service oriented ar-
chitecture (SOA) [24], or with the monolithic architec-
ture [25, 26, 27, 28, 29].

Ueda et al. [30] conducted research at IBM that
aimed to design an infrastructure that is optimized for
running microservice architectures. The team built
two versions of the sample application. One based on
monolithic and the other based on microservices. The
team discovered a significant performance overhead
and higher hardware resource consumption in the mi-

croservices version of the application as compared to
monolithic one. The paper has marked poor design
of process communication in microservice architec-
tures as one of the significant performance degrada-
tions, and, therefore, unleashed the potential for fur-
ther research and improvements in this topic. The pa-
per has also pointed out that network virtualization
techniques, which are often used in a microservice ar-
chitectures, is another non-negligible reason behind
the performance gap of monolithic versus microser-
vice architecture. The paper, however, has not pre-
scribed any specific solution or suggestion as to how
to overcome these challenges but rather pointed out
the potential future work for it.

Fernandes et al. [31] compared REST API per-
formance versus advanced message queuing proto-
col (AMQP) [32], which is one of the protocols used
in message-based communication that falls under
asynchronous category. The study has been done by
measuring the averaged exchanged messages for a pe-
riod of time using the REST API and AMQP. The au-
thors performed the experiments by setting up two in-
dependent software instances that constantly received
messages for a 30 minutes period with an average 226
request per second. Each instance processed the re-
ceived input message and stored them into a persis-
tent database. After executing the experiments, the
authors concluded that for scenarios where there is a
need to receive and process-intensive amount of data,
AMQP performs far better than REST API as it has
a better mechanism for data loss prevention, better
message organization, and utilize lower hardware re-
sources.

In contrast to Fernandes et al., check we in our work
the behavior of the systems with different loads. We
recognize that synchronous approaches perform good
with low loads while asynchronous approaches scale
better at higher loads.

Meanwhile, Dragoni et al. [28] have conducted a
migration for a real-world mission-critical case study
in the banking industry by transforming a monolithic
software into a microservice architecture. They ob-
served how availability and reliability of the system
changed as a result of the new architecture. The so-
lution consists of decomposing several large compo-
nents to which some of them requires to communicate
with third-party services. The services in the new ar-
chitecture use message-based asynchronous commu-
nication as its IPC model to exchange data with each
other. The authors believe that aiming to have a simple
and decouple integration between services and follow-
ing principle to handler failure will eventually lead to
higher reliability in microservice architecture.

Further, the authors argue that microservice archi-
tectures lead to a higher availability as the new system
is broken down into several components and decou-
pled from each other, which makes it possible to load-
balance individual services as needed. This was par-
ticularly not possible in the legacy monolithic based
system. At the same time, the new architecture of-
fers higher reliability and can better cope with fail-
ures. This is due to the fact that in the new system the
communication relies on a message-broker that can be
configured to ensure all messages get delivered even-
tually.

6. Conclusion
When developing a microservices based system, the
choice of IPC method is an important decision to
make. In this paper, we compared synchronous and
asynchronous IPC methods with regards to perfor-
mance efficiency and availability. The outcome of
our evaluation indicates that on average asynchro-
nous approach provides better performance efficiency
and higher availability. We also discussed a scenario
where synchronous methods are more suitable to be
utilized. Therefore, both synchronous and asynchro-
nous type of communication has to be adopted accord-
ing to the functional and non-functional requirements
of the specific components.

References
[1] J. Thönes, Microservices, IEEE software 32 (2015)

116–116.
[2] D. Namiot, M. Sneps-Sneppe, On micro-services

architecture, International Journal of Open In-
formation Technologies 2 (2014) 24–27.

[3] L. L. Peterson, N. C. Buchholz, R. D. Schlicht-
ing, Preserving and using context information
in interprocess communication, ACM Trans.
Comput. Syst. 7 (1989) 217–246. doi:10.1145/
65000.65001.

[4] S. Haselböck, R. Weinreich, G. Buchgeher, Deci-
sion guidance models for microservices: service
discovery and fault tolerance, in: Proceedings of
the Fifth European Conference on the Engineer-
ing of Computer-Based Systems, 2017, pp. 1–10.

[5] J. Fritzsch, J. Bogner, A. Zimmermann, S. Wag-
ner, From monolith to microservices: A clas-
sification of refactoring approaches, in: J.-M.
Bruel, M. Mazzara, B. Meyer (Eds.), Software En-
gineering Aspects of Continuous Development

http://dx.doi.org/10.1145/65000.65001
http://dx.doi.org/10.1145/65000.65001

and New Paradigms of Software Production and
Deployment, Springer International Publishing,
Cham, 2019, pp. 128–141.

[6] C. K. Rudrabhatla, Comparison of event choreog-
raphy and orchestration techniques in microser-
vice architecture, Int J Adv Comput Sci Appl 9
(2018) 18–22.

[7] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji,
W. Zhao, Poster: Benchmarking microservice
systems for software engineering research, in:
2018 IEEE/ACM 40th International Conference
on Software Engineering: Companion (ICSE-
Companion), IEEE, 2018, pp. 323–324.

[8] C. Richardson, Microservices patterns: with ex-
amples in Java, Manning Publications, 2019.

[9] S. Newman, Building microservices : designing
fine-grained systems, first edition.. ed., 2015.

[10] P. Johnson, D. Gorton, R. Lagerström, M. Ekst-
edt, Time between vulnerability disclosures: A
measure of software product vulnerability, Com-
puters & Security 62 (2016) 278–295.

[11] R. Lagerström, P. Johnson, M. Ekstedt, Architec-
ture analysis of enterprise systems modifiability:
a metamodel for software change cost estima-
tion, Software quality journal 18 (2010) 437–468.

[12] P. Närman, P. Johnson, R. Lagerström, U. Franke,
M. Ekstedt, Data collection prioritization for sys-
tem quality analysis, Electronic Notes in Theo-
retical Computer Science 233 (2009) 29–42.

[13] M. Ekstedt, U. Franke, P. Johnson, R. Lagerström,
T. Sommestad, J. Ullberg, M. Buschle, A tool
for enterprise architecture analysis of maintain-
ability, in: 2009 13th European Conference on
Software Maintenance and Reengineering, IEEE,
2009, pp. 327–328.

[14] U. Franke, M. Ekstedt, R. Lagerström, J. Saat,
R. Winter, Trends in enterprise architecture
practice–a survey, in: International Workshop
on Trends in Enterprise Architecture Research,
Springer, 2010, pp. 16–29.

[15] P. Johnson, R. Lagerström, P. Närman, M. Simon-
sson, Extended influence diagrams for system
quality analysis, Journal of Software 2 (2007) 30–
42.

[16] R. T. Fielding, R. N. Taylor, Architectural styles
and the design of network-based software ar-
chitectures, volume 7, University of California,
Irvine Irvine, 2000.

[17] M. Masse, REST API Design Rulebook: Design-
ing Consistent RESTful Web Service Interfaces, "
O’Reilly Media, Inc.", 2011.

[18] A. D. Birrell, B. J. Nelson, Implementing remote
procedure calls, ACM Transactions on Computer

Systems (TOCS) 2 (1984) 39–59.
[19] J.-K. Lee, A group management system anal-

ysis of grpc protocol for distributed network
management systems, in: SMC’98 Conference
Proceedings. 1998 IEEE International Conference
on Systems, Man, and Cybernetics (Cat. No.
98CH36218), volume 3, IEEE, 1998, pp. 2507–
2512.

[20] R. A. Olsson, A. W. Keen, Remote Procedure
Call, Springer US, Boston, MA, 2004, pp. 91–105.
doi:10.1007/1-4020-8086-7_8.

[21] S. G. Du, J. W. Lee, K. Kim, Proposal of grpc as
a new northbound api for application layer com-
munication efficiency in sdn, in: Proceedings of
the 12th International Conference on Ubiquitous
Information Management and Communication,
2018, pp. 1–6.

[22] C. Severance, Discovering javascript object no-
tation, Computer 45 (2012) 6–8.

[23] P. Johnson, R. Lagerström, M. Ekstedt, M. Öster-
lind, It management with enterprise architecture,
KTH, Stockholm (2014).

[24] T. Erl, Service-oriented architecture: concepts,
technology, and design, Pearson Education India,
1900.

[25] T. Cerny, M. J. Donahoo, J. Pechanec, Dis-
ambiguation and comparison of soa, microser-
vices and self-contained systems, in: Proceed-
ings of the International Conference on Research
in Adaptive and Convergent Systems, RACS
’17, Association for Computing Machinery, New
York, NY, USA, 2017, p. 228–235. doi:10.1145/
3129676.3129682.

[26] D. Taibi, V. Lenarduzzi, C. Pahl, Processes, mo-
tivations, and issues for migrating to microser-
vices architectures: An empirical investigation,
IEEE Cloud Computing 4 (2017) 22–32.

[27] R. Chen, S. Li, Z. Li, From monolith to microser-
vices: A dataflow-driven approach, in: 2017
24th Asia-Pacific Software Engineering Confer-
ence (APSEC), 2017, pp. 466–475.

[28] N. Dragoni, S. Dustdar, S. T. Larsen, M. Mazzara,
Microservices: Migration of a mission critical
system, arXiv preprint arXiv:1704.04173 (2017).

[29] Z. Kozhirbayev, R. O. Sinnott, A performance
comparison of container-based technologies for
the cloud, Future Generation Computer Systems
68 (2017) 175 – 182. doi:10.1016/j.future.
2016.08.025.

[30] T. Ueda, T. Nakaike, M. Ohara, Workload char-
acterization for microservices, in: 2016 IEEE in-
ternational symposium on workload characteri-
zation (IISWC), IEEE, 2016, pp. 1–10.

http://dx.doi.org/10.1007/1-4020-8086-7_8
http://dx.doi.org/10.1145/3129676.3129682
http://dx.doi.org/10.1145/3129676.3129682
http://dx.doi.org/10.1016/j.future.2016.08.025
http://dx.doi.org/10.1016/j.future.2016.08.025

[31] J. L. Fernandes, I. C. Lopes, J. J. Rodrigues, S. Ul-
lah, Performance evaluation of restful web ser-
vices and amqp protocol, in: 2013 Fifth Interna-
tional Conference on Ubiquitous and Future Net-
works (ICUFN), IEEE, 2013, pp. 810–815.

[32] S. Vinoski, Advanced message queuing protocol,
IEEE Internet Computing 10 (2006) 87–89.

Understanding the Involvement of Developers in Missing
Link Community Smell: An Exploratory Study on Apache
Projects
Toukir Ahammed, Moumita Asad and Kazi Sakib

Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh

Abstract
Missing link smell occurs when developers collaborate in source code without communication. This can affect software
maintenance by the means of lacking mutual awareness, mistrust and knowledge gap. Existing studies have investigated the
relationship of missing link smell with different socio-technical factors and code smell. This study aims to understand how
many developers are involved with missing link smell, by calculating the percentage of smelly developers for a project. The
study also investigates the relationship between the number of contributions and the number of missing link involvements of
a developer. The result shows that the percentage of smelly developers involved with missing link smell is 8.7% on average.
The result also suggests a moderate positive correlation between the contribution of a developer to the project and the
involvement in smell.

Keywords
missing link smell, community smell, software engineering, empirical analysis

1. Introduction
Community smells are the organizational and social anti-
patterns in a development community [1]. Community
smells may lead to the emergence of social debt which
indicates unforeseen project costs connected to a sub-
optimal software development community. Community
smells may not be an immediate obstacle for software
development but these can affect software maintenance
negatively in the long run [2]. Missing link is one of the
common community smells. It refers to the condition
when two co-committing developers show uncooperative
behavior by not communicating [3].

Missing link community smell decreases communi-
cation activities in the development community. The
lack of communication and cooperation negatively af-
fects mutual awareness and trust among developers [3].
A software product can be thought of as the combined
effort of all developers. So, the collaboration along with
proper communication is necessary among developers. It
is important to know how many developers are involved
in missing link smell as they may affect the whole project.
Identifying these developers and analyzing their char-
acteristics is important. This will help the management
to take steps such as task reassigning, team reformation,
increasing awareness about communication etc. to keep
communication issues lower in the community.

The detection of missing link smell and its impact on

QuASoQ 2020: 8th International Workshop on Quantitative
Approaches to Software Quality
email: bsse0806@iit.du.ac.bd (T. Ahammed); bsse0731@iit.du.ac.bd
(M. Asad); sakib@iit.du.ac.bd (K. Sakib)

© 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

software artifacts have been analyzed in previous stud-
ies. S. Magnoni proposed the identification pattern of
missing link community smell [3]. Tamburri et al. ex-
amined the relationship between community smells and
different socio-technical factors, e.g., socio-technical con-
gruence, turnover etc [4]. This study considered missing
link, organizational silo, black cloud and radio silence
community smell. Palomba et al. investigated the impact
of missing link and four other community smells on code
smell intensity [2]. Catolino et al. analyzed the role of
four community smells including missing link smell on
gender diversity and women participation in open-source
community [5].

However, a little is known about developers and how
developer contributions in the project relate to missing
link smell. This study aims to focus on these by address-
ing the following Research Questions (RQs).

RQ1: Howmany developers are involved inmiss-
ing link community smell?

In an open-source project, there can be many devel-
opers contributing to the project. All developers may
not be involved in missing link smell. This RQ aims to
find how many developers are involved in missing link
smells in a community. This is important to know the
collective contribution of developers to the number of
missing link smells in a project. The project managers
will get insight about the project health. This finding can
be used in mitigating community smells by focusing on
these developers and their communication issues.

RQ2: How does missing link smell relate with a
developer contribution?

This RQ focuses on the involvement of individual de-
veloper in missing link smell. This RQ relates an impor-

mailto:bsse0806@iit.du.ac.bd
mailto:bsse0731@iit.du.ac.bd
mailto:sakib@iit.du.ac.bd
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

tant characteristic of a developer, i.e., contribution, to
missing link smell. This finding will help project man-
agers understanding which type of developers involve
more in missing link smell. This information can be used
to decide which developers can be monitored to control
missing link smell in the community from the beginning
of a project.

In this study, missing link smells are analyzed on seven
open-source projects of Apache ecosystem. First, the in-
stances of missing link smell are detected in each project.
Then the developers associated with each smell are iden-
tified by extracting the instance of smell. The fraction of
developers involved with missing link smell is calculated
to check whether a subset of developers are involved
with this type of smell. Then the correlation is investi-
gated between the contribution of developers and their
involvement in missing link smells.

The results of the study show that a small part of total
developers involved with missing link community smell.
On average, 8.7% of the total developers of a project are
involved with missing link smell. This study also finds
a significant moderate positive correlation between the
developer contribution and their involvement in missing
link smell (𝜏𝑏 = 0.612, 𝑝 < 0.01).

2. Background
This section provides some important terminologies to
better understand the missing link community smell.

Developer Social Network (DSN): A network of a
software development community where a node repre-
sents developer and relationships, e.g., communication,
coordination, between developers are represented by an
edge.

CollaborationNetwork: A specific type of DSNwhich
indicates the collaboration in a development community.
Here, a node represents a developer who contributes to
the project in the version control system. Two developers
are connected through an edge if they contribute to the
same part of source code within a given time frame [3].
Figure 2 represents an example of collaboration network.

Communication Network: A specific type of DSN
which indicates the communication within the defined
communication channel of a development community.
Here, a node represents developers who communicate
in the defined communication channel, i.e., mailing list.
Two developers are connected through an edge if they
replied in the same e-mail within a given time frame [3].
A communication network is illustrated in Figure 3.

Missing Link Community Smell: A missing link
community smell is occurred when a couple of develop-
ers collaborate with each other but show uncooperative
behaviors by not communicating. This smell can be iden-
tified detecting collaboration between two developers

Figure 1: Developer Social Network

Figure 2: Collaboration Network

that do not have the communication counterpart in de-
fined communication channel e.g., development mailing
list [3].

An example of DSN is illustrated in Figure 1. The
upper part of the graph represents communication and
the lower part represents the collaboration among devel-
opers. The developers are connected with solid line if
they communicate with each other. The developers are
connected to the file icon through a dashed line if they
contribute to that source code file.

The collaboration and communication network can be
generated separately from this DSN. Figure 2 and Fig-
ure 3 represent the collaboration and the communication
network respectively. The missing link smell can be iden-
tified comparing the collaboration network with commu-
nication network. There is a link between developer E
and F in the collaboration network (Figure 2) but there
is no corresponding link between these two developers
in the communication network (Figure 3). Developer E
and F are collaborating on the same part of source code
but they are not connected through any communication
link. Thus, this is considered as an instance of missing
link between developer E and F.

3. Related Work
In recent years, community smells are studied to incor-
porate organizational and social aspect of developer com-
munity in software engineering research. Some studies

Figure 3: Communication Network

focused on defining different community smells that can
lead to unforeseen project costs. On the other hand, some
studies investigated the impact of community smells on
different software artifacts.

Tamburri et al. first introduced the concept of social
debt in software engineering [6]. Later, in an industrial
case study, they improved and elaborated the definition of
social debt. In the same study, they defined nine different
community smells which are connected to social debt
[1]. They also suggested a list of possible mitigations of
community smells such as learning community, cultural
conveyors, stand-up voting etc., to avoid the negative
effects.

Magnoni proposed the identification pattern of four
out of nine community smells [3] defined in [1]. He
developed an open-source tool CODEFACE4SMELLS1 as
an extension to CODEFACE [7]. This tool is capable of
detecting community smells from the change history
in the version control system and the communication
history in development mailing list.

Tamburri et al. analysed the distribution of community
smells in open-source projects [4]. They also assessed the
relation between community smells and existing socio-
technical quality factors, e.g., socio-technical congruence,
communicability, turnover etc.

Palomba et. al examined the relationship between so-
cial and technical debt [2] [8]. They assessed the impact
of community smells on code smells. They found commu-
nity smells significantly influencing code smell intensity.
They also proposed a community-aware code smell in-
tensity model in which both technical and community
related factors were considered.

Catolino et al. analysed the role of gender diversity
and women participation on community smell [5]. They
considered four types of community smell i.e., organi-
zational Silo, Lone Wolf, Black Cloud and Radio Silence.
They found that gender diverse team had lower num-
ber of community smells than non-gender diverse team.
They also showed that gender diversity and women par-
ticipation were important factors for Black Cloud and
Radio Silence whereas organizational Silo and Lone wolf
were found partially related.

The existing studies have focused on community smells
and the impact of these smells on software artifacts. The

1https://github.com/maelstromdat/CodeFace4Smells

phenomenon of community smells is surrounded with
developers in a development community. But a little is
known about the developers involved with community
smells. The relation between missing link smell and de-
veloper characteristics is not yet investigated. So, the
developers involved with community smells and their
characteristics, e.g., contribution, need to be explored.

4. Methodology
This study aims to understand how many developers of a
project are involved in missing link smell. This study also
wants to assess the relationship between a developer’s
contribution and involvement in missing link smell. First,
the missing link smell is detected for all the selected
projects. Then the percentage of smelly developers is
retrieved for each project. Later, the correlation analysis
is performed between a developer’s contribution and
involvement in missing link smell.

4.1. Dataset
In this work, 9 large open-source projects belonging to
APACHE ecosystem are selected for analysis. Table 1
provides the list of analysed projects with their name,
source code link, development mailing list and analysis
period. All projects are hosted in online version control
system GitHub and the development mailing list archives
are available on Gmane2.

The selected projects are large enough in terms of
community members and the number of commits. The
projects have 668 community members on average. All
the projects have a substantial number of commits, with
an average of 10359. Thus the study has enough collabo-
ration and communication data for analysis.

4.2. Missing Link Smell Detection
The selected projects are analysed using a six-month anal-
ysis window. The analysis period of a project starts from
when both communication in mailing list and change
history in repository are available. A few more months
are excluded to make the analysis period divisible by six
months. The analysis period for each project is given in
Table 1.

For every analysis window of a project, a communica-
tion network and a collaboration network is built. The
communication network is generated extracting com-
munication data from development mailing list and the
collaboration network is generated extracting collabo-
ration data from the project repository. After having
both communication and collaboration networks, the in-
stances of missing link smell are identified by comparing

2http://gmane.io

Table 1
List of Analysed Projects

Project Name Source Code Mailing List Analysis Period

1 Apache Cassandra github.com/apache/cassandra gmane.comp.db.cassandra.devel Oct-2009 - Sep-2020
2 Apache Cayenne github.com/apache/cayenne gmane.comp.java.cayenne.devel Nov-2007 - Aug-2020
3 Apache CXF github.com/apache/cxf gmane.comp.apache.cxf.devel Nov-2010 - Sep-2020
4 Apache Jackrabbit github.com/apache/jackrabbit gmane.comp.apache.jackrabbit.devel Dec-2005 - Sep-2020
5 Apache Jena github.com/apache/jena gmane.comp.apache.jena.devel Oct-2012 - Sep-2020
6 Apache Mahout github.com/apache/mahout gmane.comp.apache.mahout.devel Oct-2008 - Aug-2020
7 Apache Pig github.com/apache/pig gmane.comp.java.hadoop.pig.devel Oct-2010 - Aug-2020

every collaboration link with communication networks.
If any collaboration link does not have its communica-
tion counterpart, this link is identified as a missing link
instance.

An open-source tool, CODEFACE4SMELLS, is used to
detect missing link community smell in this study. This
tool is capable of detecting missing link smell in the afore-
mentioned way from project repository and development
mailing list. The tool requires the link of source code
repository and mailing list archive as input. Then the
tool returns a list of missing link instances for each win-
dow of the project. A missing link instance is represented
by a pair of developers. For example, (𝑎, 𝑏) represents a
missing link instance between developer 𝑎 and 𝑏.

4.3. Smelly Developers Identification
A developer involved with a missing link smell is consid-
ered as a smelly developer. An instance of missing link
smell consists of two collaborating developers who do
not communicate with each other. Thus for every miss-
ing link smell, there are two smelly developers. CODE-
FACE4SMELLS outputs a missing link instance as a pair
of developers. So, the smelly developers can be obtained
by extracting all missing link instances of a project. The
smelly developers of a project 𝑥 can be denoted by a set
𝑆𝐷𝑥. The number of smelly developers of the project will
be the number of elements in 𝑆𝐷𝑥.

To calculate the percentage of smelly developers in a
project, the total number of developers of that project is
required. The total number of developers is defined as
the sum of the number of developers who contribute to
source code and the number of members who communi-
cate on mailing list [3]. The total number of developers
of a project is obtained by counting the number of mem-
bers present in either collaboration or communication
network generated by 𝐶𝑂𝐷𝐸𝐹𝐴𝐶𝐸4𝑆𝑀𝐸𝐿𝐿𝑆. The per-
centage of smelly developers of a project is calculated
using the following formula (Equation 1),

𝑝𝑒𝑟𝑐𝑆𝐷𝑥 =
𝑛𝑢𝑚𝑆𝐷𝑥
𝑡𝑜𝑡𝑎𝑙𝐷𝑒𝑣𝑥

× 100%, (1)

where 𝑛𝑢𝑚𝑆𝐷𝑥 is the number of smelly developers in
project 𝑥 and 𝑡𝑜𝑡𝑎𝑙𝐷𝑒𝑣𝑥 is the number of total developers
in project 𝑥.

4.4. Correlation Analysis
RQ2 aims to understand the relationship between a de-
veloper’s contribution and involvement in missing link
smell. To address this RQ, the correlation between fol-
lowing two measures is analysed:

1. howmany commits a developer has in the project
repository

2. how many times a developer is involved in miss-
ing link smell

In open-source projects, commits are themost representa-
tive form of coding contribution [9]. So, the contribution
of a developer in a project is measured by the number of
commits done in that project repository. The number of
commits done by every individual developer is retrieved
from the source code repository.

The number of involvement in missing link smells can
be obtained from the list of missing link instances of
a project. First, the developers are extracted from all
missing link instances of the project. Then the number
of involvement is calculated counting how many times a
developer occurs in the list.

Both the number of commits and the number of in-
volvement in smells of a developer are converted into
percentage to achieve the relative measurement. The
following two formulas, Equation 2 and Equation 3 are
used to calculate number of commits and involvement is
missing link smell in percentage respectively:

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝐶𝑜𝑚𝑚𝑖𝑡 =
𝑛𝑢𝑚𝐶𝑜𝑚𝑚𝑖𝑡𝑖

∑𝑛
𝑖=1 𝑛𝑢𝑚𝐶𝑜𝑚𝑚𝑖𝑡𝑖

× 100% (2)

where 𝑛𝑢𝑚𝐶𝑜𝑚𝑚𝑖𝑡𝑖 is the number of commits of devel-
oper 𝑖 and 𝑛 is the total number of smelly developers.

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝐿𝑖𝑛𝑘 =
𝑛𝑢𝑚𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝐿𝑖𝑛𝑘𝑖

∑𝑛
𝑖=1 𝑛𝑢𝑚𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝐿𝑖𝑛𝑘𝑖

×100% (3)

Table 2
Correlation coefficient interpretation

Correlation Coefficient (Negative) Correlation Coefficient (Positive) Interpretation

-0.4 < 𝜏𝑏 ≤ 0.0 0.0 ≤ 𝜏𝑏 < 0.4 Weak
-0.7 < 𝜏𝑏 ≤ -0.4 0.4 ≤ 𝜏𝑏 < 0.7 Moderate
-0.9 < 𝜏𝑏 ≤ -0.7 0.7 ≤ 𝜏𝑏 < 0.9 Strong
-1.0 ≤ 𝜏𝑏 ≤ -0.9 0.9 ≤ 𝜏𝑏 ≤ 1.0 Very Strong

where 𝑛𝑢𝑚𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝐿𝑖𝑛𝑘𝑖 is the number of commits of
developer 𝑖 and 𝑛 is the total number of smelly developers.

Finally, the correlation analysis is performed between
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝐶𝑜𝑚𝑚𝑖𝑡 and 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝐿𝑖𝑛𝑘 for each project
individually. Kendall’s tau-b is used to assess the de-
gree of association between these two variables. Both
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝐶𝑜𝑚𝑚𝑖𝑡 and 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝐿𝑖𝑛𝑘 have tied values
in the dataset. As Kendall’s tau-b can handle tied ranks,
this is used for the correlation analysis. The correlation
coefficient is considered significant if the p-value is less
than 0.01. The correlation coefficient is interpreted ac-
cording to Table 2.

5. Result Analysis
This section presents the result analysis of this study.
All missing link smells found from selected projects are
analysed to answer the research questions. Analysis and
discussion for both research questions are provided as
follows.

5.1. RQ1: How many developers
involved with missing link smell?

To answer this RQ, all missing link smells of a project are
considered. For every project, the number of total devel-
opers and the number of smelly developers are calculated.
Then the percentage of smelly developers is obtained for
each project.

Table 3 demonstrates the percentage of smelly devel-
opers for each project. It is observed that, on average
10.5% of total developers of a software community are
involved in missing link smells. Apache Cayenne com-
munity has the highest percentage of smelly developers
(21.1%). This is also the smallest community among 7
communities. Tamburri et. al. found that the number
of community smell grows quadratically with the num-
ber of community members until the threshold of 200
community members [4]. The occurrences of community
smell tend to stabilize after this threshold. As the num-
ber of total developers in Apache Cayenne community is
less than 200, the number of missing link smell has not
stabilized yet. So, this project has relatively more miss-
ing link smell and consequently more smelly developers.

Excluding Apache Cayenne project, the rest six projects
have 8.7% smelly developers on average.

These results suggest that only a small portion of de-
velopers in an open-source software community are in-
volved with missing link smells. They do not commu-
nicate appropriately with their co-committing or collab-
orative developers. Thus, they contribute to the total
number of community smells in a software community.

5.2. RQ2: How does community smell
relate with a developer contribution?

To answer this RQ, the correlation between a developer’s
contribution and involvement in missing link smell is an-
alyzed. Kendall’s tau-b is used as a correlation technique
since it can handle tied values.

First, the correlation analysis is performed individu-
ally for each development community. The Kendall’s
tau-b coefficients and p-values are provided in Table 4.
All seven projects show a moderate positive correlation
between number of commits and number of smells which
is statistically significant with p<0.01.

Another correlation analysis is performed combining
all the projects. The value of the correlation coefficient is
slightly increased but still falls under the range of mod-
erate positive correlation. This result is also statistically
significant with a p-value less than 0.01.

These results suggest that a developer who contributes
more in a project tends to have more missing link smells.
This can happen because a developer, who contributes
more, have to communicate more with other develop-
ers. The overload of communication may be the reason
for involving in more missing link smells than others.
From another point of view, a developer having more
contribution to a project is likely to be more familiar and
experienced with that project. As he knows most of the
aspects of that project, he may take the communication
with co-committers lightly while contributing. However
further analysis is required to find out the causes of in-
volving in more smells.

Table 3
Percentage of Smelly Developers

Project Name Total Developers Smelly Developers Smelly Developers(%) Average

1 Apache Cassandra 1380 205 14.9%

8.7%

2 Apache CXF 972 94 9.7%
3 Apache Jena 244 34 13.9%
4 Apache Mahout 615 28 4.6%
5 Apache Pig 668 22 6.0%
6 Apache Jackrabbit 927 28 3.0%

7 Apache Cayenne 175 37 21.1%

Average 668 64 10.5%

Table 4
Correlation Analysis

Project Name Tau-b p-value

1 Apache Cassandra 0.508 < 0.01
2 Apache Cayenne 0.543 < 0.01
3 Apache CXF 0.528 < 0.01
4 Apache Jackrabbit 0.589 < 0.01
5 Apache Jena 0.452 < 0.01
6 Apache Mahout 0.409 < 0.01
7 Apache Pig 0.513 < 0.01

Overall 0.612 < 0.01

6. Threats to Validity
This section discusses the potential threats that may af-
fect the validity of this study.

Threats to external validity: Threats to external
validity concern the generalization of obtained results.
In this study, seven projects from Apache are analysed.
Thus the generalisation requires more projects belonging
to different systems. However, to mitigate this threat
large and diverse projects are selected that have a long
change history - 11 years on average.

Threats to internal validity: Threats to internal
validity concern the factors that can influence our re-
sults but are not accounted for. In this study, CODE-
FACE4SMELLS tool is used for the detection of miss-
ing link smell. The outputs of CODEFACE4SMELLS are
directly incorporated in this study without checking
whether there is any defect in the tool. However, the
capability of this tool of identifying missing link smell
was evaluated [3]. This tool is also used in other studies
in detecting community smells [2] [5] [10].

Moreover, this tool relies on mailing list to detect com-
munication among developers. The contribution guide-
lines of the selected projects in this study suggest that
mailing list represents the main communication channel
for these projects. But there may exist other communica-
tion channels, e.g., Skype, Facebook etc., where develop-

ers communicate with each other. However, retrieving
communication data from these channels may not be
practical as this data is not publicly available. So, it can
be said that mailing lists provide sufficiently accurate
information on communication among developers in this
study.

7. Conclusion
This study explores the percentage of developers in a
software development community involved in missing
link smells. Furthermore, the relationship between devel-
oper contribution and involvement in missing link smell
is examined. At first, missing link smells are detected for
all the projects. Next, the smelly developers are identified
by extracting missing link instances. The percentage of
smelly developers are calculated for every project. The
number of appearances of a developer in missing link
smell is counted. The contribution of a developer to a
project is measured by the number of commits. Finally,
correlation analysis is done between contribution and
involvement in smell.

This study analyses seven open-source projects of
Apache. The result shows that the number of develop-
ers involved in missing link smells is 8.7% on average.
This study also founds that there is a positive correlation
between the number of commits of a developer and the
number of involvement in missing link smells. The de-
velopers who contribute more tend to involve in more
missing link smell.

In future, other types of community smell, e.g., organi-
zational silo, radio silence, can be examined to find their
association with developers contribution.

Acknowledgments
The virtual machine facility used in this research is pro-
vided by Bangladesh Research and Education Network
(BdREN).

References
[1] D. A. Tamburri, P. Kruchten, P. Lago, H. Van Vliet,

Social debt in software engineering: insights from
industry, Journal of Internet Services and Applica-
tions 6 (2015) 10.

[2] F. Palomba, D. A. A. Tamburri, F. A. Fontana,
R. Oliveto, A. Zaidman, A. Serebrenik, Beyond tech-
nical aspects: How do community smells influence
the intensity of code smells?, IEEE transactions on
software engineering (2018).

[3] S. Magnoni, An approach to measure commu-
nity smells in software development communities
(2016).

[4] D. A. Tamburri, F. Palomba, R. Kazman, Exploring
community smells in open-source: An automated
approach, IEEE Transactions on software Engineer-
ing (2019).

[5] G. Catolino, F. Palomba, D. A. Tamburri, A. Sere-
brenik, F. Ferrucci, Gender diversity and women in
software teams: How do they affect community
smells?, in: 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software En-
gineering in Society (ICSE-SEIS), IEEE, 2019, pp.
11–20.

[6] D. A. Tamburri, P. Kruchten, P. Lago, H. van
Vliet, What is social debt in software engineering?,
in: 2013 6th International Workshop on Coopera-
tive and Human Aspects of Software Engineering
(CHASE), IEEE, 2013, pp. 93–96.

[7] M. Joblin, W. Mauerer, S. Apel, J. Siegmund,
D. Riehle, From developer networks to verified
communities: a fine-grained approach, in: 2015
IEEE/ACM 37th IEEE International Conference on
Software Engineering, volume 1, IEEE, 2015, pp.
563–573.

[8] F. Palomba, D. A. Tamburri, A. Serebrenik, A. Zaid-
man, F. A. Fontana, R. Oliveto, Poster: How do
community smells influence code smells?, in: 2018
IEEE/ACM 40th International Conference on Soft-
ware Engineering: Companion (ICSE-Companion),
IEEE, 2018, pp. 240–241.

[9] S. Daniel, R. Agarwal, K. J. Stewart, The effects of di-
versity in global, distributed collectives: A study of
open source project success, Information Systems
Research 24 (2013) 312–333.

[10] F. GIAROLA, Detecting code and community smells
in open-source: an automated approach (2018).

Detection and Correction of Android-specific Code Smells
and Energy Bugs: An Android Lint Extension
Iffat Fatimaa, Hina Anwarb, Dietmar Pfahlb and Usman Qamara

aCollege of Electrical and Mechanical Engineering, National University of Sciences and Technology,Islamabad, Pakistan
bInstitute of Computer Science, University of Tartu, Tartu, Estonia

Abstract
Context: While Android applications suffer from code smells and energy drain issues there is still a lack of
tools that help developers improve energy consumption and maintainability of Android applications. Objective:
Our research aims to provide tool support to Android developers helping them to create greener and more
maintainable applications by eliminating Android-specific code smells/energy bugs. The proposed tool support
integrates routine code smell detection with energy bug detection so that developers can do both at the same
time. Method: We extend ‘Android Lint’ (AL) with custom rules to detect and correct 12 code smells (nine
are new and three are improved) and three energy bugs (two are new and one is improved). In addition, for
the improved and newly introduced code smells, we compared the performance of our tool with the open
version of the ’PAPRIKA’ tool. Result: We evaluated our tool on nine open-source Android applications.
Our tool detects the specified code smells and energy bugs with an average precision, average recall and F1
score of 0.93, 0.96, and 0.94, respectively. It accurately corrects 84% of selected code smells and energy bugs.
The performance of the new and improved code smell detection is better than that achieved by ‘PAPRIKA’.
Conclusion: Our tool is a useful extension to the existing ‘AL’ tool with better performance than ‘PAPRIKA’.

Keywords
Green Software Development, Android, Energy Optimization, Code Smell, Energy Bug, Android Lint,
Detection, Refactoring, Static Analysis

1. Introduction
Recently, the focus of research has shifted towards
sustainable and green software development with a
focus on energy optimized programming and energy
optimization at the application level [1]. Software
is now being built not only keeping performance,
dependability, and maintainability in mind but also
the principles of green software engineering aiming
at the development of sustainable software with
less negative impact on the environment. With the
fast-paced emergence of mobile technologies in the
past decade, mobile applications are being widely
used. 3.5 billion people use smartphones around
the world [2], and Android has 75% of the market
share.

Code smells and energy bugs have been identi-
fied as causes of abnormal energy consumption in
Android applications. Significant research has been

QuASoQ 2020: 8th International Workshop on
Quantitative Approaches to Software Quality, December
1st, 2020, Singapore
" iffat.fatima@ce.ceme.edu.pk (I. Fatima);
hina.anwar@ut.ee (H. Anwar); dietmar.pfahl@ut.ee
(D. Pfahl); usmanq@ceme.nust.edu.pk (U. Qamar)
� 0000-0002-4725-4636 (H. Anwar); 0000-0003-2400-501X
(D. Pfahl)

© 2020 Copyright for this paper by its authors. Use
permitted under Creative Commons License Attribu-
tion 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073

CEUR Workshop Proceedings (CEUR-
WS.org)

carried out on the impact of object-oriented smells
in Java applications [3, 4, 5, 6]. In our previous
work [1] we identified support tools that aid green
Android development. We further identified the
coverage of code smells and energy bugs by those
tools and identified their limitations. We concluded
that there is a lack of guidelines for Android devel-
opers to write sustainable software. Current state
of the art tools lack in providing complete coverage
for Android code smells and energy bugs. More-
over, they lack in usability, IDE integration and
effective refactoring approach. The aim of this re-
search is to create a tool that solves these issues by
aiding developer to solve energy related problems
during development of the application for improved
performance and maintainability.

‘Android Lint’ (AL) is the default static analysis
tool in Android Studio IDE, hence used by most
Android developers. Code smells detected and pri-
oritized by ‘AL’ tend to disappear faster from code
base as compared to other code smells detection
tools. Moreover, a lint tool integrated in Android
Studio IDE not only encourages the developers to
correct code smells on the go but also plays a role in
developer education [7]. We chose a custom imple-
mentation of ‘AL’ API to 1) maximize coverage of
Android code smells/energy bugs, 2) provide recom-
mendations to developers for refactoring, 3) provide
a preview of the detected and corrected code, and

mailto:iffat.fatima@ce.ceme.edu.pk
mailto:hina.anwar@ut.ee
mailto:dietmar.pfahl@ut.ee
mailto:usmanq@ceme.nust.edu.pk
https://orcid.org/0000-0002-4725-4636
https://orcid.org/0000-0003-2400-501X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
http://ceur-ws.org

4) provide an interface consistent with the Android
Studio IDE.

The ’extended Android Lint’ (xAL) tool is evalu-
ated on open-source Android applications to detect
and correct code smells and energy bugs. The cur-
rent evaluation has resulted in average precision,
average recall and F1 score of 0.93, 0.96, and 0.94,
respectively. Whereas, 84% of the suggested correc-
tions applied to the applications under test, resulted
in the smooth functioning of applications. However,
results cannot be generalized based on these statis-
tics due to the small scale of the evaluation setup.
Our tool also provides better code smell/energy bug
coverage, and usability compared to ‘PAPRIKA’
tool.

Section 2 provides related work. Section 3 con-
tains the tool design and implementation details.
Section 4 presents the evaluation plan and results.
Section 5 discusses threats to validity. Section 6
concludes the study.

2. Related Work
There are several publications in which Android
application analysis tools have been presented that
detect or correct Android-specific code smells and
energy bugs. The aim of this study is to provide
a solution at the development stage hence we look
into only those tools that perform static analysis,
with the aim to optimize applications in terms of
their energy consumption.

The ‘HOT-PEPPER’ toolkit [8] (based on ‘PA-
PRIKA’ tool [9]) detected and refactored a set of
Android-specific code smells and produced a cor-
rected version of the APK without developer inter-
vention.

‘Statedroid’ tool [10] performed a taint-like anal-
ysis using specified resource protocols to detect en-
ergy leaks caused by Wakelock Bugs and Resource
Leaks.

In [11], the authors used a combination of ‘Eclipse
Refactoring API’, ‘PMD’, and ‘AL’ to build a tool
that optimizes Android applications for CPU usage.
Their rule set covered only a limited number of
Android code smells. However, the tool offered
developers the flexibility to add their own rules.

The ‘aDOCTOR’ tool [12] detected 15 code smells
causing energy drains by traversing the abstract
syntax tree. The code smells were removed manually
by authors and correlated to energy consumption.
Energy estimation was done using ‘PETrA’. The
‘aDOCTOR’ tool has a precision and recall of 98%.

Jiang et al.[13] used ‘SAAF’ for resource leak anal-
ysis and ‘AL’ for layout defect analysis in Android

applications. They detected energy bugs like Cam-
era Leak, Memory leak, Multimedia Leak, sensor
Leak, and layout defects.

Olivier Le Goaër [14] presented an automated tool
based on ‘AL’ which detected 11 energy greedy An-
droid patterns such as Draw Allocation, Wakelock,
Recycle, Obsolete Layout Parameter, HashMap Us-
age, Member Ignoring Method, Excessive Method
Calls and some Resource Leaks. The tool ‘Au-
toRefactor’ was used for refactoring and the impact
of those refactoring on energy consumption of open-
source Android applications was measured.

The ‘E-Debitum’ [15] tool (based on ‘SonarQube’)
detected six energy code smells and calculated their
energy debt.

Comprehensive coverage of Android-specific code
smells and energy bugs within one single tool is
missing in existing tools. In the tools mentioned
above, most commonly detected code smells were
Member Ignoring Method, Internal Getter and Set-
ter methods whereas most commonly detected en-
ergy bugs were Wakelock Bug and Resource Leaks.
Existing tools have low usability due to lack of
Android Studio IDE integration. Tools in studies
[9, 8, 13] provided a command line interface while
in the study [11] integration with Eclipse IDE was
provided instead of Android Studio (which is the
official IDE for Android development [7]). Tools
compatible with Android Studio [14, 16], were not
open source. Tools in studies [9, 13, 12, 11, 16]
did not refactor applications while tools in studies
[8, 15] provided completely automated refactoring
hence reducing the control of the developer during
refactoring process.

3. Design
In this section, we describe how we selected the
baseline tool for extension and how we enhanced it.

3.1. Baseline Tool Selection
The aim of this study is to create a tool that cov-
ers the limitations of previously developed tools in
terms of providing a comprehensive coverage of the
Android code smells and energy bugs and solving
the usability issues such as IDE integration, flex-
ibility and ease of use for developer, open source
availability etc. Based on this objective, we set the
following criteria for selecting a tool for an exten-
sion:

• The tool should be open source or provide
the ability to extend or customize it to add

rules for detection and refactoring of code
smells/energy bugs.

• The tool should be able to perform static
analysis.

• The tool should be integrate-able with An-
droid studio IDE as it is the official IDE for
Android development [7].

• The tool should provide an inline warning
on code smell/energy bug detection inside
Android Studio code editor.

• The tool should provide a mechanism to list
detected code smells/energy bugs along with
their description.

The above criteria were applied on industry-
standard tools such as ‘AL1’ (AL), ‘PMD’, ‘Spot-
Bugs2’ (SB), ‘SonarLint3’ (SL), ‘SonarQube4’ (SQ),
and ‘SOOT5’ (ST) (see Table 1). A similar tool,
‘FindBugs’, was not considered as its successor is
‘SpotBugs’. ‘Eclipse refactoring engine’ was also ex-
cluded as it is not integratable with Android Studio.
Tools that perform static analysis but focus on code
styling such as ‘CheckStyle’ were excluded. We also
considered detection and optimization tools identi-
fied in our previous work [1]. Even though many of
these tools were built on top of open-source static
analysis tools such as ‘SOOT’, ‘SPARK’, ’SAAF’,
‘ASM’, ‘PMD’, and ‘Lint’, we did not select them
for an extension because they were not designed to
be integrated with Android Studio IDE. The tools
using dynamic analysis were also excluded as they
require the application to be built every time. Long
average build time for Android applications is a
known and significant issue among the development
community6. Table 1 shows a comparison of tools
in terms of selection criteria. After this compar-
ison, ‘SpotBugs’, ‘SonarQube’, and ‘SOOT’ were
excluded as they built the application every time a
code smell/energy bug needs to be detected.

Next, we compared the three shortlisted tools:
‘AL’, ‘PMD’, and ‘SL’ for Android-specific code
smell and energy bug coverage (See Table 2 and
3). ‘AL’, ‘PMD’, and ‘SonarLint’ can cover many
different types of issues in code (code smell, bug
or error is referred to as ‘issue’ in these tools). For
example, ‘AL’ can detect 261 different types of
Android-specific issues7. Majority of these issues are
related to syntax and styling of the code. We could

1http://tools.android.com/tips/lint-custom-rules
2https://spotbugs.github.io/
3https://www.sonarlint.org/features/
4https://docs.sonarqube.org/latest/extend
5https://github.com/Sable/soot/
6https://developer.android.com/studio/build/optimize-

your-build
7http://tools.android.com/lint/overview

Table 1
Comparison of tools in terms of selection criteria

Criteria AL PMD SB SL SQ ST
Open Source ✓ ✓ ✓ ✓ ✓ ✓

Customization API ✓ ✓ X ✓ ✓ X
Source Code Analysis ✓ ✓ X ✓ X X
Byte Code Analysis ✓ X ✓ X ✓ ✓

Android Studio Integration ✓ ✓ ✓ ✓ ✓ X
Inline issue warning/hint ✓ X X ✓ ✓ X
List of detected code smells/energy bugs ✓ ✓ ✓ ✓ ✓ ✓

Allows adding refactoring rules ✓ X X X X X
AL = Android Lint, SB = SpotBugs,SL= SonarLint, SQ = SonarQube, ST= SOOT

not find any evidence in the literature about the
energy impact of the issues already covered by the
above shortlisted tools, therefore, we only compared
them for the coverage of 25 Android-specific code
smells and nine energy bugs listed in [1].

In Tables 2 and 3, ‘*’ represents that the code
smell/energy bug is detected but based on the defi-
nition of code smell/energy bug8 the detection cov-
erage has room for improvement. ✓represents that
code smell/energy bug is detected, × represents that
code smell/energy bug is not covered by the tool yet.
From Tables 2 and 3, we can see that ‘AL’ already
covers 13 code smells and six energy bugs. There-
fore, an effort towards improvement in the small
number of undetected code smells/energy bugs will
result in a single tool with maximum coverage. In
addition, ‘AL’ provides offline documentation for
rules and allows the developer to choose whether
to correct a specific code smell/energy bug or not.
Based on the above data, ‘AL’ is a feasible tool for
an extension.

3.2. Android Lint Extension
In this section, we explain the ‘AL’ API and im-
plementation details of our new ’extended Android
Lint’ (xAL) tool.

API Overview. ‘AL’ provides an embedding API
that allows adding custom rules. In order to cre-
ate custom rules, the ‘AL’ embedding API pro-

8https://figshare.com/s/84ae49a21551e6302d41

Figure 1: Overview of ‘AL’ API

Table 2
Code smell coverage by tools ‘AL’, ‘PMD’ and ‘SL’

DTWC DR LIC IDFP ISQLQ IDS IGS LT MIM NLMR PD RAM SL UC LC LWS UHA BFU UIO IWR HAT HSS HBR IOD ERB
AL X ✓ ✓ ✓ ✓ ✓ ✓ * ✓ X X ✓ ✓ ✓ X ✓ X * ✓ X X X X ✓ *
PMD X X X X ✓ X ✓ * X X X X ✓ ✓ X X X X X X X X X X *
SL X ✓ X X ✓ X ✓ * ✓ X ✓ X ✓ ✓ X ✓ X X X X X X ✓ X ✓

DTWC=Data Transmission Without Compression, DR=Debuggable Release, LIC=Leaking Inner Class, IDFP=Inefficient Data Format and Parser, ISQLQ=Inefficient SQL Query, IDS=Inefficient Data
Structure, IGS=Internal Getter and Setter, , LT=Leaking Thread, MIM=Member Ignoring Method, NLMR=No Low Memory Resolver, PD=Public Data, RAM=Rigid Alarm Manager, SL=Slow Loop,
UC=Unclosed Closeable, LC=Lifetime Containment, LWS= Long Wait State, UHA=Unsupported Hardware Acceleration, BFU= Bitmap Format Usage, UIO=UI Overdraw, IWR=Invalidate Without Rect,
HAT=Heavy AsyncTask, HSS=Heavy Service Start, HBR=Heavy Broadcast Receiver, IOD=Init ONDraw, ERB=Early Resource Binding

Table 3
Energy bug coverage by tools ‘AL’, ‘PMD’ and ‘SL’

RL WB VBS IB TMV TDL NCD UL UP
AL * ✓ X X ✓ ✓ ✓ ✓ ✓

PMD * X X X X X X X X
SL * X X X X X X X X

RL=Resource Leak, WB=Wake-lock Bug, VBS=Vacuous Background Services, IB= Immortality Bug,
TMV=Too Many Views, TDL= Too Deep Layout, NCD=Not Using Compound Drawables, UL=
Useless Leaf, UP=Useless Parent

vides many class APIs. In the ‘AL’ API, each code
smell/energy bug has the following properties: Id,
summary, explanation, category, severity, priority,
and additional links9. This information is shown
to the developer when a code smell/energy bug is
detected. Each code smell/energy bug is registered
in an issue registry class and is detected by a de-
tector class. The functionalities of detector class
used by our implementation are given in additional
material10. Fig. 1 gives an overview of the ‘AL’
API (version 26.5.2 is used for the implementation
of detectors). The complexity calculation for the
code smells HAA, HSS and HBR are done using
‘Metrics Reloaded’ plugin for Android Studio11.

Inclusion of New Code Smells/Energy Bugs. For
all undetected and partially covered code smells/
energy bugs (see Table 2 and 3), detection and refac-
toring rules are defined based on the definitions
provided in additional materials and Android devel-
opment best practice guides12 provided by Google.
Table 4 shows a list of Android code smells and
energy bugs that are implemented in our ’extended
Android Lint’ (xAL) tool. In ’Implementation’ col-
umn ’novel’ refer to code smells/energy bugs that
are not already present in the ‘AL’ tool. ’Improve-
ment’ refers to code smells /energy bugs that are
partially covered by the ‘AL’ tool and can be im-
proved by inclusion of additional APIs/conditions
in our new ’xAL’ tool. The last column of Table 4
shows whether a correction is suggested by ’xAL’
for the detected Android code smells and energy

9http://tools.android.com/tips/lint-custom-rules
10https://figshare.com/s/84ae49a21551e6302d41.
11https://github.com/BasLeijdekkers/MetricsReloaded
12https://developer.android.com/topic/performance

Table 4
Android code smells and energy bugs implemented in
’xAL’

Abbr. Implementation Detection Correction offered
Code smells
DTWC novel yes No, just warning is shown
LT improvement yes yes
NLMR novel yes yes
PD novel yes yes
LC novel yes yes
UHA novel yes yes
BFU improvement yes No, just warning is shown
IWR novel yes No
HAT novel yes No, just warning is shown
HSS novel yes No, just warning is shown
HBR novel yes No, just warning is shown
ERB improvement yes No, just warning is shown
Energy Bugs
RL improvement yes yes
VBS novel yes yes
IB novel yes yes

DTWC=Data Transmission Without Compression, LT=Leaking Thread, NLMR=No Low
Memory Resolver, PD=Public Data, RAM=Rigid Alarm Manager, LC=Lifetime Containment,
UHA=Unsupported Hardware Acceleration, BFU= Bitmap Format Usage, IWR=Invalidate With-
out Rect, HAT=Heavy AsyncTask, HSS=Heavy Service Start, HBR=Heavy Broadcast Receiver,
ERB=Early Resource Binding, RL=Resource Leak, VBS=Vacuous Background Services, IB= Im-
mortality Bug

bugs. Table 5 shows Android code smells/energy
bugs that are partially covered by the original ‘AL’
tool and the improvements we implemented in our
new ’xAL’ tool for each of them. Pseudo-code for
implemented code smells and energy bugs are given
in additional material13. For most of the detected
code smells/energy bugs we offer corrections. In
cases where we do not provide corrections to the
developer, a warning is issued. Each implemented
code smell/energy bug is tested on sample classes
which contains possible variations in which a se-
lected code smell/energy bug can be present in the
code. In addition, we provide a description for each
of the detected code smell/energy bug, with the
aim to help developers in refactoring. We made
our tool open-source 16. The ’xAL’ tool is compiled

13https://figshare.com/s/84ae49a21551e6302d41
16https://figshare.com/s/63c5b3e957f390432edf

Table 5
Proposed improvements in the Android Code Smells and
Energy bugs detection

CS/
EB

API/Class already detected by
‘AL’ tool

API/Class detected by ’xAL’ tool as im-
provement

LT
(CS)

Detects thread class leak only. Detection of classes like an-
droid.os.Handler and java.lang.Runnable
that can lead to a thread leak14.

BFU
(CS)

Detects bitmap duplication, cre-
ation in onDraw() and usability
issues.

Detection of Bitmap using
Bitmap.create(params. . .)15.

ERB
(CS)

Detects creation of objects dur-
ing DrawAllocation which can
be performed by lazy initializa-
tion

Detection of heavy APIs (of type:
Android .location, android.media, an-
droid.database, android.hardware) that
should be initialized in lazy fashion1.

RL
(EB)

Detects resources such as IO,
JDBC, static fields, wifi man-
ager, StringBuffer etc.

Detection of resources like Camera, Media
Player etc. [?]

CS =Code Smell, EB =Energy Bug, LTLeaking Thread, BFU= Bitmap Format Usage,
ERB=Early Resource Binding, RL=Resource Leak

as a Jar file. The Jar file is placed in the .an-
droid/lint folder of the Android Studio installation,
typically located in USER-HOME. Android Studio
is restarted for new detectors to take effect. Ap-
plications can be analyzed for Android code smells
and energy bugs in two ways17, i.e., in-line analysis
and whole-application analysis.

4. Evaluation
4.1. Evaluation Plan
We evaluated the ’xAL’ tool in two steps. First,
we evaluated the tool on a selection of open source
apps, then we compared the tool’s performance to
that of the ‘PAPRIKA’ tool.

Evaluation on Open Source Apps. The evaluation
includes testing on nine real-world applications18

chosen from the F-Droid19 repository. The appli-
cations were chosen if the source code was in Java
and the number of line of code was less than 30,000
(for ease of manual verification). We checked that
each application can be compiled and executed on
a device without errors.

Comparison with ‘PAPRIKA’. We considered
state of the art tools such as ‘PAPRIKA’, ‘aDOC-
TOR’, ‘SAAD’, ‘Chimer’ and ‘AL’ (implementation
by Goaër [14]) as possible comparison candidates.
’Chimer’ and the ’AL’ tool presented in [14] were
not available in open source. We chose ‘PAPRIKA’
as it had the largest number of overlapping code
smells/energy bugs with our ’xAL’ tool. These
are Heavy Async Task (HAT), Heavy Broadcast

17https://figshare.com/s/84ae49a21551e6302d41 (See
Tool Walk-through)

18https://figshare.com/s/84ae49a21551e6302d41 (See Ta-
ble 1)

19https://f-droid.com

Receiver (HBR), Heavy Start Service (HSS), Invali-
date without Rect (IWR), No Low Memory Resolver
(NLMR) and Unused Hardware Acceleration (UHA)
and Resource Leak (RL). JAR file for Paprika was
downloaded from their open-source repository20.

4.2. Evaluation Results
This section presents the results of testing the tool
on open source projects and compares its coverage
with PAPRIKA tool.

4.2.1. Evaluation on Open Source Apps

The tool was tested on the nine applications selected
from the F-Droid repository. Table 6 shows the
results of the evaluation on open source applications.
It lists the application name against the code smells
detected in it, true positives (TP), false positives
(FP), false negatives (FN), precision (P), recall (R),
total corrections available (TCA) and total applied
correction (TAC) .

Some of the code smells/energy bugs (such as
’Early Resource Binding’ (ERB), ’Heavy Async Task’
(HAT) and ’Heavy Broadcast Receiver’ (HBR)) did
not appear in any of the applications under test.

In the case of application ‘Kolabnotes’ two false
negatives were detected, i.e. two instances of code
smell ’Lifetime Containment’ (LC) code smell. A
possible reason could be declarations of interfaces
in non-lifecycle classes, which were not included
in the LC code smell definition. In the case of
application ‘Sound Recorder’ two false positives
were detected, i.e. two instances of code smells ’No
Low Memory Resolver’ (NLMR). A possible reason
could be that the class used by this application is
deprecated, hence not covered by the implementa-
tion of our ’xAL’ tool. In the case of applications
‘Kolabnotes’ and ‘Camera Roll’ one false positive
(i.e., one instance of the ’Data Transmission without
Compression’ (DTWC) code smell) was detected for
each application. In the case of application ‘Calorie
Scope’ one false positive was detected, i.e., one in-
stance of ’Resource Leak (RL) for a camera instance
energy bug. In the case of application, ‘Privacy-
Friendly Weather’ five false positives (i.e. Lifetime
Containment (LC) code smell (4 instances) and Re-
source Leak (RL) energy bug (1 instance)) were
detected. In the case of application, ‘Reminders’
two false positives (i.e. two instances of Lifetime
Containment (LC) code smell) were detected. In
the case of code smell Lifetime Containment (LC),
a possible reason for false positive could be that
it flags abstract classes as interfaces as well. In

20https://github.com/GeoffreyHecht/paprika

Table 6
Results of evaluation on open source app using ‘xAL’ tool

ID App CS/EB Detected
Detection Results

TCA TACTP FP FN P R
1 Odyssey UHA, NLMR, HSS, LC, IWR 11 0 0 1 1 6 6
2 Kolabnotes UHA, BFU, LT, DTWC,

IWR, NLMR
18 1 2 1 0.9 7 7

3 Calorie Scope LC, NLMR, RL, VBS 12 1 0 0.9 1 13 13
4 Camera Roll UHA, BFU, DTWC, IWR, LC,

NLMR, PD
21 1 0 1 1 16 6

5 Bipol Alarm UHA, HSS, DTWC, NLMR 4 0 0 1 1 4 4
6 Sound Recorder UHA, PD 7 0 2 1 0.8 7 7
7 CameraColorPicker UHA, BFU, NLMR, IWR,

LC, RL
12 5 0 0.7 1 17 12

8 Privacy-Friendly
Weather

UHA, LT, LC, NLMR 13 2 0 0.9 1 15 13

9 Reminders UHA, DTWC, NLMR 5 0 0 1 1 5 5
TOTAL 103 10 4 – – 90 73

CS = Code Smell, EB = Energy Bug, TP = True Positive, FP = False positive, FN = False Negative, P=
Precision, R= Recall, TCA = Total Corrections Available, TAC= Total Applied Corrections

the case of code smell Data Transmission without
Compression (DTWC), a possible reason could be
that the ’xAL’ tool does not track instances that
were compressed in another class. In the case of
energy bug Resource Leak (RL), a possible reason
for false positives could be that code smell/energy
bug was handled pro-actively by the developer. For
example, for Resource Leak (RL), if the camera
instance was closed proactively by the developer in
a method other than onStop(). In this case, check
on onStop() method is no longer required.

Corrections were available for 66.3% of the de-
tected Android code smells and energy bug in-
stances, out of which 84% of corrections were ap-
plied. 16% corrections were not applied, which
include false positives and instances of Public Data
(PD) code smell (correction of this code smell al-
tered the functionality of the application under test).
These numbers are dependent on the type of code
smell/energy bug and the frequency of its instances
in the application.

4.2.2. Comparison with PAPRIKA

The ‘PAPRIKA’ tool did not work on applications
1 to 4 that had AndroidX21 dependencies. Due
to this inherent limitation of ‘PAPRIKA’, it was
only tested on applications 5 to 9. Refactoring of
code smells/energy bugs was not applied in any test
application as the accessible version of ‘PAPRIKA’
tool does not offer to refactor.

Table 7 shows the results of the evaluation on
open source applications using ‘PAPRIKA’. It lists
the application name against the code smells de-
tected in it, true positives (TP), false positives (FP),
false negatives (FN), precision and recall. ‘PA-
PRIKA’ was able to detect three types of code
smells namely: No Low Memory Resolver (NLMR),

21https://developer.android.com/jetpack/androidx

Heavy Start Service (HSS), Heavy Broadcast Re-
ceiver (HBR). For these smells, no false positives
were detected. ‘PAPRIKA’ did not detect any in-
stance of the code smells/energy bugs Unused Hard-
ware Acceleration (UHA), Resource Leak (RL) and
Invalidate without Rect (IWR), which could be seen
in ‘FN’ column.

Table 8 shows a comparison of the code smells de-
tected by both ’xAL’ and ‘PAPRIKA’. ✓represents
that a code smell is detected in a test application, ×
represents that a code smell was not detected in a
test application and empty cells show that the code
smell was not present in a test application. Code
smell Heavy Async Task (HAT) was not present
in any of the test applications hence not detected
by ‘PAPRIKA’ and our ’xAL’ tool. ’xAL’ was able
to detect almost all the code smell instances that
were detected by ‘PAPRIKA’ tool. However, two in-
stances of ’No Low Memory Resolver’ (NLMR) code
smells were missed in application ‘Sound Recorder’
(as they used a deprecated class API). The ’Heavy
Broadcast Receiver’ (HBR) code smell was also
missed by our tool as the value for an upper limit
of computational complexity is set to five in ‘PA-
PRIKA’ and ten (as per McConnel [17]) in our ’xAL’
tool.

‘PAPRIKA’ detected seven instances of false neg-
atives for the code smells: Unused Hardware Accel-
eration (UHA) (5 instances) and Invalidate with-
out Rect (IWR) (1 instance) and energy bug Re-
source Leak (RL) (1 instance). As compared to
‘PAPRIKA’, our tool was able to detect Invalidate
without Rect (IWR) code smell and Resource Leak
(RL) energy bug in ‘Sound Recorder’ test applica-
tion. Unused Hardware Acceleration (UHA) code
smell was also detected in all five applications by
our tool. Table 9 shows a compatibility comparison
between ‘PAPRIKA’ and ’xAL’ to gain a better
understanding of the support offered by both tools
as well as their limitations.

The average precision, recall and F1-score for our
’xAL’ were 0.93, 0.96 and 0.94, respectively. The av-
erage precision, recall and F1-score for ‘PAPRIKA’
were 1.0, 0.74 and 0.85, respectively. Hence, our
’xAL’ tool not only provides better Android code
smell/energy bug coverage but also improves upon
the usability aspects of the tool in comparison to
‘PAPRIKA’ tool.

5. Threats to Validity
Our ’xAL’ tool only performs static source code
analysis of Android applications. Since static source
code analysis could be done during development re-

Table 7
Results of evaluation on open source apps using ‘PA-
PRIKA’

ID Test App CS/EB detected TP FP FN Precision Recall
5 Bipol Alarm NLMR, HSS 2 0 1 1 0.67
6 Sound Recorder NLMR 2 0 3 1 0.67
7 CameraColor Picker NLMR 6 0 1 1 0.67
8 PrivacyFriendly Weather NLMR 11 0 1 1 0.92
9 Reminders NLMR, HBR 4 0 1 1 0.8

TOTAL 25 0 7 – –
CS = Code Smell, EB = Energy Bug, TP = True Positive, FP = False positive, FN = False Negative,

NLMR=No Low Memory Resolver, SS=Heavy Service Start, HBR=Heavy Broadcast Receiver

Table 8
Code smell detection comparison between ‘PAPRIKA’
and ’xAL’

App Bipol
Alarm

Sound
Recorder

CameraColor
Picker

PrivacyFriendly
Weather

Reminders

CS P xAL P xAL P xAL P xAL P xAL
HAT
HBR ✓ ×
HSS ✓ ✓

IWR × ✓

NLMR ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓

UHA × ✓ × ✓ × ✓ × ✓ × ✓

RL × ✓

CS= Code smell P=’PAPRIKA’, xAL= ’extended Android Lint’, HAT=Heavy AsyncTask,
HSS=Heavy Service Start, HBR=Heavy Broadcast Receiver, IWR=Invalidate Without Rect,
NLMR=No Low Memory Resolver, UHA=Unsupported Hardware Acceleration, RL=Resource
Leak

Table 9
Compatibility comparison between ’PAPRIKA’ and ’xAL’

Compatibility criteria PAPRIKA xAL
Java version support Java 7 only versions >= Java7
Support for apps with Android X No Yes
In-line warnings in Code Editor No Yes
Navigation to LOC in Code Editor No Yes
Individual code smell analysis No Yes
Disabling detection of CS/EB No Yes

LOC=Line of code, CS/EB=CodeSmell/EnergyBug, xAL=’extended Android Lint’

peatedly, the support provided by our tool could
benefit developers. Implementation of a function-
ality may vary based an application’s architec-
ture/design and the coding style of a developer.
Hence, our definitions of code smells/energy bugs
might not cover every scenario related to a particu-
lar code smell, leading to false positives and false
negatives in the results. For example, we only con-
sider lifecycle classes, i.e. Activity and Fragment
for lifecycle dependent issues like Resource Leak
and Leaking Thread. However, depending on the
application architecture, lifecycle dependent compo-
nents might be called in non-lifecycle classes which
may go undetected. Moreover, some corrections
for code smells, and energy bugs might clash with
the functional requirements of the application. For

example, correction for Public Directory (PD) code
smell changes public directory to a private directory.
However, for an application that requires access to
a public directory like Gallery, if it is changed to a
private directory, the functional requirement will be
in contradiction. But as the corrections can only be
applied after the developer’s consent, such issues are
less likely to occur. Correction/recommendations
are offered for 66% of detected code smells/energy
bugs. For the rest of 34% code smells/energy bugs,
only a warning is shown with hints for correction
(cf section 3.2.2). The decision of applying the sug-
gested correction is left for the developers. Our tool
does not cover third-party libraries used in Android
applications. During development, we tested our
tool against sample classes, which were injected
with code smells/energy bugs by the authors of this
study. Hence there might be researcher bias in the
introduction of those code smells/energy bugs (in
terms of coding style, location and variety), lead-
ing to higher accuracy in results. To mitigate this
threat, the tool was evaluated on nine open-source
applications that already contained some of the
code smells and energy bugs. During the evalua-
tion, we did not physically measure the changes
in energy consumption of the applications under
test due to refactoring of code smells/energy bugs.
The assumption that refactoring the selected code
smells/energy bugs lead to energy optimization of
Android applications is based on the related work
such as [11, 14, 16].

6. Conclusion
We extended the tool ‘AL’ to detect and correct
Android-specific code smells and energy bugs that
may lead to energy optimization in Android appli-
cations. On top of the 261 issues already covered by
‘AL’, our extended tool ’xAL’ provides coverage for
12 Android-specific code smells (nine new and three
improved) and three energy bugs (two new and one
improved). Moreover, ’xAL’ integrates directly in
Android Studio IDE and gives control to the devel-
oper for refactoring code smell/energy bugs, which
was missing in other state of the art tools. We
evaluated ’xAL’ on nine open-source applications; it
detects code smells and energy bugs with an average
precision, average recall and F1 score of 0.93, 0.96,
and 0.94 respectively. It accurately corrects 84%
of selected code smells and energy bugs. Our tool
offers better code smell and energy bug detection
coverage as compared to ‘PAPRIKA’. In the future,
we aim to evaluate ’xAL’ on a large data set of
applications, which will also help in analyzing the

correlation between the frequency of occurrences
of code smells/energy bugs, and impact on energy
consumption due to their refactoring.

Acknowledgments
This work is supported by the Estonian Center of
Excellence in ICT research (EXCITE), and group
grant PRG887 funded by the Estonian Research
Council.

References
[1] I. Fatima, H. Anwar, D. Pfahl, U. Qamar,

Tool Support for Green Android Development:
A Systematic Mapping Study, in: 5th Int.
Conf.on Softw. Technologies - ICSOFT, 2020,
pp. 409–417.

[2] A. Turner, How many people have
smarphones worldwide (Apr 2020), 2020.
URL: https://www.bankmycell.com/blog/
how-many-phones-are-in-the-world.

[3] R. Verdecchia, R. Aparicio Saez, G. Procac-
cianti, P. Lago, Empirical Evaluation of the En-
ergy Impact of Refactoring Code Smells (2018)
345–365. doi:10.29007/dz83.

[4] H. Anwar, D. Pfahl, S. N. Srirama, Evaluating
the Impact of Code Smell Refactoring on the
Energy Consumption of Android Applications,
in: 45th Euromicro Conf.on Softw. Eng. and
Advanced Applications, SEAA, 2019, pp. 82–
86. doi:10.1109/SEAA.2019.00021.

[5] A. V. Rodríguez, C. Mateos, A. Zunino,
M. Longo, An analysis of the effects of
bad smell-driven refactorings in mobile ap-
plications on battery usage, in: Mod-
ern Softw. Eng. Methodologies for Mobile
and Cloud Environments, 2016. doi:10.4018/
978-1-4666-9916-8.ch009.

[6] C. Sahin, L. Pollock, J. Clause, How do code
refactorings affect energy usage?, Int’l Sym-
posium on Empirical Softw. Eng. and Mea-
surement - ESEM (2014) 1–10. doi:10.1145/
2652524.2652538.

[7] S. Habchi, R. Rouvoy, N. Moha, On the sur-
vival of android code smells in the wild, Pro-
ceedings - 2019 IEEE/ACM 6th Int’l Conf. on
Mobile Softw. Eng. and Systems, MOBILESoft
2019 (2019) 87–98. doi:10.1109/MOBILESoft.
2019.00022.

[8] A. Carette, M. A. A. Younes, G. Hecht,
N. Moha, R. Rouvoy, Investigating the energy
impact of Android smells, 24th IEEE Int’l Conf.
on Softw. Analysis, Evolution, and ReEng. -

SANER (2017) 115–126. doi:10.1109/SANER.
2017.7884614.

[9] G. Hecht, R. Rouvoy, N. Moha, L. Duchien,
Detecting Antipatterns in Android Apps, 2nd
ACM Int’l Conf. on Mobile Softw. Eng. and
Systems - MOBILESoft (2015) 148–149. doi:10.
1109/MobileSoft.2015.38.

[10] Z. Xu, C. Wen, S. Qin, State-taint analysis for
detecting resource bugs, Science of Computer
Programming (2018) 93–109. doi:10.1016/j.
scico.2017.06.010.

[11] V. N. Huynh, M. Inuiguchi, B. Le, B. N.
Le, T. Denoeux, Improve the Performance
of Mobile Applications Based on Code Opti-
mization Techniques Using PMD and Android
Lint, LNCS (including subseries LNAI and
LNB) 9978 LNAI (2016) V–VI. doi:10.1007/
978-3-319-49046-5.

[12] F. Palomba, D. Di Nucci, A. Panichella,
A. Zaidman, A. De Lucia, Lightweight de-
tection of Android-specific code smells: The
aDoctor project, SANER 2017 - 24th IEEE
Int’l Conf. on Softw. Analysis, Evolution, and
ReEng. (2017) 487–491. doi:10.1109/SANER.
2017.7884659.

[13] H. Jiang, H. Yang, S. Qin, Z. Su, J. Zhang,
J. Yan, Detecting Energy Bugs in Android
Apps Using Static Analysis, LNCS (including
subseries LNAI and LNB) 10610 LNCS (2017)
192–208. doi:10.1007/978-3-319-68690-5_
12.

[14] O. L. Goaër, Enforcing green code with an-
droid lint, in: 34th IEEE/ACM Int. Conf. on
Automated Softw. Eng. Workshop - ASEW,
2019. doi:10.1109/ASEW.2019.00018.

[15] D. Maia, M. Couto, J. Saraiva, E-Debitum :
Managing Softw. Energy Debt (2020) 162–169.

[16] M. Couto, J. Saraiva, J. P. Fernandes, En-
ergy Refactorings for Android in the Large
and in the Wild (2020) 217–228. doi:10.1109/
saner48275.2020.9054858.

[17] S. McConnell, Code Complete: A Practical
Handbook of Softw. Construction 9 (2011).

https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
http://dx.doi.org/10.29007/dz83
http://dx.doi.org/10.1109/SEAA.2019.00021
http://dx.doi.org/10.4018/978-1-4666-9916-8.ch009
http://dx.doi.org/10.4018/978-1-4666-9916-8.ch009
http://dx.doi.org/10.1145/2652524.2652538
http://dx.doi.org/10.1145/2652524.2652538
http://dx.doi.org/10.1109/MOBILESoft.2019.00022
http://dx.doi.org/10.1109/MOBILESoft.2019.00022
http://dx.doi.org/10.1109/SANER.2017.7884614
http://dx.doi.org/10.1109/SANER.2017.7884614
http://dx.doi.org/10.1109/MobileSoft.2015.38
http://dx.doi.org/10.1109/MobileSoft.2015.38
http://dx.doi.org/10.1016/j.scico.2017.06.010
http://dx.doi.org/10.1016/j.scico.2017.06.010
http://dx.doi.org/10.1007/978-3-319-49046-5
http://dx.doi.org/10.1007/978-3-319-49046-5
http://dx.doi.org/10.1109/SANER.2017.7884659
http://dx.doi.org/10.1109/SANER.2017.7884659
http://dx.doi.org/10.1007/978-3-319-68690-5_12
http://dx.doi.org/10.1007/978-3-319-68690-5_12
http://dx.doi.org/10.1109/ASEW.2019.00018
http://dx.doi.org/10.1109/saner48275.2020.9054858
http://dx.doi.org/10.1109/saner48275.2020.9054858

Comparison of Code Smells in iOS and Android
Applications
Kristiina Rahkemaa, Dietmar Pfahla

aInstitute of Computer Science, University of Tartu, Tartu, Estonia

Abstract
Code smells are patterns indicating bad practices that may lead to maintainability problems. For mobile applications
most of the research has been done on Android applications with very little research on iOS applications. Our goal
is to compare the variety, density, and distribution of code smells in iOS and Android applications. We analysed
273 open source iOS and 694 open source Android applications. We used PAPRIKA and GraphifySwift to find 19
object oriented code smells. We discovered that the distributions and proportions of code smells in iOS and Android
applications differ. More specifically, we found: a) with the exception of one code smell (DistortedHierarchy) all
code smells that could be observed in Android apps also occurred in iOS apps; b) the overall density of code smells is
higher on iOS than on Android with LazyClass and DataClass particularly sticking out; c) with regards to frequency,
code smells are more evenly distributed on iOS than on Android, and the distributions of code smell occurrences on
class level are more different between the platforms than on app level.

Keywords
Mobile applications, Android, iOS, Code smells

1. Introduction
Code smells are patterns indicating bad practices
that often lead to maintainability problems [1].
Code smells have been studied extensively for
desktop applications (shortened to ”apps” in the
following). For mobile apps most of the analysis
has been done on the Android platform.

Mannan et al. [2] analyzed 21 object oriented
code smells in open source Android apps. They
compared code smell occurrences on Android and
Java desktop apps looking at differences in variety,
density and distribution of code smells. They dis-
covered that the variety of code smells is the same,
but density and distribution of code smells in desk-
top Java and Android apps differ. They mention
that other mobile platforms should have the same
variety of code smells but do not discuss possible
differences in density or distribution.

Habchi et al. [3] used the tool PAPRIKA [4]
to analyse iOS and Android apps and compared

QuASoQ 2020: 8th International Workshop on Quantitative
Approaches to Software Quality, December 1st, 2020, Singapore
" kristiina.rahkema@ut.ee (K. Rahkema);
dietmar.pfahl@ut.ee (D. Pfahl)
� 0000-0003-2400-501X (D. Pfahl)

© 2020 Copyright for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073

CEUR Workshop Proceedings (CEUR-
WS.org)

proportions of code smells on these platforms.
They analysed iOS apps for four object oriented,
three iOS specific and Android apps for four ob-
ject oriented and two Android specific code smells.
They discovered that code smell proportions were
higher in Android apps.

Our goal is to compare the variety, density and
distribution of code smells in iOS and Android
apps. First we will check if variety, density and dis-
tribution of code smells differ in iOS and Android
apps to see if the results are similar to differences
found between Android and desktop Java apps by
Mannan et al. [2]. Second we extend the analysis
done by Habchi et al. [3] by comparing the den-
sities and distributions of more code smells in iOS
and Android apps, to see if Android apps are in
general more prone to code smells and if different
platforms are more prone to different code smells.
In this study we aim to answer the following re-
search questions:

RQ 1: Are all types of object-oriented code
smells present in both iOS and Android apps?

To answer this and the following research ques-
tions, we used the tool GraphifySwift1 [5] to anal-
yse iOS Apps and the tool PAPRIKA [4] to anal-
yse Android apps. To make the code smell defi-
nitions (and calculations) comparable across plat-

1https://github.com/kristiinara/GraphifySwift

mailto:kristiina.rahkema@ut.ee
mailto:dietmar.pfahl@ut.ee
https://orcid.org/0000-0003-2400-501X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
http://ceur-ws.org
https://github.com/kristiinara/GraphifySwift

forms, we adapted the code smell queries defined
by Rahkema et al. [5] when searching for code
smells in Android apps. In total, we identified 19
code smell types that could potentially occur in
apps on both platforms. We took under consider-
ation that the variety of code smells depends on
the programming language used. For example, the
code smell RefusedParentBequest is not applica-
ble to Swift because Swift lacks the 𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 key-
word. Therefore, we did not include it in our anal-
yses.

Our analysis showed that 18 of the 19 identified
code smells occurred in apps on both platforms,
i.e., Android and iOS. Code smell DistortedHier-
archy never occurred in iOS apps.

To better understand whether the frequency of
occurrence is similar, we formulated our second re-
search question.

RQ 2: Do code smells occur with the same
density in iOS and Android apps?

To answer this question, we calculated the over-
all density of all code smells and the densities of
each of the 19 code smells over all apps on both iOS
and Android. It turned out that, contrary to what
Habchi et al. [3] expected, the overall density of
code smells is higher in iOS apps than in Android
apps. Code smells LazyClass, DivergentChange,
PrimitiveObsession and DataClass had a particu-
larly high density in iOS apps. On the other hand,
code smells LongMethod, LongParameterList and
ShotgunSurgery were clearly more frequent in An-
droid apps. In addition, we found that the code
smell densities per code smell type were some-
times higher and sometimes smaller in iOS apps
as compared to Android apps. This might be ex-
plained by the fact that Android apps tend to have
more of the code smells that correspond to more
complex classes whereas iOS apps tend to have
more of the code smells that correspond to more
simple classes.

To better understand the distributions of code
smells in apps on the two platforms iOS and An-
droid, we formulated our third research question.

RQ 3: Do code smell distributions differ be-
tween iOS and Android apps?

To answer this question we first compared the
proportions of code smell occurrences across all
iOS and Android apps. The results confirmed what
we had seen when we compared code smell densi-

ties: the proportions of code smells differ between
platforms. In addition, we saw that code smells are
more evenly distributed in iOS apps as compared
to Android apps.

Then we analyzed how large the share of smelly
apps on each platform is and how large the share
of smelly classes is on each platform. We did these
analyses for each code smell type separately. It
turned out that the percentages of smelly apps
are relatively similar between platforms. Only the
code smell DataClass is much more prominent in
iOS apps than in Android apps.

In addition, we found that the distributions of
code smell occurrences on class level are more dif-
ferent between the platforms than on app level.
This result might, again, be explained by the fact
that Android apps usually have larger classes and,
thus, tend to have more of the code smells that cor-
respond to more complex classes whereas iOS apps
tend to have more compact classes and, thus, tend
to have more of the code smells that correspond to
more simple classes. This effect is more prominent
when doing the analysis on class level than on app
level.

2. Related Work
Code smells in desktop applications: Fowler
[1] defined 22 object oriented code smells and pro-
vided refactorings for these code smells. Khomh
et al. [6] studied the impact of code smells. They
found that code smells affect classes negatively
and that classes with more code smells were more
prone to changes [6]. Olbrich et al. [7] studied the
evolution and impact of code smells based on two
open source systems. Their findings confirmed
that code smells affect the way how code changes
in a negative way. They were also able to iden-
tify different phases of evolution in code smells [7].
Linares et al. [8] made a large scale analysis of
Java Mobile apps and discovered that anti-patterns
negatively impact software quality metrics such as
fault-proneness [8].

Tufano et al. [9] studied the change history
of 200 open source projects and found that most
code smells are introduced when the correspond-
ing code is created and not when it is changed.
They also found that when code does become

smelly through evolution then it can be character-
ized by specific code metrics. Contrary to common
belief [10] they discovered that most code smells
are not introduced by newcomers, but by develop-
ers with high work loads and high release pressure
[9].

Code smells in Android applications: Dif-
ferent kinds of code smells have been researched
for Android, such as object-oriented, Android-
specific, security-related and energy-related code
smells. Gottschalk et al. proposed an approach
to detect energy related code smells on mobile
apps and validated this approach on Android and
showed that it is possible to reduce energy con-
sumption by refactoring the code [11]. Ghafari et
al. [12] studied security-related code smells and
discovered that most apps contain at least some
security-related code smells.

Hecht [4] proposed an approach to detect code
smells and anti-patterns on Android systems and
implemented this approach in a tool called PA-
PRIKA. This tool analyses the Android APK, cre-
ates a model of the code and inserts this model into
the neo4j database. Code smells are then defined as
database queries which makes it possible to query
code smells on a large number of apps at the same
time. He analysed 15 popular apps for the occur-
rences of four object oriented and three Android
code smells. Hecht et al. [13] tracked, the soft-
ware quality of 106 popular Android apps down-
loaded from the Google Play Store along their evo-
lution. They calculated software quality scores for
different versions of these apps and tracked their
evolution. There were different evolution graphs,
such as constant decline, constant rise, stability or
sudden change in either direction depending on
the programming practices of the team [13]. This
shows that code quality is not necessary linked
to app size, but the programming practices of the
developers. Mateus et al. [14] used PAPRIKA to
analyze Android apps written in Java and kotlin.
They compared code smell occurrences in both
languages and concluded that apps that were ini-
tially written in Java and later introduced kotlin
were of better quality than other Android apps
[14]. They analysed a set of 2167 open source An-
droid apps combining different databases of open
source Android apps.

In these papers using PAPRIKA the number of

code smells studied was limited due to the num-
ber of code smells PAPRIKA is able to detect and
ranged from three to four object oriented code
smells and four to six Android specific code smells
[15][13][14]. Mannan et al. [2] decided to broaden
this scope and studied 21 object oriented code
smells using the commercial tool InFusion. They
analyzed open source Android and Java desktop
apps for these 21 code smells and compared their
occurrences. Mannan et al. detected that the va-
riety of code smells was the same and most code
smells occur in both systems in a similar frequency
with major differences only for a couple of code
smells. They concluded that studying code smells
on mobile platforms can be done with tools meant
for desktop apps. They also found that the code
smells that have been researched so far are not
the same ones that occur most and that the focus
should change to code smells that are more rele-
vant [2]. They suggest that other mobile platforms
will have the same code smells, but do not give
any suggestions towards the possible differences
in density or distribution. They analysed 500 An-
droid and 750 Java desktop apps randomly selected
from GitHub. Unfortunately, the tool Infusion used
by Mannan et al. does not seem to be available
anymore. Therefore a direct comparison using In-
fusion for code smell analysis on iOS is no longer
possible.

Code smells in iOS applications: Habchi et
al. [3] used PAPRIKA to detect code smells in
iOS apps. They used ANTLR4 grammars to gen-
erate parsers for Swift and Objective-C code. They
created the apps graphs that could then be used
by PAPRIKA. They analysed 176 Swift and 103
Objective-C apps from a collaborative list of open
source iOS apps. In their study they analysed four
object oriented, three iOS specific and two Android
specific code smells. They compared smell propor-
tions in iOS and Android apps and discovered that
the proportions of code smells were higher in An-
droid apps. On the other hand proportions of code
smells in Objective-C and Swift were similar [3].

Rahkema et al. [5] introduced a tool called
GraphifySwift that analyses Swift code and detects
34 object oriented code smells. Similarly to PA-
PRIKA, GraphifySwift enters data about the anal-
ysed app into the neo4j database. The database
structures used by PAPRIKA and GraphifySwift

are similar, but slightly different. In their analy-
sis they used the same collaborative list of open
source iOS apps but did not compare the results to
Android.

In the following, we extend the research in
[2, 3, 5]. We adapted the queries defined in [5],
where possible, so that they could be applied to
a database populated by PAPRIKA. We used PA-
PRIKA to analyse Android apps and GraphifySwift
to analyse Swift apps. Then we compared the two
platforms with regards to variety, density, and dis-
tribution of 19 code smells.

3. Methods
In Section 3.1, we present the tools used for code
smell analysis. In Section 3.2, we cover the choice
of apps and in Section 3.3 we describe the analysis
performed.

3.1. Code Smell Analysis
In previous research a tool called PAPRIKA has
been used to find code smells in Android appli-
cations [4, 15, 13, 3, 14]. PAPRIKA analyses the
Android APK, enters data about the applications
into a neo4j database and defines queries for each
code smell. For analysing iOS applications Habchi
et al. [3] used PAPRIKA to query code smells, but
populated the neo4j database using ANTLR gram-
mars. Rahkema et al. [5] introduced a new tool
called GraphifySwift that extends the functional-
ity of PAPRIKA. It analyses Swift code, enters data
about the iOS applications into a neo4j database
and defines database queries to find code smells.
PAPRIKA is able to find four object oriented code
smells. Since the queries for these four code smells
are implemented identically in GraphifySwift, it
produces the same results as PAPRIKA for them.
In GraphifySwift additional code smell queries are
defined. Overall, GraphySwift is able to find 34 ob-
ject oriented code smells.

For the analysis of iOS apps we used the tool
GraphifySwift. We used the same thresholds as
in Rahkema et al. [5]. Note that we focused on
Swift code as Swift has replaced Objective-C and
not many differences between the two languages
are to be expected according to Habtchi et al. [3].

For Android apps we used PAPRIKA to populate
the neo4j database. We then took the queries de-
fined by Rahkema et al. for GraphifySwift to find
code smells. Since GraphifySwift was originally
developed to analyse iOS apps we had to adapt the
code smell queries so that they could be used on
the database produced by PAPRIKA. We made the
following changes to the code smell queries:

We removed references to Module nodes, i.e.,
the relationship

(app)-APP_OWNS_MODULE->(module)-
MODULE_OWNS_CLASS->(class)

was substituted by the relationship

(app)-APP_OWNS_CLASS->(class)

We removed references to argument type or
substituted them with argument name. Argu-
ment names are not accessible in Java bytecode
and therefore the argument name provided by PA-
PRIKA is actually the argument type.

Finally, we added the relationship

(variable|argument)-IS_OF_TYPE
->(class)

by finding classes whose name matched the argu-
ment name or variable type.

After these modifications of the database and
queries, 19 of the 34 GraphifySwift code smell
queries could be used on the Android app database
produced by PAPRIKA.

The code smell queries that had to be excluded
contained metrics or attributes that were not pro-
vided by PAPRIKA. We excluded for example
queries referring to code duplication, maximum
nesting depth, number of switch statements and
number of comments.

For the analysis of Android apps we calculated
new thresholds based on the apps that we anal-
ysed. The list of iOS and Android thresholds is in-
cluded in the thresholds table2.

3.2. Choice of Applications
For analysis of iOS apps we used the same collab-
orative list of open source iOS apps as was used by

2https://figshare.com/articles/conference_contribution/
Thresholds_for_iOS_and_Android_code_smell_analysis/
13102991

https://figshare.com/articles/conference_contribution/Thresholds_for_iOS_and_Android_code_smell_analysis/13102991
https://figshare.com/articles/conference_contribution/Thresholds_for_iOS_and_Android_code_smell_analysis/13102991
https://figshare.com/articles/conference_contribution/Thresholds_for_iOS_and_Android_code_smell_analysis/13102991

Rahkema et al. [5] and whose older version was
used by Habchi et al. [3]. The final set of success-
fully analysed apps was the same as in [5] and in-
cluded 273 open source iOS apps.

For analysis of Android apps we took the list of
apps provided by Habchi et al. [3]. Since the list
only included app package names, we queried All-
FreeAPK api3 to find and download these apps. We
decided to search AllFreeAPK instead of GitHub,
as PAPRIKA uses APKs for analysis and this way
we were able to skip the step of compiling these
apps. Later during the analysis we needed to dis-
card some of the very big apps due to performance
issues. In total we included 694 open source An-
droid apps in our analysis.

3.3. Data Analysis
To answer RQ1, we checked whether any of the 19
identified code smells occurred in at least one app
on each platform.

To answer RQ2, we calculated the densities of
code smells for both iOS and Android apps and
compared these. Code smell density was calcu-
lated by counting the number of code smells (total
and per code smell type) and dividing by the num-
ber app instructions.

To answer RQ3, we had to perform several cal-
culations. To calculate the relative frequencies of
code smells per code smell type on each platform,
we counted the code smells of a type in all apps
and divided by the total code smell count. We did
this per platform. To calculate the code smell dis-
tributions on app and class levels per platform, we
counted how many apps (and classes) contain at
least one code smell of a certain type and then di-
vided by the total number of apps (and classes).

4. Results
We analysed 273 open source iOS apps using
GraphifySwift and 694 open source Android apps
using PAPRIKA and modified code smell queries
from GraphifySwift to answer our research ques-
tions. We analyzed the apps with regards to
19 code smells: BlobClass, ComplexClass, Cyclic-
ClassDependency, DataClass, DataClumpFields,

3https://m.allfreeapk.com/api/

DistortedHierarchy, DivergentChange, Inappro-
priateIntimacy, LazyClass, LongMethod, LongPa-
rameterList, MiddleMan, ParallelInheritanceHier-
archies, PrimitiveObsession, SAPBreaker, Shot-
gunSurgery, SpeculativeGeneralityProtocol, Swis-
sArmyKnife and TraditionBreaker.

Below, we present and discuss the results for
each research question separately.

RQ 1: Are all types of object-oriented code
smells present in both iOS and Android apps?

When comparing the occurrence of code smells
on each platform, we found that 18 of the 19 iden-
tified code smells occurred in apps on both plat-
forms, i.e., Android and iOS. Code smell Distort-
edHierarchy never occurred in iOS apps.

Our result does not fully support Mannan et al.’s
expectation that mobile apps on other platforms
than Android should exhibit the same code smells
[2].

RQ 2: Do code smells occur with the same
density in iOS and Android apps?

The results of our code smell density analysis
is shown in Figure 1. Accumulated over all code
smells it turned out that the apps on the iOS plat-
form had a density of 41.7 smells/kilo-instructions
while the apps on Android only had a density of
34.4 smells/kilo-instructions. This result is con-
trary to what Habchi et al. [3] expected.

Moreover, it can be seen from Figure 1 that the
code smell densities differ between iOS and An-
droid. Code smells LazyClass, DivergentChange,
PrimitiveObsession and DataClass had a particu-
larly high density in iOS apps. On the other hand,
code smells LongMethod, LongParameterList and
ShotgunSurgery were clearly more frequent in An-
droid apps. The fact that code smell densities
were sometimes higher and sometimes lower in
iOS apps as compared to Android apps might be
explained by the fact that Android apps tend to
have more of the code smells that correspond to
more complex classes whereas iOS apps tend to
have more of the code smells that correspond to
more simple classes.

RQ 3: Do code smell distributions differ be-
tween iOS and Android apps?

Figure 2 shows the relative frequency of code
smell occurrences over all apps on the Android
platform (blue bars) and the iOS platform (red
bars). The results confirm what we had seen when

https://m.allfreeapk.com/api/

Lo
ng

M
et

ho
d

Lo
ng

P
ar

am
et

er
Li

st

S
ho

tg
un

S
ur

ge
ry

La
zy

C
la

ss

S
A

P
B

re
ak

er

D
iv

er
ge

nt
C

ha
ng

e

P
rim

iti
ve

O
bs

es
si

on

D
at

aC
lu

m
pF

ie
ld

s

C
om

pl
ex

C
la

ss

In
ap

pr
op

ria
te

In
tim

ac
y

D
is

to
rt

ed
H

ie
ra

rc
hy

B
lo

bC
la

ss

C
yc

lic
C

la
ss

D
ep

en
de

nc
y

S
pe

cu
la

tiv
eG

en
er

al
ity

P
ro

to
co

l

D
at

aC
la

ss

S
w

is
sA

rm
yK

ni
fe

P
ar

al
le

lIn
he

rit
an

ce
H

ie
ra

rc
hi

es

Tr
ad

iti
on

B
re

ak
er

M
id

dl
eM

an

C
od

e
sm

el
l c

ou
nt

 p
er

 1
00

0
in

st
ru

ct
io

ns

0

2

4

6

8 Android

iOS

Figure 1: Comparison of code smell densities between
Android (blue) and iOS (red) apps

Lo
ng

M
et

ho
d

Lo
ng

P
ar

am
et

er
Li

st

S
ho

tg
un

S
ur

ge
ry

La
zy

C
la

ss

S
A

P
B

re
ak

er

D
iv

er
ge

nt
C

ha
ng

e

P
rim

iti
ve

O
bs

es
si

on

D
at

aC
lu

m
pF

ie
ld

s

C
om

pl
ex

C
la

ss

In
ap

pr
op

ria
te

In
tim

ac
y

D
is

to
rt

ed
H

ie
ra

rc
hy

B
lo

bC
la

ss

C
yc

lic
C

la
ss

D
ep

en
de

nc
y

S
pe

cu
la

tiv
eG

en
er

al
ity

P
ro

to
co

l

D
at

aC
la

ss

S
w

is
sA

rm
yK

ni
fe

P
ar

al
le

lIn
he

rit
an

ce
H

ie
ra

rc
hi

es

Tr
ad

iti
on

B
re

ak
er

M
id

dl
eM

an

%
 o

f c
od

e
sm

el
ls

0

5

10

15

20

25

Android

iOS

Figure 2: Code smell proportions on Android (blue) and
iOS (red)

we compared code smell densities: the proportions
of code smells differ between platforms. In addi-
tion, we see that code smells are more evenly dis-
tributed in iOS apps as compared to Android apps.

Then we analyzed how large the share of smelly
apps on each platform is and how large the share
of smelly classes is on each platform. We did these
analyses for each code smell type separately.

Figures 3 and 4 show the percentages of apps
and classes, respectively, containing code smells of
a certain type.

We found that the percentages of smelly apps
are relatively similar between platforms. The
biggest differences occurs for code smell DataClass
(79% of iOS apps have at least one affected class

La
zy

C
la

ss

Lo
ng

M
et

ho
d

Lo
ng

P
ar

am
et

er
Li

st

S
ho

tg
un

S
ur

ge
ry

S
A

P
B

re
ak

er

D
iv

er
ge

nt
C

ha
ng

e

P
rim

iti
ve

O
bs

es
si

on

C
om

pl
ex

C
la

ss

D
at

aC
lu

m
pF

ie
ld

s

B
lo

bC
la

ss

In
ap

pr
op

ria
te

In
tim

ac
y

D
is

to
rt

ed
H

ie
ra

rc
hy

C
yc

lic
C

la
ss

D
ep

en
de

nc
y

S
pe

cu
la

tiv
eG

en
er

al
ity

P
ro

to
co

l

D
at

aC
la

ss

S
w

is
sA

rm
yK

ni
fe

P
ar

al
le

lIn
he

rit
an

ce
H

ie
ra

rc
hi

es

Tr
ad

iti
on

B
re

ak
er

M
id

dl
eM

an

%
 o

f a
pp

s
w

ith
 c

od
e

sm
el

l

0

20

40

60

80 Android

iOS

Figure 3: Comparison of code smell frequencies on app
level between Android (blue) and iOS (red)

while only 7% of Android apps are affected), Mid-
dleMan (15% of iOS apps are affected but only 1%
of Android apps), and DistortedHierarchy (25 % of
Android apps are affected but none of the iOS apps
is).

We found that the distributions of code smell oc-
currences on class level are more different between
the platforms than on app level. This result might,
again, be explained by the fact that Android apps
usually have larger classes and, thus, tend to have
more of the code smells that correspond to more
complex classes whereas iOS apps tend to have
more compact classes and, thus, tend to have more
of the code smells that correspond to more simple
classes. This effect is more prominent when doing
the analysis on class level than on app level.

In addition, we analyzed the occurrence of the
method-based code smells LongMethod and Long-
ParameterList separately. We found that in iOS
apps 9% of methods are considered LongMethod
while this is the case for 14% of the methods in An-
droid apps. In iOS apps 5% of the methods have a
LongParameterList while this is the case for 9% of
methods in Android apps.

5. Threats to Validity
Internal Validity: In our case internal validity
might be affected by how code smells are detected
by the tools used. PAPRIKA has been used in mul-
tiple studies [15, 13, 3, 14]. GraphifySwift was in-

La
zy

C
la

ss

Lo
ng

M
et

ho
d

Lo
ng

P
ar

am
et

er
Li

st

S
ho

tg
un

S
ur

ge
ry

S
A

P
B

re
ak

er

D
iv

er
ge

nt
C

ha
ng

e

D
at

aC
lu

m
pF

ie
ld

s

C
om

pl
ex

C
la

ss

In
ap

pr
op

ria
te

In
tim

ac
y

P
rim

iti
ve

O
bs

es
si

on

D
is

to
rt

ed
H

ie
ra

rc
hy

B
lo

bC
la

ss

D
at

aC
la

ss

C
yc

lic
C

la
ss

D
ep

en
de

nc
y

S
pe

cu
la

tiv
eG

en
er

al
ity

P
ro

to
co

l

P
ar

al
le

lIn
he

rit
an

ce
H

ie
ra

rc
hi

es

S
w

is
sA

rm
yK

ni
fe

Tr
ad

iti
on

B
re

ak
er

M
id

dl
eM

an

%
 o

f c
la

ss
es

 w
ith

 c
od

e
sm

el
l

0

10

20

30

40
Android

iOS

Figure 4: Comparison of code smell frequencies on
class level between Android (blue) and iOS (red)

troduced in [5] and validated by replicating results
in [3]. We adapted code smell queries defined in
[5], but did so by not changing the code smell def-
initions themselves.

External Validity: We analysed open source
apps. For swift the analysis can only be performed
if the code of the app is accessible. For Android the
analysis could be performed on apps from the app
store. Therefore for both platforms open source
apps were chosen. Previously [5] it was shown that
although there are some differences between apps
that are on the app store the differences are small.
On the iOS platform we only analyzed apps written
in Swift. Given that Objective-C and Swift code is
quite similar, we assume our results extend to apps
written in Objective-C.

Construct Validity: GraphifySwift uses stan-
dard definitions of code smells found in literature
[5]. In code smell queries we use thresholds calcu-
lated based on the app set analysed. Using thresh-
olds is a common approach for detecting code
smells. We used the same method to determine
thresholds as was used by Hecht et al. [13], Habchi
et al. [3] and [5]. Thresholds might differ between
languages, but since they are calculated based on
the current set of apps analysed language specific
differences should be resolved.

Reliability: For iOS analysis we used the same
collaborative list of open source iOS apps written
in Swift as was used in [5]. All these apps are
available on GitHub. The list of successfully anal-
ysed apps can be found on the tool GitHub page.

GraphifySwift is open source and also available on
the tool GitHub page. For Android analysis we
used the list of apps analysed by [3], the list of suc-
cessfully analysed apps can be found in the list of
apps4. PAPRIKA is open source and also available
on GitHub. The adapted code smell queries used
for Android analysis can be found in the list of An-
droid code smell queries5.

6. Conclusion
Mannan et al. [2] analysed the density and dis-
tribution of code smells in Android apps. We cal-
culated a similar density and distribution for iOS
and Android apps and saw that these densities and
distributions were different. Additionally we dis-
covered that one of the code smells analysed by
Mannan et al. was not present in iOS apps.

Habchi et al. [3] compared ratios of code smell
occurrences on iOS and Android. We extended
their research by adding additional code smells
to the analysis and found that code smell occur-
rences are not always higher in Android apps. For
some code smells they were higher in iOS apps.
This shows that Android apps are not necessar-
ily smellier, but different kinds of code smells are
more prevalent depending on the platform.

These results can be interesting for developers
moving from one platform to the other. It can also
be useful for developers of tools for these plat-
forms. We see that the emphasis on which code
smells to look at is different depending on the plat-
form.

Acknowledgments
This research was partly funded by the Estonian
Center of Excellence in ICT research (EXCITE),
the IT Academy Programme for ICT Research De-
velopment, the Austrian ministries BMVIT and
BMDW, and the Province of Upper Austria un-
der the COMET (Competence Centers for Excel-
lent Technologies) Programme managed by FFG,

4https://figshare.com/articles/dataset/iOS_and_Android_
app_analysis_data/13103012

5https://figshare.com/articles/conference_contribution/
GraphifySwift_queries_adapted_for_PAPARIKA_for_
Android_code_smell_analysis/13102994

https://figshare.com/articles/dataset/iOS_and_Android_app_analysis_data/13103012
https://figshare.com/articles/dataset/iOS_and_Android_app_analysis_data/13103012
https://figshare.com/articles/conference_contribution/GraphifySwift_queries_adapted_for_PAPARIKA_for_Android_code_smell_analysis/13102994
https://figshare.com/articles/conference_contribution/GraphifySwift_queries_adapted_for_PAPARIKA_for_Android_code_smell_analysis/13102994
https://figshare.com/articles/conference_contribution/GraphifySwift_queries_adapted_for_PAPARIKA_for_Android_code_smell_analysis/13102994

and by the group grant PRG887 of the Estonian Re-
search Council. We thank Rudolf Ramler for the
thorough review of a previous version of this pa-
per.

References
[1] M. Fowler, Refactoring: improving the de-

sign of existing code, Addison-Wesley Profes-
sional, 2018.

[2] U. A. Mannan, I. Ahmed, R. A. M. Almurshed,
D. Dig, C. Jensen, Understanding code smells
in android applications, in: 2016 IEEE/ACM
Int’l Conf. on Mobile Softw. Eng. and Systems
(MOBILESoft), IEEE, 2016, pp. 225–236.

[3] S. Habchi, G. Hecht, R. Rouvoy, N. Moha,
Code smells in ios apps: How do they com-
pare to android?, in: 2017 IEEE/ACM 4th
Int’l Conf. on Mobile Softw. Eng. and Systems
(MOBILESoft), IEEE, 2017, pp. 110–121.

[4] G. Hecht, An approach to detect android an-
tipatterns, in: Proc. of the 37th Int’l Conf. on
Software Engineering-Volume 2, IEEE Press,
2015, pp. 766–768.

[5] K. Rahkema, D. Pfahl, Empirical study on
code smells in ios applications, in: Proc.
of the IEEE/ACM 7th Int’l Conf. on Mobile
Softw. Eng. and Systems, MOBILESoft ’20,
Association for Computing Machinery, New
York, NY, USA, 2020, p. 61–65.

[6] F. Khomh, M. Di Penta, Y.-G. Gueheneuc,
An exploratory study of the impact of code
smells on software change-proneness, in:
2009 16th Working Conf. on Reverse Engi-
neering, IEEE, 2009, pp. 75–84.

[7] S. Olbrich, D. S. Cruzes, V. Basili, N. Zaz-
worka, The evolution and impact of code
smells: A case study of two open source sys-
tems, in: 2009 3rd Int’l symposium on empir-
ical software engineering and measurement,
IEEE, 2009, pp. 390–400.

[8] M. Linares-Vásquez, S. Klock, C. McMillan,
A. Sabané, D. Poshyvanyk, Y.-G. Guéhéneuc,
Domain matters: bringing further evidence
of the relationships among anti-patterns, ap-
plication domains, and quality-related met-
rics in java mobile apps, in: Proc. of the
22nd Int’l Conf. on Program Comprehension,

ACM, 2014, pp. 232–243.
[9] M. Tufano, F. Palomba, G. Bavota, R. Oliveto,

M. Di Penta, A. De Lucia, D. Poshyvanyk,
When and why your code starts to smell bad,
in: Proc. of the 37th Int’l Conf. on Software
Engineering-Volume 1, IEEE Press, 2015, pp.
403–414.

[10] T. Sharma, Extending Maintainability Analy-
sis Beyond Code Smells, Ph.D. thesis, 2019.

[11] M. Gottschalk, J. Jelschen, A. Winter, Saving
energy on mobile devices by refactoring., in:
EnviroInfo, 2014, pp. 437–444.

[12] M. Ghafari, P. Gadient, O. Nierstrasz, Security
smells in android, in: 2017 IEEE 17Th Int’l
Working Conf. on Source Code Analysis and
Manipulation (SCAM), IEEE, 2017, pp. 121–
130.

[13] G. Hecht, O. Benomar, R. Rouvoy, N. Moha,
L. Duchien, Tracking the software quality of
android applications along their evolution (t),
in: 2015 30th IEEE/ACM Int’l Conf. on Auto-
mated Softw. Eng. (ASE), IEEE, 2015, pp. 236–
247.

[14] B. G. Mateus, M. Martinez, An empirical
study on quality of android applications writ-
ten in kotlin language, Empirical Software
Engineering (2018) 1–38.

[15] G. Hecht, R. Rouvoy, N. Moha, L. Duchien,
Detecting antipatterns in android apps, in:
Proc. of the Second ACM Int’l Conf. on Mo-
bile Softw. Eng. and Systems, IEEE Press,
2015, pp. 148–149.

	00-Frontpage
	01-QuASoQ-2020-11
	1 Introduction
	2 Related Work
	2.1 Chronological Filtering
	2.2 Relevancy Filtering

	3 Methodology
	3.1 Effort Estimation Techniques
	3.2 Chronological Filtering
	3.3 Relevancy Filtering
	3.4 Augmentation
	3.5 Combination
	3.6 Experiment procedure
	3.7 Performance Measures

	4 Results and Discussion
	4.1 Comparisons between Moving Windows and Augmentation
	4.2 Evaluation of Combination of Augmented MW and NN-filter

	5 Conclusion

	02-QuASoQ-2020-10
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Fix-Inducing Change (FIC) Detection
	3.2 Evolution Analysis
	3.3 Metrics Extraction

	4 Experimentation and Findings
	4.1 Dataset
	4.2 RQ1: Evolution of FICs
	4.3 RQ2: FICs in Releases
	4.4 RQ3: FIC Interval
	4.5 RQ4: FIC and Complexity Metrics

	5 Result Discussion
	6 Conclusion

	03-QuASoQ-2020-07
	1 Introduction
	2 Association Rule Mining
	3 Method
	3.1 Phase I - Rule Set Generation
	3.2 Phase II

	4 Results
	4.1 Phase I - Rule Set Generation
	4.2 Phase II
	4.3 RQ1: How effective is the rule mining approach?
	4.4 RQ2: What information regarding fault localisation can the method offer?

	5 Threats to Validity
	6 Related Work
	7 Conclusion

	04-QuASoQ-2020-02
	1 Introduction
	2 Background
	2.1 Combinatorial Testing
	2.2 Combinatorial Robustness Testing

	3 Related Work
	4 Case Study Design
	4.1 Case Under Analysis
	4.2 Data Collection Procedure
	4.2.1 Metrics
	4.2.2 Modeling of IPM and RIPM
	4.2.3 Selecting and Executing Test Inputs

	5 Results & Discussion
	5.1 Fault Detection Effectiveness
	5.2 Average Fault Detection Effectiveness

	6 Threats to Validity
	7 Conclusion

	05-QuASoQ-2020.pdf
	1 Introduction
	2 Data Set Description and Prepossessing
	2.1 Classifiers:
	2.2 Performance Metrics and Parameters Tuning

	3 Results
	3.1 RQ1: Performance of Naive Bayes Classifier, Support Vector Machine and Random Forest
	3.2 RQ2: Predicting Power of ML Classifiers with Respect to Other Languages
	3.3 RQ3: Test Smells Analysis and their Predictive Power for Test Flakiness Detection and Prediction

	4 Lesson Learned
	5 Discussion and Implication
	6 Related Work
	7 Validity Threats
	8 Conclusion

	06-QuASoQ-2020-08
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Notation Mapping
	3.2 Transformation Design

	4 An initial catalogue of process anti-patterns in EA
	4.1 Categorizing process anti-patterns
	4.2 Demonstrating process anti-patterns
	4.3 Documenting process anti-patterns

	5 Applying process anti-patterns in EA
	6 Discussion
	6.1 Implication for researchers & practitioners
	6.2 Threats to validity

	7 Conclusion & Future Works

	07-QuASoQ-2020-01
	1 Introduction
	2 State of the Art
	2.1 Synchronous Communication
	2.2 Asynchronous Communication

	3 Implementation
	4 Results and Evaluation
	4.1 Performance Efficiency
	4.2 Availability
	4.3 Discussion and Threats to Validity

	5 Related Work
	6 Conclusion

	08-QuASoQ-2020-12
	1 Introduction
	2 Background
	3 Related Work
	4 Methodology
	4.1 Dataset
	4.2 Missing Link Smell Detection
	4.3 Smelly Developers Identification
	4.4 Correlation Analysis

	5 Result Analysis
	5.1 RQ1: How many developers involved with missing link smell?
	5.2 RQ2: How does community smell relate with a developer contribution?

	6 Threats to Validity
	7 Conclusion

	09-QuASoQ-2020-05
	1 Introduction
	2 Related Work
	3 Design
	3.1 Baseline Tool Selection
	3.2 Android Lint Extension

	4 Evaluation
	4.1 Evaluation Plan
	4.2 Evaluation Results
	4.2.1 Evaluation on Open Source Apps
	4.2.2 Comparison with PAPRIKA

	5 Threats to Validity
	6 Conclusion

	10-QuASoQ-2020-06
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Code Smell Analysis
	3.2 Choice of Applications
	3.3 Data Analysis

	4 Results
	5 Threats to Validity
	6 Conclusion

