
Proceedings
of Seminar

Service-oriented Architectures
— Methods and Technologies —

2009
Editors: Horst Lichter

Andreas Ganser

Contents

1 Service Oriented Architecture 1

1.1 Introduction . 2

1.2 Technologies and SOA . 2

1.3 SOA Development Life Cycle . 5

1.4 Benefits of SOA . 6

1.5 SOA Standardization . 7

1.6 Business Process Execution Language (BPEL) 7

1.7 SOA Governance . 8

1.8 SOA in Action . 9

1.9 Need for A Research Roadmap 11

1.10 SOA Challenges . 12

1.11 Future of SOA . 13

Bibliography . 14

2 Analyzing and designing methods for SOA 17

2.1 Introduction . 18

2.2 Service-oriented analysis and design 21

2.3 The generic view . 26

Bibliography . 30

i

ii CONTENTS

3 Aspect Orientation in Web Service Composition 33

3.1 Introduction . 34

3.2 Service Oriented Architecture (SOA) 36

3.3 Web Services . 37

3.4 Need for Web Services Composition 38

3.5 Web Services Composition . 38

3.6 BPEL4WS shortcomings . 39

3.7 Aspect Oriented Programming (AOP) 41

3.8 Related . 44

3.9 Conclusion . 45

3.10 Acknowledgments . 45

Bibliography . 45

4 Service Inventory Design Patterns 47

4.1 Introduction . 48

4.2 Classical Design Patterns . 49

4.3 Service Inventory Design Patterns 51

4.4 Service Inventory vs. Classical Design Patterns 58

4.5 Conclusion . 61

Bibliography . 61

5 Service Design Patterns 63

5.1 Introduction . 64

5.2 Design Pattern Basics . 65

5.3 SOA Design Patterns . 66

5.4 Summary . 76

Bibliography . 77

CONTENTS iii

6 Service Composition Design Patterns 79

6.1 A general problem when constructing business solutions 80

6.2 SOA Design Patterns . 81

6.3 Summary and Discussion . 92

Bibliography . 93

7 Component Re-Use in SOA Environment 95

7.1 Introduction . 96

7.2 Related Work . 97

7.3 Clustering Techniques . 98

7.4 Component Re-Use In SOA Environments 104

7.5 Discussion And Comparison . 107

7.6 Summary And Conclusion . 107

Bibliography . 108

8 Security as a Service 111

8.1 Introduction . 112

8.2 Secure SOA . 114

8.3 Security as a Service . 115

8.4 Protocols For Security Services 118

8.5 Conclusion . 124

Bibliography . 125

9 A Research Agenda for Testing SOA-Based Systems 127

9.1 Introduction . 128

9.2 Service-Oriented Architecture . 128

9.3 Testing a Service-Oriented Architecture 131

9.4 Testing SOA governance . 132

iv CONTENTS

9.5 Testing web services . 134

9.6 Testing other SOA properties . 136

9.7 Conclusion . 139

Bibliography . 140

10 Quality attributes for SOA 143

10.1 Introduction . 144

10.2 Quality Attributes . 144

10.3 Interaction . 153

10.4 Service Level Agreements . 155

10.5 Conclusion . 156

Bibliography . 157

11 SOA Maturity Models 159

11.1 Introduction . 160

11.2 Maturity models in general . 160

11.3 CMMI - An SOA independent maturity model 161

11.4 SOA maturity models . 163

11.5 Summary/Conclusion . 174

Bibliography . 174

Chapter 1

Service Oriented Architecture

Wasim Bari

Contents
1.1 Introduction . 2
1.2 Technologies and SOA . 2

1.2.1 XML . 3
1.2.2 Web Services . 3

1.3 SOA Development Life Cycle 5
1.4 Benefits of SOA . 6

1.4.1 Business Benefits . 6
1.4.2 IT Benefits . 7

1.5 SOA Standardization . 7
1.6 Business Process Execution Language (BPEL) 7
1.7 SOA Governance . 8
1.8 SOA in Action . 9
1.9 Need for A Research Roadmap 11
1.10 SOA Challenges . 12
1.11 Future of SOA . 13
Bibliography . 14

1

2 CHAPTER 1. SERVICE ORIENTED ARCHITECTURE

Abstract: Service Oriented Architecture is immensely applied architecture in
industry as well as research nowadays. Various technologies like Web Ser-
vices and XML are used to implement SOA due to their extensible nature.
Technology independent nature of SOA makes it an ideal choice for Enter-
prise to integrate their various systems. A huge list of echo standards and
fields has already emerged with SOA realization like SOA Governance, Busi-
ness Process Execution Language etc. Despite SOA popularity and usage,
there are still many challenges to tackle. This paper presents the overall SOA
state, benefits, applications, challenges and future in some extent.

1.1 Introduction

”SOAs are like snowflakes - no two are alike.”
David Linthicum

Service Oriented Architecture (SOA) has been around now for a quite long
time. Originally it was not a revolution rather an evolution of different paradigms
and technologies influenced by business needs. Organizations are always
looking for ways to integrate their existing systems with newly developed ones
and for ideal situations in which all processes can speak with desired security.
SOA provides architecture to achieve this goal. Service Oriented Architecture
is a way of extracting, modeling, developing and deploying services which can
be accessed and reused. Reusability and standardized access is the core of
this architecture. The ”heart” of this architecture, as its name depicts, is a ”Ser-
vice”. A service can be anything ranging from logical items to physical entities.
For example a service can be data, software or a printer. Common interface
of all components ensures the integration of different systems with ease. All
components in SOA are loosely coupled which was a major shift from Object
Oriented Programming model where data and processor are bound together.
The loose coupling promotes independent development and maintenance of
components without dealing other parts of system. Sometimes Web Services,
being the most common way of implementing SOA’s, are referred to SOA as
whole which is a misconception. SOA is more than Web Services; itś a way
of thinking, planning, practicing and architectural patterns. Fig. 3.2 shows the
some prominent features of SOA in different business domains.

1.2 Technologies and SOA

Close look at the evolution of SOA reveals major technologies which extraordi-
narily influenced SOA adoption. XML and Web Services are on the top of list.
Platform independent nature of XML makes it a perfect candidate for communi-
cation in many SOA implementations, whereas, ease of Web Service creation,

1.2. TECHNOLOGIES AND SOA 3

SOA

Re-usable

Interoperable

Flexible

Low-Cost

Loosely

Coupled

Agile

Platform

Independent

Language

Independent

Automation

Figure 1.1: Service Oriented Architecture Characteristics

publishing, discovery and usage, promoted the use of ’Web Services’ for creat-
ing SOA ’Services’. The influence came in two ways, these technologies also
evolved with some changes to support SOA [XMLa].

1.2.1 XML

XML is a self defining way of presenting information. It is now the most popu-
lar data representation and protocol implementation language on Web [XMLb].
All the Web Services protocol like WSDL (Web Service Description Language),
SOAP (Simple Object Access Protocol), UDDI (Universal Description, Discov-
ery and Integration) etc. are based on XML [Web]. SOA heavily relies on
XML. Efficient and secure SOA requires efficient and secure XML message
exchange. XML is also used for ontology creation which makes the seman-
tic interoperability possible [Ont]. SOA usually integrates applications which
may have different data formations, XML is used as semantic interoperability
for data exchange in these applications. New techniques are also evolving
for XML performance booster which directly influences the SOA performance
[XMLa].

1.2.2 Web Services

A Web Service is a piece of code that provides interoperable interaction among
machines over a network. A service is published before use and must have a
standard interface in order to be accessed. A generic Web Services interac-
tion is shown in Fig: 1.2. A service provider publishes its service using some
global registry(UDDI). A service consumer looking for a service, request to the
global registry for desired service. Global registry replies, if such a service
exists, with the WSDL file of the service. Now a client can invoke service using

4 CHAPTER 1. SERVICE ORIENTED ARCHITECTURE

this WSDL file. The interoperability is achieved by using different XML-based
standards like WSDL for Web Service description, SOAP for message passing
and UDDI for service discovery [Web]. According to a survey from Gartner, in
2008, Web Services and SOA will be implemented together in more than 75 %
of new projects [Garb]. Gartner also published its top 10 technologies of 2008,
many come from SOA [Gara]. Here a question may arise that Why Web Ser-

Service

Consumer

Service

Provider

Service

RegistrY

Figure 1.2: Web Service Triangle

vices are mainly chosen for SOA implementation? The answer lies in the Web
Services’ characteristics which go neck to neck with SOA requirements. Web
Services are platform independent. No matter whatever platform a Web Ser-
vice uses, it can still collaborate with other business applications. Web Service
mainly uses industry open standards and protocols which are very popular. A
large number of software and frameworks are available for creation and man-
agement of these protocols. These services are ’loosely coupled’. The main
medium of communication for Web Services is Internet using SOAP, ResT or
some other protocol over HTTP. Internet is a cheap medium as compared to
other propriety solutions. At the Same time Web Services are Language inde-
pendent. Organizations can select any technology of their interest, keeping in
view their infrastructure, for Web Services implementation and these services
can collaborate with services developed with other technologies too. This re-
ally helps in creating fast, problem specific and efficient services. Furthermore,
Web Services are self describing which reduces development and integration
costs. Web services framework also support automatic discovery mechanism
which can not only reduce execution time but can also help to generate rev-
enue by exposing services for consumers. Finally Web Services development
has become easy with IDEs, frameworks and templates. Simple Web Services
are just a click-next mechanism and most of the components like WSDL etc
are created automatically from tools [WSD].

SOA, Web Services and XML have influenced each other and went through
some extensions for performance optimization. A number of new XML tech-
nologies/languages are in market now. Extended XQuery, ebXML and XML
Networking are few examples of these. Extended XQuery helps to create the
orchestrator Web Services for SOA [Din07]. ebXMLis Electronic Business Ex-

1.3. SOA DEVELOPMENT LIFE CYCLE 5

tensible Markup Language (ebXML) by United Nations (UN) and OASIS for
standard business processes and trading agreement among different orga-
nizations. XML Networking creates a new layer over transformation protocol
which boosts up the message conversation for SOA applications [Sil].Web Ser-
vices were originally stateless. In many business processes we need stateful
objects like grid computing. This influenced extension in Web Services and in
results WSRF and WS-* emerged which helps to create, monitor and destroy
stateful services instances.

1.3 SOA Development Life Cycle

Softwares are developed with a structured engineering approach. A lots of
model have been in use for this but no one completely fits with SOA, as its
more than an ordinary software involving multiple domain factors. A recent
paper outlined a strategy for SOA development. The development life cycle of
SOA is shown in Fig: 1.3 [KLS08].

that supports the strategic approach to SOA adoption
shown in the case studies. Then, we identified areas of
SOA research necessary to fill in the gaps and
developed a draft agenda that was validated with a
diverse community at seven international workshops
and one international panel. A final report with our
findings is scheduled for publication this year.

3. RESULTS
3.1 Overview of the SOA Research
Framework
In an ideal service-orientation adoption setting, an
organization develops a service strategy that takes into
account the organization’s business drivers, context
and application domain. In order to execute the service
strategy, the organization has to generate plans to
achieve the goals and objectives outlined by the
strategy. Finally, the execution of these plans require
business, engineering and operations decisions to be
made, taking into consideration cross-cutting concerns
such as governance, social and legal issues,
stakeholder management, and training and education.
These relationships are shown in Figure 1.

Problem Space: The problem space corresponds to the
characteristics of the organization that is going to adopt SOA, as
well as the problems that SOA is expected to address. The problem
space shapes and places constraints on the strategy, but can also
enable its execution. The elements of
the problem space become the
drivers for the strategy.

Planning Space: An SOA strategy
should be stated as the way in which
SOA is going to address the
organization's business drivers for
SOA adoption. A service-oriented
environment is iterative, to the point
that the term "perpetual beta" is
being used to indicate the dynamism
of this environ-ment in order to
respond to required business agility.
The organization's SOA strategy
may change over time due to
changes in the problem space or to
information provided by data
collected during Evaluation/
Optimization, as shown in Figure 2.

Solution Space: In the solution
space the SOA plans are executed to
produce a service-oriented system.
During the execution of the plans,
changes or wrong assumptions about
SOA technology may invalidate the
plans and cause the organization to
reformulate their SOA strategy, as
shown in Figure 2.

Once the service-oriented system is deployed, measurements are
gathered to support any metrics designed to test the effectiveness of
the SOA strategy and the system itself. This data will help to
optimize the SOA strategy, if needed, and also help to plan for the
next iteration, once again reflecting the dynamic nature of service-
oriented environments.

Figure 1. Overview of the SOA Problem and Solution Space

Service Model Business Model

Plan Formulation

SOA Plans

Plan Execution

Service-Oriented
System

Evaluation/
Optimization

Domain Area Context Business Drivers

Solution Space

Planning Space

Problem Space

Strategy
Formulation

SOA Strategy

Figure 2. Expanded View of the SOA Problem and Solution Space

2Figure 1.3: SOA Development Life Cycle [KLS08]

The Paper divides the development cycle in three spaces:

• Problem Space

• Planning Space

• Solution Space

6 CHAPTER 1. SERVICE ORIENTED ARCHITECTURE

Problem Space: Solution of the organization directly depends upon the do-
main area and business context. It enables or constrains the SOA strategy.From
experience It’s Observed, often SOA’s strategy success is directly proportional
to the business strategy of organization.

Planning Space: From the problem phase we come with SOA strategy and
then plan our SOA’s plans. These are dependent upon the input from the
Problem Space, Business Model and Service Model. These plans work as
input for the solution space as shown in Fig: 1.3.

Solution Space: SOA plans are executed to build a Service Oriented System.
Some plans may fail because of certain changes or wrong assumptions hence
we have to revise our SOA strategy as well as plans again. After we have Ser-
vice Oriented System, we may again look at the problem space for evaluation
and optimization purposes.

According to this SOA development life cycle, there may be many iterations.
Any changes in business will be accommodated through the same procedure.

1.4 Benefits of SOA

Enterprises solely care for their business processes improvements and adopts
Information Technology for this purpose. They want to reduce redundant in-
frastructures to cut down the expenses, provide access to systems within
and outside organizations, automate the processes as much as possible, and
reach out to every client so that they can increase their revenue. SOA promises
for all such features. SOA adoption can bring advantages in business and IT;
some of them are listed below:

1.4.1 Business Benefits

• Agility: Change is a norm in business not an exception. SOA’s loosely
coupling and openness to extensibility nature copes with the agile nature
of business.

• Effective Integration with business partners

• Automation: BPM, BPEL and many other technologies built over SOA
helps for business process automation. Complex Workflows with event
driven can be easily managed.

• Efficiency of business processes with improved communication.

1.5. SOA STANDARDIZATION 7

1.4.2 IT Benefits

• Reusability

• Low Cost

• Easy Governance

• Technology independence

• Cross Platform communication

1.5 SOA Standardization

Standardization plays an important role in information technology. Simple and
easy standards attracts users. There is not a single organization currently
working on SOA standards. Lately all efforts are driven by business needs
with some short term plans and problems. The World Wide Web Consortium
(W3C), Advance Open Standards for the Information Society (OASIS), The
Open Group, The Institute of Electrical and Electronics Engineers Standards
Association (IEEE-SA) and few more are currently developing standards for
SOA [Kon07] [IEE]. Different vendors like IBM, Oracle, Tibco etc are also
coming up with their own solutions and standards. There has been progress
but with so many organizations working on the same stuff may harm the actual
goal. It’s also very unwise to work on same stuff by almost everyone. Too many
standards also make it tough to choose one. For example there are currently
more than 250 web services standards. We do need some sort of centralized
way of doing stuff in future to be more effective [Sta].

1.6 Business Process Execution Language (BPEL)

Business processes are the core part of the Business. Normally a business
process is not a single ’Service’ rather collection of many services collabo-
rating with each other in a specific order. Technically, business process is a
collection of some operations carried out by either human or machine with
available information and protocols to achieve a business objective. Some
processes overlap, some are independent and can be executed in parallel and
some are dependent. In SOA, services are the unit of work which make busi-
ness processes an aggregation of Services/Web services. So we need some
language for Business process modeling, work-flow management, execution
of processes, control and monitor the processes, defined as services. Busi-
ness Process Execution Language (BPEL) promises for these features. BPEL
supports business process creation in two ways:

8 CHAPTER 1. SERVICE ORIENTED ARCHITECTURE

• Executable Processes

• Abstract Business Protocol

The First one follows the Orchestration style of Web Services and second sup-
ports Choreograph [Jur]. A BPEL process consists of steps, called ’activity’.
Each activity can invoke other services in sequential or parallel order; activities
may define pre-conditions to fire. These activities can be grouped for complex
structures using different structures like flow, sequence, while etc. BPEL is
also built on XML and supports Web Services technologies, WS-Reliable Mes-
saging, WS-Addressing, WS-Coordination, and WS-Transaction. Faults are no
exception in business processes so BPEL supports fault handling by a special
mechanism of signaling and events [Jur].

1.7 SOA Governance

SOA has changed the whole nature of the systems. Now systems have no cen-
tralized control, may be contributed by inside or outside of organization. We
need a way to manage and control these services, infrastructure and people
for ’always-on’ with desired quality and low cost. This is done by SOA Gov-
ernance. ”SOA governance provides a set of policies, rules, and enforcement
mechanisms for developing, using, and evolving SOA assets and for analysis
of their business value” [SEI]. Some people confused SOA governance as
Governance of SOA which is not a correct perception. It’s just an extension
of IT and corporate Governance with respect to SOA. A recent survey from
InfoWorld showed that lack of Governance is one of the key obstacle in effec-
tively getting the benefits of SOA and adoption [Inf]. According to SEI, SOA
governance is one of four pillars of service oriented systems development.
Without SOA Governance, SOA infrastructure becomes unmanageable, the

52

© 2008 Carnegie Mellon University

Pillars of Service-Oriented Systems Development

S
tra

te
g

ic

A
lig

n
m

e
n

t

SOA Design Principles

Service-Oriented

Systems Development

T
e
c

h
n

o
lo

g
y

E
v
a
lu

a
tio

n

S
O

A

G
o

v
e
rn

a
n

c
e

C
h

a
n

g
e
 o

f

M
in

d
s

e
t

Pillars

Figure 1.4: SOA Governance

reusability feature is not fully comprehended. Modifications to services can be

1.8. SOA IN ACTION 9

made without any prior notice, this way resulting business processes fail down.
Generally SOA Governance must answer the following questions:

• Right Decisions for SOA assets

• Who is Decision maker?

• Realization of new high value Services

• Effectiveness of Services

1.8 SOA in Action

Werner Vogels, vice president, worldwide architecture and CTO at Amazon.com
said during Gartner Enterprise Architecture Summit: ”Service orientation works,
we never could have built [Amazon’s Linux blade server] platform without ser-
vice orientation”. SOA is in action in many domains like health, information
systems, grid computing (UNICORE), internet computing (Amazon S3), cul-
tural heritage, WWW (Monster Job search) and a long list. We will present one
SOA example in Grid Computing using UNICORE 6, an Open Grid Service
Architecture (OGSA) implementation.

Grid computing is the application of multiple computing resources scattered
at different places to solve some scientific or business problem which cannot
be efficiently solved by normal computing systems. Grid may consist of dif-
ferent domains, different administration rules, spread across the organizations
with multiple standards. Grid Middleware is used to make a Grid. A Service
Oriented Architecture based, Open Grid Service Architecture (OGSA) was pro-
posed ”that addresses this need for standardization by defining a set of core
capabilities and behaviors that address key concerns in Grid systems” [I. 05].
A modern grid middleware must implement these services. OGSA is shown in
fig. 1.5.

Execution Management Service: is responsible to discover available free
resources and their locations. It selects the ”best” location, does necessary
preparation for execution of actual job. After this it initializes the execution and
finally manages it till it finishes. Execution can be an OGSA application or non-
OGSA application.

Data Service: as name suggests, its responsibility is to deal with Data. It
can access remote data, Stage-in and Stage-out data as required. It also
replicates data for speedup and availability; Federation of data and Meta data
management is done with Data Service.

Security Service: is responsible for authentication, authorization, ID mapping
and credentials conversion for different security domains which helps in least

10 CHAPTER 1. SERVICE ORIENTED ARCHITECTURE

Self

Management

Services

Data

Services

Security

Services

Resource

Management

Services

Execution

Management

Services

Information

Services

OGSA

Figure 1.5: Open Grid Service Architecture

user interaction with system and makes it automatic. Security Service also
takes care of audit, privacy and secure conversion.

Self Management Service: self configuration with changing environment and
self healing of resources is carried out with Self-MS. It also performs monitor-
ing, necessary analysis and is then able to provide fault tolerance. Stuff related
to resources optimization can also be a part of Self Management Service.

Resource Management Service: carries three major tasks. Firstly it is re-
sponsible for the OGSA infrastructure, secondly resources management on
Grid like reservation etc and thirdly resources management themselves like
rebooting.

Information Service: naming capability both logical and physical one, re-
sources discovery using registry, message passing mechanism and logging
with monitoring are all done through information service[I. 05].

UNICORE 6 (UNiform Interface to COmputing REsources) implemented OGSA
using WSRFLite [UNI]. Fig. 1.6 shows the abstract three tier architecture of
UNICORE 6. Clients authenticated by the Gateway to acces the services.
These services interact with other services and XNJS to execute the jobs on
desired target systems.

Target System Registry Service (TSR): Any client wishing to utilize UNI-
CORE 6 must have information regarding available services and their descrip-
tion in a specific Grid. This information is published in TSR. It works as a single
point of entry for clients. A TSR is shareable between sites.

Storage Management Service (SMS): serves as a logical storage unit. It is

1.9. NEED FOR A RESEARCH ROADMAP 11

TSF JMS SMS BES FTS TSR

Other Services

Gateway

eXtended Network Job Supervisor (XNJS)

Clients

Target Systems

Figure 1.6: Abstract UNICORE 6 Architecture

used for listing storage contents and file transfer initiation. One UNICORE site
may have zero to N SMS instances. A single storage can be manipulated with
many SMS. SMS supports many File transfer protocols like RByteIO, SByteIo
etc.

File Transfer Service (FTS): Actual File transfer is performed and controlled
by FTS. A FTS instance is always created by SMS by invoking the appropriate
method which checks supported protocols.

OGSA-Basic Execution Services: OGSA-BES is an emerging standard of
job submission and management by Open Grid Forum (OGF). These services
works almost same as UNICORE Atomic Services but advantage to adopt
OGSA-BES is a standardized syntax of web services for job submission and
management. With this adoption UNICORE can also speak with other Grid
middlewares which implemented the same standard, like gLite, thus providing
user a lot of freedom. With BES, some UAS services like TSF, TSS and JMS
will be of no further use in future [OGS08].

1.9 Need for A Research Roadmap

SOA is immensely applied in industry but still lacks a clear research roadmap.
SOA is a very complex field which overlaps a lot of other fields like software
engineering, information systems, WWW, distributed computing, security, net-
working, middlewares, programming languages and many more. It’s a dynamic
area constantly reshaped by business demands. Adding more to this com-
plexity, a number of organizations are working on SOA standardization and

12 CHAPTER 1. SERVICE ORIENTED ARCHITECTURE

solutions. There is not a global guideline, effort or vision available for SOA.
With the adoption of SOA, complexity of architecture is increasing. Right now
either wheel is reinvented or wastage of effort on similar issues is done. A
clear research roadmap, as other engineering fields have, will not only boost
the adoption of SOA but also organization will be able to get the true potential
of architecture. Recently a paper was published to address this specific issue
[KLS08]. The authors interviewed a number of researchers and related people
and came up with a Services Research Roadmap as shown in fig. 1.3

1.10 SOA Challenges

The diverse nature of resources, multiple security models of organizations,
services span over a number of organizations, different business natures and
demands, various developers with or without any interaction and a vast list of
technologies bring a number of challenges in SOA realization. Research is
going on by multiple institutes to tackle these challenges.

Language independent standard interfaces for the ’Services’ have achieved
syntactic interoperability quite well. Publishing and discovering interfaces make
it easy to look for specific services. But SOA still lacks semantic interoperabil-
ity. Semantic Interoperability can be defined as the ability to understand the
meaning of information exchanged among machines automatically and pro-
duce the required results. It mainly depends upon the interfaces describing
the meanings of services and information shared with clients and services. It’s
difficult because the users of the service are almost unknown. They may be
human, services or other systems. Developers need to provide information for
services, user and SOA infrastructure to convey exact meaning at all levels.

Security is the most important factor in business applications. Across organiza-
tion structure, the nature of SOA and multiple layers presence make it difficult
to enable end-to-end security. We need some way of mapping the users to
their credentials to make the flow uninterrupted. Looking at SOA layers, we
need security from the lowest message level, to the topest Governance level.
Service messages are mainly in SOAP or some other xml based protocol.
OASIS provided a specification, WS-Security for message level security by
defining how to integrate signatures and encryptions information to the SOAP
messages. Security Assertion Markup Language (SAML) is used for virtual
organization or across organization security.

Dynamic service composition is also another challenge. Composing services
at run time may affect the quality of service; security is more problematic and
may result in services incompatibility without proper semantics.

1.11. FUTURE OF SOA 13

1.11 Future of SOA

SOA evolves as organization move ahead with SOA. Any technology or ar-
chitecture’s life is directly dependent upon its users and industry backing. All
the big players of Information industry are either providing SOA solutions or
using SOA. Oracle SOA Suit, the Smart SOA from IBM, Microsoft SOA and
Business Process Management (BPM), SAP Business Suit, Tibco Solutions,
Amazon Web Services and many more are contributing to the evolvement and
realization of SOA in many industries. In fact, SOA has got unanimous support
from all the giants. Many success stories from all around the world are also a
major push towards SOA adoption. According to GARTNER ”The Main Benefit
of SOA is the opportunity for incremental development, deployment, mainte-
nance and extension of business applications” which is also the true nature of
business itself. The lifespan and reliability of service oriented-based system is
much more than usual systems.

Many new SOA related terms are coined in market like Advanced SOA, SOA
2.0, WOA (Web Oriented Architecture). Companies are realizing the emer-
gence of Web 2.0 and SOA as SOA 2.0. ”SOA 2.0 is the term that we’re using
to talk about the combination of service-oriented architecture and event-driven
architecture,” said Steve Harris, vice president of Oracle Fusion middleware.
New advancement in Web Services like REST services is also helping to gap
the performance issues of SOA.

14 CHAPTER 1. SERVICE ORIENTED ARCHITECTURE

Bibliography

[Din07] Dino Fancellu, Edmund Gimzewski. Extended XQuery for
SOA. Article: http://www.xml.com/pub/a/2007/09/12/
extended-xquery-for-soa.html#References, September 2007.

[Gara] Gartner Identifies the Top 10 Strategic Technologies for 2008. Web
Site: http://www.gartner.com/it/page.jsp?id=530109. Accessed
on 10th Januray 2009.

[Garb] Letter From The Editor, Gartner. Web Site: http://www.gartner.
com/pages/story.php.id.3586.s.8.jsp. Accessed on 12th Decem-
ber 2008.

[I. 05] I. Foster, Argonne and U.Chicago... Open Grid Services Ar-
chitecture. Specification: http://www.gridforum.org/documents/
GWD-I-E/GFD-I.030.pdf, January 2005.

[IEE] Service Oriented Architecture Standards. Web Site: http://www.
soa-standards.org/. Accessed on 10th Januray 2009.

[Inf] InfoWorld. InfoWorld Research Report:SOA. Report: http://www.
s2.com.br/s2arquivos/403/multimidia/197Multi.pdf. Accessed
on 10th Januray 2009.

[Jur] Matjaz B. Juri. A Hands-on Introduction to BPEL. Article: http://www.
oracle.com/technology/pub/articles/matjaz_bpel1.html. Ac-
cessed on 10th Januray 2009.

[KLS08] Kostas Kontogiannis, Grace A. Lewis, and Dennis B. Smith. A re-
search agenda for service-oriented architecture. In SDSOA ’08: Pro-
ceedings of the 2nd international workshop on Systems development
in SOA environments, pages 1–6, New York, NY, USA, 2008. ACM.

[Kon07] Kostas Kontogiannis. Panel: A research agenda for service-oriented
architecture. In Sixth International IEEE Conference on Commercial-
off-the-Shelf (COTS)-Based Software Systems (ICCBSS’07). IEEE,
2007.

[OGS08] Architectural Overview of OGSA-BES Adoption in UNICORE 6.
Published: http://www.unicore.eu/community/development/
OGSA-BES/UNICORE_OGSA_BES_Architecture_Edition_1_0.pdf,
February 2008.

[Ont] OWL Web Ontology Language. Web Site: http://www.w3.org/TR/
owl-features/. Accessed on 12th December 2008.

[SEI] Workshop on SOA Governance. Article: http://www.sei.cmu.edu/
isis/pdfs/SOA_GovernanceWorkshop.pdf.

BIBLIOGRAPHY 15

[Sil] Silvano Da Ros. Boosting the SOA with XML Networking. volume 9.

[Sta] Panel: A Research Agenda for Service-Oriented Architecture.

[UNI] UNICORE Project. Web Site: http://www.unicore.eu. Accessed on
10th Januray 2009.

[Web] Introduction to Web Services by W3C . Web Site: http://www.
w3schools.com/webservices/ws_platform.asp. Accessed on 12th
December 2008.

[WSD] Introduction to the WSDL Editor. Wiki: http://wiki.eclipse.org/
index.php/Introduction_to_the_WSDL_Editor. Accessed on 10th
Januray 2009.

[XMLa] Intel R© XML Software Suite . Article: http://software.intel.com/
en-us/articles/intel-xml-software-suite/. Accessed on 10th
Januray 2009.

[XMLb] Introduction to XML by W3C . Web Site: http://www.w3schools.
com/xml/. Accessed on 12th December 2008.

16 CHAPTER 1. SERVICE ORIENTED ARCHITECTURE

Chapter 2

Analyzing and designing
methods for SOA

Tobias Ickler

Contents
2.1 Introduction . 18

2.1.1 What is SOA about? 19
2.1.2 Modeling of SOA . 20

2.2 Service-oriented analysis and design 21
2.2.1 Buseness Process Modeling 22
2.2.2 Enterprise Architecture 22
2.2.3 Object-oriented analysis and design 23
2.2.4 Why are these methods not enough? 23
2.2.5 What does SOAD have to provide? 23
2.2.6 How should SOAD work? 24
2.2.7 Conclusion . 25
2.2.8 Related Work . 26

2.3 The generic view . 26
2.3.1 Meta-models . 26
2.3.2 The reference model in short 26
2.3.3 Generic view concept 27
2.3.4 Areas . 28
2.3.5 Model driven security views 28
2.3.6 Model driven security views and generic view 29
2.3.7 Conclusion . 30
2.3.8 Related Work . 30

Bibliography . 30

17

18 CHAPTER 2. ANALYZING AND DESIGNING METHODS FOR SOA

Abstract: To exploit the idea of service-oriented architectures we have use
new methods for analyzing and designing software. In this article I want to
point out some requirements and challenges coming up by using service-
oriented architecture and show two different approaches to solve some of
these problems. The first approach is the service-oriented analysis and de-
sign method, which combines different analysis methods. The second ap-
proach is the generic view, which visualizes requirements and needs of dif-
ferent stakeholders to get an overview of all participants.

2.1 Introduction

Increasing complexity of business applications brings the need of new model-
ing methods. Service-oriented architectures demands of new modeling meth-
ods for complex enterprise software. But SOA is no universal buzz word that
can solve all software engineering problems. Some problems will be solved,
but some new challenges have arisen.

In 2.1.1 I want to describe what service-oriented architectures are and why
the need has come up. It describes the important key words of those architec-
tures and gives an overview of its components. Requirements and problems
occurring in modeling such architecture are described in 2.1.2.

In the second part 2.2 of this article I focus on service-oriented analysis and de-
sign. After a short introduction the three components business process mod-
eling in 2.2.1, enterprise architecture in 2.2.2 and object-oriented analysis and
design in 2.2.3. To explain the idea of service-oriented analysis and design,
in 2.2.4 I will point out why these methods on their own are not enough for a
whole designing process, following the targets of the new methods, described
in 2.2.5. Finally the interaction of the three components is described in 2.2.6
and a conclusion sums up the ideas of this analysis method in 2.2.7. Related
work follows in 2.2.8.

The third part 2.3 focuses on the generic view. This concept is based on the
concept of meta-models, which is described in 2.3.1. An example illustrates
the meta-models idea is given in 2.3.2 with the reference model. Next step is a
detailed description of the generic views concept in 2.3.3 and its areas 2.3.4.
To give an example for the use of the generic view the model driven security
architecture is presented in 2.3.5 and the benefits of a generic view in this ap-
proach is talked in 2.3.6. Once again I will sum up the ideas of this concept
and explain in which part of the design process this method may help in 2.3.7
and the related work of this part is described in 2.3.8.

2.1. INTRODUCTION 19

2.1.1 What is SOA about?

The complexity of software systems has risen to a high level. Companies and
organizations use IT technologies for many different jobs. The most difficult
part for software developers in this matter is not to build a single software so-
lution, but to connect all these software applications to a whole system.

Today, connectivity is an elemental function. Distributed systems work simulta-
neously on their own and together with a lot of other systems. Data exchange,
workflows and delegations of jobs are typical elements of connected systems.

Software developers have to find a solution to provide the exchange of infor-
mation between applications. If a whole new system has to be designed, it is
easy to create a public interface of each system, which provides other systems
access to information and functionality. But if a system has to be extended or
two or more independent systems have to be connected, no interfaces will be
available and the designer has to modify the systems. How can this problem
be solved universally?

Modern object-oriented software construction entailed a lot of paradigms, which
are approaches for standard problems of software developing. The problem of
modeling service-oriented architectures is just such a standard problem too,
so analog to design patterns for instance, a software paradigm is needed.
[GHJV94]

Service oriented architecture is such a paradigm to connect distributed soft-
ware systems. Like object oriented design patterns it is no fixed solution that
will solve every problem perfectly. It is just a paradigm that does not prescribe
every detail.

The main idea of service oriented architecture is that different stakeholders
have capabilities (called service-providers) and have needs for other capa-
bilities (called service-consumers). Providing a capability is called a service,
these services have to be registered in a central sand can there be claimed by
another application or stakeholder. So service oriented architecture organizes
and utilizes distributed capabilities. [MLM+06]

But service-oriented architectures are more than an IT design paradigm. It
combines business logic with the design of application logic. All the impor-
tant ideas can be followed by anybody without any knowledge about software
design. The architecture does not dictate anything about the correlations be-
tween any stakeholders nor does it determine anything about the system itself.
Using service in the design process will only affect the public interfaces of each
system: the exchange of information is standardized and therefore these sys-
tems can easily be connected with each other.

20 CHAPTER 2. ANALYZING AND DESIGNING METHODS FOR SOA

The most important concepts of the SOA paradigm are visibility, interaction
and effects. All these elements are representations from the business logic.
They are no technical items.

Visibility on the one hand describes the fact, that service-providers can publish
their capabilities and on the other hand, that service-consumers can find the
service they need. A service must be described objectively to give consumers
the possibility to decide which service is the one they need. Functional require-
ments, constrains and policies are basically items to identify suitable services.

Interaction is the process of using (consuming) those capabilities. Typically this
interaction is presented by an exchange of messages contending the relevant
information. How the messages are transferred from one system to another is
irrelevant for the general paradigm and depends on the used system or net-
work. [MLM+06]

Effects are the result of the interaction. An effect is what happens, if some-
body consumes a capacity and of course it depends on the used service. For
instance the effect may be the return of some information, a service-consumer
has requested; another effect may be a physical action as a result of an elec-
tronic request - all types of requests are imaginable.

Once again it should be emphasized, that a service-oriented architecture does
not provide anything that a developer could not do without SOA. The advan-
tage of SOA is that a system or network can easily be extended and indepen-
dent systems can communicate to each other without any difficulty. But such
architecture has higher costs than other systems. It depends on the system
and its size, if SOA is a valid option for the designers.

2.1.2 Modeling of SOA

There are a lot of important differences between designing traditional software
architecture and a service-oriented architecture. The view of the system is
another one; processes and functionality have to be grasped in another way.
While a standard application has to meet the requirements of known users,
here we have to identify services as public interfaces, which are probably used
by unknown external systems.

The first problem in modeling SOA is therefore to use a very high level of
abstraction. The first level of abstraction is to identify the actions that cause
the needed real word effects. Next step is to group them and identify services.
And the last but most important step is to merge these ideas with the business
models and processes. It is irrelevant where to start; it can be done by bottom-
up - beginning at the technical view - or by top-down development - beginning
at the business view. [ZKG]

2.2. SERVICE-ORIENTED ANALYSIS AND DESIGN 21

Here you can find the first problem: Merging business logic and application
logic may be a difficult step. Responsibilities and costs are examples for terms
that have totally different meanings in these two points of view. Often some
actions are technically very difficult to realize, but a non-IT employee lacks the
knowledge to see such problems. A SOA designer has to bring both parties
together.

Next problem, that should be mentioned, is the view dilemma. Let us say
we have found out which business logic is needed and we have identified our
services. We do not know anything about the stakeholder who will use our
service. For instance if a stakeholder requests information, we do not know
which part of these information is relevant to the stakeholder. But of course
it is important for designing the informations representation. What can a de-
signer guess about the stakeholders? [EJSS08]

For this reason we have to identify possible stakeholders in a service-oriented
architecture. And we still cannot look for technically aspects, because the
types of stakeholders depend obviously on the business components. Af-
ter identifying the existing stakeholders, we have to think about possible new
stakeholders in the future. Finally if we have all possible stakeholders identi-
fied, we still have the problem of how to represent our information. What is the
best data exchange type for all stakeholders?

Generally all known problems of software developing and all known problems
of modeling business concepts apply in this matter too. Of course all solutions
for those problems must be used by modeling a service-oriented architecture
too. Combining these aspects with the other named problems creates a lot of
extra costs. This is the price for modeling such a system and this is the reason
why a service-oriented architecture may be no solution for every system.

2.2 Service-oriented analysis and design

In the following parts I want to describe two completly different approaches
for designing a service-oriented architecture. The first part - service-oriented
analyze and design - describes a model, that combines different existing mod-
eling methods that focus on different aspects. The second part concentrates
on the eye of the beholder. It takes special care of the point of view of different
stakeholders, which will use the system. These approaches are no absolute
solutions; they take care of a single part of the development processes focus-
ing only on single aspects. [ZKG]

Service-oriented analysis and design (SOAD) was developed by IBM and has
never been finished. It is a theoretical idea with practical backgrounds. But

22 CHAPTER 2. ANALYZING AND DESIGNING METHODS FOR SOA

so far it shows a way for some problems that occur in the context of service-
oriented architecture. It is a combination of object-oriented analysis and design
(OOAD), enterprise architectures (EA) and business process modeling (BPM).
The main idea is to combine these methods to create a design method fitting
ideally for service-oriented architectures. The reason for this new technique is
that the three design methods have their right to exist on their own domains,
but for creating a service-oriented architecture these methods are alone not
enough.

2.2.1 Buseness Process Modeling

The domain of business process modeling in software engineering is the an-
alyzing and illustration of an enterprises processes. It is used to improve and
optimize the efficiency of enterprise processes. The modeling process should
be independent of the used technology level. There exist a lot of different no-
tations and styles to visualize processes. The UML or event-driven process
chains are the common technologies. [Wei] Another method is the represent-
ing of executable flow models. [LRS02]

But there are still some problems using this modeling type. Common questions
are not answered yet, for example how to evaluate non-functional requirement
and quality-of-service characteristics. There is a lack of an universal standard
for business process modeling and additionally it is not clear, which jobs belong
to analysts and which jobs belong to the designer. At this point business pro-
cess is reaching its limits and by using it in our design method, these problems
have to be solved.

2.2.2 Enterprise Architecture

”‘Enterprise Architecture is the organizing logic for business processes and IT
infrastructure reflecting the integration and standardization requirements of the
firms operating model.”’ [Wika] It can be seen as a view between the business
logic and the application logic and may be used as a connection between these
elements.

The areas of enterprise architecture are business processes, capabilities and
organizational models on the business side; interfaces and protocols on the
application side; additionally meta data for information handling and specifica-
tion of technologies.

2.2. SERVICE-ORIENTED ANALYSIS AND DESIGN 23

2.2.3 Object-oriented analysis and design

Object-oriented analysis and design provides a large arsenal of approaches for
general problems in software engineering. Design patterns, design paradigms
and other standards are common today. There exist a lot of tools and facilities
to transfer real problems into an object-oriented programming environment.

The main aspects of object-orientation are encapsulating, information hiding,
polymorphism and inheritances. Encapsulating describes the logical separa-
tion and organization in packages. Information hiding means separating public
interfaces and inner activities - a user of a class does not have to know how the
object fulfills its requirements. Polymorphism and inheritances are technical
aspects; existing classes can be extended or specialized and polymorphism
describes a dynamic use of those inherited classes.

All these elements can be used in service-oriented architectures too. Actu-
ally these elements are part of the core elements, for example the packaging
to services is just the use of information hiding and encapsulating. Here you
can see the influence of object-oriented design on service-oriented architec-
ture directly, but there are some other examples.

2.2.4 Why are these methods not enough?

Figure 1.1 shows the domains where the modeling techniques belong to, and
in which part of the life cycle a method may be used. Now a service-oriented
architecture must combine these three domains. Therefore we need a hybrid
modeling technique that allows us to fulfill all requirements of each domain.
This is what service-oriented analysis and design should be.

The external view of the services is a functional view of business. It is followed
by a view of business processes. Next step is the identifying of the services
still in the logic of business. These services must be transferred into software
services and finally they can be assigned to special software components. On
the other hand, if you start at the point of view of the technical side an object-
oriented analysis can identify classes, but level of abstraction of classes is for
the whole system much too low. This top-down or bottom-up process can only
be handled by combination of these design methods. [ZKG]

2.2.5 What does SOAD have to provide?

We want to transfer some requirements of service-oriented architectures to our
designing method:

24 CHAPTER 2. ANALYZING AND DESIGNING METHODS FOR SOA

Business

Architecture

Application

Analysis Design Development

Business Process Modeling

Enterprise Architecture

Solution Architectures

Object-Oriented Analysis and Design

Project Lifescycle Phase

D
om

ai
ns

Figure 2.1: Lifecycle Phase

First we have a formal defined notation. Therefore we combine the elements
of BMP (BPEL), EA, OOAD and some additional elements to close the con-
nection between these technologies. The next important thing is a generalized
way to identify services: from the view of business we must select the services
on a technical level. This includes the question ”‘what are good services and
what are not good services”’, so there must be some criteria of quality. Finally
of course there must be tools to use this technology flexibly and the tool has to
be available for business and IT workers too.

2.2.6 How should SOAD work?

As can be seen in our requirements the most important thing is to identify the
services. At first we are using a top-down business-level model to organize
business processes. With these processes we try to find the services.

But as already mentioned before, in most cases using service-oriented archi-
tecture no complete system has to be designed. Instead of this existing sys-
tems have to be integrated in the design process and must be analyzed by the
business view too. As those systems often only provide technical documenta-
tions and interfaces, business processes including existing systems must be
abstracted too and here a bottom-up method is needed.

After or while modeling those business processes the object-oriented analysis
and design techniques help us to identify concrete services. At this point we
do not immerge into the domain of application view; we just have to group und

2.2. SERVICE-ORIENTED ANALYSIS AND DESIGN 25

combine abstract concepts like modeling classes. The difference is the grade
of granularity - the services are quite more abstract than classes or packages.

Next step is the merge of services. On the one hand we have an event-driven
modeling and on the other hand we have services as instances. For instance
one service has to use other services and these dependencies have to be
modeled by a state model. This step will also help to identify the stakeholder
as consumers of specific services.

Now we should be able to go one step closer to the technique view. Enter-
prise architecture helps us to find standards and conventions. For instance
naming conventions or used protocols should be assessed here. There are a
lot of question, which do not belong to the business view, but of course they
are depending on the business view - so we have to use the previous results
in this matter. The result of the enterprise architecture is the public interface
for accessing services.

Finally we have to identify components, packages and at least classes. This
process is a known process of software engineering and we can use object-
oriented methods to solve the last step of the designing phase. At this part
we can model independent applications, we know their responsibilities and we
have given a public interface that must be implemented to make the service
available.

2.2.7 Conclusion

Service-oriented analysis and design is a combination of three different model-
ing types. It has never become a common standard, but it shows the problems
merging business processes, creating a global and reusable architecture and
classic software engineering. The key element is to identify good services.

New systems can be created by top-down modeling; existing systems must
be integrated by a bottom-up strategy. First step is analyzing the business
logic, then we have to identify the services, next step is finding global assign-
ments and finally design each system with it associated services itself.

With regards to requirements we have face up to service-oriented architec-
ture we have get an overview of designing such architecture. We have come
to know that we need a notation and analysis method to combine different
aspects, because service-oriented architectures are interdisciplinary architec-
tures.

26 CHAPTER 2. ANALYZING AND DESIGNING METHODS FOR SOA

2.2.8 Related Work

The concept of service-oriented analysis and design has been established as
a usable tool by using UML notifications. [ZSWP] Because of the fact that the
development is an IBM internal one, focus lies on the development of tools and
techniques. This is the current state of development.

2.3 The generic view

The approach of the generic view focuses on creation and visualization of dif-
ferent stakeholders that may occur in a service-oriented architecture. It tries to
find an answer to the view dilemma. The technique bases on an abstract meta-
model, so first we want to present what meta-models are for. Then we want to
describe the generic view. The result of the generic view model is a 3D visual-
ization, but we focus on the analysis elements and will handle visualization in
short. [EJSS08]

2.3.1 Meta-models

A meta-model in software engineering describes rules, constrains, models and
agreements used for modeling a predefined problem. It may contents nota-
tions and methods to model a model. A typically meta-model is the UML for
instance. ISO has published the standard for meta-models ISO/IEC 24744.
[Wikb]

In our case we need a meta-model to describe the designing elements in a
service-oriented architecture. The model has to show significant relationships
between entities of the architecture. With such a model we are able to use
standards and unifying concepts within our domains to create a useful vocab-
ulary. Also such a model helps to abstract the existing entities and domains.

A concrete architecture is built by combining elements of our meta-model,
patterns and the requirements of our system. So meta-models are powerful
items, which can be used to design a concrete architecture or design another
analysis tool.

2.3.2 The reference model in short

We want to present in short an approach for a meta-model for service-oriented
architecture: the reference model. This model describes the relationships of
important key items of service-oriented architectures. Full description can be

2.3. THE GENERIC VIEW 27

found in the reference, here we want to point out the idea of a meta-model, not
the meta-model itself. [MLM+06]

The core concepts of the reference model are visibility, service, interaction,
real world effects, contracts, execution-context and service description. These
elements are connected with each other and connected with other elements -
for instance visibility is connected with the concept of awareness as a precon-
dition - and also other aspects can connect those key concepts - for instance
a shared state is the connection of interaction and the real world effects.

In addition to that there exist several sub models in the reference model. These
entities characterize specific situations. For instance the information model of
a service describes the information that can be exchanged with the service.
This sub model has relations to the service description entity and to the inter-
action entity: the service description must make this information available for
consumers and the interaction is the process where a consumer will get this
information.

The whole model has a lot of abstract entities, which could describe a service-
oriented architecture - these entities must just be worked out. Creating ar-
chitecture a designer may use this model to create the list of requirements.
To do so he has to create concrete entities with specific attributes and the
meaning and especially the relationships of the entities is determined by the
meta-model.

2.3.3 Generic view concept

The generic view should be a solution for the view dilemma. It contains the
problem that different stakeholders as capability consumers may have com-
pletely different views of the system. Probably two stakeholders may use the
same service to get information, but they are doing completely different things
with this information - so what is the correct representation of the information?
Often some details are needed by one stakeholder, which are irrelevant to all
others.

To find a solution it is not enough to identify all stakeholders, furthermore we
have to identify the goals of the stakeholders. But the most important problem
is to find a way, if we have all stakeholders and their goals identified - it may be
pretty much - to cover the variety of different goals and views.

The idea of the generic view is to create - like the name says - a general view
that allows it to compare goals and relevant views from the different stakehold-
ers. Therefore it uses an on-demand and context-specific creation of views.

28 CHAPTER 2. ANALYZING AND DESIGNING METHODS FOR SOA

2.3.4 Areas

The core elements of the generic view are the information area, the profile
area, the context creation area and the visual representation area.

The information area includes a meta-model to collect information about the
environment and the requirements. The concrete scenario is described by
entities and attributes and the core elements are process, activity, service, or-
ganizational unit and component. An example entity may be the existence of
a specific service or business process.

To describe a stakeholders concerns and goals, in the profile area are created
profiles, which are associated to the meta-models elements and are grouped
and organized by dimensions, which explain the type of the information the
profile is about. There are three structural dimensions - time, abstraction and
domain - which describe the type of view, which will be created by the pro-
file. On the other hand there are two non-structural dimensions - technical and
functional - which describe the entities itself. One profile is a mapping of differ-
ent information from these dimensions.

The context creation area takes the part of mapping this information. The
result is the context and depends on the chosen profiles and of course the
whole environment. It is a role-based task-oriented item incorporating all rel-
evant information. But as raw data it has low use and next step must be the
presentation in a readable way.

This is the part of the visual representation area. By creating a graphical in-
stance of the context, the information is represented by 3D model in a handy
way. Now the designer has an overview about all relevant stakeholders and
their goals. The big advantage of this method is automating mechanism by
creating a visual overview by choosing some profiles.

2.3.5 Model driven security views

To bring the view dilemma into an applied context, I will present the model
driven security architecture. This is an approach to realize security-critical
workflow tasks by providing a web-service-based framework. Interesting for
us are the three views in the system and the special focus to the security re-
quirements. [BHWN05]

The background for this approach is the lack of integrated security manage-
ment in web services. There are different types of approaches for single se-
curity problems, but there exists no systematic design and realization method
to use these approaches. Also the standards like BPEL or WSCI provides no
opportunities to model individual security requirements given by the business

2.3. THE GENERIC VIEW 29

logic. [BEA03]

To describe the concept short as first there is an analysis phase where the
security requirements are discovered, the knowledge of the business logic is
supposed. Using UML notation processes with related security aspects are
described formally. The next step contents the development of three views:
global workflow model, local workflow model and the interface view.

The global view of the system describes an abstracted view of the workflows
including all partners and their interaction of each other. What services ex-
ists, who consumes the service, who will provide it and which documents are
exchanged are the main questions answered by this view. It is modeled as
an UML activity diagram and the security requirements are embedded to the
services as constraints. All in all it is a non-technical view of the system.

Each system itself is seen as a black box in the global view; the local workflow
model takes care of this aspect. It describes internal actions done by calling
a service or actions leading to external calls to other services. The local view
is completely independent from the system and may be modeled anyway, but
should also be a non-technical view.

The technical aspects are illustrated by the interface model. It describes the
public interfaces of a component, which provides one or several services, but
independent from the platform. On this level security requirements involve role-
models and access rights for operations using a sub language of UML.

Finally these models are used to transform the architecture to a specific plat-
form. The framework provides special elements, which handle the security
policies. Related to our concern these processes are irrelevant and can be
read in the referred paper.

2.3.6 Model driven security views and generic view

This architecture is a good example to show the problem of creating different
views with a lot of different stakeholders. We have different requirements to
each view, we have different requirements by each stakeholder and especially
we have to include security aspects as a general key element. It is obviously
that this job may have an extremely increasing complexity by an increase of
participating stakeholders and requirements.

The method of the generic view may help to solve this problem and can be
used as an intermediate step designing the different views. As an additional
step this method may be included into the model driven security views by in-
terpreting the given UML models of the first step and creating automatically
meta-models entities and maybe even needed profiles. Using such automa-

30 CHAPTER 2. ANALYZING AND DESIGNING METHODS FOR SOA

tism a designer may easily create the interface model using given visualiza-
tions of different concerns.

2.3.7 Conclusion

The concept of a generic view focuses on the view dilemma. Its aim is not to
identify any services like the service-oriented analysis and design do. It em-
anates from the point that services have been identified, but the details of the
services interface are not clear yet.

An advantage of the generic view is the automating mechanism and the vi-
sualization of the view. It can easily used as a comfortable tool by a SOA
designer at a specific point of developments life cycle, but it is important to
say, that it only support other design methods and helps out for a small part
of the architecture like we have seen in the example of model driven security
architecture.

2.3.8 Related Work

The view dilemma can still not completely be solved by the generic view. Also
this approach takes just care of a small part of the service-oriented develop-
ment and there exist a lot of projects in this matter. The concept is used for
example in the research of security driven models and another projects deal
with the visualization part. [Kos02]

Bibliography

[BEA03] BEA AND IBM AND Microsoft AND SAP AG AND Siebel Systems.
Business Process Execution Language for Web Services Ver-
sion, May 2003. http://www.ibm.com/developerworks/library/
ws-bpel.

[BHWN05] Ruth Breu, Michael Hafner, Barbara Weber, and Andrea No-
vak. Model driven security for inter-organizational workflows in e-
government, 2005.

[EJSS08] Stefan Eicker, Reinhard Jung, Widura Schwittek, and Thorsten
Spies. Soa generic views - in the eye of the beholder, 2008.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns. Elements of Reusable Object-Oriented Software.
Addison Wesley, 1994.

BIBLIOGRAPHY 31

[Kos02] R. Koschke. Software Visualization for Reverse Engineering.
Springer, 2002.

[LRS02] F. Leymann, D. Roller, and M.-T. Schmidt. Web services and busi-
ness process management, 2002.

[MLM+06] C.M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, and R. Metz.
Reference model for service oriented architecture 1.0, 2006.

[Wei] Peter Weill. Innovating with information systems: What do the most
agile firms in the world do? http://www.iese.edu/en/files/6_
29338.pdf.

[Wika] Wikipedia. Enterprise architecture. http://en.wikipedia.org/w/
index.php?title=Enterprise_architecture&oldid=267828014.

[Wikb] Wikipedia. Metamodeling. http://en.wikipedia.org/w/index.
php?title=Metamodeling&oldid=263804018.

[ZKG] Olaf Zimmermann, Pal Krogdahl, and Clive Gee. Elements
of service-oriented analysis and design. http://www.ibm.com/
developerworks/webservices/library/ws-soad1/.

[ZSWP] Olaf Zimmermann, Niklas Schlimm, Günter Waller, and Marc Pes-
tel. Analysis and design techniques for service-oriented develop-
ment and integration. http://www.perspectivesonwebservices.
de/download/INF05-ServiceModelingv11.pdf.

32 CHAPTER 2. ANALYZING AND DESIGNING METHODS FOR SOA

Chapter 3

Aspect Orientation in Web
Service Composition

Waqas Noor

Contents
3.1 Introduction . 34
3.2 Service Oriented Architecture (SOA) 36
3.3 Web Services . 37
3.4 Need for Web Services Composition 38
3.5 Web Services Composition 38

3.5.1 Introduction to BPEL4WS 38
3.6 BPEL4WS shortcomings . 39

3.6.1 Modularity issues in Modeling Crosscutting Concerns 40
3.7 Aspect Oriented Programming (AOP) 41

3.7.1 Introduction to AOP 42
3.7.2 Overview of AO4BPEL 42
3.7.3 Modularity in AOBPEL 43

3.8 Related . 44
3.9 Conclusion . 45
3.10 Acknowledgments . 45
Bibliography . 45

33

34CHAPTER 3. ASPECT ORIENTATION IN WEB SERVICE COMPOSITION

Abstract: Web services have become the de facto standard for communica-
tion between machine to machine over the network. It allow Interoperability
between heterogeneous and distributed systems. Recent research and de-
velopment in the area of Web services provide the platform for composing,
extending the web service. Business Process Modeling Language (BPML)
and Business Process Execution Language (BPEL) are the output of the on-
going research. However, these languages (specifications) have several limi-
tations regarding segregation of functionality and accepting dynamic changes
at runtime. These web service composition languages compose the multiple
concerns like logging, authentication, exception handling etc with the busi-
ness logic. Such kind of compositions lack in modularity and hence required
separation of concerns. Aspect Orientation in web services composition tries
to separate the crosscutting concerns from business logic.

3.1 Introduction

In the past, Web was considered as static platform for sharing the resources
over the Internet. With the invention of Service Oriented Architecture (SOA)
and technology enhancements in Web services allow not only alow sharing
of static resources but distributed services over the Internet. Web services
specification conform the interoperability of services.

Web services are the way to realize Service Oriented Architecture (SOA) which
enable the other distributed services to communicate over the internet in stan-
dardized and machine-to-machine interoperable way. These services can be
published, consumed and discovered over the internet by using the open stan-
dards technologies such as WSDL (Web Services Description Language),
SOAP (Simple Object Access Protocol) and UDDI (Universal Description Dis-
covery and Integration).

Due to time-to-market pressure, sometime services need to be combined to-
gether for providing new functionality by reusing the other existing services.
These kind of web service composition lead to many new specifications and
languages such as BPML (Business Process Modeling Language), BPEL (
Business Process Execution Language) [ACKM03]. These process-based lan-
guages get inspiration from the work flow based technologies. Workflows ba-
sically consist of tasks, grouped together and providing the functionality as
unit work. These workflows are used to optimize and organize the business
processes.

The process-based web service composition has limitations. In this report, I
elaborate few shortcomings of these languages in subsequent paragraphs.

The first problem of web service composition is related to modularization. The
specification of web service composition allows composition of different ser-
vices and each service may specify a business process. The process may
also consist of other services as well. Each service may consist of different

3.1. INTRODUCTION 35

activities (tasks which composition designers write while making the compo-
sition of service) like invocation of other services, exception handling, per-
formance, logging, etc. The resulting code of these activities in composition
often does not fit into concept of modularization. To obtain the functionality
mentioned above in web service composition, these activities cut across the
process boundaries. In the absence of modularization in the specification of
web service composition, the crosscutting activities code are tangled with other
processes (specified in web service composition) [CM04a]. This cross cutting
within process makes it difficult for the process designer of service to maintain
and see the clear view of the web service composition. Change required in the
composition of service needs to effect the several areas of composition. This
changing process is time consuming, error prone and might be a threat for
the business (In Business to Business (B2B) has usually long running process
[AV06]).

The solution to above mentioned problems are discussed in Aspect Oriented
Web Service composition with AO4BPEL [CM04b]. The authors believe that
their new extension to process-based web service composition can tackle
modularity and dynamic changes at runtime problems in composition of ser-
vice. By applying the Aspect Orientation concepts, they argued that the mod-
ularity and flexibility of services is increased. Crosscutting concerns such as
authorization, authentication, business rules, profiling and protocols are han-
dled in different way as they handle in past by tangling the code. Code tangling
example is shown below in figure 3.1.

Student

Course

Registration

Logging

Log(...)

Database

insert(...)
update(...)
...

Figure 3.1: Code tangling example [cod]

Aspects are the crosscutting concerns which are written separate as stan-
dalone module to the core functionality. Combining together these aspects
into core functionality is called weaving.

36CHAPTER 3. ASPECT ORIENTATION IN WEB SERVICE COMPOSITION

3.2 Service Oriented Architecture (SOA)

Over the decades, IT is enabling the businesses integration but increasing lev-
els of complexities in architecture, requirements, integration issues, distributed
nature of applications and time-to-market pressure leads problems such as
integration, high cost, time consuming and even more increasing complexity.
Previously, business integration solutions were more tightly coupled due to no
clear standards in terms of programming, operating system, communication
interfaces, etc. The change cost in such integrated, tightly coupled systems is
expensive and required time and resources. In such business scenarios, these
kinds of integration problems trend towards the need of new architecture.

Service Oriented Architecture (SOA) is architecture which promised to solve
the above stated problems. According to SOA, systems are loosely coupled,
consist of service provider or/and service consumer which interact with each
other according to contract which is defined for them. Service Providers are
functionality which encapsulated as services and service consumers use the
services [Man05].

It is worth mentioning that SOA is not a technology rather an architecture. It
models the applications as services. Business functionality is organized as a
set of modular, reusable shared services. The services are loosely coupled
and accessed/consumed in standardized way.

Policy

End Point

Contracts

Service

Consumer
Service

Messages

Serves

Describes

Governed

by

Exposes

Implements

Sends/

Receives

Adheres to

Binds to

Understand

Sends/

Receives Components

Relations

Figure 3.2: Components of Service Oriented Architecture [RGO06]

The core central part of SOA are Services, which are exposed as endpoints
(End Point is URI, a specific address where the service can be located). The
service consumers bind to that end points. The communication between ser-
vices and service consumers are in the form of messages. The relationship
between services and service consumers are defined as contracts. The poli-
cies in SOA define the security, authentication, auditing etc. By engaging the
SOA into software, applications turn the services reusable, easy to integrate

3.3. WEB SERVICES 37

and standard way to publish, consume and deploy. The services can share
information more securely than ever with other business components. The
configuration and change is really made easy in SOA. Efficiency is improved
by reusability of services. The software cost is reduced by using standardized
technologies [Man05].

3.3 Web Services

Web services are platform-independent distributed software components which
enable the software to connect each other in loosely coupled manner. They
use open standards, technologies like HTML, XML and SOAP. They also in-
troduce and utilize new concepts, technologies like SOA, WSDL and UDDI. In
Web services, application are composed of services which can be published,
discovered and invoked. The components of web services are shown in figure
3.3

Figure 3.3: Roles and Interact in Services [Gis01]

Service provider encapsulates the implementation of functionality and only
provides the interface to use the service. The service requester discovers the
service which is published by service provider and binds itself to service. After
binding to service provider, it can invoke the services. Service requester get
the reference of service from the service broker. Service Broker is a repository
of service providers.

Web services publish their services as WSDL which describe the interfaces,
messages types, end points and some other properties of that service. All
communication between web service provider and requester are as SOAP
messages which are XML elements. SOAP messages adhere the message
specification which is describe in WSDL [Man05].

38CHAPTER 3. ASPECT ORIENTATION IN WEB SERVICE COMPOSITION

3.4 Need for Web Services Composition

Currently, in the world of globalization, businesses need to adapt new changes
quickly. Businesses need more flexible applications which require less or no
change and accept changes at runtime. Growing and merging businesses re-
quire combining of 2 or more services without changing the implementation,
communication interfaces etc. Along with such kind of requirements, busi-
ness world is quite mature and developed applications based on open stan-
dards technologies like XML, SOAP and WSDL. Web Service composition is
an open, standards technique for connecting existing web services together
to create new services. The basic requirements for composition are to invoke
other services synchronously and asynchronously as well. This should be re-
liable, scalable and should be adaptable by the IT environment.
Business Process Modeling Language (BPML) is used to model the business
processes. It has capabilities to model generic business processes as well.
Unfortunately, BPML did not take much part in businesses but it motivated in-
dustry giants to think of similar technology which should enable web service
composition and execution of business processes.
Business Process Execution Language (BPEL) is subset of BPML but con-
sider more stable, useful and de facto standard for a web service composition
[BPM02]. BPML targets the composition at design level but BPEL is for exe-
cution of processes. BPEL process consists of activities, partner link and flow.
The BPEL engine executes the BPEL process.
The Web Service Choreography Interface (WSCI) is an XML-based interface
description language that describes the flow of messages exchanged by a
Web Service participating in choreographed interactions with other services
[ea02]. WSCI manage dynamically messages (messages which exchange) of
different web services. It is more towards managing the messages rather than
processes.

3.5 Web Services Composition

In this section, I will introduce the de facto standard for the web service com-
position named as Business Process Execution Language for Web Services
(BPEL) and their short comings.

3.5.1 Introduction to BPEL4WS

BPEL (Business Process Execution Language) is XML based language which
has deep roots from workflow based languages. A workflow model in workflow
management systems depicts the work of person or group. It consists of basic
set of activities (tasks) and the order of execution between these tasks. On

3.6. BPEL4WS SHORTCOMINGS 39

the other hand, BPEL, like other programming languages introduced the con-
trol structures. The control structure like if-else, loops, communication (syn-
chronous, asynchronous) make the positive edge to BPEL over the workflow
based systems. The business processes in BPEL consist of activities such as
<receive>, <invoke>, <reply> and some other structured activities that con-
trol the flow of actions and data between these primitive activities. Along with
these activities variables and partners are important elements in any BPEL
processes. Variables hold the data either from the requester or from reply of
some partner link. BPEL processes can execute on any BPEL compliant en-
gine such as Oracle BPEL and ActiveBPEL [Vas07]. BPEL engine takes the
definition of business process and executes it accordingly. The normal exe-
cution processes invoke the partner links, copy data from different services,
update the database entries and response to other services, etc.

For example, listing 3.1 shows a BPEL process from [RK03]. The BPEL pro-
cess consist of process named echoString. This simple process takes string
as input and returns the string which is passed to this process as parameter.
The variable name request is holding the string which is passed as input pa-
rameter. The sequence activity consist of other 2 different BPEL activities like
<receive> and <reply>. The receive activity waits for the invocation of the
operation echo. Once the operation is invoked by the client then BPEL pro-
cess replies with input string in <reply> activity. The variable request is also
used to hold the result string which contains the reply message. The complete
listing is shown below in 3.1.

Listing 3.1: Simple BPEL Process
<process name = ” echoStr ing ” />
<v a r i a b l e s>

<v a r i a b l e name= ” request ” messageType= ” StringMessageType ” />
< / v a r i ab l e s>
<par tners>

<par tne r name= ” c a l l e r ” serv iceLinkType= ” tns:echoSLT ” />
< / pa r tne rs>
<sequence name= ” EchoSequence ”>

<rece ive par tne r= ” c a l l e r ” portType= ” tns:echoPT ”
opera t ion= ” echo ” v a r i a b l e = ” request ”
c rea te Ins tance= ” yes ” />

<r ep l y pa r tne r= ” c a l l e r ” portType= ” tns:echoPT ”
opera t ion= ” echo ” v a r i a b l e = ” request ”
name= ” EchoReply ” />

< / sequence>
< / process>

3.6 BPEL4WS shortcomings

BPEL as like other programming languages has lack of modularity in modeling
the business processes. Object Oriented Programming (OOP) languages con-
sider being more flexible but they are also lacking in managing the crosscutting

40CHAPTER 3. ASPECT ORIENTATION IN WEB SERVICE COMPOSITION

concerns and lose the modularity. BPEL processes are also insufficient to ac-
cept the changes related to their composition at runtime. In the subsequent
section, I discuss these issues in detail with examples.

3.6.1 Modularity issues in Modeling Crosscutting Concerns

As I discussed in above section that the current web service composition tech-
nologies like BPEL are lacking in modularity when the code for aggregating
the different web services cut across the concern like logging, performance,
authentication, business rules, etc. To achieve the business requirement for
web service composition along with the concerns, the related pertaining code
cut across the modularity of software. Let me elaborate this scenario with ex-
ample of simple travel service shown in figure 3.4. The example shown in
figure 3.4 is consists of BPEL process. This service exposes two operations
getFlight and getHotel. These operations are specified in BPEL process. To
keep the example simple, this travel service is only consist of two operations
and some other features like logging, authentication, business rules. The hori-
zontal bar shows the service and vertical bars shows the processes. The gray
area depicts the cross cutting concerns.

172 A. Charfi and M. Mezini

illustrated by the grey area cutting across the boundaries of the vertical bars
(processes) in Figure 1. As a consequence, if the billing service ws1 is replaced by
some other billing service ws2, or the billing policy changes, we would have to
change both process specifications for getFlight and getHotel. The problem is much
more critical if we have more than two composite operations, which is to be expected
in real complex web services. In general, one has to find out all the code that pertains
to a certain concern and change it consistently. This is unfortunate especially because
business rules governing pricing policies can be expected to change often.

Fig. 1. Crosscuts in process-based web service composition

In general, business rules are typical examples of crosscutting concerns [18] in web
service compositions. In the very competitive business context worldwide, business
rules evolve very often (new partners, strategies…). Currently business rules are not
well modularized in BPEL process specifications. Thus, when new business rules are
defined, they get scattered over several processes. The resulting application is badly
modularized, which hampers maintenance and reusability [18].

Again, the problem is that implementing business rules effects, in general, sets of
points in the execution of the web services which transcend process boundaries. At
present, BPEL does not provide any concepts for crosscutting modularity. This leads
to tangled and scattered process definitions: One process addresses several concerns
and the implementation of a single concern appears in many places in the process
definition. If crosscutting concerns were well separated, process designers could
concentrate on the core logic of process composition and process definitions become
simpler. One would be able e.g., to exchange security policies without modifying the
functional part (independent extensibility).

2.2.2 Changing the Composition at Runtime. When a BPEL process is deployed,
the WSDL files of all the services participating in the composition must be known
and once a process has been deployed, there is no way to change it dynamically. The
only flexibility in BPEL is dynamic partner binding. This static view of the world is
inherited from traditional workflow management systems from which the process-
oriented web service composition model emerged; WFMS exhibit a major deficiency,

calcprice

Process 2

 calcprice

Travel
web service

Process 1

Pricing
ws2

Pricing
ws1

getHotelgetFlight

crosscutting
concern

Figure 3.4: Example of crosscutting in process based composition [CM04b]

Due to business requirement, let suppose that BPEL service provider wants to
incorporate the auditing functionality in their existing code (changes in BPEL
process). The service providers capture the different state of values like re-
sponse time, logging of request/response, failure handling, etc. To add the au-
diting functionality into existing service, the related code for these functionality
scattered across many places in process. This is because of lack of modu-
larity in BPEL. BPEL does not provide any specification to modularize such
crosscutting concerns. Such kind of web service composition leads towards
complex code, difficult to manage and very hard to design such kind of require-
ments as modules.

3.7. ASPECT ORIENTED PROGRAMMING (AOP) 41

In real environment, such kind of deficiencies can be seen in many places
in processes. For example, if we want to incorporate the price calculation
functionality to our existing example, let say we introduced new service called
calculatePrice. This service calculates the price, in this case it calculates the
price for getFlight operation as well as getHotel operation. The example of this
service is shown in figure 3.4. We expose our new calculation service as com-
mon service for other processes. Other processes like getFlight and getHotel
can use this service. The pertaining code which enables the access of calcu-
lation service for this process is not modularizing in this process. The client
(the term client is not similar to network client-server model. This is piece of
code which access/call the service/object) of this service is crosscut the mod-
ular approach of process-based web service composition. This crosscutting
scenario is shown in figure as grayed area.
Again, the major issue, crosscutting concerns, the pertaining code to these
crosscutting concerns are placed in different places in BPEL process. Due to
lack of modularity in Web service composition, specifically BPEL, the tangled
code are scattered at different places in process definition. Industry practice
shows that processes deal with many concerns at the same time. This kind of
process definition leads implementation of single concern at many places. If
these kinds of concerns are implemented as module then process designers
can concentrate on writing logic of core concern [CM04b]. This kind of practice
definitely makes the process simple for development, maintains and reusable
as well.

3.7 Aspect Oriented Programming (AOP)

Aspect Orientation is a new but rapidly growing research area in software en-
gineering. Till now, couple of powerful programming languages have been
developed and solutions are provided for modularity. The example of such
Aspect Oriented Programming (AOP) language is AspectJ. The concept of
separating the crosscutting concern is not only limited to implementation. As-
pect Oriented Modeling (AOM) deals with the crosscutting concerns at design
level [SSK+06]. When we start decomposing the requirements into entities at
design level, at that time we only deal with abstract form of concerns. There
is the need for managing the crosscutting concerns at design level .When this
design transforms into implementation; gap is created with the semantics of
design and implementation. This problem leads the need for aspect oriented
modeling [SHU03].

Aspect Oriented Programming (AOP) is a programming technique to address
the problems of modularization of crosscutting concerns at implementation
level. AOP is considered solution to limitations stated in above sections. As-
pect can be applied to any language including Object Oriented Programming
and Process Oriented Style. The use of aspects in web service composition

42CHAPTER 3. ASPECT ORIENTATION IN WEB SERVICE COMPOSITION

can solve the problems like modularization etc [CM04b]. The reference imple-
mentation of this concept shows that the resulting process is modularized.

3.7.1 Introduction to AOP

AOP provides the paradigm to modularize the concern, called aspect, in a
complex systems. AspectJ is considered most powerful programming lan-
guage in current AO programming. Join Points, Joincuts and advice are the
most import terminologies are in AspectJ [KHH+01]. Join Points are the points
in the code base which in turns part of execution of the program. The Join
Points are like invocation of method, calling of constructor etc.

Join points are identified and added in the execution of program where mod-
ularity is required for the crosscutting concern. The pointcut is introduced for
hooking the application context to AspectJ. The pointcuts can be selected,
marked with the type of return, parameter, name of method etc. The As-
pectJ compiler translates the resulting join point into standard java byte code
as method call. Advice is third most important terminology in AspectJ. This
can be add/modify/override the functionality which is pointcut. Whenever ex-
ecution of program meets with pointcut, the related advice code is executed.
Currently AspectJ provide execution of advice in 3 ways. This can be before,
after and around. As it is cleared in advice name, before, is executed before
the method which meets the join point. Similarly after and around advice are
executed after the method and around advice can take the control of original
method execution respectively. Around advice can add more code which may
have more join points and pointcuts.

As it is mentioned earlier than AspectJ compiler translates the aspects and
produces the standard java byte code. AspectJ provides 2 types of possibili-
ties to add the point cut. In compile-time, pointcuts are translated and placed
in original code where join points meet the condition to match the name. In
Dynamic approach, aspects can be (un)deployed at runtime so the behavior
of application can be changed due to this dynamic aspect orientation [CM04b].

3.7.2 Overview of AO4BPEL

Aspect Orientation can fix the limitations in web service composition as de-
scribed in early sections. The extension of BPEL4WS with AspectJ has ability
to inject the aspect into web service composition at runtime. BPEL process
consists of activities, so for Aspect, join points are well defined points in ex-
ecution of BPEL process. Any BPEL activity possibly can be join points and
properties of activity can be used as predicates. As BPEL process is XML
based so XPATH is preferable language for querying and processing of XML
documents. In extension of BPEL, like AspectJ, 3 types of advices are avail-

3.7. ASPECT ORIENTED PROGRAMMING (AOP) 43

able which are before, after and around. The before advice in BPEL extension
is an activity in BPEL process which should execute before the original activ-
ity as mentioned in pointcut executed. Similarly after advice execute after the
activity. Sometime it is required to replaced the existing activity, the around
advice do this job in extension of BPEL. BPEL has possibility to write the code
segment to fulfill the task in any programming language. But this kind of ad-
dition of code segment makes the BPEL process less portable. For avoiding
the portability issues, infrastructural web service are used which can access
the orchestration engine at runtime [CM04b]. The java code execution server
executes the java method like reflection in java. These methods are written as
static methods in java class which are required by the extension of BPEL.

Figure 3.5 depicts the architecture of extended BPEL orchestration with As-
cpect. The system is sub divided into 5 major components. The process
definition and deployment tool, infrastructure web services, BPEL runtime, As-
pect definition and deployment tool and Aspect Manager. The BPEL runtime is
extended version which incorporates the aspects in it. Infrastructural web ser-
vices are used to write and invoke the code segments other than the normal
BPEL activity. Aspect definition and deployment tool is used manage the as-
pect’s registration, deployments, activation and deactivation. Aspect Manager
is responsible for controlling the aspects execution in the system

176 A. Charfi and M. Mezini

execution of additional crosscutting functionality will be integrated. XPath provides
logical operators, which can be used to combine pointcuts.

Like AspectJ, we support before, after and around advice. An advice in AO4BPEL
is an activity specified in BPEL that must be executed before, after or instead of
another activity. The around advice allows replacing an activity by another (dummy)
activity. Sometimes we need to define some advice logic which cannot be expressed
in BPEL4WS. One could use code segments in a programming language like Java in
Collaxa’s JBPEL [25] for this purpose. However, this breaks the portability of BPEL
processes, which is the reason for us to use what we call infrastructural web services.
Such services provide access to the runtime of the orchestration engine. We set up a
Java code execution web service, which invokes an external Java method in a similar
way to Java Reflection. Each code snippet that is required within an AO4BPEL
advice can be defined as a static method in a Java class.

Figure 3 sketches the overall architecture of our aspect-aware BPEL orchestration
engine. The system consists of five subcomponents: the process definition and
deployment tool, the BPEL runtime, the aspect definition and deployment tool, the
aspect manager, and the infrastructural services. The core components are the BPEL
runtime and the aspect manager. The BPEL runtime is an extended process
interpreter. It manages process instances, message routing and takes aspects into
account. The aspect definition and deployment tool manages the registration and
activation of aspects. The aspect manager controls aspect execution.

Fig. 3. Architecture of an aspect-aware web service composition system

In our first implementation, we intend to support only <invoke> and <reply> join
points because basic activities represent the interaction points of the composition with
the external partners. The most straightforward way to implement a dynamic aspect-
aware orchestration engine is to extend the process interpreter function to check if
there is an aspect before and after the interpretation of each activity. If this is the case,
the aspect manager executes the advice and then returns control to the process
interpreter. We believe that for the first prototype, the performance overhead induced
by these local checks is negligible compared to the cost of interacting with an external
web service.

BPEL
Runtime

Java Platform
Infrastructural
web services

Aspect Manager

Process
definition and

deployment tool

Process
Interpreter

Aspect
definition and

deployment tool

Aspect
repository

Figure 3.5: Architecture view of extended BPEL runtime - AO4BPEL [CM04b]

3.7.3 Modularity in AOBPEL

In this section, I will elaborate the solution to BPEL limitations regarding mod-
ularity.

As I mentioned in above section that modularity is one of the limitation in BPEL
process and we can modularize the crosscutting concerns. Here, in this sec-
tion I will elaborate the solution to modularization problem in the extension of
BPEL. The aspect is shown in listing 3.2. For this process, we need to count
the number of the times service is invoked. We will save the counter in a file
such that we will access the file first, then read the old number, increase the
number 1 time and then save it back to file system. BPEL does not have ca-

44CHAPTER 3. ASPECT ORIENTATION IN WEB SERVICE COMPOSITION

pability for file handling operation. The extended version of BPEL has one
subcomponent infrastructural web services which can do this job for us. It
has method which takes method name, class name and parameters. When
the process execution reach at that point, it invokes the aspect after the ac-
tivity, read the old count value, increase it and then save it back with modified
value. Currently it only support primitive and string as parameter [CM04b].

Listing 3.2: Aspect aware BPEL process
<aspect name= ” Counting ”>
<par tne rL inks>

<par tne rL ink name= ” JavaExecWSLink ” . . . />
< / pa r tne rL inks>

<v a r i a b l e s>
<v a r i a b l e name= ” invokeMethodRequest ” . . . />

< / v a r i ab l e s>
<po in tcu tandadv ice type= ” a f t e r ”>

<p o i n t c u t name= ” Lufthansa Invoca t ions ”>
/ / process / / invoke [@portType = ” LufthansaPT ” and
@operation = ” sea rchF l i gh t ”]

< / p o i n t c u t>
<advice><sequence><assign>

<copy>
<from>increaseCounter< / from>
<to v a r i a b l e = ” invokeMethodRequest ”

pa r t = ”methodName” />
< / copy>< / assign>

<invoke pa r tne rL ink = ” JavaExecWSLink ”
portType= ” JavaExecPT ”
opera t ion= ” invokeMethod ”
i n p u t V a r i a b l e = ” invokeMethodRequest ” />

< / sequence>< / advice>
< / po in tcu tandadv ice>

< / aspect>

The Aspect Definition and deployment component is responsible for maintain
the WSDL and configuration related to newly added aspect. Once the aspect
becomes active, the Aspect Manager injects the aspect into extended BPEL
runtime. Author argued and show with example that the AOBPEL extension of
BPEL can solve the problems of modularity

3.8 Related

Dynamic changes in web service composition and flexibility to adapt the changes
at runtime are new but growing research area. eFlow, a system that supports
the specification, enactment, and management of composite e-services, mod-
eled as processes that are enacted by a service process engine [CCI+00].
The Process is modeled in the form of graph which defines the execution flow
of nodes. It models the business process as composite services. Like the
extended BPEL runtime engine, it also supports the dynamic modification of

3.9. CONCLUSION 45

services. it provides 2 types of changes, Ad hoc (Changes to single running
process) and Bulk changes (Changes many instances of same process). But
unlike the AO4BPEL, it migrates the whole schema to destination schema of
changes. This process follows the consistency rules for avoid any runtime-
errors. AO4BPEL only weave the advice at given pointcut.

Dynamic AOP technique is used for adaptation of changes at runtime. But
mostly it applies for hot fixes in services at runtime but not used for real pur-
pose as modularization technique for the crosscutting concerns.

3.9 Conclusion

In this report, I discussed the limitations of modularity and accepting dynamic
changes at runtime in web service composition languages. Web Service com-
position languages which inherit from the workflow based languages are inca-
pable for modularization of crosscutting concerns and inadequate for handling
the dynamic changes at runtime. Authors argued that the aspect orientation is
solution for modularization of crosscutting concerns and adaptability of runtime
changes [CM04b]. For the proof of concept, they extended the BPEL runtime
engine. The new extension is called AO4BPEL. This BPEL runtime extension
is Aspect aware. It means that aspect can be (un)pluged into BPEL process
at runtime. Composition of service can also be altered at runtime with aspect.
The resulting BPEL process is now modularize against crosscutting concerns
and can adapt the changes at runtime.

3.10 Acknowledgments

I would like to thank Andreas Ganser for comments on earlier drafts of this re-
port. I also thank the anonymous reviewers for their suggestions for improving
this report.

Bibliography

[ACKM03] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machi-
raju. Web Services - Concepts, Architectures and Applications.
Springer, November 2003.

[AV06] D.L. Amoroso and S. Vannoy. Translating the adoption of b2b e-
business into measurable value for organizations. System Sci-
ences, 2006. HICSS ’06. Proceedings of the 39th Annual Hawaii
International Conference on, 6:104b–104b, Jan. 2006.

46CHAPTER 3. ASPECT ORIENTATION IN WEB SERVICE COMPOSITION

[BPM02] BPMI. Bpml—bpel4ws a convergence path toward a standard bpm
stack. 2002.

[CCI+00] Fabio Casati, Fabio Casati, Ski Ilnicki, Ski Ilnicki, Lijie Jin, Li-
jie Jin, Vasudev Krishnamoorthy, Vasudev Krishnamoorthy, Ming
chien Shan, and Ming chien Shan. c© copyright hewlett-packard
company 2000 adaptive and dynamic service composition in
eflow. Web Site: http://www.hpl.hp.com/techreports/2000/
HPL-2000-39.pdf, 2000.

[CM04a] Anis Charfi and Mira Mezini. Aspect-oriented web service compo-
sition with AO4BPEL. In European Conference on Web Services,
pages 168–182, 2004.

[CM04b] Anis Charfi and Mira Mezini. Aspect-oriented web service compo-
sition with AO4BPEL. In European Conference on Web Services,
pages 168–182, 2004.

[cod] Aspect Oriented Programming. Web Site: http://phpaspect.
org/documentation/aop.html. Accessed on 15th January 2008.

[ea02] A. Arkin et al. Web service choreography interface (wsci) 1.0. Web
Site: http://www.w3.org/TR/wsci/, 2002. Accessed on 13th Jan-
uary 2008.

[Gis01] Dan Gisolfi. Web services architect: Part 1 an introduc-
tion to dynamic e-business. Web Site: http://www.ibm.com/
developerworks/webservices/library/ws-arc1/, 2001. Ac-
cessed on 15th January 2008.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of aspectj. pages
327–353. Springer-Verlag, 2001.

[Man05] Manoj Mansukhani. Service oriented architecture white paper.
June 2005.

[RGO06] Arnon Rotem-Gal-Oz. What is soa anyway? 2006.

[RK03] S. Weerawarana R. Khalaf, N. Mukhi. Service-oriented composition
in bpel4ws. 2003.

[SHU03] Dominik Stein, Stefan Hanenberg, and Rainer Unland. Position
paper on aspect-oriented modeling: Issues on representing cross-
cutting features. 2003.

[SSK+06] A. Schauerhuber, W. Schwinger, E. Kapsammer, W. Retschitzeg-
ger, and M. Wimmer. Towards a common reference architecture for
aspect-oriented modeling. 2006.

[Vas07] Yuli Vasiliev. SOA and WS-BPEL. Packt Publishing, August 2007.

Chapter 4

Service Inventory
Design Patterns

Roland Hildebrandt

Contents
4.1 Introduction . 48
4.2 Classical Design Patterns . 49

4.2.1 Example: Template Method 49
4.2.2 Patterns of Enterprise Application Architecture 50
4.2.3 Pattern Languages . 51

4.3 Service Inventory Design Patterns 51
4.3.1 Example: Service Normalization 53
4.3.2 Inventory Boundary Patterns 54
4.3.3 Layer Patterns . 55
4.3.4 Centralization Patterns 57
4.3.5 Canonical Patterns . 57
4.3.6 State Patterns . 58

4.4 Service Inventory vs. Classical Design Patterns 58
4.4.1 Specialization . 59
4.4.2 Application . 59
4.4.3 Documentation . 60
4.4.4 Pattern Languages . 60

4.5 Conclusion . 61
Bibliography . 61

47

48 CHAPTER 4. SERVICE INVENTORY DESIGN PATTERNS

Abstract: Service inventories are collections of services that all adhere to
the same design standards the service inventory imposes on them.
Though greater in scope, less concrete, and resulting in greater conse-
quences than classical design patterns, service inventory patterns provide
useful strategic design advice to establish, structure, and govern a service
inventory.

4.1 Introduction

With service-orientation a new paradigm in software construction originated
in the recent years; it promises two ultimate goals: increased business agility
and reduced IT expenses. Central to service-orientation is the realization of all
software components throughout an enterprise as business-aligned, indepen-
dent services. A key characteristic of these services is their interoperability.
It allows flexible composition of existing services into new ones, to maximize
reuse and agility within an enterprise.
When introducing service-orientation to your company, a special emphasis has
to be placed on the establishment of the supporting architecture. Important
parts of this architecture are built by so-called service inventories.

Service Inventory

“A service inventory is [defined as] an independently standardized and gov-
erned collection of complementary services within a boundary that represents
an enterprise or a meaningful segment of an enterprise.” [Erl09]
In addition to this characterization of a service inventory to be independently
standardized and governed, the services themselves may be individually de-
veloped and governed. But to keep them well aligned to each other and
therefore interoperable, all adhere to the same design standards the service
inventory imposes on them.
By introducing additional architectural elements like runtime platforms, a ser-
vice inventory can—but not necessarily—represent the boundary for a con-
crete architecture implementation.

Design Patterns

Design patterns are schematic solutions of certain real-world problems that
consistently reappear. Therefore they are worth being named and documented,
to provide these best practices to others. Using design patterns in software
construction has been very successful and popular up to now.
Service inventory design patterns are patterns especially centered on shaping
a service inventory in desired ways.

4.2. CLASSICAL DESIGN PATTERNS 49

As a pioneer in service-orientation and its documentation, Thomas Erl pub-
lished a first mature pattern catalogue on service-oriented architecture design
patterns, including several focusing on service inventory design.
Comparing these service inventory design patterns with the well-known clas-
sical design patterns in software construction may help to further comprehend
these novel patterns.
Therefore section 4.2 starts with a summarizing discussion of classical de-
sign patterns in software construction. Section 4.3 accordingly introduces the
service inventory design patterns documented by Thomas Erl. On this basis,
section 4.4 finally compares the two pattern types.

4.2 Classical Design Patterns

Inspired by the architect Christopher Alexander and his development of archi-
tectural design patterns, the so-called “Gang of Four” applied his ideas to soft-
ware construction. They came up with a seminal book, presenting twenty-three
design patterns accumulated around the building of “elements of reusable
object-oriented software.” [GHJV95]
Each of their patterns is documented using the same profile; consisting of
intent, synonyms, motivation, applicability, structure, participants, collabora-
tions, consequences, implementation, sample code, known uses, and related
patterns. The pattern structures are expressed via UML class diagrams, and
examples consist of concrete class diagrams and source code.
These design patterns especially provide practical and proven design knowl-
edge. The deliberate naming of the patterns greatly assists communication
across developers and documentation of software systems. Through their
problem-oriented documentation, they build a helpful catalogue of repeatable
design solutions; therefore this book established as a valuable reference for
many software developers.
In order to further comprehend these classical design patterns, the following
section will introduce a concrete example of such a pattern.

4.2.1 Example: Template Method

Software developers often need to specify an algorithm in several concrete
occurrences that slightly differ in the details. But as those variants share a
common structure, there is the risk of a redundant definition of this base struc-
ture. An example is the opening of a document. While the main steps (e.g.,
checking authentication and reading the file) are the same on an abstract level,
the concrete realization of these steps differs for certain document types.
The possible redundancy when implementing these document types is pre-
vented by the Template Method pattern; it suggests defining the basic algorithm
structure in an abstract base class. Concrete realizations of this algorithm are

50 CHAPTER 4. SERVICE INVENTORY DESIGN PATTERNS

build via subclasses that define the details of the abstract steps.
Figure 4.1 displays the UML class diagram of a possible solution to the redun-
dancy problem, using the Template Method design pattern: the abstract doc-
ument base class defines the open document method. This method executes
several base steps, including the abstract steps authentication-check and file
reading. Concrete realizations of these steps are implemented in the spread-
sheet and text document classes. These classes inherit the same base struc-
ture from the open document base function; therefore redundancy is avoided.

Figure 4.1: Template Method UML Class Diagram.

As seen with this example, these design patterns on the one hand are—
besides requiring an object-oriented environment—independent from concrete
technology. But on the other hand they provide fine-granular design advice on
a level close to implementation.
The practical benefit of this pattern catalogue inspired many other authors in
software. They either built on these seminal patterns by studying their appli-
cation concerning specific technologies, or published new patterns assembled
on other, more specific areas. With Patterns of Enterprise Application Archi-
tecture, Martin Fowler followed the second approach. [Fow03]

4.2.2 Patterns of Enterprise Application Architecture

In his pattern book Fowler restricts to what he calls “enterprise applications”—
business centric data management systems, which are often confined by com-
plex rules. He presents over fifty different patterns.
Although this new patterns focus on a more specialized area, the documenta-
tion and the level of application of these patterns remind of the Gang of Four
patterns. Fowler describes each pattern by an introduction, details on how it
works, when to apply it, and a source code example. Again UML class dia-
grams express the structure of the patterns.

4.3. SERVICE INVENTORY DESIGN PATTERNS 51

4.2.3 Pattern Languages

Design Patterns are no mavericks, meaning they are not only documented
together, but they are also intended for combined application. Therefore pat-
tern catalogues usually contain sections on the relationships between patterns.
These relationships can be specified differently in style and extend.
Subsection 4.4.4 compares the classical pattern language with the one for ser-
vice inventory design patterns.

4.3 Service Inventory Design Patterns

In order to establish the context and intended end-results of the service inventory
design patterns, this section will start with a quick revision of service-orientation
principles and goals, while focusing on the relevance to service inventories.
For the official definitions of these goals and principles, see SOA Principles of
Service Design [Erl07].

Principles of Service-Orientation

• Service Reusability : A mature service inventory is essential to provide
services and their capabilities as “reusable enterprise resources.” [Erl07]

• Service Discoverability : Being able to find and understand existing ser-
vices is a fundamental requirement that can be highly supported by a
well-designed service inventory.

• Service Composability : Essential to service-orientation is the composi-
tion of single services. Standards applied throughout an inventory are
necessary to provide combination possibilities on a high level.

• Service Autonomy : A service inventory has to find a balance between
standardization throughout all its services and allowing each service to
be individually developed and implemented.

• Standardized Service Contract : A service inventory is intended to build
the boundary for certain service design standards; i.e., services within
the inventory are forced to adhere to those standards, whereas external
services are not.

• Service Loose Coupling and Service Abstraction: Service consumers
are only depended on the service contracts, and should be independent
from specific implementations. A service inventory can provide means to
establish such a loose coupling, and additionally may enforce it to provide
the desired service abstraction.

52 CHAPTER 4. SERVICE INVENTORY DESIGN PATTERNS

• Service Statelessness: As the minimization of individual resource usage
is desired for every single service, it is beneficial to provide the means to
do so in an inventory-wide standardized way.

Goals of Service-Orientation

• Increased Intrinsic Interoperability : All services within an inventory are
supposed to be well aligned to each other. The goal is to make them not
only interoperable in their initial configuration, but in a way that allows
flexible rearrangements in new and maybe yet unforeseen combinations.

• Increased Federation and Increased Vendor Diversification Options: The
services within an inventory are individually developed and maintained;
yet the inventory is supposed to represent an uniting layer that increases
the IT federation throughout an enterprise, but leaves possibilities to vary
specific implementation platforms.

• Increased Business and Technology Domain Alignment : The establish-
ment of inventory boundaries based on business domains helps to keep
the technology and business domains aligned during further evolution of
an enterprise.

• Increased Return Of Interest, Increased Organizational Agility, and Re-
duced IT Burden: Supporters of service-orientation expect to achieve
these ultimate goals through the fulfillment of the four prior goals; there-
fore these three ultimate goals are also to be kept in mind when designing
a service inventory.

In order to provide a complete and browse-able catalogue of service inventory
design patterns, Erl divided them into foundational, logical layer, centralization,
implementation, and governance patterns.
The profile for each pattern consists of a problem statement, an icon, a sum-
mary, a detailed problem and solution description, notes on the application
and its impacts, the relations to other patterns, and a case study example.
These examples are mainly short reports about the application of the patterns
instead of concrete source code. This is due to the coarser-grained nature of
the inventory patterns.
Because of this high level of abstraction from concrete technology, which is
inherent to service-orientation, these patterns are only starting points for fur-
ther architectural decisions. They are neither complete nor concrete in their
application. Still they provide valuable support for fundamental decisions that
set up the frame for further, more detailed design.
Erl describes the intention of his pattern catalogue accordingly as “focused
solely on attaining the strategic goals associated with service-oriented com-
puting.” [Erl09].

4.3. SERVICE INVENTORY DESIGN PATTERNS 53

4.3.1 Example: Service Normalization

Whenever different teams develop services in the course of different projects,
there is the risk that certain functionality covered by one service is at least
partly covered by another. This redundancy in functional contexts might strongly
jeopardize the results intended with service-orientation.This so-called “denor-
malization” of an inventory causes several problems, especially in reuse and
governance.

Figure 4.2: “Service Normalization . . . relies on the successful application of
other patterns.” [Erl09]

The Service Normalization pattern addresses this problem of intersecting ser-
vice capabilities’ contexts, by suggesting a collective modeling of all services,
capabilities, and contexts in advance; i.e., before the service contracts are
carved in stone, and with an emphasis on well-aligned service boundaries.

54 CHAPTER 4. SERVICE INVENTORY DESIGN PATTERNS

Although this is no guarantee for a completely normalized inventory, this pat-
tern is supposed to increase at least the extend of normalization.
To support this goal, the pattern recommends basic application steps that
are to be executed in several iterations. The first of these steps is to iden-
tify and disassemble so-called “business process definitions” related to the
inventory. [Erl09] As a second step, the disassembled pieces are classified to
be either integrated into existing service candidates, or to establish new ones.
The final step is to validate the normalization; i.e., to make sure no two func-
tional boundaries intersect.
This initial analysis effort as well as the later maintenance effort might be
tremendous, especially for possibly wide-scoped inventories.
Other service inventory design patterns might also require the application of
this pattern; e.g. Contract Centralization and layering approaches. These rela-
tionships to the other patterns are illustrated by figure 4.2. As demonstrated by
the relation between Service Normalization and Inventory Endpoint depicted
in this figure, a deliberate violation of certain patterns is sometimes recom-
mended or even necessary to fulfill major goals.

4.3.2 Inventory Boundary Patterns

When establishing a service inventory, a first major step is to determine its
desired scope, expressed by its boundary. The decision about the scope is
supported by two fundamental inventory boundary patterns: Enterprise and
Domain Inventory.
When software components are developed within an enterprise, they are prob-
ably developed by different teams in the context of different projects. This leads
to the risk of incompatible architectures and implementations of these single
components. Erl refers to theses as “silos”—aggregations of different technol-
ogy and development styles that, beyond their initial technical environments,
might not fit together well.
In order to avoid this possible danger to recomposition possibilities, the En-
terprise Inventory pattern suggest to establish exactly one enterprise-wide
inventory for all services. As all of an enterprise’s services lie within this
inventory’s boundary, they all adhere to the same design standards. This leads
to a better alignment of the services to support reusability and composition.
Whenever a company is too big, the IT structures are too complex, or re-
sources are scarce, it is suggested to stick to several Domain Inventories,
instead of one enterprise-wide. In this case the services within an enterprise
are split up into several inventories that are highly aligned to distinct business
domains. Although giving up enterprise-wide standardization, the alignment
to the business is still preserved to a certain extend, and the otherwise over-
whelming complexity is dealt with. Different domains could for instance be
based on specific business areas or geographical locations. A trade-off of this
approach is the possible loss of native interoperability of services across the
inventories’ boundaries. As a consequence additional bridging effort might be

4.3. SERVICE INVENTORY DESIGN PATTERNS 55

required, or redundant service capabilities might emerge.
Since the decision and its impact on the scope of the inventory are fundamen-
tal, these two inventory boundary patterns are essential when establishing a
service inventory. Whereas too few inventories might be unmanageable, too
many inventories might lead to incompatibilities between inventories, and re-
stricted reuse possibilities. A plan for later union might also be unrealistic due
to incalculable expenses: as these inventories are individually governed, they
might develop in different and incompatible directions.

4.3.3 Layer Patterns

For many extensive systems it is reasonable to split them into layers, in order
to manage their complexity. The same principle holds for structuring a single
service inventory.
Basis for such a structuring approach is the Service Layers design pattern;
it suggest the division of the services within a single inventory into distinct
layers. A basic approach is to split the services into those representing single-
purpose, and those representing multi-purpose functionality.
A more advanced approach is the separation according to abstract service
types. This classification into so-called “service models” establishes a layer per
type. Such service models that reoccur throughout different service-orientation
projects in the industry are utilities, entities and processes.
The utility service model represents services that are not part of the business
logic, but are considered as generic supporting tools to carry out business
functionality (e.g., database access or error handling).
The business logic itself is commonly separated into entity and process ser-
vices. Entities refer to the different objects a business uses; e.g., invoice doc-
uments or an accounting division. These entities—as well as the utilities—are
termed “agnostic,” meaning they have no knowledge about the context they
are used in. This makes them highly reusable in different instances of the third
service model, the processes. These processes are accordingly named “non
agnostic,” because they mainly represent a single-purpose functionality within
a concrete context.
Based on these common service models are the interrelated patterns Utility,
Entity, and Process Abstraction. These patterns further support the decision to
use Service Layers, and are hence suggested for additional application. They
provide advice and instructions on how to carry out certain divisions into layers.
It is recommended to use them together, resulting in a Three-Layer Inventory.
Another advantage of this approach is the option to commit the administration
of different layers to experts of certain fields; e.g., technology experts could be
responsible for the utility services.
Figure 4.3 outlines the separation of a service inventory into these three ser-
vice models, and depicts a service composition across all three layers: the
Revenue capability of the Annual Reports process service is composed of
the Get Totals and Get History capabilities of the Accounts Payable (AP) and

56 CHAPTER 4. SERVICE INVENTORY DESIGN PATTERNS

Commissions entity services. This composition further uses the Report Ex-
ception capability of the Notifications utility service.

Figure 4.3: Service composition across a Three-Layer Inventory. Layers from
top to bottom represent processes, entities, and utilities. [Erl09]

As explained in subsection 4.3.2, it is sometimes favorable to have several do-
main inventories within a single enterprise. But due to the agnostic and non-
business nature of the utility services, there is a high likelihood that certain
utility services are needed within each of the domain inventories. To avoid re-
dundant implementations and increase reuse, the Cross-Domain Utility Layer
pattern suggest the bridging of the individual inventory boundaries, to establish
a shared utility layer for some or all of them. This approach may also reduce
the number of overall services, and increase Service Normalization. Disadvan-
tages might be hindered governance of too large-scaled cross-domain layers,
or hindered administration across technically varying environments.
Closely related to the layering approach is the establishment of an official
Inventory Endpoint ; it provides access to certain service capabilities to external
consumers via intermediate services, but the remaining service inventory is
protected from undesired access. These official access methods can add sup-
plementary extensions to the internal capabilities of an inventory, to fulfill cer-
tain needs in concerns of security, customization and compatibility (e.g., by
additional protocols, or encapsulated compositions and transformations). To
support their required flexibility, these special endpoint services are often ex-
cluded from at least some of the otherwise inventory-wide design standards.

4.3. SERVICE INVENTORY DESIGN PATTERNS 57

As these layering approaches are of vital importance to an inventory’s struc-
ture—and once-performed layering might be hard to change—the patterns dis-
cussed in this section need to be applied carefully and early in the analysis and
design phases.

4.3.4 Centralization Patterns

A basis of keeping a service inventory synchronous and governable is the ap-
plication of centralization. There are several design patterns that support the
centralization of different components within an inventory; i.e., these compo-
nents are made accessible via one distinct way. These patterns share the
commonness of resulting in inventory-wide impacts, and therefore have to be
applied carefully and maybe only to a limited extend.
When generally centralizing logic, the Logic Centralization design pattern is a
first fundamental step; it proposes the enforcement of service reuse through-
out an inventory to avoid redundant logic. Fundamental for the success of
this approach is the discoverability, understandability, and practicability of the
services intended for reuse. Once labeled as official means to access cer-
tain logic, these services are the exclusive access points for the encapsulated
logic. In contrast to Service Normalization, this pattern therefore focuses on
service utilization, instead of modeling issues.
Process, Schema, Policy, and Rules Centralization are more specialized de-
sign patterns, running for centralization in a physical, instead of just a logi-
cal location. This is supposed to benefit implementation, administration, and
runtime performance. But application of these patterns might also imply the
establishment of certain middleware that significantly influences the service
inventory architecture.
Metadata Centralization is an additional centralization pattern, advocating the
establishment of a central service registry to increase service discoverability.
Fundamental to this registry is the required registration not only of already ex-
isting services, but also of those currently in development. Such a service
registry might span multiple service inventories, to ensure interoperability and
allow reuse across inventory boundaries. Therefore this pattern further sup-
ports Logic Centralization and Service Normalization, by avoiding redundant
logic and overlapping functional contexts.

4.3.5 Canonical Patterns

Along with centralization comes the need to establish different design stan-
dards consistently throughout a service inventory. Canonical design patterns
themselves are no design standards, but they advocate the establishment of
enterprise-specific design standards within a service inventory.
A first step to ensure native interoperability of services is to use one main

58 CHAPTER 4. SERVICE INVENTORY DESIGN PATTERNS

Canonical Protocol for communication purposes of all services. This way the
risk of incompatible protocols of services that may be created in the contexts
of different projects—but now are combined—is limited. Such a restriction to
a single protocol might impose certain limitations; therefore Dual Protocols
provide further composition flexibility by establishing a secondary protocol for
special communication needs.
In order to prevent conversion of different data representations between ser-
vices, it is also recommended to use a Canonical Schema for common data
models within an inventory.
Compatibility issues between services might also emerge, when various ver-
sioning approaches are followed within a single inventory. “Canonical Version”
therefore suggests imposing design standards on contract version methods
and version documentation. To further facilitate service discoverability and un-
derstandability, “Canonical Expression” refers to standardizing use of words
and expressions across service contracts.
Besides standardizing these elements related to service contracts, it is also
recommended to standardize common resource types within an inventory, to
support their consistent use by various services. Such “Canonical Resources”
could be databases, or special utility platforms and extensions.

4.3.6 State Patterns

A need reoccurring throughout many service inventories is the management
of service state. There are several design patterns related to supporting state
management in an inventory-wide manner.
To support the service statelessness design principle, the Stateful Services
design pattern advocates the use of deliberately stateful utility services that
manage everything concerning other services’ states. These utility services
are specialized in managing state data effectively. This way, business related
services are released from these presumably performance-affecting tasks.
A slightly different approach, either supporting Stateful Services or making
them unnecessary, is the installation of a common State Repository for the
data management purposes of all services.
The Service Grid design pattern further commends the application of grid com-
puting to support Stateful Services or a State Repository, which otherwise
might suffer limited scalability. This means—during runtime—not only a single,
but several synchronized instances of each service are available. This way,
high request peaks are addressed and the overall system stability is improved.

4.4 Service Inventory vs. Classical Design Patterns

With the classical design patterns published in 1995, and the service-oriented
design patterns by Thomas Erl being officially published in 2009, there have

4.4. SERVICE INVENTORY VS. CLASSICAL DESIGN PATTERNS 59

been fourteen years of pattern history in software construction so far. During
this timeline, there has been evolution around the knowledge about design
patterns, as well as the arising of new paradigms. On that account, the service
inventory design patterns are different from the classical ones. The reminder
of this section will discuss the most important of these differences.

4.4.1 Specialization

Whereas the initial patterns where build around the broad object-oriented para-
digm and therefore span a wide area, further pattern publications are more and
more specialized. For example Martin Fowler restricted to enterprise applica-
tion as described in subsection 4.2.2. Thomas Erl focuses in another way by
studying service-orientation. Within this paradigm the patterns are divided to
address services inventories, services, and service composition.
This specialization is also represented is the increasing number of patterns
presented. Whereas the Gang of Four initially presented twenty-three pat-
terns, Martin Fowler already came up with fifty-one. Thomas Erl provides a
whole of seventy-seven patterns for service-oriented architecture. Twenty-four
of them are specially dealing with the design of service inventories.
The constriction to a field of study might imply a closer relation to technol-
ogy, as happened with books about design patterns realization using concrete
technology, like .Net [Bis07]. But the opposite is the case for service inventory
design patterns, because service-orientation is further abstracted from con-
crete technology. Whereas the classical patterns are abstracted from concrete
programming languages, the service inventory patterns are completely decou-
pled from any underlying technology. This abstraction from technology also
impacts the concreteness and granularity of these patterns. As discussed in
section 4.3, these patterns mainly deal with structuring, centralization, and
standardization on an abstract level, focusing more on strategic decision than
on technical implementations.
Martin Fowler’s notion of patterns being “half baked,” meaning the patterns
have to be individually completed by the person(s) applying them, therefore
applies to the inventory patterns on an even stronger level. This greater scope
of individual completion especially influences the application and impacts of
the patterns.

4.4.2 Application

For classical design patterns, in general only a small group of software design-
ers and programmers is affected by the concrete implementation of a certain
pattern. When shaping a service inventory by the means of design patterns, it
is more likely to affect several IT divisions, the whole enterprise, or even part-
ner companies.

60 CHAPTER 4. SERVICE INVENTORY DESIGN PATTERNS

Different to the classical design patterns, which are only directed to a technical
audience, most service inventory patterns can easily be understood by and
applied together with business experts. This further supports the business-
driven characteristic of service-orientation.
Due to the high proximity of pattern and code of the classical patterns, these
patterns are normally applied during the fine-granular design and implementa-
tion phases. Service inventory patterns like Service Normalization are applied
starting in the initial analysis phase. When addressing special governance is-
sues, as Canonical Versioning does, the patterns are carried out during the
whole inventory lifetime. Therefore the overall scope of service inventory de-
sign patterns is significantly greater.
To follow the suggestions of some service inventory design patterns may im-
ply significant decisions for a large part of a company’s IT, and potentially high
cost linked with it. The consequences of the application of such a pattern are
also more durable and harder to change than with classical design patterns.

4.4.3 Documentation

The coarser-grained nature of the service inventory patterns is also reflected in
their documentation. As the patterns provided by the Gang of Four and Martin
Fowler are mainly about object and class relations, UML diagrams easily visu-
alize them. Erl establishes his own symbols to express the different strategic
situations that the service inventory patterns are applied in.
The same holds for the examples that accompany the patterns. Differently
than the other authors, Erl illustrates the patterns not by source code exam-
ples, but through short reports; summarizing different strategic decisions that
three example companies made when applying the service inventory design
patterns.
With the naming of the patterns, there is also the introduction of new termi-
nology. As discussed in section 4.2, this terminology can provide tremendous
help in documentation and communication. Service inventory design patterns
obtain their names from domain-specific terminology. Hence these names are
more context-specific than those for general patterns; thereby they are espe-
cially helpful for domain experts.
An additional part of Erl’s documentation on the service inventory patterns is
an extended pattern language.

4.4.4 Pattern Languages

Owing to the far-reaching impacts of the service inventory patterns, Erl de-
veloped a pattern language in much more detail and extend than the Gang
of Four did with the classical patterns. They restricted their development of a
pattern language mainly to a single interrelationship diagram of all patterns.

4.5. CONCLUSION 61

Additionally the relationships sections on each pattern name the related pat-
terns and describe each of the relations with one or two sentences.
The patterns Erl documented are interconnected in many more ways. As de-
scribed in section 4.3, many patterns are complementary, require each other,
or form alternatives. To further illustrate these interconnections, Erl additionally
provides relationship diagrams for each pattern (e.g., depicted for Service Nor-
malization in figure 4.2).
In addition, Erl also documented so-called “Compound Patterns” that describe
combinations of certain patterns; e.g., the combination of Utility, Entity, and
Process Abstraction is referred to as Three-Layer Inventory.
Studying this extended pattern language can add further understanding of the
patterns’ application and its consequences; therefore this pattern language
adds great value to the overall pattern catalogue.

4.5 Conclusion

Service inventory patterns are greater in scope and less concrete than classi-
cal design patterns. Their application has greater impacts, possibly affecting
whole enterprises and their business partners. But still they provide useful
strategic design advice to establish, structure, and govern a service inventory.
They are therefore a welcome addition to already established design patterns.
Nevertheless the pattern language accompanying these patterns raises sev-
eral questions that are worth further examination: Is a new pattern language
really necessary? Is its extend sufficient or is the language maybe too exten-
sive? In the end the crucial factor will be whether people are willing to learn
and use these patterns or not.

Bibliography

[Bis07] Judith Bishop. C# 3.0 Design Patterns. O’Reilly Media, 2007.

[Erl07] Thomas Erl. SOA Principles of Service Design. Prentice Hall PTR,
2007.

[Erl09] Thomas Erl. SOA Design Patterns. Pearson Education, Inc., 2009.

[Fow03] Martin Fowler. Patterns of Enterprise Application Architecture.
Pearson Education, Inc., 2003.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns - Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

62 CHAPTER 4. SERVICE INVENTORY DESIGN PATTERNS

Chapter 5

Service Design Patterns

Markus Arndt

Contents
5.1 Introduction . 64

5.1.1 Introduction to SOA 64
5.1.2 Basic Definitions . 64

5.2 Design Pattern Basics . 65
5.2.1 Definition . 65
5.2.2 Design Pattern Origins 65
5.2.3 Design Patterns in SOA 66

5.3 SOA Design Patterns . 66
5.3.1 Foundational Service Patterns 66
5.3.2 Service Implementation Patterns 69
5.3.3 Service Security Patterns 70
5.3.4 Legacy Encapsulation Patterns 72
5.3.5 Service Governance Patterns 74

5.4 Summary . 76
Bibliography . 77

63

64 CHAPTER 5. SERVICE DESIGN PATTERNS

Abstract: This paper deals with the application of Service Design Patterns
in SOA environments targeting a cost efficient, flexible and reusable IT infras-
tructure.

5.1 Introduction

5.1.1 Introduction to SOA

Service Oriented Architecture is an IT architecture paradigm that structures
business processes into independent, reusable, distributed software units (so
called services) with loose coupling. These are composed into more abstract
logic to deploy units that serve as business logic on a high level of abstraction.
Though sharing ideas with Object Orientation, SOA resides on a much higher
level, not considering portions of software programs, but whole enterprise re-
sources such as databases or logical enterprise divisions.

5.1.2 Basic Definitions

Service

A service represents self-contained solution logic in the form of independent
software.

Service Capability

A capability in SOA context is a function provided by a service. A hypothetical
service ’Purchase Order’ could have the capabilitys ’SubmitOrder’, ’CheckO-
rderStatus’ or ’CancelOrder’.

Service Contract

A service contract defines the public interface of a service. It expresses the
mandatory conventions consumers have to stick to and further describes func-
tional and non-functional requirements.

Consumer

Consumers are programs or services that make use of other services.

5.2. DESIGN PATTERN BASICS 65

Inventory

Service inventories are groups of services that belong to the same segment of
an enterprise or share commonalities and form some kind of logical unit.

Composition

Services that are being assorted and plugged together so they solve a cer-
tain business task are called compositions. Compositions consist of at least
two services and a so called ’service initiator’, a third service that controls the
composition logic.

5.2 Design Pattern Basics

5.2.1 Definition

Design Patterns are field-tested, well documented solutions to well understood
problems in software engineering and software architecture. Their application
in software design contributes to the overall quality of the resulting system.

Ineffictive patterns are usually labeled as Anti-Patterns.

5.2.2 Design Pattern Origins

Design Patterns go back to the architect Christopher Alexander who published
a collection of patterns in the 1970s, not relating to software, but building ar-
chitecture.

In 1987 Kent Beck and Ward Cunningham created design patterns concerning
graphical user interfaces in Smalltalk.

But the book that had the greatest impact on (object oriented) software design
patterns is ’Design Patterns: Elements of Reusable Object-Oriented Software’
[ERRJ95]. The authors, also known by the name ’Gang of Four’, introduced
23 patterns and leveraged design patterns to their breakthrough.

The patterns we deal with in this paper target the service orientation paradigm
and were introduced by Thomas Erl [Erl09].

66 CHAPTER 5. SERVICE DESIGN PATTERNS

5.2.3 Design Patterns in SOA

Design Patterns in SOA context are basically just design patterns that support
the process of SOA environment creation and maintainance. A bright appli-
cation of these patterns yields an improved overall quality of the software and
contributes to the service oriented design principles we will now briefly cover.

SOA Design Principles

The main objectives or design principles of Service Oriented Architecture can
be summarized as follows:

Related services (meaning being in the same service inventory) should follow
the same contract design standards (Standardized Service Contract). The cor-
responding contracts are supposed to be built so that consumers and services
have the most loose coupling possible (Service Loose Coupling). They should
imply only the most necessary information (Service Abstraction).

Forthermore a main objective is that services can be reused and accessed by
multiple consumers (Service Reusability), avoiding redundancy and fostering
high-quality architectuire that is easy to maintain.

The presence of various consumers leads to a need for a high degree of con-
trol over a service’s underlying resources (Service Autonomy) to produce pre-
dictable results and stable runtime behaviour at even difficult conditions (simul-
taneous access by a great number of consumers for example). Also it leads to
the demand for cautious usage of those resources, so services are requested
to minimize their usage by retaining as little state information as possible and
the usage of state deferral (Service Statelessnes).

In order to actually use those services it is essential to ship these with cer-
tain meta information that descripe their capabilities and functionality (Service
Discoverability). Services should be build so that they can be composed with
ease and cooperate in an efficient way (Service Composability).

5.3 SOA Design Patterns

5.3.1 Foundational Service Patterns

These patterns are the most basic ones and are mandatory for transforming
business processes into a service oriented driven environment.

5.3. SOA DESIGN PATTERNS 67

In this chapter we find ’Service Identification Patterns’, as well as ’Service
Definition Patterns’.

Service Identification Patterns are meant to be applied to conventional solu-
tion logic, such as step-by-step descriptions of business processes, legacy
software and other examples, that are all not yet service oriented. These pat-
terns prepare the present solutions so they can be integrated into a service
oriented environment.

Then again Service Definition Patterns actually define services, often out of
what the Service Identification Patterns yield, but not necessarily.

Other related groups are ’Capability Composition Patterns’ (covering issues
arising when composing services) and ’Service Inventory Patterns’ (manage-
ment of service inventories), that we do not deal with here, but that are covered
in dedicated papers.

Functional Decomposition

Motivation: Business problems are often solved by building one single piece
of software. But a monolithic solution to complex business problems often
brings a great governance burden - regarding monitoring and controling the
software development - and handicaps reusability, as parts of the solution may
be relevant to other business problems in the same enterprise.

Pattern: The approach of functional decomposition is to reduce the complexity
of the original problem solution (for example given in textual step-by-step pro-
cess description) by breaking it down into smaller concerns that are solvable
independently (figure 5.1).
Dedicated solutions are then created to resolve these smaller concerns in-
stead of building a single, monolithic solution for the overall problem. These
solutions can later be composed to solve the original problem.

Figure 5.1: Functional Decomposition

As a Service Identification Pattern, this is one of the first patterns to be applied
in the SOA process. It’s results - small, self-contained portions of solution logic
with well defined bounds - are the basis for further patterns (Service Definition
Patterns).

68 CHAPTER 5. SERVICE DESIGN PATTERNS

It is important to understand that these dedicated solutions are not yet ser-
vices, they are just parts extracted from the original problem solution that can
be solved independently.

Correlations: This pattern is correlated to ’Service Encapsulation’, as it iso-
lates the fragments meant to be transformed into services from the rest of the
logic. Also it is related to ’Agnostic Context’, ’Non-Agnostic Context’ being
successors to ’Service Encapsulation’.

Agnostic Context

Motivation: Single-purpose logic reduces the potential of multi-purpose logic
when coupled in implementations. Multi-purpose logic is reduced to only serve
one special concern. For example on one hand an online store’s admin-
istrative back-end may implement functionality to manage the store’s stock
database directly. This couples single-purpose logic (administrators can man-
age stock through back-end interface) with multi-purpose logic (access to the
stock database). The multi-purpose functionality cannot be used by other pro-
grams, as it is integrated into single purpose software.

Pattern: First identify multi-purpose fragments in solution logic. Then isolate
and outsource them into so called agnostic services. The solution logic be-
comes a potential resource to various consumers, that all share this specific
implementation. In the recent example this pattern would imply to decouple
the database functionality from the administrative back-end and place it into an
own service, sharing the functionality, so a b2b application for retailers might
want to use it to query the range of products.

This pattern makes the logic available to other parts of the enterprise, targets
reusability and avoids redundancy. It is of the Service Definition Pattern type.

Correlations: The pattern being closest to ’Agnostic Context’ is ’Agnostic Ca-
pability’. It is applied to services that have been declared agnostic. ’Agnos-
tic Capability’ redefines capabilities towards more general definitions, moving
away from features that may have creeped in when the service has been ab-
stracted from real business concerns.
Also there are specialized versions of the pattern ’Agnostic Context’, namely
’Entity Abstraction’ and ’Utility Abstraction’. They are dealt with in the paper
’Service Inventory Pattern’.

Other patterns in this category

Service Encapsulation, Non-Agnostic Context, Agnostic Capability.

5.3. SOA DESIGN PATTERNS 69

5.3.2 Service Implementation Patterns

The patterns in this chapter actually affect the services implementation. They
help dealing with ongoing architecture evolvement (’Service Facade’, as a me-
diator between contract and service logic, decouples services from consumers
with negative coupling possibilities, e.g. frequent contract variances) and in-
creasing service requirements, such as runtime performance (’Partial State
Deferral’), data and service breakdown safety (’Service Data Replication’, ’Re-
dundant Implementation’).

Partial State Deferral

Motivation: It is essential for services to work in an efficient and predictable
(referring to runtime here) manner, to guarantee a smooth behaviour of com-
positions they take part in. Sometimes services in compositions are waiting for
other services to complete some kind of task and may be forced to hold large
amounts of state data for that time. This, especially when multiple consumers
come into play, can cause a decrease in system performance or bottleneck for
that service and therefore the whole composition.

For example a serviceAmay be some sort of meta online shopping application
that offers procucts from several mail-order stores B1, .., Bn. When finishing
the order, program A queries all Bi to respond wheather all products are on
stock (end-user may later choose where to buy). This is done holding the
shopping list, the customer online profile details, etc. in memory, while waiting
for the Bi services to reply.

Figure 5.2: Resource hosting service A has critical memory load.

Pattern: It is possible to outsource the main part of such data into an external
state deferral extension. This extension is usually a database encapsulated by

70 CHAPTER 5. SERVICE DESIGN PATTERNS

a service and holds the data for the time the service is on hold and returns it
when needed. In the example the service could transfer the whole product list
to an external service, only keeping the internal database key for the tuple the
data has been saved in.

Figure 5.3: Memory load has been deferred to dedicated deferral service.

Correlations: This pattern is related to ’State Repository’, ’Service Grid’ (see
the paper ’Service Inventory Patterns’), ’State Messaging’ and ’Stateful Ser-
vices’ (see the paper ’Service Composition Design Patterns’).

In application Partial State Deferral would use some sort of caching mecha-
nism to avoid redundant data tuples. This would correspond to the flyweight
pattern (mind this is an object orientation pattern) to some extend, which uses
”sharing to support large numbers of fine-grained objects efficiently” [ERRJ95].

Other patterns in this category

Service Facade, UI Mediator, Redundant Implementation, Service Data Repli-
cation, Partial Validation.

5.3.3 Service Security Patterns

As services and service compositions have various consumers that are not yet
all known at design time there is always the risk of security branches that were
not considered back then. Therefore service security patterns deal with is-
sues such as services that leak sensitive data (’Exception Shielding’), inbound
messages with malicious intend (’Message Screening’), avoidance of direct
access to essential resources for consumers (’Trusted Subsystem’) and offer-

5.3. SOA DESIGN PATTERNS 71

ing of internal enterprise resources to external consumers (’Service Perimeter
Guard’).

Exception Shielding

Motivation: Error handling routines can give away sensitive internal enterprise
data, such as implementation, infrastructure or other kind of details, when a
thrown exception is passed to a consumer. An attacker could intentionally
trigger exceptions to gather application details, such as server name strings,
environment variables, stack traces, etc.

Figure 5.4: An exception is passed to the consumer containing sensitive data.

Pattern: To tackle this issue one can install additional logic that will monitor
each outgoing service-response to the consumer. Such sanitization logic is
usually put in between the contract and the service logic, that means it re-
sides inside the service itself. If then a message containing sensitive data not
meant for third parties to see is detected, the relevant details will be pruned or
exchanged.

A simple approach is a system where sanitization routines write the original ex-
ception message into an error log (maybe into a dedicated error log database),
and replace the whole exception text with a general error message. The entry
in the error log will have a reference code that will be passed to the consumer
in the modified error message. On triggering an error the third party may now
contact the administration of that service and pass their error reference code
for lookup purposes. The exception can be dealt with without exposing internal
details to others.

Figure 5.5: The sanitaztion logic strips all sensitive data.

Correlations: Shielding mechanisms are often implemented through ’Service

72 CHAPTER 5. SERVICE DESIGN PATTERNS

Agent’ (see the paper ’Service Composition Design Patterns’) or through Utility
Abstraction (see the paper ’Service Inventory Patterns’). Service Perimeter
Guard is often combined with this pattern, if it is not meant to be bound to
one single service but should be used as a general shielding mechanism for
several others.

Other patterns in this category

Message Screening, Trusted Subsystem, Service Perimeter Guard.

5.3.4 Legacy Encapsulation Patterns

When moving an enterprise towards an SOA driven environment established
legacy systems have to be taken into account. They have to be altered to
work together with the new service oriented surroundings. Therefore Legacy
Encapsulation Patterns accomplish this task by equipping them with service
interfaces corresponging to service contracts (’Legacy Wrapper’) or introduc-
ing mediation logic for delivering data from legacy systems in a manner that
matches the SOA idea (’Multi-Channel Endpoint’).

Multi-Channel Endpoint

Motivation: Legacy systems that serve multiple ’delivery channels’, such as
personal computers, cellphones, other services, often had an own implemen-
tation each for every channel. For example let’s assume some services ’A’ and
’B’ exist, service A offering some kind of service to only workstations, whereas
service B can be accessed via workstations and mobile devices (see figure
5.6).
Usually legacy systems directly implement those delivery channels, meaning
service A has some sort of directly implemented functionality to serve work-
stations and service B has implemented delivery channels for workstations
and mobile devices on it’s own. To make the situation even worse there might
even be plans to deploy service A to mobile devices also in the future, which
would mean to implement a new delivery channel into this legacy system from
scratch. It’s obvious to see that each delivery channel connection means a
new implementation.

Running several of these legacy systems in parallel implies a lot of redundacy
and governance burden.

Pattern: To tackle this problem it is suggested to install a mediator-service.
On one hand each legacy system has to only implement a delivery channel

5.3. SOA DESIGN PATTERNS 73

Figure 5.6: Multi-channel solution without Multi Channel Endpoint.

to this mediator (via legacy wrapper for example), on the other hand all deliv-
ery channel specific logic can be implemented in one single place, reducing
redundancy.

The advantages are clear, delivery channel implementations are being reused
and have to be implemented only once. If a delivery channel has to be mod-
ified, there is only one implementation that has to adopt the changes instead
of one for each service, this eases service governance. Adding a new delivery
channel will make it available to all services instantly.

Correlations: Multi-Channel Endpoint can be viewed as a specialization of
’Legacy Wrapper’, as it offers a centralized service interface or contract for
usage of legacy systems by certain delivers channels / consumers.

Also it can be seen as a form of the object oriented pattern ’Mediator’ (”Define
an object that encapsulates how a set of objects interact. Mediator promotes
loose coupling by keeping objects from referring to each other explicitly, and it
lets you vary their interaction independently.”, [ERRJ95]).

Because Multi-Channel Endpoint serves capabilities of multiple legacy sys-
tems in a unified way it is also related to data transformation patterns, such as
’Service Broker’, ’Protocol Bridging’, ’Data Format Transformation’ and ’Data
Model Transformation’, that are not treated in this paper, but can be looked up
in the book of Thomas Erl [Erl09].

To improve service performance and reliability ’Redundant Implementation’
and/or ’Composition Autonomy’ can be combined with this pattern. In ’Redun-
dant Implementation’ there are multiple implementations of a service residing
in the environment to improve reliability, whereas in ’Composition Autonomy’
agnostic services of a composition are implemented once more solely and
dedicated for this composition, so it is not shared with other consumers, that
may weight down the runtime performance (see the paper ’Service Composi-
tion Design Patterns’).

74 CHAPTER 5. SERVICE DESIGN PATTERNS

Figure 5.7: Multi Channel Endpoint

Other patterns in this category

Legacy Wrapper, File Gateway.

5.3.5 Service Governance Patterns

During the lifetime of an SOA environment there are changing requirements
and new conditions that need to be dealt with. These changes may invalidate
the original design approach, so the design will have to be updated to meet the
new conditions. Service Governance Patterns are an approach to tackle issues
as versioning of services, refactoring service logic in existing environments and
rearranging compositions (’Service Decomposition’, ’Decomposed Capability’,
’Proxy Capability’) while keeping a smooth architecture.

Service Decomposition

Motivation: Successive compositioning of services over time may lead to vo-
luminous service compositions that divert from optimal performance because
of their large footprint. Assuming we are working with a service ’Purchas-
ingService’ that represents purchasing departement logic, let’s further assume
suppliers and our own purchasing department work with this service, yield-
ing capabilities such as AddOrder, AddInvoice, AddInvoicePolicy, GetOrder
, GetOrderHistory, GetInvoice, GetInvoicePolicy, DeleteOrder, DeleteOrder,
DeleteInvoicePolicy, ValidateInvoicePolicy.

It often occurs that services become a governance problem when they serve
multiple purposes. It is difficult to manage a software that has no clear, dedi-
cated purpose, but has a variety of not really related functionality implemented.

5.3. SOA DESIGN PATTERNS 75

Also it’s not unlikely that the greater a service’s capabilities grow, the more it’s
runtime performance diminishes.

Figure 5.8: Complex service composition, serving various capabilities on the
left and it’s decomposition on the right.

Pattern: Service compositions can be split up into smaller, finer compositions.
For our example this means we can split the service composition into the com-
positions OrderService (AddOrder, GetOrder, GetOrderHistory, DeleteOrder),
InvoiceService (AddInvoice, GetInvoice, ..) and InvoicePolicyService (AddIn-
voicePolicy, GetInvoicePolicy, ..., ValidateInvoicePolicy). The service composi-
tion has been stripped down into a more accurate structure, complying with the
business structure (e.g. a supplier should only access invoice records), thus
easing administration and distributing the consumer load on multiple services.

Correlations: The most relevant pattern to Service Decomposition is Proxy
Capability. If a service composition is split up via Service Decomposition, the
consumers are left with no valid service contract to work with. This is where
Proxy Capability comes into play, for further details please consider reading
the corresponding chapter in this paper.

Minor related patterns are Entity Abstraction and Utility Abstraction, as Service
Decomposition is frequently applied to agnostic services.

Proxy Capability

Motivation: A service decomposition invalidates the service contract, as the
capabilities are no longer present in the same service, but distributed among
different services. Consumers can no longer work with the contract. Let’s

76 CHAPTER 5. SERVICE DESIGN PATTERNS

assume the example from the previous pattern (Service Decomposition) and
further assume that some purchasing department software was capable of
displaying invoices and orders. This program can no longer work as usual, as
the original service has been split up and the service contract no longer exists.

Pattern: The service contract is therefore turned into a proxy service, pre-
serving the contract and additionally implementing the old composition logic.
This means that all cosumer software, like that purchasing department soft-
ware mentioned previously, doesn’t have to be altered instantly, but the proxy
service can be used.

Comsumers using the proxy should still be urged to accomodate to the new
architecture and use the decomposed services, to take advantage of the per-
formance gain of the service decomposition and prevent the overhead of the
proxy service.

Correlations: As stated before Proxy Capability is applied after Service De-
composition to preserve the functionality of compositions and consumers, there-
fore those two patterns have a strong relation.

Also it is clearly related to the object oriented pattern ’Proxy’, which provides ”a
surrogate or placeholder for another object to control access to it.” [ERRJ95],
where in the context of service orientation the proxy replaces the former exist-
ing composition.

Other patterns in this category

Compatible Change, Version Identification, Termination Notification, Service
Refactoring, Distributed Capatibility, Decomposition Capability.

5.4 Summary

In this paper we discussed several design patterns to achieve a solid, easy to
maintain, high-quality (see ’Design Patterns in SOA’ for SOA quality attributes)
service oriented architecture. The patterns cover the issues concerning identi-
fication of service potential in business logic, reusability of solution logic, imple-
mentational details such as runtime performance enhancements, also security
related patterns to keep up a reliable and secure environment, patterns that
harmonize existing legacy systems with service orientation and patterns that
help to deal with the further management and governance of the whole system
during lifetime.

SOA patterns are a powerful tool to make the move towards a service driven
IT environment in an elegant, yet simple way.

BIBLIOGRAPHY 77

Bibliography

[Erl09] Thomas Erl. SOA Design Patterns. Prentice Hall, 2009.

[ERRJ95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley Longman, Amsterdam, 1995.

78 CHAPTER 5. SERVICE DESIGN PATTERNS

Chapter 6

Service Composition Design
Patterns

Christian Kuhl

Contents
6.1 A general problem when constructing business solutions . . . 80

6.1.1 Applying SOA to this problem 80
6.2 SOA Design Patterns . 81

6.2.1 Capability Composition 82
6.2.2 Capability Recomposition 83
6.2.3 Service Messaging . 83
6.2.4 Messaging Metadata 84
6.2.5 Service Callback . 84
6.2.6 Asynchronous Queuing 85
6.2.7 Event Driven Messaging 85
6.2.8 Agnostic Sub Controller 86
6.2.9 Data Confidentiality 87
6.2.10 Data Origin Authentication 89
6.2.11 Direct Authentication 89
6.2.12 Brokered Authentication 90
6.2.13 Transformation Patterns 91
6.2.14 The Enterprise Service Bus 91

6.3 Summary and Discussion . 92
Bibliography . 93

79

80 CHAPTER 6. SERVICE COMPOSITION DESIGN PATTERNS

Abstract: Code redundancy can decrease the efficiency of an enterprise’s
IT and it’s applications. This paper presents the most important service com-
position design patterns from the book “SOA Design Patterns” [Erl08a] which
help to overcome this problem by introducing and optimizing service orienta-
tion which implies a higher degree of reusability and flexibility.

6.1 A general problem when constructing business so-
lutions

“Why do we need Service oriented architecture (SOA)?” One might ask, con-
sidering that traditional ways of developing software have proven to be quite
successful in many different situations. But the approach of “identifying the
business tasks to be automated, defining their business requirements, and
then building the solution logic” [Erl07] might not be as good as it seems at
first glance. Even though the requirements are very specific and each solution
might be implemented in an efficient, straight forward manner, this approach
demands that new applications are built from scratch over and over again or
many different parts of them have to be changed in order to be suitable for new
problems. First of all, this is highly wasteful because it “results in a significant
amount of redundant functionality” and it would be much more efficient to avoid
building and rebuilding solution logic that already exists in the system inventory
[Erl07]. This also implies an inflation of the system inventory and much higher
governance costs. Last but not least, “integration becomes a constant chal-
lenge” [Erl07] if applications have to share data at a later point but were not
designed to be interoperable.

6.1.1 Applying SOA to this problem

Service orientation is an attempt to overcome these difficulties by dividing the
solution logic into reusable, generic parts which then can be used in different
contexts. As long as the task or function being provided is well defined and
can be relatively isolated from the other tasks, it can be distinctly classified as
a service. It can be viewed as a container of related capabilities [Erl07]. The
main goal is to relieve the IT enterprise from unnecessary burdens and thereby
“improving it’s effectiveness” [Erl08b]. This paper first gives a brief explanation
of the so called “goal states” and then discusses the most essential patterns
of service composition as they are presented in “SOA Design Patterns” by
Thomas Erl [Erl08a] to reach these states. These design patterns are followed
by an examination whether and to which extend to realize them in the real
world.

6.2. SOA DESIGN PATTERNS 81

6.2 SOA Design Patterns

There are eight fundamental principles of service orientation which, when ap-
plied correctly, help to reach so called “goal states” or desirable situations
[Erl08a] and [Erl07]. These eight principles are:

1. Standardized Service Contract: Service contracts have to be standard-
ized. This helps to keep services within the same inventory more com-
patible to each other.

2. Service Loose Coupling: This principle regulates the coupling between
services. Loose coupling implies a high degree of independence of the
services from each other.

3. Service Abstraction: Only really necessary information about a service
can be found in its contract. By hiding the other characteristics the in-
tegrity of future couplings with other services is protected.

4. Service Reusability: This is the most fundamental goal of service orien-
tation. It simply imposes that services are reusable in different contexts
and therefore try to avoid the redundancies mentioned above.

5. Service Autonomy: Services have to be able to run independently from
their surroundings.

6. Service Statelessness: A service has to be stateless. Ideally, a ser-
vice is used in many different contexts and compositions and numerous
instances of it may exist. Maintaining state information would be coun-
terproductive in such a situation.

7. Service Discoverability: For each Service there has to be information
about its purpose and capabilities available.

8. Service Composability: Their design enables the services to be com-
posed to more complex structures.

When introducing service orientation it is obvious that single services can’t
do all the work that needs to be done and therefore it is essential compose
more complex structures from services. But service composition has to be
done in a certain way to take advantage of the structure of the single services,
ensuring that it’s benefits materialize. The definition of a design pattern can be
best described by the following quote by Christopher Alexander: “Each pattern
describes a problem which occurs over and over again in our environment and
then describes the core of the solution of this problem, in such a way that
you can use this solution a million times over, without ever doing it the same
way twice.” [AIS77]. A pattern following this definition has 4 basic elements
[GHJV95]:

82 CHAPTER 6. SERVICE COMPOSITION DESIGN PATTERNS

1. Pattern name

2. Problem

3. Solution

4. Consequences (trade offs, space and time complexity)

Erl describes a pattern as a “proven design solution for a common design prob-
lem that is formally documented in a consistent manner” [Erl08a]. This means
that whenever a developer has to overcome one of these common design prob-
lems he or she can just apply this solution after reading it’s documentation
without having to invent a new solution every time.

6.2.1 Capability Composition

When service compositions become more complex many different services
interact with each other in different ways and a service may need to execute
program logic outside of it’s boundary. However, this means a high risk of “com-
promising the integrity of service context” [Erl08a] in some cases. Instead of
changing the service boundaries the service simply calls a capapility another
service offers and all the executed program logic resides in capabilities of the
involved services. This process is illustrated in figure 6.1. On the other hand

Figure 6.1: A service E invokes capabilities from other services.

6.2. SOA DESIGN PATTERNS 83

this also means that the service gives up some of it’s power because it lets
other services direct certain tasks. Another disadvantage is the runtime over-
head which can be caused by services invoking each other when they have a
slow connection in between them. Capability composition is one of the most
essential design patterns because it defines how services can take advantage
of solution logic implemented in other services. Therefore it is a part of all eight
design principles.

6.2.2 Capability Recomposition

The pattern “Capability Recomposition” is based on the results the previously
discussed “Capability Composition” pattern generates. This time the focus lies
on how a capability a service provides can be used in different contexts. As
explained in the introduction one goal of service orientation is the avoidance of
redundant solution logic. The application of this pattern means that it is pos-
sible to repeatedly reuse agnostic logic as part of different service aggregates
[Erl08a]. Services become compatible and do not have to be integrated sep-
arately. In practice this means that it is now much easier to adapt the solution
logic consisting of service compositions to changing business processes as
well as an increased return on the initial investments made to create the ser-
vices. As well as with “Capability Composition” this pattern’s universal qualities
let it support all eight design principles.

6.2.3 Service Messaging

Many protocols for remote data interchange are designed to establish a binary
connection between two services which stays alive for as long as there is a
need for communication. Especially in large service compositions this leads
to massive overhead because these connections have to be maintained. One
possible solution for this problem is the so called “Service Messaging” pat-
tern. Whenever a service needs to communicate with another one it sends
out a single and independent message without establishing a permanent con-
nection. This pattern does not only effect the services themselves but also
the underlying infrastructure of the enterprise. The technical infrastructure is
responsible for routing messages to their destinations and makes an applica-
tion of “Capability Recomposition” possible and services have to be designed
to use it. However, the application of “Service Messaging” introduces secu-
rity risks which will be addressed by “Data Confidentiality” 6.2.9, “Data Origin
Authentication” 6.2.10 and “Brokered Authentication” 6.2.11.

84 CHAPTER 6. SERVICE COMPOSITION DESIGN PATTERNS

6.2.4 Messaging Metadata

Because of the statelessness demanded by principle number 6 it is sometimes
hard for a service to get state information about a running process. Instead of
storing the state information within the service “Messaging Metadata” which is
built upon “Service Messaging” proposes to enrich messages with metadata
containing additional information about the process such as the mentioned
state information as well as other instructions. But this pattern also helps re-
alizing the 2nd principle “Service Loose Coupling”. Figure 6.2 visualizes this
mechanism. The services don’t have to share as much process-specific logic
as before because of the additional information contained in the messages and
are therefore also more compatible with “Service Recomposition”. In practice
this means that the messages have to contain a header to store the metadata.
Usually there is a trade-off between reduced memory requirements on the one
hand and higher performance overhead at runtime on the other one because
services have to interpret the metadata and and react according to it.

Figure 6.2: The requirements for services to contain embedded, activityspe-
cific logic are reduced.

6.2.5 Service Callback

There are two types of situations when it makes little sense for services to
communicate synchronously:

1. Service A sends a request message to service B and service B wants to
answer with several messages

2. Service A sends a request message to service B and before service B
answers it needs some processing time. During this time the resources
which are in use by service A are blocked and it consumes memory.

6.2. SOA DESIGN PATTERNS 85

Especially in large and complex service compositions the second point can
lead to a massive decrease of performance at runtime. The solution is given
by the pattern “Service Callback” which uses “Service Messaging” as well as
“Messaging Metadata”. It proposes to attach a so called callback address to
the message header. It contains a location the receiver has to send a callback
message to as soon as it is done processing the input. This way the origi-
nal sender can release it’s resources and commence doing other tasks in the
meantime. This gives us the power to create more complex service composi-
tions and therefore realizes the principles “Service Composability” as well as
“Service Loose Coupling”. In practice this means that the underlying infrastruc-
ture has to be able to manage service addresses as well as offering a routing
mechanism like a variant of a service agent. Also, contrary to synchronous
messaging, here an acknowledgement mechanism has to be implemented if it
is important to get a confirmation of arrival.

6.2.6 Asynchronous Queuing

When a service sends a message to another one, deallocates it’s resources
and begins another task one problem arises: it needs a mechanism to store the
incoming answer (as well as other messages) while it is still occupied.Therefore
“Asynchronous Queuing” proposes to equip each service with an intermediary
buffer to store incoming messages. This queue then polls an unavailable ser-
vice repeatedly until it is available or the message transaction is considered a
failure. “Asynchronous Queuing” enables the architect to construct more so-
phisticated and creative message exchange patterns as well as to optimize
existing communication relationships between services. But also these ad-
vantages come with trade-offs: complex service compositions become even
more difficult to control and a service does not get any information about the
successful delivery of the messages it sent. As mentioned above, “Service
Callback” is usually applied together with “Asynchronous Queuing” because of
their common goal to eliminate synchronous communication relationships. An-
other pattern used to enhance “Asynchronous Queuing” is “Messaging Meta-
data” because it provides messages with instructions and information which is
needed to direct the message flow. “Asynchronous Queuing” part of another
important pattern called “The Enterprise Service Bus” which is discussed in
section 6.2.14.

6.2.7 Event Driven Messaging

When a consumer waits for a service’s response, events which are important to
this consumer may happen within the boundaries of the service provider. One
way the consumer would be able to learn about these events would be to con-
stantly poll the service. “Each polling cycle involves a synchronous, request-

86 CHAPTER 6. SERVICE COMPOSITION DESIGN PATTERNS

response message exchange“ [Erl08a] as shown in figure 6.3. This way of
dealing with the problem is highly inefficient though. A much more elegant

Figure 6.3: Service A constantly polls service B in order to learn about an
event as soon as possible.

solution provided by the pattern ”Event Driven Messaging“ is the introduction
of a so called ”event management program”. The service consumer registers
as a subscriber whereas the service itself acts as the publisher. As soon as
the event occurs, the publisher sends a message to the event manager which
then distributes it to all subscribed consumers. Figure 6.4 shows this mech-
anism. Of course the necessary infrastructure for the event manager has to
be provided. This is usually done through runtime platforms, messaging mid-
dleware or ESB products [Erl08a]. It is based on asynchronous message ex-
changes and therefore based on other patterns like “Asynchronous Queuing”
and “Service Messaging”. Furthermore it realizes the 2nd principle “Service
Loose Coupling” as well as principle number 5 “Service Autonomy” because
services become more independent from each other since they don’t have to
keep polling each other constantly. This pattern is closely related to the “Ob-
server Pattern” [GHJV95]. In this case too one object acts as the observable
subject which allows other observer-objects to register and unregister them-
selves. As soon as a change in the subject occurs it calls a “notify”-procedure
which then notifies all registered observer-objects. The main difference is that
we don’t find an additional layer called “event manager”. It’s functionality is
taken over by the subject.

6.2.8 Agnostic Sub Controller

Service compositions are assembled to handle a specific task. Often we find
task-specific logic as well as agnostic logic which could be used in other con-

6.2. SOA DESIGN PATTERNS 87

Figure 6.4: Now an event management program distributes messages about
the event that occurred in Service B.

texts within a service. This lessens the reuse potential and leads to redun-
dancy. The solution is to outsource reusable logic and direct it with a separate
service called an “agnostic sub-controller” as it can be seen in figure 6.5. This
logic may still be needed by the parent service but can now be addressed in-
dependently by other programs as well. As already mentioned above, the main
goal of this pattern is to reduce redundancy and increase the possibilities to
build complex structures. Therefore it supports the two basic principles num-
ber 4 “Service Reusability” and number 8 “Service Composability”. In practice
it can be realized in two different ways [Erl08a]

• New Agnostic Service: The logic forms the basis of a new agnostic ser-
vice

• New Agnostic Capability: The logic remains within the task service and
is made accessible via a new capability in the contract.

6.2.9 Data Confidentiality

This pattern supports “Service Messaging” and “Messaging Metadata” by pro-
tecting the transmitted data against attackers. There exist techniques to se-
cure message contents at transport layer against secret listeners between
two stations. The problem with this method is that it only guarantees secure
data transmission if only point-to-point connections are taken into considera-
tion. As soon as we talk about large service compositions and the message

88 CHAPTER 6. SERVICE COMPOSITION DESIGN PATTERNS

Figure 6.5: The reusable logic of D and E is now managed by it’s own sub-
controller E.

passes through several intermediaries a secure transfer cannot be guaranteed
anymore because when a message passes through such a service it gains
access to the data inside of the message. The solution is to encrypt mes-
sages independently from their transport through the composition. The down-
side is again more runtime overhead to successfully encrypt and decrypt the
data. In the case of Web Services this is commonly done with XML Encryption
which is very “efficient because information that isn’t confidential can be sent
unencrypted”[Gar03]. It even allows “encrypting different portions of the same
document according to different encryption keys, and selectively distributing
these keys to the various users according to the access control policies”[BE02].
In general, there are two ways to encrypt messages:

• Symmetric encryption: Sender and receiver both share a common key
and use it to encrypt and also to decrypt messages.

• Asymmetric (public key) encryption: Every station has a public and a
private key. The sender encrypts the message with the public key of
the receiver who can then decrypt it with his private key. These keys
can also be used for signing documents as explained in “Data Origin
Authentication” 6.2.10.

Encryption does not only impose a performance overhead at runtime. There
is also a governance overhead for managing the keys and ensuring that all
keys are truly chosen randomly. This technique alone however does not pre-
vent cryptographic attacks when many messages were collected which is why

6.2. SOA DESIGN PATTERNS 89

usually a session based key is used [Erl08a]. Also, as mentioned above, an-
other problem might be that it can’t be validated if the sender is really who he
declares to be. This will be taken care of in the next section.

6.2.10 Data Origin Authentication

As already stated in “Data Confidentiality” the sender’s identity can’t always be
verified and someone else might inject false messages into the network under
a different name. One way to solve this problem is presented by the pattern
“Data Origin Authentication” in which the sender signs every message digitally.
This way two things can be assured [Erl08a]:

• “The message has not been altered while in transit”

• “The message originated from the expected sender”

Signing a message can also be done in two different ways:

• Symmetric: The most common one is the “Message authentication code
(MAC)”. The MAC is calculated from the message checksum and a shared
secret between the two services.

• Asymmetric: Here, the private key is used to create the signature while
the public key serves as a tool to verify it.

“Data Origin Authentication” has the same impacts on runtime and governance
overhead as “Data Confidentiality”.

6.2.11 Direct Authentication

Often a service deals with data which is supposed to be only available for a
certain group of consumers. So whenever a consumer program asks for the
data it is required to provide some credentials to prove it’s identity. This is
usually done by asking for a username and a password or alternatively us-
ing a keyed hash message authentication function. The service then contacts
an identity store which contains the rights and privileges of all users to verify
whether to grant access to the data or not. This process is illustrated in fig-
ure 6.6. Note that “Direct Authentication” needs to be supplemented by other
security patterns like “Data Confidentiality” and “Data Origin Authentication” to
prevent misuse of the system. If every service is provided with it’s own identity
store this implies governance costs to keep this data consistent. On the other
hand, if multiple services share identity stores they loose their autonomy. An-
other important aspect in practice is the password management. Both sides

90 CHAPTER 6. SERVICE COMPOSITION DESIGN PATTERNS

Figure 6.6: Visualization of “Direct Authentication”.

have to keep the passwords secure to prevent a misuse of the service or ser-
vice composition. Also, because there is no sign-in functionality, a consumer
may have to send identification data several times.

6.2.12 Brokered Authentication

In the following scenario we assume that per default service and consumer
don’t trust each other. But in this case there was no previous communication
negotiating who trusts whom. Also, consumers don’t want to use different lo-
gin data for each service. The pattern we will now discuss is an alternative to
“Direct Authentication”. What we need here is a “middle man” represented by
a so called “authentication broker”. It validates credentials and is trusted by
both sides. Whenever a consumer wants to use one or more services it con-
tacts the authentication broker and is given a token which then can be used to
access the services. “The broker can issue a token to an authorized consumer
that is specifically scoped for that service” [Erl08a]. One well known protocol
is called the “Kerberos Protocol”. The consumer “uses a series of encrypted
messages to prove to a verifier that a client is running on behalf of a partic-
ular user” [NT94]. It is based on the DES-Algorithm, a symmetric encryption
method. Initially, client and server do not share a key so it is the task of the au-
thentication server to generate one and send it to both sides. In Kerberos even
“subsequent authentication without re-entry of a principal’s password” [NT94]
is possible and tokens are usually valid for 8 hours. However, the Key Distri-
bution Center (KDC) must be constantly online and without it many parts of
the service composition may stop working. It must also be extra secure be-
cause if hackers could get access to a KDC they could use the information to
do serious harm to a service composition.

6.2. SOA DESIGN PATTERNS 91

6.2.13 Transformation Patterns

When following a bottom-up approach one might encounter several interop-
erability problems. The following 3 patterns are meant to convert between
different protocols, data formats and data models. “The required use of these
patterns can indicate an inability to achieve the standardization required to re-
alize service-orientation to its full extent within a given environment.” [Erl08a]

Two or more services may use different schemas to represent the same data.
Sometimes schemas are standardized in the beginning but when services are
reused to form other compositions incompatibilities are often introduced. In
those cases “Data Model Transformation Logic” is used to convert between
the two formats. It can either be part of the service architecture or of a sep-
arate middleware platform. This approach increases the overall complexity of
the composition as well as it imposes a performance overhead for converting
between the models.

In the case of mismatching data formats between services a layer of “Data
Format Transformation Logic” is used for conversion. In practice it can either
be a part of a service’s logic, a separate service or implemented as a service
agent. Whenever this pattern is applied this also implies a transformation of
the source data model and therefore an application of “Data Model Transfor-
mation”. And just like this pattern, “Data Format Transformation” adds to the
runtime overhead and increases the design complexity.

It is also commonly applied together with the third transformation pattern called
“Protocol Bridging”. In this case two services use different communication
protocols which imposes the need of a bridging logic for dynamically converting
between the protocols.

An important thing to keep in mind is that these three transformation patterns
are only used out of necessity and are only applied when other patterns fail
to reach the necessary level of standardization. “Their overuse is considered
an anti-pattern” [Erl08a] because it can undermine goals of other patterns like
“Capability Recomposition”.

6.2.14 The Enterprise Service Bus

The last pattern in this collection represents a pattern composed of several
other patterns discussed before. It provides a foundation to transfer mes-
sages from service A to service B. First, the “Service Broker” pattern converts
the message, then “Intermediate Routing” sends it to it’s destination “Asyn-
chronous Queuing” takes care of storing it until service B is ready. It can of
course be extended by several other patterns also presented in “SOA Design
Patterns” [Erl08a].

92 CHAPTER 6. SERVICE COMPOSITION DESIGN PATTERNS

Figure 6.7: Structure of the Enterprise Service Bus.

6.3 Summary and Discussion

It does not only come down to the question of whether to migrate to service
oriented concepts or not but it is also important to plan to what extend to realize
them. Different degrees of service orientation may have different benefits for
different companies. On the one hand the initial costs can be significant: The
staff has to be trained accordingly, the company may need new equipment
and/or a new technical infrastructure and of course it takes time and effort to
convert some existing applications to a service oriented design. At least in
theory as soon as most of the migration is done it starts to pay off - especially
in large enterprises which suffered from the above mentioned problems such
as redundant code and a big and inefficient IT.

Take for example a company that wants to create an inventory record for each
placed order and cross reference it to associated back orders. So far each
application implements this functionality but it would be much more elegant
to create an own inventory-service with an add-capability which only adds a
record. The back order query could be already a capability of another service
and simply be evoked when needed. This correlates to the pattern “Service
Composition”. Further, “Service Recomposition” could be realized by stan-
dardizing service contracts in this situation.

In a different scenario the company may already have introduced a service
oriented concept but services are still maintaining persistent connections to
exchange data. Here, realizing “Service Messaging” can reduce overhead.
And if Service A needs some data only Service B can retrieve it has to send
Service B a message. But instead of just waiting for the answer like in a syn-
chronous connection it can do other tasks in the meantime if the company
introduces “Asynchronous queuing”.

BIBLIOGRAPHY 93

These examples mean to illustrate the fact that there are always benefits con-
nected to introducing a new service oriented pattern but in some cases the
costs to realize it may exceed them. So the bottom line is that the degree of
service orientation which has to be realized is highly dependent on the situa-
tion and the structure of the company and ultimately on an analysis of costs
vs. benefits.

Bibliography

[AIS77] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A
Pattern Language: Towns, Buildings, Construction (Center for Envi-
ronmental Structure Series). Oxford University Press, August 1977.

[BE02] Elisa Bertino and Ferrari Elena. Secure and selective dissemina-
tion of xml documents. ACM Transactions on Information System
Security, 5:291–331, 2002.

[Erl07] Thomas Erl. SOA Principles of Service Design. Prentice Hall, 2007.

[Erl08a] Thomas Erl. SOA Design Patterns. Prentice Hall, 2008.

[Erl08b] Thomas Erl. What is service orientation, 2008.

[Gar03] Lee Garber. Taking steps to secure web services. IEEE Computer,
36:14–16, 2003.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

[NT94] B.Clifford Neumann and Theodore Ts’o. Kerberos: An authentica-
tion service for computer networks. IEEE Communication Maga-
zine, 32(9):33–38, 1994.

94 CHAPTER 6. SERVICE COMPOSITION DESIGN PATTERNS

Chapter 7

Metric-Based Clusters Enabling
Component Re-Use in
Service-Oriented Environment

Andreas Hahne

Contents
7.1 Introduction . 96
7.2 Related Work . 97
7.3 Clustering Techniques . 98

7.3.1 Module Dependency Graph 99
7.3.2 Clustering Algorithms And Metrics 99
7.3.3 Enhancements Using Domain Model 103

7.4 Component Re-Use In SOA Environments 104
7.4.1 Service Component Architecture 104
7.4.2 SCAlization . 105

7.5 Discussion And Comparison 107
7.6 Summary And Conclusion . 107
Bibliography . 108

95

96 CHAPTER 7. COMPONENT RE-USE IN SOA ENVIRONMENT

Abstract: Re-usability is a great concern in software development. SOA is
supposed to improve this requirement. This paper describes an approach by
He et al. to transform a component-based system into an SOA architecture
by reusing some of the legacy components. Before, an explanation of how to
properly analyse an existing system by dividing it into subsystems is given.

7.1 Introduction

Since the beginning of software development the resulting architectures be-
came more and more complex. With growing systems the difficulty of maintain-
ing the code grew accordingly. This resulted in the software crisis beginning in
the 1960s [NR68].

A general idea to overcome this problem is to avoid a redevelopment of a com-
pletely new system in each project and instead to reuse existing components
and configure them in the way that they collaborate correctly with each other
in the new system. Such solutions have already been addressed at the be-
ginning of the 1980s, e.g., by Belady and Evangelisti and used to promise the
reduction of development costs since then [BE81].

An essential problem of code re-use is that a module is maintained by several
developers throughout its lifetime which blurs the architecture. Documentation
is likely to be out of date and cannot be used for re-engineering, either.

During decades different paradigms arose promising better support for under-
standability, maintainability, and re-usability. The small and thematically co-
herent pieces of object-oriented software systems gave rise to that hope, es-
pecially in connection with the introduction of the Unified Modeling Language
(UML) which provides a standardized design approach. Software-Oriented Ar-
chitectures (SOA) have come up in the last few years claiming that reuse can
be improved further by that paradigm. This seems to be true, at least partially,
since developers do only have to know the knowledge of a service and not the
actual implementation. Indeed, the latter can be replaced without changing the
rest of the system. But as with any new concept, it only works if it is applied in
the right manner and best practices have to be invented.

Despite all these improvements the quality of system structure kept on suffer-
ing over time. Thus it became an important task for software engineers to re-
design their system. A basic technique for that is to analyze inter-dependencies
between modules (in procedural programming) or classes (in object-oriented
programming). As traditional software systems usually are interconnected
tightly detecting clusters is a difficult task. However, SOA claims that the in-
terfaces between the components, called services, in this context, are loosely
coupled and can thus be clustered more easily. The re-usability can then be
realized by composing existing services to new ones.

7.2. RELATED WORK 97

Throughout the paper it will often be referred to an example of an insurance
company. Such an enterprise has to fulfill a lot of different tasks in different
departments which interact with each other. Hence, such a use case seems
to be helpful to illustrate the general idea.

The remainder of the paper is structured in the following way. In Section 7.2
references to some clustering techniques are given as well as references to fur-
ther re-usability approaches. Later in Section 7.3 a few clustering techniques,
especially for analyzing component-based systems, and corresponding met-
rics are presented as well as a short description of the principle called domain
modelling followed by a description of the system transformation approach pre-
sented by He et al. in Section 7.4. In Section 7.5 the lightweight approach is
analyzed regarding applicability and some drawbacks are pointed out. Finally,
a summary on the paper is provided in Section 7.6.

7.2 Related Work

While there exist many proposals on how to transform existing component-
based and object-oriented systems into a well-structured architecture, ideas
of how to transform existing systems into service-oriented architecture are just
emerging in the last two years as presented int the sequel.

An important work in this field has been done by He et al. who transform a
component-based system into an SOA environment [HTZZ08]. Doing so they
make use of the Service Component Architecture framework developed 2007
by OSOA [OSO07]. A plug-in for designing such an SCA has been developed
for the Eclipse IDE meanwhile [Fou09]. This approach of SCAlization, i.e.
constructing components compliant with the SCA paradigm, assumes that the
original system is designed in a reasonable manner. This paper will mainly
refer to their work.

As the well-structured architecture is a prerequisite for the success of this ap-
proach, it is mandatory to consider different approaches how a software archi-
tecture can be analyzed regarding its structure and can even be improved. A
lot of effort has been done in this field since the 1980s both for automatic and
semi-automatic approaches [BE81] [HRY95]. Most of these works concentrate
on the module level. The approaches aim at dividing, i.e., clustering, a system
in reasonable subsystems, either flat or hierarchical ones. As the transfor-
mation of He et al. considers component-based systems also the presented
clustering-approaches will mainly deal with this field of architectures. Cluster-
ing object-oriented systems however is also covered in literature[DM01].

98 CHAPTER 7. COMPONENT RE-USE IN SOA ENVIRONMENT

7.3 Clustering Techniques

As described in the introduction, a lot of turnovers in module responsibility
cause design information to blur. To overcome this problem it is necessary
to restructure the system by analyzing the dependencies among modules or
classes respectively. The term dependencies in this context mostly refers to
generalizations, includes and the like. To this end, two main techniques have
been developed. One aims at analyzing the dependencies by looking at the
source code, the other at deriving dependencies by monitoring the system at
run-time. The former is considered in this section whereas the approach of He
et al. relies on black-box analysis mainly.

The general idea is to divide a system into subsystems, which can be even-
tually decomposed into subsystems again yielding a hierarchical structure. To
evaluate the quality of a particular clustering several metrics have been devel-
oped. Of course, the modules of a system can generally be clustered in an
arbitrary manner. However, it is common sense that a system is well-clustered
if dependencies between clusters occur rarely whereas components of a sin-
gle cluster are strongly interconnected. These two aspects refer to the two
concepts of cohesion and coupling. The usual way of visualizing dependen-
cies is via a module dependency graph which is explained in detail in section
7.3.1.

Regarding the employed algorithms for clustering there is one special class
worth mentioned in this context, the genetic algorithms (GA) [Mit96]. As the
name suggests already, it is oriented at the evolution theory and the princi-
ple of survival of the fittest. In this case, possible solutions of a problem deal
as the population which may produce a new population in the next genera-
tion by selection, recombination, and mutation. In that way increasingly better
clusterings are created from the original one. In general, this approach is usu-
ally employed for problems which are not computable efficiently as the case for
clusterings. An actual clustering approach that refines the idea of genetic algo-
rithms to Evolution Strategy is proposed by Khan, Sohail, and Javed [KSJ08].
Mancoridis et al. use the concept of GA, too [MMR+98].

Besides the mathematically founded metrics, another approach for structuring
the system on a high level is described in section 7.3.3 and compared with
the method of clustering. The Domain Model idea claims that companies of a
particular domain, like insurance companies, are structured in a comparable
way. Thus, the software systems can be designed in the same manner and
many components can be re-used therefore. The Domain Model can be used
to validate the constructed clustering of the software system.

7.3. CLUSTERING TECHNIQUES 99

7.3.1 Module Dependency Graph

A Module Dependency Graph (MDG) describes the dependencies (i.e., in-
cludes, invocations and the like) between modules in an intuitive way interpret-
ing the modules as nodes and the relationships as (directed) edges.

A very small example is given in Figure 7.1. If we consider an insurance com-
pany as an example, there certainly is communication between the employees
and the customers realized by the module comm. For information on the cus-
tomers the database has to be accessed via the module db which logs informa-
tion, just like comm does, via the log module. Moreover certain communication
with customers affect existing or upcoming contracts processed in the corre-
sponding module. Vice-versa, contracts may require communication from time
to time, for instance if they are going to expire. Finally, to calculate contracts
mathematical functions have to be taken into account using the math module.
What can be derived from the figure especially is that cycles are well possible
and also likely among modules (like between comm and contract).

log

db

comm

contract

math

Figure 7.1: Module Dependency Graph

7.3.2 Clustering Algorithms And Metrics

An early work on clustering techniques has been provided by Belady and Evan-
gelisti in 1981 [BE81]. They propose an automatic clustering approach and
define a metric based on the assumption that the complexity of code under-
standing is proportional to the number of interconnections between the mod-
ules. They define a graph where the nodes do not only represent modules
but code blocks, too. An edge between any two nodes means that a module
refers to a control block. The aim of the clustering approach here is to avoid
that a control block is referenced by too many modules as this will decrease
the understanding of the system. The measurement Belady and Evangelisti
define counts both the edges within and between clusters. They found that
there exist local minima of the complexity based on the number of clusters in a
system meaning that it is not desirable to have arbitrarily small clusters since
the interconnections increase and have to be understood by the developers as
well.

100 CHAPTER 7. COMPONENT RE-USE IN SOA ENVIRONMENT

Mancoridis et al. propose a hierarchical clustering of the software architecture
and introduce a measurement to evaluate the quality of a partitioning called
Modularization Quality (MQ) [MMR+98]. They point out that the documenta-
tion of many systems is out of date and cannot be used to derive the origi-
nal system architecture. Many changes on the architecture are most likely not
compliant to the original design decision. So they concentrate on analyzing the
source code automatically and cluster the system into a hierarchy of subsys-
tems. The MQ calculates the quality based on the module dependency graph
by awarding relationships within a cluster and penalizing connections among
clusters. To this end, they define two measurements for intra-connectivity (Ai)
of each cluster i and inter-connectivity (Ei,j) between clusters i and j in the
following way:

Ai =
µi
N2
i

Ei,j =

{
0 i = j
εi,j

2NiNj
i 6= j

where µi is the number of relationships in a cluster, εi,j the ones between
clusters and Ni and Nj the number of components in the cluster i and j re-
spectively. Both Ai and Ei,j yield values between 0 and 1. A high value for the
intra-connectivity indicates a good clustering as a change in one cluster rarely
affects other ones whereas a high inter-connectivity is considered to be bad
for maintenance since changes affect a lot of other clusters and changes have
to be propagated to the developers of other subsystems. In order to derive MQ
from these values it is defined as follows yielding a value between −1 and 1:

MQ =

{
1
k

∑k
i=1Ai −

1
k(k−1)

2

∑k
i,j=1Ei,j k > 1

A1 k = 1

Applied to the graph in Figure 7.1 a reasonable clustering (whereas probably
not optimal) might be the partition:

{{log}, {db, comm, contract}, {math}}

Using MQ as a quality measure Mancoridis et al. developed several algorithms
to find a partitioning which is optimal with regard to MQ and implemented a
tool called Bunch realizing that. The term partitioning is used here in the usual
sense, i.e. a set of subsets of a set S where the subsets contain the whole
set S and where the distinct components are disjoint. The number of possible
k-partitions, i.e., partitions of a set into k subsets, grows exponentially in the
size of S which is reflected by the Stirling numbers of the second kind :

Sn,k =
{

1 k = 1 ∨ k = n
Sn−1,k−1 + kSn−1,k otherwise

7.3. CLUSTERING TECHNIQUES 101

An explanation for this formula is for instance given by PlanetMath.org [Pla07].

The Optimal Algorithm provided by Mancoridis et al. calculates MQs for all
possible partitions and is thus applicable to systems with ”up to 15 modules”
only. This partitioning would yield a modularization quality of 0.0736.

Another important property used by the more sophisticated algorithms is the
Neighboring Partition (NP) where partition P is considered to be a neighbor
of partition P ′ if the partitions are the same except for one module located in
a different cluster. Mancorids et al. state that the advantage of NP as they
apply it is that a certain clustering is not fixed over time, but can be adjusted if
necessary. Thus a bad decision at the beginning can be corrected in the later
run.

Employing this idea, a Sub-Optimal Algorithm is based on selecting a ran-
dom partition and select a better neighboring partition until no better one can
be found with regard to MQ. This approach converges to a locally optimal so-
lution, but it does not necessarily yield the partition with the overall best MQ.
Another improvement is achieved by a Genetic Algorithm starting with a pop-
ulation of randomly selected partitions. The algorithm selects a set of partitions
out of this population and calculates better neighboring partitions (with regard
to MQ). In the next generation, the fittest partitions are selected, i.e. those
partitions with the best MQ survive and can be recombined in the next gener-
ation. The algorithms can be combined to produce hierarchies on the system
by applying them on the whole system and on particular clusters afterwards.

A general hypothesis of Mancoridis’ et aliorum approach is that ”well-designed
software systems are organized into cohesive clusters that are loosely inter-
connected”. Especially the last part gives rise to the assumption that such a
”well-designed” architecture can be transformed into an SOA by considering
the clusters as services which are loosely coupled among each other. As they
propose a hierarchical clustering one could also think of combining several
low-level services together in order to achieve more sophisticated ones.

In a later work they extended their framework in the way that two particular
subsystems can be defined by the user or can be calculated automatically:
one holding ”client” modules which call many other modules and ”suppliers”
which are frequently called [MMCG99]. Moreover the user can use the system
interactively and influence the process of clustering. Finally, it is preserved that
small changes in the architecture do not affect the whole clustering.

A further analysis on MQ has been done by Chiricota and Jourdan [CJM03].
They propose an algorithm, which calculates kind of an edge density of a
graph, and compare the results with the ones from Mancoridis et al. using
the MQ metric. Furthermore, they explain which MQ values can be consid-
ered to be good, an issue that had not been addressed before. In contrast to
Bunch they consider undirected edges. The idea of the algorithm is to con-
sider an edge e with end points u and v as well as all possible 3- and 4-cycles

102 CHAPTER 7. COMPONENT RE-USE IN SOA ENVIRONMENT

through e. To this end the neighborhood of u and v is partitioned in the way
that one set contains all nodes neighbored with both u and v (denoted asWuv),
whereas the remaining ones contain those that are exclusively neighbors of u
or v respectively (Mu, Mv). Using this partition 3- and 4-cycles through e can
be identified in the following manner: (1) All 3-cycles contain one node of Wuv

apart from u and v. (2) All 4-cycles contain either both remaining nodes in Wuv

or one in Wuv and the last one in either Mu or Mv or one in Mu and the other
in Mv.

Based on this idea, the edge density of 3- and 4-cycles through e can be
defined. Two utility functions have to be introduced to this end:

s(U, V) =
e(U, V)
|U ||V |

s(U) =
e(U)(|U |

2

)
where s(U, V) calculates the ratio of edges connecting nodes from U with
nodes from V compared to the maximal possible number and s(U) the ratio
of edges in U with regard to the total possible number. The density for 3- and
4-cycles can thus be expressed in the following way:

γ4(e) = s(Mu,Wuv) + s(Mv,Wuv) + s(Mu,Mv) + s(Wuv)

γ3(e) =
|Wuv|

|Wuv|+ |Mu|+ |Mv|

The metric defined by Chiricota and Jourdan, called Strength Metric, is simply
the sum of both the 3-cycles and 4-cycles density of a particular edge, called
Σ(e).

An argument for this metric is that a small value Σ(e) for an edge corresponds
to the fact that few small cycles lead through this edge e. Contrarily, if the edge
was removed it is likely that the graph is split into separate components, e deals
as an isthmus. The algorithm simply removes edges with a low Σ(e) temporar-
ily in order to identify possible clusters. By varying the threshold below which
an edge is removed influences the number of resulting clusters.

In three case studies in which they clustered ResynAssistant, a software used
in organic chemistry, as well as the Mac OS9 and MFC API the resulting
modularity quality was compared both for Bunch and their Strength algorithm.
The resulting MQ values are comparable even if the values are slightly higher
with Bunch. However the calculation speed using the strength metric is much
higher. Interestingly, when clustering Mac OS9 and MFC respectively much
more clusters have been computed by Strength than by Bunch.

If the algorithm is applied to the MDG from the example the problems comes
up that some of the s(U, V)s are undefined as some endpoints of edges do

7.3. CLUSTERING TECHNIQUES 103

not have exclusive neighbors (like log for the edge (comm, log)). Those edges
are accounted with an infinite density meaning that there is no threshold for
which the edge will be removed. There are only two edges which have a finite
density: (db, contract) = 4

3 and (comm, contract) = 4
3 .

So if the graph is clustered with an edge threshold of 1.4 or more the graph
is decomposed into two components {log, db, comm} and {contract, math}.
Obviously this clustering is very different from the assumption made initially.
Indeed, the modularization quality calculated for this clustering on the given
graph is exactly 0 and is hence smaller than the one from the estimated clus-
tering above. The main reason for this is probably that the edges are consid-
ered to be undirected by Strength. The original graph however suggested that
there are two main components, comm and contract which require the others.
This is no longer represented in the Strength approach. Moreover the system
is very small and it is likely that a more reasonable clustering may come up if
the graph is larger and if few edges have an infinite weight.

Additionally, Chiricota and Jourdan gave a theoretical foundation of what can
considered to be a good MQ value. They analyzed the distribution of MQ val-
ues for arbitrary clusterings and found that this yields a Gaussian distribution
with a peak around −0.2 meaning that most of the randomly clustered graphs
have an MQ of that value. Everything above that value is a fairly good cluster,
everything below is a poor one.

7.3.3 Enhancements Using Domain Model

As presented in the previous section finding the right clustering is not easy to
achieve. A further heuristic to justify a clustering is the idea of Domain Models
which represent an abstract view on a particular business domain. It identifies
essential components of an enterprise, called entities, and connects them via
relationships. It is claimed that the same model is applicable to all enterprises
in a particular domain. Of course, this increases the possibility of reuse, too,
since applications developed according to a domain model can be migrated
to other enterprises with less effort than without such a model. Also in SOA
environments a domain model can be very helpful if the entities are realized
by services.

An essential problem however is to generate a domain model. One approach
to that has been proposed by Oldfield [Old02]. Once a domain model has been
created and proved to be reasonable it can be used to validate a clustering:
If entities of the domain model can be mapped to the clusters of a module
dependency graph in a coherent manner (e.g., by preserving relationships) it
is likely that the clustering is reasonable, too. Furthermore, these clusters can
be realized through services as the boundaries are justified. If a domain model
exists for a particular domain the service architecture can be adopted by other
projects in the same domain. Such a proposal has been made recently by

104 CHAPTER 7. COMPONENT RE-USE IN SOA ENVIRONMENT

Wang et al. [WYF+08].

7.4 Component Re-Use In SOA Environments

Service Oriented Architecture promised to improve re-usability. However, re-
peatedly people declare the dead of SOA like Manes did [Man09], who claimed
about the term SOA, which often is misused in her eyes, and not the general
concept though. An approach to realize re-usability it proposed in this section
by wrapping existing components with SOA elements and providing services
accessing them [HTZZ08]. A mandatory requirement for reusing old code is,
obviously, that existing components are known to the designer just like the se-
mantics of them. To this end, services have to be described in a standardized
manner in the way that the information can be retrieved and provided to a de-
veloper. Such an idea via XML-based description is presented by Sillitti and
Succi [SS08].

In the sequel a standardized way of describing services and relationships is
presented with the Service Component Architecture (SCA) [OSO07]. After-
wards a lightweight approach to constructing a service architecture respecting
SCA from an existing component-based system by He et al. is introduced
[HTZZ08].

7.4.1 Service Component Architecture

As stated by OSOA, SCA is a ”model for the assembly of services” and ”for
applying infrastructure capabilities” to them [OSO07]. It has been developed
by the Open SOA collaboration (www.osoa.org) in November 2005 and the Or-
ganization for the Advancement of Structured Information Standards (OASIS)
has initialized the standardization process in April 2007 [Gey07].

The idea is to describe the composition of and interaction between services
in both a graphical way and textual way. In SCA the provided interface is
the actual Service whereas the implementation is called Component. The be-
haviour can be modified by a set of Properties and one service component can
require the interface of another service component, which is called a Wire be-
tween the two components. A set of service components can be combined to a
Composite which again can be combined together with others to higher-order
composites. Besides that the composites, services etc. can be described with
XML documents where the names of services, references or the classes of
the actual implementations are connected with each other. As the implemen-
tation does not matter the model is applicable to any programming language.
However, the examples described in the specification are limited to Java. Us-
ing this standardized way SOA can be described efficiently. The approach

7.4. COMPONENT RE-USE IN SOA ENVIRONMENTS 105

to reuse components in a service architecture, which is described in the next
section, is based on this specification.

7.4.2 SCAlization

An approach to partially reuse components from an existing system in a new
service-oriented environment has been proposed by He et al. [HTZZ08]. It has
been designed for scenarios in which the source code of the legacy system is
not available for the migrant. Thus, the internal structure has to be retrieved
indirectly. In the paper the two possibilities mentioned are the inspection of
invocations at run-time by making use of reflection strategies and the analysis
of design documents. Whereas the former has the disadvantage that not all
dependencies can be detected in an insufficient analysis, the latter holds the
drawback that design documents tend to be out of date compared with the
system or even do not exist at all. Furthermore it is assumed that the received
structure is sound with respect to the original idea of the designers and has
not suffered from previous changes already.

As only some of the components of the legacy system should be re-used one
has to identify them at first. Usually, those components reference others which
can be derived from the module dependency graph and will be referred to as
depended components. Finally there are components which will be reimple-
mented and are not referenced by components to be re-used. However these
may reference the re-used components. These three types of components are
transformed differently:

• Components to be reused are transformed into SCA surrogates, i.e.
components according to the SCA paradigm. The original invocations
are redirected to the components to be reused since the behaviour of
those should not change. The existing components remain in the new
system, but outside the SCA structure.

• Depended components remain in the new system unchanged (but out-
side the SCA part). If the components to be re-used reference them they
propagate the request via the SCA surrogate to the new implementa-
tion of the corresponding component, which is an SCA component now.
Since the invocation has to be redirected to the services a wrapper for
the original component is necessary, called Legacy surrogate.

• Remaining components are, similar to the depended components, reim-
plemented as SCA components (possibly with new features). As they are
not referenced by components to be reused, the old component imple-
mentation does not have to be migrated. If the old component referenced
a particular component in the legacy system the new SCA component
will reference the corresponding service which will redirect the request to
the component to be re-used.

106 CHAPTER 7. COMPONENT RE-USE IN SOA ENVIRONMENT

As mentioned before the legacy components partially remain in the emerging
system and are called SCAlized components because the SCA structure is
wrapped around the old components which can still be used in the new envi-
ronment. This SCAlized components themselves are no SCA components of
course and thus have to be packaged independently of the rest. In Java they
could be packaged into an EJB container for instance. The SCA components
themselves, i.e., the SCA wrapper of the components to be re-used as well
as the re-implementations of the other components which are not re-used are
packaged together in an SCA container.

Considering the example of an insurance company again it might become a
strategic desire to transform the component-based system into an SOA as this
represents the business structure in a more comprehensive way. In the anal-
ysis process it becomes clear that the functionalities of comm and contract
should be extended whereas the behaviour of db can remain unchanged. Ne-
glecting the modules log and math as well as the relationships between comm
and contract for the sake of simplicity, an architecture as depicted in Figure
7.2 could come up.

EJB Container

Database

Logging

Communication

Contract

Database Logging

SCA Container

Figure 7.2: SCA version of insurance company

Since db is the component to be re-used it remains unchanged in the EJB
container. Moreover an SCA component for the Database is created. The db
component requires the log module and so a legacy surrogate for that is gen-
erated which can be called by db and processes the request via the Database
SCA surrogate to the Logging SCA component. Contract and Communication
both are supposed to be changed by assumption. As the legacy components
called the db component the new SCA components call the SCA surrogate
Database which propagates the request to the db component to be reused.

To SCAlize a whole system with a single pair of both EJB and SCA container
is only applicable for very small-scale systems. In practice it is probably more

7.5. DISCUSSION AND COMPARISON 107

reasonable to cluster the system with one of the approaches mentioned in
the previous section after the dependencies between modules have been ana-
lyzed. In that way, the resulting containers will remain relatively small and can
be recombined to design further systems in advance.

To design SCA compliant environments an Eclipse plug-in has been developed
as part of the SOA Tools Platform Project (STP) [Fou09]. It provides a graph-
ical user interface to compose services and interconnect them as well as it
generates the corresponding SCA meta model according to the specification.
Although usability can be improved for this tool, it is another indicator that SCA
is becoming more important in the SOA development.

7.5 Discussion And Comparison

The presented approach to SCAlize components is a very simple one to pre-
serve legacy code in an emerging SOA environment. However it relies on the
assumption that the legacy system itself is well designed. As the process is
automated, once the components to be re-used have been identified by the
developer, a bad structure of the legacy system would lead to the same bad
architecture in the new environment, simply wrapped by SOA components.
Thus, in order to use this approach effectively, the system being transformed
has to be clustered before and possible drawbacks in the architecture have to
be detected. This clustering is even more difficult as it is assumed that the
source code is not available. So the strategies presented above can only par-
tially be applied although the metrics are also valid for module dependency
graphs derived from the run-time information, of course. Analyzing the depen-
dencies based on the run-time behaviour and existing design documents has
some disadvantages as mentioned before. After the old system is confirmed
to be reasonably structured the described SCAlization technique is a powerful
one. Small sets of components can be composed to SCA containers and can
be combined with other containers derived in the same manner. Doing so, a
hierarchical structure can be created which may improve the maintainability as
a clearly structured new system emerged that can be managed better than the
old one because the structure can now be explicitly identified.

7.6 Summary And Conclusion

In this work several approaches on how an existing system can be decom-
posed into subsystems, called clustering, were presented. Those approaches
basically concentrate on analyzing source code. An important metric on how
to evaluate the quality of a clustering was introduced with the Modularity Qual-
ity (MQ). Also related work analyzing and improving MQ has been provided.

108 CHAPTER 7. COMPONENT RE-USE IN SOA ENVIRONMENT

These strategies are not bound to SOA environments, but are applicable to
every component-based system. In the next section an approach to transform
a component-based legacy system in a SOA architecture which complies to
the description standard SCA has been presented. It wraps components that
will be re-used into SCA containers and assumes that the original source code
is not present. So the dependencies are analyzed based on run-time analysis
as well as inspection of design documents. This lightweight approach makes
only sense if the original system is considered to be well-structured as a bad
structure would survive the transformation.

Bibliography

[BE81] L. A. Belady and C. J. Evangelisti. System Partitioning and its Mea-
sure. The Journal of Systems and Software, 2(1):23–29, February
1981.

[CJM03] Yves Chiricota, Fabien Jourdan, and Guy Melançon. Software
Components Capture Using Graph Clustering. In IWPC ’03: Pro-
ceedings of the 11th IEEE International Workshop on Program
Comprehension, page 217, Washington, DC, USA, 2003. IEEE
Computer Society.

[DM01] Lei Ding and Nenad Medvidovic. Focus: A Light-Weight, Incre-
mental Approach to Software Architecture Recovery and Evolution.
In WICSA ’01: Proceedings of the Working IEEE/IFIP Conference
on Software Architecture, page 191, Washington, DC, USA, 2001.
IEEE Computer Society.

[Fou09] Eclipse Foundation. SOA Tools Platform Project, SCA sub project,
2009. http://www.eclipse.org/stp/sca/index.php.

[Gey07] OASIS (C. Geyer). OASIS Advances Standards to
Simplify SOA Application Development, April 2007.
http://www.oasis-open.org/news/oasis-news-2007-04-11
.php.

[HRY95] David R. Harris, Howard B. Reubenstein, and Alexander S. Yeh.
Reverse engineering to the architectural level. In ICSE ’95: Pro-
ceedings of the 17th international conference on Software engi-
neering, pages 186–195, New York, NY, USA, 1995. ACM.

[HTZZ08] He Yuan Huang, Hua Fang Tan, Jun Zhu, and Wei Zhao. A
Lightweight Approach to Partially Reuse Existing Component-
Based System in Service-Oriented Environment. In H. Mei, editor,
High Confidence Software Reuse in Large Systems, volume 5030
of Lecture Notes in Computer Science, pages 245–256. Springer-
Verlag Berlin Heidelberg, 2008.

BIBLIOGRAPHY 109

[KSJ08] Bilal Khan, Shaleeza Shail, and M. Younus Javed. Evolution Strat-
egy Based Automated Software Clustering Approach. In Advanced
Software Engineering and Its Applications, pages 27–34, 2008.

[Man09] Anne Thomas Manes. SOA is Dead;
Long Live Services, January 2009.
http://apsblog.burtongroup.com/2009/01/soa-is-dead-long
-live-services.html.

[Mit96] Melanie Mitchell. An introduction to genetic algorithms. MIT Press,
Cambridge, MA, USA, 1996.

[MMCG99] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner. Bunch:
a clustering tool for the recovery and maintenance of software
system structures. In In Proceedings of International Conference
of Software Maintenance, pages 50–59. IEEE Computer Society
Press, 1999.

[MMR+98] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R.
Gansner. Using Automatic Clustering to Produce High-Level Sys-
tem Organizations of Source Code. In IWPC ’98: Proceedings
of the 6th International Workshop on Program Comprehension,
page 45, Washington, DC, USA, 1998. IEEE Computer Society.

[NR68] Peter Naur and Brian Randell. Software Engineering: Report of a
conference sponsored by the NATO Science Committee. October
1968.

[Old02] Paul Oldfield. Domain Modelling, 2002.
http://www.aptprocess.com.

[OSO07] OSOA. Service Component Architecture –
Assembly Model Specification, March 2007.
http://www.osoa.org/download/attachments/35/SCA Assembl
yModel V100.pdf?version=1.

[Pla07] PlanetMath.org. Stirling numbers of the second kind, March 2007.
http://planetmath.org/encyclopedia/StirlingNumbersSecon
dKind.html.

[SS08] Alberto Sillitti and Giancarlo Succi. Reuse: From Components to
Services. In H. Mei, editor, High Confidence Software Reuse in
Large Systems, volume 5030 of Lecture Notes in Computer Sci-
ence, pages 266–269. Springer-Verlag Berlin Heidelberg, 2008.

[WYF+08] Jianwu Wang, Jian Yu, Paolo Falcarin, Yanbo Han, and Maur-
izio Morisio. An Approach to Domain-Specific Reuse in Service-
Oriented Environments. In H. Mei, editor, High Confidence Soft-
ware Reuse in Large Systems, volume 5030 of Lecture Notes in
Computer Science, pages 221–232. Springer-Verlag Berlin Hei-
delberg, 2008.

110 CHAPTER 7. COMPONENT RE-USE IN SOA ENVIRONMENT

Chapter 8

Security as a Service

Markus Vervier

Contents
8.1 Introduction . 112

8.1.1 Definition of an Service Oriented Architecture (SOA) . 113
8.1.2 Enterprise SOA . 113

8.2 Secure SOA . 114
8.2.1 Security . 114

8.3 Security as a Service . 115
8.3.1 Out-of-Band Invocation 116
8.3.2 Intermediary Invocation 116
8.3.3 Relevant Technologies 117

8.4 Protocols For Security Services 118
8.4.1 The SAML Protocol 119
8.4.2 WS-Security . 120

8.5 Conclusion . 124
Bibliography . 125

111

112 CHAPTER 8. SECURITY AS A SERVICE

Abstract: This seminar work presents the relevant technologies necessary
to implement a security service in an SOA. In large scale enterprise envi-
ronments securing services via traditional security measures does not work
well. It is not feasible to implement security in each service seperately. This
problem can be solved in a way natural to an SOA by implementing a central
security service. The basic concepts and relevant technologies for a security
service will be presented in this work. By using the SAML and WS-Security
extensions to SOAP it is possible to secure large scale enterprise systems.

8.1 Introduction

The term Service Oriented Architecture (SOA) was first mentioned by the mar-
keting company Gartner in 1996 by Natis in [Nat03]. Also mentioned in the
name SOA, the service is the most important concept in a SOA.

In the lexicon [Mil06], a Service is defined as: Work done by one person or
group that benefits another. This definition can also be extended to non-human
agents. Basically a service can be used by a consumer, who benefits from it.

In technical terms, a service is defined in [MLM+06] as a mechanism to enable
access to a set of one or more capabilities, where the access is provided using
a prescribed interface and is exercised consistent with constraints and policies
as specified by the service description.

SOA enables the building of applications which use other applications via their
services. Generally it shifts development from an application centric point of
view to a service centric.

Services posses desirable attributes that come in handy in overcoming the
drawbacks of organizing IT along application boundaries Kanneganti and Cho-
davarapu state in [KC08, page 7]. They define the following important at-
tributes of services in [KC08, page 8]:

• The service definition is defined by the convenience of the consumer.

• A service is self-describing, so consumers are able to learn by them-
selves how to invoke the service. A service description should include
service interface, wire format, transport, location, policies and the Ser-
vice Level Agreement.

• A service is technology independent. It is interoperable with any possible
consumer and idependent of the hardware or sofware platforms.

• A service is discoverable. Consumers looking for a service can discover
its presence, usually via a service registry (like the yellow pages in a
phone directory).

8.1. INTRODUCTION 113

• A service can consist of other services building a high level service. For
example several “technical services” can be composed into a “buisiness
service”.

• A service is context-independent. That means it does not matter what
the consumer did before invoking the service.

• A service is stateless.

A service is provided by the service provider for consumers to use. The con-
sumers do not need to know anything about the service provider itself and
vice versa the service provider does not need to know what possible uses the
consumers are utilizing the service for. We can already imagine, that this may
pose new security problems.

8.1.1 Definition of an SOA

There is no single accepted definition for an SOA. A well known definition can
be found in the Reference Model for Service Oriented Architecture [MLM+06]
by the Organization for the Advancement of Structured Information Standards
(OASIS):

Service Oriented Architecture (SOA) is a paradigm for organizing and utilizing
distributed capabilities that may be under the control of different ownership
domains.

A similiar definition is given by Wilkes and Harby in [WHB+04]:

A service-oriented architecture can be defined as a way of designing and im-
plementing enterprise applications that deals with the intercommunication of
loosely coupled, coarse grained (business level), reusable artifacts (services).
Determining how to invoke these services should be through a platform inde-
pendent service interface.

The term SOA is used heavily for marketing and there are a multitude of other
definitions. Often webservices are mistaken with SOA, which is actually much
more. Webservices may be used to implement an SOA, but technologies like
CORBA or Remote Procedure Calls (RPC) may be used as well.

8.1.2 Enterprise SOA

For enterprise class SOA development, special requirements apply. In enter-
prise environments, a security solution is necessary to develop frameworks
and architectures. Enterprise level SOA solutions model the whole business

114 CHAPTER 8. SECURITY AS A SERVICE

of a company and are typically very large scale. Therefore standard enterprise
concerns must also apply to an enterprise SOA security solution.

Kanneganti and Chodavarapu state three major concerns for an enterprise
SOA security solution in [KC08]: Ease of development, Manageability and
Interoperability.

In many services, the implemented security measures are overlapping and
similiar. In classic software development, common elements of security to
different services would be exported to a library to meet the three mentioned
enterprise concerns.

To meet these goals in SOA enterprise development, security can also be
implemented as a service. Since the service is a core concept of SOA it is
natural to implement security as service.

8.2 Secure SOA

Due to the distributed nature of an SOA, security is especially necessary and
hard to achieve at the same time. In distributed systems the intermediary de-
vices and agents are beyond control of the endpoints. Often they must also be
considered as being malicious. Messages in real world SOAs have to be trans-
ferred via the internet in many cases. There may be different intermediaries
in these environments. A direct connection from source to destination may
not be possible because of firewalls or other networking obstacles. Therefore
standard security measures like Transport Level Security (TLS) will not work.
Also problems like authorization and authentification must be solved. In the
following sections, a basic definition of security and an overview of relevant
technologies for secure SOA will be given.

8.2.1 Security

According to the guideline Leitfaden IT-Sicherheit [fSidI06] of the Bundesamt
für Sicherheit in der Informationstechnik (BSI) there are four main require-
ments for security:

• Confidentiality: Confidential data has to be protected against unwanted
disclosure.

• Availability: Services, functions and information are available at the re-
quired moment.

• Integrity: Data cannot be changed illegitimately and is complete and
unchanged. This also applies to metadata like the time of creation.

8.3. SECURITY AS A SERVICE 115

• Authenticity: Network nodes and services are authentified to their peers
and clients.

These are the main functional aspects of security, which are of concern for a
secure SOA. Privacy is only partially covered by confidentiality and important,
but cannot be viewed as a functional requirement.

Directly related to these requirements are the problems of Authentification and
Authorisation.

Authentification

The problem of verifying the identity of a user is called authentification. The
ways of presenting authentification information to an applications are called
authentification factors. Kanneganti and Chodavarapu mention three authen-
tification factors for a user to prove his identity in [KC08, page 14]:

• What he knows: Presenting secrets like username/password to the ap-
plication.

• What he has: Posession of a special item like an RSA token which dis-
plays the right authentification number at the current time.

• What he is: Presenting biometric evidence like fingerprints or retina scans.

A good authentification mechanism does not rely on just one factor, but en-
forces at least a twofactor authentification.

Authorisation

Following authentification, an application must know which ressources and
functionalities a user may use. This is authorisation. Which functionalities
a user may use may depend on his role, the groups he belongs to and other
predefined parameters the application may know about. For example an ad-
ministrative user may be able to modify data, while a guest user may only read
data.

8.3 Security as a Service

Traditionally the task of securing services is implemented seperately for each
service and service consumer. Having multiple implementations of security in

116 CHAPTER 8. SECURITY AS A SERVICE

each service makes meeting the enterprise development concerns stated in
8.1.2 difficult, if not impossible.

It is difficult to maintain and secure a multitude of services where each service
has its own implementation. Additionally there is a huge overhead, because
security measures have often the same properties and differ only in details.
When a service needs to use other services, it has to transfer the security
context to them. This can be a problem for interoperability and may cause a
large overhead.

To mitigate these problems, security can be implemented as a service called
the security service. This means outsourcing most of the security logic from
consumers and services to a specialised service. Some security logic may
remain at the service consumers and services, for example communication
with the security service.

A security service can be invoked in different ways. Out-of-Band invocation
means the security service is explicitely invoked by the source or destination
endpoint. Intermediary Invocation means that an intermediary or some other
device implicitely invokes the security service. This may happen transparently,
without knowledge of the endpoints. For both types of invocation use case
examples will be given now.

8.3.1 Out-of-Band Invocation

Explicit invocation of the security service by the endpoints may happen in three
different ways. Basically the security service is invoked when needed by the
source or destination endpoints or by both of them. The actual communication
between the endpoints is done according to the assertions made by the se-
curity service. Of course in this scenario the security service has little control
about the actual actions of the endpoints.

8.3.2 Intermediary Invocation

Intermediary invocation may happen transparently or explicit. Usually a router
or similiar intermediary device invokes the security service when necessary.
The security service can act as an explicit intermediary. The source and des-
tination endpoint only talk via the security service, which is able to enforce
security assertions. Of course the security service is a single point of failure
and suffers huge load as central communication platform.

Another possibility is transparent intermediary invocation. The intermdiary in-
vocating the security service must then be able to inspect and understand
messages transferred from the source to the destination endpoint. By making

8.3. SECURITY AS A SERVICE 117

network devices such as routers capable of understanding and intercepting
application level communication, they can be used for implementing a security
service and transparently do securiy tasks. This is called Application Oriented
Networking (AON).

8.3.3 Relevant Technologies

We will now have a look at the building blocks of a secure SOA. Since SOAP
(formerly known as Simple Object Access Protocol (SOAP)) based web ser-
vices are the most common type of service for an SOA. The relevant technolo-
gies for secure SOA presented below will focus on this type of service.

SOAP

SOAP was formerly known as the Simple Object Access Protocol, but this
acronym was dropped with version 1.2 of the SOAP standard. It is a message
exchange protocol and the core of most web services. According to Kan-
neganti and Chodavarapu in [KC08, page 55] the key elements of the SOAP
model are:

• A SOAP message is a transmission from one endpoint to another. Two
transmissions can be combined synchronously or asynchronously to make
a request/response. Multiple transmissions can be combined to make a
conversation.

• A SOAP message is created by wrapping any application message with
a standard XML-based envelope structure. The envelope structure en-
ables applications to express semantics such as what is in the message
and how it is encoded.

• Error handling is carried out using a standard SOAP fault mechanism.

• For RPC! (RPC!) calls and responses, application messages are struc-
tured using SOAP conventions.

• Data serialisation may be done using a standard SOAP defined encod-
ing. Other encodings may be declared and used as well.

SOAP messages are higher level than application transport messages and can
be transferred via a multitude of other protocols and services, as the Java Mes-
saging Service (JMS) or even File Transfer Protocol (FTP). SOAP messages
are eXtensible Markup Language (XML) documents. An example SOAP mes-
sage is shown in 8.1. Data is wrapped in a so called SOAP Envelope, which
contains a header and a body. The header may contain additional information

118 CHAPTER 8. SECURITY AS A SERVICE

for processing by the receiver of the message, as for example security token
and authentification.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header>
...
</soapenv:Header>
<soapenv:Body>
...
</soapenv:Body>

</soapenv:Envelope>

Figure 8.1: Example of a SOAP message.

SOAP has no build in security measures, but is extensible, thus working secu-
rity extensions can be built around it.

Layers

According to Kanneganti and Chodavarapu in [KC08, page 89] there are three
logical layers in which security in SOAP based services is commonly imple-
mented. The lowest layer is the Transport Layer. It transmits arbitrary byte
payloads, for example the HyperText Transfer Protocol (HTTP). The mid level
layer, in which application layer data is transferred as a SOAP message, is the
SOAP Layer. The highest level layer. The actual application data e.g. se-
rialised application objects is transmitted on the Application Layer, which is
the highest layer.

Working security measures need to work at least on the Transport Layer and
the SOAP Layer. Only securing the transport layer is not sufficient. Sometimes
direct communication is not possible and additionally it does not help to talk to
a malicious attacker via a secure channel.

8.4 Protocols For Security Services

The security service needs to express its findings about security assertions
and requests. For the communication of security information there are two
protocols. The SAML Protocol is a protocol for security services based on
the Security Assertion Markup Language (SAML).

WS-Security is a protocol to enforce integrity and confidentiality for web ser-
vices. Both protocols will be described more detailed in the next sections.

8.4. PROTOCOLS FOR SECURITY SERVICES 119

8.4.1 The SAML Protocol

When the security logic is implemented at the service endpoint, security in-
formation cannot be held in-memory. It is available from a seperate security
service. A security service needs to have interfaces to express its findings.
The protocol commonly used to express security information is the SAML
protocol. The SAML Protocol is based on the Security Assertion Markup
Language (SAML). In the SAML it is possible to express authentification and
authorisation information. SAML was developed by the OASIS and is avail-
able as a major revision of 2.0 since 2005. It was developed with focus on
Single Sign-On, Federated Identity and Web Services according to Hughes
and Maler in [HM05]. It consists of four basic components: Profiles, Bindings,
Protocols and Assertions as shown in figure 8.2. These components will be
described in detail below.

For example the problem of Single Sign-On is a common problem in web based
SOA solutions. Since browser restrictions do not allow multi-domain cookies
for security reasons, different services have problems passing authentication
state to each other. This is solved by a security service speaking SAML which
may act as a broker, issuing assertions to the different services.

According to Kanneganti and Chodavarapu in [KC08, page 327], a standard
SAML assertion always consists of an identifier which makes it distinguishable,
an issuer which says who is making the assertion and a timestamp which says
when the assertion was issued.

Normally three standard statements are made within an assertion:

• Authentication statement: Asserting authentication results to indicate
that the identity of a caller has been verified by the security service. For
example after the security services has authenticated a user it can ex-
press who, how and when the authentication has been done.

• Attribute statement: Asserting user attributes. Additional security in-
formation can be passed, for example which roles a user has or which
groups he belongs to.

• Authorisation decision statement: Asserting authorization decisions,
as permissions on ressources. For example permission to modify data
at a given ressource.

SAML can be used for a number of request/response protocols. For exam-
ple the Authentication Request Protocol defines a <AuthnRequest> message
which causes a <Responose> with assertions returned.

When SAML protocol messages are embedded into other protocols this is
called a Binding. They can be the payload of a HTTP POST message. The

120 CHAPTER 8. SECURITY AS A SERVICE

Figure 8.2: Basic components of SAML (picture taken from [HM05])

most interesting binding for a security service is the SOAP-Binding. A com-
plete list of all SAML bindings is given by Hughes and Maler in [HM05]-

A SAML Profile describes how assertions, protocols and bindings are com-
bined. For example it defines how the request/response query protocol uses a
SOAP binding to obtain assertions.

Commonly the SAML is used in a binding over SOAP and are external. SAML
messages do not secure any data in the body of a SOAP message. It is nor-
mally contained in the body itself.

8.4.2 WS-Security

The problem of end to end security arises in environments where there are
intermediaries and no direct communication may be possible. Standard trans-
port level security measures are insufficient because there may no direct con-
nection from source to destination. Traditionally security was often imple-
mented at the application layer. This causes difficulties with interoperability
and management. Therefore it is better to implement security a the SOAP
layer.

Web Services Security (WS-Security) is an enhancement of SOAP to pro-
vide confidentiality and integrity and fulfill the requirements stated in 8.2.1.
Additionally WS-Security may be used to encode binary tokens which may act

8.4. PROTOCOLS FOR SECURITY SERVICES 121

as authorisation tokens.

WS-Security ensures message-level security, which means ensuring confiden-
tiality and integrity. It also allows to make security claims, as for example
“Message signed by X.” or “X is allowed to access ressource Y.”.

Cryptography is commonly used in systems where endpoints need to com-
municate in a secure way. However their intermediaries cannot be trusted.
To provide integrity and confidentiality the common choice is to use a Public
Key Infrastructure (PKI). Digital signatures and encryption can provide both
requirements. WS-Security extends SOAP to provide these security features.
According to the WS-Security Specification in [TC06, page 8] it was built with
the following key driving requirements:

• Multiple security token formats

• Multiple trust domains

• Multiple signature formats

• Multiple encryption technologies

• End-to-end message content security and not just transport-level secu-
rity

WS-Security does not require a special encryption technology or formats, it
is a framework that enables the use of such technologies. With help of WS-
Security it is possible to implement arbitrary security protocols.

WS-Security Structure

As seen in section 8.3.3, the SOAP header may contain additional information
about the message enveloped. In WS-Security an additional header block
named wsse:Security is added. A typical WS-Security header is depicted in
figure 8.3. As we can see in the wsse:UsernameToken an encrypted username
and password is transmitted.

UsernameToken is not the only token-type which may used in WS-Security.
There are three other standard security tokens. Binary Security Tokens may
have arbitrary non-XML formats as payload, which must be encoded. The
encoding is specified in the EncodingType attribute, for example Base64.

Encryption

As mentioned above, WS-Security can transmit security critical data in en-
crypted form. They are represented by the xenc:EncryptedData element and

122 CHAPTER 8. SECURITY AS A SERVICE

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header>

<wsse:Security ...>
<wsse:UsernameToken wsu:Id="666">

<wsse:Username>
<xenc:EncryptedData>...</xenc:EncryptedData>

</wsse:Username>
<wsse:Password>

<xenc:EncryptedData>...</xenc:EncryptedData>
</wsse:Password>

</wsse:UsernameToken>
</soapenv:Header>
<soapenv:Body>

...
</soapenv:Body>

</soapenv:Envelope>

Figure 8.3: Example of a WS-Security header. Source: [KC08, page 97]

should have an embedded encryption key or be referenced by an external en-
cryption key, according to OASIS Web Services Security TC in [TC06]. The
description of an PKI and basic encryption knowledge is beyond the scope
of this work and assumed as known. EncryptedData Tokens hold encrypted
data and are replaced by their cleartext message while processing. In general,
fragments of the WS-Security header can be encrypted as well as fragments
of the body.

<xenc:EncryptedData
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
Type="http://www.w3.org/2001/04/xmlenc#Element"
Id="EncryptedData-26882784-0" >

<xenc:EncryptionMethod Algorithm="..." />

<xenc:CipherData>
<xenc:CipherValue> ... </xenc:CipherValue>

</xenc:CipherData>
</xenc:EncryptedData>

Figure 8.4: Example of an encrypted element. Source: [KC08, page 97]

An example of an encrypted XML fragment is shown in figure 8.4 and the
interesting parts will be pointed out below.

8.4. PROTOCOLS FOR SECURITY SERVICES 123

The attribute Type specifies which XML fragment the encrypted element sub-
stitutes. Here it is a full XML element. xenc:EncryptionMethod specifies which
type of encryption is used here. The encrypted payload can be found in Cipher-
Data. There are two possibilities to provide the encrypted bytes according to
Kanneganti and Chodavarapu in [KC08, page 240]: CipherValue provides the
encrypted bytes directly base64 encoded and CipherReference may provide a
reference to an external location to fetch the encrypted bytes from.

Digital Signatures

<ds:Signature>
<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm="..." />
<ds:SignatureMethod Algorithm="..." />
<ds:Reference URI="...">

<ds:Transforms>
<ds:Transform Algorithm="..." />

</ds:Transform>
<ds:DigestMethod Algorithm="..." />

<ds:DigestValue>...</ds:DigestValue>
</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>
...

</ds:SignatureValue>

<ds:KeyInfo>
...

</ds:KeyInfo>

Figure 8.5: Example of an encrypted element. Source: [KC08, page 280]

Encryption alone is not sufficient for message level security, because even if
an attacker is not able to read the encrypted data, he may still try to tamper
it. Another attack might be to replay the encrypted message, for example if
the attacker guesses that it might be an authentication statement. Even if he
cannot decrypt the message, he may still use it to authentify himself. This
is called replay attack. To mitigate such attacks the receiver should be able to
know if the message was changed during transmission. For this purpose digital
certificates are used. The holder of a digital certificate can sign a message with
his private key and the receiver can verify it via the public key.

124 CHAPTER 8. SECURITY AS A SERVICE

XML documents like SOAP messages cannot be signed as a whole easily.
Bytewise different messages may be syntactically the same, because an XML
parser ignores whitespaces between the different elements. Therefore the
XML message has to be cannonicalised before signing or the signature needs
to be embedded in the XML message itself. WS-Security has a mechanism
for signing individual elements of an XML element through a Signature ele-
ment. The XML signature element consists of three child elements and is
shown in figure 8.5. The ds:SignedInfo element contains the digest of the
referenced signed XML element and tells about the used algorithms and nec-
essary cannonicalisation (in case the format of referred element was changed
during transmission). It contains the actual signing information, basically a re-
ceipe about what computations and transformations are necessary to verify
the protected data.

The ds:KeyInfo element contains information about the key which can verify
the signature. For example a reference to the actual key.

The ds:SignatureValue element contains the encrypted digest of what is signed,
i.e. of the ds:SignedInfo element.

8.5 Conclusion

In an SOA environment traditional security measures do not work well. This
comes naturally because often an SOA is designed for enterprise sized ap-
plications and operates in a distributed way with many services. Therefore
security measures like TLS do not work, because there may be several inter-
mediaries which are untrusted. Also concerns like authorisation and authen-
tification need to be met.

An approach which comes natural to an SOA is the creation of a security ser-
vice. It manages the security operations, makes security assertions, issues
tokens and does authentification. In SOAP based services the most relevant
technologies which can be used to implement such a service are the SAML
Protocol and WS-Security. The security service can express security asser-
tions and other findings in the SAML. Additionally the SAML messages need
to be transferred to the consumer in a secure way. This can be achieved by
the use of WS-Security, which provides message level security by encryption.

Acronyms

SOA Service Oriented Architecture

OSI Model Open Systems Interconnection Basic Reference Model

BIBLIOGRAPHY 125

PKI Public Key Infrastructure

OASIS Organization for the Advancement of Structured Information Standards

LDAP Lightweight Directory Access Protocol

SOAP formerly known as Simple Object Access Protocol

FTP File Transfer Protocol

HTTP HyperText Transfer Protocol

XML eXtensible Markup Language

SAML Security Assertion Markup Language

TLS Transport Level Security

WS-Security Web Services Security

SSL Secure Sockets Layer

PKI Public Key Infrastructure

Bibliography

[fSidI06] Bundesamt für Sicherheit in der Informationstechnik. Leitfaden IT-
Sicherheit. Bundesamt für Sicherheit in der Informationstechnik,
2006.

[HM05] J. Hughes and E. Maler. Security Assertion Markup Language
(SAML) V2. 0 Technical Overview. OASIS SSTC Working Draft
sstc-saml-tech-overview-2.0-draft-08, September, 2005.

[KC08] R. Kanneganti and P. Chodavarapu. Soa Security. 2008.

[Mil06] George A. Miller. Wordnet - a lexical database for the english lan-
guage. 2006.

[MLM+06] M. MacKenzie, K. Laskey, F. McCabe, P. Brown, and R. Metz. Ref-
erence Model for Service Oriented Architecture. OASIS Committee
Draft, 1, 2006.

[Nat03] Y. Natis. Service-Oriented Architecture Scenario. Gartner Re-
search Note AV-19-6751, 2003.

[TC06] OASIS Web Services Security TC. Ws-security specification. URL:
www.oasis-open.org/specs/index.php#wssv1.1, 2006.

[WHB+04] S. Wilkes, J. Harby, W.P. BEA, P.P. BEA, S. Jones, H. Grant,
C. Peltz, S. Metzger, B. Rotibi, A. O’Toole, et al. SOA Blueprints
Concepts. Draft v0, 5, 2004.

126 CHAPTER 8. SECURITY AS A SERVICE

Chapter 9

A Research Agenda for Testing
SOA-Based Systems

Robert Morys

Contents
9.1 Introduction . 128
9.2 Service-Oriented Architecture 128

9.2.1 The most important facts about SOAs 128
9.2.2 SOA in comparison to Distributed Computing 130

9.3 Testing a Service-Oriented Architecture 131
9.3.1 SOA testing challenges 131
9.3.2 Traditional software testing techniques 131

9.4 Testing SOA governance . 132
9.4.1 SOA governance . 132
9.4.2 Types of SOA governance 132
9.4.3 Testing run time governance 133

9.5 Testing web services . 134
9.5.1 Web services . 134
9.5.2 Web service standards 135

9.6 Testing other SOA properties 136
9.6.1 Load testing . 136
9.6.2 User acceptance testing 137
9.6.3 Security testing . 137
9.6.4 Regression testing . 138
9.6.5 Risk based testing . 139

9.7 Conclusion . 139
Bibliography . 140

127

128CHAPTER 9. A RESEARCH AGENDA FOR TESTING SOA-BASED SYSTEMS

Abstract: Oriented Architecture is a paradigm that organizes distributed IT
resources, which create a solution to a business problem. The most common
misconception is that they can be tested the same way traditional systems
are tested. That is why many project managers spend too little time in the
SOA testing process, which often ends in an unstable and insecure archi-
tecture. This paper will describe the arising challenges connected to testing
SOA systems and work out a possible research agenda for testing them. It
will focus on important areas like SOA governance, web services, traditional
testing techniques and security testing.

9.1 Introduction

Service-oriented architectures (SOAs) become increasingly popular these days.
They are architectural styles for enterprise systems that promise many desir-
able advantages like cost-efficiency, flexibility, adaptability and many more. An
efficient SOA system can be one of the key-factors for the business success
of an organization. While IT-systems always tend to get bigger and more com-
plex, the trend goes towards splitting them into smaller parts so that they result
in one big distributed system. That is why maintenance and testing of those
systems gets more and more difficult and challenging. Especially the area of
SOA testing has many left research potential and open questions.
This paper will at first describe service-oriented architectures and discuss the
main challenges connected to testing such a system. Then it will give an
overview about how to apply traditional testing techniques to an SOA system.
After that it will describe important areas of SOAs like SOA governance and
web services and give an idea on how to test them. In the end the main mis-
takes, when testing SOA security and user acceptance, will be outlined and
the risk based testing approach will be introduced.

9.2 Service-Oriented Architecture

9.2.1 The most important facts about SOAs

Just about the mid 1990s the term Service-Oriented Architecture arose for the
first time. It is not easy to find out who actually invented the term SOA, but
Roy Schulte at Gartner says that Alexander Pasik, a former analyst at Gart-
ner, coined the term SOA for a class on middleware that he was teaching in
1994 [Jos07]. SOA is a strategy, which designs and organizes IT-systems in
a way that they get more adaptable, cost-efficient and agile. One of the main
purposes of these architectures is that the organisation which uses them does
not have to make their business decisions depending on the given technology,
but gets those supported by them.
The SOA strategy is based on three main elements namely services, the

9.2. SERVICE-ORIENTED ARCHITECTURE 129

Enterprise-Service-Bus and policies [Jos07].
SOA services are single independently usable business tasks, like opening an
account in a Bank or checking the product availability in a mail-order company.
These services can be put together to achieve a more extensive business pro-
cess like an order by a customer in a mail-order company, which includes the
former named availability check as a part-service. All services are independent
from a certain platform and technology and have a public interface which is ac-
cessible through a network. Besides they have to be registered in a catalogue
which describes what the service does and how to interact with it. So there
are service provider which execute business logic, service consumer which
use the provided services, and service repositories where all services are reg-
istered [PT08]. The different types of services can interact with each other in a
special way. As figure 1.1 shows, the service provider first publishes its inter-
face and access information in the service registry so that the consumer can
easily check out the available services and then send the desired request to
the found service provider.

Figure 9.1: Service types

The Enterprise-Service-Bus (ESB) is the infrastructure of the system which
allows easy combination and reassembling of services in order to accomplish
changing requirements without any interruptions. It can connect many different
technologies like web services, batch files or package applications so that the
organization which uses the SOA does not have to worry about any technology
limitations. The ESB does not only have IT benefits like easier implementa-
tion of new services and simple reuse of existing resources, but also business
benefits like better customer service, cost reduction and a better response to
changing business conditions.
Because of its highly distributed and dynamic architecture it is important to
have policies which regulate and also restrict the services. More precisely
SOA policies are rules, which a defined set of services has to follow, like
”all externally-accessible services must use HTTP”. There are different types

130CHAPTER 9. A RESEARCH AGENDA FOR TESTING SOA-BASED SYSTEMS

of policies like schema, communication and behaviour policies, which affect
the services during design and run time. The schema policies for example
are rules that affect the interaction schema between service consumer and
provider, like ”platform specific data structures cannot be used in the schema”.
Behavior policies directly influence the behavior of the service independent
from the consumers message, like ”requests from gold customers must be
given priority over other requests”[Foo].

9.2.2 SOA in comparison to Distributed Computing

Some properties of an SOA, like the hardware or the basic set-up, are similar
to the the technology of distributed computing, which was invented nearly 30
years ago. Distributed computing means splitting a program into smaller parts
and distributing it to many different computers which communicate over a net-
work. The different computers calculate their part-solution and then put them
together in order to achieve a solution for the whole problem. This strategy
is mostly used for programs which need very much computing power and so
cannot be solved by a single computer.
SOA adapted from the distributed computing strategy but there are also some
important differences between these two techniques. The main difference is
that SOA systems are used to support the business tasks whereas the busi-
ness component does not matter in distributed computing. Also the main SOA
technologies like web services, XML, SOAP and others are not used in dis-
tributed systems.
Besides in distributed computing the interaction between components is speci-
fied during design time and then implemented in the programming code whereas
in SOA the services are much more flexible because of its structure and un-
derlaying idea. Another difference is the way the information are exchanged.
Distributed systems send information by calling certain methods, which then
will send the desired data to its destination. In the SOA system services ex-
change data between themselves by sending self-sufficient messages, which
include all necessary information like meta-information, policies and process-
ing instructions.[PT08]
So all in all the SOA promises many desirable and efficient properties, but be-
cause of the highly distributed nature, the many different used technologies
and some other properties, it is very difficult to test them.

9.3. TESTING A SERVICE-ORIENTED ARCHITECTURE 131

9.3 Testing a Service-Oriented Architecture

9.3.1 SOA testing challenges

The area of testing software systems has always been and still is a very chal-
lenging topic in computer science. Especially bigger projects still pose many
problems for scientists and engineers whereas the special features and prop-
erties of an SOA make it even harder to test such a system. There are many
challenges like for example the lack of a graphical user interface or the fact
that the services are built and tested without any information about where or
by whom they will be used. So the testers cannot expect a single project which
runs on a single server in a standardized browser interface. This is why they
have to think of many different scenarios and interaction possibilities between
technologies and services.
Besides the SOA services can be for example encoded as XML messages
and therefore only interact with other applications but not with the end user.
That is why testers cannot use the traditional approach of functional validation
with a graphical user interface. They rather have to imagine the end users
environment and recreate it in order to make testing possible. To accomplish
all these challenges the testers have to use already existing techniques and
modify them or even create new ones.

9.3.2 Traditional software testing techniques

Traditional testing strategies are mostly applied at the integration level which is
the phase where the individual software modules are put together and tested
as a group. In SOA systems the main components are the individual services
and their quality defines the quality of the whole SOA, because if they have
bugs and cannot be reused then the main concepts of reusability, flexibility
and agility of the SOA cannot be accomplished. That is why SOA systems
should much rather focus on testing at the service level than on the system
level.
Besides SOA testing should also pay attention to the business logic which
takes care of the information exchange between the user interface and the
database. Its main tasks are coordinating the application, making calcula-
tions, processing commands and moving data between the user interface and
database. Some traditional testing techniques like black-box or white-box test-
ing could be modified to be applicable to SOA systems too.
Black box testing is a method which tests the functionality of the system with-
out any information about the internal structure. Therefore the testers apply
valid and invalid inputs and then determine the correct output. On the other
hand white box testing is the exact opposite to black box testing and designs
the test cases based on knowledge about the internal structure of the system.
Therefore the tester chooses test case inputs to exercise paths through the

132CHAPTER 9. A RESEARCH AGENDA FOR TESTING SOA-BASED SYSTEMS

code and then determines the appropriate outputs. Both methods are mainly
performed at the integration level. So in order to apply these techniques to
SOA-based systems black box testing must contain XML support and use a
web service language like WSDL. White box testing needs the source code of
the system which would be the code of the services in an SOA system. But
because of the fact that it is not available for the testers they have to analyze
the XML documents which contain the information about the services.

9.4 Testing SOA governance

9.4.1 SOA governance

Another important area of testing is the SOA governance. SOA governance is
defined as ensuring and validating that assets and artifacts within the architec-
ture are acting as expected and maintaining a certain level of quality [KP07].
It is a special form of IT-governance and belongs to one of the responsibil-
ities of the management department. IT-governance is an important part of
the business management with the task to ensure that the business strategies
and goals get supported by the IT department. Most organizations have a cer-
tain level of IT-governance because it is necessary to create the connection
between business and IT processes by creating policies for people, infrastruc-
tures and processes.
SOA-governance is very important as without it the whole system would end in
chaos. SOA-governance has mostly the same goals as IT-governance but ex-
tends it with service-oriented aspects and some minor changes. SOA-governance
for example sets its focus on effective IT implementations in order to achieve
adaptability and agility and does not care about who is allowed to monitor,
define and authorize changes to the SOA. It not only creates a connection
between the IT and business departments but also requires a much closer col-
laboration between these two.
If an organization chooses to use SOA they want to be sure to achieve continu-
ity of already existing business processes, more efficiency and cost reduction.
But it is also possible that third party services are invoked so that the sys-
tem has to be changed in order to achieve the named goals. That is why the
governance has to manage those changes and support all SOA areas like its
development, policies or processes.

9.4.2 Types of SOA governance

There are different types of SOA governance which all need to be tested in a
different way. The most important can be described as follows [PT08]:

9.4. TESTING SOA GOVERNANCE 133

• The design time governance sets policies for the architectural style of
the SOA and ensures that there is not just a bunch of unsorted services.
It establishes policies for the design, development and deployment of
services and also their supporting artifacts. This could be for example
how services are created, their reusability or strategic design elements.

• The organizational governance deals with how the teams, projects and
hardware is managed and structured like for example funding of services
or communication and coordination between the different departments.

• The change time governance takes care of changes in customization,
composition and configuration of services, which is very important as
one of the main reasons why SOA systems are used is their flexibility.
That is why change time of services has to be governed in order to cre-
ate a system which can easily and quickly adapt to changing business
requirements.

• Another important SOA governance is the run time governance which
defines rules for deploying services and also operations after the service
has been deployed, like trust establishment and Quality of Service.

9.4.3 Testing run time governance

Unfortunately there are very few governance testing tools out there so that
no established and standard method is known. However there are some ap-
proaches like analyzing the Service Level Agreements (SLAs) in order to test
the run time governance. SLAs are contracts between the service consumer
and provider which specify what exactly the service should be able to do, its
quality and costs. SLAs are benefits for the service provider as well as the
service consumer. On the one hand the consumer gets a guarantee of an ap-
propriate service quality whereas the provider on the other hand has satisfied
customers and makes his Quality of Service comparable to services offered by
other providers.
The SOA testers or testing tools can analyze these agreements and compare
them to the actual performance of a service. They have to place many differ-
ent inputs on the service to see if it holds its quality promises or if scenarios
exist which the consumer and provider did not think of. So the SLAs are an
important part of an SOA and offer a good basement for testing it.

134CHAPTER 9. A RESEARCH AGENDA FOR TESTING SOA-BASED SYSTEMS

9.5 Testing web services

9.5.1 Web services

The web service technology is one of the most important implementation stan-
dard for SOAs. One common and abstract definition for a web service is the
following:

A software application identified by a URI, whose interfaces and bindings are
capable of being defined, described, and discovered as XML artifacts. A Web
service supports direct interactions with other software agents using XML-
based messages exchanged via Internet-based protocols [ABFG04].

One big advantage of web services can already be seen in this definition.
They are not committed to a specific size so that they can reach from a small
web script to a large server-spanning software system. Besides they are easy
to understand and discover because of the use of XML. The XML documents
are an accepted standard. They are text only files and if well designed, written
in a manner that humans can easily interpret. Web services can interact with
many other software systems and offer cross-enterprise integration which also
makes them very valuable for SOA systems. All in all one can also describe
web services shortly as interfaces that describe operations that are network
accessible through standardized XML messaging [PT08].

In order to understand how web services are defined, located, implemented
and communicating one has to take a look at the web services protocol stack,
which is shown in figure 1.2. Each level has different functionalities which can
be described as follows:

• The lowest level contains the transport protocol which is responsible for
transporting messages between the network applications. It includes the
wide spread HTTP, SMTP and FTP protocols.

• The messaging layer encodes the messages in a common XML format
so that both ends of the connection are able to understand them whereas
for this purpose the most used protocol these days is SOAP.

• The description layer is the part that describes the functionalities of a
web service. It is also the interface which the programmer can use to
access the service and communicate with it. The mainly used interface
for this purpose is WSDL.

• The quality of service layer is responsible for defining quality require-
ments of the service using for example the previous discussed SLAs.

9.5. TESTING WEB SERVICES 135

Figure 9.2: The web services architecture stack (inherited from [May06])

• Last but not least the top level has the task to compose the services into
business processes. It creates processes by defining the order in which
services will be invoked. One language which accomplishes this task
very easily is BPEL, which was invented by IBM, BEA and Microsoft by
merging their different already existing standards.

The next section describes the most important standards in more detail and
illustrates how they should be tested.

9.5.2 Web service standards

The three core elements of the web service technology that have prevailed are
WSDL, UDDI, and SOAP. WSDL and SOAP are as already mentioned located
on the description resp. messaging layer. UDDI on the other side is a vertical
layer of the web service protocol stack which means that it includes multiple
components which are description, messaging and transport.
UDDI stands for ”universal description, discovery and integration” and its main
purpose is to list the available services and to define how they interact with
each other. Business organizations can sign in the UDDI registry and pub-
lish their services. It is based on standard technologies such as DNS, HTTP,
and XML and can be interrogated by SOAP messages and provides access

136CHAPTER 9. A RESEARCH AGENDA FOR TESTING SOA-BASED SYSTEMS

to WSDL documents. Because of the fact that technologies like DNS or HTTP
were not used in traditional software systems, many testers do not have the
necessary knowledge about testing them. But in order to test an SOA system
properly, it is inevitable to be informed about these technologies and how to
test them.
WSDL stands for ”web service description language” and represents a XML file
which contains all necessary information about a web service and its interac-
tion possibilities. Its advantage is the standardized format which allows a more
consistent communication and interaction between services. The problems
considering testing WSDL documents are that different testers can interpret
the document in a different way and the input and output are not specified in
detail. That is why many scenarios and conditions have to be considered when
testing them.
The services listed in the WSDL document can be called by using the SOAP
messaging standard. SOAP enables data transfer between different systems
using XML to present the data and internet protocols. It easily constructs re-
quests and responses between services using FTP, HTTP or SMTP as the
transport protocol. Several properties of SOAP messages have to be tested
including the format or the header, which contains information about intermedi-
aries, other actors and recipients. Besides also the functionality and security of
the intermediaries specified for example in the SLA contract have to be tested
in a proper way [PT08].

All in all testing web services is a topic that still has many open research is-
sues and will need more attention in order to create effective and standardized
testing tools or procedures. But there are also some other important SOA
properties that need to be tested, which will be discussed in the next chapter.

9.6 Testing other SOA properties

9.6.1 Load testing

Some properties of a system, like load, performance and security, are impor-
tant testing areas for traditional systems, but require even more testing empha-
sis in an SOA structure.
The goal of load testing is to get the response time of the system and to see
how it works under extreme conditions like many users accessing a web ser-
vice or very large documents being processed by a word processor. The most
important parameters when load testing web services are for example the re-
sponse time, the number of passed or failed transactions and the memory
or CPU utilization. In SOA systems the components that could be critical in
relation to load are the services, because they can be used by different ap-
plications at the same time. The problem is again the missing graphical user

9.6. TESTING OTHER SOA PROPERTIES 137

interface of the services so that traditional load testing tools cannot be used in
this case. When testing services the testers have to emulate the behavior of
service consumers who will exchange messages with the service provider.

9.6.2 User acceptance testing

Many software development organizations just include their users respectively
key business stakeholders in the beginning of the project to define the business
requirements and in the end in order to test the implementation for bugs or
missing requirements [Har07]. But nowadays it is already known that this is not
the best way to go. With this approach the testing phase can take very long
and users could find very important missing features or fatal defects, which
would mean a bunch of additional work for the development team.
A better approach is to include the users throughout the whole project life cycle
and to be in continual agreement with them. This saves a lot of work and will
in the end produce a much better project, because the developer team does
not have to make big changes to their project with every new requirement and
the software perfectly fits to the users wishes. Of course this not only holds for
traditional software systems but also for SOAs and has to be adhered to when
testing them.

9.6.3 Security testing

Security is about making software behave in the presence of a malicious at-
tack, even though in the real world, software failures usually happen sponta-
neously [PM04]. Besides functionality, the security is one of the most important
properties of every system.
In SOA the necessity for security testing is even bigger than in traditional sys-
tems. That is mainly because of its distributed nature. With every new service
can also come a new security gap, so that after including new services there
also has to be a security test. Besides sensitive data is transferred in a big
internal and external network, databases are updated by several sources and
services are located in many different parts of the network. So SOAs offer
many potential security gaps which have to be closed and tested. Like in user
acceptance testing, many organizations perform security testing only in the
end of the projects life cycle. This again is not the best solution because in
this way heavy security bugs are found very late and the security design of the
whole project suffers.
That is why the developers have to include security analysis and testing into
the entire life cycle [Har07]. This starts with defining security requirements
in the beginning and performing security risk assessment during the design
phase. However the most important tests have to be executed already on a

138CHAPTER 9. A RESEARCH AGENDA FOR TESTING SOA-BASED SYSTEMS

service level and not only once the whole system is completed. There are
many different security testing tools out there which can find potential security
weaknesses by performing for example a penetration test which is a technique
that tries to break the security of the system by attacking it with worms or as a
hacker.

Tools that direct such a security, load or user acceptance test are very useful
and desirable because they save a lot of time and work. There are many tools
for traditional software systems which quickly and repeatedly test them based
on a record and playback strategy. But because of the special structure and
technologies used in SOA systems, most of the traditional tools can not be
used for those. However there are already some approaches and rules that
can mostly direct such tests successfully.

9.6.4 Regression testing

A software regression is a software bug which causes a properly working fea-
ture to stop functioning after a change to the software system has been done.
These changes can be for example a system upgrade or patch. There are dif-
ferent types of software regressions which all have different effects. A change
can for example create a bug in the changed component or module so that
there just exists a local regression. But changes can also create bugs in other
remote components or unmask already existing bugs that did not have an ef-
fect before.
Software regression also plays an important role in SOA systems. If they are
well designed they promise flexibility and easy adjustability to changing busi-
ness needs. That is why changes to services should not pose any problems
and are often made. These changes can be for example fixes to a defect
or service adjustments due to changing business requirements. Already little
changes to a service can have a significant impact on the entire SOA system.
Typical software systems with N modules for example have N2 dependencies
[Yun]. So every time changes are made to a service the testers have to ex-
amine its dependencies and previous tasks. They have to retest the modified
service in order to check if it still accomplishes all its tasks without any errors.
Besides they have to check if all services, which are dependent on the modi-
fied one, still function properly.
This type of testing is called regression testing and can be shortly described
as identifying unintentional errors or bugs that may have been introduced as a
result of changing a program module [Yun].
Organizations should spend time and money in this type of testing in order
to ensure that all services work properly and no unexpected SOA system de-
fects arise. There are already some automated regression testing tools on the
market which have proven to work effectively and can save much work and
time.

9.7. CONCLUSION 139

9.6.5 Risk based testing

Because of the fact that the SOA systems always gets bigger during their life
time and services are reused by more business processes, there exists an
infinite number of test cases. That is why the organization has to set priorities
for the test scenarios.
A common approach to do that is risk based testing. It means that testing
is prioritized based on the probability that some feature of the system fails,
whereas the likelihood of failure itself is dependent on the frequency of use
[Mil]. There could be for example seldom used functions that are highly critical
or on the other hand safe features which are used every day. Good examples
are the eject pilot operation in a fighter aircraft which is essential for the survival
of the pilot but only used very rarely. A simple deposit check in a bank is used
by millions every day but poses hardly any risks.
Organizations have to spend much emphasis in testing features that are used
very often, because they are important and fundamental for their business, but
they also have to set a focus on rarely used functions that could have fatal or
dangerous consequences for the organization or customer. The challenge is to
find the right balance of time and money that is spent in testing those different
types of features.
Risk based testing can help to find this balance and has important benefits like
reduction of costumer reported problems, maintenance costs and test phase
length by a factor of approximately two.

9.7 Conclusion

The paper has shown that an SOA system cannot just be tested. At first the
testers have to divide the whole structure into single domains like governance,
security, services and so on, and then test each one of them separately. After
that they also have to check if all the domains work together properly. There-
fore the testers do not only have to understand the whole SOA system itself
but also the underlying technologies of every domain. That is one reason why
SOA testing is very challenging and comprehensive.
The paper has also worked out some approaches on how to successfully test
an SOA system including the most important properties and technologies of
SOAs and testing techniques. The most important approaches can be sum-
marized like this:

• A test team has to be involved right from the beginning and the test de-
sign has to be specified with the business requirements and technical
design.

• Traditional testing techniques like black box and white box testing can be
used to test an SOA system, but they need modification and a different

140CHAPTER 9. A RESEARCH AGENDA FOR TESTING SOA-BASED SYSTEMS

mindset.

• The testers have to know much about SOA systems and their underlying
technologies like for example web services.

• Strong governance and policies are needed to create an efficient and
successful SOA. SLAs for example can be used to test runtime gover-
nance, but all in all this area of SOAs still needs much research to be
done.

• Sometimes the structure or functionality of SOA services gets changed.
Regression testing is a good approach to ensure that modified services
still work properly and do not create new defects in other components of
the SOA system.

• Security and user acceptance testing need to be done throughout the
whole projects life cycle. The business key stakeholders or users have
to be involved not only at the beginning and the end but also throughout
the whole time.

• A risk based testing approach prioritizes test cases and saves much test-
ing time and maintenance costs.

• There are some helpful and good testing tools on the market and orga-
nizations should not hesitate to invest in them.

So all in all SOA testing is important to guarantee an effectively working soft-
ware system which supports all business decisions and processes. Unex-
pected defects can be avoided if the organization spends enough time and
money into a testing team and testing tools.

Bibliography

[ABFG04] Daniel Austin, Abbie Barbir, Christopher Ferris, and
Sharad Garg. Web services architecture requirements.
http://www.w3.org/TR/wsa-reqs/, February 2004.

[Foo] Dan Foody. Clearing up the confusion of the term ”policy” -
soa zone. http://soa-zone.com/index.php?/archives/18-Clearing-
up-the-confusion-of-the-term-policy.html.

[Har07] Harris. Soa test methodology. T. Business Solutions, 2007.

[Jos07] Nicolai M. Josuttis. SOA in Practice: The Art of Distributed System
Design (In Practice). O’Reilly Media Inc., 2007.

BIBLIOGRAPHY 141

[KP07] L Frank Kennedy and Derryl C Plummer. Magic quadrant for inte-
grated soa governance. Gartner Core Research Note G00153858,
December 2007.

[May06] P Mayer. Design and implementation of a framework for testing
bpel compositions. Master’s thesis, University of Hannover, 2006.

[Mil] James Miller. Risk-based testing.
www.ucalgary.ca/ ageras/wshop/pres/f2003/jm-tw-001.pdf.

[PM04] B. Potter and G. McGraw. Software security testing. Security and
Privacy, IEEE, 2(5):81–85, Sept.-Oct. 2004.

[PT08] T. Parveen and S. Tilley. A research agenda for testing soa-based
systems. Systems Conference, 2008 2nd Annual IEEE, pages 1–6,
April 2008.

[Yun] Mamoon Yunus. Codeproject: Intro to soa regression testing:
A hands-on approach. free source code and programming help.
http://www.softwaremag.com/trk.cfm?uid=33.

142CHAPTER 9. A RESEARCH AGENDA FOR TESTING SOA-BASED SYSTEMS

Chapter 10

Quality attributes for SOA

Eduard Renz

Contents
10.1 Introduction . 144
10.2 Quality Attributes . 144

10.2.1 Interoperability . 145
10.2.2 Dependability - Reliability and Availability 146
10.2.3 Performance and Scalability 148
10.2.4 Security and Auditability 149
10.2.5 Testability . 150
10.2.6 Extensibility, Adaptability and Modifiability 152

10.3 Interaction . 153
10.4 Service Level Agreements . 155
10.5 Conclusion . 156
Bibliography . 157

143

144 CHAPTER 10. QUALITY ATTRIBUTES FOR SOA

Abstract: In the past years the service orientated architecture (SOA) ap-
proach got more and more used and accepted. During the design and cre-
ation of such systems many things have to be considered. Different system
users have different requirements to system attributes like security and perfor-
mance. It is important to know and understand the different quality attributes
for every party involved in such an SOA system. As these quality attributes
can have impact on each other, it is also necessary to examine their interac-
tions. Service level agreements (SLA) are used to ensure compliance with
regulations that the service user and the service provider set up to guarantee
a certain quality of service. A detailed understanding of all these attributes,
their interaction and monitoring, as well as the understanding of the SLA is
important for an SOA systems usage and success.

10.1 Introduction

A service orientated architecture (SOA) is a paradigm, which allows grouping
of functionality around business processes and packaging these into services.
These services communicate with each other by sending messages, can be
combined to create new services and are business and not technology centric.
Service orientation can be seen as another form of distributed computing and
modular programming. Now that SOA systems got more mature and are used
widely, it is important to understand and know the quality attributes like se-
curity, performance, dependability, testability, interoperability and extensibility
of such systems. Many of these quality attributes are defined by specifica-
tions that were created by special organizations like the W3C and OASIS. This
work gives an overview over the different quality attributes and their underlying
specifications. An important aspect is the interaction between these quality at-
tributes which will be presented in the second part of this work. This interaction
often requires tradeoffs, so that the whole system can still operate and offer a
certain level of quality. This quality can be often measured and is used to verify,
if the service has met the required quality attributes. Service level agreements
are used to summarize these quality requirements and will be presented in the
third part of this work.

10.2 Quality Attributes

Since SOA system differ considerable from other architecture styles the differ-
ent quality attributes are also altered. This section will describe the different
quality attributes for SOA systems and give an insight on the underlying tech-
nology.

10.2. QUALITY ATTRIBUTES 145

10.2.1 Interoperability

One of the biggest benefits of SOA systems is their ability to share specific in-
formation and to operate on it based on specific rules. To achieve this, the ser-
vice implementation must be clearly abstracted from the interface, the service
exposes to its environment. The interface definition focuses on how the service
may fit into a larger business process. The underlying implementation is hid-
den from the service user which makes the service business process centric
and not technology centric. This independence of technology is achieved by
the usage of a call-return mechanism on which the interface is based. With this
interface centric construction the language and platform used by the service
user is not restricted and makes the integration between different platforms
and languages possible.

To standardize the message based communication in SOA, two standards
have been recommended by the W3C: the web services description language
(WSDL) and SOAP.
WSDL is a XML-based language that provides a model for describing SOAs.
SOAP is a communication protocol specification to exchange XML-based in-
formation and provides a basic framework to create web services. SOAP is
often used together with WSDL and provides access to its functions. The
combination of these two technologies is used to create web services. SOAP
and WSDL are the base for SOA communication and can be extended by spe-
cial purpose WS-* specifications to be able to adapt to situations that are not
covered by SOAP and WSDL. The term WS-* refers to a set of web service
specifications that are maintained by various organizations and are named with
WS as their prefix.

However problems arise if features beyond WSDL and SOAP are needed or
if distinct versions of this specifications are used. This decreases the inter-
operability and makes integration not seamless [Bas07]. To deal with such
problems and to increase interoperability the Web Services Interoperability Or-
ganization (WS-I) was created. Its aim is to create and promote standards and
to provide tools to verify standard conformance. For that purpose the WS-I
publishes profiles which are descriptions of conventions and practices for the
combination of web service standards. If service providers adhere to these
standards then they can offer some level of assurance to their customer that a
certain level of interoperability is achieved. The WS-I is an important mecha-
nism to achieve and simplify interoperability.

The benefits that result from the interoperability of the SOA also bring some
problems and concerns with them. A major concern is the dependability of the
systems which will be elaborated next.

146 CHAPTER 10. QUALITY ATTRIBUTES FOR SOA

10.2.2 Dependability - Reliability and Availability

SOA platforms can only prevail if they keep operating over time without failure
and are operational and accessible. Otherwise the service user may not be
able to meet the functional requirements. This also means that the service
provider will not get financial compensation and a negative interference on his
reputation. To avoid such problems it is important that the SOA platform can
provide continuity of correct service delivery on the following different levels:

• Services provider level

To ensure that the service is operating correctly and is accessible, the
service provider may want to add redundancy of computation and data.
This approach can be combined with load sharing to gain performance
and clustering to avoid a single point of failure [EM05]. For the sake of
easier replication services should be stateless.

• Service level

During failure and concurrent access it is important to preserve data in-
tegrity. In normal service implementations the transaction begins and
ends with the service [Bas07]. Because SOA platforms can consist of
the composition of different services the transaction management be-
comes more difficult and may require nested transactions. Taking into ac-
count the distributed structure of SOA creates the need for a distributed
transaction model. A possible solution for these problems is the two
phase commit which is used in the SOAP/WSDL extension module WS-
Transaction. The WS-Transaction specification provides the well known
transaction principle from databases for web services and offers differ-
ent transaction types either for individual operations or for long running
transactions [IBM04].

• Transport layer level

This level offers some reliable transport protocols like HTTPR (Reliable
HTTP), which is however not widely accepted. Another option is the
usage of enterprise messaging infrastructure middleware like IBM Web-
SphereMQ or JMS. The problem with these solutions is that they are
all proprietary and all points on the transport path must use the same
technology.

• SOAP message layer level

To solve the problem of unreliable communication channels or the wrong
delivery of messages, the two specifications WS-Reliability and WS-
ReliableMessaging have been approved as standards by the Organiza-
tion for the Advancement of Structured Information Standards (OASIS).
These specifications assure reliability through the following four assur-
ances which can be combined [Bas07]: In-order delivery, at-least-once
delivery, at-most-once delivery and exactly once delivery. This approach

10.2. QUALITY ATTRIBUTES 147

makes the SOA platform responsible for providing reliability but holds
the problem that the underlying messaging infrastructure must be able to
understand the reliability information transported by the SOAP message
header [EM05].

• Business process layer level

At this level reliability is achieved through compensation-based trans-
action protocols and dependable composition of services through fail-
ure handling [EM05]. This can be accomplished by the usage of the
lightweight reliable messaging framework wsBus. Additionally, emer-
gency plans can be developed which will find alternative service providers
if a service should become unavailable.

Looking at the problem more generally the following principles help to obtain
dependability as proposed in [EM05]:

• Fault prevention through rigorous design and implementation.

• Fault removal through verification, validation and diagnosis.

• Fault tolerance based on correct service delivery even if faults should
occur.

• Fault forecasting which predicts the presence and the consequences of
faults.

With these principles and the technologies presented for the different layers,
some level of dependability can be achieved. However new techniques are
required that also take the dynamic binding and discovery of web services
more into account.

After comparing reliable and unreliable web services messaging, the following
disadvantages of dependability have been found:

• To achieve reliability, additional communication is needed which results
in not only an increased size of the SOAP header but also in an increased
message size.

• Also considerable performance issues have been observed making reli-
able systems slower by the factor 200-400 [Ant05].

These results show that dependability does have a quite big impact on the
performance of SOA based system. More details on these issues are provided
in the following section.

148 CHAPTER 10. QUALITY ATTRIBUTES FOR SOA

10.2.3 Performance and Scalability

The performance of a service is basically defined through response time, through-
put and timeliness. This means that the service should respond quickly, deliver
a specified amount of data and meet time deadlines which are especially im-
portant for real-time systems.

In SOA systems or services the performance is often negatively affected be-
cause of the following problems which are outlined in [Bas07]:

• SOA systems often include distributed computing whereas the service
user and provider are often communicating over a network which in-
creases response time and cannot guarantee deterministic latency. This
makes SOA a bad choice for real-time applications that require timeli-
ness.

• The dynamic binding ability of SOA systems has also a negative effect on
performance because dynamic binding requires an extra call to locate the
service which increases the total response time. One possible solution
for this is to use caching which however has to be reestablished if a failure
occurs.

• SOA platforms may also use stubs, skeletons, SOAP engines or prox-
ies to perform data marshalling to be able to handle the communication
between the service user and provider. These communication infrastruc-
tures create a performance overhead.

• Additionally, the usage of XML as the primary message language in SOA
increases the message size by the factor of 10-20. The processing time,
needed to process the XML message, is also increasing because it re-
quires parsing, validation and transformation. These operations are ex-
treamly CPU and memory intensive.

However the location transparency principle used in SOA also brings advan-
tages concerning performance. It allows changing the service location without
affecting the service user and can be used to create load balancing strate-
gies to improve performance. This scalability allows SOA systems to adapt to
volume or size changes without performance degeneration. This scaling can
be horizontal through load balancing or vertical through increased server ca-
pacity. To simplify the scaling services should be stateless. Different service
scope strategies have also influence on the performance. A new instance of
the provider could be created for each request, for each new service user or
once for all requests from all service users [Bas07].

Other possibilities to improve performance are caching in content distributed
networks (CDN) or geographical distribution as described in [ILKR03]. The re-
quest type is also performance relevant and can create an overhead depending
upon if static or dynamic data is requested.

10.2. QUALITY ATTRIBUTES 149

Performance tests in SOA are often connected with high costs and are time
consuming. An alternative to the native approach is to analyze the perfor-
mance aspects with the help of mathematical models, which can be used to
predict selected performance aspects. One approach is based on stochastic
Petri nets which includes four basic constructs (sequence, concurrent, choice
and loop) and allows calculating the expected delay time of complex service
compositions. This is described more in detail in [ZYL08]. Another alternative
is the simulation based analysis which can provide accurate performance prop-
erties without high costs. However the results may become totally wrong if the
underlying model is wrong. The combination of all performance test practices
is recommended to achieve accurate test results [Sea05].

As performance is a central quality attribute of SOA systems many factors have
influence on it. One of these factors is the security of an SOA system. Security
concerns and solutions are described in the next part.

10.2.4 Security and Auditability

The creation of secure SOA systems is not only important for its success but
also very challenging. Security for SOA focuses especially on the following
aspects as described in [GEP04] and [Bas07]:

• Confidentiality can be achieved by the usage of encryption and commu-
nication over secure channels. However encryption is not only required
while sending but also while storing data. This can increase the data
size.

• Authenticity includes access restriction based on the provided identity.
On the other hand the identity of the external service provider has also
to be confirmed. Because SOA systems may rely on data from a public
directory the identity of the publisher and directory provider has also to
be authenticated.

• Integrity can for example come through checksum tests.

• Availability from the point of view of security includes the prevention of
Denial of Service attacks through redundant systems.

• The service must keep record about its usage to support financial or legal
audits which is especially important in the financial and health sector and
security relevant applications.

Security can also be examined from the perspective of different communication
layers [PK04]: Transport layer security, message level security and message
content security.

150 CHAPTER 10. QUALITY ATTRIBUTES FOR SOA

Methods to ensure security at these different layers are the usage of SSL,
encryption, digital certificates or ticket systems like Kerberos. An additional ap-
proach is the usage of one of the different security models like WS-Authentificaton
and WS-Privacy. These SOAP extensions provide message content integrity
and confidentiality. Other security models like SAML or XACML allow ser-
vices to exchange security information without the need to change existing
security solutions or provide a language to specify role-based access control
rules [Bas07]. These models are currently developing into standards. However
these approaches are not able to protect the end-to-end communication. The
problem is that the data is received and forwarded by intermediaries beyond
the transport layer and data integrity or security information may be lost or may
have been manipulated [GEP04].

Another concern is the flexibility of SOA systems which makes audits difficult.
Dynamic binding and discovery make it difficult to track which services are
actually used. Services that are compositions of other services have even
more problems concerning audits. One way to achieve end-to-end auditability
is to include meta data in each SOAP header so that it can be captured in audit
logs. This however will only work if the service provider and the service user
will use the same standards that allow audit [OBM05].

To verify the level of security special tests have to be run. SOA testing is
described in the following section and will give an insight into the problems
that come together with the SOA.

10.2.5 Testability

Software testing is an essential development phase for any kind of architecture
including SOA. The degree to which a service facilitates the establishment of
test criteria and the performance of tests to determinate if the test criteria have
been met is referred as testability. Unlike as in traditional software develop-
ment, testing in SOA systems is more complex and challenging. Because SOA
software is used and not owned, the system elements are normally located on
different machines which brings many problems as described in [Bas07]:

• The source code may not be available which makes it impossible to use
the following testing strategies [CP06]:

– White-box testing which is based on the code structure and data
flow knowledge.

– Mutation based testing which modifies the code and data to locate
errors.

• There may be no access to log files or other output that is important for
testing and debugging.

10.2. QUALITY ATTRIBUTES 151

• The test cases can only be defined based on the published interface and
documentation.

• If services are discovered at runtime it is almost impossible to predict
which service will actually be used.

• The identification of the problem location is difficult because it could be
everywhere: the provider, the user, the network, the discovery agent, the
XML file and so on.

• Since SOA relies on a changing and dynamic environment the replication
of errors is very difficult.

Looking at testability from different perspectives raises different problems and
concerns as outlined in [CP06]:

• The service developer and provider try to handle exceptions properly.
However they are not able to do nonfunctional testing because it is im-
possible for them to take the customers infrastructure or network config-
uration into account. One key issue for the service provider is to build
confidence that the service will deliver a function with the expected Qual-
ity of Service (QoS). To increase testability the service provider needs to
build special services that support testing and debugging.

• The service user tests to gain confidence that the service meets the as-
sumptions that were made at design time. If dynamic binding is used the
testing task gets more complex. Testing creates not only costs for the
service user but also wastes the service provider resources.

• The 3rd party certifier assesses a services fault-proneness. This as-
sess reduces the testing activities from the provider and so saves him
resources. The certifier has, just like the service provider, the same
problem that he cannot take the service users infrastructure and network
configuration into account which makes the certified confidence level un-
trustworthy.

Even though testing possibilities are restricted it is definitely not impossible to
test SOA systems as illustrated in [CP06].

• Test cases can be created that are based on black-box tests.

• The input can be mutated based on some testing strategies.

• Preconditions and postconditions based tests can be used to create test
oracles.

• Stress testing with search-based techniques like generic algorithms that
will likely generate errors and lower the QoS.

152 CHAPTER 10. QUALITY ATTRIBUTES FOR SOA

• Regression testing retests a system after changes have been made to
ensure that the change doesn’t affect the system.

Even though this methods offer some testing possibilities they still need to
be improved. Especially the number of possible end-points for testing should
be reduced. Massive testing can create DoS like conditions for the service
provider and costs him resources and bandwidth. The QoS of a service com-
position depends on the combination of the actual bindings which makes test
case generation for this complex structure more difficult and expensive. Additionally,
the QoS is unpredictable and may vary over time because of different circum-
stances which doesn’t necessarily reflect the real QoS.

One approach to reduce testing costs is to use service monitoring which helps
to reports failures, verifies that the service meets pre- and postconditions and
is able to trigger recovery if necessary.

10.2.6 Extensibility, Adaptability and Modifiability

Business requirements often change and evolve to adapt to the market which
requires changes in the SOA service as well. The ease with which the service
can be changed and adapted to new requirements is denoted as adaptabil-
ity and the ease with which the service capabilities can be extended without
affecting other parts of the system is denoted as extensibility [OBM05].

SOA systems have some benefits concerning adaptability and extensibility
which include the principle of location and transport independence. This al-
lows not only changing the system location more easily but also changing the
used implementation language without major adjustments. Changes in the
service architecture should not have influence on the service usage, the ser-
vice discovery and its dynamic binding. This can be achieved by extending the
service architecture to add additional services or extending the service func-
tionality without changing the service interface. A major problem here is the
extensibility of the used messages. The messages need to be restricted to al-
low easier parsing. On the other hand if the messages are too restricted then
they limit the growing and changing capabilities of the interface which leads
to reduced extensibility. Tradeoffs between restrictions and extensibility are
needed to achieve the right balance.

Another aspect is that it should be possible to add or swap services with-
out making major changes to the underlying application. This can often be
achieved quickly and cost-effectively because SOA services are loosely cou-
pled, self-contained, modular and accessed via interfaces [OBM05]. Since
services are used in different environments and platforms it is essential that
the service is configurable to the environment in which it resides. This requires
spiral development with incremental deliveries to different platforms and back-

10.3. INTERACTION 153

wards compatibility to previous releases [OBM05].

A key success factor to achieve adaptability is the management and monitoring
of services and their underlying infrastructure which includes measurements
of capacity, performance and availability.

10.3 Interaction

The different quality attributes that were described in the previous section do
have influence on each other. These influence and the interaction between the
different quality attributes is examined next.

Reliability

To achieve reliability often the usage of special messaging systems is needed
as described in 10.2.2. These systems however decrease interoperability be-
cause bridges are needed that are based on a fixed set of interactions that
cannot be easily changed. But not only flexibility suffers from increased re-
liability but also the performance. Systems with reliability are about 200-400
times slower than systems without reliable messaging.

Performance

SOA possibilities like dynamic binding and service discovery at runtime does
not only have benefits. One major disadvantage connected with dynamic bind-
ing is a performance loss. It is possible to hard code the addresses for the
service location to increase performance but this would decrease flexibility. A
partial solution to this problem is the usage of caching and binding renewal
on failure. Another aspect that concerns flexibility, interoperability and perfor-
mance is the needed data marshalling to handle the communication between
the service user and provider. If the data structure is too limited this will de-
crease the systems flexibility. However flexible data structures make parsing
and processing difficult and performance intensive. Tradeoffs have to be made
to gain a flexible high performance system. However interoperability can also
have a positive effect on performance. It is possible to create load balancing
strategies to improve performance which is generally also coupled with avail-
ability.

154 CHAPTER 10. QUALITY ATTRIBUTES FOR SOA

Security

An important security aspect is confidentiality which can be achieved through
encryption. However this will result in increased message size which will have
a negative impact on performance. Additionally, the usage of a security model
will have a negative influence on interoperability and modifiability. This also
holds for the usage of transport layer security methods like SSL. Availability is
not only generally important but also to create secure systems. The needed
availability and security can be achieved through redundant systems.

Testing

As testing possibilities for SOA systems are limited, the service user may want
to use stress testing and other voluminous testing methods. This however can
affect the performance and the availability of the SOA system and therefore
has to be done very carefully.

Extensibility

A key aspect to achieve higher extensibility is the flexibility of the message
structure. However the more flexible the message structure the more complex
is it to parse and process this message. This complex parsing has a negative
influence on performance.

Auditability

As already partly described in 10.2.4, are audits difficult to accomplish for SOA
systems. The more complex a systems gets, for example through system
composition, the more complex the audition gets. Hence, flexibility makes
audits difficult.

Summary

Most of the quality attributes do have a considerable influce on the systems
performance which makes it a key aspect to consider when using an SOA. Also
many quality attributes do have a negative impact on interoperability which
makes it not only a big benefit but also a problem.

10.4. SERVICE LEVEL AGREEMENTS 155

10.4 Service Level Agreements

The nature of SOA allows dynamic binding to a service. This means to en-
ter and dismiss a business relation with a service provider on a case-by-case
basis and on-demand. To ensure that the used service meets a certain QoS,
guarantees and obligations of both parts are needed. These are expressed
in a service level agreement (SLA). Nowadays SLAs are used in a many ar-
eas including hosting, communication services, help desks, problem resolution
and so on. Many SLAs are formulated in plain natural language which makes
monitoring them slow and expensive. The usage of SLA templates, which in-
clude several automatic processed fields did decreases costs but was limited
concerning flexibility. Therefore a flexible SLA specification and monitoring
framework was created: the Web Service Level Agreement (WSLA) which will
be described below based on [Lud03].

To ensure that the needs of the service provider can be modeled and moni-
tored properly the WSLA allows the definition of resource metrics and compos-
ite metrics. On the other hand SLA parameters and business metrics can be
defined which are important for the service user and meet his needs. These re-
source metrics use the concept of measurement directives, which contain the
information needed to retrieve the metric. Some metrics have been presented
in the previous chapter. Composite metrics are created by combining several
resources and can be specified through functions. In order to put the metrics
into the context of a specific customer, SLA parameters are used, which pro-
vide high/low watermarks to allow checking if the metrics meet/exceed/fall be-
low the defined values. Finally the business metrics relate the SLA parameters
to business terms, like finances, specific to the service user. Other important
properties of the WSLA framework are its flexibility so that it can be applied to
a wide range of SLA, its possibility to be integrated into electronic commerce
systems and the possibility to delegate monitoring tasks to third parties.

The WSLA life cycle consists of 5 stages:

• Stage 1 - SLA negotiation and establishment: This stage includes the
negotiations and signing of the SLA by both the service user and the
service provider. Values like price and metrics are defined and combined
into one single SLA.

• Stage 2 - SLA deployment and submission: The deployment service is
responsible for checking the validity of the SLA and its submission to the
involved parties.

• Stage 3 - Service level measurement and reporting: Information based
on metrics is collected and evaluated through a special service. If the
measured parameters should violate the SLA the according services are
informed.

156 CHAPTER 10. QUALITY ATTRIBUTES FOR SOA

• Stage 4 - Corrective management actions: If SLA violations are reported,
the management service tries to act in order to solve the problem. Every
action of the management service needs to be verified by the business
entity which can be an ERP system. This process is very company spe-
cific.

• Stage 5 - SLA termination: The conditions under which the SLA is termi-
nated are specified which may include penalties for breaking SLA clauses.
Also an expiration date can be specified.

The WSLA language itself is based on XML schema which allows modeling
the earlier defined properties. By using the WSLA framework SLAs are de-
scribed in a way that allows automatic monitoring which saves costs and re-
duces error-prone manual interventions. It allows defining exactly how metrics
are measured and gives the opportunity to include third parties into the pro-
cess of measuring and monitoring. Other attributes like extensibility, flexibility
and the independence from specific interfaces makes the WSLA language ap-
plicable to a wide range of scenarios.

However this specification does also have disadvantages like its need for a
procedural interpreter for its execution. Also the rules are based on a simple
Boolean logic which makes modeling complex SLA rules difficult. If the spec-
ification needs to be extended it will require extending the interpreter as well.
Even with these disadvantages the WSLA language is an important instrument
for SLAs and their monitoring.

An alternative to WSLA is the WS-Agreement specification which was created
by the Global Grid Forum in 2005.

10.5 Conclusion

This work introduced some different quality attributes and their specifications.
Problems and benefits have been pointed out. This was however a superficial
introduction to the topic which is very widespread. The second part of this work
showed the different interactions between the quality attributes and gave some
leads about what has to be considered concerning quality attribute interaction.
Especially performance is a quality attribute which is negatively influenced by
many other quality attributes. The last part of this paper showed how SLAs are
structured and introduced the WSLA framework. Its usage automates many
tasks and helps to monitor the quality of service that was defined in a SLA.
Further research is needed especially in the area of quality attribute interaction
to be able to understand the influence each attribute has on other attributes.

BIBLIOGRAPHY 157

Bibliography

[Ant05] John Anthony. The cost of reliability: A comparison of reliable and
unreliable web service messaging. 21st CS Seminar, 2005.

[Bas07] Liam O’Brien & Paulo Merson & Len Bass. Quality attributes for
service-oriented architectures. In Systems Development in SOA En-
vironments, page 3. IEEE Computer Society, 2007.

[CP06] G. Canfora and M. Di Penta. Testing services and service-centric
systems: challenges and opportunities. IT Pro., 8(2):10–17, 2006.

[EM05] A. Erradi and P. Maheshwari. A broker-based approach for improving
web services reliability. IEEE, pages 355–362, July 2005.

[GEP04] Carlos Gutiérrez, Fernández-Medina, Eduardo, and Mario Piattini.
Web services security: Is the problem solved? Information Security
Journal: A Global Perspective, (3):22–31, 2004.

[IBM04] Microsoft et al. IBM. Web services transactions specifications, 2004.

[ILKR03] Iyengar, Ludwig, King, and Rouvellou. Performance and service
level considerations for distributed web applications. In Proc. of the
7th World Multiconference on Systems, 2003.

[Lud03] Alexander Keller & Heiko Ludwig. The WSLA framework: Specifying
and monitoring service level agreements for web services. Journal
of Network and Systems Management, 11:57–81, 2003.

[OBM05] Liam O’Brien, Len Bass, and Paulo Merson. Quality attributes and
Service-Oriented architectures, 2005.

[PK04] J Chapman et al. P Kearney. An overview of web services security.
BT Technology Journal, 22(1):27–42, 2004.

[Sea05] Hyung Gi Song and Yeonseung Ryu et al. Metrics, Methodology, and
Tool for Performance-Considered Web Service Composition, pages
392–401. Lecture Notes in CS. 2005.

[ZYL08] Zhaoli Zhang, Zongkai Yang, and Qingtang Liu. Performance anal-
ysis of composite web service. IEEE International Conference on
Granular Computing, pages 817–821, Aug. 2008.

158 CHAPTER 10. QUALITY ATTRIBUTES FOR SOA

Chapter 11

SOA Maturity Models

Christian Kalla

Contents
11.1 Introduction . 160
11.2 Maturity models in general . 160

11.2.1 Evaluation criteria for maturity models 161
11.3 CMMI - An SOA independent maturity model 161
11.4 SOA maturity models . 163

11.4.1 The Architecture Capability Maturity Model (ACMM) . 163
11.4.2 The New SOA Maturity Model (NSOAMM) 164
11.4.3 The (Open Group) Service Integration Maturity Model

((O)SIMM) . 165
11.4.4 The Combined SOA Maturity Model (CSOAMM) . . . 166
11.4.5 The Oracle Maturity Model (OMM) 167
11.4.6 The independent SOA Maturity Model (iSOAMM) . . . 167
11.4.7 Comparison of the discussed models 173
11.4.8 Examples for companies and their rankings 173

11.5 Summary/Conclusion . 174
Bibliography . 174

Abstract: Maturity models are one kind of measurement that enable enter-
prises to improve their processes, structures and services. This paper gives
an overview of maturity models in general and models especially designed
for service oriented architectures. Here the independent SOA maturity model
(iSOAMM) is a quite new maturity model and will be the central aspect of this
work. Furthermore the important aspects that are crucial for the design of ma-
turity models are examined and a concluding view of the discussed models is
given.

159

160 CHAPTER 11. SOA MATURITY MODELS

11.1 Introduction

The evaluation of product development processes as the development pro-
cesses for software can be regarded as a very important issue for an enter-
prise. By evaluating the structure of the IT landscape by taking several key
aspects into account, it is possible to get an impression of how the current
processes look like and what they should look like in future. But how to judge
the quality of development processes and management issues? This is where
maturity models come into play.
In general they define scales and metrics in the form of maturity levels that
serve as indicators for the quality of processes. Each of those levels can be
reached by fulfilling a number of criteria that are well defined by the model.
Those criteria normally cover technical issues as well as management issues
and describe how those issues look like on every maturity level. Thus enter-
prises are given a roadmap how structures should look like and the manage-
ment knows the requirements that are needed to reach the next level.
This paper will first cover maturity models in general and then focus on matu-
rity models especially designed for SOAs. As SOA has to be understood as a
completely new paradigm, maturity models have to consider every area that is
affected by the changes of an SOA adoption. This means that the presented
models have a more general view compared to the technical view of common
software maturity models. The aim of this paper is to give an overview and
a comparison of SOA maturity models and also describe the difficulties that
arise for companies during SOA adoption.

11.2 Maturity models in general

Measurement is an aspect you always come across in everyday life. How-
ever this aspect is not widely spread in software companies, because it is not
always easy to define metrics for software, development processes or man-
agement issues. But in order to improve processes within a company, it is
important, especially for the management, to know how good processes cur-
rently work according to a well defined measurement. Without this information
it would be more difficult to make progress and to maintain or improve the mar-
ket position. Furthermore a measurement used by several companies gives
them the opportunity to compare their ranking and to get an impression of how
good their competitors are.
Maturity models can serve as such a measurement, although it has to be called
into question if the key indicators of the used model really cover all important
aspects and how those aspects are weighted in detail. Because of this it is im-
portant to design the model in such a way that all major aspects of the domain
it has been designed for are stressed and that the model is kept up to date.
The next section deals with the design of maturity models and the aspects you
have to pay attention to.

11.3. CMMI - AN SOA INDEPENDENT MATURITY MODEL 161

11.2.1 Evaluation criteria for maturity models

There are a number of evaluation criteria that form the basis for a maturity
model. The most important criteria that have to be considered are discussed
in the next paragraphs.

The domain of interest
Every domain a model has been designed for has its special characteristics
and it is a difficult task to figure out the most important ones. The CMMI which
will be discussed in the next section takes four categories as key indicators
(KIs) for each maturity level. Perhaps a different choice of the criteria would
have been suitable as well, but the authors considered those criteria as most
important. Of course it makes sense to connect IT and management issues
and for example take the criterion ”project management” into account, because
IT and business are strongly related in today’s companies and business pro-
cesses have a direct influence on IT. As we will see later on, there are again
some other criteria to be considered for SOA maturity models.

Product independence
In order to construct a generic maturity model it does not seem reasonable
to make the maturity levels product dependent, because this links the compa-
nies using the model to certain vendors which could be a problem in the future
when trying to be independent from their products again. In order to give the
enterprises the flexibility they need, a maturity model should solely describe
certain key criteria that have to be fulfilled, regardless of the vendors of the
technologies.

Technological independence
Moreover maturity models should not dictate the technologies to be used.
There should be a description of general goals instead, because this enables
enterprises to reach the defined goals with the technology they like and they
are also given the possibility to keep their old technology and upgrade it if the
old one is no longer sufficient. Otherwise it could be very expensive to give up
the historically grown old IT landscape, because the maturity model demands
the use of new technologies.

11.3 CMMI - An SOA independent maturity model

One maturity model used by many companies is called Capability Maturity
Model Integration (CMMI). This model was developed by the software engi-
neering institute of the Carnegie Mellon University in Pittsburgh and was re-
leased in 1991. The current version is 1.2.
The model supports the improvement of processes of different kinds of com-
panies: companies that develop software systems or hardware (CMMI-DEV),
companies that acquire software or hardware, but do not develop themselves
(CMMI-ACQ) and companies that provide services (CMMI-SRV). The model

162 CHAPTER 11. SOA MATURITY MODELS

Figure 11.1: Maturity levels of the CMMI (taken from [cmmb])

defines several process areas that are grouped into four main categories.
Those categories depend on the kind of company, but are very similar in gen-
eral. For the CMMI-DEV those categories are project management, engineer-
ing, support and process management.
The main model consists of five capability levels and five maturity levels. The
capability levels describe the things the management has to do to be ranked
on a certain level. The maturity levels are reached if the capabilities for each
process area correspond to this level. Each level is associated with a number
of so called ”best practices” for each process area that have to be fulfilled to
be ranked on the level. The principle is to divide the process areas into clearly
defined tasks. For example the process area project planning is divided into
the tasks ”Make estimates”, ”Develop a project plan” and ”cause duties for the
project plan”. ”Make estimates” can again be subdivided into the best practices
”estimate the complexity of the project”,”estimate the costs” and so on. By con-
sidering the best practices of the subcategories a ranking of a company can
be computed. It has to be stressed that the CMMI only defines goals which
means that it is always stated what to do and not how to do it. This underlines
the technology independence and enables an enterprise to reach the maturity
with its preferred technologies. If a company uses all the defined best practices
that are necessary for the level, it will be ranked on the level. Figure 11.1 gives
a brief overview of the maturity levels without mentioning all the subcategories
and the best practices in detail.

Level 1: Initial There are no requirements for a company to reach this level. It
is reached automatically.

Level 2: Managed There is already project management established, but it
is it not as well organized as it should be. There is no clearly defined process
that describes how project management steps should be done in detail.

Level 3: Defined There is a standard process that defines how project de-

11.4. SOA MATURITY MODELS 163

velopment should look like and this process is improved continuously. A sys-
tematic and well organized way of process management has been introduced.

Level 4: Quantitatively managed There are defined metrics that allow the
quantitative analysis of the development process (e.g. software metrics) and
help the management to organize the process by analyzing the measured data.

Level 5: Optimizing The measurements that have been established on the
previous level are used to improve the process and everything that is con-
nected to it.

CMMI appraisals
In order to obtain an official CMMI ranking, enterprises have to accomplish
so called ”SCAMPI-appraisals” (Standard CMMI appraisal method for process
improvement) that can only be lead by lead appraisers. In Germany those
appraisers are organized in the German CMMI Lead Appraiser and Instructor
Board (CLIB). Due to appraisal results from 2004 most of the companies are
ranked on level 2 or 3, but there are also several companies (mostly located in
India) that have reached level 5. The latest appraisal results can be found on
[cmma].

11.4 SOA maturity models

This section deals with maturity models especially designed for SOAs. There
will be a general overview of the models currently available with a focus on an
independent model for SOAs, the so called iSOAMM. The KIs and levels of
this model will be discussed in detail. Afterwards the models are compared to
each other.
In contrast to general maturity models as the CMMI, SOA maturity models
have to stress some additional aspects. Those aspects concern the connec-
tion between business and IT and the resulting consequences for software
development and organization. In general SOA maturity models take a closer
look at services and service integration and do not consider the design of stan-
dalone applications any more. In order to improve the connection to business
processes the services have to be orchestrated and also casual activities like
monitoring and security of services have to be taken into consideration. The
technologies used in SOA models are often based on web services and the
business process execution language (BPEL), although there should be a high
level of technology independence. The organizational demands concentrate
on the establishment of SOA teams and the separation of the departments
into subdivisions according to the service categories in most cases.

11.4.1 The Architecture Capability Maturity Model (ACMM)

The ACMM is described in [oC] and mainly focuses on criteria concerning the
system architecture. Nevertheless it also covers organizational aspects. The

164 CHAPTER 11. SOA MATURITY MODELS

Table 11.1: Maturity
levels of the ACMM

1. None
2. Initial
3. Under Development
4. Defined
5. Managed
6. Measured

Table 11.2: IT Architecture Characteristics of
the ACMM

1. Architecture Process
2. Architecture Development
3. Business Linkage
4. Senior Management Involvement
5. Operating Unit Participation
6. Architecture Communication
7. IT Security
8. Governance
9. IT Investment and Acquisition Strategy

model was developed by the US Department of Commerce (DoC) and consists
of two components:

• The description of the maturity levels and the key criteria on each level
(Department of Commerce IT Architecture Characteristics of Operating
Units’ Processes at Different Maturity Levels)

• A method to derive the maturity level from the data gained in the step
before (DoC IT Architecture Capability Maturity Model Scorecard)

The existence of the scorecard underlines the intention of the ACMM to con-
duct an assessment of the IT architecture for a CIO. Table 11.1 and 11.2 show
the 5 maturity levels and the 9 IT Architecture Characteristics.
Due to the high number of KIs the model allows for a very detailed analysis
of the architecture and therefore enables the management to figure out which
area to improve to get a higher overall maturity. However, the specific details
of an SOA are not covered by this model. A detailed description of the sub-
characteristics will be omitted at this point as it can be found in [oC].
The scorecard to determine the maturity ranking offers two possibilities for pre-
senting the evaluation results to the management. The first one computes the
maturity level for each of the nine subcharacteristics and calculates the arith-
metic mean afterwards. The second one takes a look at each maturity level and
counts how many of the subcharacteristics were ranked on this level. After-
wards the relative frequency of those occurrences is computed. This methods
allows the CIO to determine at once which of the KIs related to the correspond-
ing maturity level have to be improved.

11.4.2 The New SOA Maturity Model (NSOAMM)

The companies SonicSoftware, AmberPoint, BearingPoint and Systinet de-
veloped the NSOAMM which currently is the most well-known SOA maturity
model. The model consists of five maturity levels (see Figure11.2), whereas
level 3 is divided into the two sublevels ”Business Services” and ”Collabora-
tive Services”. An overview of the maturity levels and the KIs can be found

11.4. SOA MATURITY MODELS 165

in [BNKH06]. The levels can only be reached by the establishment of the de-
manded technology and software standards that are also clearly stated by the
model.
Level one is a basic level that is characterized by SOA pilot projects. Typical
technologies for this level are XML, XSLT, WSDL, SOAP, J2EE and .NET. The
next level mostly deals with the standardization of development processes and
SOA integration. There are again concrete standards like UDDI or XQuery
given. This makes obvious that the NSOAMM mostly depends on the use of
web services as technological basis. Level 3 is separated into two parts and
turns its attention to the orchestration of services to be able to support busi-
ness processes. As a technology to realize this WSBPEL is given which also
plays a role in the iSOAMM discussed later on. There are two possibilities for a
company to reach level 4, either by method 3a or method 3b. Method 3a tries
to reach the realization of complete business processes, whereas method 3b
puts the focus on collaboration with other companies. A main problem here
is the connection from internal to external services and the exchange of data
between enterprises. One important standard for this is RosettaNet.
The key goals of the next two levels are improving the measurement of ser-
vices by introducing metrics and advancing from reactive to real-time business
processes.

11.4.3 The (Open Group) Service Integration Maturity Model ((O)SIMM)

The SIMM was developed by IBM in 2005 and consists of seven maturity lev-
els. IBM did not publish the KIs required for each level at once, but sourced
the project out to the Open Group in 2007 which took the model as basis for
the OSIMM. Due to the similarity of the models they will be discussed here
together.
An overview of the levels can be found in figure 11.2. The first 3 levels deal
with applications and their integrations, whereas the last 4 levels focus on the
use of services. There are 7 KIs that help to evaluate the maturity, namely
Business, Organization, Methods, Applications, Architecture, Information and
Infrastructure. These KIs are subdivided into smaller parts that can be charac-
terized by certain questions. An extract of questions can be found in table 11.3.
The whole catalogue of questions is defined in [wg07]. The first four levels de-
scribe the development from standalone application to coupled services that
can be regarded as a first SOA approach. On Level 5 (Componentized Ser-
vices) the services can be used to support business processes, e.g. by using
composition languages such as BPEL that is also part of many other maturity
models. Level 6 considers services no longer as programs with a clearly de-
fined physical infrastructure, but as virtual services that map from an abstract
virtual description to a concrete service. So the services are no longer called
directly, e.g. by defining server and port, but there is a system that gets a more
abstract service description as input and looks for the right service that is in-
voked later on. Level 7 requires a better adaption of processes to the dynamic
behaviour of business processes, e.g. by a modelling language that is even
more business-oriented than before.

166 CHAPTER 11. SOA MATURITY MODELS

Table 11.3: Questions related to the key indicators of the OSIMM ([wg07])

Business How agile are your current business processes?
Organization How does IT governance relate to your SOA?
Methods What design methodologies and best practices are

you currently adopting?
Applications What is your current application development style?
Architecture How mature are your web services implementa-

tions?
Information Are the data models defined by a language that in-

cludes taxonomies, ontologies or other high-level
logical representations?

Infrastructure What tools are used for configuration manage-
ment?

4 COMBINED SOA MATURITY MODEL

4 Combined SOA Maturity Model

This section introduces the combined SOA maturity model (CSOAMM). A general
introduction leads to the model structure and a more detailed description. In subsection
4.4, a mapping between CSOAMM and CMMI is presented and in subsection 4.5, a
scenario to exemplify the usage of CSOAMM is shown. The final subsection presents
a critical analysis of CSOAMM.

4.1 Introduction

Both SOAMM and SIMM were published in the autumn of 2005. Companies already
use them or will start doing so soon. Especially companies, which are using consultancy
or software of one of the authoring companies will be the first to use them. Since not
only one model is on the market and proposed for standardisation, it can be assumed
that different companies will use different models. This thesis addresses this issue by
the aim: ”to develop a model for facilitating interpretation and comparison of SOA
maturity models”. This section proposes a combined model (Combined SOA Maturity
Model - CSOAMM) (see figure 7) as a tool to connect SIMM and SOAMM. It was not
created to be a maturity model, nor as a check-list for a mature SOA. CSOAMM was
created for a better understanding of SOAMM and SIMM and is intended to be used as
a translation tool between these models.

Figure 7: Combined SOA Maturity Model - CSOAMM

CSOAMM was created by a comparison and mapping of maturity level characteris-
tics14. To create a suitable mapping, it was necessary to split some levels.

4.2 Structure

The CSOAMM consists of 10 levels numbered from -2 to 7. The size of the boxes
in figure 7 does not indicate level importance. SIMM describes service maturity and
covers a broader field than SOAMM, which describes only SOA maturity. This affects
the interpretation and has the consequence that SOAMM starts on a higher level. A
mapping of the lower levels is not possible and the mapping between the models must
start on a higher level. Components, e.g. based on Enterprise Java Beans (EJB), are

14see Appendix C for details

20

Figure 11.2: Mapping of the maturity levels: SIMM-CSOAMM-SOAMM (taken
from [Mei06])

11.4.4 The Combined SOA Maturity Model (CSOAMM)

This model is a combination of the SIMM and the NSOAMM and was intro-
duced in Meier’s master thesis at the university of Skövde ([Mei06]). It is a
scientific approach that was supported by the authors of the SIMM and the
NSOAMM which tries to form a better model that contains characteristics ex-
tracted from both models for the maturity levels. The combination of the level
characteristics contained in the models helps enterprises to better understand
their current standing of SOA adaption, because there is a more detailed de-
scription of the key criteria now in comparison to the use of one single model.
As the author stresses in his thesis the CSOAMM was not designed to be
regarded as an independent model, but to serve as a ”translator” between
companies who use the SIMM and others who use the NSOAMM.
Figure 11.2 shows how the maturity levels are combined and which new levels
are introduced.
The maturity model consists of 10 levels (-2 to 7). Some of those levels are
identical to levels of the SIMM or the NSOAMM, others are sublevels that are

11.4. SOA MATURITY MODELS 167

needed to create a suitable mapping between the models. An important point
to realize is that the levels of the SOAMM are mapped to higher levels of the
other models and that the mapping does not start at the bottom, as this is done
for the SIMM. This is because the SOAMM is a model especially designed
for SOAs and does not consider service maturity in general like the SIMM.
The SOA maturity of the CSOAMM is described within the levels 0 to 7. As
the NSOAMM is focused on web services, its first two levels are mapped to
COAMM level 1 that deals with web services and not to level 0 that does not
consider web services in detail. More exact information about this model can
be found in the previously mentioned master thesis ([Mei06]).

11.4.5 The Oracle Maturity Model (OMM)

The OMM consists of the five maturity levels Opportunistic, Systematic, En-
terprise, Measured and Industrialized. Those levels are grouped into the eight
KIs Infrastructure, Architecture, Information & Analytics, Operations, Project
Execution, Finance and Portfolios, People & Organization and Governance.
This granularity assures that every area that is affected by an SOA is consid-
ered as KI. The maturity levels cover first SOA approaches (Opportunistic) up
to automated business processes that are monitored and measured and sup-
port the reaction to business events (Industrialized). The technology related
KIs (Infrastructure and Architecture) are realized by web services. The aspect
”Finance and Portfolios” is not covered in other models in such a specific way
and deals with the funding of the SOA on each level.

11.4.6 The independent SOA Maturity Model (iSOAMM)

This section deals with the main aspect of this paper, an independent maturity
model for SOAs. It has been developed at the FZI Research Center for Infor-
mation Technology in Karlsruhe and is described by Rathfelder and Groenda
in [RG08]. The motivation was to create a model that is independent from any
vendor and also technology independent. Furthermore an important aspect
was the development of a model that both considers technical and organi-
zational aspects. The model is based on the existing SOA maturity models
introduced before, own experiences of the authors gained in a project called
”Karlsruher Integriertes Informationsmanagement”(KIM) ([FLM+06]) and pub-
lished case studies of companies. Those case studies take a closer look at the
SOA landscape of the companies Deutsche Post ([LH07],[KBS],[Hel06]),Credit
Suisse([LH07],[KBS]) and ABB ([GHS05]). Another important aspect when
constructing the model was to study articles about SOA implementations to
figure out the key indicators for the maturity levels (KIs) that will be discussed
next.

Service Architecture This point considers the setup of the software archi-
tecture. This means to take a look at the layers the architecture consists of,
the application landscape and the services. Furthermore it has to be exam-
ined how the business processes of the enterprise are represented using the

168 CHAPTER 11. SOA MATURITY MODELS

software architecture and if there is user and customer interaction.

Infrastructure As the change of business processes influences IT to a very
high extent, a stable infrastructure is needed. This is an important aspect that
is also discussed in the SOA series of the CIO magazine taking a focus on
”Deutsche Post” ([Hel06]). The task of the infrastructure is to enable the com-
munication between the services which is realized by network components.
Furthermore this infrastructure can be extended by additional components as
monitoring or security tools. In order to bring the running applications together
to enable a service landscape, a stable ”communication bus” is needed. This
emphasizes the connection between the infrastructure and the service archi-
tecture, although they still have to be regarded as different indicators for a good
SOA structure.

Enterprise Structure The realization of an SOA also affects the business
department of an enterprise and that is why the organization and duties of
the different divisions often have to be changed when introducing SOA. SOA
concerns everybody in the company and historically grown old organizational
structures often hinder the introduction of an enterprise-wide SOA.

Service Development As pointed out in [CK05] from IBM research SOA changes
the development mostly concerning management tasks. There is no longer a
development process for a distributed system landscape as before, but there
are management interfaces to map business processes directly to the service
infrastructure. So the development processes are no longer the same and
have to be adapted to the needs of SOAs.

Governance Besides the aspects ”Enterprise structure” and ”Service Devel-
opment”, the whole company is affected by migrating to an SOA. There have
to be governance policies that communicate new guidelines and rules to bring
the employees away from keeping their old workflows and habits and make
them adapt their working behaviour to the changes SOA introduces.

The maturity levels

This section introduces the five maturity levels of the iSOAMM and describes
how the previously discussed KIs have to look like on each level. The model
is very similar to general maturity models like the CMMI concerning the setup
of the model and the decrease of granularity up to ”best practices” that give a
very clear impression what an enterprise has to do to reach the corresponding
level. Figure 11.3 is taken from [RG08] and gives a short description of the key
indicators for each maturity level.

Level 1: Trial SOA
This level is characterized by independent SOA projects which can be re-
garded as a first try to gain experience with services. There are no standards
concerning development processes or technologies.

11.4. SOA MATURITY MODELS 169

4 C. Rathfelder and H. Groenda

3. Enterprise Structure: SOA affects IT systems as well as business processes [2].
Changes which affect organizational structure and responsibilities of the different
divisions are therefore required [7,18,5]. This viewpoint regards the different divi-
sions of the company, which are affected by the SOA, as well as their responsibili-
ties and duties.

4. Service Development: The design and implementation of services is a crucial as-
pect in the implementation of an SOA. As Cox and Kreger emphasize in [19], the
development process of services needs to be adjusted and it is therefore regarded
as a separate viewpoint. In general, an increase in maturity leads to a higher rate of
automation within the development process [9, 6].

5. Governance: The successful implementation and usage of an SOA has to come
along with an adaptation of the whole enterprise [1]. This viewpoint considers
changes, rules, and guidelines that are relevant for the whole enterprise and are
not limited to Enterprise Structure and Service Development. The topic of SOA
governance is so large, that we can only present the main KI of this viewpoint for
each maturity level.

4 iSOAMM Maturity Levels

After the introduction of the evaluation viewpoints, this section describes the five differ-
ent maturity levels (Trial SOA, Integrative SOA, Administered SOA, Cooperative SOA,
and On Demand SOA) and their Key Indicators (KI). In defiance of the iSOAMM’s in-
depenence, the examples within the description of the maturity levels use web service
(WS) standards as illustration since many implemented SOAs are based upon WS [20].

Note that each maturity level constitutes an enhancement of the previous level and
hence bases on changes and features already introduced at lower levels. However, KI
of lower levels can also be overruled, for example if the structure of an enterprise
changes and organizational units are dissolved and replaced by others. Figure 1 gives
an overview of iSOAMM and its subdivision into maturity levels and evaluation view-
points. The different maturity levels are described in detail in the following subsections.

Viewpoint

Maturity Level

Service

Architecture

dynamic
services

processes

orchestrated
services

integrated
applications

islands

service
marketplace

management,
event-driven

monitoring,
security

communica-
tion

inhomo-
geneous

service as
business

service
alligned

centrally
managed

IT-oriented

separated

service on
demand

model-driven

documented,
tool support

hands-on
experiences

unstructured1

automated

fair compe-
tition control

rules

guidelines

none
Trial

SOA

2
Integrative

SOA

3
Administered

SOA

4
Cooperative

SOA

5
On Demand

SOA

Infrastructure Service

Development

Enterprise

Structure
Governance

Fig. 1. Maturity LevelsFigure 11.3: Maturity levels of the iSOAMM (taken from [RG08])

The legacy applications are connected to services that can be used by other
applications. Due to the lack of standardization it can be the case that there
are services using different technologies and so there is no communication
possible. Additionally the infrastructure does not consist of a standardized
communication system, but of many inhomogeneous systems. This leads to
incompatible ”Service islands”.
The business is divided into several subunits which all have their own IT de-
partments. Because there is no central IT department the communication only
takes place within the departments and not enterprise-wide.
The development of services does not follow guidelines and differs for each
SOA project. This can be regarded as a test phase to figure out best practices
to be able to construct a standardized development process later on.
SOA projects are done within the IT departments and do not affect the man-
agement. There is no communication across the borders.

Level 2: Integrative SOA
The experience from the previous level is used to improve the infrastructure
and the development process. The main goal is the realization of Enterprise
Application Integration (EAI).
A common service bus (SB) is introduced and an API for the (standardized)
services is developed which can be used by frontend applications. The ser-
vice are now connected to each other and there are no longer service islands.
Because there is a lot of communication between the applications to form a
service the requirements for the structures that enable the interaction between
applications and services are very high. The previously mentioned ”Service
Bus” can be built up using many different middleware technologies offering a
high abstraction level. There are companies using CORBA (like ”Credit Su-
isse”), Web Services (like ”Sparkassen Informatik”) or J2EE technology (like
”Deutsche Post”). One important aspect is that the service bus allows logical
addressing of services in order to have the option to change its physical loca-
tion.
The enterprise structure is adapted to SOA by setting up an own SOA team

170 CHAPTER 11. SOA MATURITY MODELS

that is responsible for all SOA aspects within the company. This team develops
the service bus and trains employees for developing services. The importance
of an SOA team becomes obvious looking at the fact that even well-known
companies like ”T-Com”,”Credit Suisse” and ”Deutsche Post” introduced such
an SOA team as pointed out in the case studies of [LH07].
The development of services is now better organized due to a knowledge base
for developers that contains all the best practices learned on the previous level.
Furthermore the development is supported by better tools focused on the de-
sign of services.
Because the developed services are often changed and there are a lot of de-
pendencies between services, a versioning system becomes necessary. This
is not only important for the developers but also for the management, because
change requests must be handled within the whole company and the rollout
of new services has to be communicated. Another important point is that the
developers do not have much experience with the integration of new services
into the service bus. Because this rising complexity higher costs occur which
have to be balanced by an enterprise wide compensation payment system.

Level 3: Administered SOA
The main difference between level 3 and level 2 is the orchestration of services.
The services developed on layer 2 communicating via the service bus can now
be organized in such a way that it is possible to adapt them to business pro-
cesses. It is now much easier for the management to connect business needs
to IT by using a so called ”Orchestration layer”.
Figure 11.4 contains elements of the IT landscape of an enterprise on iSOAMM
level 3 (the top level elements are not yet included). The legacy application
are connected to services which are orchestrated by the orchestration layer.
This layer provides its interface to the frontend which is used by employees or
customers. One example for constructing an orchestration layer is to use the
”Webservice Business Process Execution Language”(WSBPEL) as described
in [OAS07]. The services are framed by a communication layer which enables
the communication between them, a security layer that is responsible for a safe
data transfer (this could be important if sensible services as they are needed in
the banking domain are considered) and managing access rights for the ser-
vices and a monitoring layer which logs how often and by whom services are
used. In order to stress the relation between management and IT it also makes
sense to use business relevant data types to have a direct representation of
business ”vocabulary” in software and facilitate the exchange of data between
the services.
Of course those abstract things like an orchestration layer have to be realized
in the infrastructure. WSBPEL for example produces process description and
not executable code at once. That is why an orchestration engine is needed
that translates the abstract descriptions into code that can be used by the sub-
layer. The monitoring and security infrastructure is also needed and can be
realized with a so called ”Web Services Architecture Stack” that is presented
in [BHM+04].
As the services on IT level can be divided into several categories like customer

11.4. SOA MATURITY MODELS 171

data, customer relationship management or human resources, it also makes
sense to structure the business departments in the same way. So every de-
partment is responsible for the services within its service domain. The SOA
team introduced on level 2, is still needed and it is enriched with business ex-
perts on this level to define data standards and the distribution of services to
service domains.
The knowledge base used by the service developers is enlarged and more
automated development steps are introduced. The orchestration of services
allows for a Model-Driven Software Development, as the services are stan-
dardized and the same implementation language can be used.
As before, it is important for the governance to stress the importance of the
service orientation paradigm within the company.

Level 4: Cooperative SOA
The main issue of this level are so called Service Level Agreements (SLAs).
These agreements are arranged between the service provider and the cus-
tomer and guarantee the use of a service with a defined quality if a clearly
specified usage profile is given. SLAs are strongly related to the IT Infras-
tructure Library (ITIL) which describes best practices for the management of
services. The next picture shows the introduction of a new process layer which
offers an amount of business processes and is connected to a choreography
layer and a portal. There are two kinds of business processes: Automated
processes within the business (B2B processes) and processes that require
human interaction.
Processes with human interaction can not be implemented as orchestrations
and need to be implemented as choreography between processes. This is
why a user interface is required which is the portal that is also represented in
the figure. The portal integration to interact with the user can be realized with
”WSBPEL Extension for People” presented in [AAD+07]. Because events play
a central role in daily business life, it is not sufficient to have communication
between the single services, but a possibility to react on events also has to be
established.
In order to support the new process layer and the user interaction the infras-
tructure has to be extended. One example for an infrastructure that makes it
possible for services to react on events is the ”Event Bus Infrastructure” de-
veloped by ”Credit Suisse”([KBS]). Similar to the last layer, where a runtime
environment for the orchestration layer was needed, an additional environment
for the processes is required now. This environment supports the choreogra-
phy of processes and the integration of user interaction. Another important
thing is that business people must be able to construct processes without big
technical knowledge. This is why the service repository has to contain seman-
tic descriptions. An example for this could be a UDDI-based repository.
The granularity of the enterprise structure has to be changed again. There
is a proposal from Bieberstein([BBWL05]) which suggests to form teams that
are responsible for a single service, but it has to be called into question if this
makes sense for every enterprise.
Models and processes are designed using graphical representations that makes

172 CHAPTER 11. SOA MATURITY MODELS

8 C. Rathfelder and H. Groenda

exceptions can still be allowed by the SOA team. The use of services by other parties
induces costs for the operation at the service provider instead of the consumer. Hence,
the compensation payment system has to be adapted so service providers are not pun-
ished for providing reusable services. The reuse factor of services can vary to a big
extent, as the case study of Credit Suisse in [4] shows for example that in spite of an
overall reuse factor of 1.6 some services are reused up to 12 times. Part of the gover-
nance of this level also is the establishment of enterprise-wide rules, guidelines, and
policies which regulate security concerns.

4.4 Level 4: Cooperative SOA

This maturity level is characterized by Service Level Agreements (SLA), which have
to be concluded between service consumer and provider. An SLA warrants a specified
service quality if the consumer uses the service in conformance to a specified usage pro-
file. An additional architecture layer closes the gap between services and business pro-
cesses [25]. Corresponding to [11], it has to be distinguished between B2B-processes,
which are mainly full automated, and internal processes, which involve human interac-
tion. The Service Architecture and the Infrastructure of an SOA at this level are sketched
in Figure 3.

Integration Services

Orchestrated Services

C
o

m
m

u
n

ic
a
ti

o
n

S
e

c
u

ri
ty

M
o

n
it

o
ri

n
g

/

S
L

A
-M

a
n

a
g

e
m

e
n

t

PortalChoreography

External Business Process

Orchestration
Layer

Process
Layer

SLA
SLA

SLA

SLA SLA SLA

SLA

SLASLA

SLA
SLA

Legacy

Applications

SLA

Fig. 3. iSOAMM: Maturity Level 4

Service Architecture. As mentioned above, the service architecture can have two
different characteristics (B2B-processes and human interaction), even both at the same
time. In order to support B2B-scenarios this layer supports the choreography of
processes. In contrast to an orchestration, choreography is a cooperation between
processes [26]. The integration of human users is necessary to support most internal pro-
cesses, thus they can not be implemented as orchestrations, which allow solely a com-
position of services. The common way is to use a portal that presents the tasks to the
users, which are assigned within the process. One example for such an user integra-
tion is the ”WSBPEL Extension for People“ (BPEL4People) [27]. The availability of
business rules is an additional property of the process layer. The business rules allow
a reconfiguration of processes without a redeployment [28]. Secondary, as presented

Figure 11.4: Architecture characteristics of iSOAMM level 4 (taken from
[RG08])

it easier for business people with few technical knowledge. Another important
task at this level is adapting the process development to the SLAs, because
the process has to fulfill specified quality requirements that have to be guaran-
teed whenever the customer uses the process. To cope with this it is important
to pay attention to the quality of service to satisfy the customer.
On this level it is absolutely necessary that every legacy application provides
an interface to a service and is integrated into the SOA. Furthermore the defini-
tion of metrics is essential to control the maturity of the SOA and the business
processes.

Level 5: On Demand SOA
In everyday life the service needs of customers frequently change and so there
are often no long term SLAs, but the SLAs have to be adapted to the cus-
tomer’s needs very fast. So there must be a possibility for the customer to
change the SLAs without high effort.
The service architecture has to be changed in such a way that services can
be chosen at runtime according to the wishes of the customer. To determine
the service that offers the right functionality with a demanded quality, a data
ontology is needed to convert between data formats of the process and the
services.
A trading platform for services, a so called marketplace has to be offered to the
customer to make it possible to give him the choice between available services
he has to pay for. This sale of services via the marketplace means the runtime
negotiation of SLAs which has to be supported by the infrastructure. In order
to reach this the monitoring of SLAs, orchestrations and processes is needed
or has to be improved.
The service development has to change, because services are now chosen
at runtime whereas they were selected at design time before. Orchestrations
and processes must have repositories containing the semantic specification of
services that can be used during runtime.

11.4. SOA MATURITY MODELS 173

11.4.7 Comparison of the discussed models

The main setup of the models is always similar: There is a basic level that is
reached when companies make their first experience with SOA. The levels af-
terwards describe the advance from loosely coupled services to orchestrated
services up to automated business processes with customer interaction. The
CSOAMM serves as an example for the fact that the granularity of the maturity
levels differs from model to model. Although the setup of the levels is nearly
identical in most cases and oriented at the CMMI, the key criteria are always
different. The ACMM focuses architecture details as well as organizational as-
pects, but does not consider criteria as coupling or reuse of services that are
important for an SOA. It is the only model that provides a concrete mechanism
for calculating the maturity level by providing a scorecard. The KIs of the OMM
are technology-dependent, because the realization of the SOA requires the
use of web services in this model. Additionally aspects like automated busi-
ness processes and user interaction as they are part of level 5 of the iSOAMM
are not taken into account. The KIs of the NSOAMM are especially designed
for SOAs and also take web services as basic part of an SOA realization. Im-
portant areas like security and monitoring of services or the governance of an
enterprise are not regarded and some KIs show a high level of product de-
pendency. IBM’s model SIMM and its successor OSIMM only describe SOA
maturity on the levels 4-7, but the granularity of the KIs is well-thought and
important SOA aspects are covered. The iSOAMM is a very new model that
tries to be as most technology independent as possible and stresses the con-
nection between business and IT aspects.
It is not easy to say which of the described maturity models is better than
another one, because there is no proof that certain KIs assure a good SOA
adoption. There is no ”universal definition” of SOA and therefore it might be
too early to publish those models. This criticism is also mentioned in Meier’s
thesis ([Mei06]) and it calls the value of those kind of models into question.
Nevertheless a well designed SOA model that covers all important aspects
should be a good guideline for enterprises.

11.4.8 Examples for companies and their rankings

Unfortunately there are no big companies who publish their rankings they
achieved in a specific SOA maturity model. As stated by the authors in [RG08]
the KIM project started on level two and reached level three in 2007. The SOA
of ”Deutsche Post” is also ranked on level 3 whereas the SOA of ”Sparkassen
Informatik” is an example for rank 2 according to the iSOAMM. Level 4 and
level 5 of the iSOAMM have not been reached by any company up to now and
it has to be called into question if this ever happens. In general the higher
levels of every SOA maturity models described above are difficult to reach,
because they require high technical and organizational demands that cannot
be reached that fast with respect to the available IT and business structure of
today’s companies. An article about the main problems of an SOA adoption
can be found in [Her]. The described problems are related to the business-IT

174 CHAPTER 11. SOA MATURITY MODELS

linkage in most cases. There are only few employees with good SOA knowl-
edge, but those people in general have a technical background and are not
familiar with business topics. This is why companies like ”Deutsche Post” try
to improve their business knowledge by further education. Furthermore SOA
projects are often initiated by IT departments and the CIO and not supported
by the overall management and the CEO. Besides those major problems, there
are also technical difficulties. There is an excess of standards (e.g. in the do-
main of web services) and the testing of services is not carried out with the
needed accuracy.
Regarding general maturity models like the CMMI things look a bit different.
There are several Indian companies that reached level 5 which is a good ad-
vertisement to gain new customers. Because CMMI is widely spread the rank-
ings can be compared quite easily and so it is a good indicator for the market
position of an enterprise. Of course, this is not the case for SOA maturity
models at the moment.

11.5 Summary/Conclusion

This paper tried to motivate why it is important to use maturity models and gave
an overview of the SOA independent model CMMI as well as special models
designed for SOAs. At this point the emphasis was placed on the iSOAMM
developed by the Research Center for Information Technology in Karlsruhe.
It became obvious that the choice of the KIs plays an important role during
the construction of a maturity model and that it is important to pay attention
to stress the connection between business and IT and not to dictate which
technologies to use. It remains to be seen how those models are used in
practice and if some of them will get the status the CMMI has today. Currently
people are no longer that enthusiastic about SOA that was a hype topic during
the last few years. ”SOA is dead. Long live services”, a cite from Anne Thomas
Manes from the Burton Group ([Man]) at the beginning of this year, describes
the situation of many IT companies today. Some of the SOA approaches did
not pay off and brought just costs instead of benefits.

Bibliography

[AAD+07] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann,
D. König, F. Leymann, R. Müller, G. Pfau, K. Plösser, R. Ragaswamy,
A. Rickayzen, M. Rowley, P. Schmidt, I. Trickovic, A. Yiu, and M. Zeller.
WS-BPEL Extension for People (BPEL4People). https://sdn.sap.com/
irj/sdn/bpel4people, 2007.

[BBWL05] N. Bieberstein, S. Bose, L. Walker, and A. Lynch. Impact of service-
oriented architecture on enterprise systems, organizational structures and
individuals. IBM Systems Journal, 44(4):691–708, 2005.

[BHM+04] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferric, and
D. Orchard. Web Services Architecture, 2004. W3C Working Group Note.

[BNKH06] J. Bachmann, D. Ng, S. Kline, and E. Horst. SOA Maturity Modell, oder
der Weg zu einer Service Orientierten Architektur. whitepaper ,http://
sonicsoftware.com/soamm, 2006.

BIBLIOGRAPHY 175

[CK05] D.E. Cox and H. Kreger. Management of the service-oriented-architecture
life cycle. IBM Systems Journal, 44(4):709–726, 2005.

[cmma] http://sas.sei.cmu.edu/pars/pars.aspx. CMMI Appraisal Results.

[cmmb] SEI CMMI Tutorial. http://www.tutorialspoint.com/cmmi/index.htm.

[FLM+06] P. Freudenstein, L. Liu, F. Majer, F. Maurer, C. Momm, D. Ried, and W. Jul-
ing. Architektur für ein universitätsweit integriertes Informations- und Di-
enstmanagement. In INFORMATIK 2006- Informatik für Menschen, vol-
ume 1, pages 50–54. 2006.

[GHS05] D. Gizanis, R. Heutschi, and T. Solberg. Global Order Management Ser-
vices Support Businesses at ABB. http://www.alexandria.unisg.ch/
Publikationen/23667, 2005.

[Hel06] J. Helbig. Englewood Cliffs, reprint edn. prentice hall ptr edition, 2006.

[Her] Wolfgang Herrmann. Die zehn schwersten SOA Hürden. http://www.
computerwoche.de/knowledge_center/soa_bpm/597036/.

[KBS] D. Krafzig, K. Banke, and D. Slama. SOA Serie: Teil 1-5. CIO. http:
//www.cio.de/schwerpunkt/d/Deutsche-Post-Brief.html.

[LH07] C. Legner and R. Heutschi. SOA Adoption in Practice- Findings from Early
SOA implementations. In Proc. of European Conference on Information
Systems (ECIS 2007), 2007.

[Man] Anne Thomas Manes. SOA is dead. Long live services. http://apsblog.
burtongroup.com/2009/01/soa-is-dead-long-live-services.html.
Blog entry.

[Mei06] F. Meier. Service Oriented Architecture Maturity Models - A guide to SOA
adoption, 2006.

[OAS07] OASIS. Web Services Business Process Execution Language (WSBPEL),
2007.

[oC] Department of Commerce. Introduction-IT Architecture Capability Maturity
Model. http://ocio.os.doc.gov/groups/public/@docs/@os/@ocio/
@oitpp/documents/content/prod01_002340.pdf.

[RG08] Christoph Rathfelder and Henning Groenda. iSOAMM: An Independent
SOA Maturity Model. In DAIS, pages 1–15, 2008.

[wg07] The Open Group (OSIMM working group). Launch Presentation and WG
Updates 1.0. http://www.opengroup.org/projects/osimm/, 2007.

