
Proceedings
of Seminar

Software Metrics
— Foundations and Applications —

2010
Editors: Horst Lichter

Matthias Vianden

Contents

I Metric Process 1

1 IT Controlling 3

1.1 Introduction . 4

1.2 Background of IT-Controlling . 4

1.3 A Tool for IT-Controlling: The Balanced Scorecard (BSC) 8

1.4 Discussion . 15

1.5 Conclusion . 16

1.6 Outlook . 16

Bibliography . 17

2 Software Process Improvement 19

2.1 Introduction . 20

2.2 Success Measurement Approaches 22

2.3 Discussion . 31

2.4 Conclusion . 32

Bibliography . 32

3 Metric Maturity Model 35

3.1 Introduction . 36

3.2 Concepts related with Process Maturity 36

i

ii CONTENTS

3.3 Known Maturity models for the development process 39

3.4 Maturity Model for Software Process Improvement 41

3.5 Maturity Models for Measurement programs 44

3.6 Discussion . 48

Bibliography . 49

II Product Metrics 51

4 Earned value in agile systems 53

4.1 Introduction . 54

4.2 Earned Value Method (EVM) . 54

4.3 Agile Principles background . 56

4.3. Applying Metrics-based Approach to Agile processes 57

4.4 Applicability discussion . 59

4.5 Conclusion . 65

Bibliography . 65

5 Architecture 69

5.1 Introduction . 70

5.2 Background . 71

5.3 Architecture Evaluation . 75

5.4 Tools for Static Architecture Evaluation 80

5.5 Discussion . 82

5.6 Conclusion and related work . 82

Bibliography . 83

6 Usability Metrics 85

6.1 Introduction . 86

CONTENTS iii

6.2 Foundations: Usability . 87

6.3 Usability evaluation process . 88

6.4 Usability evaluation without users 89

6.5 Evaluation with users . 95

6.6 Limitations . 97

6.7 Conclusions . 98

Bibliography . 98

7 Requirements Quality 101

7.1 Introduction . 102

7.2 Background . 103

7.3 Measurement Process . 106

7.4 Tools . 110

7.5 Discussion . 113

7.6 Outlook . 113

7.7 Conclusion . 113

Bibliography . 114

III Applications 117

8 Control-Center Terminology and Application 119

8.1 Introduction . 120

8.2 Background . 121

8.3 Different dimensions of control centers 123

8.4 The reference architecture . 126

8.5 Industrial tools and frameworks 128

8.6 Discusion . 130

iv CONTENTS

8.7 Conclusion . 132

Bibliography . 132

9 Source Code Metric Tools 135

9.1 Source Code Metrics . 136

9.2 Tools . 140

9.3 Discussion and Outlook . 148

9.4 Summary . 148

Bibliography . 149

10 Visualization of Hierarchical Data 151

10.1 Introduction . 152

10.2 Cushion Treemaps . 153

10.3 Layout Styles for Hierarchical Graphs 157

10.4 Tools . 162

10.5 Discussion . 163

Bibliography . 164

Part I

Metric Process

1

Chapter 1

IT Controlling

Mareike Bültmann

Contents
1.1 Introduction . 4
1.2 Background of IT-Controlling 4

1.2.1 Tasks and Aims of IT-Controlling 5
1.2.2 Strategical and operational IT-Controlling 5
1.2.3 Variants/kinds of IT-Controlling 6
1.2.4 Problems . 8

1.3 A Tool for IT-Controlling: The Balanced Scorecard (BSC) . . . 8
1.3.1 The Structure of the Balanced Scorecard 9
1.3.2 Applying the Balanced Scorecard to IT-Controlling . . 11
1.3.3 Possible metrics in the BSC for IT-Controlling 12

1.4 Discussion . 15
1.5 Conclusion . 16
1.6 Outlook . 16
Bibliography . 17

3

4 CHAPTER 1. IT CONTROLLING

Abstract: IT-Controlling has to deal with the challenge of intransparency and
old-fashioned controlling methods applied to the IT-sector. The target of cur-
rent IT-Controlling is to integrate IT into the whole business controlling pro-
cess as a part of shifting IT-Controlling from the operational aspects to an
established strategical oriented IT-Controlling. Therefore the Balanced Score-
card as a strategical management system can help to measure performance
as well as to monitor goal achievement. This work describes different ap-
proaches of applying the BSC for the purpose of IT-Controlling and explains
certain metrics which are relevant for the specific BSC of IT.

1.1 Introduction

IT-Controlling in the past was strongly cost related and sometimes misunder-
stood as cost-reduction. IT is integrated everywhere in the business pro-
cesses, and costs are the easiest thing to measure and compare. But IT
is much more complex and needs to be controlled in a right manner. IT-
Controlling has to deal with insufficient transparency and has to provide meth-
ods to overcome the intransparencies. It has to be linked with performance-
orientation and enhancing efficiency [Gad05].

Regarding IT-Controlling, different questions arise in companies, like ”Is that
investment in IT really worthwhile?”, ”Is that implemented IT-application suc-
cessful?”, ”Is the IT department productive and/or effective?”, and ”Should IT
be outsourced?”. Hence, it is imperative to measure the value and to evaluate
the performance in order to achieve business goals with IT [MDT99]. Two addi-
tional questions dealing with measurement however are also important: ”doing
the right thing” and ”doing it right” (see section 1.2.2). These are the main sub-
jects when dealing with performance and goal achievement measures, which
are the focus of the Balanced Scorecard. The BSC supports the process of
getting from an operational point of view to a strategical one.

This paper provides an overview of IT-Controlling, where the aims and tasks
as well as the difference between strategical and operational IT-Controlling are
explained. Also, different subcategories of IT-Controlling are described. After-
wards, the Balanced Scorecard is introduced as an instrument for measure-
ment in the IT-Controlling. Different approaches of applying a BSC for IT are
depicted, and some possible (used) metrics are mentioned.

1.2 Background of IT-Controlling

IT-Controlling can be seen as a subsystem of the whole controlling system.
The aim of the management is to develop a mission and to realize the cor-
porate goals of long-term benefit. For supporting these managerial functions,

1.2. BACKGROUND OF IT-CONTROLLING 5

controlling has to provide a planning and controlling system for determining
the aims and strategies as well as checking the achievements of the objec-
tives. Therefore, data is provided, prepared and presented. This approach
can easily be transformed into IT-Controlling. It only has to be adapted to the
specific needs of IT-Controlling [K0̈5].

Looking at the concept of IT-Controlling, there are different interpretations, de-
pending on the point of view. They have in common that IT-Controlling must be
integrated into the controlling of the entire business of the company. Therefore,
it is important to look at the IT-department not only as a part of the cost driver
but also as a part of the operation efficiency of the company.

Out of the many given possible definitions, a well-established one is that IT-
Controlling is a functional and department overlapping coordination system for
the IT division and the information science of the whole business [K0̈5].

1.2.1 Tasks and Aims of IT-Controlling

The tasks and aims of controlling in the whole company can be applied to IT-
Controlling. This also covers transparency of several domains: Transparency
of the business strategy, of the finances and of the processes for reaching
better economic efficiency. As a subsystem of the management system, it
must ensure the decision making of the management. Therefore it moderates
the management process of finding objectives, planning and supervision. It
supplies the decision-maker with data and information to assure the leadership
ability and also organizes the future-oriented reporting [K0̈5].

Also, IT-Controlling has to monitor the effectiveness and efficiency of the IT in
the company to maximize its benefits. It must be realized in a flexible man-
ner to have the possibility to react fast enough on changes. IT-Controlling
focuses on providing IT services and coordinating the usage of resources in
this department, therefore the processes and projects need to be monitored
and governed [K0̈5].

1.2.2 Strategical and operational IT-Controlling

IT-Controlling is divided into strategical and operational IT-Controlling, where
the strategical IT-Controlling deals with the increase of effectiveness, while the
operational IT-Controlling deals with increasing the efficiency. In detail, the
strategical IT-Controlling focuses on the objectives of the whole company,
without any time constraints. The core question of strategical IT-Controlling
is: ”to do the right things”. Thus IT has to support the achievement of the
business goals as a competitive factor in a strategical frame of the company.
The operational IT-Controlling has to deal efficiently with the measures of

6 CHAPTER 1. IT CONTROLLING

the strategical controlling. The core question of the operational IT-Controlling
is: ”to do the things right”. It only works within a given time frame and
looks at selected processes, information systems or cost units. The application
domains of the metrics and tools are: Profit, liquidity and productivity, either of
the entire company or of IT projects [Gad05].

The IT-Controlling has to provide the optimal contribution to the added value
of the company concerning the IT. Thus, the corporate strategy and objec-
tives must guarantee that the IT-Governance (see section 1.2.3) provides a
value-oriented focus on IT. The IT has to be understood as a supporting pro-
cess of the whole business process, where the strategical alignment of the IT-
Controlling is important. To achieve long-term objectives, the IT-Governance
must be process related and value oriented. Therefore the strategy and objec-
tives of the company are in the focus of IT-Controlling [Gad05].

1.2.3 Variants/kinds of IT-Controlling

Concerning the different tasks of IT-Controlling, three different subcategories
of IT-Controlling can be derived (see figure 1.1). These subcategories are the

Figure 1.1: The different subcategories of IT-Controlling [K0̈5]

result of a different kind of specification. First of all, IT-Controlling is needed in
those departments that perform IT-services (IT-Supply). The focus is on the
”‘production”’ of IT-services. Also, departments that are using the IT-services
need to be controlled, because there are different IT-resources which are used
in the different departments (IT-Demand). The entire organization needs a
superordinated IT-Controlling for the whole information science. To get the
IT-Supply and IT-Demand in balance, the IT-Governance is needed [K0̈5].

IT-Supply

IT-Supply deals with the supply of services and goods. The maintained ser-
vices have to be coordinated to react on the demand of the other business
units or customers. The IT-business units have to provide a supply portfolio
where they have to know which services, kind of services and sets of services

1.2. BACKGROUND OF IT-CONTROLLING 7

will be demanded. The IT-systems with the applications and the infrastructure
are also part of the IT-Supply, because the functionality, usability and opera-
tional reliability of the systems are also a part of the IT services. The task of
IT-Controlling, concerning the services, is to assist the management in ana-
lyzing the market potential, deriving the service supply, designing the service
portfolio and supporting the planning of the quantities, the costs and price
calculation. Regarding processes and projects, it is important to know the
costs and needed resources. IT-Controlling tasks concerning these aspects
are to coordinate the different processes of supply. Furthermore, additional
tools have to be supplied to delegate the processes. The performance, the
costs per unit and the process costs have to be monitored. Concerning the
IT-system, the IT-Controlling has to support the management in analyzing and
evaluating the system portfolio (which contains the application and infrastruc-
ture). Furthermore, it should help in analyzing the complexity, the functionality,
the redundancy in the system and the investment needs. Also IT-Controlling
has to consider the effectiveness of the supply, the profits and benefits settings,
the Make or Buy Decision, the fixed and indirect costs and the coordination
[K0̈5].

IT-Demand

IT-Demand deals with the usage of IT-services and IT-resources. Target of
controlling the IT-Demand is the economic effectiveness of the usage of IT-
services: The demand of IT has to be investigated, where you can distinguish
between efficiency improvement, business reengineering and business en-
abling. Efficiency can be improved by accelerating the work flow and therefore
reducing the costs. By restructuring the processes and the organization while
the output stays the same, the appliance of IT can radically change, simplify
and accelerate processes and therefore also have positive effects on costs. To
measure or to estimate the generated benefit is task of the IT-Controlling. By
business enabling, new services and products are created. The tasks here are
to evaluate the advantages of IT and to detect the caused costs [K0̈5].

IT-Governance

IT-Governance is the instance that controls the different aspects of IT-Controlling
to achieve the aims of the management: Regarding the IT-Demand and IT-
Supply, the different portfolios of service supply and demand have to be co-
ordinated to optimize the whole process and therefore coordinate and merge
these portfolios to gain an optimal overall efficiency. The controlling of the in-
formation science (data and information in the company) is superordinated to
the IT-Supply and IT-Demand. The goal is to optimize the use of IT from the
point of view of the whole company. The generated benefits must be bigger

8 CHAPTER 1. IT CONTROLLING

than the caused costs. [K0̈5].

1.2.4 Problems

It is hard to reconcile these different aspects of IT-Controlling. The different
subcategories have different kinds of performance drivers. So an instrument
is needed which manages the aspects in order to improve and support IT-
Controlling. One core idea should be to get a more transparent and flexible IT-
Controlling: The given business strategies should be monitored and controlled
to gain effectiveness and efficiency. To solve the problems of IT-Controlling
and gain an adequate performance measurement, the IT department has to
follow the strategical targets to realize the recommended IT-strategy. It has to
know which measure belongs into which subcategory of IT-Controlling or the
IT department and has to document the effects by means of measures and
performance indicators. To integrate these performance measures into the
whole process, the process needs to be standardized and centralized. IT is
part of the business and therefore needs to be monitored within this system
[RK07]. Specific concepts of ratio systems already exist; these systems often
start with a key performance indicator and then try to deduct a system of sub
performance indicators. But their construction is static and cannot be adapted
to changes, furthermore it looks only at the indicators and not at the relations
[MGB02].

Also the traditional IT-Controlling is technical and cost oriented. It measures
the technical performance and costs to help the accounting of services for
IT-systems. But with the increasing intensity of assignment of IT, more and
more tasks must be realized by the IT-Controlling. It has to include aspects like
qualitative values leading to an overall reporting system with integral operat-
ing figures. The aim is to realize a controlling which is not strictly operational
oriented. Until now, the IT-reporting is separated from the current strategical
needs of the company. The operational values are generated but cannot be in-
terpreted without any strategical reference. An uniform IT-reporting is missing:
The IT data reported from different departments are not merged. [RK07].

1.3 A Tool for IT-Controlling: The Balanced Scorecard
(BSC)

The BSC is a management tool to measure the strategic performance and goal
achievements. It was first introduced by Robert S. Kaplan and David P. Norton
in the 1990s. It can be used to keep track of the execution of activities by staff
and monitor the consequences that come along with these actions. The core
idea of the BSC is the mixture of financial and non-financial measures whose

1.3. A TOOL FOR IT-CONTROLLING: THE BALANCED SCORECARD (BSC)9

values are the operationalization of the strategy of the company. It consists of
reports for each perspective where the main metrics are used to represent the
relevant information. The ”classical” perspectives are: Financial, Customer,
Internal Business Process and Learning and Growth [KN96].

The BSC systematically helps to get a strategical oriented controlling with a
smaller focus on the short term surveillance of operational values [MGB02]
[RK07]. It helps to come along with the prior cost orientation and with the lack
of an integrated IT-reporting (see section 1.2.4). Furthermore, the BSC helps
the IT-Controlling to gain an adequate performance measurement. In detail,
the BSC has an open structure: it can flexibly be adapted to new circumstances
and changes, which was not possible with static ratio systems [MGB02].

1.3.1 The Structure of the Balanced Scorecard

The BSC is accompanied by a complex design process and reports for four
perspectives where measures have to be defined and linked.

The design process

It relies on four processes to bind short-term activities to long-term objectives.
First of all, an organization vision must be translated into values and mea-
sures. Second, the strategy must be available for everyone, therefore it must
be communicated and linked. The strategy must also be integrated into the
business and financial plans. Afterwards the results must be examined and
eventually the objectives and measures from the BSC must be modified. The
design process is shown in the following figure.

Figure 1.2: The design process of the BSC [KN96]

The first process (Translating the vision) helps managers to build their own
consensus vision and strategy. It forces the management to come to an agree-
ment on the metrics used to operationalize the visions, because the statements

10 CHAPTER 1. IT CONTROLLING

in vision and strategy must be expressed as an integrated set of objectives and
measures that describe the long-term drives of success. In the second process
(Communicating and Linking), the managers communicate their strategy up
and down the organization and link it to departmental and individual objectives.
By using the BSC, all levels of the organization understand the long-term strat-
egy. In the next process, (Business Planning), the business and financial
plans are integrated. By using BSC, the organization can coordinate the allo-
cation of resources and the setting of priorities for time, energy and resources
and therefore move towards their long term strategic objectives. In the fourth
process, (Feedback and learning), strategic learning is applied. The short-
term results from the four perspectives (see section 1.3.1) are used to optimize
the strategies by continously iterating the four processes [KN96].

Description of the perspectives

The classical BSC consists of four fundamental perspectives, as shown in the
figure below: In the financial perspective (shareholder view), the mission is to

Figure 1.3: The perspectives of the BSC [KN96]

succeed financially by delivering value to the shareholders. Therefore the util-
ity and the costs are measured. In the customer perspective (value-adding
view), the mission is to achieve the vision by delivering value to the customers.
In the internal business perspective (process based view), the mission is to
satisfy the shareholders and customers by promoting efficiency and effective-
ness of the business processes. Therefore the goods and services have to be
organized optimally. In the learning and growth perspective (future view),
the mission is to achieve the vision by sustaining the innovation and changing
capabilities through a continuous improvement and preparation for the future
challenges [MDT99]. In each of this perspective, the objectives, the measures,
the targets and the initiatives must be presented [KN96].

The cause-and-effect-relationship

The cause-and-effect-relationship helps to leverage the scorecard as a man-
agement instrument, therefore the BSC is enhanced with cause-and-effect re-

1.3. A TOOL FOR IT-CONTROLLING: THE BALANCED SCORECARD (BSC)11

lationships among the measures from each perspective. It links the strategy
to the operational measurement via a cause-and-effect-chain to keep financial
balance. The cause-and-effect relationship therefore links the objectives of the
different perspectives. E.g., it helps to improve the quality of process (which is
located in the ”internal business process” perspective) by having better qual-
ified employees (which is measured in the ”learning and growth” perspective)
[Gad05].

1.3.2 Applying the Balanced Scorecard to IT-Controlling

To make a BSC work, with respect to the extra aspects of IT-Controlling, which
is already being used in the organization, less effort for the adaption is re-
quired than expected. But introducing a BSC still requires high effort, because
it needs deep insight into the corporate processes. In some approaches, the
perspectives are augmented (e.g. [MGB02]), and in others, they are replaced
by specific ones (e.g. [GH05]) or just kept as given [RK07]. The goal of apply-
ing the BSC to work for IT-Controlling is to attain the fusion of business and IT
and thus achieve better financial results [GH05]. Therefore, a BSC can only be
introduced if employees and managers of all departments are integrated in the
process of finding performance indicators, because the long term goals and
the strategy of the whole company are relevant.

In [GH05], the concept is applied to IT functions and processes. The perspec-
tives have been matched to an IT organization. The corporate contribution
perspective evaluates the performance of the IT organization from the view
of executive management and matches best the financial perspective. The
customer orientation perspective evaluates the performance of IT as an
internal business users’ point of view and fits exactly to the customer perspec-
tive. The operational excellence perspective provides performance of the IT
processes from the perspective of the IT management (and fits to the internal
business process). The future perspective shows the readiness for future
challenges of the IT organization itself and therefore is derived from the future
and growth perspective.

In [MGB02], the traditional perspectives are augmented with the perspectives
of employees and suppliers, because these parts are crucial in IT organiza-
tions. The productive efficiency mainly depends on qualified, motivated and
engaged employees, which should be obtained and kept. Suppliers are more
important to an IT organization because IT services are delivered over long
periods [MGB02].

Another approach by [Gre00] is to use a cascade of BSC. There IT is seen as
an internal service provider. By using a cascade of BSCs, a method for busi-
ness and IT fusion is provided. To achieve this, an IT development scorecard
and an IT operational scorecard are designed and enabled for the strategic IT
BSC that links to the business BSC [HG04] [Gre00]. By fusing business and IT,

12 CHAPTER 1. IT CONTROLLING

this approach deals with the lack of missing business alignment and therefore
supports the IT-Governance. Then IT-Governance can superordinate IT-Supply
and IT-Demand by employing the business objectives of the company. By ap-
plying this approach, the IT can fully be integrated into the business process.

In [MDT99], the BSC is furthermore seen as a decision tool and the structure
is kept as given. Here the BSC is used to measure and evaluate IT activities. It
provides a framework which can be adapted to IT application projects as well
as the IT department or functional area as a whole. They paid respect to the
fact that IT typically is an internal service supplier and that IT projects are part
of IT organization. By proposing that all key measures are undertaken on an
ongoing basis, managers will know what is happening and why it is happening.

1.3.3 Possible metrics in the BSC for IT-Controlling

The metrics are presented arranged into the classical perspectives of a BSC.
Metrics can only be applied after having done the preliminary steps of introduc-
ing a BSC (see section 1.3.2). Each metric by oneself is not representative
or useful to gain any further information. However, the values of the metrics
are an evidence for the performance and target achievement if the interdepen-
dence and relationships are considered in the interpretation of the results.

Financial perspective

The financial perspective has to deal with objectives like the strategic align-
ment, the value delivery and risk management as a main concern for IT-Controlling.
The measurement challenge within this area lies in the strategic alignment, be-
cause it is an overall-metric. It can be measured by a quick self-assessment
of at least ten senior managers, where they have to determine how important
a particular governance outcome is and how well it is contributed to meet the
outcome for IT-Controlling. This outcome should include the cost-effectiveness
of IT, effectiveness of IT for growth, effectiveness of IT for asset utilization and
effectiveness of IT for business flexibility. Based on these scores, a weighted
performance can be calculated [GH05].

Another popular financial metric is the IT budget, which either is expressed as
a percentage of sales turnover or as a percentage of total expenses [MDT99].
Other well-known measures are the percentage of sales volume of new prod-
ucts and the contribution to profit [MGB02]. These metrics are old-fashioned
and should be teamed with newer approaches to get a better understanding of
the work flow and relations between the numbers that are used in the score-
card. To get further information about the cost control beyond the IT budget,
the allocation of different budget items, like the IT expenses per employee, can
be regarded [MGB02].

1.3. A TOOL FOR IT-CONTROLLING: THE BALANCED SCORECARD (BSC)13

In detail, value is a much broader concept than benefits. Value is generated
by providing more or faster information to an employee or through acceler-
ating the workflow. It can be measured indirectly (see section 1.3.1) in the
marketing and sales performance. Values mostly imply risk, thus the scor-
ing technique attributes value and risk categories to certain scores. Possible
measures for risk are: (unsuccessful) business/IT strategy risk, definitional
uncertainty (low degree of project specification), technological risk (hardware
and software), development risk (inability to put the pieces together), opera-
tional risk (resistance to change) and human / computer interface difficulties
(IT service delivery risk) [MDT99].

Another useful measurement is the project portfolio control. It focuses on the
costs of time to market to spend costs and resources on projects where the
costs of time to market are the best. The same pattern is applied when bench-
marking project proposal as risk assessment filter. Here the projects are fil-
tered out that have a higher degree of risk in the project estimate [Vog08].

Customers

An IT end-user may be an internal customer or a customer in other companies.
Objectives like attracting new customers and satisfying existing customers are
common objectives in that perspective, where satisfying is more important than
building up market share or acquiring new customers. Therefore, it is critical
to monitor customer satisfaction. The company should focus on being the
preferred supplier, establishing and maintaining a relationship with the users
and satisfying end-users needs [MDT99]. The following metrics can be used
to gain information about these objectives: The product and service proper-
ties, the customer relationship, the image and reputation, the project status
from the customers’ point of view, the lost offers, the customer satisfaction, the
customer loyalty, the customer profitability, the share of the market, the major
project scores and the achievement of the targeted unit costs to get competi-
tive costs [MGB02] [GH05].

Some of these metrics are hard to measure by hard facts and cannot be gener-
ated out of the given data in the information system. To get a qualitatively sat-
isfying overview about the current state of the customers’ perspective, a broad
cross-section of end-users should be surveyed periodically using quantitative
methods. Additionally, semi-structured interviews can be done for deeper in-
sights. The results from the surveys should be treated with care, because
these are subjective measures, in contrast to the other objective measures
that should be a part of a BSC, because these are generated out of system
usage data [MDT99].

14 CHAPTER 1. IT CONTROLLING

Internal Business Processes

The objectives concerning the internal business process deal with develop-
ment and operational processes and the process maturity [GH05]. A goal
should be to deliver high quality services to the users at the lowest possible
cost, therefore the processes should be managed in a cost efficient manner.
Efficiency should be monitored by time but also compared to averages of the
industry standards [MDT99]. These can be reached by applying an effective
change management.

To validate the quality of processes, the ”Capability Maturity Model Integration”
(CMMI) can be used. It helps to optimize processes by defining a concrete tar-
get for improvement and linking the organization’s activities with the business
objectives. By providing a deeper insight into the processes, processes can
be understood, improved and analyzed. The performance of processes can
be improved by defining more effective processes. Also the CMMI provides
the monitoring and controlling of processes to initiate corrective actions when
necessary [MBC03].

To keep processes straight and clean, especially to reach quality services,
the complexity of the applications can be taken into account to measure. But
here a lack of reliable size and complexity metrics has contributed to difficul-
ties in setting and adhering to project budgets and schedules [MDT99]. The
used metrics deal with operational issues and have less impact on the strategy.
Metrics like function points are useful to overcome these difficulties and enable
the evaluation of software programming productivity. This metric measures the
software size based on structured evaluation of user requirements and is inde-
pendent of language or development methodology and tools. It measures the
number of inputs, outputs, inquiries and files used in an application [MDT99].
This metric helps to normalize and therefore provides the possibility to com-
pare quality of services [Vog08].

Another metric regarding quality is the Service Level. The Service Level is a
method to achieve transparency about on which level the service is delivered
to the inquirer. Aspects that are taken into account for the levels are qual-
ity and time. This helps to deal with the available maintenance capacity over
the different elements and is often neglected in comparing the amount of staff
needed to support and maintain different parts of applications in the portfo-
lio. The costs differ depending on the needed service level. To handle the
metric, costs for maintenance and support must be weighted to the cost of an
application becoming unavailable. But the usage of metrics of that kind needs
discipline: costs and working time must be registered throughout the entire
process [Vog08]. Furthermore, the company must know the demand for the
different services and on which level these services can be provided. Knowing
this the company has a better position to decide what services to provide and
what resources are needed to meet particular levels of the service demand
[MDT99].

1.4. DISCUSSION 15

Learning and Growth

The ability of IT to deliver quality services and to lead new technology assimi-
lation efforts in the future will depend on the preparations that are made today
and tomorrow. In-house specialists should be provided by continually enhanc-
ing the skills of IT personnel to take advantage of technological advances and
to gain a thorough understanding of emerging technologies. With innovation
and learning efforts, the competence levels can raise and then improve busi-
ness performance in the future.

The objective of the Learning and Growth perspective deals with the future
readiness of the IT business. Since the skills of IT specialists must be focused
on preparing them for potential changes and challenges in the future, the need
emerges to provide metrics for measuring the IT specialist capabilities with
regard to future developments.

To measure the IT specialist capabilities, the following metrics are appropriate:
IT training and development budget as a percentage of the overall IT budget,
expertise with specific existing technologies, expertise with specific emerging
technologies, age distribution of IT staff, perceived satisfaction of IT employ-
ees. Metrics that measure the satisfaction and future readiness of employees
are: participation in the employee magazine, ideas depending on further ed-
ucational courses, number or growth of suggestions for improvement, volume
of bonuses, certificates, team ability, work experience, period of employment,
satisfaction of employees, productivity, labor turnover rate and volume of ex-
ternal service days. To measure the technological part of future readiness, the
age distribution of portfolios, platform distribution, technical performance and
users’ satisfaction with applications can be taken into account. To measure the
research into emerging technologies, the IT research budget can be used as a
percentage of the overall IT budget. The perceived satisfaction of top manage-
ment with the reporting on how specific emerging technologies may or may not
be applicable to the company is useful as a metric too [MDT99] [MGB02].

1.4 Discussion

Numerous approaches like to see BSCs as a perfect solution for utilizing the
power of IT to generate benefits, rather than just looking at it as a required part
to do business as usual. But people have to deal with the greater importance
of IT for the business process. However, it is rarely mentioned that the BSC is
only an instrument to measure performance. It cannot provide a real alignment
mechanism[HG05]. It still must be regarded that the BSC is a tool.

The designing and implementing of the BSC must be done with much care.
The formulated objectives that are transferred into the perspectives during the

16 CHAPTER 1. IT CONTROLLING

design process must be chosen carefully, because they will be realized in the
whole BSC and are therefore important for all areas of the company and not
only for the IT-units. It is important but difficult to get the right metrics and the
right perspectives of each company into the BSC. A wrongly used BSC might
lead to crucial misinterpretation and less benefit than an ordinary small per-
formance measurement system would do. Therefore, by defining metrics for
the different perspectives of the BSC, it has to be checked whether the metric
is covering the operational measures of the objectives and which assumptions
are implicitly included in the choice of metric.

Furthermore, it has to be checked if it is possible to generate the values out of
the given information system. The values have to be adapted to the given data
and these changes have to be appropriate for the organization.

1.5 Conclusion

The BSC is an instrument to support the IT-Controlling process. It helps an
organization to change their focus of IT-Controlling from operational views to
strategical alignment. The BSC is not only an instrument for the IT division
of the company, but also for the entire core functions. It provides a future
oriented view on different metrics by applying additional perspectives to the
financial (past-oriented) view. It also shows dependencies and relationships
by applying the overview. This way, the alignment of the IT-Controlling with the
overall business strategy is achieved. The BSC can help to change the view
on IT of the managers of the company from costs to benefit. However, it is
important that the right metrics and the right perspectives of each company
are included into the BSC.

1.6 Outlook

Concerning IT and IT-Controlling, different variants of the BSC are already de-
signed and implemented ([MGB02] [MDT99] [HG05]), where the basic ideas
are already provided. With focus on the perspectives and the different kinds of
metrics, it can be stated that the process is not finished. It is hard to measure IT
with its processes, projects and applications, because of the heterogeneity in
this sector. To solve these aspects and to continue the process of involving the
IT more and more into the strategical alignment of the business, IT-Controlling
and management must get closer. The management has to define the ob-
jectives, the controlling has to coordinate and measure the achievement and
the IT has to meet the expectation of the business. To accomplish a proper
alignment, an intermediate role should be included into the process of imple-
menting the BSC and defining metrics. This role should neither be part of the

BIBLIOGRAPHY 17

IT department nor of the controlling, but should know both departments with
deep insight. It could provide benefit for all involved units. Because of the deep
knowledge of both parties, the best fitting metrics can be applied without dis-
regarding the IT needs. By fully providing IT needs and using the right metrics,
the BSC will work well for the purposes of business. But this approach adds
more complexity to the process and thus must be regarded carefully. It must
be weighted how much benefit will be generated by applying an additional role.

Bibliography

[Gad05] A. Gadatsch. IT-Controlling realisieren, Praxiswissen für IT-
Controller, CIOs und IT-Verantwortliche. Vieweg, 2005.

[GH05] W. Van Grembergen and S. De Haes. Measuring and improving it
governance through the balanced scorecard. Information Systems
ControlJournal, 2005.

[Gre00] W. Van Grembergen. The balanced scorecard and it governance.
IGI Publishing, 2000.

[HG04] S. De Haes and W. Van Grembergen. It governance and its mecha-
nisms. Information Systems Control Journal, 2004.

[HG05] S. De Haes and W. Van Grembergen. It governance structures, pro-
cesses and relational mechanisms: Achieving it/business alignment
in a major belgian financial group. IEEE Computer Society, 2005.

[K0̈5] M. Kütz. IT-controlling für die Praxis: Konzeption und Methoden.
dpunkt.verlag, 2005.

[KN96] R. S. Kaplan and D. P. Norton. Using the balanced scorecard as a
strategic management system. Harvard Business Review, 1996.

[MBC03] S. Shrum M. B. Chrissis, M. Konrad. CMMI: guidelines for process
integration and product improvement. Addison-Wesley Longman,
2003.

[MDT99] M. Martinsons, R. Davison, and D. Tse. The balanced scorecard:
a foundation for the strategic management of information systems.
Decision Support Systems, 25(1), 1999.

[MGB02] R. Blomer M. G. Bernhard. Report. Balanced Scorecard in der IT.
Praxisbeispiele - Methoden - Umsetzung. Symposion, 2002.

[RK07] H. Schröder R. Kersten, A. Müller. IT-Controlling, Messung und
Steuerung des Wertbeitrags der IT. Vahlen, 2007.

[Vog08] F W. Vogelezang. Portfolio control — when the numbers really count.
Springer-Verlag, 2008.

18 CHAPTER 1. IT CONTROLLING

Chapter 2

Software Process Improvement

Daniel Heidchen

Contents
2.1 Introduction . 20

2.1.1 CMMI . 20
2.1.2 IDEAL . 21
2.1.3 SPI Implementation Framework (SPI-IF) 21
2.1.4 Overview . 22

2.2 Success Measurement Approaches 22
2.2.1 An Empirical Investigation of the Key Factors for Suc-

cess in Software Process Improvement 22
2.2.2 A framework for assisting the design of effective soft-

ware process improvement implementation strategies 26
2.2.3 Modeling the Likelihood of Software Process Improve-

ment: An Exploratory Study 28
2.2.4 A framework for evaluation and prediction of software

process improvement success 30
2.3 Discussion . 31

2.3.1 Compare of the Factors 31
2.3.2 Compare of the Methods 32

2.4 Conclusion . 32
Bibliography . 32

19

20 CHAPTER 2. SOFTWARE PROCESS IMPROVEMENT

Abstract: The software development process is one of the major compo-
nents of software development. However, the success of a software project
hardly depends on the develpoment process and how these development pro-
cess should be imtroduced and optimized. This is the task of SPI. In recent
years, this subject has already been carried out in many investigations. A
selection of these investigations will be presented here.

2.1 Introduction

Software projects can be influenced by a large number of risks. Some of them
are overtime, overrun the budget, misunderstand the customers wish, pursue
the wrong goals or totally fail without achieving anything. Software process im-
provement (SPI) is performed by many organizations to enhance the process
of software creation by using systematic and structured methods and models.
Without a thorough investigation of the reasons for success of SPI, the most
discussions and opinions are based on experience or other subjective know-
how. All new ideas and discussions about SPI are useless if they aren’t base
on provable quantitative models. So the measurement becomes an important
part of the research to approve new approaches.

2.1.1 CMMI

The Capability Maturity Model Integration (CMMI) is an important approach in
software process improvement. It was developed by the Software Engineering
Institute (SEI). CMMI defines needs and requirements for a SPI and it pro-
vides organizations with approved practices, to increase their performance in
processes at development, services or acquisition.

For each of the scopes of development, acquisition and services one CMMI
model is defined (CMMI-DEV, CMMI-ACQ, CMMISVC). It also provides a so
called appraisal, that allows the organization to determine their abilities. That
means it can be determined how strong the organization processes belong
to the CMMI best practices. For appraisal purpose the CMMI defines two
approaches. The first approach is the capability level. With this level each
process area can be rated. The second approach is the maturity level. This
approach appraises the process maturity of the organization.

The deficiency of CMMI is that it does not define any guidance as to imple-
ment the various practices. But there are others that describe the detailed
improvement of SPI.

In the past the researchers were concentrated on the software processes that
they wanted to improve. They described methods how to analyze the exist-
ing software processes and give advice what to change. This kind of SPI

2.1. INTRODUCTION 21

approaches is characterized with the ”what”. Nowadays the researchers dis-
covered that this is not enough in most cases, so some new approaches were
made that concentrate on the ”how”. That means how to implement the pro-
cess improvement.

In the following sections two models are presented that guide the SPI process.

2.1.2 IDEAL

The IDEAL model is an approach to implement a software process improve-
ment. It was designed by Software Engineering Institute (SEI) which also cre-
ated CMM/CMMI. The purpose of IDEAL model is to instruct the practitioner
how to introduce a new software process improvement. The IDEAL model
bases on phases consisting of activities that are listed below:

• Initiating: Stimulus for Improvement. Set Context and Establish Sponsor-
ship.

• Diagnosing: Establish Improvement Infrastructure. Appraise current prac-
tice. Develop recommendations and document results.

• Establishing: Set Strategy and priorities. Establish action teams, plan
actions.

• Acting: Define processes and measure. Plan execute pilots. Plan, exe-
cute and track installation.

• Learning: Revise organizational approach. Document and analyze les-
son.

2.1.3 SPI Implementation Framework (SPI-IF)

M. Niazi et al. constructed a SPI implementation framework (SPI-IF), which
supports practitioners in implementing a SPI. This SPI-IF is a phase-by-phase
approach [NWZ05]. In the different phases are different steps carried out to
find the appropriate models and methods that can be implemented 2.1. There
for the so called factor component analysis the critical success factors and crit-
ical barriers. At next, the assessment component checks if the requirements
for SPI are given. At least, the implementation component develops a model to
assist the practitioner by the SPI implementation. The assessments are based
on key factors and the method, which is used to identify these will be discussed
in a further section.

22 CHAPTER 2. SOFTWARE PROCESS IMPROVEMENT

Figure 2.1: Software process improvement implementation framework

2.1.4 Overview

In the next sections, different approaches are described which investigate the
success of SPI. All these approaches are based on the evaluations of inter-
views. But they differ in the nature of the methods used for evaluation. Then a
discussion of the approaches will take place.

2.2 Success Measurement Approaches

In the literature some different approaches can be found that try to measure
the success of a software process improvement. The approaches presented
here are mostly based on key factors.

2.2.1 An Empirical Investigation of the Key Factors for Success
in Software Process Improvement

Tore Dyba discussed in his paper a full statistical analysis of an empirical sur-
vey of a model that predicts the success of software process improvement
[Dyb05]. This model mainly depends on 6 independent variables: the key
factors for success. The dependent variable ”SPI Success” is the average of
the ”perceived level of success” and the ”organizational performance”. There
are two moderating varibales: The environmental conditions and the organiza-
tional size. An overview of the model is shown in the figure 2.2.

It follows a detailed description of the independent variables:

• Business Orientation: The SPI program must be well defined and in the
alignment to the business objectives.

2.2. SUCCESS MEASUREMENT APPROACHES 23

Figure 2.2: Model of the dependences

• Involved Leadership: Leadership is required to create a ”vision” and to
be responsible.

• Employee Participation: Employees must also accept the importance of
the SPI and be familiar with the methods.

• Concern for measurement: Measurement means the understand the
model and also to have the capability to control, monitor and predict its
behavior.

• Exploitation of existing knowledge (Learning Strategy): With each com-
pleted project, the organization gets more experience.

• Exploration of new knowledge (Learning Strategy): To achieve benefit for
advantages of innovations its necessary to produce new knowledge by
research or training.

Reliability and Validation

To test the reliability of the data the Cronbach’s alpha [Cro51] method was
used. This coefficient is a measure used in the multivariate statistic to describe
how well a set of variables measures a single latent construct. Good reliability
is achieved by a α-value of above 0.7. The figure 2.3 show that all values are
over 0.78. So a good reliability is assumed.

Relationships between variables

To answer the question of whether there is a correlation between the indepen-
dent variables, bivarianet correlations between each of them were calculated.
The results are shown in figure 2.4. All the variables are highly correlated, ex-
cept for the exploitation of knowledge with the business orientation, because a

24 CHAPTER 2. SOFTWARE PROCESS IMPROVEMENT

Figure 2.3: Reliability Analysis

correlation coefficient of 0.17, with p < 0, 05 doesn’t predict good dependence
of each other.

Figure 2.4: Individual Relationships

The next question was whether there is a connection between each key fac-
tor and the success of SPI. For each of the six key factors, the hypothesis is
established: SPI success is positively associated with the key factor. Again
zero-order bivariante correlations (r) are calculated to prove the hypothesis.
Also partial correlations (pr) are used to show the influence of the contextual
vaiables (which are environment and organization size). The correlation coef-
ficients r and p can assume values in the range from -1 to 1. The larger the
absolute value is, the stronger the linieare correlation is. The results are shown
in figure 2.5. So the factors have a good correlation with the success. Neither
the results of the zero-order correlation nor the results of the partial correlation
to have a large variety in their values. Thus, the bivariante correlation tests
support the six hypothesis.

2.2. SUCCESS MEASUREMENT APPROACHES 25

Figure 2.5: Test Hypotheses

Overall Relationships

Cohen’s effective size is defined as f2 = R2

1−R2 where (R2) is the squared
multiple correlation [Coh88]. Some transformations according to Fisher r-to-Z
are necessary [Kon88]. The results of the test statistic are show in figure 2.6.

Figure 2.6: Overall Relationship

The analysis show that the SPI success has a positively associated orientation
with the a key factors Business Orientation, Employee Participation, Concern
for measurement, and Exploitation of existing knowledge, because statistical
test results of B are higher than 0.51.

The analysis revealed that the key factors ”involved leadership” and ”explo-
ration of new knowledge” did not have a positively associated orientation with
the SPI success, because statistical test results of B are lower than 0.51.

26 CHAPTER 2. SOFTWARE PROCESS IMPROVEMENT

In summary one can say that the analysis of the factors was very detailed. But
there was no procedure specified with which one can conduct an audit of a SPI
initiative.

2.2.2 A framework for assisting the design of effective software
process improvement implementation strategies

The SPI-IF, that was developed by Miazzi see. Section 2.1.3 is based on key
factors. For this research a survey was taken to collect some data for an empir-
ical analysis. First, literature was searched to identify the key factors that are
described by other researchers. This approach was objective, but to reduce
the researcher’s bias this work was taken by a person that wasn’t familiar with
this topic. Secondly twenty-nine software organizations were examined. Then
the transcripts of the interviews were used to identify major themes. Than the
themes were grouped into categories. If one of the categories was mentioned
in more than 30 percent of the interviews and has a positive alignment with the
SPI success it becomes a critical success factor. Negative aligning categories
become critical boundaries.

The key factors are divided in the categories: critical success factors (CSF)
and critical bariers. The CSF that were found during the categorization pro-
cess are: Senior management commitment, SPI awareness, staff involve-
ment, experienced staff, defined SPI implementation methodology, reviews,
training and mentoring, staff time and resources, creating process and ac-
tion teams/external agents. The CB that were found during the categorization
process are: organizational politics, lack of support, lack of resources, inexpe-
rienced staff/lack of knowledge and time pressure.

Implementation maturity model

Based on this CSF and CB an implementation maturity model (IMM) is devel-
oped to assess the maturity state of the SPI implementation. The IMM is an
adaption of the CMMI. It’s structure bases on the three dimensions: Maturity
stage dimension, CSF & CB dimensions and Assessment dimension.

The IMM maturity stage dimension defines four levels see figure 2.7. This lev-
els are adoptions of maturity levels of the CMMI. Initially the first level is directly
assigned without and adaption. At the second level comes the awareness. In
59% of the critical success factors the awareness is mentioned as one of the
important parts of SPI. It is clear the all practitioner should be fully understand
the benefits of SPI. Level 3 and 4 are emerged form the CMMI levels 3 and 5.
The residual level 2 and 4 of CMMI are not adapted.

At CMMI for each maturity level a set of process areas (PA) is assigned. In the

2.2. SUCCESS MEASUREMENT APPROACHES 27

Figure 2.7: Maturity stage dimensions

IMM model this PAs are replaced by CSFs. So groups of CSFs and CBs are
build and attached to the maturity stages.

• Awareness: Senior management commitment, training and mentoring,
staff involvement, awareness of SPI

• Organizational: Creating process action teams, experienced staff, staff
time and resources, formal methodology

• Support: Reviews

Finally, the assessment is carried out. In this dimension each CSFs and CBs
are evaluated to assess maturity stage. All practices of a CSF or a CB are
evaluated with an assessment instrument developed by Motorola [Das94].

• The three-dimensional score of the assessment is calculated.

• The components of the score are summed up and divided by three.

• Calculate average of all practices. That is the score of the CSF.

• If the CSF or CB score is higher than 7 the factor has been correct im-
plemented.

• To reach a certain maturity level all CSF and CB must have an average
score higher than 7.

This approach to predict SPI success is based on a maturity model. In align-
ment with the maturity stage the quality of the improvement process increases
and the risk sinks.

28 CHAPTER 2. SOFTWARE PROCESS IMPROVEMENT

2.2.3 Modeling the Likelihood of Software Process Improvement:
An Exploratory Study

El-Emam, et al. had conducted a re-analysis of two studies to examine the
influence of specific factors on the success of SPI [EEGJJ01]. These studies
were limited to the bivariant analysis of key factors. Interactions between these
factors were not considered. In his study, a multivariate analysis was carried
out, to develop a model, that can predict the success of a SPI effort.

Model

The model assumes that there are two classes of independent variables 2.8.
The first class contains fourteen organizational factors (ORG[i]). These fac-
tors describe the organization in which the SPI takes place. The response
categories of the questions of these factors were ”Substantial”, ”Moderate”,
”Some” and ”Littlie if Any”. In the second class four process factors (PROC[i])
were comprised. Process factors refer directly to the examined SPI process
and has the response categories of ”yes” and ”no”.

Figure 2.8: Model of SPI success and factors

Principal components analysis (PCA)

One assumption of this study was that some of these variables are measuring
the same entity. For this analysis, principal component analysis (PCA) was
used [KM78]. It is a technique of the multivariate statistics that simplify large
data sets by reducing many statically variables to few linear combination. In
other words, the method combines factors that have a value higher than a
special cutoff-value to a new one. A value of 0.63 is chosen as a cutoff point
[Com73]. The cutoff emerge groups that are marked on the figure 2.9.

This emerged factors are summed up and interpreted as composite variables:

• Commitment: This factor measures how strong the SPI is funded and
how much the management is involved.

2.2. SUCCESS MEASUREMENT APPROACHES 29

Figure 2.9: Principal components analysts results

• Turnover: The extent of this variable describes the turnover of the middle
management and the technical levels.

• Politics: All politically motivated activities that inhibit the SPI process are
related to this factor.

• Respect: This factor show how much the people who are involved in the
SPI initiative, are respected for their technical skills.

• Focus: The focus factor describes nearly the same as the turnover factor
but not on the employee level but rather on the senior management level.

Classification and Regression Trees (CART)

In this subsection, the probability of the success of a SPI initiative will be de-
rived with help of a ”classification and regression tree”. The classification and
regression tree is a method to create a binary tree that can be used to classify
data or to derive a probability of data. But the correctness of the results of the
classification or the derivation depends on an propability. To construct the tree
the CART algorithm is used [BFOS84]. The algorithm uses the variables from
the previous section for the nodes of the tree. At the beginning of the algorithm
a large tree is created and then it is pruned from the bottom up. A splitting
algorithm is used to decide on which independent variable to split and where
to split. For the splitting criterion the Gini measure was used [BFOS84]. The
resulting tree is shown in figure 2.10.

The assessment of the success of a SPI initiative can be derived from this
tree. We giving an example: first of all die factors ”focus”, ”commitment” and
”politics” should be assessed by an expert in SPI. Than the tree of traversed
form the root to the terminal nodes depending on the conditions on each node.

30 CHAPTER 2. SOFTWARE PROCESS IMPROVEMENT

Figure 2.10: Classification and Regression Trees (CART) result

At last the prediction of success is given by the reached terminal node. A ter-
minal node that has the values (1, 100%) predict a success of 100%. However,
it must be noted that in our case the probability to get the correct classification
with this model is 50% and 76%.

2.2.4 A framework for evaluation and prediction of software pro-
cess improvement success

In this study Wilson D. et al. constructed a framework to predict the success
of a SPI initiative. This framework bases on a framework [JB93], which was
designed to measure a software metric program.

For the adaptation, the framework’s four perspectives have been adjusted.
Each perspective were determined by factors which were defined by question.
The perspectives and their scope are listed below:

• Context (C): business goals and senior management.

• Input (I): resources, persons respect and number of people.

• – Process motivation (PM): promotion of the SPI initiative.

– Process responsibility (PR): responsibility and independence of the
SPI team.

– Process improvement (PI): initialization of SPI determination of ob-
jective.

2.3. DISCUSSION 31

– Process training (PT): training in SPI, awareness of the business
processes.

• Products (P): Results and feedback.

For all these perspectives questions were prepared that will be rated within a
survey. The responses has been divided according as whether the software
organization has success or unsuccess in the SPI implementation. The cal-
culated average of a response is assigned to a factor. After this, factors have
been examined concerning their significance. These factors were determined,
which values had a big difference between the response of the successful
companies and the unsuccessful companies. Then the Tuky test [Tuk59] was
conducted to prove if there is a significance difference. For these significant
factors, hypotheses were made and investigated regarding their particular im-
portance for the success.

As the result, four critical factors have been found: (C6) Was senior manage-
ment commitment available? (I2) Was SPI program staffed by highly respected
people? (PI1) Were the important initial processes to be improved defined?
(PI3) Were capabilities provided for users to explain events and phenomena
associated with the program?

2.3 Discussion

In this discussion, the four different publications were presents, which investi-
gated the success of SPI. On the development of the various models presented
in this paper correct statistical methods were used. But the input data for this
were collected by interpreting some means of subjective questions. Thus, a
special term may not only have different meanings, but also be assigned dif-
ferent strength. We must keep watch that the subjective bias remains within
the tolerances. Significant advantages and disadvantages will be show.

2.3.1 Compare of the Factors

All approaches that has been examined, explore the success of SPI in depen-
dence of the key factors. The key factors that were found mostly describe the
same properties: Senior management commitment, experience of the staff,
clear and structured goals. An advantage of all this approaches is that they
reduces the critical success factors strongly and a clear number of them re-
mains.

32 CHAPTER 2. SOFTWARE PROCESS IMPROVEMENT

2.3.2 Compare of the Methods

The strategy of all the approaches was it to carry out a survey on software
companies which have experience with SPI. Most of the approaches use dif-
ferent methods to categorize the factors into groups. Than other methods were
used to determine their relationship to the success.

In my opinion the approache of Miazzi in section 2.2.2 has the best method
to identify the key factors, because in this approache the garthering is based
on the results of the survey. All other methods are defining some key factors
previously.

The assessment has also different approaches. In section 2.2.2 the result of
the assessment is a mandatury level. The advantages of this are that are
clearly defined levels and the properties which were assosiated it. So the
assessor can appraise the caracteristics of the SPI initiative. The evaluation
described in section 2.2.3 only gives a propability of the success and there are
no conclusion about the scopes that have to be improved.

2.4 Conclusion

In this paper four different approaches to determining the success of SPI have
been presented. Most of them focused on the identification and analysis of
so-called key-factors. To this purpose, surveys were carried out in software
organizations. Based on the experience of the software process managers
or other responsible persons, they have answered the questions. The eval-
uation of the success was made on different ways. One uses a mandatory
model to qualify the SPI initiative other approaches predict the probability of
the success.

Bibliography

[BFOS84] L Breiman, J Friedman, R Olshen, and C Stone. Classifcation and
Regression Trees. Wadsworth and Brooks Cole. 1984.

[Coh88] J. Cohen. Statistical Power Analysis for the Behavioral Sciences.
New Jersey: Laurence Erlbaum, 1988.

[Com73] A Comrey. A First Course on Factor Analysis. Academic Press,
1973.

[Cro51] L Cronbach. Coefficient alpha and the internal structure of tests.
Psychometrika, 16(3):297–334, 1951.

BIBLIOGRAPHY 33

[Das94] M K Daskalantonakis. Achieving higher SEI levels. IEEE Software,
11(4):17–24, 1994.

[Dyb05] Tore Dyba. An Empirical Investigation of the Key Factors for Suc-
cess in Software Process Improvement. IEEE Transactions on
Software Engineering, 31(5), 2005.

[EEGJJ01] K. El-Emam, D. Goldenson, McMurley J., and Herbsleb J. Mod-
elling the Likelihood of Software Process Improvement: An Ex-
ploratory Study. 2001.

[JB93] R. Jeffery and M. Berry. A framework for evaluation and prediction
of metrics program success. First International Software Metrics
Symposiom, pages 28–38, 1993.

[KM78] J. Kim and C. Mueller. Factor Analysis: Statistical Methods and
Practical Issues. 1978.

[Kon88] S. Konishi. Normalizing Transformations of some Statistics in Mul-
tivariate Analysis. Biometrika, 68(3):647–651, 1988.

[NWZ05] M Niazi, D Wilson, and D Zowghi. A framework for assisting
the design of effective software process improvement implementa-
tion strategies. Journal of Systems and Software, 78(2):204–222,
2005.

[Tuk59] J. Tukey. A quick, compact, tow-sample test to Duckworth’s speci-
fications. Technometrics, (1):31–48, 1959.

34 CHAPTER 2. SOFTWARE PROCESS IMPROVEMENT

Chapter 3

Metric Maturity Model

Carlos Gomez

Contents
3.1 Introduction . 36
3.2 Concepts related with Process Maturity 36

3.2.1 Process Capability, Process Performance and Pro-
cess maturity . 37

3.2.2 Organization Maturity 38
3.2.3 Critical Success factors and Critical Barriers 38
3.2.4 Maturity Model . 38

3.3 Known Maturity models for the development process 39
3.3.1 CMMI . 39
3.3.2 SPICE . 40

3.4 Maturity Model for Software Process Improvement 41
3.4.1 Implementation Framework for Effective SPI imple-

mentation . 42
3.5 Maturity Models for Measurement programs 44

3.5.1 Critical Success Factors and Critical Barriers in the
Measurement programs implementation 45

3.5.2 M-CMM . 45
3.5.3 Daskalantonakis’s method for assessing the software

measurement process 46
3.6 Discussion . 48
Bibliography . 49

35

36 CHAPTER 3. METRIC MATURITY MODEL

Abstract: Measurement is one of the most important activities in software
process improvement because it provides an indicator for the process im-
provement. But measurement is also a process and it can be and should be
also improved. In this document are presented some models from the litera-
ture that can help in assessing the maturity of certain process and to improve
it.

3.1 Introduction

Software process improvement is one of the most challenging activities within
an organization and implies hard work in order to perform such improvements.
Some standards and model have been developed to aim in this task e.g the
Capability Maturity Model Integrated (CMMI) and SPICE. The appropriated im-
plementation of software process improvements depends on the maturity that
an organization possesses for performing this activity. This maturity, as it will
be seen later, can also be assessed. Measurement process plays a big role in
the improvement of software processes providing a reference to compare the
performance between software process implementations. But as name says,
Measurement is also a process and has to be introduced into the organiza-
tions, and then it should be assessed and improved.
Models like CMMI and SPICE were developed for the assessment and im-
provement of the software development process, although they also contem-
plate the measurement process, they do not provide a specific model in order
to assess its maturity. Some questions like, what are factors that affect the
good implementation of measurements? or how do we assess the measure-
ment process? or how is the measurement improved? are going to be covered
within this document.
This document present in the section 2 some concepts related with process
maturity in order to provide a background. After that in section 3 maturity mod-
els for the software development process are described in order to understand
how is build such a model and because other models are based on them. In
section 4 the importance of the software process improvement is explained
through the presentation of a framework that aims to implement and assess
the SPI in the organization. At section 5 two models for the assessment and
improvement of the measurement process are shown. Finally in section 6 a
conclusion is given where some aspects presented in the document are dis-
cussed.

3.2 Concepts related with Process Maturity

It is common to hear about maturity process or capability of a process but what
does it really means? In this section are described some concepts related with

3.2. CONCEPTS RELATED WITH PROCESS MATURITY 37

maturity and capability into an organization context as well as the importance
of those concepts in the software processes.

3.2.1 Process Capability, Process Performance and Process ma-
turity

The application of the definitions maturity and capability for software processes
has been made by [PWCC95], resulting the following concepts.

Software Process Capability

Capability means the ability to do something. When it is applied to a software
process, it is possible to say that the capability of a software process describe
the range of expected results that can be achieved by following a software pro-
cess. The software process capability of an organization provides one means
to know which abilities a process possess while developing software, helping to
predict the most likely outcomes to be expected from the next software project
into the organization.

Software Process Performance

Another concept related to the software process is performance. The perfor-
mance of a software process is defined by the actual results that have been
achieved following this process. The difference between capability and per-
formance of a process is that process performance focus on already achieved
results and process capability on results expected.

Software Process Maturity

The maturity of software process is a relation to which a specific process is
explicitly defined, managed, measured, controlled and effective. The maturity
of a process indicates both the richness of an organization’s software process
and the consistency with it is applied in projects throughout the organization.
The capability of a process indicates the achievement that can be expected
applying the process, and the better a process defined, managed measure
and controlled is, the more capable it is. Therefore the maturity of a process
implies a potential for growth in capability.

38 CHAPTER 3. METRIC MATURITY MODEL

3.2.2 Organization Maturity

In order to understand in what consists the maturity of an organization, here
are defined the characteristics that distinguish a mature organization from an
immature one. A immature organization is the one in which the software pro-
cesses is normally not defined, everything is doing by improvisation during the
course of the project or sometimes even if a software process has been spec-
ified, it is not rigorously followed or enforced. These organizations normally
exceed schedules and budgets because they estimate just to win the project
but with unrealistic deadlines and resources.
In the other hand there exist the mature organization which has better pro-
cess definition, properly documented, usable, and consistent with the work
that actually is being performed. In contrast to an immature organization, a
mature organization possesses the ability to manage software development
and maintenance. The improvement of the process definitions are made when
it is required and through controlled pilot-test and/or cost effective analysis
[PWCC95].

3.2.3 Critical Success factors and Critical Barriers

The success factors are defined as the key areas of activity in which favorable
results will be necessary in order to reach goals. In other words, success fac-
tors are the variables that will most affect the success or failure in the pursuit
of a goal [BR81].
There are for every branch in the industry success factors; those have to be
identified and the organizations should focus its attention on them because
they make the difference between success and failure.
After the identification of the success factors, these can be used to aid in the
company’s planning process, to enhance communication within the organiza-
tion’s management and to support the system’s development.
At the same time in the implementation of a process there are negative factors
known as critical barriers. On critical barriers the organization must also focus
its attention because they are the principal variables that could stop a well pro-
cess implementation and therefore it is important to identify them in order to
avoid or minimize its effects.

3.2.4 Maturity Model

With the intention to improve the development implementation process, some
maturity models have been developed, like CMMI or SPICE. These models
are described in section 3. It is important to know what is the purpose of a
maturity model in order to understand for what it can be used and to avoid

3.3. KNOWN MATURITY MODELS FOR THE DEVELOPMENT PROCESS39

some misunderstandings.
A maturity model has to be seen as a tool that help to assess the maturity
of a process and to improve it through a well define series of best practices
that when correctly follow will result in many benefits within the organization
processes.
A maturity model normally presents the activities that have to be made in order
to improve a process but do not show how to implement them. Therefore when
an organization adopts a maturity model it means not that its productivity will
be double instantaneously, a maturity model require hard work in order to be
implemented.

3.3 Known Maturity models for the development pro-
cess

In the field of software development process some maturity models have been
developed, one of them is the CMM or the new version CMMI (Capability Ma-
turity Model Integrated). This model was developed and presented in 1991
by the Software Engineer Institute (SEI), a research and development center
sponsored by U.S. Department. Another model is SPICE (Software Process
Improvement and Capability Determination) which was developed by ISO and
after the CMM but based on the experiences of it. In this section an overview
of these two models is given.

3.3.1 CMMI

CMMI for Development consists of best practices that address development
and maintenance activities applied to products and services. It is basically a
detailed requirement catalogue ordered in five levels. An organization which
does not fulfill the criteria of the first level will remain in the level 1. In other
case the organization is set to higher level and if the organization fulfills all the
criteria of the model, it will be at level 5 [HL07].

Structure

CMMI supports two improvement paths; one is called continuous which en-
ables organizations to incrementally improve processes corresponding to an
individual process area selected by the organization. The other path, called
staged, enables organizations to improve a set of related processes by in-
crementally addressing successive sets of process areas. Because of space
constraints and because other models later here presented are based on the
staged path, it will be just described the structure of the CMMI in staged path.

40 CHAPTER 3. METRIC MATURITY MODEL

The CMMI is structured in maturity levels and for every level there exist key
process areas corresponding to that level. Every process area is described
through goals that should be achieved and for each goal practices are defined
to help in the achievement of the goal. CMMI differentiate between specific
goals, which are for a particular process area and general goals which apply
for all of the key process areas. The same differentiation is made by the prac-
tices. The levels are the following:

Level 1 - Initial : Process is ad hoc and chaotic. Success in the organiza-
tion depends on the personal effort of people and not in proven process.
Level 2 - Managed : In this level a manage process is performed. It means, the
process is planned, monitored and reviewed. The disciplines reflected on this
level help to ensure that existing practices are retained along the all process.
Level 3 - Defined : at this level a defined process is established, in which a
standard process is defined, documented and used. This process will be use
for every project within the organization.
Level 4 - Quantitatively Managed : In this level the defined process from level
3 is controlled using statistical and other quantification techniques. Quality
and process performance is understood in statistical terms and is managed
throughout the life of the process.
Level 5 - Optimizing: in this level a quantitatively managed process is improved
based on an understanding of the common causes of variation inherent in the
process.

Assessment

The CMMI assessment approaches are the following:

Official Review (Appraisal). It is when an organization is been reviewed by
an official CMMI appraiser. The appraiser assesses in the organization each
process area defined by the CMMI and depending on the criteria fulfilled by the
organization, it is set to the corresponding maturity level. An official certificate
is issue by the appraiser after the assessment is completed. This certificate
certifies the maturity level that the organization possesses.
Internal Review (Assessment). This approach is use in order to identify weak-
nesses into processes allowing the organization to improve his processes.

3.3.2 SPICE

SPICE is a framework for the assessment and improvement of processes. It
was developed by the ISO (International Organization for Standardization) and
the IEC (International Electrotechnical Commission) and in 2003 became an

3.4. MATURITY MODEL FOR SOFTWARE PROCESS IMPROVEMENT 41

international standard ISO/IEC 15504.

Structure

SPICE also defined a maturity model like the one from CMMI which contains
the following levels:
Level 0 - Incomplete: There exists no process.
Level 1 - Performed : There exists a process which is used and delivers the
needed requirements.
Level 2 - Managed : The process is planned, controlled and adapted.
Level 3 - Established : There exists a defined and documented process which
is use for every the project of the entire organization.
Level 4 - Predictable: The process and finished product quality is been deter-
mined and analyzed continuously in order to determine if the guidelines were
fulfilled.
Level 5 - Optimizing: If the process has some issues, those can be identified
and corrective actions are implemented.

Assessment

The capability of processes is measured using process attributes, those at-
tributes are selected for an official review, the reviewers will evaluate each of
this attributes for every of the process that should be assessed. SPICE does
not assess all the process at one, but every process will be as a unit assessed
and grade within the maturity model. The assessment of each attribute will
be evaluated within an ordinal scale which has the values not, partially, largely
and fully achieved.

CMMI and SPICE share some common characteristics because SPICE was
developed based, among other aspects, in the experiences of CMM. CMMI,
which is the last version of the CMM, uses many of the ideas of SPICE. One
of the characteristics that distinguish SPICE from CMMI relies on the level of
model customization. SPICE allows the organizations to develop its own model
(e.g. Automotive SPICE) for the assessment and improvement of processes
and CMMI does not allow really customization.

3.4 Maturity Model for Software Process Improvement

The adoption of practices in the organization or most known as a software pro-
cess improvement (SPI) is one of the most challenging activities into software
organizations. As mention at Niazi et al [NWZ05], many advances had been

42 CHAPTER 3. METRIC MATURITY MODEL

made in this field but nevertheless there is still some issues. One of these
issues can be observed in the developed models like CMMI or SPICE, which
help in the implementation of software process advising which aspects are
necessary to be implemented, but they do not provide an effective strategy to
execute the implementation.

3.4.1 Implementation Framework for Effective SPI implementa-
tion

Niazi et al. propose a framework that aim in the effective SPI implementation
[NWZ05]. This framework was developed making emphasis in what and how to
implement activities for a SPI. This framework has three components i.e. SPI
Implementation factors, SPI assessment component and SPI implementation
component.

1. SPI implementation factors
In order to identify why the ”what” is important, they made a list of fac-
tors that are critical in SPI implementation. These are divided in two
categories, the positive (CSF’s) and the negative ones (CB’s). The iden-
tification of these factors was made through the analysis of the literature
and implementing some interviews using the CFS interview procedure
developed by Rockart et al. [BR81] . Some of the CFS’s included in the
SPI-IF are:
Senior management commitment, SPI awareness and Staff involvement.
And some of the CB’s are:
Organizational politics, lack of support and lack of resources.

2. SPI implementation component
In the implementation of SPI the how to implement is another issue that
were found by Niazi et al. and in order to help practitioners in the im-
plementation of SPI an implementation model (SPI-IM) was developed
[NWZ03]. The SPI-IM is divided into 6 phases in which different CSF’s
and CB’s are contained. Besides that more specific practices were de-
signed for each CSF and CB. The phases guide the practitioner through
the implementation of the SPI, the first phase is the Awareness phase
which is selected as an ongoing phase, that is because SPI is an expen-
sive and long-term approach and in order to get support for improvement
of management and practitioners it is very important to promote aware-
ness during the all SPI implementation program. After that the Learning
phase appears, in this phase the training in SPI skills is emphasized. The
next phase is the pilot implementation where the practitioners implement
SPI programs at low level and observe how successfully it is. Once the
pilot implementation was established, the SPI Implementation action plan
follows as a next phase, here a proper plan is made in which a proper

3.4. MATURITY MODEL FOR SOFTWARE PROCESS IMPROVEMENT 43

implementation activities, schedule, allocated resources, responsibilities,
budget and milestones should be design. The next step in the SPI-IM is
the Implementation across the organization. Here after the proper plan-
ning and the experience collected in the pilot implementation, practition-
ers start implementing SPI practices in other areas/departments of the
organization in order to have a uniform development approach and matu-
rity across the organization. The last phase is called Maintenance where
a continuously monitoring and support the previously implemented SPI
activities is made. Maintenance will also help to improve the already
implemented methodology.

3. SPI assessment component
The assessment of SPI implementation maturity can help organizations
in the successfully implementation of SPI initiatives. In models like CMMI
or ISO 9001 no attention has been paid to the assessment of SPI imple-
mentation maturity of organization, therefore in this framework an imple-
mentation maturity model (IMM) was developed.

Implementation Maturity Model

The IMM was developed adapting the CMMI perspective. The general struc-
ture of the IMM is the 4 evolutionary maturity levels. Each of them containing
different CSF’s and CB’s and for every factor different practices are design to
guide the assessment and implementation of each factor.
The maturity levels are:
Level 1 - Initial : adopted from CMMI and is the one where the SPI implemen-
tation is chaotic.
Level 2 - Aware: this level is called aware because the good implementation of
SPI initiative will be beneficial only if the practitioners are aware of its benefits;
this is the reason why it is important to promote awareness in the very begin-
ning of the SPI implementation.
Level 3 - Defined : the SPI implementation processes are documented, stan-
dardized and integrated into a standard implementation process for the orga-
nization.
Level 4 - Optimizing: here is when in the organization structures for the con-
tinuous improvement have been established.
The CMMI consists of 22 process areas which are categorized across the five
maturity levels and can be split in four categories, i.e. process management,
project management, engineering and support. In the IMM instead of the pro-
cess areas the identified CSFs and CBs are used and analog to CMMI, these
are also split in three categories i.e. ’awareness’, ’organizational’ and ’sup-
port’. The division of these categories between the different maturity levels
was made using the perception of process areas division among different ma-
turity levels of CMMI. The assignation can be seen in the figure 3.1., where

44 CHAPTER 3. METRIC MATURITY MODEL

the front-end category is the current category of each level and the back-end
category are the categories of previous levels that should be continuously mon-
itored.

Figure 3.1: CFS’s Dimension [NWZ05]

Assessment

In the Assessment each of the CSFs and CBs is measured to assess how
well the factor has been implemented. A method developed by Daskalanton-
akis was adapted to make the assessment [Das94]. This adaptation of the
Daskalantonakis method evaluates each of the practices defined for the CBFs
and CBs in three different dimensions. The first one is called Approach which
has as criteria the organization commitment and management support for the
practice as well as the organization’s ability to implement the practice. The
second dimension is Deployment where the criteria are the breadth and con-
sistency of practice implementation across project areas. And the third one is
called Result where the breadth and consistency of positive results over time
and across project areas are contemplated.

This framework gives us an overview of what is necessary in order to imple-
ment a SPI. It is necessary to identify which factors will affect the process
implementation in order to know where to focus on. Then it is required a tool
or procedure that will allow to guide the implementation telling how should the
activities be done in order to do it successfully, but how to know if the SPI im-
plementation was really well implemented? Therefore it is required a tool to
assess how good or how bad is the implementation, and this tool is the IMM.

3.5 Maturity Models for Measurement programs

Measurement is one of the key activities in the improvement of software pro-
cesses because it provides a means to assess if a goal or process is fulfilled.
But how to know if a measure program is done in the right way or if it can

3.5. MATURITY MODELS FOR MEASUREMENT PROGRAMS 45

be improved, models like CMMI or SPICE do not really provide a basic to as-
sess the maturity of a measurement process, therefore in this section some
measurement maturity models from the literature are presented.

3.5.1 Critical Success Factors and Critical Barriers in the Mea-
surement programs implementation

As already said the success factors play a big role in the improvement of a pro-
cess and for measurement processes it is not an exception. A list of success
factors for the well implementation of a measurement program was identified
by Fenton et al [HF97]. Some of the success factors contained in this list are
the following: Incremental implementation, Well-planned metrics framework,
Use of existing metrics materials, Measurement process transparent to devel-
opers, Usefulness of metric data, Ensure that data is used and seen to be
used, Use automated data collection tools, constantly improving the measure-
ment program and provision of training for practitioners.
Other authors identified those barriers or reasons that make that a measure-
ment programs fail, those reasons are: measures not tide to business goals,
irrelevant or not understood by key players, perceived to be unfair or resisted,
motivated wrong behavior, expensive, cumbersome, no action based on the
numbers, no sustained management sponsorship [GH01].
As mention before, the organization should focus on this success factors and
barriers in order to improve, in this case, the measurement process. Some of
the practices and process areas in the following models take into account the
success factors and barriers here presented.

3.5.2 M-CMM

Because of the lacking of a maturity model to assess the maturity of a mea-
surement process Niessink et al. have proposed a Measurement-Capability
Maturity Model (M-CMM) [NvV98]. The objectives of this model are to en-
able organizations to assess their capabilities with respect to software process
measurement and to give some directions for the improvement of their mea-
surement capability. They defined measurement capability as ”the extent to
which an organization is able to take relevant measures of it products, process
and resources in a cost effective way resulting in information needed to reach
its business goals”.
This model defined maturity levels similarly to those in the CMMI starting from
the Initial level where the organization has no defined measure process, at
level 2 (repeatable) organization are able to collect some metrics but every
project has his own measurement goals, the level 3 (define) is when the or-
ganization determine a basic set of measurement that each project has to
collect and also an organization measurement database is created, in the

46 CHAPTER 3. METRIC MATURITY MODEL

level 4 (managed) the organization is able to assess the costs of measure-
ment and technology is being used to perform the measurement process effi-
ciently, finally at level 5 (optimizing) measurements are constantly monitored
and changed when necessary.
For each level a set of key process areas are define as follow:
Level 1 - Initial : no key process areas
Level 2 - Repeatable: Measurement Design, Measurement Collection, Mea-
surement Analysis and Measurement Feedback.
Level 3 - Defined : Organization Measurement Focus, Organization Measure-
ment design, Organization Measurement Database and Training Program.
Level 4 - Managed : Measurement Cost Management and Technology Selec-
tion
Level 5 - Optimizing: Measurement Change Management.
This model with its maturity levels and its key process areas provide organiza-
tions with both a measurement scale to assess their measurement capability
and directions to future improvement.

3.5.3 Daskalantonakis’s method for assessing the software mea-
surement process

Another model for assessing the maturity of a measure process within an or-
ganization was developed by Daskalantonakis et al [MKDB90].
This model is based on a series of themes identified by the author that influ-
ence the software measurement technology maturity and argued that in order
to assess and improve the measurement maturity of an organization it is nec-
essary to understand how these themes affect the measurement process and
the relationship between then.
The themes that influence the measurement technology maturity of an organi-
zation found by Daskalantonakis et al. are based on assumptions that will help
in the definition of the maturity levels, these assumptions and themes are the
following:
1. A well-defined, quality-focus, software development process will very likely
result in a qualitative software project and product. Under this assumption the
following theme is important: Theme 1: Formalization of the development pro-
cess.
2. Measurement is facilitated by, and facilitates a well-defined, software de-
velopment product. Therefore the following themes are important: Theme 2:
Formalization of the measurement process, Theme 3: Scope of the measure-
ment process and Theme 4: Implementation support for formally capturing and
analyzing knowledge.
3. There is an evolutionary pattern that measurement follows. We start with
project, then product, and finally process measurement, and because of that
the following themes are important: Theme 5: Measurement evolution within
the organization and Theme 6: Measurement support for management control
of software.

3.5. MATURITY MODELS FOR MEASUREMENT PROGRAMS 47

4. Project, process, and product improvement is achieved by using collected
data as information that identify problem areas, and implementing mechanisms
for the problem prevention based upon informed analysis of the product and
process. Therefore the following themes are important: Theme 7: Project im-
provement using measurement technology, Theme 8: Product improvement
using measurement technology, Theme 9: Process improvement using mea-
surement technology and Theme 10: Predictability of project, product and pro-
cess characteristics.
The maturity levels in this model are the same as the defined in the CMMI
model. The peculiarity of this model is that for each theme was defined a
stage in every maturity level (see table 3.2) and those stages may be followed
by a software development organization in order to reach the highest level of
maturity for that particular theme. Other characteristic of this model is that the
maturity of the development process and the maturity of the measurement pro-
cess are considered to be very closely related. The definition of the levels is
as follow:
Level 1 - Initial : There exist no formal definition of the software development
and measurement process and no process definition and measurement are
conducted.
Level 2 - Repeatable: process definition and measurement are done at least
at the project level.
Level 3 - Defined : Product measure is practice done in the organization using
document standards like the Goal/Question/Metric paradigm.
Level 4 - Managed : process and metric practices are extensively used and
managed. The process is measured and controlled and there is evidence of
quality improvement.
Level 5 - Optimized : the organization have enough knowledge for the use of
process and metrics and they are able to optimize the process and to use
better measures.

Figure 3.2: Example Themes and Level of Software Measurement Technology
Maturity [MKDB90]

Assessment

For the measurement maturity assessment of an organization, this model pro-
poses a list of questions ordered within each maturity level. Those questions
make a relation between the maturity level and the corresponding theme or

48 CHAPTER 3. METRIC MATURITY MODEL

themes, and they are formulated in a way that the answer must be either “Yes”
or “No”. In order for an organization to be in the level i-th of the maturity model,
at least the 80% of the questions corresponding to the level i-th muss be an-
swer with ”Yes”. The following are examples of these questions:
“Is your organization able to repeat previously mastered task?” This question
is related with theme 1: Formalization of the development process and with
the level 2 (Repeatable) of the maturity model.
“Does the organization have dedicated software resources?” This question is
related with the theme 7: Project improvement and the level 3 (Defined) if the
maturity model.
After answering those questions, an organization should look at those that
were answer with “No” and with the theme table identified which actions should
be performed in order to evolve to a higher maturity model.

3.6 Discussion

An overview of the importance of SPI has been given. It is a very challeng-
ing activity for an organization and requires a lot of hard work, but it can be
assisted by some models that guide in its implementation. Some models that
help in the assessment and improvement of software processes (i.e. CMMI
and SPICE) were also described. Based on these models, some other spe-
cific models for the assessment and improvement of the SPI strategy and the
measurement process have been developed. They provide a basic for the or-
ganizations to assess the maturity of these processes and give a series of
criteria that help to identify weaknesses in the process and to improve it. A
critic related with the use of such a model, as mention in Lichter et al., is
that those models are developed by a specific group of persons and reveals
the experiences of them, but these experiences are not representative for the
multiple existing software projects [HL07]. For example the model propose
by Daskalantonaskis [MKDB90] was developed from experiences of the im-
plementation of software processes in Motorola, but it is possible that another
type of development software company has different characteristics and that
this model not really fully applies. Nevertheless those models can be adapted
in order to make them applicable to the measurement process of a specific
organization, as Diaz et al. did with the Dakalantonaskis model [DLGP08]. If
the models for the measurement process work for every organization, is an-
other point that is still not clear. That is because in both of the models here
presented, the maturity of the measurement process is closely connected to
the maturity of the development process, and therefore if a company has a
not very mature development process no really mature measures can be per-
formed.
Important to remark is that a well managed and controlled process has direct
impact in the quality of the final product, thus is necessary that the organi-
zation realized that and start initiatives in order to the improvement of those

BIBLIOGRAPHY 49

processes.

Bibliography

[BR81] Christine V. Bullen and John F. Rockart. A primer on critical suc-
cess factors. Technical report, 1981.

[Das94] Michael K. Daskalantonakis. Achieving higher sei levels. IEEE
Softw., 11(4):17–24, 1994.

[DLGP08] Marı́a Dı́az-Ley, Félix Garcı́a, and Mario Piattini. Mis-pyme soft-
ware measurement maturity model-supporting the definition of
software measurement programs. In PROFES ’08: Proceedings
of the 9th international conference on Product-Focused Software
Process Improvement, pages 19–33, Berlin, Heidelberg, 2008.
Springer-Verlag.

[GH01] Wolfhart B. Goethert and Will Hayes. Experiences in implement-
ing measurement programs. Technical report, Technical Note
CMU/SEI-2001-TN-026, 2001.

[HF97] Tracy Hall and Norman Fenton. Implementing effective software
metrics programs. IEEE Software, 14:55–65, 1997.

[HL07] Lichter Horst and Jochen Ludewig. Software Engineering : Grund-
lagen, Menschen, Prozesse, Techniken. Heidelberg, Neckar :
dpunkt, 2007.

[MKDB90] Robert H. Yacobellis Michael K. Daskalantonakis and Victor R.
Basili. A method for assessing software measurement technology.
Quality Engineering, 3:27–40, 1990.

[NvV98] Frank Niessink and Hans van Vliet. Towards Mature IT Services.
Software Process – Improvement and Practice, 4(2):55–71, June
1998.

[NWZ03] Mahmood Niazi, David Wilson, and Didar Zowghi. A model for the
implementation of software process improvement: A pilot study.
Quality Software, International Conference on, 0:196, 2003.

[NWZ05] Mahmood Niazi, David Wilson, and Didar Zowghi. A framework
for assisting the design of effective software process improvement
implementation strategies. J. Syst. Softw., 78(2):204–222, 2005.

[PWCC95] Mark Paulk, Charles Weber, Bill Curtis, and Mary Beth Chrissis.
The Capability Maturity Model: Guidelines for Improving the Soft-
ware Process. Addison-Wesley, Boston, 1995.

50 CHAPTER 3. METRIC MATURITY MODEL

Part II

Product Metrics

51

Chapter 4

Earned value in agile systems

Elena Soldatova

Contents
4.1 Introduction . 54
4.2 Earned Value Method (EVM) 54

4.2.1 Earned Value method concepts 55
4.2.2 EVM benefits . 56

4.3 Agile Principles background 56
4.3. Applying Metrics-based Approach to Agile processes 57

4.3.1 Premises for connecting Agile processes and Earned
Value . 57

4.3.2 Simplified EVM for Agile Development 58
4.3.3 Agile EVM in Scrum and XP projects 59

4.4 Applicability discussion . 59
4.4.1 Simplified EVM discussion 60
4.4.2 AgileEVM discussion 61
4.4.3 Further implementations and metrics 62
4.4.4 Extensions for using EVM in Agile Processes 63
4.4.5 Future reading . 65

4.5 Conclusion . 65
Bibliography . 65

53

54 CHAPTER 4. EARNED VALUE IN AGILE SYSTEMS

Abstract: Although the Earned Value Method is a well-recognized method
of tracking the status of the engineering project, still agile software projects
lack practice in using it. This article provides a review of the application of the
earned value method as a metric for Agile development processes. Several
techniques were reported to successfully have been applied. However there
are suggestions for possible extensions.

4.1 Introduction

The usage of an agile approach for software development became a popu-
lar and inspiring technique followed by many companies in the last 10 years.
Change of scope, unplanned budget and schedule are expected while perform-
ing such projects. Traditional project management methods recommend using
a Gantt chart to manage the project schedule. Choosing or inventing appro-
priate metrics for measuring the progress for conditions of Agile development
is a challenge. Studies exist around taking the existing metrics of economic
theory, which are older and mature, and trying to adopt them. Earned Value
Method is a well-known technique used for measuring the progress during a
development process. However, other agile project management experts con-
sider that old techniques could not be relevant to a new agile method and agile
metrics are required instead.

The current paper reviews several methodologies of agile tracking based on
EVM approach. This article studies the applicability of the EVM metrics for
Agile projects. The traditional Earned Value method is based on assumptions
of a fixed budget and a known scope. Studies done to use and adopt EVM
formulas are investigated. The review of the articles providing thoughts about
the limitations of EVM method is also given. As well the research of possible
extensions suggested in literature is provided.

Sections 4.3 and 4.2 provide the background of the Agile development ap-
proach and the Earned Value method. Section 4.3 introduces several methods
suggested for using EVM in Agile processes. Section 4.4 indicates the results
reported by the authors of these methods. The discussion about limitations of
the EVM and suggestions is provided in the same section.

4.2 Earned Value Method (EVM)

The EVM method was primary used by the U.S. federal government and De-
partment of Defence (DOD) in engineering projects from 1967. Until now it’s a
part of the compulsory methods for governmental contracts. The EVM method
is based on 32 criteria of the National Defense Industrial Association defined
in ANSI/EIA 748.

4.2. EARNED VALUE METHOD (EVM) 55

The industrial standard was revised in 2005 in order to be compliant with up-to
date projects. In [Wyn04] the threshold of 20M$ is estimated. It’s used as a cri-
terion for application of EVM. The application is considered to be a risk-based
decision for projects lower the threshold and for the cases with schedule/cost
overrun possibilities. Therefore a project-manager is a person taking his own
responsibility on such projects.

4.2.1 Earned Value method concepts

Work schedule, scope and resources available often serve as leading indica-
tors of whether a project is likely to achieve the financial goals. Earned value
method provides metrics to reveal the performance upon these chosen indi-
cators. For the earned value method the work is supposed to be split into
the measurable delivery intervals or work packages. The measurements are
performed with accordance to the schedule of work package delivery. Below

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.1: EV, PV, CV plot

the main terms that are helpful for understanding the EV method concepts are
provided. The detailed explanation is given in [Anb04]. The first metric to be
concerned is Planned value – the planned amount of budget assigned to be
spent to fulfill the workpackage. When the Planned value is plotted over a
time scale this results in the s-curve, which is also called a budget baseline or
project management baseline (PMB). The second metric used is Actual Cost
(AC), it represents the real amount of budget spent already. Earned Value (EV)
represents the planned cost of real work which is performed at the current day.
It can be described as EV = (team efficiency)× Planned Value. Where ”team
efficiency” is used in remembrance to physical efficiency which shows how
close the work really done to the the work planned.

The difference of Earned Value and Actual cost is called Cost Variance, the
difference between EV and PV is Schedule Variance (SV). CV = EV −AC,
SV = EV − PV . Estimate at Completion (EAC) is the total cost estimate

56 CHAPTER 4. EARNED VALUE IN AGILE SYSTEMS

based on actual cost and actual performance. According to figure (4.1) [Anb04],
you can see that when Planned Value is 50, earned value is only 40, whereas
actual cost is 60. Schedule variance is then equal to 40− 50 = −10, cost vari-
ance is 60− 50 = 10. The ratio of Earned Value to planned value (PV) is called
Schedule Performance Index. The ratio of Earned Value to actual cost (AC) is
called Cost Performance Index.

4.2.2 EVM benefits

Earned Value Management (EVM) is a well established and accurate measure
of a project’s cost performance. ”EVM provides an early warning system for
deviations from plan and quantifies technical and schedule problems in cost
terms, providing a sound and objective basis for considering corrective actions
(work arounds, tradeoffs and others). Therefore, EVM both mitigates the risk
of cost and schedule overruns, while also providing a forecast of final cost and
schedule outcomes.”[Wyn04]

4.3 Agile Principles background

Agile development process is based on meetings with the customer and is split
into iterations (sprints). Several types of agile processes exist, however they
are united by common principles, therefore later Extreme programming (XP)
and Scrum practices are concerned. The common principles of agile devel-
opment processes are documented in [BBvB+01]. One of the most important
states: ”Responding to change over following a plan”. During the interaction
between a team of developers and a customer user stories are worked out.
User stories are then translated into the list of features, where each feature is
assigned with story points characterising its difficulty. Story points are gained
only upon delivering all the functionality associated to them. However, the agile
nature of the process lies in a possibility to change or to expand a user story
during the next meeting. Such alteration will probably result in the change of
the amount of work scope to be done till the next review. A burn-up chart is
a means used to plot functionality delivered, upon the time scale. The team
velocity is determined by the curve incline. Agile development process focus
on maximising return on investment (ROI) through continuous replanning and
reviews, this approach allows to deliver highly-qualified software relatively fast.

4.3. AGILE PRINCIPLES BACKGROUND 57

4.3 Applying Metrics-based Approach to
Agile processes

Metrics Based Scheduling and Management is one of the nine software prac-
tices introduced in the article [All99]. It’s worth applying in order ”to identify
problems early in the development lifecycle.” The drawbacks of XP and Scrum
methods are presented in a detailed study provided in the article [VC04]. One
of the most important being pointed out is the lack of a feedback after each
sprint. Therefore it’s highly desirable to be able to determine how well an agile
method is working; in general it would be valuable to determine whether iter-
ations of agile processes need improvement. The agility of the development
requires that the metrics should be visible and understandable for developers,
managers, and customers. During agile process there is no time allocated for
teaching the team with difficult concepts. The application of the metrics should
easy as well.

4.3.1 Premises for connecting Agile processes and Earned Value

Due to the benefits of earned value method it’s desirable to find out if the
means to use it in agile processes exist. A prerequisite for applying EVM is
defining scope up front and having a stable baseline plan. On contrary, agile
plans are rarely stable and often lack a fined fixed and clear scope. As well
they are usually implemented within small companies what is treated as a risk
for the EVM standard application. That’s why applying EVM metrics requires
attention to these problems and preliminary study. However, agile processes
and earned value method appear to have more things in common than it seems
at the first glance.

Several authors pointed out the premises that allow using Earned value in
Agile projects. For instance, it was pointed out that a Burn down chart of
Agile development process is equivalent to a EV graph. The essential dif-
ference is that people traditionally include on the earned-value chart ”tasks
completed”, whether or not they resulted in code getting integrated. On agile
projects, credit is only given when code is integrated and tested (the ”no left-
over sock” rule)[Coc04]. In [All93] the author identifies how to connect Agile
process with Earned Value. At the end of each sprint a unit of work produced
is self-contained and verifiable upon requirements, therefore it’s taken as the
main measure for Earned Value. Main issues of Agile processes needed to be
taken care of are: a proper iteration length, choice of the cost of each iteration
effort. The recommendations above lead to the in the next section.

58 CHAPTER 4. EARNED VALUE IN AGILE SYSTEMS

4.3.2 Simplified EVM for Agile Development

[Rus09] reports about a simplified way of using EVM metrics in Agile projects.
He keeps track of project by using a traditional Agile burn chart enriched with
two more lines. When introducing method to users, the author doesn’t com-
plicate the explanation with EVM terms. The cost of the work done during the
week is calculated based on email reports from team members about work
hours. In order to build the black line (fig 4.2) the breakdown structure is not
used. The earning rule for the team is that points are only given for working
software. The estimation of future costs is done by linear extrapolation.

Figure 4.2: Burn chart

1) The dash line shows the progress that is expected, as a percentage of the
total work progress. It starts at zero and slopes up to 100% at the end of the
project. 2) The grey line shows how much of the product has been built in
percents of the total product size. Ideally, it should follow the same path as
the dash line — starting at zero and reaching 100% on the project’s scheduled
end date. If it falls below the grey line that means that the team is below
the schedule and visa versa. 3) The black line shows the cost incurred as a
percentage of the total project budget. Ideally, it would also follow the same
path as the dash line — starting at zero and finishing at 100% of budget, on
the project’s scheduled completion date. If the black line is above the grey line
that means the budget is spent faster than the team is building the software.

In the example (fig. 4.2) it can be seen that the project will probably complete
earlier. It can be estimated visually that in the end only 85% of budget will be
used.

4.4. APPLICABILITY DISCUSSION 59

4.3.3 Agile EVM in Scrum and XP projects

The article [SBB06] appeared in 2006 and so far is the most complete analyza-
tion the question of applicability pure EVM method formulas to Agile process
realities. The correlation between AgileEVM and Scrum formulas for the re-
lease date estimate is proved in it. This proof mathematically allows to use
Standard EVM definitions and Formulas in Agile Projects. The author provides
a worksheet in order to ease the calculation and tracking of the results. The
following parameters are used for initialization: Budget at Complete, iteration
length, number of planned iterations, start date and planned story points to
be achieved. At the completion of each Sprint, four data points are entered:
sprint number, points completed, points added, sprint cost. The worksheet au-
tomatically calculates baseline schedule. Information provided is given in the
picture 4.3. In the section ”current indicators”, the available characteristics for
this sprint are provided: iteration, mean velocity, velocity of current iteration. It
can be seen that the cost performance index is 1.03 which means that there
is budget underrun, while schedule performance index is very close to 1, it
is 0.91. In the section ”estimated completed values” the forecasts are done
based on current indicators and AgileEVM formulas. The estimated param-
eters include number of points left, planned release date. The worksheet as
well includes the results obtained by using different formulas to compute the
Estimate at Completion. The problem of calculating EAC is described in the
page 64.

23

Demo

Katie’s Project Worksheet

Figure 4.3: AgileEVM worksheet

4.4 Applicability discussion

In [Dym08], [HD06] the author claims that EVM estimates are quite inaccurate
due to constant changes in the customer requirements. The author points out
that it’s possible to calculate Actual market acceptance and actual ROI very
quickly through implementing most highly valued features firstly. The author
is slightly incorrect because in his mind EVM is only keeping to Schedule and
Cost Performance. Therefore he insists on dropping out EVM and focusing

60 CHAPTER 4. EARNED VALUE IN AGILE SYSTEMS

on Value delivered and on Usage of Velocity as diagnostics to forecast how
much work they expect. As well it can be seem that the author is contradicting
himself, naming the same EVM principles that already are used. Moreover,
a successful usage of EVM metrics together with Earned Business value is
demonstrated in [Raw08](subsection 4.4.3).

Fleming identified main criteria for implementation of the EVM metrics in Agile
processes [FK98].

1. continuous management of the work remained i.e. project manager
should have enough expertise to take measures in time (an example is
provided on the page 64)

2. qualitative project’s baseline plan which is maintained due track of changes
(an example provided on the page 64)

3. periodical measurement of actual performance against the baseline plan
(see example in the subsection 4.4.3)

Regarding the first criteria, in the article [Cuk09] the author attracts attention
to the importance of Integrated Baseline Reviews as a better way of getting
understanding of a Performance Measurement Baseline (PMB). Term ”Inte-
grated” relates to the team: the review should include members from the tech-
nical, financial, scheduling, risk management departments, and contracting
communities.

4.4.1 Simplified EVM discussion

The aim of Rusk in [Rus09] was to gain insight in the financial aspect of the
work on project. His method allows to understand whether the project is on
track, whether the progress done by the team is enough. As well it allows to
distinguish between different reasons of the underrun.

The author avoids using EVM acronyms to keep the approach simple. Percenta-
ge-based approach is easier to understand than approach suggested by [SBB06].
However the technique allows to involve all the team, stakeholders and man-
agers in the discussion process as the useful metrics such as EAC, TCPI
are derived visually. Burn-up chart and costs, together with burn-up chart
and schedule variances were found to be enough to realize that changes are
needed.

The applicability of the technique depends on the possibility to define the scope
up front and on a linear delivery of value. The approach ”relates cost, schedule,
technical accomplishment in the same way as classical EVM — albeit with a
linear schedule rather than the classical s-curve.” The technique is as well
cost-effective for projects with budget smaller than $20 million. According to

4.4. APPLICABILITY DISCUSSION 61

the standard ANSI/EIA748 due to its costs the standard EVM can be omitted.
The chart works best when it covers the period of 3-6 months.

Article [Sol09] provides discussion for [Rus09]. P. Solomon points out several
weak points in the article of John Rusk: the assumption of linear delivery of
value and the habit of implementing unforeseen requirements as they arise.
Solomon focuses on accurate reporting of project status. For software based
on incremental builds, the author recommends allocating resources and defin-
ing baselines for each of the builds. Functional requirements must be also
allocated and prioritized within each of the builds. Before starting the build
the consistence with the total project schedule should be verified. These re-
commendations allow to use EVM critera for project with non linear PMB. If
functionality is deferred from one build to another, then the budget is trans-
ferred as well to another build. When the rework for the earlier accepted story
points is required, then Negative Earned Value is introduced. This allows to
maintain aggregated Baseline.

4.4.2 AgileEVM discussion

The contributions of AgileEVM method compared to Scrum Framework itself
are the following:

1. allows to use the data achieved (Cost Performance Index and Schedule
Performance Index) to validate the project status

2. allows to forecast the budget spends using Estimate at Complete and
Estimate to Complete

3. allows to be more versatile in identifying future strategies for developing
the product

The combination of CPI and SPI with a burn-down chart provides additional
information enabling the project manager with information to take measures
for reducing scope or to adjust a planned release date.

This method is particularly useful for budget responsible persons such as
project manager. The agile EVM provides the team of developers with metrics
that allow quickly to respond to the loss of velocity in development. Additionally
it doesn’t add burden to usual developers as it’s easy to be reported.

In the project where AgileEVM was used, the following result was achieved:
”Adapting the traditional earned value management metrics to the Scrum project
allowed the ScrumMaster to accurately predict the impact of these require-
ment changes, despite a fluctuating velocity, on budget and schedule for the
release. The ScrumMaster was able to then share this information with the

62 CHAPTER 4. EARNED VALUE IN AGILE SYSTEMS

Product Owner and the team, giving them information to help make additional
decisions.”([SBB06])

In [SSS+07] Sulaiman et. al. points out AgileEVM is not necessarily appropri-
ate for all Agile projects. Projects with extremely short release cycles will not
find as much utility from this technique as projects with longer release cycles
involving multiple sprints or iterations. In my opinion that though the method
Tamara Sulaiman presented is provided in all the details needed, her further
articles presenting the results of real projects are very concise in reporting
details and values.

4.4.3 Further implementations and metrics

Earned Value Management metrics should be used in conjunction with Earned
Business Value. In [Raw08] author goes further the studies done in [SBB06]
and suggests new methods for calculating CPI and SPI assuming consistency
across the sprints. CPI = BC

SP /
AC
SP instead of CPI = EV/AC, where BC/SP –

is Baseline Cost per Story Point, AC/SP — actual cost per Story Point. CPI in-
dicates if customer are getting the SPs they are paying for. SPI = AV

BV instead
of SPI = EV/PV , measures if developers are getting the Story Points at the
rate expected, where AV is Actual Velocity and BV is Baseline Velocity.

The article is valuable for adding Earned Business Value to measure efficiency
of delivery. EBV is defined as ”the percentage of the product’s Business Value
that is currently earned”. The BV metric was introduced in [Raw06], where BV
is assigned only to those of WBS stories that deal with implementing features
or with marketing activities. According to S-curve and Pareto Rule Rawstorn

Copyright 2008 Danube Technologies, Inc.

In order to complete the picture, we also need to know how much
effort our team put in each sprint. Here is that data, given in person-
days rather than currency.

Table 6: Person-Days Expended per Sprint

Sprint 1 2 3 4 5 6 7 8 9 10

Expected Days 50 50 50 50 50 50 50 50 50 50

Actual Days 50 52 65 50 55 60 50 55 50 55

Now let’s do some comparisons, and draw some graphs. First of all, we
know we didn’t deliver everything we wanted to, so let’s look at what
we did do on a feature-by-feature basis. Then we’ll look at the graphics
that showed the team’s performance as it moved through the sprints.

Table 7: Comparison of Release Strategy to Actual Production

Feature Business Value (%) Story Points

 Expected Actual Expected Actual
Feature 1 0.5 .477 100 70
Feature 2 0.3 .288 160 115
Feature 3 0.2 .194 80 60
Chores 0.0 0.0 160 189
Totals 1.0 .959 500 434

The total person-days used was 542 and the total SPs achieved is 434.
Since we were planning for each to be 500, we’re not surprised that we
have the following CPI and SPI graphs.

Figure 5: CPI and SPI Graphs for this non-Ideal Release

Figure 4.4: CPI and SPI graphs for non-ideal release

4.4. APPLICABILITY DISCUSSION 63

Copyright 2008 Danube Technologies, Inc.

This looks bad, and it is – if what we’re worried about is the delivery of
SPs. Fortunately for the project, the re-planning at the sprint
boundaries was done in a rational matter, with constant changes of the
story delivery based on the story’s BV. The result is that we wind up
with the following Earned Business Value graph, which ends up with a
maximum EBV of ~96% at the end of 10 sprints.

Figure 7: EBV Graph for this non-Ideal Release

Note that even though we only delivered 87% of the SPs we wanted to
(based on SPI), we got ~96% of the Business Value. Since we usually
expect a minimal releasable product at about the 90% mark, we can call
this project a success, as long as we’re looking at Business Value. We
didn’t get everything we wanted, but we got what counted. This is
actually not so surprising if we remember Pareto’s 80/20 principle (or
the 60/20 that we can actually achieve), but it is gratifying to see a
simulation that demonstrates it so convincingly.

Summary

Earned Value Management metrics are applicable to agile projects, but
should be coupled with an Earned Business Value metric to give a
complete picture.

Surprisingly (or perhaps not), EBV is not as tightly coupled to CPI and
SPI as one might think. Assuming a reasonable S-curve describing
delivery of a feature’s Business Value, we can still deliver a substantial
overall Business Value even though we fall short on the “standard”
AgileEVM metrics.

Figure 4.5: EBV graph for non-ideal release

provides example of non-ideal situation, where fulfilling story points in order
to maximise BV leads to better fulfillment though with latency in CPI and SPI
(fig.4.4, fig. 4.5.)

In work [Car] is reported about development of a tool support for EVM in Ag-
ile Processes within xProcess toolset. Distinguishing between Planned Cost
and Planned Value is suggested. Planned Cost is the budgeted expendi-
ture, and Planned Value is the proportion of Planned Cost corresponding to
the size of the task done. The idea is similar to idea of [Raw08], to distin-
guish between work done and overhead introduced. Therefore formulas for
CPI and SPI were modified as following: CPI = PlannedCost/ActualCost,
SPI = EarnedV alue/P lannedCost. The environment provides plots to com-
pare planned values against actual, to forecast the Earned Value and Actual
cost Curves.

4.4.4 Extensions for using EVM in Agile Processes

It was pointed out on the page 60 that quality of project’s baseline is of impor-
tance for implementation of the EVM. Therefore it’s meaningful to investigate
how to apply EVM when a budget baseline is uncertain. In addition, it’s worth
paying attention on choosing among the ways to estimate the final costs (EAC)
and performance. This can give additional evidence of current actions needed
to be taken. Below several methods that represent efforts of improving the
usage of EVM metrics in Agile processes are presented.

64 CHAPTER 4. EARNED VALUE IN AGILE SYSTEMS

Baseline and Quantity Adjusted Budget

The suggestions for projects with a highly uncertain budget baseline are given
in [Kan07]. Quantity Adjusted Budget allows to modify the baseline by evalu-
ating how it was changed since the last release.

Firstly, each of the features identified in work packages, is assigned with some
quantity to be done. After each iteration the adjusted number for each fea-
ture is acquired, and the budget is recalculated. The new budget is obtained
by multiplying the new estimated quantity with the budget unit rate: QAB =
(Adjusted quantity)× (Budgeted Unit Rate). Where for quantity stand not only
program features as well amounts of hardware materials (servers, hard drives),
software licensing (database engine, reporting tools, society application). The
number of features to be realized determines the amount of work hours re-
quired by the developers’ crew. Earned Value = the percentage of completion×
QAB. The calculations for SV,CV, CPI, SPI remain the same as for fixed bud-
gets, however QAB allows to update the budget smoothly after each iteration
done.

Ways for Estimating Estimate at Complete

Numerical accuracy of the EVM formulae used for estimating Estimate at Com-
plete value is examined in the article [Chr93b] and [Chr93a]. The author gives
the details of a project, which failed because of managerial faults in application
of EVM. The Navy’s program manager responsible for an advanced aircraft
project chose to rely on a lower estimate at complete, despite several higher
ones prepared by his own analyst. This led to huge overrun of a budget and to
cancellation of the project before its completion.

The author reviews three closed reports that were evaluating accuracy of the
various formulas calculating EAC on real-life projects. The need to calculate
the EAC is based on the problem how to use the current actual costs, earned
value and budget at completion to identify the actual costs in the end of the
project. Usually the actual costs differ from planned, therefore several adjust-
ment indices can be used.

The to complete performance index (TCPI) is ”the efficiency required to achieve
the EAC planned”. The TCPI is useful for comparison with CPI to evaluate
whether EAC is reasonable or too low. The author introduces a simple rule,
saying that when the difference of TCPI and CPI exceeds ten percent this is a
sign to reconsider EAC.

The research gives data on how ”accuracy of index-based formulas depends
on the type of the system, the stage and the phase of the contract”. Author
found out as that accuracy of regressive methods compared to index-based

4.5. CONCLUSION 65

EAC formulas is a matter to research. In general, while choosing a EAC de-
rived from different formulas author warns from impairing a culture that sup-
presses truth, because a project manager should be able to interpret about
the signs of overrun.

This article provides interesting results for consideration however it was issued
in 1993 and the problems indicated in it still need to be investigated.

4.4.5 Future reading

Main people, communities participating in Agile EVM:
1. SolutionsIQ, organisation providing training on Scrum projects, provides a
library of white papers, articles, and presentations. Actively promotes usage
of AgileEVM. Tamara Sulaiman, Thomas Blackburn work there.
2. The Data and Analysis Center for Software (DACS) – allows free register
and download of the journals.
3. There is a nice resource which gathers all the literature concerning earned
value analysis. http://www.suu.edu/faculty/ChristensenD/EV-bib.html It was be-
yond the scope of this article though the interested reader is addressed to it.

4.5 Conclusion

This article provides a review in the field of application of the earned value
metrics in agile development processes. Earned Value Formulas have been
demonstrated to be appropriate to Agile process and useful for the stakehold-
ers of the project. However, it was noticed that a lot of authors focus on CPI
and SPI Earned Value metrics for evaluating performance and in order to ease
the application. It was shown as well that an additional metric such as Earned
Business Value responds to real agility of the project. Several extensions of the
traditional Earned Value metrics together with their finer points are provided.
Identifying more clear criteria for choosing proper iteration length, formulas for
EAC is still work needed to be done. Moreover, there is a significant lack of
tools implementing EVM metrics, this fact was also noticed by [CG06]. For the
current moment there is only a number of self-made worksheets, for example
for AgileEVM, and an experimental plugin to xProcess framework.

Bibliography

[All93] Glen B. Alleman. Project management == herding cats.
http://www.pmforum.org/viewpoints/2003/0203agilepm.htm,
February 1993.

66 CHAPTER 4. EARNED VALUE IN AGILE SYSTEMS

[All99] Glen B. Alleman. Nine best practices. The Software Management
Framework, June 1999.

[Anb04] F.T. Anbari. Earned value project management method and ex-
tensions. IEEE Engineering Management Review, 32(3):97–97,
2004.

[BBvB+01] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunning-
ham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries,
and Others. Manifesto for agile software development. The Agile
Alliance, pages 1–2, 2001.

[Car] A. Carmichael. Evm and agile processes - an investigation of ap-
plicability and benefits.

[CG06] A. Cabri and M. Griffiths. Earned value and agile reporting. In
Proc. of AGILE Conf, volume 06, page 6. Citeseer, 2006.

[Chr93a] David Christensen. Determining an accurate estimate at comple-
tion. National Contract Management Journal, Arlington MA, pages
25:17–25, 1993.

[Chr93b] David Christensen. The estimate at completion problem: A review
of three studies. Project Management Journal, Project Manage-
ment Institute, pages 24:37–42, March 1993.

[Coc04] Alistair Cockburn. Earned-value and burn charts.
http://alistair.cockburn.us/Earned-value+and+burn+charts, June
2004.

[Cuk09] Anita Cukr. Dispelling Some Myths about Earned Value Manage-
ment (EVM). SoftwareTech, 12(3):5–7, 2009.

[Dym08] Robin Dymond. Earned Value Measurement — the useless metric
for Agile, 2008.

[FK98] Quentin Fleming and Joel Koppelman. Earned value project
management a powerful tool for software projects. Crosstalk
– The Journal of Defense Software Engineering, Ogden, UT,
http://www.stsc.hill.af.mil/crosstalk/1998/07/value.asp, July 1998.

[HD06] D Hartmann and R Dymond. Appropriate Agile Measurement: Us-
ing Metrics and Diagnostics to Deliver Business Value. In Proceed-
ings of the Conference on AGILE 2006 (July), 23(March 1993):28,
2006.

[Kan07] B. Kane. Estimating and Tracking Agile Projects. Citeseer,
IX(V):1–15, 2007.

[Raw06] D. Rawsthorne. Calculating Earned Business Value For An Agile
Project. Agile Journal, June, pages 1–6, 2006.

BIBLIOGRAPHY 67

[Raw08] D. Rawsthorne. Calculating Earned Business Value For An Agile
Project. Agile Journal, June, pages 1–5, 2008.

[Rus09] John Rusk. Earned Value for Agile Development. DACS, 2009.

[SBB06] Tamara Sulaiman, Brent Barton, and Thomas Blackburn. Ag-
ileevm — earned value management in scrum projects. In Pro-
ceedings of AGILE 2006, AGILE ’06, Apr. 2006.

[Sol09] Paul J. Solomon. Agile Earned Value and the Technical Baseline.
SoftwareTech, 12(3):9–12, 2009.

[SSS+07] Tamara Sulaiman, Scrum Schulungen, Hubert Smits, Product
Owner, Scrum Framework, Text Issues, and Rally Software.
Measuring Intergrated Progress on Agile Software Development
Projects. Methods & Tools, pages 1–4, 2007.

[VC04] M. Visconti and C.R. Cook. An ideal process model for agile meth-
ods. Lecture notes in computer science, 3009:431 – 441, 2004.

[Wyn04] Michael W. Wynne. Proposed revision to dod earned value man-
agement policy and rationale for changes. Defense AT & L, pages
1–5, 2004.

68 CHAPTER 4. EARNED VALUE IN AGILE SYSTEMS

Chapter 5

Architecture

Ricardo Tavizon

Contents
5.1 Introduction . 70
5.2 Background . 71

5.2.1 Evaluation techniques 72
5.2.2 Evaluation process . 74

5.3 Architecture Evaluation . 75
5.3.1 Architectural assessment techniques 75
5.3.2 Scenario-based: ATAM 77
5.3.3 Static evaluations . 78

5.4 Tools for Static Architecture Evaluation 80
5.4.1 SAVE Tool . 80
5.4.2 SonarJ Tool . 81

5.5 Discussion . 82
5.6 Conclusion and related work 82
Bibliography . 83

69

70 CHAPTER 5. ARCHITECTURE

Abstract: Software architecture refers to a form of abstraction describing
the overall components from which a system is built, the relationship among
those, the patterns guiding their composition and constraints to the non-
functional requirements. It is necessary to conduct an evaluation in order
to know if an architecture is suitable for a system. An architecture evaluation
should be a standard part of the architecture-based software development life
cycle according to [CKK01].
This paper is intended as a contribution to review some types of architecture
evaluations dedicating some space to static evaluations and mechanisms to
conduct them.

5.1 Introduction

Software architecture is one of the most relevant assets being developed which
is actively used during life-cycle phases, with strong influence in the imple-
mentation phase. Architecture is seen as a mean of specifying the system,
understanding it and providing communication from the high level aspect to
the stakeholders. For the same reason an evaluation should not be seen
as a trivial task, as in many cases is not performed. However, not to carry
out an evaluation might lead to problems which in later phases (i.e. develop-
ment) would imply more costs, time and resources. Decisions taken on the
architecture have considerable impact on the quality attributes associated to it.
Evaluation tries to establish mechanisms that allow to study the impact of the
decisions based on the expected results.

Software metrics have been applied more often in the implementation level
and those measuring techniques and models over the past decade have been
pushed up to evaluate architecture itself. On this field quantitative over quali-
tative metrics result to be more mature. It is important to notice that this mea-
suring techniques require more effort. Among a broad range of evaluations,
there is one denominated static. Static evaluation compares two models, the
planned architecture against the implemented one. This is done by the mean-
ing of a mapping between the two models giving as a result a report stating
whether the comparison converges or diverges. For this comparison the use
of human-based task and tools is required.

This paper starts in section 2 by providing an overview on the term ar-
chitecture. That is to support the need for evaluation, which is described in
the following sections. Also this section includes the different techniques for
evaluating architecture and the selection criteria that should be followed. The
section is closed explaining the overall process on any of the evaluation tech-
niques. Section 3 discusses evaluations of the type static, scenario-based and
architectural assessment techniques. Section 4 illustrates static evaluation by
the use of tools. Section 5 provides some space for discussion, while section
6 discusses related work and concludes this experience report.

5.2. BACKGROUND 71

5.2 Background

First, the term of software architecture is provided. Although there is no widely
accepted definition by the industry, two definitions are examined: one from the
professional body IEEE and the other proposed by Bass et al. respectively. In
the author’s opinion, both definitions allow to understand architecture as the
blueprint for the system to be developed and its ongoing project.

“Architecture is the fundamental organization of a system, embodied in its
components, their relationships to each other and the environment, and the
principles governing its design and evolution” [IEE00]

This definition is intended to present what constitutes the foundations of a
system: the components (which either are physical or logical), their way to
communicate and the organizational structure they follow.

“The software architecture of a program or computing system is the structure or
structures of the system, which comprise software elements, the externally vis-
ible properties of those elements, and the relationships among them.” [BCK03]

Architecture according to the previous definition is the core of the system
to be implemented. After the requirements specification has been completed,
the next step leads to designing the architecture. Three benefits are gained
from the design. First, the architecture will be used as a basis for communica-
tion between the stakeholders. That is, it stands for the common model being
planned. Second, all the decisions related to design will be done early. It is
known, that all the decisions concerning the design will have a great impact
in later phases (development, deployment and maintenance). Finally, archi-
tecture can be seen as a model. This model can be applied to other systems
conforming similar requirements.

It is important to notice that there is no term who makes mention of whether
an architecture is right or wrong and if it will enable the system to fit the ex-
pected requirements or not. The systems being delivered might deal for in-
stance with lack of performance or security vulnerabilities as a result of archi-
tecture decision. The best way to choose an architecture is done by evaluating
it. An evaluation is a way to assure that the architecture meets its functional
and non-functional requirements.
Next, the benefits that can be gained when evaluating an architecture are ex-
posed. The entry point is the validation of requirements. Requirements are
presented as a list and some clarification and prioritization will be done solving
any conflict that it might exist among them. Reduction in costs is associated
with time and committed resources.

The earlier a potential issue in the candidate architecture is identified, the
better to validate the feasibility and saving in resources. It is all about risk
mitigation. Preparation is required prior to any formal evaluation, this clearly

72 CHAPTER 5. ARCHITECTURE

increases the understanding of the system and leads to better documenta-
tion which allows to see the design choices and their justification. During this
evaluation, which it focuses on specific areas, it is possible to have a better
perspective of the system’s architecture and any required modification can be
assessed following the rationale behind the structure. In other words, evalua-
tion forces to manage a top-level architecture document that is understandable
clear. Detection of potential issues in the quality attributes during an evaluation
include extensibility, portability and security among others. The solution to any
of those issues during late phases of life-cycle would imply more effort. The
avoidance of these issues clearly allows to provide the capabilities and limita-
tions from the system.
For further reading on different points of view regarding the term architecture
it is worth to look at Software Engineering Institute [SEI].

5.2.1 Evaluation techniques

This section presents an overview of the available evaluation techniques and
the importance of each of those for architecture (see Figure 5.1): two ba-
sic categories surround this frame used to perform an evaluation. Qualitative
techniques which ask some questions to derive an elaborate report of an ar-
chitecture and quantitative techniques applying some measurements to the
architecture.

Evaluation Techniques

Cualitative

Cuantitative

Scenario

Questionnaire

Checklist

Metrics Simulations Prototypes Mathematial Modelling Experiments

Figure 5.1: Architectural design method

Qualitative is based in questioning to assess the architecture for a given
quality point and it can be performed as scenario, questionnaire or checklist.
Those techniques differ on applicability to understand whether the architecture
complies to its requirements. The scenario technique is specific to the sys-
tem being evaluated while the checklist and questionnaire can be derived as

5.2. BACKGROUND 73

domain specific entries. Questionnaires or checklists are supposed to exist
before the project starts reflecting a more evolved evaluation practices, while
scenario-based is developed as part of the system.

Scenario-based is used to try to assess specific attributes such as perfor-
mance, security, modifiability and so on.

Questionnaire focuses on general purpose issues, like the way the architec-
ture was generated and documented. An example from this technique
is the software risk evaluation process, developed by the Software Engi-
neering Institute [Abo97].

Checklist requires more preparation and understanding of the domain area.
This technique tends to be more specific when assessing qualities from
the architecture.

Quantitative follows the opposite direction compared to qualitative. Rather
than provide ways to generate the questions that will be asked during an eval-
uation about an architecture, this technique provides answers to questions
about particular qualities of an architecture. The classification includes met-
rics, mathematical modeling, simulations, prototypes and experiments.

Software metrics are quantitative methods that have proved to work in do-
mains such schedule, size and complexity, cost and quality. During architec-
ture evaluation common measurements include cyclomatic complexity, cohe-
sion and coupling.
Simulation techniques could be used to assess performance and a prototype
might be the model. Simulation and prototype techniques are used to compli-
ment answers during a review or as evidence to support the architecture.

Now, evaluation can be performed during three different stages: early, mid-
dle and post-deployment. The stages reflect a iterative development process.

In the early stage, the only aspects that can be evaluated are architectural
decisions and preliminary choices. During the middle stage some architectural
design has been materialized as part of an iterative process and the evaluation
is done at any time after the first iteration. The last stage, post-deployment, oc-
curs once that the system has been designed, implemented and deployed. At
this point, the model and the system are available and by meaning of map-
ping and comparison can be deducted whether the implemented architecture
matches the planned architecture.

Which evaluation technique should be applied cannot be answered with
precision. However, there are some recommendations: if some prototype, ex-
periment or simulation was done during the development process, then this
could be shown during an evaluation as part of evidence and to address spe-
cific questions. For example if performance simulations were executed during
development process.
For a company that has no high experience performing evaluation practices,

74 CHAPTER 5. ARCHITECTURE

the point to start might be to build some scenarios. Having a collection of
scenarios would increase the expertise on the field and later on some transfor-
mation should be done from scenario-based techniques to questionnaires and
checklists.

An example on using metrics during the architecture evaluation would be
while the developers are implementing the system. In this scenario, the de-
velopers have immediate comparison between the source code model and the
high level model (architectural design). Violations to the high level model would
be identified during implementation. Necessary corrections would be applied
during early stages. This evaluation is rule-based and it is explained in static
evaluations section.

5.2.2 Evaluation process

The process to be followed is decomposed of mainly three parts according to
[SF94]:

Analysis of all elements that will permit the understanding of the evalua-
tion context. There are two types of evaluations: planned and unplanned. The
first type is part of the project plan and the budget, this tends to be preventive
and constructive at the same time. The unplanned evaluation can be seen as
the existence of some trigger to perform it, let’s say the usage of resources
deviates from the plan. The participants of such evaluation are one element to
consider. Representatives integrated by the architect, designers from the ma-
jor components, stakeholders and the evaluation team. It has been suggested
by [Abo97], that the evaluation team should be external to the organization.
The purpose of the evaluation is another element and it needs to be clearly
specified including all the goals and requirements so the scope of the same
can be kept under control. As precondition, the preparation of material needs
to be done.

Execution is the second part. This part refers to the execution of the eval-
uation and follow up of the activities by keeping tracking of all the issues and
requirements being reviewed. It is recommended, as a good practice, to set
some priority on each requirement. During the presence of a serious issue
concerning the requirements, a valuation of modifying either the requirement
or architecture takes place. It is important to notice, the modification of a re-
quirement would be done only when it is possible and usually are fixed and
cannot be negotiated. This leads to modification of the architecture to fit the
requirements. When the architecture needs to be changed, this would mean
that conflicting requirements are being solved.

Results are the last part of the evaluation process. The results include
a formal report, enhanced documentation, preliminary system predictions and
ranked issues.

5.3. ARCHITECTURE EVALUATION 75

5.3 Architecture Evaluation

The aim of performing evaluation at architectural level is to provide robust sys-
tems conforming not only functional requirements but also those requirements
of the type non-functional. An evaluation is able to determine how adequate is
the architecture in question for its intended purpose. This allows better quality,
maintainability and scalability among other benefits.

Every system has an architecture, but not in all the times the architecture is
defined and explicitly thought about. Part of the architecture delivery process
should include testing it as early as possible to circumvent potential issues that
might occur. For example, usage of tools to get useful quality metrics to tune
up the code when necessary and provide changes. The idea for optimizing
would be to take some metrics before and after changing something to see that
the optimization made a significant effect. Taking metrics are necessary be-
fore any change is applied. Otherwise, the optimization cannot be measured.
This section explains some of the evaluation techniques. Scenario-based is
introduced and all the types of measuring techniques are covered.

5.3.1 Architectural assessment techniques

The transformation from requirements to architectural design seems to be less
formalized than the other phases of rational engineering which follow method-
ological and technical support. This method deals with requirements which are
directly influenced by the architecture of the system. On this case, the archi-
tecture evaluation is performed by means of simulation, reasoning, scenarios
and mathematical modelling. The evaluation is applied over the functional and
non-functional requirements (NFR) by improving the architecture using certain
transformations in its design until the quality attributes or system properties
are fulfilled. Functional requirements define a function from the software sys-
tem or one of its components, so it is application oriented. NFR specify the
criteria that can be used to judge the qualities of the system that are relevant
for the development (i.e. maintainability, reusability, etc.) and the operation
of the system (i.e. performance, fault-tolerance, etc.). Since the NFR cannot
be matched to some part of the software system, the relation with the func-
tional requirements is to impose constraints in the design or implementation.
All the software systems need to comply with multiple NFR. Available design
methods [JCJv92] only shed some light on achieving the system functionality
without considering NFR. Due to this lack of support on the design methods,
there exists a great risk of systems not compelling with the specified proper-
ties.

The goal of the method proposed by Bosch and Molin is to iteratively as-
sesses whether an architecture supports each of the NFR and improves the
architecture using transformations until all the NFR are fulfilled. The idea of

76 CHAPTER 5. ARCHITECTURE

software engineers generally will not design a system less
reliable or reusable, the non-functional requirements are
not explicitly addressed at this stage. The result is a first
version of the application architecture design. This
design is evaluated with respect to the non-functional
requirements. Each NFR is given an estimate in using a
qualitative or quantitative assessment technique. The
estimated NFR values are compared to the values in the
requirements specification. If all estimations are as good
or better than required, the architectural design process is
finished. Otherwise, the second stage is entered:
architecture transformation. During this stage, the
architecture is improved by selecting appropriate NFR-
optimising transformation. Each set of transformations
(one or more) results in a new version of the architectural
design that is fed back to the earlier stage in the process.
This design is again evaluated and the same process is
repeated, if necessary, until all NFR are fulfilled or until
the software engineer decides that no feasible solution
exists.

functionality-based
architectural design

estimate
NFR values

requirement
specification

application
architecture

architecture
transformation

NFR-optimizing
solutions

not OK

OK

Figure 2. Outline of an architectural design method

The fact that the method is iterative is not novel. Some
design methods for one-NFR based systems, e.g. real-
time or performance engineering, follow a similar
iterative process. For instance, [25] defines a similar
method for performance engineering but Smith only
considers performance.

Experiences
The architectural design method has been applied, in
various forms, in three projects, i.e. for fire-alarm
systems [15], measurement systems [4] and dialysis
systems. Our experiences are that the method does not
constrain the creative process during the initial design
stages, but, on the other hand, explicitly supports the
software engineers.

In the following sections, the individual stages of the
method are described in more detail and examples are
presented.

FUNCTIONALITY-BASED ARCHITECTURE
DESIGN
Based on the requirement specification, the top-level, i.e.
architecture, design of the system is performed. The main
issue during this phase is to identify the core abstractions
based on which the system is structured. Although these
abstractions are modelled as objects, our experience is
that these objects are not found immediately in the
application domain. Instead, they are the result of a
creative design process that, after analysing the various
domain entities, abstracts the most relevant properties
and models them as architecture entities. Once the
abstractions are identified, the interactions between them
are defined in more detail.

The process of identifying the entities that make up the
architecture is different from, for instance, traditional
object-oriented design methods [2]. Those methods start
by modelling the entities present in the domain and
organise these in inheritance hierarchies, i.e. a bottom-up
approach. Our experience is that during architectural
design it is not feasible to start bottom-up since that
would require dealing with the details of the system.
Instead one needs to work top-down.

Architecture entity identification is related to domain
analysis methods. However, different from these
approaches, our experience is that the entities resulting
from architecture design are generally not found in the
domain. For instance, the architecture of the dialysis
system consists of two primary entities, i.e. devices and
controllers. A concrete dialysis machine, however,
consists of sensors, such as temperature and concentrate
sensors, and actuators, such as heaters and pumps. The
identified abstractions are not related in a straightforward
way to the concrete entities in a dialysis system. A second
difference between architecture design and domain
analysis is that the architecture of a system generally
covers multiple domains.

ASSESSING NON-FUNCTIONAL
REQUIREMENTS
One of the core features of the architectural design
method is that the non-functional properties of a system
or application architecture are explicitly evaluated during
architecture design; thus without having a concrete
system available. The traditional approach in software
industry is to implement the system and then measure the
actual values for the non-functional system properties.
The obvious disadvantage is that potentially large

Figure 5.2: Architectural design method

the method can be seen in Figure 5.2 [BM99]. The process is based on
certain inputs and outputs and works as follows: the requirements specifica-
tion is the first input to be considered and as a result the architectural model
(known as functionality-based architectural design) is being output, which it will
be implemented later on to have the application architecture. At this level, the
design is evaluated against specified NFR. For each NFR, an estimate is given
which can be compared to the values in the requirements specification. If all
the obtained estimations are greater or equal than those from the specifica-
tion, then the process is finished. Otherwise some transformation needs to be
performed on the application architecture and the comparison is effectuated
again until the estimations comply. As it can be seen, this is performed itera-
tively. When many iterations are done without complying the estimations, the
evaluation could give as a result an inform stating that no feasible solution can
be obtained.

Now, an estimation on the NFR has been mentioned and some measuring
techniques are used for assessing the NFR and the approaches are: scenar-
ios, simulation, reasoning and mathematical modelling.

Scenario-based technique develops a set of scenarios to materialize the mean-
ing of the NFR and needs two different sets: one for the design and an-
other version for the evaluation. The estimation of the NFR can be based
on the radio between the succeed and failed scenarios. This evaluation
is frequently used for properties such as maintainability and flexibility.
This technique is explained in detail in the next section since it is used in
the Architecture Trade-off Analysis Method.

Simulation technique divides the component into two groups. The first group
is conformed with the main components, which must be implemented.
The second group is indeed simulated. The result is an executable sys-

5.3. ARCHITECTURE EVALUATION 77

tem which can be used in a simulated context to evaluate the application
behavior under different circumstances. It is important to notice, that the
simulation defines a precise interaction and behavior from the architec-
ture and it is frequently used to evaluate performance and fault-tolerance.

Mathematical modelling is seen as an alternative to simulation and allows
static evaluation of architecture. When a mathematical model is given,
the evaluation consists to describe the system accurately.

Reasoning , also known as objetive reasoning, is the last from the list and
goes out of the scope from this report. It is based on logical arguments
from experienced software engineers.

To summarize, once that the system has been implemented, some testing is
performed in order to determine whether the NFR are fulfilled. When this goal
is not achieved, components from the system need to be redesigned in an
iterative process.

5.3.2 Scenario-based: ATAM

Architecture Trade-off Analysis Method (ATAM) was developed by the Software
Engineering Institute [KKC00] and is a scenario-based method for assessing
NFR such modifiability, portability, extensibility and so on. The purpose is
to involve the stakeholders in order to acquire the architecture by analyzing
the business goals (functional and non-functional requirements) and the list of
quality attributes used to generate scenarios.

Quality Attributes Architectural Approaches

Analyze
{Map Scenarios with Architectural Decisions}

Trade Offs, Sensitive Points,
Risks, Non Risks

Figure 5.3: Architecture Trade-off Analysis Method

The process is illustrated in Figure 5.3. It takes as input the business goals
and different architecture designs. The business goals are specified in form

78 CHAPTER 5. ARCHITECTURE

of scenarios and prioritized. Analysis of each scenario is performed by the
evaluation team, rating them by priority. The architecture is then evaluated and
potential risks, sensitivity points and trade-off points are identified. Some itera-
tions starting from the analysis step are performed. As a result, the evaluation
team summarizes and presents the findings to the stakeholders in the form of
scenarios based on the NFR and documented architectural designs. But how
to solve the problems is out of the scope from the method.

The benefits from the method are that the stakeholders have more understand-
ing on the architecture, the documentation from the architecture is improved,
communication between stakeholders is increased and mitigates risks in early
phase during life-cycle.

5.3.3 Static evaluations

The idea, similar to the architectural design method (Figure 5.2), is to com-
pare the planned architecture model with the implemented source code model
by mapping both representations.
The models are either postulated from the architectural design or obtained
from the source code and both are composed of elements and relations in be-
tween. For each relation and model element, there will be a classification

Figure 5.4: Static evaluation mapping

based on three types: the convergence, divergence and absence (see Figure
5.4). The convergence means the existence of the relation between the pair of
components (A,B) and (a,b) from both models. Divergence specifies the lack
of relation (A,B) since it was implemented but not planned. Finally absence
states the missing relation (a,b) which was not found in the code.

The evaluation is performed iteratively having as a result individual or com-
bined modification in the architectural design, the source code or the mapping.
The purposes to effectuate a static evaluation are consistency, completeness,
evolution control, reuse potential, re-documentation, product alignment, com-
ponent adequacy, product line potential, comprehension and structure.
For example, comprehension has the purpose of understanding the software
system from a high level of abstraction by comparing planned and implemen-
tation models. Consistency worries about comparing documentation from the
already implemented system and the architectural level by comparing whether

5.3. ARCHITECTURE EVALUATION 79

the current documentation is being updated and it is still valid or if maybe it
followed different direction. Reuse potential, selected as a last purpose being
exposed, evaluates the elements of the architecture to determine if these could
be used within a product line. But these elements cannot be used directly, as
there were not implemented for the product line, so the degree of dependen-
cies between the desired elements and the new components determine the
cost of reusing the candidate and will conduct to a decision.

Some of the benefits from static evaluation are the detection in the code
of violations to the architecture, allowance of early decision about architectural
problems and the possibility to communicate flaws to the architecture when
they appear between architects and developers.

Static evaluations being applied are the reflexion model [MNS01], relation
conformance rules [TCL04] and component access rules [Pos03].

Reflexion model requires two models: information extracted from the
source code and the planned architecture. The model is called reflexion be-
cause it shows where the architecture being planned agrees with and differs
from the source code model, extracted of the source code. The mapping be-
tween the high level model (planned architecture) and source code model as-
sociates entities from one model with the other. This model can be easily
understood by looking again at the Figure 5.4. The high level model has the
planned components and their relations. Relation is a dependency between
two components. The relation can be of classified as convergence (both mod-
els match to each other), divergence (the relation only is present in the source
code model) or absence (the relation only was intended and planned in the
high level model). The result is the synopsis of the source code from the point
of view of the high level model.

Relation conformance rules identify same errors as the reflexion model,
but the mapping is performed without manually intervention. The difference
relies on specifying forbidden or allowed rules between the relation of pair
components.

Component access rules is based on architectural rules. Rules express
conditions in multiple relations and not only one relations like the reflexion
model does. The rules being used are defined using the Relation Partition Al-
gebra (RPA). The process starts by creating architectural rules, which are for-
malized using RPA. Mapping associates entities between source code model
and high level model. An extraction from the source code is performed and
from there an abstraction of the components and relations is lifted. Verification
is the next step to search for architectural violations, which are converted to
source code violations. The final step presents the results.

80 CHAPTER 5. ARCHITECTURE

5.4 Tools for Static Architecture Evaluation

To ensure that the code complies to the architectural design, static evaluations
can be performed by the usage of tools. These tools are based in comparison
principles between the real model (extracted out of the source code) and the
hypothetical model (extracted from the described architecture) and will try to
identify convergence, divergence or absence.

5.4.1 SAVE Tool

The Software Architecture Visualization and Evaluation (SAVE) is an Eclipse
plug-in developed at Fraunhofer IESE that is described in detail in [MFK+04]
and [NFKM05].The SAVE tool is based on the reflexion model. The computa-
tion being done is a comparison between the source code model and the high
level model (extracted out of the components, which describe the architecture)
to identify differences between these two sets.

Process starts with the creation and handling of the input models (source
code and high level). From there, the extraction of facts such call relations,
variable usage and others is performed in automated way. The resulting in-
formation is mapped to the high level model. This information describes the
relations between the source code and the components and the result is pre-
sented.
The purpose of the evaluations differ in their goals, reasons behind the evalu-
ation and their influence in subsequent development steps.

An example of evaluation could be architecture compliance checking. Com-
pliance checking refers to determine how adequate a specific architecture is
for its intended usage and some purpose of the evaluation would be to de-
tect violation to the relation system-architecture. For this task the tool de-
rived some criteria for the comparison, based on the Goal-Question-Metrics
approach [BCR94]. Some of the criteria being derived is listed below:

Evaluation Performance. Time required to compute the evaluation, which
depends directly on the implementation and number of involved elements and
their relations.

Defect Types. Describe classes of defects detected by the evaluation (i.e.
broken information hiding, unintended dependencies, misuse of patterns, etc).

Maintainability. Captures the robustness of the architecture compared to
the source code evolution.

Transferability. How the products being created could be reused when
evaluating another version from the system.

Scalability. Captures the degree to handle large systems.
Ease of Application. Captures subjective experience from the creators of

the tool composed of three levels: intuitiveness, iterations and learning curve.
The first rates how easy could an analyst apply the approach going from low,

5.4. TOOLS FOR STATIC ARCHITECTURE EVALUATION 81

medium and high; learning curve rates how much effort is required for an ana-
lyst to learn and apply an evaluation with useful results from low to high. The
scale for iterations is yes and no.

Multiple View Support. There are many views from the static structure of
the system, here captures how easy is to interpret several views and finding
commonalities and variabilities.

The advantage of this tool during development process is the continuous ar-
chitecture evaluation. The feedback about the status of the high level model
and the source code model is continuous. The evaluation of architectural
conformance during implementation closes the gap between early and post-
deployment stages.

5.4.2 SonarJ Tool

SonarJ helps to manage and monitor the logical architecture and the technical
quality of systems written in Java. It is based on static analysis and helps to find
deviations between the architecture and the code. It can be used to maintain
metric based software quality rules which will keep complexity under control.
All the metrics are aggregated to the higher level and they can be seen in
the logical architecture. Process starts by defining the logical architecture

Figure 5.5: SonarJ Tool: metrics view

and mapping it to the source code of the system, both tasks are performed
manually. Next, it follows the parsing, analysis and reporting (all of them are
automated tasks). During analysis, all the internal dependencies are verified
and it is checked if they conform to the rules defined in the architecture. Each
violation is reported. Also cyclic dependencies between packages are verified.

82 CHAPTER 5. ARCHITECTURE

Most of the dependency information is gathered by analyzing the compiled
class files. The reporting contains statistics, metrics for the project and a list of
remaining architecture or threshold violations. Metrics being displayed cover
coupling, cyclic package dependencies, size of the project and consistency
problems in the architecture definition among others (See Figure 5.5).

5.5 Discussion

Architecture evaluation represent additional aid during design and develop-
ment phases and it should be included in the life-cycle as a good practice.
Evaluation being done during early phase from the life-cycle could show flaws
or differences in the architectural design. It verifies that the requirements are
fulfilled. Also the evaluation focuses in reviewing whether the systems aligns
with the specification requirements. For example, evaluation can be helpful
when relevant changes to the implementation (i.e. due to the evolution) could
affect the architecture. Nowadays, architecture evaluation is getting more rel-
evance in the industry and researchers are making an effort to establish and
create methods to evaluate architectures, showing for example strengths and
weaknesses from the system. The current techniques seem to be effective,
based on the different purpose being followed. But in general, the different
techniques require between mid and high level of expertise. At the moment, it
does not exists an evaluation widely used, all the organizations follow their own
procedures to evaluate architectures of the product, even when the techniques
have similitudes among them. The experience with architecture evaluation in
the industry it is presented in a lessons learned report by [Abo97].

5.6 Conclusion and related work

The paper presented different architecture evaluation methods. These meth-
ods together represent an evaluation framework that, when used appropriately,
facilitates the software evolution. The architectural assessment techniques
and ATAM focus on the high level implementation of the architecture and can
be applied before and after the implementation phase.

Static evaluation, supported by existing tools, proves to contribute on archi-
tecture improvement and further development since it requires to understand
and assesses architectural and implementation aspects. Since this evaluation
is based on mapping between two models, namely planned and implemented,
the comprehension of relationships between these two models and the anal-
ysis to have them looking alike can be seen as one advantage. Immediate
comparison between both models can be achieved and possible violation to
the architecture could be identified.
The work from this paper is related mainly to a number of research activities.

BIBLIOGRAPHY 83

Bibliography

[Abo97] Gregory Abowd. Recommended Best Industrial Practice for Soft-
ware Architecture Evaluation. SEI, 1997.

[BCK03] Bass, Clements, and Kazman. Software Architecture in Practice
(2nd edition). Addison-Wesley, 2003.

[BCR94] Victor Basili, Gianluigi Caldiera, and Dieter Rombach. The Goal
Question Metric Paradigm. Encyclopedia of Software Engineering
(Marciniak, J.J., editor), Volume 1, 1994.

[BM99] Jan Bosch and Peter Molin. Software Architecture Design: Evalua-
tion and Transformation. IEEE, 1999.

[CKK01] Paul Clemens, Rick Kazman, and Mark Klein. Evaluating Software
Architectures: Methods and Case Studies. Addison-Wesley Pro-
fessional, 2001.

[IEE00] IEEE. Recommended Practice for Architectural Description of
Software-Intensive Systems. ANSI/IEEE Std 1471-2000, 2000.

[JCJv92] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard. Object-
oriented software engineering. A use case approach. Addison-
Wesley, 1992.

[KKC00] Rick Kazman, Mark Klein, and Paul Clements. ATAM: Method for
Architecture Evaluation. SEI, 2000.

[MFK+04] P. Miodonski, T. Forster, J. Knodel, M. Lindvall, and D. Muthig.
Evaluation of Software Architectures with Eclipse. IESE-Report
107.04/E, 2004.

[MNS01] Gail Murphy, David Notkin, and Kevin Sullivan. Software Reflexion
Models: Bridging the Gap between Source and High-Level Models.
IEEE, 2001.

[NFKM05] M. Naab, T. Forster, J. Knodel, and D. Muthig. Evaluation of Graph-
ical Elements and their Adequacy for the Visualization of Software
Architectures. IESE-Report 078.05/E, 2005.

[Pos03] A. Postma. A method for module architecture verification and its
application on a large component-based system. Information and
Software Technology 45(4), 2003.

[SEI] SEI. http://www.sei.cmu.edu/architecture/start/definitions.cfm.

[SF94] Joseph Sunjoe and Sisti Frank. Recommended Best Industrial
Practice for Software Architecture Evaluation. SEI, 1994.

[TCL04] R. Tvedt, P. Costa, and M. Lindvall. Evaluating Software Architec-
tures. Elsevier Science, 2004.

84 CHAPTER 5. ARCHITECTURE

Chapter 6

Usability Metrics

Holger Hoffmann

Contents
6.1 Introduction . 86

6.1.1 Goals . 86
6.2 Foundations: Usability . 87

6.2.1 ISO/IEC standards . 87
6.2.2 Evaluation with users 88
6.2.3 Evaluation without users 88

6.3 Usability evaluation process 88
6.4 Usability evaluation without users 89

6.4.1 Model Driven Architecture 89
6.4.2 Usability model . 90
6.4.3 Usability metrics . 91
6.4.4 From values to decisions 94
6.4.5 Usability report . 95

6.5 Evaluation with users . 95
6.5.1 Example evaluation 96

6.6 Limitations . 97
6.7 Conclusions . 98
Bibliography . 98

85

86 CHAPTER 6. USABILITY METRICS

Abstract: Usability metrics are used to assess various usability aspects of
a software product. The evaluation can take place with users in an empirical
study or without users in an automated way. The obtained values are the
basis for usability reports that may suggest useful improvements or design
changes.

6.1 Introduction

As software is used in more and more domains of everyday life, quality of soft-
ware has become increasingly important. This is especially true for usability
which is one of the critical factors for a product to be actually used and to be
effective [FIA09a].

Usability metrics permit measuring certain aspects of usability in a clearly de-
fined way. Since usability is first of all an abstract concept comprising many
different facets [AI06], we must decompose usability into measurable entities.
This is achieved by quality definition models for usability, also called usabil-
ity models (see section 6.2.1). They define the required sub-characteristics.
Then metrics based on cognitive science and research on Human Computer
Interaction (HCI) are applied to obtain values. As in other metrics processes,
these values form the basis for indicators and reports providing useful informa-
tion to the product developer about how to improve the product concerning its
usability.

6.1.1 Goals

The product’s usability should be continuously monitored during the develop-
ment process. In the early stages, models and code can be assessed. This
evaluation takes place automatically without end users. It provides early feed-
back for software designers and thus allows for early improvement long before
the final product becomes available.

Early evaluation also enables objective comparisons between alternate de-
signs [IH01]. This allows the developers to choose the appropriate alternative
at a time where design changes are still cheap. Since the evaluation is per-
formed automatically we need less time for usability checks, thus waste less
resources. If lacking expert knowledge in usability engineering we can still
evaluate a wide range of features.

Later in the development process when an advanced prototype is at hand us-
ability can be evaluated together with end users by conducting case studies.
This requires quite different metrics compared to those used in an evaluation
without users.

6.2. FOUNDATIONS: USABILITY 87

This paper is organized as follows: In section 6.2 different concepts of usability
are introduced accompanied with the main methods for evaluating. Section 6.3
briefly describes a usability evaluation process. Sections 6.4 and 6.5 describe
numerous applicable metrics in the context of some example evaluations. Fi-
nally, section 6.6 discusses current limitations, followed by the conclusions in
section 6.7.

6.2 Foundations: Usability

In order to measure usability a quality definition model must be established
that breaks down usability into its sub-characteristics. There are plenty of such
models described in the literature [AI06]. Some are defined from scratch but
most of them base upon certain ISO/IEC standards.

6.2.1 ISO/IEC standards

The most prominent among these standards are:

• ISO/IEC 9126-1 defines software quality in terms of product quality. The
usability characteristic is defined to be ”the capability of the software
product to be understood, learned, used, and to be attractive to the user
when used under specific conditions.” [ISO01]

• ISO/IEC 9241-11 (”Guidance on usability”) is applied primarily when eval-
uating usability together with users. Here, usability is defined as ”the ex-
tent to which a product can be used by specified users to achieve goals
with effectiveness, efficiency, and satisfaction in a specified context of
use.” [ISO98]

• ISO/IEC 25000 (SQuaRE) [ISO05] is the new standard introduced in
2005 that supersedes the ISO/IEC 9126 quality definition model. It mer-
ges different existing approaches to software quality definition into one
consistent model.

Based on these standards the usability models are defined in tree structures.
The sub-characteristics of the particular standard are further decomposed into
sets of attributes which are directly measurable [AI06]. The assessed entities
and applicable sub-characteristics and metrics differ significantly depending on
the evaluation type, i.e. with or without users. See section 6.4.2 for a concrete
model.

88 CHAPTER 6. USABILITY METRICS

6.2.2 Evaluation with users

When conducting an empirical study together with end users we are inter-
ested in usability problems related to subjective, perceptual, and conceptual
issues. When using software users develop a mental model [Nor88]. By figur-
ing out this model it is possible to detect for example potential misunderstand-
ings [IVA07]. To evaluate with users, the final product or at least an advanced
prototype is required.

This kind of evaluation focuses on external product quality and quality in a
specific context of use. The data is collected from entities like log files, video
observations, interviews, surveys, and questionnaires. We apply so called
testing metrics [SDKP06] on these entities. See section 6.5 for details.

6.2.3 Evaluation without users

Evaluations without users are performed on software models or final code.
In this context, predictive metrics are applied. They focus on internal quality
attributes which influence usability. They base on a claim like: A larger font
size will enhance readability and thus overall usability. [SDKP06]

The measures used are objective which is contrary to an evaluation with users
which yields subjective results. For example the minimum number of steps
needed to accomplish a certain task is independent of the user’s preferences.

Besides analyzing the source code (e.g. Java or web content) there is a new
field of research being established: Early evaluation proposes to perform the
evaluation directly on the models used in a specific development methodology
or CASE tool. In this way we may obtain preliminary results for usability very
early in the development process. When interpreting these values we get a list
of usability problems. These problems should be related directly to the models
they originate from so the models can be improved before code generation.
This method is particularly suitable for applications like database front-ends
and web information systems as these applications can easily be generated
from high-level models. See section 6.4 for details.

6.3 Usability evaluation process

The usability evaluation process is a typical measurement process following
the ”plan, do, check, act” pattern. It may consist of the following steps [FIA09b]:

1. Determine the purpose of the evaluation and the application type. De-

6.4. USABILITY EVALUATION WITHOUT USERS 89

pending on the specific users’ needs, select the relevant sub-characte-
ristics that the metrics will focus on.

2. Specify the artifacts to be evaluated (e.g. code or models). Select the
metrics with their appropriate calculation formulas. Establish some rat-
ing levels and criteria for global assessment. Determine the evaluation
output by designing usability report templates, for instance a table.

3. Describe the evaluation plan, for example hand out a tasks schedule to
the evaluator.

4. Execute the evaluation by applying the metrics, calculating the indicators,
and generating usability reports.

5. Analyze the results and the effect of possible changes made. If not sat-
isfied with the current usability results, select one of the proposed alter-
natives to improve the selected artifacts.

6.4 Usability evaluation without users

This section shows an example for early usability evaluation and the metrics
used in this context. As opposed to ”late” evaluation of source code early
evaluation focuses on usability evaluation directly on the underlying models
that are created very early in the development process.

6.4.1 Model Driven Architecture

Model Driven Architecture (MDA) is an approach to define these models and
their interrelations [MDA09]. The idea is to abstract from the concrete platform
and programming language to high-level concepts.

After requirements elicitation and system analysis a platform independent mo-
del (PIM) is created that contains conceptual models for e.g. the class structure
and functionality. The models that are relevant for usability are mainly the
navigation and presentation models.

Figure 6.1 shows how dependent on the platform used (e.g. Java) the PIM is
now transformed by a model compiler into a platform specific model (PSM) and
then into source code (Code Model, CM). This allows to develop the application
including the user interface (UI) in a platform-independent way.

Integrating the usability evaluation directly into the MDA development process
facilitates early usability evaluation directly on the constructed models [AI06].
To this end the PIM is evaluated using a usability model as described in section
6.4.2. This generates a list of potential usability problems. As these problems

90 CHAPTER 6. USABILITY METRICS

Figure 6.1: MDA development process [FIA09a]

originate directly from the PIM this list is called a platform-independent usability
report. The same technique can of course be applied to the PSM and CM alike,
generating a platform-specific or a final usability report respectively.

The reports provide the basis to improve the models. They also inform about
potential problems concerning the transformation rules themselves used by
the model compiler. These rules define how to translate the PIM into the PSM
and how to generate code based on the PSM. These transformations may also
affect the product’s usability [AI06].

The whole process is depicted in figure 6.2 for a web application. The numbers
(1),(2), and (3) mark the usability evaluations of the PIM, the PSM, and the CM.
The procedure of evaluating and improving the models should be repeated
iteratively until the severity of the usability problems detected is below some
threshold.

Figure 6.2: Integrating a usability evaluation process into an MDA development
process for a web application [FIA09b]

6.4.2 Usability model

The usability model for early evaluation proposed by Abrahão et al. [AI06] is
based on the ISO/IEC 9126-1 standard which defines five sub-characteristics:

6.4. USABILITY EVALUATION WITHOUT USERS 91

Learnability, understandability, operability, attractiveness, compliance. These
characteristics are expanded into a tree with many sub-characteristics result-
ing in more than 50 measurable attributes. For example the understandability
sub-characteristic lists legibility which is further decomposed into font size,
contrasting text, and disposition.

In order to actually use the model in an evaluation it must be operationalized,
i.e. we have to associate quantitative and/or qualitative metrics to each model
attribute. HCI research [BS93] suggests which metrics are qualified to mea-
sure which attribute. A metric definition identifies a set of variables in the re-
spective model (PIM, PSM, or CM) and then specifies a mathematical function
with these variables as parameters. The function then yields a value for the
attribute. This value needs interpretation as shown in section 6.4.4.

It is observed: The higher the abstraction level of the assessed model, the
less measurable usability attributes are there. The reason for this is that some
attributes are only available after certain platform-dependent UI details are
known [FIA09b].

6.4.3 Usability metrics

There is a vast number of usability metrics that have been developed in the last
two decades [CRP05]. However it is not clear whether one of those metrics
is appropriate for use in a specific evaluation context. Calero et al. [CRP05]
gathered many of the known metrics and conclude that only few of them have
been validated theoretically or empirically. Often there is little evidence that a
metric measures the usability property we want it to measure. Moreover most
metrics lack sufficient guidelines for use. This means the application of many
metrics is ”difficult and risky” and it is ”dangerous to base decisions on their
values” [CRP05].

The solution is to resort to a validated usability model in combination with val-
idated metrics. Clear relationships between attributes and model variables
must then be established. Finally a clear evaluation process needs to be ad-
hered. Like all metrics, also the usability metrics should be analyzed if they
meet the SQuaRE-criteria [ISO05]: There must be precise information about
the metric’s purpose, interpretation, measurement method, measured artifact,
and validity evidence. Particularly, a metrics definition must specify [FIA09a]:

Applicability To which model (PIM, PSM, and/or CM) can the metric be ap-
plied? Is it usable directly on the abstract models or do we need platform-
specific implementation details for measurement? For example the visi-
bility of selections in list boxes is determined by the window system style
used so the PIM does not contain any information about that property.

Measurement method A mathematical formula that takes variables from the

92 CHAPTER 6. USABILITY METRICS

respective model as input parameters and yields a value on the scale.
For example the color contrast between two colors C1 and C2 in RGB-
format could be measured by∑

i∈{R,G,B}

|C1(i)− C2(i)|

Scale The range of values the formula can yield. The color contrast is e.g.
a real number ≥ 0. Depending on the type of the scale (categorical,
ordinal, interval, or ratio scale), different mathematical constraints apply
when working with these values. The color contrast is on a ratio scale, so
it is allowed for example to calculate the ratio between to color contrasts.

Interpretation The correlation between the obtained value and the usability
attribute. In the color contrast example this would be ”the larger, the
better”. Later ranks can be introduced to obtain indicators (see section
6.4.4).

Here are two examples for usability metrics and their associations to attributes
of a usability model for early evaluation:

• In order to prevent data entry errors when the user enters numerical
data into a form, min/max-properties for fields should be defined in the
PIM model. The metric calculates the proportion of defined min/max-
properties for data entry fields [AI06]. The scale is a ratio scale with a
value range within the interval [0,1], the interpretation is ”the larger, the
better”, the affected usability model sub-characteristic is operability, the
attribute is data validity.

• The keystroke-level analysis is a metric on the Code Model that mea-
sures task complexity, user workload, and long-term memory require-
ments [IVA07]. It counts the number of actions and time needed per
action for a given task, e.g. ”add a new client to the database”. It divides
the task into elementary actions (see table 6.1). This metric is difficult to
automate because the individual steps must be determined manually.

Table 6.1: Keystroke-level analysis example (based on [IVA07])
1. Recognize the ”client” label (0.34 s)
2. Move the mouse to the ”client details” icon and click it (1.5 s)
3. See the action result: A new screen shown (0.23 s)
4. Recognize the ”add client” label (0.34 s)
5. Click on ”add client” (1.5 s)

and so on...

6.4. USABILITY EVALUATION WITHOUT USERS 93

In the literature one of the prevalent application areas of usability evaluation is
web application development [FIA09b] [MT07] [PCFV+08a].

The traditional models for building web information systems (WIS) are naviga-
tional maps and a presentation model. The navigational map is comparable to
a directed graph whose nodes represent web pages the user can see in the
browser whereas edges represent clickable links between those pages. On
the other hand, the presentation model defines the visual properties for infor-
mation display [PCFV+08a]. Data can be arranged by layout patterns like a
tabular or a tree, as well as scrolling mechanisms and ordering criteria.

The usability model for early evaluation of web applications may be defined
similarly to the one used when evaluating e.g. a database front-end appli-
cation [FIA09b]. The following usability metrics assess the complexity of a
navigational map [FIA09a]:

• The metric breadth of a navigational map counts the number of pages in
the navigational map within the PIM model. The scale is an interval scale
with values from the natural numbers, the interpretation is ”the larger the
value of the metric, the harder it is for the user to understand the function-
alities of the Web application.” The affected usability sub-characteristic is
user guidance with its attribute navigability.

• The metric depth of a navigational map calculates the longest distance
from the ”home” page to a leaf navigational target in the navigational map
within the PIM model. The scale is again an interval scale with values
from the natural numbers, the interpretation is ”the larger the distance
of a leaf navigational target from the root, the harder it is for the user to
reach it.” Again, the affected usability sub-characteristic is user guidance,
attribute navigability.

The following metric evaluates an aspect of the presentation model.

• A web application should always use the same font for the same pur-
pose, e.g. a heading or a link [FIA09b]. The metric number of different
font styles for textual links counts the number of font style combinations
(size, face, and color) used for these links [FIA09b]. The scale is a non-
zero natural number, the interpretation is ”more than one style combina-
tion [...] means that font style uniformity is not insured” [FIA09b]. The
affected sub-characteristic in the web usability model is attractiveness,
the attribute is font style uniformity.

Section 6.4.4 will show how to interpret the values generated by this metric.

Molina et al. [MT07] use an approach that does not rely on a complex usability
model. When measuring usability they focus on the complexity of the naviga-
tional map. They define eight types of requirements on the navigational map

94 CHAPTER 6. USABILITY METRICS

that can automatically be inspected by simple metrics. For instance, they allow
to define a maximum distance constraint between pairs of nodes which cor-
responds to the number of links one has to click until reaching the other web
page. Another metric measures whether two pages are directly or indirectly
connected or whether one must cross certain nodes (i.e. pages) when one
wants to reach a target page (for example a log-in page must be shown prior
to reaching a page displaying private messages). However, these constraints
must be defined manually and for each single application.

6.4.4 From values to decisions

All the presented metrics yield some numerical or categorical values on a de-
fined scale but up to now the value’s meaning is unclear. Therefore the next
step is to introduce indicators that interpret the values. The combined indica-
tors create an information product and thus a base for decisions. [ISO07]

For instance consider the metric depth of a navigational map from the previous
section. HCI research indicates that the depth of such a navigational map
should be lower than 5 to be acceptable [FIA09a]. In this case the indicator
for the attached usability attribute is ”good” or ”no usability problem”. Values of
above 4 lead to ”bad” or ”usability problem detected”. In this case the usability
report will contain an entry for this problem (see section 6.4.5).

Apart from boolean values, the indicator can also be on an extended qualitative
scale. The metric that counts the number of different font styles for text links in
web applications (section 6.4.5) is mapped to the following ranks [FIA09a]:

Value Rank
1 no usability problem
2 low usability problem
3 medium usability problem

> 3 critical usability problem

A different way of defining ranks is to use a generic scale like (very good,
good, medium, bad, very bad) [PCFV+08a]. For each metric we can define
intervals that map values of the metric’s scale to these 5 indicators. Thus we
can automatically construct a global usability result in a simple way.

The indicators for attributes of the usability model are now combined to form
indicators for a sub-characteristic, and these are again combined for overall us-
ability. This can be done e.g. by a rewriting terms scheme [PCFV+08a]. Com-
bining ”very good” and ”very bad” yields ”medium”, for example, and ”good”
and ”good” yield ”very good”. That is similar to term rewriting rules:

6.5. EVALUATION WITH USERS 95

Combination(VG,VB) → M
Combination(G,G) → VG

This way of indicator combination came under criticism during empirical stud-
ies [PCFV+08b]. Simply averaging the indicators does not necessarily reflect
the end users’ perception as negative usability is more significant to users than
positive. In other words, bad results prevail.

Another problem arises if the ranks of the indicators are too strict: If there is
only one step between good and bad the evaluation results do not correlate
well with the evaluation with users because of too high variance [PCFV+08b].
The authors of the study propose instead a ”fuzzy logic” or at least a somewhat
finer indicator scale.

Nevertheless indicator values with only a few ranks are expedient. They work
as a ”traffic light” so the evaluator quickly gets a hint where usability problems
are located and where to improve the application.

6.4.5 Usability report

A usability report contains the usability indicators for all the sub-characteristics
and attributes. It also includes a list of the usability problems found. The
format of such a report was defined during the evaluation process schedule
(see section 6.3). Table 6.2 shows an example for an entry in the report. In
this case there were multiple font styles used for links in a web application
which affects the attractiveness sub-characteristic with its attribute font style
uniformity.

Table 6.2: Example for an entry in the usability report (based on [FIA09b])
Usability problem ID UP001
Description The links A,B,C are displayed in a font style that is

different from the font style of the D link.
Affected attribute Attractiveness / font style uniformity
Level Low (rating level: 2)
Source of the problem Presentation Model (PIM model)
Occurrences 2 occurrences (top menu and left menu)
Recommendations Change the font style properties for the links A,B,C

in the Presentation Model.

6.5 Evaluation with users

In the later stages of the development process, when the final product or at
least an advanced prototype is available, the focus of usability evaluation shifts

96 CHAPTER 6. USABILITY METRICS

to empirical studies together with end users. As already mentioned in the
foundations section these studies can reveal usability problems related to sub-
jective perception.

The first step within such an empirical study is to prepare the evaluation means,
e.g. design interviews, surveys, and questionnaires. All means must meet
some special requirements that make sure the obtained results will be signifi-
cant. These requirements originate from descriptive statistics and are common
to psychological studies: The usability model must be checked for validity and
reliability [PCFV+08a] so the applied metrics will yield values that represent
the user’s actual perception and opinion.

There are many usability models especially for evaluation with users [SDKP06].
Seffah et al. [SDKP06] tried to unify the available models by proposing a
usability measurement model called Quality in Use Integrated Measurement
(QUIM). It consists of 10 factors (efficiency, effectiveness, productivity, satis-
faction, learnability, safety, trustfulness, accessibility, universality, usefulness),
26 sub-factors or measurable criteria, and 127 testing or predictive metrics.

When evaluating usability with users, no predictive metrics are required since
the evaluation assesses the actual usability perceived by the user. So only
testing metrics are applied. They can be classified as [SDKP06]:

Preference metrics that quantify subjective evaluations, preferences, and the
level of satisfaction of end users or

Performance metrics that measure the actual performance of users when
accomplishing a task in a certain context.

6.5.1 Example evaluation

The following example delivers insight into a usability evaluation of a web ap-
plication within an empirical study together with end users [PCFV+08a]. The
goal of the study was to examine the difference between the user’s perceptions
of usability and the results from the early evaluation method.

At first, the users had to fill out a demographic questionnaire asking for gender,
education level, and professional experience. Then the participants got a list
of tasks they had to accomplish using that application they never used before.
If a user got stuck he or she could ask for assistance. The testing metrics used
in the study were based on video tapes and questionnaires.

The video recording informed about about the number of assists, the time
needed, and error and completion rates per task. The perception-based vari-
ables were retrieved by a questionnaire using a scale with 5 checkable points
from very good to very bad. The questions asked for screen factors, termi-

6.6. LIMITATIONS 97

nology and system feedback, learning factors, system capabilities, satisfac-
tion, and a global variable for overall user reaction. Furthermore, there were
open questions, i.e. questions that offer the possibility to give detailed com-
ments. For example, the users were asked to ”list the three things” that they
”least/most liked in the application” in order to quickly determine the parts of
application needing a modification.

The results for usability evaluation with users can now be compared to the re-
sults when evaluating without users. As the next section will show this usually
reveals some limitations of early usability evaluation techniques.

6.6 Limitations

The study of Panach et al. [PCFV+08b] shows there can be significant differ-
ences between the internal usability measures from early evaluation and, on
the other hand, external measures such as the perceptions of the study parti-
cipants. The authors found that internal measures reflect only a portion of the
total usability measures, i.e. they are only a prediction of the system usability.
Many attributes can only be measured when the final system is available.

User preferences and misconceptions cannot be measured without manual
procedures such as user tests and interviews [IH01]. So when using auto-
matic evaluation only we cannot capture important qualitative and subjective
information. This may explain that internal attributes do not always represent
the usability perceived by the end-user [PCFV+08b].

In general, a usability evaluation may only cover a subset of possible user
actions. Moreover users are quite heterogeneous: Learnability, for example, is
mainly an issue for novice users. Evaluations can hardly give a universal result
for the usability of a system since there is no way to please all users [IVA07].
The solution to these problems is combining several different techniques such
as early, late, and user-centered evaluation [IH01]. Furthermore, the usability
models should be customizable to different user requirements [AI06].

Most related studies show how the usability of a small example application is
evaluated within a research project in cooperation with some university [IVA07]
[FIA09b] [PCFV+08b]. However, papers are missing describing the application
of automatic usability evaluation without users in a larger scale. This applies
in particular to industry applications.

Finally, there are various stand-alone tools that have been developed by re-
searchers to support the evaluation process like usability model editors and
automatic calculation of metrics values and indicators from models [MT07]
[IH01]. In most cases they are still waiting for integration in professional CASE
tools.

98 CHAPTER 6. USABILITY METRICS

6.7 Conclusions

This paper presented various techniques for continuous monitoring of software
usability during the development process. The author illustrated a usability
evaluation process (section 6.3) and usability models. He stated the peculiar-
ities of evaluations without and with users, and the applicable metrics in both
cases.

The paper showed that early evaluation of model-generated applications is
useful during the early stages of the development process as this helps to
guide developers in finding potential usability problems. Once the usability
model is set up and all model transformation rules have been defined, the
usability of the final product can be estimated within an automatic process.

However, early evaluation is not a substitute for evaluations together with end-
users when reaching the final product [IH01]. Empirical evaluation remains
important. Best results can be achieved when combining the existing methods
and using them along the development cycle when appropriate.

According to the authors of many articles further research is required in many
areas of usability evaluation. The metrics need to be theoretically or empiri-
cally validated and to be inserted into a detailed metrics catalog. Results of
evaluations without users and findings of empirical studies measuring similar
usability aspects should better correlate. Finally the aim is to gain experience
within large industry projects and to appraise to what extent the presented
techniques are indeed helpful to improve the product and to reduce costs.

Bibliography

[AI06] S. Abrahão and E. Insfran. Early usability evaluation in model
driven architecture environments. In Quality Software. QSIC
2006. Sixth International Conference on, pages 287–294, 2006.

[BS93] J. Bastien and D. Scapin. Ergonomic criteria for the evaluation
of human-computer interfaces, version 2.1. Institute National de
Recherche en Informatique et en Automatique (INRIA), 1993.

[CRP05] C. Calero, J. Ruiz, and M. Piattini. Classifying web metrics using
the web quality model. Online Information Review, 29(3):227–
248, 2005.

[FIA09a] A. Fernandez, E. Insfran, and S. Abrahão. Integrating a us-
ability model into model-driven web development processes. In
Web Information Systems Engineering - WISE 2009, volume
5802/2009, pages 497–510. Springer-Verlag LNCS, 2009.

BIBLIOGRAPHY 99

[FIA09b] A. Fernandez, E. Insfran, and S. Abrahão. Towards a usability
evaluation process for model-driven web development.
I-USED’09 Upssala, Sweden, 2009.

[IH01] M. Ivory and M. Hearst. The state of the art in automating usabil-
ity evaluation of user interfaces. ACM Comput. Surv., 33(4):470–
516, 2001.

[ISO98] ISO 9241-11, Ergonomic requirements for office work with visual
display terminals - Part 11: Guidance on Usability, 1998.

[ISO01] ISO/IEC 9126-1, Software engineering - Product quality - Part 1:
Quality model, 2001.

[ISO05] ISO/IEC 25000, Software Product Quality Requirements and
Evaluation (SQuaRE), 2005.

[ISO07] ISO/IEC 15939, Systems and software engineering – Measure-
ment process, 2007.

[IVA07] E. Iborra, J. Vanderdonckt, and S. Abrahão. Usability evalua-
tion of user interfaces generated with a model-driven architec-
ture tool. In Maturing Usability: Quality in Software, Interaction
and Value. HCI Series, pages 3–32. Springer-Verlag, 2007.

[MDA09] MDA. http://www.omg.org/mda, 2009. accessed 2009-12-10.

[MT07] F. Molina and A. Toval. A generic approach to improve navi-
gational model usability based upon requirements and metrics.
In Web Information Systems Engineering - WISE 2007, volume
4832/2007, pages 511–516. Springer-Verlag LNCS, 2007.

[Nor88] Donald A. Norman. The Design of Everyday Things. Basic
Books, 1988.

[PCFV+08a] J. Panach, N. Condori-Fernández, F. Valverde, N. Aquino, and
O. Pastor. Towards an early usability evaluation for web applica-
tions. In Software Process and Product Measurement, volume
4895/2008, pages 32–45. Springer-Verlag LNCS, 2008.

[PCFV+08b] J. Panach, N. Condori-Fernández, F. Valverde, N. Aquino, and
O. Pastor. Understandability measurement in an early usabil-
ity evaluation for model-driven development: an empirical study.
In ESEM ’08: Proceedings of the Second ACM-IEEE interna-
tional symposium on Empirical software engineering and mea-
surement, pages 354–356, New York, NY, USA, 2008. ACM.

[SDKP06] A. Seffah, M. Donyaee, R. Kline, and H. Padda. Usability mea-
surement and metrics: A consolidated model. Software Quality
Journal, 14(2):159–178, 2006.

100 CHAPTER 6. USABILITY METRICS

Chapter 7

Requirements Quality

Andrea Hutter

Contents
7.1 Introduction . 102
7.2 Background . 103

7.2.1 Requirement Engineering Process 103
7.2.2 Software Requirement Specification 103
7.2.3 Requirement Qualities 104
7.2.4 Measure, Measurement, Metric 105
7.2.5 Drawbacks . 105

7.3 Measurement Process . 106
7.3.1 Quality Measurement 106
7.3.2 Size Measurement . 108

7.4 Tools . 110
7.5 Discussion . 113
7.6 Outlook . 113
7.7 Conclusion . 113
Bibliography . 114

101

102 CHAPTER 7. REQUIREMENTS QUALITY

Abstract: Measuring a software requirement specification is an important
aspect in software development. Hereby it is possible to improve the re-
quirement specification and to provide the development workload. This pa-
per presents and analyzes different measurement techniques for requirement
documents. Different methods for quality and size measures like inspections
or the function point analysis are introduced. Furthermore existing tools to
support these measurement techniques are expounded.

7.1 Introduction

Nowadays, many technical devices rely on correct working software, since mal-
functions would render the whole device useless. Many standards are devel-
oped to assure this functionality by the International Organization for Stan-
dardization (ISO), the Institute of Electrical and Electronics Engineers (IEEE)
or other organizations. One of the most important standard for software de-
velopment is the ISO/IEC 12207 [ISO08], a standard that defines the software
lifecycle process. It is divided into different parts like development and main-
tenance, documentation or management. This paper describes an important
part of the development process: measurement of requirement engineering,
especially software requirement specifications.

To create a new software system, requirement engineers have to specify all
important requirements of the system. There are various functional and non-
functional requirements like technical or design requirements. To get an overview
of the software system it is important to collect all of these requirements in a
software requirement specification (SRS) that considers different documenta-
tion types. This SRS includes all mandatory functionalities, requirements and
system attributes for the software system and therefore it is mostly used as a
binding contract between customer and supplier. An understandable, readable
and unambiguous specification is therefore essential. Several metrics can be
defined to evaluate the given requirement specification. These can give an
overview of potential defects in a SRS and its quality (see 7.2.3). They may
also be used to predict the complexity of the development process.

In this paper we give an overview of several metrics and will describe and eval-
uate them. First of all fundamental informations are defined and described in
a background section. In section 7.3 we present the general idea of the whole
measurement process and two different measurement classes are identified:
quality and size measurement. In the following section measuring tools are
presented. Finally we give a short discussion about the given measures, an
outlook to other methods and conclude the topic.

7.2. BACKGROUND 103

7.2 Background

This paper deals with the requirement engineering process and how to mea-
sure its quality, therefore the following section will give background information
on the requirement engineering process, the main idea of software require-
ment specification qualities and the definition of measurement will be clarified.
Finally, the question ”why it is important to measure?” is addressed.

7.2.1 Requirement Engineering Process

The requirement engineering process includes conceptualizing, specifying and
validating the requirement specifications of a developing software system. Its
goal is to produce a stable, traceable and complete set of requirements [CL95].
This process is a part of the whole system development process and very
important for the later development. Hence, the results should be a high-
qualitative software requirement specification (SRS) without any defects.

7.2.2 Software Requirement Specification

The SRS is not only a collection of requirements but also a contract between
the system supplier and the customer. It can be composed by stakeholders
from both sides and it should provide all information that are necessary to build
the system and to draft the contract. The Institute of Electrical and Electronics
Engineers defined the SRS in the IEEE Std-830-98 [IEE98] as ”a specification
for a particular software product, program, or set of programs that performs
certain functions in a specific environment”. They defined the structure of the
SRS as follows:

• introduction (contains purpose, scope, definitions, references and overview
of the SRS)

• overall description (includes product perspective and functions, user
characteristics, constraints, etc.)

• specific requirements (all kind of requirements)

• supporting information (like table of content, appendixes and an index)

As mentioned above there are different types of requirements. The top level
derivations are functional and non-functional requirements.
A functional requirement describes all functions of a system which results can
be seen during the system operation. Therefore the in- and output is important
for a functional requirement. Other requirements like agility, maintenance or

104 CHAPTER 7. REQUIREMENTS QUALITY

design aspects are of no interest at this point. Functional requirements can be
specified in Use Cases and they can be measured with function points (see
7.3.2).
A non-functional requirement describes constraints which restrict the sys-
tem functionality (e.g. design (-draft), requirement to process, quality require-
ments). Non-functional requirements are normally written in natural language
and can be proved and measured by linguistic analyses and reviews (see
7.3.1).

A SRS can be written either in formal or informal language. It is common to use
the English language in a less formal way to assure understandability between
all SRS users. Nevertheless, there are some drawbacks given by a less formal
language as presented in 7.2.5.

Different types of documents like function documents, tables, modeling dia-
grams or Use Cases exist in a SRS. Use Cases are of great significance in
this paper so we will define them according to [LL07].

Use Case Use Cases (UC) describe system functionality from the user’s point
of view. The interaction between the system and its environment is de-
fined. Therefore at least one actor (user or external system) triggers an
event to reach a goal. A UC is goal-oriented and describes a concrete
system behavior with pre- and postconditions, the normal and special
cases to reach this goal. Normally the textual description is written in
natural language, but it is structured formally. It can be visualized in an
UML Use Case diagram.

A SRS should fulfill a high quality standard to secure a good development
process. Therefore we will define requirement qualities in the next section.

7.2.3 Requirement Qualities

A high quality SRS ”contributes to [a] successful, cost-effective creation of soft-
ware that solves real user needs” [DOJ+93]. To reach this goal there are sev-
eral quality aspects which should be followed. We present the most important
aspects according to IEEE Std. 830-1998 [IEE98]:

Complete A SRS is complete if and only if it contains every system require-
ment and no system functionality is left; every reference to tables, dia-
grams, figures and pages are set and there is no use of the phrase ”to
be determined” (TBD).

Consistent A SRS is consistent if and only if no requirement stated therein
conflict with another requirement of the SRS or any other document of
the system plan.

7.2. BACKGROUND 105

Correct A SRS is correct if and only if every requirement describes a condition
of the system.

Modifiable A SRS is modifiable if and only if changes in the specification can
be done easily, consistently and completely.

Ranked for importance and/or stability A SRS is ranked for importance/stability
if and only if the requirements are labeled by an importance/stability tag
that every reader can detect a ranked order easily.

Traceable A SRS is traceable if and only if the reference and origin of each
requirement is clear and easy to find.

Unambiguous A SRS is unambiguous if and only if there is only one way to
interpret each requirement.

Verifiable A SRS is verifiable if and only if every requirement can be verified

7.2.4 Measure, Measurement, Metric

Several definitions for the word ”measure” exist. This section defines the ter-
minology for this paper according to ISO/IEC 15939 [ISO07].

base measure A base measure is a single ”attribute and the method for quan-
tifying it”. All base measures are functionally independent. In various lit-
erature (e.g. [FP91]) this measure is called ”metric”. In this paper a base
measure is also called metric to stress the difference between base and
derived measure.

derived measure A derived measure is a function of two or more metrics. We
will call it measure.

measurement A measurement is a ”set of operations having the object of
determining a value of a measure” or metric.

The aim of measurement in requirement engineering is to explain the defects
that occur in a SRS, to give an overview of its quality and to predict the project
progress. Therefore it is important to find a scale and create a framework to
compare different metrics and measures because a single metric/measure has
no meaning otherwise.

7.2.5 Drawbacks

After defining the aim of measurement, we will expose the drawbacks of a non-
evaluated SRS. As mentioned in 7.2.2 the SRS is a contract between supplier

106 CHAPTER 7. REQUIREMENTS QUALITY

and customer. Therefore a high qualitative SRS is important, else high costs
in rework or even a refusal of the system by the customer might happen. To
prevent high costs a SRS measurement can be performed because most of
the defects arise in requirement engineering. Whether all quality aspects like
understandability or unambiguity, which are caused by the use of natural lan-
guage, are kept can be proven by the use of metrics. It is also possible to
draw conclusions regarding the development process by comparing measure-
ment values of the given specification to those of earlier projects. Cumulatively
adding metrics can improve the whole development process.

7.3 Measurement Process

Defined in ISO/IEC 15939 [ISO07], a measurement process is a ”process for
establishing, planning, performing and evaluating measurement with an overall
project, enterprise or organizational measurement structure”. The process of
performing and evaluating measurement is explained in this section. We will
focus on two different measurements for SRS: quality and size. First of all,
the quality measurement with its representatives review and linguistic analysis
will be presented. In the second part of this section the size measurement
will be explained on the basis of the function point analysis and the Use Case
analysis.

7.3.1 Quality Measurement

The first measurement aspect presented in this paper is the quality measure-
ment. To increase the quality (as defined in 7.2.3) of a SRS the documents
have to be verified before reaching the next development phase. Therefore
various techniques exist to build up metrics that give an overview of the SRS
quality. These techniques and how to interpret the given metrics are described
in this section.

Review and Inspection

A review is often used to measure specific requirement quality aspects. Re-
views are a ”specific document examination technique” [SLS07] which is done
manually. Several types of reviews exist like the technical or informal review,
the walkthrough and the most formal review type: the inspection, which is
used in this paper. The inspection process includes several persons who are
involved in the actual development. In general, the goal of an inspection is to
find defects as soon as possible after completing the SRS and decrease re-
work costs in a later development stage. More than 70% of the defects can be

7.3. MEASUREMENT PROCESS 107

found during an inspection session which costs between 10% to 15% of the
whole budget. [SLS07]

Several SRS qualities given in 7.2.3 like completeness, correctness, verifiabil-
ity or (external) consistency can be measured by reviewing the specification
documents. In table 7.1 some measures are given according to [DOJ+93].
Completeness is measured by the percentage of requirements that are well
understood. Therefore every requirement that is well understood by every re-
viewer is counted (nu) and this value is divided by the number of all require-
ment. Correctness can be measured in a similar way: the metric is the per-
centage of requirements that are correct. To reach a high quality of the SRS
both values should approximate to 100 %.

QUALITY NAME QUALITY MEASURE DESCRIPTION

completeness nu

n percentage of requirements that are well un-
derstood (nu) with n number of all require-
ments

correctness nc

n percentage of requirements that are correct
(nc) with n as above

Table 7.1: Example for non-functional quality measures determined by an in-
spection

Certain techniques to detect defects in a SRS are available. On the one hand,
non-systematic methods like the ad hoc-method (review the document without
any restriction) or a checklist (with all important questions, learned in earlier
inspections) are given. On the other hand, there are systematic methods that
improve an inspection process like defect-based-reading, perspective-based-
reading and metric-based-reading (MBR). In this paper only the last method
will be presented, the others may be found in [PVB95] or [BGDT04].

The MBR is a technique based on a set of heuristics that detects defects in
a Use Case review. The MBR-process is a reading and counting method in
which a number of certain UC factors are counted and evaluated. To proof
a good written UC the measure values should be in a particular range. If
they are not, the document would have to be revised. In table 7.2 the Use
Case measures and their ranges are given according to [BGDT04] with µ =
expected value and σ = standard deviation. The first measure is the NOS,
which describes the number of steps in a Use Case. Usually a UC contains
four to nine steps. NOAS describes the number of actor action steps, so the
NOAS/NOS measures define the rate of actor action steps which normally is
between 30% and 60%. The rate of system action steps (NOUS/NOS) ranges
normally between 40% and 80% and the rate of Use Case actions of a Use
Case is usually between 0% and 35%.

108 CHAPTER 7. REQUIREMENTS QUALITY

MEASURE NAME MEASURE VALUE DESCRIPTION USUAL RANGE

NOS ∈ [0,∞]
(µ = 5.70, σ = 2.64)

Number of steps of the
UC

[4, 9]

NOAS/NOS ∈ [0, 1]
(µ = 34.52%, σ =
17.74%)

rate of actor action steps
of the UC

[30%, 60%]

NOSS/NOS ∈ [0, 1]
(µ = 59.71%, σ =
18.80%)

rate of system action
steps of the UC

[40%, 80%]

NOUS/NOS ∈ [0, 1]
(µ = 5.77%, σ =
10.42%)

rate of UC action steps of
UC

[0%, 35%]

Table 7.2: UC measures for MBR

Linguistic Analysis

Besides the mentioned defects linguistic problems often occur while writing
the SRS. The use of natural language is often preferred so non-experts may
understand it easily. Therefore numerous SRS are written in plain English (or
any other language), but this causes problems. Most languages are ambigu-
ous themselves so a proper and unique interpretation of a requirement is often
difficult. It is possible to introduce a formal language to handle this problem,
but as a consequence project members and even customers (who are proba-
bly not content to do so) have to be instructed in applying it. Accordingly the
SRS has to be proven for specific quality indicators which can be measured
and interpreted.

Writing in natural language causes certain defects like omission of words or im-
portant information by doing implicit assumption or using superlatives. [Rup07]
Also, humans often tend to generalize requirement statements by using univer-
sal quantifier. Therefore checking the SRS systematic for these kind of defects
is necessary. This is often done by reviewers with high linguistic and analytic
experience. On the other hand, several quality indicators can be analyzed
automatically. It is possible to determine the size of the document, number
of used imperatives, weak phrases or directives like figures, tables or notes
[WRH97]. These values are metrics of the SRS which can be evaluated, e.g.
the higher the number of weak phrases, the worse is a unique interpretation
of it. Whereas counting these metrics takes a long time, there are tools avail-
able capable of measuring and evaluating them. These tools will be shortly
presented in section 7.4.

7.3.2 Size Measurement

Improving the quality of a SRS is not the only purpose to measure. Different
methods to evaluate the specification in the whole development content exist

7.3. MEASUREMENT PROCESS 109

as well. It is possible to give a report on its complexity and predict its workload.
These methods are presented in this section.

Function Point Analysis

For measuring ”the amount of functionality in a system as described by a spec-
ification” [FP91] from the user’s point of view, the Function Point Analysis (FPA)
can be applied. Furthermore the complexity of the development process can
be assessed by comparing the given function points (FP) to ones of earlier
projects. The FPA was developed by Allan Albrecht of IBM in 1979 and was
standardized later by the International Function Point Users Group (IFPUG)
which turned the subjective FPA process into an objective one.

The FPA process can be described as follows:

1. Related groups of data like internal logical or external interface files and
external inputs, outputs and inquiries should be identified.

2. The unadjusted function points (UFP) can be calculated as follows: count-
ing all data and record element types (DET, RET) of each data group and
value their complexity as low, average or high (table 7.3). (e.g.: 19 DET
and 2 RET lead to a low complexity ”L”, 23 DET and 7 RET lead to a high
complexity ”H”)

RECORD ELEMENT TYPES Data Element Types (DET)
(RET) 1 TO 19 20 TO 50 51+

1 L L A
2 to 5 L A H

6+ A H H

Table 7.3: Complexity of data type functions according to [AR96], table 5

3. These values are accumulated according to Albrecht’s weight table from
1983 (given in table 7.4) to get the UFP. (e.g. an internal logical file with
an average complexity with the value 10 + an external interface file with
a low complexity (5) + ...)

FUNCTION TYPE LOW AVERAGE HIGH

Internal logical file 7 10 15
External interface file 5 7 10

External inputs 3 4 6
External outputs 4 5 7
External inquiries 3 4 6

Table 7.4: Weights of function types according to [AR96], table 2

110 CHAPTER 7. REQUIREMENTS QUALITY

4. The technical complexity factor (TCF), which consist of 14 technical com-
plexity factors that can deviate the UFP with a deviation about ± 35%,
has to be defined ([FP91], table 10.3).

5. To receive the actual function point value (FP), the calculation of following
equation is necessary: FP = UFP × TCF

A scale to rate this measure is necessary to define. Therefore it is possible to
compare this value with FP of other projects in order to evaluate the size and
complexity of the actual project.

Albrecht’s FPA was developed in 1979. Therefore new function point meth-
ods adapted to new development technologies were necessary. An existing
technique is the COSMIC Method (see [TA08]).

Use Case Points

FPA takes no consideration in new specification methods. Therefore another
kind of point analysis that also includes modern specification techniques like
UML, the Use Case Points method (UCP), exists. In general the application
is similar to FPA but there are different modifications. To get the unadjusted
UCP it is necessary to assign weights and complexities of any Use Case to
the specification. Additionally the actors get classified according to their type
and this value is added to the total amount. Now the unadjusted Use Case
Point (UUCP) is calculated. Similar to the FPA there are various factors that
can disturb the real value. Hence, one has to add a technical complexity factor
(TCF) (with 13 influential factors, TCF∈ [0.6 − 1.3] and a environmental factor
(EV) (with 8 influential factors and EV∈ [0.425 − 1.7]). At last we receive the
adjusted UCP by calculating following equation: UCP = UCP × TCF × EC. It
is also possible to predict the process time by adding an additional productivity
factor (PF) according to the productivity of the organization to the UCP [FJE06].

7.4 Tools

Tools can be a significant support for measuring software, especially SRS.
Usually specification documents comprises several pages, therefore a manual
measurement for all aspects is difficult. All measures can be obtained by a
manual measurement. Often there are many aspects to count and control,
so it is more comfortable to use an automated tool. Nevertheless, not every
measurement can be done automated. In this section the usage of tools for
the presented measurement processes in section 7.3 are introduced.

Inspection An inspection is a typical manual technique. Working experience

7.4. TOOLS 111

of all participants is an important factor which cannot be replaced by a
tool. It is only possible to use administration tools or knowledge databases.
Administration tools can support the whole review process by collect-
ing all necessary information like participants, dates, documents and in-
spection rules. Knowledge databases collect the knowledge of previous
inspections like findings or difficulties in the inspection process. These
informations can be used to optimize the review processes.

Linguistic Analysis Two sides of a linguistic proof exist: the manual and the
automated analysis of the SRS. The first is described in 7.3.1. For the
second kind of linguistic proof various tool are available. We will present
two of them.

QuARS
The Quality Analyzer of Requirement Specifications (QuARS) based on a
quality model which verifies the following quality properties: non-ambiguity,
specification completion, consistency and understandability [FFGL01].
As mentioned in 7.3.1 there are several indicators for analyzing a SRS.
Table 7.5 gives an overview of some indicators and its keywords de-
tected by QuARS. Non-ambiguity has several indicators like vagueness
or weakness. A requirement is vague if it points out words which have a
non-uniquely quantifiable meaning (e.g. clear, easy, significant). A sen-
tence containing a weak main verb (e.g. could, might) is weak. An indica-
tor for understandability is implicity. A requirement is implicit if a subject
in this sentence is generic rather than specific (e.g. demonstrative ad-
jectives like ”this”, ”that” or prepositions like ”above”, ”below”). Counting
these indicators can indicate the strength or weakness of a SRS.

PROPERTY INDICATION DESCRIPTION KEYWORD

non-ambiguity vagueness pointing out words having
a non uniquely quantifi-
able meaning

e.g.: clear, easy,
useful, significant,
...

non-ambiguity weakness sentence containing a
weak main verb

e.g.: could, might,
...

...
understandability implicity subject in a sentence is

generic rather than spe-
cific

e.g.: demonstrative
adjectives (this,
these, that,...),
preposition (above,
below,...), ...

Table 7.5: Example for QuARS identifiers referring to [FFGL01]

QuARS parses the SRS and gives warning messages for every sentence
in which potential defects appear but does not correct them. This arises
the tool to a helpful support for checking specification documents without
any restriction. Furthermore it can be adapted to different domains by
expanding the checking dictionary for domain-specific vocabulary. Fig-
ure 7.1 shows the user interface of this tool. On the left side there is a
dictionary frame with QuARS and domain specific dictionaries. The input

112 CHAPTER 7. REQUIREMENTS QUALITY

frame on the bottom includes the SRS and the output of QuARS is given
in the output frame on the right side. More information about QuARS are
given in [FFGL01].

Figure 7.1: Screenshot of QuARS user interface [QuA]

ARM
The Automated Requirements Measurement software (ARM) was also
developed for parsing requirement specifications. Originally, it was used
for NASA projects in order to strengthen their requirement specifications.
This tool is not supposed to an ”evaluation of correctness of a specified
requirement document”, but to provides measures for an appraisal of
its quality [FGLM03]. The ARM quality model is similar to the model
of QuARS with additionally indicators for individual NASA requirement
specifications. Its output is a data collection which can be evaluated by
the user. We tried to install and use ARM, but an error occurred while
we tried to load a SRS. The support of this tool stopped in January 2004.
Further information can be found in [WRH97], [FGLM03] or on the official
Website [ARM].

FPA and UCP Functional size measurement techniques are mostly used man-
ually by an analyst. Nevertheless a tool like ”Function Point WORK-
BENCH” [FPW] exists, with support for counting, analyzing and docu-
menting function points.

7.5. DISCUSSION 113

7.5 Discussion

Measurement is essential for the whole development process. Hence, the
question if it is possible to use every measure for every development domain
arises. We have to deny this, it is important to adapt most measure processes
to the specific project. Therefore it is not always easy to find the right metrics.
Additionally it is important to define a scale and a framework for the given mea-
sures. A single measure does not allow to draw conclusions, it is necessary to
link metrics to an evaluation framework.

Measures give only a general idea of the SRS quality. Proving its accuracy and
correctness is the main task for the requirement engineer. Therefore a work-
ing understanding of requirement engineering, measurement processes, the
given language and evaluating the measurement results is important for every
engineer involved in the specification development and measuring process.

7.6 Outlook

Plenty of other measures and measurement processes exist which were not
presented in this paper. It might also be interesting to consider process met-
rics for evaluating the whole development and managing process. Furthermore
some techniques are obsolete for new domain specific development. There-
fore a method exists to find new suitable metrics called the Goal-Question-
Metric [KA97] which is usually used to find new metrics. It might be interest-
ing to analyze the effectiveness and the adaption of measures to requirement
specifications of different domains.

7.7 Conclusion

This paper gave an overview of the importance of measuring the SRS of a
software project. The measure values can be appraised and the specification
can be improved consequently on the basis of these values. Furthermore it is
possible to assess the systems complexity and predict the following workload,
hence it is possible to give the customer an estimation of costs. After all,
measures are only supporting tools to improve quality. To receive a high quality
SRS the experience and motivation of the involved requirement engineers is
essential.

114 CHAPTER 7. REQUIREMENTS QUALITY

Bibliography

[AR96] A. Abran and P.N. Robillard. Function points analysis: an empirical
study of its measurement processes. Software Engineering, IEEE
Transactions on, 22(12):895–910, Dec 1996.

[ARM] http://satc.gsfc.nasa.gov/tools/download/. 08.02.2010.

[BGDT04] B. Bernardez, M. Genero, A. Duran, and M. Toro. A controlled
experiment for evaluating a metric-based reading technique for re-
quirements inspection. In Software Metrics, 2004. Proceedings.
10th International Symposium on, pages 257–268, Sept. 2004.

[Che08] Ting Chen. The application of the function point analysis in software
developers’ performance evaluation. In Wireless Communications,
Networking and Mobile Computing, 2008. WiCOM ’08. 4th Interna-
tional Conference on, pages 1–4, Oct. 2008.

[CL95] Rita J. Costello and Dar-Biau Liu. Metrics for requirements engi-
neering. Journal of Systems and Software, 29(1):39 – 63, 1995.
Oregon Metric Workshop.

[DOJ+93] A. Davis, S. Overmyer, K. Jordan, J. Caruso, F. Dandashi, A. Dinh,
G. Kincaid, G. Ledeboer, P. Reynolds, P. Sitaram, A. Ta, and
M. Theofanos. Identifying and measuring quality in a software re-
quirements specification. In Software Metrics Symposium, 1993.
Proceedings., First International, pages 141–152, May 1993.

[FFGL01] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. The linguistic ap-
proach to the natural language requirements quality: benefit of the
use of an automatic tool. In Software Engineering Workshop, 2001.
Proceedings. 26th Annual NASA Goddard, pages 97–105, 2001.

[FGLM03] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari. Applications of
linguistic techniques for use case analysis. Requirements Engi-
neering, 8(3):161–170, Aug. 2003.

[FJE06] Stephan Frohnhoff, Volker Jung, and Gregor Engels. Use Case
Points in der industriellen Praxis. In Applied Software Measurement
- Proceedings of the In-ternational Workshop on Software Metrics
and DASMA Software Metrik Kongress, pages 511–526. Shaker
Verlag, 2006.

[FP91] Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics:
A Rigorous and Practical Approach. PWS Publishing Co., 1991.

[FPW] http://www.charismatek.com.au/ public4/html/fpw brochure.htm.
08.02.2010.

BIBLIOGRAPHY 115

[IEE98] IEEE Std 830-1998, IEEE Recommended Practice for Software Re-
quirements Specifications, 1998.

[ISO07] ISO/IEC 15939:2007, Systems and software engineering – Mea-
surement process, 2007.

[ISO08] ISO/IEC 12207:2008, Systems and software engineering – Soft-
ware life cycle processes, 2008.

[KA97] Tereza G. Kirner and Janaina C. Abib. Inspection of software re-
quirements specification documents: a pilot study. In SIGDOC ’97:
Proceedings of the 15th annual international conference on Com-
puter documentation, pages 161–171. ACM, 1997.

[LL07] Jochen Ludewig and Horst Lichter. Software Engineering. dpunkt,
1. aufl. edition, 2007.

[PVB95] A.A. Porter, Jr. Votta, L.G., and V.R. Basili. Comparing detection
methods for software requirements inspections: a replicated exper-
iment. Software Engineering, IEEE Transactions on, 21(6):563–
575, Jun 1995.

[QuA] http://quars.isti.cnr.it/images/gs06.gif. 07.02.2010.

[Rup07] Chris Rupp. Requirements Engineering und Management. Profes-
sionelle, iterative Anforderungsanalyse fuer die Praxis, 2007.

[SLS07] Andreas Spillner, Tilo Linz, and Hans Schaefer. Software Testing
Foundations : a study guide for the certified tester exam; foundation
level - ISTQB compliant. Rockynook, 2. ed. edition, 2007.

[TA08] Sylvie Trudel and Alain Abran. Improving quality of func-
tional requirements by measuring their functional size. In
IWSM/Metrikon/Mensura ’08: Proceedings of the International
Conferences on Software Process and Product Measurement,
pages 287–301. Springer-Verlag, 2008.

[WRH97] W.M. Wilson, L.H. Rosenberg, and L.E. Hyatt. Automated analy-
sis of requirement specifications. In Software Engineering, 1997.,
Proceedings of the 1997 (19th) International Conference on, pages
161–171, May 1997.

116 CHAPTER 7. REQUIREMENTS QUALITY

Part III

Applications

117

Chapter 8

Control-Center Terminology
and Application

Bratan Bratanov

Contents
8.1 Introduction . 120
8.2 Background . 121
8.3 Different dimensions of control centers 123

8.3.1 Usage purposes . 123
8.3.2 Main tasks . 124
8.3.3 Scopes and granularity 125
8.3.4 Roles . 125

8.4 The reference architecture . 126
8.4.1 Logical Architecture 126
8.4.2 Physical components 128

8.5 Industrial tools and frameworks 128
8.5.1 WebME . 128
8.5.2 Specula . 129
8.5.3 SQO-OSS . 129

8.6 Discusion . 130
8.7 Conclusion . 132
Bibliography . 132

119

120CHAPTER 8. CONTROL-CENTER TERMINOLOGY AND APPLICATION

Abstract: With the growing knowledge in software engineering area new
approaches for controlling and improvement of software projects appear. Be-
sides the general-purpose management tools, which do not solve essential
state-of-the-art problems, concepts like ”software project control centers” are
emerging. They aim at systematic quality assurance and improved manage-
ment support having as background well-known paradigms from the theory -
Goal-Question-Metric, Quality-Improvement-Paradigm - and integrating qual-
ity models like ISO 9126, McCALL, CMM. The tools themselves introduce
new challenges in the software development domain due to their ambitious
goals and complexity, which might be addressed only by a precise concept
for architecture.
This paper presents an overview of the foundations and the different dimen-
sions of control centers as well as a reference architecture for generic imple-
mentation. Furthermore some tools of this art already available in the industry
are discussed and evaluated with regard to this architecture.

8.1 Introduction

The software development has evolved and improved significantly since the
early 70’s, when the need for systematic engineering approaches was clearly
identified, even though there still exist a lot of issues in terms of monitoring and
controlling IT projects. According to several studies (e.g. the CHAOS report of
the Standish Group [Gro08]) approximately 50% of the software projects end
up over budget or schedule, despite the intensive use of process models and
the increased know-how in project management. The reason for that resides in
the lack of effective and efficient mechanisms and tools: to accurately identify
the current project state; to identify critical situations like budget or time devia-
tions; to determine weak points in the current project or product; or to estimate
in generally whether the project goals would be achieved.
Software project control centers (SPCC) or ”software cockpits” might be de-
fined as tools for process-accompanying interpretation and visualization of
measurement data [JM02]. They could be figuratively referred to as an abstrac-
tion of control room (a term from the mechanical production domain), which is
a central point for collection of all incoming data and visualization for various
controlling purposes.
By this means they consist of methods to control software products providing
the so called control indicators, rules and techniques for aggregation, com-
bination and normalization of these indicators and rating levels for the mea-
surements. Last but not least visualization techniques are essential part of the
SPCC-concept.
SPCCs represent a major step in direction to solve the above issues. The
main goals include the predictable software project execution as well as moni-
toring and evaluation of various quality characteristics of projects and products.
Software cockpits aim therefore at improved controlling over project and intel-
ligent support for decision making. Furthermore the SPCC helps improving
processes and correspondingly products over time.

8.2. BACKGROUND 121

In order to fulfill these goals several tasks are performed, namely: collection,
interpretation and visualization of data. The required information itself is gath-
ered, processed and presented in context-, role-, and goal-oriented manner.
Important aspect of these tasks is the ability to perform them on-line mean-
ing during project execution, since the product quality depends directly on the
quality of the intermediate results on the one hand. On the other hand the mea-
surement of projects makes sense exclusively during their execution except in
the case when the still available information from past projects is intended to
be reused as experience base.
The implementation of an SPCC though is rather challenging task due to the
fact that it is an innovative area and therefore practical guidelines are deficient.
A further problem is the inability to reuse approaches from other domains like
general engineering or business management because of the specifics of soft-
ware engineering.
Another challenge is the realization of customization, extensibility and reusabil-
ity. But the primary problem remains in the projects themselves. Because of-
ten contradictory management goals or such with unclear interrelation are set.
That causes difficulties in finding and deriving suitable metrics for controlling
the project.
Typical solutions in the industry nowadays make use of standard project man-
agement tools like dashboards. They provide only a limited set of metrics and
visualization capabilities. Also in general, they lack the possibility for project-
specific or role-oriented customizations. Therefore they present only partial so-
lutions for the above defined problems. More generic approaches are required,
which could motivate more intensive application of SPCCs in the praxis.
In the following chapter are presented some of the theoretical foundations,
which serve as basis for the implementation of software cockpits and facilitate
the understanding of the SPCC concepts. Section 8.3 contains information
about the different operational dimensions of SPCCs. Chapters 8.4 and 8.5
describe respectively a reference architecture for implementation of control
centers and some frameworks from the industry compared according to it. In
section 8.6 is presented a model for evaluation of SPCCs. Additionally some
drawbacks and benefits of control centers in general are pointed out.

8.2 Background

Control Centers could be identified as a major domain for the application of
software metrics. The successful implementation of SPCCs relies to a large
extent on the systematical use of certain paradigms and approaches from the
theory, which will be shortly discussed in this chapter.
Goal-Question-Metric (GQM) Since control centers are supposed to provide
certain information in a goal-oriented manner, one of the primary questions is
the choice of such key quality indicators, which will allow focusing on the stated
goals for the concrete project. Quality indicators specify how measurements

122CHAPTER 8. CONTROL-CENTER TERMINOLOGY AND APPLICATION

are interpreted with regard to certain quality characteristics. There are several
approaches for defining measurable project goals. The Goal-Question-Metric
(GQM) [BCR94] is probably the most widely adopted in the praxis. That is due
to its ability to specify concrete measures taking into account project specifics
and organizational context.
The GQM paradigm represents a hierarchical model on three levels for map-
ping a set of metrics to a specific goal by additionally using control questions
for facilitating the process of evaluating whether the goal is achieved.
On conceptual level (Goal) along with the goal an object (e.g. process, arti-
fact) and view point (e.g. developer) are determined on which the goal is to be
controlled.
The operational level is defined as set of questions refining the quality issue
and breaking it down to measurable components. The final step is to define
a metrics suite on quantitative level to measure the data in order to provide
interpretable results for the quality estimation.
Having this break-down structure alone is not sufficient for solving issues like
establishing relations between different quality aspects or comparison of the
current project with past ones and deducing correlations. What is additionally
needed is an abstraction or quality model, which serves as basis for the goal-
oriented measurements. There are several widely used quality models, which
could be used as foundation for building individual models, to provide the basis
for a specific SPCC.
The tools discussed in this paper are based on the two product quality models
ISO-9126 and McCALL [OPR03].
ISO-9126 [ISO01] defines product quality based on internal and external qual-
ity attributes. The first ones address, how the product is developed e.g. size,
tests, failure rate, while the second ones relate to how the product works in
its environment. According to this model the product quality characteristics
are divided into six major groups (functionality, reliability, usability, efficiency,
maintainability, portability). They are furthermore refined on different level with
subcharacteristics normally containing internal as well as external aspects. As
advantage of this model is indicated exactly this classification of internal and
external quality characteristics, even though ISO 9126 does not specify how
these characteristics are to be measured.
The McCALL [JW77] model postulates a slightly different classification, namely:
product operation, revision and transition. The product operations include
characteristics like modifiability, reliability, usability, etc., which help to estimate
whether a product could be quickly understood, efficiently operated and is ca-
pable of providing the desired results. The product revision handles the ability
of a product for error correction and adaptation (e.g. maintainability, flexibility).
The product transition deals with characteristics like portability and reusability.
The McCALL model in contrast to ISO 9126 also specifies metrics for the pro-
posed characteristics. This could also be pointed out as disadvantage since
some of them are claimed to be subjective.
An important aspect of SPCC is the evaluation of the process quality especially
the ability for improvements. The quality improvement paradigm - QIP [Bas93]
offers such quality-oriented improvement approach. The key concept of this

8.3. DIFFERENT DIMENSIONS OF CONTROL CENTERS 123

approach is based on choosing a process model according to the specified
project and organizational goals instead of vice versa. The QIP consists of
six consecutive phases: characterize, set goals, choose process, execute an-
alyze and package. During the different phases the environment of the project
is characterized and quantifiable strategic organization- and specific project-
goals are defined. Afterwards a process is chosen based on the above facts
and executed providing feedback for the goal achievement. Additionally the
gathered information is analyzed for evaluation and recommendations con-
cerning the applied practices and processes. Finally the gained experience is
consolidated and persisted in an experience base for future projects.

8.3 Different dimensions of control centers

One way for breaking down the complexity of SPCC-implementation is to un-
derstand the different dimensions, in which they operate. A successful im-
plementation must be able to systematically integrate several orthogonal di-
mensions. Below a selection of the dimensions presented in [JM02] is briefly
discussed.

8.3.1 Usage purposes

The possible usage purposes of an SPCC influence its functionalities on a
large scale. Thus a generic solution should take various organization- and
project-specific purposes into account. Also it should be able to extend its
functionality according to newly defined purposes. Most common examples of
such purposes are:

Monitoring: observes the current project state in terms of product, process
and resource performance

Assessment: processes monitoring information and forms judgments of project
quality characteristics

Analysis: identifies quality and goal deviations by examining the context and
identifies the possible causes

Comparison: uses predefined data from finished projects or guidelines in or-
der to estimate the current state

Prediction: applies techniques to predict or simulate future project behavior
based on current state and mathematical models

Improvement: proposes corrective actions based on identified shortcomings
or deviations and considering the project goals

124CHAPTER 8. CONTROL-CENTER TERMINOLOGY AND APPLICATION

8.3.2 Main tasks

The main tasks represent a decomposition of the SPCC workflow, which pro-
vides the value to the users. The term ”workflow” is defined as the sequence
of activities performed during the integration and the operation of SPCCs. The
first step in this workflow is building/implementing a quality model. The
model is then used to compare the current project with past ones or with
guidelines. Well-known quality models like ISO 9126 and McCALL are rec-
ommended as basis. Additionally the individual model could integrate process
models helping to synchronize project activities with the control center func-
tions (e.g. data collection with development tasks). SPCC is a goal-oriented

Table 8.1: Enhanced GQM model
Goal Question Subquestion Metric
Purpose: Eval-
uate Issue: The
easiness of iden-
tifying styles,
structure, behav-
ior and parts of
maintenance

Q3700 Are the
functions not too
complicated?

Q3701 Is the
function-call
nesting not
deep?

MFn095 Depth of lay-
ers in call graph

Object: source
code Viewpoint:
developer

Q3702 Is the
logic not too
complex?

MFn072 Cyclomatic
number
MFn069 Estimated no.
of static paths

environment, therefore goal-definition is required. The proposed approaches
use the GQM paradigm for this purpose. One optimization of the standard
GQM-model with respect to SPCC is the introduction of additional hierarchical
levels [WNF+07]. As 8.1 shows, the questions might be defined at high ab-
straction level and refined on the next level with concrete e.g. implementation-
specific sub-questions. These could be specific with respect to the controlled
project, the used programming language and etc., thus they are more eas-
ily mapped to metrics. This refinement improves the reusability of SPCC by
defining common parts (commonality points) and modification areas (variabil-
ity points). The approach involves also the next important task goal-oriented
derivation of measures.
Once the goals and the metrics are determined the next tasks could be per-
formed. These are as follows: data collection, data aggregation and pro-
cessing and data visualization. Collecting data is a continuous activity during
the whole life-cycle of the project. It involves interaction with various heteroge-
neous sources like project plans, source code, tests, and etc.
The gathered data often need to be aggregated and normalized in a way to
suite the intended purposes. Finally it must be represented in an understand-
able way for the involved stakeholders.

8.3. DIFFERENT DIMENSIONS OF CONTROL CENTERS 125

8.3.3 Scopes and granularity

This dimension addresses the integration specifics expected from a SPCC in
order to be used on different levels. The following three major scopes are
distinguished: project-specific, past project and future project scope. On a
project-specific level the variation points must be adjusted accordingly e.g. to
the applied technologies, processes. The proposed GQM enhancement al-
lows not only reuse of certain parts for different projects, but also provides the
opportunity to define a granularity in a single project by applying only the rele-
vant sub-questions and metrics on smaller components (e.g. product modules,
project milestones), which is essential for the different roles-oriented visualiza-
tions. With respect to this scope an SPCC provides generally real-time feed-
back and improved control over current projects.
The past-project scope deals mainly with packaging and reusing experience
from previous projects through the design of building experience bases.
The future project scope on the other hand aims at improvement strategies
relying on paradigms like QIP.

8.3.4 Roles

The roles dimension describes the potential users of an SPCC. It addresses
not only the output information that these users need, but also the input data
that they should provide for the proper functioning of the SPCC.
A project manger for example could be supported through SPCC by provid-
ing him with overall information about the current project state together with
additional informations. These could include identified quality deviations, rec-
ommendations for corrective actions, simulation of alternative plan executions.
As input a project plan, project goals and etc. are expected.
Another role that could benefit from an SPCC is the quality manager. The
control center could provide information about the current or predicted goal
violations or to identify best practice experiences. The role itself could influ-
ence the operation of the SPCC by providing quality models and measurement
plans.
On fine-granular level a developer could be supplied with information regard-
ing his components e.g. violations of specifications, guidelines, schedule.
External stakeholders or customers might receive highlight information about
qualities of the product or estimations for the project. In an agile environ-
ment the customer could be actively involved by providing input information
like goals, change requests and so forth.

126CHAPTER 8. CONTROL-CENTER TERMINOLOGY AND APPLICATION

8.4 The reference architecture

A concrete software cockpit implementation should consider all the dimen-
sions, described in the previous chapter. Therefore any architecture for generic
control center applications should focus features like extensibility, customiz-
ability and reusability. In particular two architecture aspects important for the
successful SPCC implementation should be considered: logical and physical.

8.4.1 Logical Architecture

The presented conceptual logical architecture On figure 8.1 is adopted with
small modifications from the paper [HM08]. The reason for that is that it fo-
cuses to a large extent on the above features and claims to handle in sys-
tematically the different dimensions. The other researched approaches offer
partial solutions excluding certain aspects not relevant for their stated goals.
This fact prevents them from being reasonably applied as reference for the
comparison of existing tools.
The chosen approach represents classical layer architecture with three distin-
guished layers.

Figure 8.1: Logical reference architecture of software project control center
(Source: [HM08])

8.4. THE REFERENCE ARCHITECTURE 127

Information layer

The information layer is basically responsible for collecting and persisting the
information necessary for the SPCC functionality. It consists of two major
components dealing with current measurement data, experiences from past
projects and organization-strategic information. The repository unit encapsu-
lates generic reusable components like the metric suite or even higher-level
techniques for serving to a purpose from the purpose dimensions referenced
bellow as functions. Furthermore it contains views, which specify measure-
ment results of the same purpose for different roles or also from the viewpoint
of the three major groups of measurement entities - products, processes and
resources.
The other major component in the information layer - the experience base -
refers to the storage of the measured data and the relevant context informa-
tion. It is divided into a project-specific and an organization-wide unit.

Functional layer

The functional layer relies on the services provided from the information layer
for deriving useful information in a concrete context. It contains a customization
unit, which initializes and tailors the repository components according to the
project goals.
Relying on this customization a data processing unit executes the aggregated
metrics and analyses the results. During this operation the relations between
different metrics and functions are analyzed and rating levels are assigned, so
that each metric might be weighted.
The results of the comparison in this module are afterwards delivered to the
presentation unit. It initializes the tailored views and integrates the required
data received from the processing unit.

Application layer

The last layer takes care of the viewpoint-oriented visualization of the results.
It contains authorization mechanisms allowing the SPCC to deliver specific
functionalities to different users. Such functionalities might be: role-oriented
visualization, forms for providing information, tailoring functionalities - based
on the user’s role.

128CHAPTER 8. CONTROL-CENTER TERMINOLOGY AND APPLICATION

8.4.2 Physical components

Apart from the logical components physical details and certain specifics for in-
tegration in development environments should be considered. As mentioned
earlier many solutions nowadays rely on dashboards mainly based on spread-
sheets (e.g. CAST’s AD Governance Dashboard, Pentaho, Jaspersoft). For
more generic solutions a database handler is a necessity especially when
considering distributed environments. The critical point on physical level and
implementation-oriented design is the heterogeneous nature of an SPCC. Het-
erogeneous in terms of the data sources used as input, but also in terms of
controlling distributed development. An SPCC must normally provide connec-
tors to a huge variety of external systems like effort tracking-, bug tracking- and
other general-purpose management-systems. Because they already contain
most of the required information. Analogously different analysis engines and
output formats should be integrated.
Handling distributed development is the other key factor of the physical archi-
tecture. In this case an integration and synchronization of the data from the
different locations is needed in order to estimate the overall project state. It
also brings additional requirements for the granularity of the measurement re-
sults e.g. controlling per location.
In the next chapter are presented three different solutions from the industry
and are pointed out some strengths and weaknesses with regard to the archi-
tecture proposed above.

8.5 Industrial tools and frameworks

Most of the software cockpits in the industry offer partial solutions according
to the architecture described in the previous section. Generally they lack ei-
ther role- or purpose-oriented customization or support only a fixed number of
metrics. In the following chapter three different solutions are presented and
shortly evaluated according to their usefulness, customizability and improve-
ment potential. All three of them address most of the aspects covered in the
reference architecture. In particular the physical aspects like integration with
existing tools and distributed development are thoroughly satisfied.

8.5.1 WebME

WebME [Tes97] is a web-based tool developed by NASA, whose primary tar-
get group is project managers. The architecture is similar to the reference one
from 8.1. Despite the fact that it is meant for project managers, it turns out
to be highly customizable for different roles and purposes due to the embed-
ded scripting language. WebME focuses on distributed development, whereby

8.5. INDUSTRIAL TOOLS AND FRAMEWORKS 129

heterogeneous data sources from different locations could be easily integrated
using the script language. The framework allows real-time measurement and
feedback. Since it is web-based it is platform independent and could be ac-
cessed from any location without the need of additional configuration.
Its main deficits are the fixed set of functions and metrics. The underlying
model is also predefined and could not be extended. This drawback is com-
pensated with the fact that a sophisticated predictive model is applied. It relies
on the predictive CMM and economic forecasting models. It claims to dynam-
ically evolve using only past projects of the same shape when estimating the
current one. Its success in different domains is though not proven. The ease
of use seems to be challenged because of the use of a custom designed not
very intuitive script language instead of applying a well-known one.

8.5.2 Specula

Specula [HM08] is a J2EE-based framework developed from the authors of
the proposed reference architecture. Therefore it is fully compliant to it even
though simplified in some aspects. The main focus lays in the extensibility and
reusability with respect to functionality and customizability in terms of applica-
tion contexts. The platform is web-based as well and by this means platform-
independent. It supports distributed development as the previous one. The
framework also allows defining heterogeneous sources either automatically -
by providing java connectors - or by manually inserting information through
forms. An advantage compared to WebME is the ability to add metrics and ex-
tend the quality model. The case studies indicate a positive result with respect
to early detection of risks and deviations.
The drawbacks of the approach are the difficult integration into the software de-
velopment cycle and the tendency to include too much data in certain views.
The last aspect causes scalability problems and has negative impact on the
ease of use. The framework also does not offer an automated derivation of
views from GQM plans. The absence of such automation enforce manual inter-
vention, which in turn requires deep understanding of the underlying architec-
ture and increases efforts. Automation is a crucial factor for user acceptance.
The weakness here could be justified by the fact that Specula is a research
prototype.

8.5.3 SQO-OSS

Software Quality Observatory for Open Source Projects (SQO-OSS) [GKS+07]
is a plugin-based service-oriented framework for evaluation of open-source
products and processes. The project contains also a sample implementation
with several plugins and integrated data from a few examined projects. Due
to this concept of plugable architecture, which encapsulates most of the com-

130CHAPTER 8. CONTROL-CENTER TERMINOLOGY AND APPLICATION

ponents are plugins able to be added or removed on demand, the platform is
extremely extensible and customizable.
The nature of open source projects - the primary domain of this framework -
demands from such products on a large scale interoperability and simplicity
by integration of external systems. The reason is that most of the considered
projects are distributed and use heterogeneous sources. SQO-OSS achieves
these goals first of all by applying this pluggable architecture. Additionally it
uses well-known techniques for integration of components - xml scripts and
web services, thus avoiding thorough understanding of complex APIs. To the
benefits of this platform counts also the mere fact that it is open source. There-
fore allowing everyone to contribute - meaning that huge amount of plugins
could be available, when widely adopted. The numerous open source products
on which it could be applied, deliver also rich experience base for comparison.
This could cause on the other hand big overhead for configuration, when ap-
plying it on trivial projects. In this case extensive filtering of data would be
needed, so that only ”alike” projects are explored and compared. As deficit
of the framework could also be pointed out the absence of explicit concept for
goal- and especially role-oriented processing and presentation. In contrast to
the reference architecture, this one does not distinguish between layers. The
separation of concerns is therefore delegated to the plugins themselves.

8.6 Discusion

In this chapter a model for evaluation of software cockpits on a high level is
presented. Furthermore some general threads and opportunities for SPCCs
according to this model and with regard to the researched SPCC implementa-
tion approaches are mentioned.
Evaluation
A fundamental question when delivering a software product is how well does
it serve its purposes and would it therefore be accepted by the users. As seen
by the description of the backgrounds and the reference architecture, the im-
plementation of such solutions is complex and contains many pitfalls. This
combined with the fact that SPCCs are relatively new area thus not many best
practices are established, encourages both providers and customers to have
a good starting point for evaluation of software cockpits.
The Technology Acceptance Model (TAM) [CHM+07] suites perfectly for this
purpose. TAM is an information system theory modeling the degree to which
users accept and use a technology. In SPCC context three features are com-
prehended at abstract level:

ease of use as the degree to which a SPCC could be integrated into the de-
velopment environment and used free of effort

usefulness as the degree to which a system enhances job performance or

8.6. DISCUSION 131

bring benefits for the user and in particular supports effective project con-
trol

improvement potential as the information provided in order to make trans-
parent decisions and apply improvement strategies

Empirical studies performed on top of these characteristics establish for soft-
ware cockpits a trend for a reverse correlation between ease of use and use-
fulness. In end effect more holistic solutions require additional effort during
the initial configuration in particular context, but on the other hand facilitate
to a greater extent project activities. This tradeoff justifies the fact that many
tools in the industry simplify or reduce the dimensions and functionalities men-
tioned in the previous sections. A holistic approach does not pay off for small-
and medium-size projects. For big projects or organizations with many ”alike”
projects though this tailoring represents a small part of the overall effort, thus
making generic solutions preferable.
Nevertheless even partial solutions show big improvement potential, when ap-
plied methodologically and with clear goals. In the following sections several
common threats and opportunities for SPCCs based on empirical results from
industry [CHM+08] are presented.
Drawbacks
As mentioned above integrating an SPCC in a development environment might
be time-consuming activity. Considering the fact that different views for dif-
ferent roles have to be integrated into a single concept demanding inter-view
communication, since the different stakeholders focus on different aspects and
prefer different interfaces. Causing such interface inhomogeneity complicates
the definition of multidimensional goals and might reflect in exuberant data in
the separate views. This on its behalf reduces the understandability and scal-
ability of the presented information.
Another group of problems resides in the specifics of the adopting organization.
Often the definition of common strategies and goals in particular in big organi-
zation is a tough task. The absence of consensus about common organization-
wide controlling results in application of the SPCC on single-project level even-
tually significantly reducing its improvement potential.
On technical level the main challenges for software cockpits are connected
with the extent to which automation is utilized. On one hand many tools al-
ready deployed do not provide public APIs for interaction and by this means
introduce redundancy and potential inconsistencies. On the other hand valida-
tion and filtering of information might turn into serous obstacle influencing the
accuracy of results.
Accuracy also is dependant on estimating the importance of the different qual-
ity indicators. A lot of the indicators are well-known in the research area, but
there is still little knowledge how they affect quality in industrial environment.
Benefits
An important difference between the existing partial solutions like dashboards
and SPCCs is that the first ones offer a fixed company-specific functionality
without clean methodological support. They allow therefore no possibility for

132CHAPTER 8. CONTROL-CENTER TERMINOLOGY AND APPLICATION

customization and tailoring, when the goals are changed. Despite the above
deficits dashboards are still as time-consuming as the application of holistic
tool.
SPCCs on the contrary offer a more clear control over projects by accurate
quantitative presentation of the current project state. The concept of a con-
trol center as central information control unit simplifies the understanding of
multidimensional goals. An SPCC provides consistent information to all the in-
volved parties and helps with early detection of plan deviations, goal violations
and project risks. From organizational point of view SPCCs gives the oppor-
tunity for standardized controlling over multiple projects, easy access to data
from different contexts and facilitates the management of distributed projects.
Future directions
Applying Software project control centers in the industry is a hot topic, which
might turn into a successful solution for many existing problems, the software
companies face nowadays. An interesting question is whether the underlying
concepts could be adapted to other domains as well. Such integration could
improve the collaboration and reduce the gape between application domains
and the corresponding software for them - one of the initial problems of soft-
ware engineering. Such adaptation would be a significant improvement of the
processes in inter-disciplinary organizations, which currently have to support
a complex set of disjunctive controlling mechanisms.

8.7 Conclusion

The concept of SPCCs has emerged from the necessity of improved project
control by using relevant quantitative information for the appropriate estima-
tion of the current project state. The use of metrics though turns out to be a
challenging task. It requires good understanding of the underlying processes,
well-defined and not contradicting project goals and systematic approach when
mapping metrics to the concrete goals.
A key factor when adopting and implementing software cockpits is that they
should be generic enough be applied in different context. The integration in
concrete development environments demands certain dynamics with respect
to applying measures and indicators, collecting and visualizing data. From this
point of view strict requirements on extensibility, customizability and reusability
are yielded.

Bibliography

[Bas93] Victor R. Basili. The experience factory and its relationship to other
improvement paradigms. In ESEC ’93: Proceedings of the 4th Eu-

BIBLIOGRAPHY 133

ropean Software Engineering Conference on Software Engineer-
ing, pages 68–83, London, UK, 1993. Springer-Verlag.

[BCR94] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The
goal question metric approach. 1994.

[CHM+07] M. Ciolkowski, J. Heidrich, J. Munch, F. Simon, and M. Radicke.
Evaluating software project control centers in industrial environ-
ments. In ESEM ’07: Proceedings of the First International Sympo-
sium on Empirical Software Engineering and Measurement, pages
314–323, Washington, DC, USA, 2007. IEEE Computer Society.

[CHM+08] M. Ciolkowski, J. Heidrich, J. Munch, F. Simon, and M. Radicke.
Empirical results from using custom-made software project control
centers in industrial environments. pages 243–252, New York, NY,
USA, 2008. ACM.

[GKS+07] G. Gousios, V. Karakoidas, K. Stroggylos, P. Louridas, V. Vlachos,
and D. Spinellis. Software quality assessment of open source soft-
ware. volume A, pages 303–315, Athens, May 2007. New Tech-
nologies Publications.

[Gro08] Standish Group. Chaos summary 2008. 2008.

[HM08] Jens Heidrich and Jürgen Münch. Implementing software project
control centers: An architectural view. In Proceedings of the Inter-
national Conferences on Software Process and Product Measure-
ment, pages 302–315, Berlin, Heidelberg, 2008. Springer-Verlag.

[ISO01] ISO/IEC. Iso/iec 9126: Information technology - sowtware product
evaluation. Software Engineering, 2001.

[JM02] Jens Heidrich Jürgen Münch. Software project control centers:
concepts and approaches. Software Quality Control, 2002.

[JW77] P.K. J.A., Richards and Walters. Factors in software quality. Na-
tional Technical Information Service, I-III, 1977.

[OPR03] Maryoly Ortega, Marı́a Pérez, and Teresita Rojas. Construction of
a systemic quality model for evaluating a software product. Soft-
ware Quality Control, 11(3):219–242, 2003.

[Tes97] Zelkowitz M.V. Tesoriero, R. The web measurement environment
(webme). In: Proceedings of the 22nd Annual Software Engineer-
ing Workshop (SEW), 39(3):281–289, 1997.

[WNF+07] Hironori Washizaki, Rieko Namiki, Tomoyuki Fukuoka, Yoko
Harada, and Hiroyuki Watanabe. A framework for measuring and
evaluating program source code quality. In PROFES ’07: Proceed-
ings of the 8th international conference on Product-Focused Soft-
ware Process Improvement, pages 284–299, Berlin, Heidelberg,
2007. Springer-Verlag.

134CHAPTER 8. CONTROL-CENTER TERMINOLOGY AND APPLICATION

Chapter 9

Source Code Metric Tools

Stefan Vesselinov Cholakov

Contents
9.1 Source Code Metrics . 136

9.1.1 Motivation . 136
9.1.2 Applications of source code metrics 137
9.1.3 Classification of source code metrics 137
9.1.4 Issues with the definitions of metrics 139

9.2 Tools . 140
9.2.1 Commercial Tools . 141
9.2.2 Open Source Tools . 145

9.3 Discussion and Outlook . 148
9.4 Summary . 148
Bibliography . 149

135

136 CHAPTER 9. SOURCE CODE METRIC TOOLS

Abstract: This paper starts by motivating the usage of source code metrics
and states their main applications. A classification of source code metrics
is offered and some of the most common ones are explained. The issues
with the definitions of metrics are pointed out and backed up with examples.
Some of the popular commercial and open source tools on the market are pre-
sented, focusing mainly on their characteristic features, the supported metrics
as well as their calculation and interpretation when applicable.

9.1 Source Code Metrics

9.1.1 Motivation

A metric is a standard of measurement. It maps an aspect of the object, on
which it is applied, to a measurable quantity, such as a number. Metrics are
very important, since, as motivated by Tom DeMarco,

”You cannot control what you cannot measure.”

As quantitative methods have proved very helpful in other areas of science,
computer scientists have also been trying to bring similar approaches to soft-
ware development.

Every developer or project manager has certain goals and objectives. In order
to determine if a goal is reached or what has to be done to reach the goal,
a measuring system needs to be used. Even when not explicitly defined, a
measuring system always exists. Source code metrics are intended to be an
explicit measurement system that is as objective as possible. Once the mea-
suring system is established, data can be collected, the measurements can be
evaluated and compared to the benchmark thus obtaining the benefit of be-
ing able to evaluate progress, effectiveness, quality, etc in a quick and reliable
manner.

In order to provide an intuition about the multiple benefits of source code met-
rics, consider Lines of Code as an example. One could define it as the number
of lines of code written by each programmer within a week. Further on, a
metric that counts the number of detected bugs per thousand lines of code
could be defined. By comparing each programmer’s metric against the bench-
mark of ”fewer than x bugs per thousand lines of code”, various benefits con
be extracted. Such ”derived” metrics could be used to, for instance, describe
(quantify) the quality of work of the programmers in a company.

In the following, a broader look into the various applications of metrics is of-
fered. The main applications of source code metrics tools are classified. The
section tries to summarize the benefits earned through the usage of source
code metrics tools in the different areas of their application.

9.1. SOURCE CODE METRICS 137

9.1.2 Applications of source code metrics

One of the main goals of source code metrics tools is certainly to provide
developers and managers with a better insight into the code. Since the
quality and the architecture of a system deteriorate with time, it is important to
know whether it still conforms to the initial requirements.

Refactoring is a major application area for source code metrics. Code met-
rics can help to make the decision on when to refactor a system and further
to understand at which points should be reworked and what the nature of the
refactoring should be. Identifying structures where refactoring should be ap-
plied often is explained with subjective perceptions like ”bad taste” or ”bad
smell”. But in order to allow refactoring, the management normally needs a
proof that this is needed at all and that refactoring would increase the system’s
business value. Metrics can be used as an objective measure of the quality
of a system. Metrics can support these subjective perceptions and thus can
be used as effective and efficient way to get support for the decision where to
apply which refactoring.

By taking advantage of code metrics, developers can understand which types
and/or methods should be tested more extensively. Development teams can
identify potential risks and track progress during software development.

Understand the current state of a project is essential before making a decision
to reenginneer a system. One needs to know the strengths and weaknesses
of the existing system in order to decide which parts of the existing system
should be kept, modified or thrown away.

Code metrics could also help programmers to write code that adheres to a
coding standard.

9.1.3 Classification of source code metrics

Source code metrics could be classified in various ways. Here standard es-
tablished metrics are classified into three groups - Complexity, Software Archi-
tecture and Structure and software Design and Coding, according to [iSA09]
(See Table 9.1). Some of the most common ones are discussed in greater
detail thereafter.

As found by [ea08], complexity metrics have a good performance in distin-
guishing between fault-prone and not fault-prone classes. Those can be di-
vided into the size, interface complexity and structural complexity metrics. An
example for a size metric is Lines of code (LOC) - perhaps the most widely
known source code metric. Though it looks clear what it measures, there are
multiple implementations of this metric that are discussed in section 9.1.4.

138 CHAPTER 9. SOURCE CODE METRIC TOOLS

Higher values indicate higher overall complexity.

Cyclomatic Complexity (CC) is an example for a structural complexity source
code metric. CC was developed by Thomas McCabe and counts the number
of decision paths in a given method. Variants for its calculation are available,
though higher cyclomatic complexity typically implies more possible points of
failure and therefore a higher number of required test scenarios. Some sources
consider methods with CC above 15 as complex and hard to maintain.

Weighted Methods per Class (WMC) measures the sum of the methods of
a class, weighted by a certain factor, that differs according to implementation.
Please refer to the next section for more information on the variations of its
calculation.

Table 9.1: A classification of source code metrics
Metrics
Group

Subgroup Common Metrics

Complexity
Size Lines of Code (LOC), Code coverage
Interface
Complexity

Number of Attributes, Number of static Attributes,
Number of Methods(NOM), Number of parame-
ters

Structural
Complexity

McCabe Cyclomatic Complexity (CC), Weighted
Method Count/Weighted methods per Class
(WMC), Response For a Class (RFC)

Architecture and Structure
Inheritance Depth of Inheritance Tree (DIT), Number Of Chil-

dren (NOC)
Coupling Afferent Coupling (Ca), Coupling Between Ob-

jects (CBO), Change Dependency Between
Classes (CDBC), Change Dependency Of
Classes (CDOC), Efferent Coupling (Ce), Cou-
pling Factor (CF), Data Abstraction Coupling
(DAC), Instability (I), Locality of Data (LD), Mes-
sage Passing Coupling (MPC), Package Data
Abstraction Coupling (PDAC)

Cohesion Lack of Cohesion in Methods (LCOM), Tight
Class Cohesion (TCC)

Design and Coding
Documentation Lack Of Documentation, Documentation Density
Code Con-
ventions

The group ”Architecture and Structure” contains package metrics and depen-
dencies and comprises of inheritance, coupling and cohesion source code
metrics.

9.1. SOURCE CODE METRICS 139

Depth of Inheritance or Depth of Inheritance Tree (DIT) is a very common
structure source code metric. It is defined as the maximum inheritance path
from a class to the root class. On the one side, inheritance is a fundamental
concept in object-oriented programming. On the other, the deeper a class is
situated in the inheritance tree, the harder it becomes to maintain and test it.
Typically, a class that inherits directly from the base type Object has a DIT
value of 1. In the literature, different acceptable ranges for DIT are defined that
have an upper bound between 4 and 8. Microsoft suggest a maximum of 5.

Also common are Robert Martin’s code metrics - Afferent and Efferent Cou-
plings, Instability, Abstractness and Distance.

Afferent Couplings (Ca) refers to the number of classes directly depending
on the analyzed one. Classes with high Ca value are considered to have many
responsibilities. Ca can be applied on other levels as well, for example on
package level. Ca value of 0 indicates that a class is not used.

Efferent Couplings (Ce) refers to the number of classes, on which the ana-
lyzed class depends. High Ce value of a class indicates that it is highly de-
pendent. Ca and Ce might be very helpful when compared to the size of a
class.

Instability (I) is calculated as the ratio I = Ce / (Ca + Ce) and indicates the
level of changeability of a class or a package. The values of I are in the range
between 0 and 1, where 0 indicates a stable class and 1 an unstable one.
The more a class depends on other classes, the more unstable it is. If many
classes depend on the analyzed one, modifications of that class are less likely
to be required when making changes somewhere else in the system, therefore
the class is stable. GUI-related packages are recommended to have I values
close to 1, while data access-related classes – close to 0.

Abstractness (A) is the ratio of the number of abstract to the number of con-
crete classes/ modules in a package. A value of zero indicates a completely
concrete package and a value of one - a completely abstract. Alternatively,
some tools such as the plug-in for Eclipse ”Metrics”, calculate A as the ra-
tio the sum of abstract classes and interfaces divided by the total number of
classes in a package.

In the next section the problems with metrics definitions are addressed and
some of the implementations of this metrics are discussed.

9.1.4 Issues with the definitions of metrics

There are several issues with the definitions of source code metrics. The de-
velopers of a metric not always clearly define it, sometimes its calculation is
left open as an implementation decision. This is the case with WMC. WMC

140 CHAPTER 9. SOURCE CODE METRIC TOOLS

is defined as the weighted methods per class. The weight is left as an imple-
mentation decision. Often the weight for all methods is set to one. In this case
WMC is equal to the number of methods in a class. Alternatively, the cyclo-
matic complexity of a method can be used as its weight, resulting in a WMC
value equal to the cyclomatic complexity of the class.

Another issue with the definitions of metrics is that some well-established ones
are calculated differently by the different source code metrics tools. For exam-
ple, Lines of code(LOC) is calculated by some tools as the total number of lines
of a project, while others take only the non-empty lines. Still others addition-
ally exclude the non-empty that contain comments. LOC could be defined as
the sum of the executable lines of code of all methods in a class. This further
excludes the import/using statements, as well as the method signatures. It is
also not uncommon to calculate LOC as only the lines, which contain a semi-
colon. Alternatively, LOC could be measured based on intermediate language
(Microsoft IL, Java bytecode), instead of source code.

The example above also demonstrates a further issue - though there are dif-
ferent implementations for the calculation of a metric, sometimes they are all
called with the same name.

Additionally, the interpretation and usage of a metric could deviate from the
original intention of its developer. This poses the question whether the results
of such metrics are still as exact as expected. Due to all the issues mentioned
here, one should consider the implementation and the interpretation of a met-
ric.

The next section defines and point out the advantages of source code met-
rics tools. Commercial and non-commercial tools that were found interesting
by the author are shortly presented. The features that differentiate them from
other products on the market are discussed. As already mentioned, the tools
often measure different metrics in different ways and interpret the results dif-
ferently. The metrics, their calculation and interpretation are addressed where
applicable.

9.2 Tools

Applying metrics manually would be a a tedious, expensive and error-prone
task, which is not practicable. Additionally, there is a high probability that those
results would not objective. Tools on the other hand, are capable of delivering
automatically calculated measurement in a very quick manner typically only by
a click of a button. Metrics tools are the only way to deliver objective answers
[Fle09].

Tools, offering features beyond calculating the common basic metrics, could

9.2. TOOLS 141

help developers, managers and analysts identify risks and detect symptoms
in the source code that possibly indicate a deeper problem. An example of
a so called ”bad smell” is duplicate code – identical or similar code segments
found in more than one location. Duplicate code implies high coupling between
those locations and thus lower maintainability of the system. Some metrics
tools detect such design compromises and are very useful when performing
refactoring.

Since developers look at small portions of code through the IDE window, it
is possible that they loose the overview of the system. This would inevitably
result in reduction of the code quality. Advanced source code metrics tools
offer additional views on the system that are helpful in retaining the overview of
the system. Such views are, for example, dependency graphs, charts, showing
the methods with too high cyclomatic complexity, etc.

There is a wide variety of source code metrics tools available on the mar-
ket. This section addresses some of the most widely used tools from different
perspectives, such as the measured metrics, reporting capabilities, configura-
bility, etc. The scope of this paper are source code metrics tools are capable
of analyzing Java or C#/.NET code. For those that additionally support other
languages, the supported ones are pointed out.

The tools presented here were divided into commercial and open source. The
choice of the particular tools was made primarily based on a search on
the Internet. Factors for the choice of tools were the supported programming
languages, the range of supported source code metrics and the additional
advanced features provided. Further on, the customers of the tools and the
tools’ degree of acceptance in the industry were considered. Users’ feedback,
tool usability and documentation were also taken into account.

9.2.1 Commercial Tools

SonarJ

SonarJ is a powerful source code analysis tool for Java systems. It is delivered
either as a stand-alone application or as an Eclipse plug-in. SonarJ supports
a wide variety of source code metrics, divided into groups that can be seen on
the left pane of Figure 9.1. A metric can be calculated within different scopes
– system, subsystem, package, directory, etc. Each metric has its own set of
scopes. In the histogram view on the right pane of the figure, the number of
packages having a certain Instability index are displayed.

One could also set thresholds for the metrics. If the threshold for cyclomatic
complexity is for instance set to 15, every developer that tries to write code
with higher complexity will get a warning. Additionally, tolerance ranges in

142 CHAPTER 9. SOURCE CODE METRIC TOOLS

Figure 9.1: SonarJ - Metrics Tab

percent can be set for the metrics. Elements (classes, packages, etc.) become
”suspicios” if they fall within those ranges.

In the Exploration tab, dependencies among elements are visualized. Figure
9.2 displays the package structure of a system. By expanding and collapsing
the branches of the tree on the left, one could drill-down to a class level. In the
figure the ”gui” package is selected. The green arches show that it depends
on the controller and model packages, among others. An arch on the right
would indicate a cyclic dependency. The cycle viewer is an additional help for
identifying elements for refactoring.

SonarJ offers the possibility to plan refactoring and simulate refactorings with-
out actually applying them. For further information, please refer to the official
documentation at [hel10].

9.2. TOOLS 143

Figure 9.2: SonarJ’s graph ”Logical Structure of a System”

Microsoft Code Metrics

Microsoft Code Metrics is integrated in Visual Studio Team System - Team
Suite 2008. It supports five metrics, which are displayed as columns in a table.
Lines of Code excludes white space, comments, braces and the declarations
of members, types and namespaces. Microsoft Code Metrics measure Depth
of Inheritance in the standard manner. The Class Coupling metric indicates the
total number of dependencies that the item has on other types. This number
excludes primitive and built-in types such as Int32, String and Object [Cor07].
Low Class Coupling can indicate candidates for possible reuse.

Microsoft Code Metrics calculate Cyclomatic Complexity by counting the num-
ber of decision points (such as if blocks, switch cases, and do, while, foreach
and for loops, &&) and adding 1 [Cor07].

Maintainability Index is an number between 0 and 100 indicating the overall
maintainability of the member or type. At the namespace and assembly level,
this is an average of the maintainability index of all types contained within it.
Maintainability Index is a derived metric, calculated as a function of Cyclomatic
Complexity, Lines of Code, Halstead’s Volume metric and others not explicitly
mentioned by Microsoft. The latter measures the information content of an
algorithm implementation in bits, based on the number of unique and total op-
erators and operands in the analyzed segment. A Maintainability Index below
9 indicates code that is complex and hard to maintain. The range for Moderate
Maintainability is between 10 and 19 inclusive, and above 20 the maintainabil-
ity is considered as ”High”.

144 CHAPTER 9. SOURCE CODE METRIC TOOLS

RSM (Resource Standard Metrics)

Resource Standard Metrics is a source code metrics and quality analysis tool
for ANSI C, ANSI C++, C# and Java for use on all Windows and UNIX op-
erating systems. According to the list of companies using it, it is a widely
accepted and used tool. Some of RSM’s customers in Germany include Alca-
tel, Commerzbank, Blaupunkt, Daimler Crysler Aerospace, Deutsche Telekom,
HP, Siemens, Sony and others [LLC09]. RSM is a command line program that
enables scripting and embedding into programming IDEs. RSM Wizard is free
GUI which runs on top of Resource Standard Metrics. The tools supports var-
ious operating systems and boasts to be the fastest tool for measurement of
code quality and metrics. Due to the evaluation limitations the author has not
verified this.

The tool supports, according to the documentation, around 100 metrics, which
are split into scope groups: function, class, namespace/package, file, project
and baseline metric differentials. Three metrics for the measurement of lines
of code are defined per scope - total, effective and logical statements Lines
of Code. That results in 24 metrics that are variants of Lines of Code. Other
supported metrics are blank lines, comment lines, function points (a derived
metric, based on lines of code), number of input parameters, number of public,
private, and protected data attributes and methods, cyclomatic and interface
complexity. For a complete list of supported metrics, please refer to the official
documentation [LLC09].

Reports are generated for the selected metrics in textual, CVS, XML or HTML
format. In the author’s opinion, the reports are not clearly laid out, contain re-
dundant information and do not suggest the interpretation of the results. The
supported metrics do not promote improved clarity into the system under mea-
surement.

Analyst4j

Analyst4j is a source code metrics tool for Java. It is distributed as a stand-
alone application and as an Eclipse plug-in. It offers a variety of source code
metrics on method, class, file and package levels. The metrics, their calcu-
lation and interpretation are well-described in the official documentation at
[Ana09].

The results of the metrics are visualized in graphs that are, in the author’s
opinion, more comprehensible than a list of numbers. Thresholds for the met-
rics can be set as well. Metrics can be mapped against each other with the
help of the comparison analysis feature. For example, Weighted Method Com-
plexity versus Inheritance Depth of a class can be displayed in one chart to
reveal complex classes with lots of functionality that might be candidates for

9.2. TOOLS 145

refactoring.

A nice feature offered by the tool is metrics search. One could select the de-
sired metrics, set thresholds to them and connect them by means of logical
operators. The queries created in this manner can be saved for later evalua-
tion. One could use this feature to prioritize coding and refactoring activities.

Analyst4j supports the detection of anti-patterns. On the product web page
[Ana09] the detected anti-patterns, such as ”Spaghetti code”, ”Blob classes”
and ”Swiss knife classes” are well described together with the symptoms of
those anti-patterns in terms of ranges for source code metrics.

Other commercial tools

Krakatau Suite Krakatau Suite [Sof09] offers three metrics tools - Krakatau
Professional, Project Manager and Essential Metrics. It supports C/C++ and
Java. Krakatau Professional offers over 70 source code metrics including Hal-
stead size metrics, complexity and object-oriented metrics. The results of
the metrics are visualized in spider graphs, histograms and tables. Tolerance
ranges can be set for the metrics.

Krakatau Metrics PM can compare two project releases and display changed,
deleted and added source lines of code between the projects. This feature
could be used to infer the developer activity and detect problem areas in source
code. Essential Metrics is a command line metrics tool, which makes it suitable
for inclusion into a build process.

Further source code metrics tools are NDepend [S.A09] (supports .NET lan-
guages), XDepend(for Java) and Semantic Designs Java/C# Metric tool.
Note that NDepend and XDepend have little in common with the similar sound-
ing open source tool JDepend.

9.2.2 Open Source Tools

XRadar

XRadar is an open extensible code report tool, the architecture of which is
based on java, xml and xsl [XRa09]. Currently it supports only Java. XRadar
uses other open source products internally, such as JDepend, JavaNCSS,
PMD and Checkstyle, some of which are shortly referred to in the section
9.2.2. It covers the standard range of source code metrics, such as complexity,
architecture and structure metrics. XRadar also checks for class design errors
(such as visibility of attributes), duplicate code and code layout.

146 CHAPTER 9. SOURCE CODE METRIC TOOLS

Figure 9.3: XRadar Spider Graph

XRadar has only a command line interface. It produces two types of HTML
reports - one describing the ”statics” of the system and one describing the
”dynamics”. XRadar Statics reports contain different views, such as a design,
architecture, code and overview, among others. The views display different in-
formation, depending on the selected scope. One could drill-down in a javaDoc
manner starting from the whole system, through its modules and packages to
the separate classes.

Figure 9.3 illustrates a typical diagram of an XRadar Statics report, where a
package is compared to all the other packages in the system on typical metrics
in a spider graph. This view is available on all levels, except for the level of sep-
arate classes. The outermost line indicates the maximum values of the metrics.
The dotted line indicates the average values of the metrics in the whole project
and the green line shows the values for the selected package/module.

XRadar Dynamics reports display information about the development of the
system through its releases. The same views are available as for XRadar Stat-
ics, but the information is displayed over time. The overview shows by means
of graphs the values of the derived metrics ”Total Quality”, ”Unit test suite”,

9.2. TOOLS 147

”Architecture”, ”Design” and ”Code Quality” over time, i.e, for the different re-
leases. Formulas for the calculation of those derived metrics are defined, as
well as for the metrics they are based on. The ranges for the derived metrics
are from 0 to 1. ”Design”, for example, is calculated as 0,2*(Number of Meth-
ods) +0,3*(Response for Class) +0,3*(Coupling Between Objects)+ 0,2*(Depth
of Inheritance Tree), where Depth of Inheritance tree is the number of classes
which have less than 5 superclasses, divided by the total number of classes.

For further details, please refer to the official documentation at [XRa09].

Metrics (Eclipse plug-in)

Metrics is a popular plug-in for Eclipse that calculates 23 of the most common
source code metrics, such as McCabe’s cyclomatic complexity and Robert
Martin’s architecture and structure metrics. The tool provides a visualization
of the dependencies between packages. In figure 9.4 the package ”model”
is selected. The packages, with which it is directly connected are displayed,
as well as the direct dependencies among them. Note that the ”controller”
package depends on 4 other (indicated by the number in the right corner) that
are not displayed, since the focus is on the ”model”.

Figure 9.4: Metrics: Dependency Graph View [XRa09]

Other tools

SourceMonitor SourceMonitor is a lightweight tool, capable of analyzing
C++, C, C#, VB.NET, Java, Delphi and Visual Basic code on a basic level.
The supported metrics are very limited - only Lines of Code, Depth of Inheri-
tance Tree, Cyclomatic Complexity and Number of Statements are measured,
though the metrics are called differently. Lines of Code is calculated based on
the actual source code. The results of the metrics can be visualized in spi-
der charts (”Kiviat diagrams”). They can also be compared to the results of

148 CHAPTER 9. SOURCE CODE METRIC TOOLS

previous releases (”checkpoints”) in an additional graph.

JDepend [CC10] is a popular tool that calculates metrics, related to pack-
age dependencies. It is often used by other more advanced tools or in com-
bination with other tools. JDepend does not collect source code complexity
metrics. Afferent and Efferent Coupling are calculated only among packages,
instead of among classes, as originally designed by Robert Martin. JDepend
is often used along with JavaNCSS. JavaNCSS (stands for ”Non Commenting
Source Statements”) [Lee09] measures standard metrics, including method
cyclomatic complexity and javadoc length.

9.3 Discussion and Outlook

A wide variety of source code metrics tools exist on the market, both commer-
cial and open source. They differ in the supported programming languages,
the set of measured metrics, their calculation and interpretation. Beside the
common metrics, the leading tools on the market offer advanced analysis fea-
tures, based on complex derived metrics. Tools, such as SonarJ and XRadar
among others, present a broader look into the analyzed system by means of
advanced visualization and sorting functionalities.

The interpretation of the applied source code metrics by the different tools
is not unambiguous and often not standardized. Discussions are going on
whether the values of certain metrics are useful for making conclusions on the
quality of the source code. A further problem is that some of the source code
metrics do not scale, i.e., even if some ranges of values of such a metric have
proven to be representative for smaller projects, they turn out to be wrong for
larger-scale projects.

The large number of source code metrics tools available implies high interest in
the field. As knowledge and experience aggregate with time, new dependen-
cies are found that imply higher or lower code quality. Ranges for the values of
metrics are specified and refined for different project sizes. Complex derived
metrics are developed to enhance the insight into software systems and help
pinpoint potential problems. Newer source code metrics tools offer advanced
features, going far beyond mere counting.

9.4 Summary

The paper motivated the usage of source code metrics tools and attempted to
demonstrate the reasons for their wide application in code refactoring, quality
control and re-engineering. Some of the most common source code metrics

BIBLIOGRAPHY 149

were addressed, as well as their practical meaning for the disciplines men-
tioned above. The tools presented in this paper were divided into commercial
and open source. The choice of the particular ones was made based on a
search on the Internet, considering, among others, the customers of the tools,
the tools’ degree of acceptance in the industry (including user opinions), the
range of functionality, the supported programming languages and usability of
the tools. Mostly the features, which make a tool stand out, were presented.

Bibliography

[Ana09] CodeSWAT Analyst4j. Analyst4j overview. http://www.codeswat.

com/cswat/index.php?option=com_content&task=view&id=

43&Itemid=63, 2009.

[CC10] Inc. Clarkware Consulting. Jdepend. http://clarkware.com/

software/JDepend.html, 1999-2010.

[Cor07] Microsoft Corporation. New for visual studio 2008 - code
metrics. http://blogs.msdn.com/fxcop/archive/2007/10/03/

new-for-visual-studio-2008-code-metrics.aspx, 2007.

[ea08] Olague et al. An empirical validation of object-oriented class com-
plexity metrics and their ability to predict error-prone classes in highly
iterative, or agile, software: a case study. Journal of Software Main-
tenance and Evolution: Research and Practice 20 (3), 2008.

[Fle09] Andre Fleischer. Is quality measurable? http://xradar.

sourceforge.net/downloads/metrics-isQualityMesureable-de.

pdf, 2009.

[hel10] hello2morrow. Sonarj overview. http://www.hello2morrow.com/

products/sonarj, 2010.

[iSA09] ARiSA Applied Research in System Analysis. Software quality met-
rics. http://www.arisa.se/compendium/node88.html, 2009.

[Lee09] Chr. Clemens Lee. Javancss - a source measurement suite for java.
http://www.kclee.de/clemens/java/javancss/, 2009.

[LLC09] M Squared Technologies LLC. Rsm documentation center. http:

//msquaredtechnologies.com/m2rsm/docs/index.htm, 2009.

[S.A09] SMACCHIA.COM S.A.R.L. Ndepend. http://www.ndepend.com/

Default.aspx, 2009.

[Sof09] Power Software. Krakatau metrics. http://www.powersoftware.

com/docs/justify/justify.pdf, 2009.

150 CHAPTER 9. SOURCE CODE METRIC TOOLS

[XRa09] XRadar. Xradar documentation. http://xradar.sourceforge.net/,
2009.

Chapter 10

Visualization of Hierarchical
Data

Steffen Conrad

Contents
10.1 Introduction . 152
10.2 Cushion Treemaps . 153

10.2.1 Treemaps . 153
10.2.2 Cushion Treemaps . 155

10.3 Layout Styles for Hierarchical Graphs 157
10.3.1 Hierarchical Graphs 157
10.3.2 An Energy Model for Graph Layouts 158

10.4 Tools . 162
10.5 Discussion . 163
Bibliography . 164

151

152 CHAPTER 10. VISUALIZATION OF HIERARCHICAL DATA

Abstract: Numerous methods are available for the visualization of hierarchi-
cal information. Treemaps are a graphical representation for trees of mea-
surement data that can be used to display directory structures and organi-
zational structures; hierarchical graphs are used to model the structure of
software systems etc. The meaningful display of information gets problem-
atic if the data structures get too large. Efficient and lightweight strategies
are presented to overcome those problems, in particular adding shading to
treemaps, and the use of an energy model for computation of meaningful lay-
outs for hierarchical graphs which can be used for various analyses like ques-
tions about the structure of software systems, relationships between software
entities, etc.

10.1 Introduction

A large quantity of the world’s information is hierarchically structured – man-
uals, corporate structures, family trees, internet addressing, software system
models, etc. Those hierarchical data structure can contain measurement data,
for example size or weight attributes. It is very important to have useful tech-
niques to visualize those measurement data structure, since humans have the
ability to recognize the spatial configuration of elements in a picture and no-
tice relationships between elements quickly. This visual ability allows people to
grasp the content of a picture much faster then they can scan and understand
text [Kam88]. Therefore a huge amount of visualization methods have been
developed, this article will present two visualization techniques for trees and
graphs.

Hierarchical structures are often represented by a graph, composed of nodes
and links between these nodes. A widely used graphical representation for
graphs and trees are different forms of node-link diagrams. In these dia-
grams elements of a structure are shown as nodes, relations between them
are shown as links. Such graph and tree visualizations are very efficient and
fast to understand. When those structures grow too large they can get confus-
ing or do not offer any meaningful information anymore. It can also be difficult
to find meaningful positions for each node and edge in a graph, so that the
generated layout provides a useful view for a specific analysis. Big graphs
also hardly fit on a screen or page while maintaining a significant size of nodes
and links in the picture. To overcome these problems, this article will intro-
duce two advanced visualization strategies, one being cushion treemaps that
use shading to improve the display of complex tree structures, and an energy
model for hierarchical graphs that allows the computation of meaningful graph
layouts for different analysis purposes.

Section 10.2 will introduce cushion treemaps, a visualization for tree struc-
tures. The computation of meaningful layouts of hierarchical graphs will be
discussed in section 10.3. A short discussion about the presented topics and
their use in applications will be presented in sections 10.4 and 10.5.

10.2. CUSHION TREEMAPS 153

10.2 Cushion Treemaps

A wide known traditional graphic representation for trees is displaying the root
node at the top and its child nodes below connected by lines [Knu97]. A differ-
ent visualization concept named tree-maps has been developed by Ben Shnei-
derman at the University of Maryland [Shn92], [JS91]. He was looking for a
better representation of the storage usage of a file system, trying to identify
big files and directories that could be deleted to free up space on his hard
drive. Since most file systems are organized as a tree, he tried to find a way to
visualize the sizes of each directory in that tree structure. The approach of dis-
playing the tree in its traditional graphical form with its sizes as an attribute at
the nodes did not work very well. Even for small file systems the screen space
was too limited. This made it very hard for him to grasp the entire picture.

10.2.1 Treemaps

Shneiderman solved his problem with a 2-d space-filling approach, recursively
subdividing a rectangular display space according to the size of subtrees for a
given tree node. Starting with the root node of the tree for the full rectangular
display space, it gets vertically split into pieces according to the number of child
nodes. The size of each pieces gets chosen proportionally to the size attribute
of the according child node (i.e. the summarized sizes of its child nodes).
For each of those child nodes the partitioning of the according rectangle is
repeated for its own child nodes. Hereby the algorithm alternates between
vertical and horizontal partitioning for each level of the tree.

Figure 10.1 shows the resulting treemap representation of a tree. The size at-
tribute of each tree node is contained in the node name, e.g. the root node A16
is of size 16. It is represented by the outermost rectangle in the treemap. This
rectangle contains all other rectangles, since all other tree nodes are contained
in the subtrees of the root node.

Figure 10.1: Treemap of a small tree structure

154 CHAPTER 10. VISUALIZATION OF HIERARCHICAL DATA

Tree-Map Algorithm

The layout algorithm assumes a tree structure and a rectangular area defined
by uper left and lower right coordinates P1(x1,y1), Q1(x2,y2). The number of
childs of the current tree node determines the number of partitions this rectan-
gular area needs to be split into. Since the size of a child node is a fraction of
the size of its parent node, the partitions of the child nodes i are split propor-
tionally to their size in relation to the size of the parent. The algorithm is then
recursively called for each child node and its according rectangular area, alter-
nating between horizontal and vertical splitting. By setting the axis argument
to zero, the initial splitting will be done vertically.

Treemap(tree_node, P[0..1], Q[0..1], axis)

Paint_Rectangle(P, Q); -- paint full area

width := Q[axis] - P[axis]; -- compute location of next slice

for i := 1 to tree_node.num_children do

-- compute size of slice

Q[axis] := P[axis] + (Size(child[i])/Size(tree_node))*width;

-- paint the child nodes recursively,

Treemap(child[i], P, Q, 1 - axis);

-- skip position to the next slice

P[axis] := Q[axis];

endfor

The described algorithm runs linearly with the number of nodes in the tree.
The size of each node therefore can be computed beforehand in linear time
and each run of Treemap() is done once for each tree node. Figure 10.2 shows
a colored treemap of a file system containing 1000 files. The large files can
easily be identified.

Figure 10.2: Treemap of a file system with 1000 files [JS91]

10.2. CUSHION TREEMAPS 155

10.2.2 Cushion Treemaps

Treemaps also have limitations, such as not being able to provide a mean-
ingful visualization of the structure of a tree under certain conditions. In its
worst case, a balanced tree where every parent node has the same number
of children, the treemap degenerates into a regular grid. Another problem is
related to the boundaries between subtrees. While leaves of a subtree are still
displayed close to each other, rectangles displayed close to each other in the
treemap can be assigned to very different subtrees in the tree structure.

As an example, the top left treemap in figure 10.4 on page 156 shows an
organization chart, modeled after the employment structure of an university.
Important questions about the size of a section or if the division into units is
balanced or not are hard to answer from the treemap. While it is possible to
use different colors, or different line sizes for each partition of the treemap, the
required information would still be hard to track for a user. An alternative is
to use shading to visualize the structure of the tree. The concept of cushion
treemaps will therefore be introduced.

A simple Shading Model

The structure of the tree displayed in the tree map can be emphasized by
adding shapes to the treemap. The human visual system is trained to inter-
pret variations in a shade as illuminated surfaces, so the aim is to construct
a surface which shape is sufficient to encode the tree structure. The solu-
tion is introduced by a one-dimensional example, the binary subdivision of an
interval. This is then generalized to a two-dimensional method afterwards.

Figure 10.3: Binary subdivision of interval [WW99]

An interval gets subdivided into two halves, adding a bump to each subinter-
val. Done recursively for three levels, the division results in eight segments
and the top-most curve as seen in figure 10.3. By interpreting this curve as
the side view of a bent strip and render it as viewed from above it forms a
sequence of ridges. Each of the segments is clearly visible, bounded by the

156 CHAPTER 10. VISUALIZATION OF HIERARCHICAL DATA

sharp continuities in the shading. Furthermore the binary tree structure is also
emphasized, as the depth of the valleys between the segments is proportional
to the distance between segments in the tree [WW99, p.3].

The idea of the bent strip can be generalized to a two-dimensional case, re-
sulting in a ridge formed like a parabola. These ridges are then applied to each
rectangle of the treemap. The visualization can be controlled by two parame-
ters, the height h and a scale factor f [WW99, p.2-3]

After applying the ridges to the treemap, each ridge gets shaded by a simple
model like diffuse reflection [JDFH96]. Results of this method are shown in
figure 10.4. Here the tree structure can be identified without effort. The high
scale factor in the top right treemap emphasizes the details of the tree, the
lower scales in the bottom left and right treemaps show the global structure of
the tree.

Figure 10.4: Cushion treemaps of organization [WW99]

Adding cushions to the Tree-Map Algorithm

The above method can easily be added to the presented treemap algorithm.
Instead of only painting the border of the rectangle for each segment of the
tree, a cushion needs to be added to each rectangle, which then gets rendered
by the diffuse reflection shading model. The source code of the resulting algo-
rithm is very compact and still scales linearly with the size of the tree and the
size of the display space [WW99, p. 4-5].

10.3. LAYOUT STYLES FOR HIERARCHICAL GRAPHS 157

10.3 Layout Styles for Hierarchical Graphs

Hierarchical graphs are widely used when modeling the structure of software
systems – entities like packages, classes, methods or attributes get repre-
sented by graph nodes; relations between entities like inheritance, method
calls or attribute access get represented by graph edges; containment hierar-
chy of the entities can be modeled by a hierarchy tree over the graph nodes.

To support comprehension, evaluation and improvement of the structure of
large software systems, views on different levels of abstraction are required;
like visualizing relationships between packages on a global level, displaying
the interaction of methods and attributes of a few classes in detail, or views
including different levels of detail to show methods and attributes of a class
in their global context. The visualization of such views requires the computa-
tion of layouts, in example the positions and size of graph nodes in a two- or
three-dimensional space. Therefore Andreas Noack and Claus Lewerentz at
the Brandenburg University of Technology in Cottbus developed requirements
for meaningful layouts that support these analyses, and formalized these re-
quirements to automate the computation of the corresponding layouts [NL05].

After a brief introduction to hierarchical graphs, a space of layout styles will
be introduced which organizes layouts along three dimensions – the degree of
clustering, hierarchicalness and distortion. These requirements get combined
into an energy model that allows the automatic computation of graph layouts
that highlight specific characteristics of a graph of a software system.

10.3.1 Hierarchical Graphs

A hierarchical graph H consists of a directed graph G and a rooted tree T, with
the leaves of T exactly being the nodes of G. The tree T is called the hierarchy
tree of H, G is called the underlying graph of H. The left side of figure 10.5
shows a hierarchical graph and its corresponding hierarchy tree. The nodes of
the hierarchical graph are represented as boxes, the edges of the underlying
graph are displayed as lines with arrows, and the edges of its hierarchy tree
are represented as nesting boxes.

Figure 10.5: a hierarchical graph, its hierarchy tree, and a view [NL05]

158 CHAPTER 10. VISUALIZATION OF HIERARCHICAL DATA

The advantage of hierarchical graphs in comparision to normal graphs are that
views can be defined on those graphs. A view utilizes a collection of nodes of
the hierarchy tree and uses them to display the information on these nodes as
they would represent all of their child nodes of the underlying graph, including
their links. This allows to display a summary or abstraction of the underlying
graph. The right part of figure 10.5 shows a view on the graph from figure 10.5.
Here the node 11 is used to represent the nodes 111, 112, and 113; all edges
adjacent to these nodes are displayed adjacent to node 11 instead.

Such views are applicable for a wide amount of visualizations, for example fo-
cusing on a single package in a dependency graph to display its relations to
other packages by simply showing the package itself in full detail and display-
ing each related package as a single node only. It would be easy to spot which
class of the package is interacting with the outside system etc.

10.3.2 An Energy Model for Graph Layouts

To compute layouts for the hierarchical graphs that serve specific analysis pur-
poses, requirements for these layouts must be defined. To determine if a lay-
out meets the analysis requirements, an energy model is used to formalize the
quality. It assigns an energy to each layout, specifying the quality of node po-
sitions and sizes according to an analysis requirement. Better layouts lead to
smaller energies, so the finding of good layouts for a specific analysis purpose
results in finding a layout with minimum energy.

Perfect energy minimization algorithms that can be used to compute those lay-
outs by finding a global minimum are known, but are not useable in a practical
way because of their complexity. Instead there are several proven heuristics
that reliably and efficiently find layouts with low energy. For the presented ex-
amples, an algorithm that was introduced for the simulation of astrophysical
systems has been used [BH86]. It has already been applied on the computa-
tion of graph layouts by Quigley and Eades in 2001 [QE01].

The following sections will introduce the analysis requirements and iteratively
formalize them into an energy model. They have been presented by Noack and
Leverentz in A space of layout styles for hierarchical graph models of software
systems [NL05]. It has a strong focus on using the presented strategies to find
suitable layouts for different software system analyses.

Degree of Clustering

The first requirement for graph layouts presented is the degree of clustering. It
models a tradeoff of layouts with locally interpretable distances versus layouts
with globally interpretable distances. This allows analysis questions about sin-

10.3. LAYOUT STYLES FOR HIERARCHICAL GRAPHS 159

gle entities and relationships on the one hand, and questions about the global
structure of a software system on the other hand.

The clustering is dependent on edges between the nodes of the underly-
ing graph. Connected nodes attract each other in a clustered layout, non-
connected nodes repel each other. The more of a group of nodes are con-
nected to each other, the more likely the are belonging to the same cluster in a
resulting graph layout. While a small degree of clustering allows local analyses
on the neighborhood of software entities (clusters do not get grouped together
so a decent level of detail remains), a high degree of clustering focuses on the
global structure (placing strongly connected groups of nodes together, thus
highlighting connections between several clusters).

The influence of the clustering parameter c is best shown by a small pseudo-
random graph that is built out of 4 clusters with 4 subclusters. While each node
of a subcluster is connected to every other node of the subcluster, only some
nodes of different subclusters of a cluster are connected. Even less nodes
of different clusters are connected. Different layouts of this clustered graph
are shown in figure 10.6 – while the left layout does not focus on clusters, the
middle and right graphs highlight the different clusters of the graph.

Figure 10.6: random graph with clusters (edges hidden) [NL05]

Non-clustering analyses are composed of questions like which other methods
are calling a specific method – if this method signature would change, all invok-
ing methods would have to adapt those changes. In a more high-level manner,
questions about packages could be answered. An architecture could require
that a certain package p1 may only be used by packages p2 and p3, but p1 not
using the packages p2 and p3. Looking for all packages that use the package
p1 could easily answer if this rule is violated or not.

Analyses related to a high level of clustering are decomposition questions,
focusing on breaking a system down into groups of entities that are strongly
related to each other, while only loosely related to entities in other groups. This
is also called software clustering, which tries to find interfaces for these groups
of entities to the rest of the system.

160 CHAPTER 10. VISUALIZATION OF HIERARCHICAL DATA

Degree of Hierarchicalness

The degree of hierarchicalness adds the containment hierarchy of software
systems to the layout space. By not focusing on the hierarchy, the layout re-
flects the layout of the underlying graph, placing adjacent nodes closely. The
opposite, focusing on the hierarchy, the layout reflects the hierarchy tree, plac-
ing nodes with common parents, grandparents etc. close to each other. When
focusing on the containment hierarchy, various questions about package and
class hierarchies can be answered.

The clustering and hierarchy layouts get combined, making those layouts use-
ful for comprehension, evaluation and improvement of software architectures.
Therefore the energy model of section 10.3.2 gets altered, adding a second di-
mension to the layout styles, called the degree of hierarchicalness h. It reflects
the gravitation between nodes that are related in the hierarchy tree [NL05,
p.159].

The combination of clustering and hierarchy layouts can be demonstrated on
the JWAM package, an open source framework for the construction of dis-
tributed software systems [JWA04]. Figure 10.7 shows layouts with different
clustering levels on the left and middle, adding focus on hierarchy to the layout
on the right, now also grouping nodes in respect to their containment hierarchy.
The layout shows the three different subpackages of jwam – jwam.handling
(red), jwam.technology (blue), and jwam.lang (green). The only relation be-
tween the top and bottom package is the inheritance of ExceptionHandler and
ExceptionHandlerImpl. The dependency between the packages could easily
be resolved by moving them to the same package.

Figure 10.7: relationships between classes in the jwam package [NL05]

10.3. LAYOUT STYLES FOR HIERARCHICAL GRAPHS 161

Degree of Distortion

Layouts reflecting clustering and hierarchy rely on weights assigned to their
edges which reflect the number of edges of the underlying graph they repre-
sent. While this is no problem for most of the analysis tasks, in some layouts
every single relationship between entities needs to be emphasized in the same
way. This could be required when a specific class or attribute needs to be
shown in its relation to the rest of the system. It may be a small part of the
system, but a very important part of the analysis task. So while analysing local
details in their global context, distortion can be used to magnify details that
otherwise would be hidden.

The level of distortion d therefore builds the final dimension of the space of
layout styles. It gets integrated into the already existing layout energy model,
influencing the weightings for nodes and edges [NL05, p.161]. While a low
level distortion means that the weightings used in the energy model remain
unchanged, every edge has the same weight on a high-distortion level.

Figure 10.8: detail views in jwam with different levels of distortion [NL05]

The jwam example in figure 10.8 shows a mutual dependency, namely method
calls from jwambeta to jwamx and from jwamx to jwambeta. This generallly
complicates changes, understanding and reuse, also the package names indi-
cate that this violates the intended architecture. The three layouts visualize this
problem on class level with varying clarity, showing that the dependency corre-
sponds to calls from FormDepHandler to TriggerHandling and ConfirmTrigger-
Req. The views in those layouts itself contain different levels, for example only
showing a single node for the jwam package, and only showing some classes
or the other packages to only focus on the involved entities. A higher distor-
tion in the right layouts provides a much better vision on details to evaluate
according changes to remove the mutual dependency.

162 CHAPTER 10. VISUALIZATION OF HIERARCHICAL DATA

10.4 Tools

SequoiaView – disk browsing with cushion treemaps

Van Wijk and van de Wetering not only presented the cushion treemap con-
cept, they also demonstrated its capabilities in a tool called SequoiaViews
[Seq02]. It parses a given directory, calculating file and directory sizes, and
then renders a cushion treemap out of it. This way, the visualization of the
directory structure can be navigated and analysed.

The implementation showed that there are still layout problems when generat-
ing treemaps on directories with a lot of small files – the corresponding display
degenerates into groups of adjoining lines that do not provide any useful in-
formation. Van Wijk and van de Wetering solved this by enhancing the layout
algorithm to squarified cushion treemaps, using squares to layout the files on
each level. While this strategy adds some complexity to the layout algorithm,
the results are much better. The screenshot in figure 10.9 shows this layout of
C:\Windows on Windows XP.

Figure 10.9: SequoiaView displaying C:\Windows

10.5. DISCUSSION 163

Software landscapes – a graph visualization method

The research team working on the energy model based graph layouts have
explored many more graph visualization techniques in several projects, for ex-
ample CrocoCosmos [Cro03], a tool for analysis and visualization of structural
and metrics information of large object oriented programs. Another project
worth mentioning is a collaboration with a team of the University of Konstanz
about the use of software landscapes to visualize large software systems. It
combines the presented layout styles with a different graph visualization tech-
nique, using a landscape metaphor to provide intuitive navigation and compre-
hension [BNDL04]. As an example a layout method called Hierarchical Net is
shown in figure 10.10. It displays a part of the JWAM package [JWA04].

Figure 10.10: hierarchical net view of the JWAM package [BD04]

10.5 Discussion

Treemaps and their variations can support various software analyses, espe-
cially when displaying measurement data. They are restricted to tree struc-
tures, which limits their usefulness when working with complex data structures.
Cushioned treemaps and squarified cushion treemaps solve the problem of
displaying complex tree structures of measurement data.

The energy model for graph layouts provides styles for views of hierarchical
graphs that can be organized in a space with three dimensions. By altering
the parameters and defining an appropriate view on the underlying graph of a

164 CHAPTER 10. VISUALIZATION OF HIERARCHICAL DATA

software system, a user can easily create graph layouts to aid in several anal-
ysis questions. Hereby the parameters do not need experimental tuning, each
parameter value has a clear interpretation. The well-defined correspondence
between properties of the layouts and properties of the graph allows to draw
valid inferences about a software system directly from its corresponding graph
layout. This characteristic has largely been missed in previous energy models.

Treemaps and the energy model based graph layouts can also be combined,
for example displaying measurement data of packages of a software system
in treemaps, while displaying relations between different packages in a graph
based layout.

The two presented methods help to enhance existing measurement data vi-
sualization concepts to improve their clarity and useability. While cushion
treemaps try to solve the problem of visualizing complex measurement data
hierachies, the presented energy model of the second section addresses the
support of various software system analysis tasks with appropriately com-
puted graph layouts. Both concepts have the potential to improve software
system analyses, they offer intuitively useable software metrics visualization
techniques.

Bibliography

[BD04] M. Balzer and O. Deussen. Hierarchy based 3d visualization of
large software structures. In VIS ’04: Proceedings of the confer-
ence on Visualization ’04, pages 598–599. IEEE Computer Society,
2004.

[BH86] J. Barnes and P. Hut. A hierarchical o(n log n) force calculation
algorithm. Nature 324, pages 446–449, 1986.

[BNDL04] M. Balzer, A. Noack, O. Deussen, and C. Lewerentz. Software land-
scapes: Visualizing the structure of large software systems. In Joint
Eurographics and IEEE TCVG Symposium on Visualization, pages
261–266. Eurographics Association, 2004.

[Cro03] CrocoCosmos – visualization of object-oriented programs, 2003.
http://www-sst.informatik.tu-cottbus.de/CrocoCosmos/index.html.

[JDFH96] Foley J.D., A. van Dam, S.K. Feiner, and J.F. Hughes. Computer
Graphics – Principles and practice, 2nd edition. Addison Wesley,
1996.

[JS91] Brian Johnson and Ben Shneiderman. Tree-maps: a space-filling
approach to the visualization of hierarchical information structures.
In VIS ’91: Proceedings of the 2nd conference on Visualization ’91,
pages 284–291. IEEE Computer Society Press, 1991.

BIBLIOGRAPHY 165

[JWA04] JWAM, a framework for the construction of distributed systems,
2004. http://sourceforge.net/projects/jwamtoolconstr/.

[Kam88] T. Kamada. On visualization of abstract objects and relations. PhD
thesis, Dept. of Information Science, Univ. of Tokyo,, 1988.

[Knu97] Donald E. Knuth. The art of computer programming, volume 1 (3rd
ed.): fundamental algorithms. Addison Wesley Longman Publishing
Co., Inc., 1997.

[NL05] Andreas Noack and Claus Lewerentz. A space of layout styles for
hierarchical graph models of software systems. In SoftVis ’05: Pro-
ceedings of the 2005 ACM symposium on Software visualization,
pages 155–164. ACM, 2005.

[QE01] Aaron Quigley and Peter Eades. Fade: Graph drawing, clustering,
and visual abstraction. In GD ’00: Proceedings of the 8th Inter-
national Symposium on Graph Drawing, pages 197–210. Springer-
Verlag, 2001.

[Seq02] SequoiaView – a disk browsing tool utilizing cushion treemaps,
2002. http://www.win.tue.nl/sequoiaview/.

[Shn92] Ben Shneiderman. Tree visualization with tree-maps: 2-d space-
filling approach. ACM Trans. Graph., 11(1):92–99, 1992.

[WW99] J.J. van Wijk and H. van de Wetering. Cushion treemaps: Visualiza-
tion of hierarchical information. In Proceedings 1999 IEEE Sympo-
sium on Information Visualization (InfoVis’99), pages 73–78. IEEE
Computer Society, 1999.

