
Proceedings
of Seminar

Software Architecture
Representation and Evaluation

2013
Editors: Horst Lichter

Ana Nicolaescu

Software Architecture
Representation and Evaluation

— 13 - 14 February March 2013 —

Advanced Seminar in Computer Science
Research Group Software Construction

Prof. Dr. rer nat. H. Lichter
Winter Term 2012 / 2013

Contents

1 Enterprise Architecture Management 1

1.1 Introduction . 2

1.2 Enterprise Architecture . 3

1.3 Frameworks . 12

1.4 Conclusion and Future Work . 18

Bibliography . 19

2 Software Architecture Representation 21

2.1 Motivation and Overview . 22

2.2 Basic concepts . 24

2.3 View-based models for the software architecture description . . . 28

2.4 Reference Architecture . 33

2.5 Architecture Description Methods 35

2.6 Basic Architectures . 39

Bibliography . 41

3 Component-based development and architecture 43

3.1 Introduction . 44

3.2 Components . 46

3.3 Component models . 50

i

ii CONTENTS

3.4 Conclusion . 59

Bibliography . 60

4 Model-driven Architecture 63

4.1 Introduction . 64

4.2 Basic concepts . 65

4.3 The principles of Model-Driven Architecture 68

4.4 Model-Driven Architecture in practice 74

4.5 Related work . 78

4.6 Conclusion . 80

Bibliography . 80

5 Software Architecture Evolution 83

5.1 Introduction . 84

5.2 Background . 85

5.3 Related Works . 88

5.4 Software Architecture Evolution 92

5.5 Conclusion . 96

Bibliography . 97

6 Software Architecture Reconstruction 101

6.1 Introduction . 102

6.2 Software Architecture Reconstruction Goals 104

6.3 Architecture Reconstruction Process 105

6.4 SAR Inputs . 109

6.5 Reconstruction Techniques . 111

6.6 SAR Outputs . 113

6.7 Model Driven Architecture Reconstruction 114

CONTENTS iii

6.8 Summary and Future Research Opportunities 117

Bibliography . 117

7 Extraction of the static view of software architectures 127

7.1 Introduction . 128

7.2 SAR Approaches and Frameworks 129

7.3 Recovery Algorithms . 135

7.4 Tools Overview . 139

7.5 Visualization Techniques . 145

7.6 Conclusion . 147

Bibliography . 148

8 Extraction of the Dynamic View of Software Architectures 151

8.1 Introduction . 152

8.2 General Information . 152

8.3 Dynamic View Extraction Techniques 153

8.4 Dynamic View Extraction in Practice 156

8.5 Case Study . 158

8.6 Summary . 163

Bibliography . 164

9 Architecture evaluation 169

9.1 Introduction . 172

9.2 Background . 172

9.3 Benefits and costs of evaluation 177

9.4 Methods of SA evaluation . 180

9.5 Conclusion . 190

Bibliography . 191

Chapter 1

Enterprise Architecture
Management

Shobhit Sharda

Contents
1.1 Introduction . 2
1.2 Enterprise Architecture . 3

1.2.1 What is Enterprise Architecture 3
1.2.2 Enterprise Architecture Facets 5
1.2.3 Modelling in Enterprise Architecture 7

1.3 Frameworks . 12
1.3.1 Enterprise Architecture Frameworks(EAF) 12
1.3.2 TOGAF . 14

1.4 Conclusion and Future Work 18
Bibliography . 19

1

2 CHAPTER 1. ENTERPRISE ARCHITECTURE MANAGEMENT

Abstract:Today’s business world has become highly competitive. It has
shifted from notebooks, papers and pens to computers. As a consequence
companies are being forced to adopt modern technologies and proper plan-
ning in order to successfully achieve its business objectives, goals, vision,
organizational structures and business strategies. The current scenario of
business strategies comes with plenty of challenges and issues which are
sensitive for any company’s growth. From the requirement specifications of
a customer to the fully implemented product, there are numerous steps that
have to be taken into account. Thus, it becomes an absolute necessity that
the company should adopt a systematic approach to manage its business
processes. Thus, in this paper I have introduced the concept of ”Enterprise
Architecture” which is a solution to the above mentioned concern. It is an
emerging idea responsible for the high success rate of various companies.
I have also discussed about TOGAF, a well known enterprise architecture
framework.

1.1 Introduction

Generally, enterprise applications are extremely complex which are used by
many users. Multiple teams are involved in its development and they are often
deployed on heterogeneous systems which are spread over various environ-
ment. Thus, in order to have a complete view of a company, its application
landscape, its business process, its business strategies and its technical in-
frastructure, we need to express its various aspects, domains and their rela-
tions in a meaningful manner which can be understood by all the stakeholders.
To understand the complexity of any application landscape or organization it
is extremely important to analyse its architecture description. But a big ques-
tion lies on the meaning of the term ”architecture”? We have often heard this
term in relation to the concepts of buildings and constructions. Here different
aspects like bedroom, kitchen, dining, and bathroom are put together by an
architect to create a master plan which is then used by engineers and builders
to construct a particular building. We adopt a similar approach when it comes
to designing an enterprise.
In section 1.2 of this paper, I will discuss about the basic concept of enterprise
architecture, its importance and benefits and architecture process. I will also
discuss various enterprise architecture facets and their relation to enterprise
architecture. Later in this section, we will see different aspects of modelling ap-
plied in enterprise architecture. I have examined how Unified Modelling Lan-
guage, planningIT and few other methods can be used to model enterprise
architecture.
In section 1.3, I will introduce basic features of Enterprise Architecture Frame-
work (EAF) and different roles that are described by EAF. Later in this section
I will be focusing on various aspects of TOGAF including its Architecture De-
velopment Method (ADM) which is the core of TOGAF. This section is followed
by conclusion and future work.

1.2. ENTERPRISE ARCHITECTURE 3

1.2 Enterprise Architecture

1.2.1 What is Enterprise Architecture

Definition

A ”Architecture is the fundamental organization of a system embodied in its
components, their relationships to each other, and to the environment, and
the principle guiding its design and evolution”[Lan99]. It is often observed that
most of the stakeholders are more interested in the end result due to architec-
ture than understanding the architecture itself. However, it is the responsibility
of the architect that all stakeholders perceive the architecture. An architect
should be able to explain his architecture to all the stakeholders irrespective of
their backgrounds.
We refer an enterprise as ”Any collection of organizations that has a common
set of goals and/or a single bottom line”[Lan99] is referred to as an ’enter-
prise’. Now when architecture is discussed at an enterprise level it becomes
’enterprise architecture’. We can define an Enterprise Architecture as ”a co-
herent whole of principles, methods, and models that are used in the design
and realisation of an enterprise’s organisational structure, business processes,
information systems, and infrastructure” [Lan99].

Importance and Benefits

It is observed that we often change the architecture because of the chang-
ing needs, environmental changes or introducing new technologies which are
more effective and helpful in achieving the business objectives. We should al-
ways keep in mind that enterprise architecture has to be designed in such a
way that it should be open to accept the changes at any given point of time.
Thus, with well-understood and properly documented enterprise architecture,
the organization can respond quickly to the changing needs. Moreover, well-
documented enterprise architecture will act as a ready reference which en-
ables the organization to assess the impact of the changes on various enter-
prise architecture components. With this we can also make sure that the each
of the components operates smoothly.[oHEA11]
A sensible architecture always provides an enterprise with complexity man-
agement, technical resource oversight, knowledge management, IT visibility,
reduction in impact of staff turnover, faster adaptability, operating procedures
improvement and decision making. Enterprise architecture also allows all the
stakeholders to view different aspects of information from different perspec-
tives. This will thereby help the organization in optimizing the business goals.
Using enterprise architecture, an organization can organize and structure their
enterprise in an efficient way.[SK07]

4 CHAPTER 1. ENTERPRISE ARCHITECTURE MANAGEMENT

Architecture Process

We can consider architecture both as a product and process. The product
guides managers and system developers to design business process and build
the applications respectively, which are in accordance with the business ob-
jectives and policies. The effect of process is much more than just product
creation. The level of awareness among the stakeholders will be much higher.
Moreover, it is important to maintain the architecture once it is created because
there is a continuous change in business strategies.
The architecture process contains (figure 6.3) several steps. Ideas are gath-
ered during the initial steps. These ideas are normally noted down with the
help of whiteboards or PowerPoint. Then comes the design phase where the
ideas are converted into the useful models. Once the models are approved, the
implementation is carried away thus resulting in application landscape. This
phase is called the use phase. The overall application landscape is then main-
tained in management phase. There might be some ideas which came later
and have to be incorporated. To accomplish this, the existing application land-
scapes are again analyzed and the previous steps are again adopted, thereby
completing the loop.[Lan99]

Figure 1.1: Architecture Process[Lan99]

We should note that, product creation process, and policy and planning pro-
cess are the two aspects of architecture process. It is architecture process
which is responsible for the integral technical aspects of product creation pro-
cess and integral technical vision and synergy in the policy and planning pro-
cess. Moreover, architecture process is responsible in maintenance of the
consistency throughout the system ranging from the requirement to implemen-
tation and verification. It is estimated that the system architecture team, who
are the owners of the architecture process, spend about 80% of their time in
product creation process. The remaining time is devoted to policy and planning
process. It is also observed that the small amount of time is spent on technol-
ogy and people management as there are lots of people involved.[Mul00]

1.2. ENTERPRISE ARCHITECTURE 5

1.2.2 Enterprise Architecture Facets

Normally, we include 4 different facets of Architecture in Enterprise Architec-
ture Facets. These are used in an organization on day to day basis. These
facets have their own architecture, specifications, benefits and end results.
They are:

• Software Architecture

• Business Architecture

• Infrastructure Architecture

• Information Architecture

Software Architecture:”The software architecture of a program or computing
system is the structure or structures of the system, which comprise software
elements, the externally visible properties of those elements, and the relation-
ships among them”[BCK03]. Software Architecture defines software elements
and the relation between those elements. Elements can either be private or
public. They use interfaces to interact among themselves. We can reveal an
interesting fact from the definition that any computing system based on soft-
ware will have software architecture. We can show every system as elements
and very well define the relation between them. But no matter how well we
divide the system into elements, the software will still have architecture. More-
over, for a set of elements we often propose numerous architecture plans. But
the difference between these variants is the way the various quality attributes
should look like, when employing a certain solution.
We observe that the evolution of the software architecture is mainly due to the
design principles of designers and their actions while working on a system.
Designers always try to extract the commonalities among several systems or
within a single system. Generally, in an organization we see that the team of
designers partition whole project into smaller implementation units and these
are then given to the developer teams. Each of these units is meant to carry
a specific functionality and might be dependent on any other units. They are
generally carried out on the basis of weekly assignments. Depending on the
size of projects these units may further be divided into subunits.
However, we have to remember that there is lot more than just designing ar-
chitecture. Efficient data structures, high end and modern technologies to be
used, interface to those data structures and performance of the system are all
architectural concern which we have to take into account while designing the
software architecture for a system.

Business Architecture:Here, I have described some terms that are relevant
for this section. A business model is nothing but the business plans that de-
scribes how and organization can make profits. It also includes company’s
strategies to compete today’s business.[OST05] A business strategy states

6 CHAPTER 1. ENTERPRISE ARCHITECTURE MANAGEMENT

the direction in which a business should pursue and necessary steps that
should be adopted in order to achieve the business goals.[Wis13] A business
process is a collection of activities which are carried to accomplish a certain
organizational goal.[Rou05]
”A business architecture is a part of an enterprise architecture related to ar-
chitectural organization of business and the documents and diagrams that
describe that architectural organization”[IAS12]. We use the term Business
Architects to refer the person who are responsible in building the business
architecture. Business architecture is mainly used in terms of modelling ap-
proaches. Business architecture links business and IT and strategy and op-
erations. This link is achieved using the concept of business model. For suc-
cessful business, business architects in companies are engaged in designing
business models. They often give less importance to the business strategies. It
is observed that a good architecture consists of business models which allow
the modelling of any organizational entity together with its multi-dimensional
organizational views. Many companies use business architecture to combine
business strategies on one hand and roles, business processes, information
and behaviour on the other hand. We should understand that business archi-
tecture is authoritative for the structural responsibilities and can be used by
one organization, several organizations or one part of an organization.

We must note that the main element of business architecture is business do-
mains. Business domains are the clusters of coherent functions and objects
thus defining the meaningful responsibilities. Business functions are the set
of operations that are performed regularly to achieve some specific business
goals. We use business concepts to define the target audience, features and
benefits of the end product, description and size of the target market, strate-
gies on implementing the product within the target market and a detailed study
of how and how much revenue and profits can be generated. Overall we can
say that the business architecture contains: a layout of business domains,
business functions and business concepts and high level business process.

Infrastructure Architecture: We have to admit that the infrastructure archi-
tecture is a core part of any enterprise architecture. It holds the structure
and behaviour of the technological infrastructure of any application landscape.
We use it to define various aspects of hardware configurations like client and
server nodes, the application that can run on them, the services that can be of-
fered to them, the necessary protocols and the network interfaces that connect
both of them. Using infrastructure architecture, we can also state some of the
important variants like performance, storage, resilience and backup.[IAS12]

We know that Information and communication technology (ICT) enable busi-
ness. ICT cannot survive without infrastructure and most businesses cannot
exist without infrastructure. Of course we cannot say that infrastructure alone
is responsible for the automation or computerization to achieve business ob-
jectives as most of the business logic lies under software application which is
responsible for the automation of a system. Thus, during the early ages, infras-

1.2. ENTERPRISE ARCHITECTURE 7

tructure was never given much importance but gradually as more complex and
faster hardwares were invented, there was a strong need to focus on infras-
tructure. This embarked the rapid development and deployment of application
landscape.[Mic12]

Information Architecture:” Information Architecture is the study of and appli-
cation of structuring data and information and defining user interactions based
on the flow of this data”[Zar11]. It helps enterprise to retrieve, store, edit, add
and delete the information in an efficient manner that is relevant so that they
can achieve their business goals. Being more specific and restricting ourselves
only to internet data, we all know that there is a vast amount of information
available over internet which is expanding in a drastic manner. Thus, it is ob-
vious that there can be number of ways by which we can seek information.
Hence it is a challenge for the architects to design the application landscape in
such a way so that all the possible ways of information retrieval and processing
can be incorporated.
For example: from our day to day life it is clear that we generally fail to shop
completely not because we did not have the interest but because we could
not completely navigate through the website. Thus, it becomes crucial for the
information architect to group and categorize the information which is easily
accessible by anyone. They should keep in mind to define the levels of interac-
tion and the hierarchy of the information. Moreover the navigational schemes
should be dynamic in such a way that not only we can find what we are search-
ing for but to get back as well. The navigation should be flexible enough to
provide multiple ways of reaching particular information. From many studies, I
have found that the websites with high redundancy of links have a higher suc-
cess rate in terms of users that remain on the website. In general, information
management system whether a website or record keeping or any other means
of keeping any kind of data, which does not include information architecture
risks of losing their customers thus affecting the business goals[Zar11]

1.2.3 Modelling in Enterprise Architecture

Unified Modelling Language (UML)

”The UML is a graphical language for visualizing, specifying and construct-
ing the artefacts of a distributed object system”[Kob98]. UML is relatively
simple yet powerful. It is a general purpose language and supports many
modelling approaches. This language depends on many small core concepts
which we can easily learn and apply. These core concepts are combined and
extended thus helping modellers to define the application landscape or com-
plex systems over a wide range of domains. These core concepts includes
numerous constructs and diagram techniques that are useful for architectural
modelling.[Kob98]
Overall we can classify UML diagrams in three categories[Amb04]:

8 CHAPTER 1. ENTERPRISE ARCHITECTURE MANAGEMENT

• 1. Behaviour diagrams: Using these kind of diagram we can explain
the behavioural features of a business process. This category includes
activity diagrams, state machine diagram and use case diagrams.

• 2. Interaction diagrams: We can consider this as a subset of behaviour
diagrams which focus on the interaction among various objects. This
category includes communication (or collaboration) diagram, interaction
overview diagram, sequence diagram and timing diagram.

• 3. Structure diagrams: We use these kinds of diagrams to depict the
elements of a specification which are independent of time. This cate-
gory includes class diagram, composite structure diagram, component
diagram, deployment diagram, object diagram and package diagram.

It is important to note that UML diagrams are not the only way which we use to
model various enterprise architecture facets. There are various other methods
that can be used for the same purpose. Let us now have a closer look on how
these facets can be modelled keeping UML as main focus.

Software Architecture: We can sometime divide software architecture as
structural (static) software architecture and dynamic software architecture. Struc-
tural (static) software architecture defines the structure of all its software ele-
ments in a complex system or application landscape like class hierarchy, class
library structure and relationship (inheritance, association, aggregation etc)
among classes. The UML diagrams like class diagram, component diagram,
deployment diagram and object diagram etc can fulfil these purposes. On the
other hand, a dynamic software structure defines the behaviour of the com-
plex system or application landscape like collaboration, interaction, activity and
concurrency. The UML diagrams like use case diagram, sequence diagrams,
activity diagrams and state machine diagrams can fulfil these purposes.

However, sometimes during the initial phase, simple box-line diagrams are
used to describe different components of software architecture and relation-
ship between those components. We can also observe that the lines are gen-
erally associated with arrows to show the flow and sequence. Figure 6.6
shows an example of box-line diagram for an online shopping business. Af-
ter browsing, the customer selects and put the items in the shopping cart.
After checking out, the system examines customer’s credit record, update
the inventory and notifies the shopping department. They then process the
order.[QFTX09]
Alternatively, we can use Architecture Description Language (ADL) to describe
software architecture. It is a formal specification language which has well de-
fined syntax and semantics. It has an ability to decompose components, com-
bine components and define interfaces of components.[QFTX09]

Business Architecture: Business process focuses on the set of activities and
it is important that these activities are well defined and understood by all the

1.2. ENTERPRISE ARCHITECTURE 9

Figure 1.2: An example of Box-Line-Diagram[QFTX09]

stakeholders. UML activity diagram is thus used to graphically define these set
of activities. Thus, among the entire thirteen UML diagram, activity diagram is
the most important UML diagram that is used for business architecture. Using
activity diagram, we can show the objects consumed, used, or produced by an
activity, indicate the responsible person for an activity and we can also specify
the relationship and dependencies between the activities.
However, in many companies, overall structure of an organization (which in-
cludes divisions, departments, sections etc), structures of resources, the prod-
ucts or the services, profits and loss data are modelled and represented with
the help of organizational charts and descriptions and not using any UML dia-
grams. Moreover, we can model a business process using Business Process
Model and Notation (BPMN). We can use BPMN to define the standards that
are used to design and model business process that should be understood
by to all the stakeholders. Business process diagrams that are based on flow
chart technique (similar to activity diagram) are used under BPMN. [EP00]
An example of BPMN diagram is shown in figure 6.7 which describes the pro-
cess between Bank and Customer. Customer orders cheques using an order
form. On receiving the order request from the customer, it prints the cheques
and mails the cheques to the customer via mail. Customer later receives the
cheques.[IBM13]

Figure 1.3: An Example of BPMN [IBM13]

Infrastructure Architecture: We have already seen that one of the key fea-
tures of infrastructure architecture is to focus on the hardware deployment and
interaction between them. Thus we can use deployment diagram and inter-
action overview diagram. Deployment diagram is used because it represents
the execution architecture of the systems. It includes nodes, hardware or soft-

10 CHAPTER 1. ENTERPRISE ARCHITECTURE MANAGEMENT

ware execution of complete application landscape and any middleware that
connects them. Interaction overview diagrams are used because it describes
the control flow within the business process.[Amb04]
However, in most of the companies, network diagram is preferred over any
UML diagram for infrastructure architecture. Network diagrams are easy to un-
derstand compared to deployment diagrams. With network diagrams we can
quickly understand the surrounding and the environment thus making it easy
to deploy the hardware. An example of network diagram is depicted in figure
6.4. Here three computers are connected to a switch which is connected to
the server. The server is connected to a router which is then connected to the
Internet. These computers may lie in different geographic locations.

Figure 1.4: An Example of Network Diagram

Information Architecture: As we know, information architecture focuses on
structuring data and information and defines user interaction. Here, we gen-
erally adopt use case diagrams to describe the scenarios in which users can
interact with different systems in an application landscape. The sequential
flow of user’s interaction can be described with the help of sequence diagram.
While user is interacting, the overall system state keeps changing. State ma-
chine diagrams can be used to describe the change of state. The data flow is
sometime represented using activity diagram.
Site diagrams are alternative solutions to manage the content, its navigation
and its interaction with the users. They help in developing the information
hierarchy and hence it is easy for all the stakeholders to understand the or-
ganizational concepts. Generally during the first meeting, a rough site dia-
gram is produced in which business analysts work upon and at the end of
every meeting the revised diagram becomes the official result of the meeting.
Thus it evolves as the plan evolves .Moreover, information architecture uses
various data modelling techniques to achieve this for data representation and
structuring.[LH13]

PlanningIT

”PlanningIT is an application for enterprisewide IT planning and management”[Nuc10].
With the help of this application, IT decision-makers can document and ana-
lyze their environment and can then collaborate with each other while making

1.2. ENTERPRISE ARCHITECTURE 11

investment decisions. It is capable of examining all the management tasks.
With a given set of information, it creates a repository. Reports and graphs can
be generated which will represent the necessary information from the reposi-
tory. Easy to use query builder feature of planningIT allows us to launch cus-
tomized data analysis. A collaboration feature of planningIt allows us to work
with entire team on enterprise architecture.[Her08]
Moreover, business relationship management tools help people in both IT and
lines of business to collaborate in assessing the IT supports and demands. IT
planning functionality helps in creating the target architectural design. It in-
cludes the project prioritization and risk assessments thus minimizing the risk
and cost of the project. Risk management tools help us to evaluate the existing
architecture and controls thereby determining and minimizing the risk associ-
ated with the project. Financial management tools helps in budget fixing and
analysis the project to minimize the cost of the enterprise management. Ar-
chitecture management functionality evaluates the performance of the current
architecture using some metrics and domain models. This will help us in iden-
tifying the projects that are duplicative and conflicting in nature.[Nuc10]

The planningIT provides a comprehensive meta-model that fulfils the key com-
ponents of enterprise architecture management, demands to budget, strategy
management, collaboration and governance. The simplified planningIT meta-
model contains Business layer, Application layer, Physical layer and Reference
Data. It is often seen that, for any project even if we start with a very small
project, we will soon end up at a point where we have to extend, reshape and
redesign the meta-model so that the requirements can be met.[Cam09]
The figure (figure 1.5) shows an example of information flow between the ap-
plication in the center and other application in the application landscape. Here
the flow of information is categorized in 3 types.

• 1. Incoming arrows which means that the information is received by other
application.

• 2. Outgoing arrows which means that the information is passed to other
application.

• 3. Bidirectional arrows which mean that the information is exchanged
both the ways.

The arrows in the figure can be interpreted in many ways. Here it represents
the frequency of information exchange between applications which could be
monthly, daily, on demand or at any intervals.

12 CHAPTER 1. ENTERPRISE ARCHITECTURE MANAGEMENT

Figure 1.5: planningIt[Ser]

1.3 Frameworks

1.3.1 Enterprise Architecture Frameworks(EAF)

”An Enterprise Architecture Framework (EAF) maps all of the software de-
velopment processes within the enterprise and how they relate and interact
to fulfil the enterprise’s mission”[UM06].We can define enterprise architecture
with respect to EAF as ”Enterprise architecture is an integrated and holistic vi-
sion of a system’s fundamental organization, embodied in its elements(people,
process, applications and so on), their relationships to each other and to the
environment, and principles guiding its design and evolution” [SK07].Many or-
ganizations, both government and private have adopted such frameworks to
fulfil their business needs. EAF details the methods that are useful in design-
ing the application landscape. These methods are defined in terms of building
blocks and they are equally responsible to bring these blocks together.

However, some rules and regulations have to be followed while implement-
ing the systems. EAF also contains the list of these rules and regulations.
It also covers the complete architectural dimensions. They play an impor-
tant role in documentation and facilitate enterprise planning and problem solv-
ing. An interesting feature to note is, EAF are language independent in na-
ture and provide a generic concepts. All the above mentioned features help
stakeholders to communicate easily thereby simplifying the development of the
architecture.[SK07] In general EAF are decomposed into three layers[SK07]:

• 1. The business layer that defines the business entities and the way
entities interact with each other.

• 2. The application layer that determines the data elements and soft-
ware applications. They are also responsible to support business layer.

1.3. FRAMEWORKS 13

• 3. The technology infrastructure layer that constitutes the hardware
platforms and the communication infrastructure. This supports the appli-
cation layer.

Each of these layers contains many domains that reflect an organization’s in-
formation, behavioural and structural aspects. We can define architectural
aspects like process, product, information and application architectures. For
example, process domain being part of business layer describes business
processes.[SK07]

Roles in EAF

There are some roles defined by EAF in developing the application landscape.
They are:

• 1. Chief Enterprise Architect acts as enterprise architecture reposi-
tory’s owner. As they interact directly with chief information officer, they
are also called systems champion. They have to be up to date with the
new technologies, standards and methodologies that are being used.
Planning of the whole project is also carried by them and important de-
cisions like scheduling tasks, allocating resources and monitoring the
progress of the systems is also taken care by them.

• 2. Enterprise business architect is responsible to analyze and docu-
ment the business processes, scenarios and information. They are also
responsible in monitoring the allocated resources.

• 3. The role of enterprise IT architect is to analyze and document the
system’s data flow and internal and external interfaces. They also should
ensure the overall quality factors like availability, scalability and recover-
ability of the application landscape. In addition, they are responsible for
developing, designing and evaluating the current and proposed architec-
tural model.

• 4. Infrastructure architect documents and analyzes the application
landscape environments, network communications, operating systems
and middleware components.

• 5. System architect on the other hand collaborates with the enter-
prise IT architects and is responsible in choosing the suitable frameworks
which is in accordance with the application landscape quality.

• 6. Data architects are responsible in developing data architecture. ”Data
architecture is a formal description and mapping of the plan and struc-
ture of data assets used to support organizational goals”[Man13]. The

14 CHAPTER 1. ENTERPRISE ARCHITECTURE MANAGEMENT

main component of data architecture includes databases and data flow.
Thus, data architects analyze and design the database related compo-
nents. They form the policies related to data management, storage and
access.

Some of the most successful frameworks that are used in specific areas are[UM06]:

• 1. The Zachman Framework consists of six perspectives or views:
Planner, Owner, Designer, Builder, Subcontractor, and User and it deals
with the six basic questions: what, how, where, who, when and why. It
does not focus on sequence, process or implementation but it make sure
that all the views are well established.

• 2. Department of Defense Architecture Framework (DODAF) consists
of three main views: Operational, System and Technical Standards. The
fourth view is called ”All View” which links the other three views. It can
compare and integrate families of systems, systems of systems and can
ensure the interoperation and interaction between architectures.

• 3. Federal Enterprise Architecture Framework (FEAF) was developed
by US Federal Chief Information Officers (CIO) council. Its focus is to
develop, maintain and facilitate integrated system architecture and its
main goal is to organize and promote sharing of information for the entire
federal government.

• 4. Treasury Enterprise Architecture Framework (TEAF) was devel-
oped in order to map the interrelationships among the organizations to
manage IT resources effectively. Thus its main goal is to facilitate, inte-
grate, share information, and exploit common requirements across the
enterprises.

• 5. The Open Group Architecture Framework (TOGAF) is discussed in
detail in the following section.

1.3.2 TOGAF

Introduction to TOGAF 9

TOGAF stands for The Open Group Architecture Framework. We can use this
framework to manage enterprise architecture. It contains a detailed method
and set of tools. It is freely available and can be used by an organization which
wants to manage its enterprise architecture. TOGAF allows architecture to be
consistent. They consider both the current requirements and the future need
to attain the business objectives.
Who will benefit on using TOGAF?: ”Any organization undertaking, or plan-
ning to undertake, the design and implementation of a enterprise architecture

1.3. FRAMEWORKS 15

for the support of mission critical business application will benefit from use
of TOGAF ” [Gro09]. Moreover any organization that wants to manage infor-
mation would want to use TOGAF. With the help of TOGAF, an organization
can define their business structures and business processes that are to be
exchanged between enterprises. TOGAF ensures an open system implemen-
tation. Finally the definition of TOGAF is: ”TOGAF provides the methods and
tools for assisting in the acceptance, production use and maintenance of an
enterprise architecture. It is based on the iterative process model supported
by best practices and a reusable set of existing architecture assets” [Gro09].

Architecture in Context of TOGAF

With respect to TOGAF context, we can have two meanings of architecture[Gro09]:

• 1. Architecture is a formal description or a detailed plan of the systems
that will guide the implementation process.

• 2. Architecture is a set of the components, defines the relationship
among these components and contains certain principles and guidelines
that govern their design and evolution over time.

Moreover there are four architecture domains that are described by TOGAF.
They are[Gro09]:

• 1. A Business Architecture which is responsible for business strate-
gies, governance, organization and key business process.

• 2. The Data Architecture which is responsible for the structure of orga-
nization’s logical and physical data and data management resources.

• 3. The Application Architecture serves as a blueprint for each appli-
cation to be deployed. It also defines the interaction and relationships
between them.

• 4. The Technology Architecture is responsible for the logical software
and hardware capabilities. These are necessary for the deployment of
business, data and application services. IT infrastructure, middleware,
networks, communications etc are the subset of technology architecture.

TOGAF and IT Strategy

We can define a strategy as a specific plan of action that is designed to achieve
specific goals. The basic set of IT strategy can be categorized into set of 5.
They are:

16 CHAPTER 1. ENTERPRISE ARCHITECTURE MANAGEMENT

• Application Strategy: It contains all the required guidelines on how we
can deal with an IT application landscape of an organization. It also
describes how business strategies are supported using IT application.

• Integration Strategy: Generally, we develop a set of application which
is integrated to get the final application. The integration strategy defines
these instructions using which integration is carried. It also describes
the instructions on how can we connect the application landscape with
outside world.

• Infrastructure Strategy: We can decide various infrastructure factors
including global scope, security, special solutions under this strategy.

• Service Strategy: It is really important to discuss how a customer is
going to get the services offered.

• Sourcing Strategy: The point of discussion here is what to outsource?
, what to produce? , and work with single or multiple providers.

These IT strategies are the backbone of any successful business process.
However, as far as TOGAF is concerned, it does not detail anything regarding
business strategies and IT Strategies.[Wol09]

Architecture Development Method(ADM)

ADM is the core of TOGAF and is responsible in developing enterprise ar-
chitecture. It combines various TOGAF elements and other architectural con-
cepts to meet the business and IT needs of an organization. There are several
phases (figure 6.2) within an ADM. They are described as follows[Gro09]:

• 1. The Preliminary Phase defines initial preparation required to meet
the business objectives. This include recognizing all the stakeholders,
identify the elements and define their scope, defining people’s respon-
sibility to design the architecture, define the framework, methodologies
and tools that are going to be used etc.

• 2. Phase A: Architecture Vision is responsible to validate the business
principles, define scope, find relevant stakeholders and their concerns
and objectives, define key business requirements, articulate architecture
vision, create plan that address scheduling, resourcing, financing, com-
munication, risks, constraints, assumption, dependencies etc, obtain the
necessary approvals etc.

• 3. Phase B: Business Architecture phase develop the business archi-
tecture that describes architecture vision, product and service strategy

1.3. FRAMEWORKS 17

and organizational, functional, process, information and geographic as-
pects of the business environment. It also helps in selection and develop-
ment of architectural viewpoints which will allow architect to demonstrate
how the stakeholder concerns are addressed in business architecture. It
also allows the selection of tools and techniques that should be in accor-
dance with the selected viewpoints.

• 4. Phase C: Information Systems Architectures phase is responsible
in identifying and defining the applications and data that support an en-
terprise’s business architecture. These data and applications should be
understood by all the stakeholders.

• 5. Phase D: Technology Architecture phase maps the applications
and data components described in phase C to the set of technologi-
cal components representing software and hardware components. It will
also have the implementation and migration planning. It also supports
the cost assessment for particular migration scenarios.

• 6. Phase E: Opportunities And Solutions phase is responsible to re-
view the target business objectives and capabilities, reviews the enter-
prise’s current state to decide if the changes can be incorporated or not.

• 7. Phase F: Migration planning phase will finalize the implementa-
tion and migration plans. It checks if these plans are in accordance with
the various frameworks that are in use. It prioritizes all the work pack-
ages, projects and building blocks assigning business values to each. It
creates, evolve and monitor implementation and migration plan in detail.
With respect to the agreed implementation approach, architecture vision
is finalized.

• 8. Phase G: Implementation Governance phase governs and man-
ages overall implementation and deployment process. It ensures if the
deployment is successful.

• 9. Phase H: Architecture Change Management phase assess the
performance of the architecture and recommend the necessary changes,
if any. It assesses the changes to frameworks and gives the procedures
for incorporating any changes to the new architecture.

• 10. ADM Architecture Requirements Management phases uses ADM
to examine the process of managing architecture requirements. After
identifying the requirements they are stored and fed into and out of the
relevant.

These phases are iterative in nature both between phases and within phases.
These phases are further divided into numerous steps to accomplish business
process. Certain kind of output is generated after every phase which can be
modified in an early phase or later phase.

18 CHAPTER 1. ENTERPRISE ARCHITECTURE MANAGEMENT

Figure 1.6: Architecture Development Cycle
[Gro09]

1.4 Conclusion and Future Work

Modern era of business is growing with much faster rate. In the present sce-
nario, computers are the backbone that is used in optimizing the cost and
performance to a level that is satisfactory and impressive to the users of the
system. Enterprises have become much more organized than before and are
focused on delivering high quality application landscape. In this paper I have
described various concepts of Enterprise Architecture and its importance to
the enterprise. Moreover we have also discussed different architecture facets
and their roles. As modelling play an important role in designing architecture,
some of the key features of modelling are also depicted in this paper. Enter-
prise Architecture Framework (EAF) is another area that we have focused on.
One among EAF is TOGAF developed by Open Group. Architecture Devel-
opment Methods and the benefits of TOGAF are also described in this paper.
However, a detailed research can be done to identify the issues associated
with TOGAF and the modelling techniques. Moreover, there are many frame-
works available and thus the scope of this paper can be extended by including
the detailed comparison between various frameworks. This will give a better
understanding to enterprises and will give companies an option to choose the
best framework depending on their business needs.

BIBLIOGRAPHY 19

Bibliography

[Amb04] S.W. Ambler. The object primer: Agile model-driven development
with UML 2.0. Cambridge University Press, 2004.

[BCK03] L. Bass, P. Clements, and R. Kazman. Software architecture in
practice. Addison-Wesley Professional, 2003.

[Cam09] Adrian Campbell. http://iea.wikidot.com/

planningit-meta-model. July 2009.

[EP00] H.E. Eriksson and M. Penker. Business modeling with UML. John
Wiley & Sons, 2000.

[Gro09] The Open Group. TOGAF Version 9. Van Haren Pub, 2009.

[Her08] Wolfgang Herrmann. http://www.computerwoche.de/a/

so-finden-sie-das-richtige-eam-tool,1868156,4. July
2008.

[IAS12] An Association of all IT Architects IASA. http://www.iasaglobal.
org/iasa/Resources.asp. December 2012.

[IBM13] IBM. http://pic.dhe.ibm.com/infocenter/rsahelp/v8/index.

jsp?topic=/com.ibm.xtools.bpmn.diagram.doc/topics/c_

bpmndiag.html. January 2013.

[Kob98] C. Kobryn. Modeling enterprise software architectures using
uml. In Enterprise Distributed Object Computing Workshop, 1998.
EDOC’98. Proceedings. Second International, pages 25–34. IEEE,
1998.

[Lan99] Marc Lankhorst. Enterprise Architecture at Work: Modelling, Com-
munication and Analysis. Springer, December 1899.

[LH13] PatrickJ. Lynch and Sarah Horton. http://

webstyleguide.com/wsg3/3-information-architecture/

4-presenting-information.html. January 2013.

[Man13] Information Management. http://www.information-management.
com/channels/data-architecture.html. January 2013.

[Mic12] Microsoft. http://msdn.microsoft.com/en-us/library/

bb402960.aspx. December 2012.

[Mul00] G. Muller. The system architecture process, 2000.

[Nuc10] Nucleus Research Inc. GUIDEBOOK ALFABET PLANNINGIT,
2010.

20 CHAPTER 1. ENTERPRISE ARCHITECTURE MANAGEMENT

[oHEA11] National Institue of Health Enterprise Architecture. https://

enterprisearchitecture.nih.gov/pages/what.aspxg. Decem-
ber 2011.

[OST05] ALEXANDER OSTERWALDER. http://

www.businessmodelalchemist.com/2005/11/

what-is-business-model.html. November 2005.

[QFTX09] K. Qian, X. Fu, L. Tao, and C. Xu. Software architecture and design
illuminated. Jones & Bartlett Learning, 2009.

[Rou05] Margaret Rouse. http://searchcio.techtarget.com/

definition/business-process. September 2005.

[Ser] Generali Informatik Services. Enterprise architecture management
(eam) bei der generali deutschland informatik services (gdis) ein
erfahrungsbericht. May.

[SK07] H. Shah and M.E. Kourdi. Frameworks for enterprise architecture.
IT Professional, 9(5):36–41, 2007.

[UM06] L. Urbaczewski and S. Mrdalj. A comparison of enterprise architec-
ture frameworks. Issues in Information Systems, 7(2):18–23, 2006.

[Wis13] WiseGEEK. http://www.wisegeek.com/

what-is-a-business-strategy.htm. January 2013.

[Wol09] Wolfgang W Keller. TOGAF 9 Quick Start Guide for Enterprise Ar-
chitects, 2009.

[Zar11] E. Zaroff. A case for designing information architecture around busi-
ness goals & strategies. Review of Business Information Systems
(RBIS), 11(4):77–90, 2011.

Chapter 2

Software Architecture
Representation

Rittika Bhattacharyya

Contents
2.1 Motivation and Overview . 22
2.2 Basic concepts . 24
2.3 View-based models for the software architecture description . 28

2.3.1 4+1 view-point model 29
2.3.2 Siemens 4 View Model 30
2.3.3 Avgeriou and Zdun models 32

2.4 Reference Architecture . 33
2.5 Architecture Description Methods 35

2.5.1 Unified Modeling Language (UML) 35
2.5.2 Architecture Definition Language(ADL) 37

2.6 Basic Architectures . 39
2.6.1 Multimedia architectures 39
2.6.2 Peer to Peer Architecture 40

Bibliography . 41

21

22 CHAPTER 2. SOFTWARE ARCHITECTURE REPRESENTATION

Abstract:With the recent developments in the software industry, software
companies have to delivered large number of projects in short amount of
time yet successfully. So it is important to do proper documentation, archi-
tectural models should be considered, reference architectures should be well
studied and architectural description methods must be followed properly.The
primary reason for this is not the end result of the implementation or the lines
of code but on the overall structure. Architectural representation is one of the
primary goals for the development of a successful system. In this paper we
strive to achieve and describe the various ways we could achieve the above
mentioned facts.

2.1 Motivation and Overview

Today’s world is mainly concerned with product development. Product devel-
opment and its sale involves huge amount of money. So it is very important to
have a perfect plan that would lead to a successful delivery of a product, i.e.,
a good architectural design that would make a huge impact on the sale of the
product. So the idea is to have a good architecture and follow these architec-
tural guidelines to develop a good successful product. We could never imagine
building our house without an architect, could we? Similarly how can we ever
imagine or hope to think that a software product could be delivered success-
fully without software architecture being carefully considered. This is because
Software Architecture acts as a blueprint for the system and the project devel-
oping it.

”Software architecture deals with abstraction, decomposition and composition,
and style and aesthetics. It also deals with the design and implementation of
software’s high-level structure”as said by Philippe B.Kruchten [Kru95]. So it is
very important to understand how the system will be structured, deployed and
understand its behavior.

This paper is divided into five chapters.So later in this paper we see the im-
portance of software architecture and try to understand its main concepts. Im-
portant definitions and their and their concepts are explained.It is seen how
these concepts are implemented and architecturally represented.Needs for ar-
chitectural description and aspects of software architecture are also spoken
about.The next major section in this paper are the view models.Three view
models have described elaborately.The first is Kruchten’s 4+1 view model.All
the five views of this model are discussed in length.Then we have Siemens
4 View Model.And later Avgeriou and Zdun model is explained.At the end of
this section it is seen how these models differ to each other.The next sec-
tion is the Reference Architecture.Here the concept of Reference architecture
is explained.Few examples are described and its importance is also talked
about.The next section is on UML and ADLs.Description,importance and us-
ability of both UML and ADLs are explained.It has been seen how these ar-
chitectural description methods play an important role.At the end of this paper

2.1. MOTIVATION AND OVERVIEW 23

two basic architectures have been discussed.They are the Multimedia archi-
tectures and Peer to Peer Architecture.

1. Definition of Software Architecture
”Architecture” comes from architectura a Latin word. Generally the word
Architecture often refers to building architectures. But Architecture in its
broader sense has far more coverage. Here in this paper Architecture
would generally mean Software Architecture. Software Architecture can
be described in so many different ways. This paper describes Software
Architecture to be a blueprint for how the system is structured, works and
behaves and how is the system deployed in its various environments.

A system often consists of a lot of components and each component
is designed in such a way that they have a specific relation to each
other.Components are functional and reusable blocks having application
specific services. Components are described in more details late in this
paper.

Though there are a lot of famous Software Architecture definitions, the
definition by Bass, Clements, and Kazman, fits best to my understand-
ing.”The software architecture of a program or computing system is the
structure or structures of the system, which comprise software elements,
the externally visible properties of those elements, and the relationships
among them. Architecture is concerned with the public side of interfaces;
private details of elements details having to do solely with internal imple-
mentation are not architectural” [ea].

2. Importance of Software Architecture

(a) A correct architecture paves the way for a successful system and
a wrong architecture might lead to an absolute disaster. So it is
very important to consider every minute detail before laying the first
stones for the architectural design. The earliest design decisions
play a very critical role in the successful development of a project.
These decisions are hardest to make as a lot of things have to be
considered like the cost, the time, the schedule etc. When these de-
cisions are finally made, it becomes more difficult to decide whether
these decision considered are correct. Because once these deci-
sions are taken and work has begun, it would be the very difficult
to change. This is the period where constraints are decided. The
structure of the system is made and system qualities are predicted.
So failing to consider these key scenarios could put the developing
system into incomprehensible long term trouble.

(b) Specific scenarios with its specific requirements should be given
key preference. Systems should be developed with both the user
goal and also keeping the business in mind.

24 CHAPTER 2. SOFTWARE ARCHITECTURE REPRESENTATION

Figure 2.1: Classification of architectural patterns according to views [AZEE]

(c) Another reason why architecture is important is because it enables
evolutionary prototyping.

(d) It bridges the communication gap between stakeholders. It helps in
giving more accurate schedule and cost estimates.

(e) The complexity of problems is divided which aids in better under-
standing of the problem. Architectural design always plays a strong
function in defining the success of a complex software system

2.2 Basic concepts

1. Basic Architectural Concepts

Software Architecture also helps in the clear understanding between
stakeholders. If we consider large scale architectures, the concept of
complexity plays a major role. So the question now is what actually a
large scale architecture is? The easiest way would be to say that large
scale architectures are architectures that have more complexity associ-
ated with them. Some projects can be really big. Big projects introduce
large amount of complexities which can sometime go beyond design, al-
gorithms and data structures. Minor changes in requirements could lead
to major changes in the project. Modules in the system are related to
each other and sometime have overlapping functionality. It might happen
that changes made to a particular model triggers some other functional-
ity of a different module. So good choices based on the functional and

2.2. BASIC CONCEPTS 25

non-functional requirements have to made. So a small change in a busi-
ness plan could make a big difference to the underdevelopment of the
system. The developing system might not be quick enough to adapt to
the changes.

So we see that there are both technical and business complexities. The
challenge is how we could bring it together to solve the overall complexity
and deliver a successful project. Software terminology like View, View-
point, Stakeholder, Concern, and Structure are the key features of this
paper. They have been elaborately described later in this paper.

2. Definitions of a software architecture description: Definition and Basic
notions.

A Software Architecture Description is not just an artful description of de-
sign but has far more depth to it. It is a set of descriptive models grouped
into views. Each view emphasizes certain architectural aspects that are
useful to different stakeholders and for different purposes [PW92]. There
are many types of views. Each view represents some kind of goal. It
would be therefore wrong to focus on one specific view to describe the
overall system. Developing a good system would require the system to
have many quality attributes like extensibility, reliability, security, usability,
fault-tolerant, maintainability etc. Therefore we can say that the quality
attribute that is very important for you as well as the other stakeholders
in the system’s development should be the choice of what views to doc-
ument. It is a disadvantage that architecture cannot be fully represented
by a single view. But looking at it in a different way, we could also say that
each view on its own respect is a strength as it ignores all the other as-
pects. So the current problem at hand is more scalable and tractable. 2.
Definition: ”A view is a representation of one or more structural aspects
of an architecture that illustrates how the architecture addresses one or
more concerns held by one or more of its stakeholders” [Arc]. Views rep-
resent certain aspects of the system, each addressing a set of related
concerns.A view usually corresponds to a given stakeholder’s viewpoint.
Definition: ”A viewpoint is a collection of patterns, templates, and con-
ventions for constructing one type of view. It defines the stakeholders
whose concerns are reflected in the viewpoint and the guidelines, princi-
ples, and template models for constructing its views” [Arc]. A viewpoint
on the other hand suppresses the major details of the system and pro-
vides a more simplified version that is easy to understand. For example,
the viewpoint model for a fire alarm focuses on fire concern only. It is in-
volved with a specific concern that if there is fire there would be an alarm.
This viewpoint model contains those elements that are related to security
from a more general model of a system. A viewpoint is able to point out
the to the different system stakeholders their respective concerns.These
concerns are addressed, which help in the modeling of languages and
modeling of techniques that are used to create views.So an architectural

26 CHAPTER 2. SOFTWARE ARCHITECTURE REPRESENTATION

description is made up of views. It could have a single view or multiple
views depending on the system. Each of these views comprise one or
more models that conforms to a viewpoint. One or more of the view-
points is selected and each of which covers one or more stakeholder
concerns.”Views are specified by viewpoints” [ICC06].

3. Creating an architectural description: There are many ways of cre-
ating an architectural description. One way to create an architectural
description is to compose a set of views which address the stakeholders
and their respective concerns and which also models few aspects of the
system.The customers play a crucial role. They will be the future ”users”
of the system. Their roles and their architectural concerns should be
thoroughly discussed. Other stakeholders include the developers of the
system, the maintainers of the system, and the acquirers of the system.
Inconsistencies among the views should also be meticulously recorded.
A rationale for the architecture is lastly created. It should explain the
extent to which the concerns of stakeholders are covered. Additionally
The IEEE 1471 recommends that architectural descriptions include Sum-
mary, Scope, Context, Glossary, References etc. Therefore it is quite
hard to achieve it.

For an existing system, the architectural description sometimes need to
be reverse engineered, especially if architectural description does not ex-
ist for the system. At the end care should be taken to see whether they
were satisfied, and whether the time limit to decided at the beginning
was exceeded, and check that the quality was rightly measured i.e. qual-
ity attributes can be expressed as system concerns if they are defined
explicitly.

3. Needs and uses of Software Architectures descriptions:

When starting to design an architecture for the system, it is often seen
that that there are a lot of questions to be considered. The easiest way
would be to design a model that encompasses all the answers to the
questions we have in our mind. But this would lead to a complex, incom-
prehensible model. The stakeholders would also disapprove of such a
model as they would have to struggle and try to understand the complex
model and find out their interest. This is not desirable. Also to achieve a
model that satisfies all these is practically impossible. We need to repre-
sent the model in a comprehensible and simple manner. We also need
to address the stakeholder issues in such a way that they are satisfied.
One commonly used approach is to break the problem into a number
of pieces and try solving them one at a time. The architecture is then
broken down into different views. These views are separate but could at
times have related concerns.

4. Different aspects of Software Architecture

Functional requirements generally tell us how the system would react to
a particular input or in some specific situation. However, the factors that

2.2. BASIC CONCEPTS 27

Figure 2.2: Classification of architectural patterns according to
views [CMR+03]

really influence the way the final architecture should look like are actually
the non-functional requirements, such as: re usability, comprehensibility,
functionality, stakeholder concerns, technological constraints,performance
to name a few.

Nonfunctional requirements are not related to system behavior but to
constraints such as time, reliability,response time, process, standards
and many more. Sometimes nonfunctional requirements are more criti-
cal than functional requirements. These requirements should be fulfilled
else it might render the system to be useless.

The non-functional requirements can be addressed at various levels of
the system’s architecture, such as:

(a) Application Architecture:
It is very important to keep in mind that partitioning of responsibili-
ties should always be done. There is a very high chance that con-
cerning responsibilities might get mixed up. For example business
logic should be separated from the details of presentation

(b) Data Architecture:
It is very important to maintain a correct order of who owns which
data in an organization.
Data Architecture defines the rules which governs the way the data
is collected and stored in an organization. Depending on the orga-
nization the data can be stored in a single place often referred to
as ”capture-all” system whereas in other cases the data is stored in
separate places depending on it’s type. The rules also define how

28 CHAPTER 2. SOFTWARE ARCHITECTURE REPRESENTATION

the data is retrieved depending on the size of the organization. In
some cases the data retrieval is automated where there are new
systems which capture all activity data in a single place. In other
cases the data may be retrieved manually from various sources
[IAT].

(c) Technical Architecture:
It is a good practice to choose what technology will be used to sup-
port the system [May05].

2.3 View-based models for the software architecture
description

In Today’s Hi-tech world one way to describe a complex architecture is to use
a single, overcrowded model that encompasses all functionality and features
as a whole. But this proves to be ineffective, as it is difficult to understand and
maintain. A more effective way would be to break the architecture into different
views addressing each view as a separate entity. The new challenge is to keep
these separated but interrelated views consistent one with another.

What a is view-based model?
We have already seen that a view-based model is an important part for soft-
ware architecture. Typically a view corresponds to the different concerns of a
given group of stakeholders. In a lot of research papers a number of models
have been described that prescribe what set of views best describe a given
system. In this paper the three basic view models that have been proposed
before are explained in detail. They are the 4+1 view-point model, Siemens 4
View Model and Avgeriou and Zdun model.

Advantages of employing such view based models are important for the devel-
opment of software architecture. This is because they are created based on
id-of their authors, best-practices and on the long experience of their authors.
Every model has a specific set of views which is relevant for that model only.
So not all view is important for all systems or stakeholders. Every model tries
its maximum to address most of the possibly relevant concerns. But none of
them are able to provide full coverage . So an ”optimal set of viewpoints”’ was
devised that ”‘providing complete coverage and had a greater coverage than
any of the individual viewpoint models” [May05].

2.3. VIEW-BASED MODELS FOR THE SOFTWARE ARCHITECTURE DESCRIPTION29

2.3.1 4+1 view-point model

Description
Architects struggle to portray all architectural features together on one docu-
ment i.e. the ”blueprint”. They try to pen down the gist of the to be developed
system all at once. To approach this problem Kruchten has developed the 4+1
model [Kru95]. The model used five concurrent views to address specific set
of concerns to different stakeholder in the system. Each view is a ”‘Blueprint”’.
It uses its own notation. These five views are as follows

1. Logical View is concerned about the functional requirements of the End-
users in the system. It is mainly concerned with the services that it should
provide to its customers. The developers are mainly concerned with this
view. The logical view can be modeled in UML using sequence diagram.

2. Process View ”captures the concurrency and synchronization aspects
of the design” [Kru95]. To model the process view, in UML, the activity
diagram can be used.

3. Physical View depicts the correlation of software onto hardware and its
reflection to their distributed aspects. Here process and software mod-
ules are mapped onto hardware. In every new iteration new scenarios
are modeled. This continues until the system becomes stable. This hap-
pens when no new process, sub-process or inter-process are found. The
physical view is a system engineer’s main focus. To model the Physical
View, in UML, deployment diagrams can be used.

4. Development View’s main focus is on the different modules and sub-
modules. Software Managers and programmers are mostly associated
with development view and its minute details. It is a layered topology. To
model the Development View, in UML, component diagram can be used.

5. Use case or Scenario based View considers different scenarios. Sys-
tem consistencies and validation are done. Notations are similar to log-
ical view. This fifth view is the essence of the 4+1 view model and it is
mandatory. Here the functionality of the system with its users and exter-
nal interfaces are described.

Usability [00]

1. Scenarios view is for Understandability

2. Logical View is for Functionality

3. Process View is for Performance especially for programmers

30 CHAPTER 2. SOFTWARE ARCHITECTURE REPRESENTATION

4. Implementation View is for Software management

5. Deployment View is for System topology, Delivery, Installation

Figure 2.3: Flowchart representation of View and Viewpoints [Kru95]

2.3.2 Siemens 4 View Model

Description

1. Founder
Siemens Four Views approach to software architecture was adapted
from Hofmeister.

2. Concept
Siemens 4 view model is also used for architectural documentation. This
view model uses four views. These views are the Conceptual view,
Module view, Code view and Execution view. For each view, a set of
tasks that need to be performed are given. A very important fact in this
model is that all views have global analysis as the first common task. The
next tasks, namely the central design and the final design are specific to
each view. purpose of global analysis is to rectify problematic issues
from the very beginning. It is used in early identification of issues so that
strategies could be formulated to solve the problems. Activities of global
analysis include

(a) Analyze Factors
Helps in identification of factors that influence the system architec-
ture Factors include Organizational factors, Management Factors,
Technical Factors etc. These factors are then further refined until
proper and correct analysis is done.

2.3. VIEW-BASED MODELS FOR THE SOFTWARE ARCHITECTURE DESCRIPTION31

(b) Identify Issues
Issues that influence the architecture should be resolved. All sorts
of influencing factors are listed and considered. Strength and weak-
ness of each factor is consider and proper techniques are applied
to resolve them.

(c) Develop Strategies
Strategies is the process by which a solution to problem is found.
Here strategies are formulated to address the above issues and an
attempt is made to identify related strategies.

Usability The purpose of Conceptual View helps in the documentation of
both structure and behavior. Structure include Configurations of components,
connectors, ports, roles and protocols. Behavior includes State diagrams and
Sequence diagrams. So this view describes the architecture in terms of do-
main elements. Here functionality is also designed. Activities of Conceptual
View include the following

1. Global analysis: Further evaluation done on system architecture.

2. Central design tasks: Conceptual components and connectors, are cre-
ated and global evaluation is done.

The purpose of Module view is that it helps in the top level grouping of activities.
here the system is decomposed into layers. Module view activities include:

1. Global analysis: Again further evaluation of design decisions.

2. Central design tasks: Subsystems, Layers, Modules are defined. These
are then allocated with conceptual elements and then again global eval-
uation is performed.

3. Final design task: Modules interfaces are designed.

The purpose of Execution view depicts the run-time view of the system. It is
the mapping of modules and components to run time images. This help in
building Communication paths. Execution view activities include:

1. Global evaluation:Further evaluation done again.

2. Central design tasks: Here the run time entities like tasks, processes,
threads are defined. Communication paths are established and later
global evaluation is done as before.

3. Final design task: Here Resource allocation is done. Resource usage
and performances are key factors of the execution view.

32 CHAPTER 2. SOFTWARE ARCHITECTURE REPRESENTATION

The purpose of the code view is to define intermediate components and show
their organization and dependencies with each other. It shows the mapping
of modules from the Module View to source components and also the map-
ping of run-time entities from the Execution View to deployment components.
Here similar activities are performed like the above view. This model was also
designed to reduce complexity of large systems aimed to aid in separation of
concerns as mentioned in the 4+1 view model

Figure 2.4: Different Diagrams and views supported by UML [Mal00]

2.3.3 Avgeriou and Zdun models

Description

1. Concept
This model is an attempt to find a pattern language that is a super-set of
”existing architectural pattern collections and categorizations” It mainly
focuses on the establishment of a relationship between the patterns. A
pattern is considered to be an architecture pattern if it covers the overall
system and not just few parts of the subsystem. A classification of archi-
tectural patterns are stated with regards to the views previously stated
in the 4+1 view model. This architectural pattern schema is based on
architectural views concepts. We already know what a view and a view
point is from the other view models. So we directly come to Architectural
Pattern. Architectural Pattern concentrates on the relationship between
different elements that help in solving a particular problem.It could be
considered to be the ”specialization of a viewpoint since it provides spe-
cialized semantics to the types of elements and relationships,as well as
constraints upon them” [AZEE].

2. Aim of Avgeriou and Zdun models model and its Usability
They have strived to conjugate existing approaches of architectural pat-

2.4. REFERENCE ARCHITECTURE 33

terns into a pattern language. This would help practitioners in finding a
single comprehensive source of patterns.

3. Comparison with other models
This model is quite unique in my opinion. Unlike the other view model this
model does not stress on stakeholder issues and separation of concern
and the interactive development. Avgeriou and Zdun model has tried
to make a common reference platform that would enable developers to
follow a single comprehensive source of patterns.

2.4 Reference Architecture

Definition and a brief description: Many a time it has been seen that an
architect spends immense amount of time pondering over architectural de-
sign. The only reason could be improper documentation. So we could say
documenting their work could build the perfect reference for future work. ”Ref-
erence architecture for a domain captures the fundamental subsystems and
relationships that are common to the existing systems in that domain” [GG06].
This means that we can use this as a reference or as a template for future use.
It is used like a template for designing new systems in any place where reuse
is necessary. Reference architectures aid in better understanding of the sys-
tem. It can used to educate amateur software architects . Software developers
who are new to a particular system can break the system into different blocks
and concentrate on the problematic block rather than the whole system. Ref-
erence architecture also helps in improvement of the communication between
different software developers as one developer explains a particular concept to
another developer who was unable to understand that part. Having reference
architecture during the maintenance and design phase helps a lot in proper
understanding of systems. It can also show the faults between different design
models. Lastly it can help in re-engineering new models as well.

Few examples of reference architectures are given below.

1. Enterprise Reference Architecture Enterprise Architecture is model based.It
helps in increasing the consistency and agility while maintaining the changes
in the enterprise. The enterprise reference architecture is a framework
that was developed to evaluate existing frameworks for enterprise inte-
gration.

According to [Doc03]the characteristics of EAR are:

(a) Service-oriented
Application are broken down into small parts called services.These

34 CHAPTER 2. SOFTWARE ARCHITECTURE REPRESENTATION

services are accessed by systems and other applications based on
similar functionality. ”Service-orientation is a design paradigm com-
prised of a specific set of design principles. The application of these
principles to the design of solution logic results in service-oriented
solution logic. The most fundamental unit of service-oriented solu-
tion logic is the service”c.

(b) Event-driven
An event is a change in state that lead to a particular action be-
ing triggered. Architectural designs have components and services
coupled together. So with the help of event driven functions we
get more responsiveness from the system. The underlying systems
should support them. These small changes could make a big differ-
ence in the business world. So the system should be well equipped
to adapt to it. Event-driven design and development allows easier
development and maintenance of large distributed applications and
services involving unpredictable and asynchronous occurrences. It
also allows reassembled and reconfigured existing applications.

(c) Able to support assembly and integration
For better management applications are broken down to small func-
tional part which are essential for the system. This was previously
achieved with help of codes done by developers. This was really
expensive. Now ”process management technology” can be used
instead at a lower cost.

(d) Aligned with life-cycle support processes The life-cycle develop-
ment is a very important part for the developing system. A system
undergoes constant iterative evaluation. The life cycle phases in-
cludes the Requirements Analysis, Architectural Design, Code Con-
struction and Unit Testing, System Testing and the Maintenance
phase. During these stages the models undergoes constant it-
eration. Few well known like cycle models include the Waterfall
model,Spiral model and many more.

(e) Able to leverage existing applications and infrastructure Nothing could
be better that reuse of existing technology.

2. Organization for the Advancement of Structured Information Standards
(OASIS) OASIS is a reference architecture for building SOA applications.
SOA plays a very important role when designing systems that are meant
for transaction like e-business, end to end transaction etc. Here the busi-
ness application is broken down into small pieces or block. These blocks
are called services. They are well defined business functionality. These
services are independent of applications and the computing platforms
on which they run with the help of SOA. These services can later be
reused for a different need completely. Reconfigurable architecture that
are dynamically provided by SOA enable enterprises to respond quickly
and flexibly to market changes which ultimately helps in the betterment
of business.

2.5. ARCHITECTURE DESCRIPTION METHODS 35

2.5 Architecture Description Methods

2.5.1 Unified Modeling Language (UML)

Description:
Unified Modeling Language (UML) is quite popular with the computer world. It
has become one of the most popular standards for modeling object-oriented
software. UML is one of the most popular modeling languages. It makes use
of a set of notations. It can use rectangles, boxes, lines to create models of
systems. A model can be said to be an abstraction of the systems. Models
also help in the analysis and design procedure of software systems. ”The
Unified Modeling Language (UML) is a language for specifying, visualizing,
constructing, and documenting the artifacts of software systems, as well as
for business modeling and other non-software systems. The UML represents
a collection of best engineering practices that have proven successful in the
modeling of large and complex systems” [UML]. It is a graphical language.
It utilizes most of the Object Oriented concepts like Abstraction, Composite
object, Polymorphism, Encapsulation and Dynamic Binding.

Different types of UML diagram [QE03].
UML 2 is very comprehensive. It is a language and not just a diagrammatic
notation. It analyses the problems and designs a solution with the help of a
model. It is very important to create a model as it captures all important appli-
cation aspects while abstracting the rest. Construction of the model helps in
Analysis, Specification, Code-Generation, Design, Visualization and Testing of
the system as well. UML can be divided into different Diagram Types according
to its functionality.

1. Structural Diagrams
These diagrams generally focus on the static aspects of the software
system. It is also called the static model as it does not change with time.
Here different types of classes are defined for understanding the proper
working of the system and its implementation.

2. Behavioral Diagrams
These diagrams generally focus on dynamic aspects of the software sys-
tem. It captures how object interact with each other and their reaction
with respect to each other. It represents the time-independent or dy-
namic behavior of the system. It makes use of Use-case, Interaction,
State Chart, and Activity Diagrams.

Comparison between various UML models

36 CHAPTER 2. SOFTWARE ARCHITECTURE REPRESENTATION

1. Structural Diagrams include

(a) Class Diagram
It represents the static structure of the system and on how it be-
haves. It consists of a set of classes and their relationships and
dependencies. It describes interface to the class. It uses concepts
of generalization, association and aggregation.

(b) Object Diagram
It shows the instance of a class of the system at a point in time.It
can also be called the instance diagram as it shows the instance
rather than the class itself. An object diagram undergoes continuous
changes as development proceeds.

(c) Component Diagram
It shows the logical groupings of elements and their dependencies
on software components.

(d) Deployment Diagram
It is a set of computational resources (nodes) that host each com-
ponent. It also maps the software implementation components on
the hardware like printers, scanners etc.

2. Behavioral Diagrams

(a) Use Case Diagram
Use Case Diagram depicts the set of ”Use Cases” that the users
can use. This case consists of high-level behaviors of the system.
The Use Case partitions the systems into a number of transactions
in such a way that each transaction performs some useful actions
from the user’s point of view. These transactions might involve sin-
gle message or multiple messages being delivered between system
and users. The external entities are called actors .Use Case Dia-
gram represents all the functional requirements of the system.

(b) Sequence Diagram
It shows the interaction of objects in a two-dimensional chart. The
chart is read from top to bottom. The interacting object is shown
on top as boxes attached to a vertical dashed line. Inside the box
the name of the interacting object is stated with a colon .The colon
separates the name of the object from the class and of names are
underlined. It focus on time ordering of messages.

(c) Collaboration Diagram
It focus on structural organization of objects and messages. It bring
together both the static and dynamic behavior of the system as its
represents the combined information taken from class, sequence,
and use case diagrams

(d) State Chart Diagram
It is used to depict the changes made by an object in its lifetime.
It describes best the behavior of an object over several use case

2.5. ARCHITECTURE DESCRIPTION METHODS 37

executions. However several objects collaborating together cannot
be appropriately depicted by State Chart Diagram. State Chart Di-
agram is based on Finite state machine (FSM).So every finite state
corresponds to an object being modeled. So an object undergoes a
change only when a single specific change occurs.

(e) Activity Diagram
It shows flow of control between activities. It represents activities
or process which may or may not correspond to the methods of
classes. It is similar to procedural flow charts.

Importance of using UML
With the help of UML life of software engineers became far easier. It could
be used to design details without it being too complex or incomprehensible.
One very important fact about UML is that any kind of application can be de-
signed with the help of UML. It is not platform or language dependent. It is
also hardware independent. So working with UML gives a wide scope for de-
velopment. UML can be also used to build complex systems as the different
diagrams helps in different activities of the developing system. UML also helps
in the modeling of a Transactional, Real-time, and Fault-Tolerant systems in
a natural way. UML is a most useful method for visualization and document-
ing software systems. It can also be used for modeling middle-ware. So we
see that UML was a boon to software industry. There are also many disad-
vantages of UML. Many times UML is confused with a visual programming
language though it is actually a visual modeling language. There are still no
specifications for modeling of user interfaces.

2.5.2 Architecture Definition Language(ADL)

Description

Architecture Definition Language is the formal language that can be espe-
cially used to represent architectures of software intensive systems. It shifts
the focus from lines of code to modeling notations that are used to support
architecture-based development. ADL has gained a lot of attention in large
system development industries. It is a computer language approach for the
representation of architectures. ADLs are able to address the problems of in-
formal representations. ADLs also help in the early analysis and feasibility
testing of the design decisions [AG94]. We could say ”an ADL for software
applications focuses on the high-level structure of the overall application rather
than the implementation details of any specific source module” [MT97].

38 CHAPTER 2. SOFTWARE ARCHITECTURE REPRESENTATION

Characteristics of ADLs ADLs are quite different from requirement lan-
guages. This is because requirement languages describe the problem space
whereas ADLs are rooted in solution space. The requirements are often parti-
tioned into behavioral blocks that are easy to represent. ADLs focus more on
component representation.

Important properties that ADLs

1. Minimum level of abstraction and encapsulation

2. Competency to represent connectors and components.

3. Effectively provide common architectural styles

4. Help in achieving architecture creation, refinement and validation.

There are different types of ADLs. Some of the most popular ADLs are

1. AADL (SAE standard)

2. Avionics ADL

3. Wright (developed by Carnegie Mellon)

4. Acme (developed by Carnegie Mellon)

5. XADL (developed by UCI)

ACME is one of the most common used ADLs. It was developed by Carnegie
Mellon. Acme provides a fundamental basis for description and assessment of
architectures of component based systems. It does not help in the formulation
of models that states the behavior of a system. It is used to design and then
understand a system with high level of abstraction. The goal of Acme was to
provide a common tool that could handle the interchange between different ar-
chitectural design tools and their architectural descriptions. Sometimes Acme
can be expressed by component and connector architectural view. Compo-
nents in Acme are the basic building block for the description of the system.
So Acme defines its component types and their properties and then checks for
constraints in architectural style. It also performs advanced analysis.

Important elements of an ADL are Component, Connector and Configuration.
As seen from above that although there is a considerable difference in capa-
bilities between the different ADLs, they share the same concept. The concept
of Acme includes:

2.6. BASIC ARCHITECTURES 39

1. Components: These are the computational elements. Components may
be used to describe elements of a variety of different computational mod-
els at varying levels of abstraction

2. Connectors: A Connectors is like an abstract ”mortar” between compo-
nents. They represent the interaction between different components.

3. Systems: It is the representation of components and the connectors.

4. Ports: These are interface points for components

5. Roles: These are interface points for connectors [Kom].

Figure 2.5: Block representation [GS]

2.6 Basic Architectures

2.6.1 Multimedia architectures

This type of architecture is designed to transfer multimedia data like audio and
video files efficiently ensuring a predetermined quality of service. The main
issues that these type of architecture deals with are as follows :

1. It should provide support for a continuous and seamless media such as
audio, video and animation. This requires continuous data transfer over
a long period of time.

2. Meeting the demand for the Quality of Service is of utmost importance in
transferring multimedia data. This architecture helps in the classification
of the contents into static and dynamic QoS management.

40 CHAPTER 2. SOFTWARE ARCHITECTURE REPRESENTATION

3. The architecture is designed in such a way that multimedia access and
retrieval is done in a most efficient manner. Below we give a diagram-
matic representation of real time Multimedia Architecture for mainly three
types of systems namely Standalone, Server and Networked. This type
of architecture is a layered architecture where the services of the lower
layers are utilized by the higher layers.

2.6.2 Peer to Peer Architecture

This architecture is very different from the well known client server architecture.
In this type of architecture all the components act as a client and a server
at the same time. There are no central servers and the resources can be
accessed directly from the other peers. The main reason for developing such
an architecture is limited scalability , extensibility and reliability of the client-
server architecture. This type of architecture is highly robust against failure of
any node.

The architecture is scalable in terms of resources and computing power. Thus
a decentralized self organizing system having a decentralized usage of re-
sources helps this P2P architecture to deal with the weaknesses. This archi-
tecture is based on an overlay network which is used for indexing the nodes
so that they are independent from the existing network topology. In this type of
architecture if any node knows about the location about any other node , then
there exists an edge between these two nodes in the overlay network. Thus in
an P2P architecture the nodes are connected to one another though they may
not be connected physically. This architecture can be broadly divided into two
groups :

1. Structured
The indexing of the nodes are done using distributed indexing and the
connections in the overlay network is always fixed . Any terminal entity
can be removed without loss of functionality. Examples of such architec-
ture is Chord and CAN.

2. Unstructured : In this type of architecture the connections between the
nodes are not fixed. The nodes connect in an Ad hoc manner and uses
Flooding search for finding the nodes in the network. There is a flooding
based search until the requested node is located. Once it is located, the
nodes get connected in the overlay network though there may not be any
connection in physical network.

The Unstructured P2P architecture can be classified into the following
categories. These are :

(a) Centralized P2P - All features of P2P were included, Central entity
provides the service by storing the the indexes of all the nodes in
the architecture.

BIBLIOGRAPHY 41

(b) Pure P2P - Any terminal entity can be removed without loss of func-
tionality. There are no central entities to store the indexes of the
nodes.

(c) Hybrid P2P - In this type of architectures there are dynamic central
entities. All the features of P2P are included and any terminal entity
can be removed without the loss of functionality.

Bibliography

[00] 0. Uml an overview. 0, 0.

[AG94] Robert Allen and David Garlan. Beyond definition use architectural
interconnection. 1994.

[Arc] Software Systems Architecture.

[AZEE] Paris Avgeriou and Uwe Zdun. Architectural patterns revisited, a
pattern language. 2006, IEEE.

[CMR+03] J. Champeau, F. Mekerke, E. Rochefort, et al. Patterns, aspects
and views in mda process. 2003.

[Doc03] Doculabsi. Planning and building anarchitecture that lasts:the dy-
namic enterprise reference architecture. 2003.

[ea] Addison-Wesley Clements et al. Views and beyond,2nd edition.

[GG06] Alan Grosskurth and Michael W. Godfrey. A reference architecture
for web browsers. JOURNAL OF SOFTWARE MAINTENANCE
AND EVOLUTION: RESEARCH AND PRACTICE, 2006.

[GS] David Garlan and Mary Shaw. An introduction to software archi-
tecture.phi learning pvt. ltd.

[IAT] Data architecture.

[ICC06] Stig Larsson Ivica Crnkovic and Michel Chaudron. Tahiti, french
polynesia. 2006.

[Kom] Andrew Kompanek. Modeling a system with acme.

[Kru95] Philip B. Kruchten. The 4+1 view model of architecture. IEEE
Software, 12(6):42–50, 1995.

[Mal00] Rajib Mall. Fundamentals of Software Engineering. 2000.

[May05] Nicholas May. A survey of software architecture viewpoint models.
IEEE, 2005.

42 CHAPTER 2. SOFTWARE ARCHITECTURE REPRESENTATION

[MT97] Nenad Medvidovic and Richard N. Taylor. A framework for classi-
fying and comparing architecture description languages. 1997.

[PW92] Dewayne E. Perry and Alexander L. Wolf. The 4+1 view model
of architecture. ACM SIGSOFT SOFTWARE ENGINEERING
NOTES, 1992.

[QE03] Terry Quatrani and UML Evangelist. Introduction to the unified
modeling language. Tech. rep., Rational Software, IBM, 2003.

[UML] UML. Omguml q and a.

Chapter 3

Component-based
development and architecture

Johannes Dohmen

Contents
3.1 Introduction . 44

3.1.1 Motivation . 44
3.1.2 Outline . 45

3.2 Components . 46
3.2.1 Basic concepts . 47
3.2.2 Service provider and service consumer 47
3.2.3 Composition and binding 48
3.2.4 Development phases and binding types 49

3.3 Component models . 50
3.3.1 Basic concepts . 50
3.3.2 Architecture description languages (ADLs) 51
3.3.3 Concrete component frameworks 54

3.4 Conclusion . 59
Bibliography . 60

43

44CHAPTER 3. COMPONENT-BASED DEVELOPMENT AND ARCHITECTURE

Abstract: Software components promise many advantages over reusable
artifacts of traditional software development like functions or classes. Still
component-based development is not widely adopted. This paper explains
the main concepts of components and explores different approaches of
component-based development through ADLs and component frameworks
and provides a survey of their advantages and disadvantages.

3.1 Introduction

Almost from the very beginning software engineering had to struggle with
the complexity that arises from numerous, non-trivial requirements a software
product normally has to fulfill. The key to lower complexity in software engi-
neering is decomposition, which should be considered while designing and im-
plementing a software product. At first glance the introduction of high level pro-
gramming languages facilitate decomposition in the sense of breaking down
an large entity into smaller parts. High level programming languages provide
functions and, in object-oriented languages, classes to encapsulate and by
thus hide concrete implementations of specific aspects of the software product.
This enables software engineers to fragment software systems into smaller
parts which are easier to design, implement and test. But software compo-
nents are not only sub-parts of software systems! The vital aspect of software
components is their ability to be composed in order to create new products.
As Szyperski et al. explicate to the point:

”Components are for composition.” [SGM02]

The composition of components introduces the need for components to publish
not only their provided services but also their required services. Furthermore
composition requires some kind of ”wiring” between the components without
changing the components itself. In order to gain maximum flexibility compo-
nents should not be bound to a specific programming language (required by
a component framework or other components) and be distributable across a
network.

3.1.1 Motivation

Software components as reusable software entities, which can be assembled
into new software products, promise great advantages over traditional software
development. Doug McIlroy proclaimed this already at the celebrated NATA
conference of 1968 in Garmisch where the now famous term Software crisis
was coined:

. . . yet software production in the large would be enormously helped

3.1. INTRODUCTION 45

by the availability of spectra of high quality routines, quite as me-
chanical design is abetted by the existence of families of structural
shapes, screws or resistors. [Mci69]

Advantages for software development hoped to be achieved by software com-
ponents include (without being limited to them):

Increased reuse
In theory components are the perfect software units for reuse. As com-
ponents state clearly what services they provide and request, they can
be used in many different composed software systems. This allows to
implement and improve both the software system and the component in-
dependently. Components that are independent from programming lan-
guages and feature network transparency have much more capabilities
in comparison to other software units like classes or modules.

Increased quality
With components being used in many software systems it is reasonable
to expect a higher quality compared to software subsystems or parts like
classes, procedure etc. which are only used in one software system.
The improved component quality should increase the overall quality of
the software system.

Shorter time-to-market
Using components instead of implementing each part of a software sys-
tem from scratch saves development time. Generally this should lead
to a shorter time-to-market for new products. Software modules like li-
braries, frameworks and so on have already achieved this effect. But
components are expected to increase such savings greatly.

3.1.2 Outline

In the following section components are introduced using metaphors and a ba-
sic but widely accepted definition. It will be explained why it is useful to regard
components from different viewpoints. In the third section component models
are presented as the base of components. Afterwards six component models
are examined, which forms the main part of this paper. Those component mod-
els are divided into component models in architecture description languages
(Acme, UML) and concrete component frameworks (CORBA, JavaBeans, Java
Enterprise Beans, COM). The presented component models and the current
situation of component based development are reviewed and evaluated in the
last section.

46CHAPTER 3. COMPONENT-BASED DEVELOPMENT AND ARCHITECTURE

3.2 Components

One popular metaphor used to describe a software components is screws and
nuts. The basic idea is to combine screws and nuts with other components to
build more advanced objects. This metaphor emphasizes the importance of
interfaces which form the abstraction from the tangible screws and nuts in a
real scenario. The definition of the thread used forms the simplest interface for
a screw-nut combination as shown in Figure 3.1. Actual screws and nuts from

Figure 3.1: A screw with a matching nut attached [Wik12]

different vendors and countries, even if consisting of different material, can
be combined as long as both meet the requirements of the thread standard.
Another metaphor might be of more value as the screw and nut metaphor
ignores what the components contribute to the resulting object and what which
dependencies to other components exist. Software components can also be
compared to integrated circuits (ICs) with their input and output connectors
(often called pins). Such ICs contain internal logics which require external data
from its input pins in order to provide a service which is accessible at its output
pins. The documented pin layout of an IC describes the input and output pins
as shown in Figure 3.2. The presence of the input/output pins require some
kind of wiring to connect an IC to the rest of the system in a sensible way. In a

Figure 3.2: A pinout of an (audio) microchip. [dz812]

broader sense ICs both require and provide services.

3.2. COMPONENTS 47

3.2.1 Basic concepts

The prevalent definition by Szyperski et al. is a good starting point to advance
from metaphors to the characteristics of software components:

”A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A soft-
ware component can be deployed independently and is subject to
composition by third parties.” [SGM02]

This definition contains many important aspects of components already indi-
cated by the two metaphors. First a component is a software unit and as such
it can be designed and implemented largely independent from the rest of the
system. It contributes to the system through its provided services (the ”speci-
fied interfaces”) and specifies its remaining dependencies as required services
(the ”explicit context dependencies”) while both types of service form a contract
to the residual software system. Moreover a component is a deployable unit
which is used (together with other components) through composition to form a
software system. Lastly it is explicitly stated that components do not have to
be developed by the company which utilizes them but can instead be acquired
from ”third parties”.

In summary a component provides services and requests services through
interfaces. Moreover it is:

• an architectural unit

• a deployable unit

• a run-time entity

The ability to provide and request services is explored in the following. Subse-
quently the binding of components originating from the provided and requested
services will be explained. The presentation of a life cycle which respects the
components’ trinity as architectural units, deployable units and run-time entities
concludes this section.

3.2.2 Service provider and service consumer

As mentioned before components can provide and request services. When
providing a service component A acts as a server to component B which by
requiring the service acts as a client. It is possible that A additionally requests
services from B which then leads to inverted roles. The assignment of server
and client roles depend on the particular requests and are therefore not static.

48CHAPTER 3. COMPONENT-BASED DEVELOPMENT AND ARCHITECTURE

Provided services
A component facilitates functionality to its clients through its provided
services. This services are accessible through one or several interfaces.
These interfaces can be seen as analogous to class interfaces but on the
(conceptually higher) level of components. Actually class interfaces are
used to publish the provided services in some component models (see
Section 3.3).

Required services
A component may rely on functionality provided by other components
as services accessible through their interfaces. In contrast to the afore-
mentioned provided services programming languages in general do not
provide a mechanism to specify required services or interfaces directly.
Therefore, among other reasons, components are often shipped inside
component containers which add the missing mechanism.

At most times a software component is seen as a black box that only reveals its
provided and required services. Therefore a component is usually drawn as a
(rectangle) shape with a distinct illustration of its services (commonly depicted
as some kind of plugs) as shown in Fig. 3.3.

Figure 3.3: A software component. [LW07]

3.2.3 Composition and binding

The ultimate reason for component use as aforementioned is composition. In
order to compose a software system from components it is necessary to bind
their required and provided services in a sensible way. The required and pro-
vided services of each component are described through incoming respec-
tively outgoing interfaces. These interfaces form the connectors which en-
able connections between different components in order to form a composite.
Fig. 3.4 shows (in a slightly different notation as in Fig. 3.3) the relationship
between components, interfaces and connections. An incoming interface of a
required service must be connected to an outgoing interface which provides
at least the required functionality (but possibly more). The act of establish-
ing connections between components is called binding and can take place in
different phases of the component life cycle.

3.2. COMPONENTS 49

Figure 3.4: Connections, outgoing and incoming interfaces. [SGM02]

3.2.4 Development phases and binding types

Component life cycle respect that components are units in the design, the
deployment and run-time phase. Lau and Wang [LW07] propose a life cycle
that focuses on the binding of components in the different phases (as shown
in Fig. 3.5).

Figure 3.5: An idealized component life cycle. [LW07]

The repository holds all available (developed or acquired) components either
in source-code or in a compiled binary. Two different tools are used in the
design phase: The builder is used to create a composite component from the
available components in the repository at this early phase. These new compo-
nents are then stored in the repository. The assembler accesses the repository
to retrieve the needed components, and compiles them if necessary, in the fol-
lowing deployment phase. The assembler than can wire the components in

50CHAPTER 3. COMPONENT-BASED DEVELOPMENT AND ARCHITECTURE

a reasonable way. The component can connect themselves during run-time
using functionality provided by the environment, this is the last phase of the life
cycle. In this idealized life cycle composition of components can occur in all
three phases.
Binding is the act of connecting components and as such the central operation
of composition. It is imperative to distinguish in which phase the binding be-
tween components happens. The most static approach is to bind components
in the design phase, which is also called wiring. This gives the opportunity to
check whether all required services of the components are bound in a sensi-
ble way. However this approach is also the least flexible one. The next type of
binding takes place in the deployment phase. Here an assembly tool is used
to (often graphically) connect the components, which is referred to as visual
component assembly. The last approach is to not really bind the components
at all but to bind outgoing and incoming interfaces. This approach demands
an run-time environment which sets up connections between components with
matching interfaces or intercepts communication attempts and forwards them
to all components with the matching interface. This very flexible approach is
called connection-oriented binding.

3.3 Component models

The theoretical foundation to build component frameworks is a component
model. In order to simplify the introduction of components the definition and
description of components from Section 3.2 did not rely on component mod-
els. Many component frameworks still use only an implicit component model
as the need of component models was not initially identified. Nevertheless
component models are required to exactly describe a component as well as
to implement component frameworks like COM, EJB and others. Component
models generally fulfill two tasks, as stated by Heineman and Council:

”A component model operates on two levels. First, a component
model defines how to construct an individual component.
. . .
Second, a component model can enforce global behavior on how a
set of components in a component-based system will communicate
and interact with each other.” [CH01]

3.3.1 Basic concepts

Since component models make the theoretical base it is reasonable to define
component models first and then define components in the context of compo-
nent models.

3.3. COMPONENT MODELS 51

Definition component model
”A component model defines specific interaction and composition stan-
dards. A component model implementation is the dedicated set of exe-
cutable software elements required to support the execution of compo-
nents that conform to the model.” [CH01]

Definition component with regard to its model
”A software component is a software element that conforms to a compo-
nent model and can be independently deployed and composed without
modification according to a composition standard.” [CH01]

The first definition states that the binding as the mechanism for interaction and
composition is part of the component model. The implementation of a compo-
nent model also has to provide some kind of environment to execute the com-
ponents. Such an environment can include additional services like a naming or
directory service to identify components by name or attributes or a service to
provide transactional contexts for the components. The second definition em-
phasizes that components have to respect the standard the component model
has defined. It also notes the core characteristics (deployable, composable) of
components in general as already discussed in the first section.

3.3.2 Architecture description languages (ADLs)

Architecture description languages are used to describe and develop software
system architectures on a very high level. They usually support components
as the main entities to model systems (or subsystems). Most ADLs share
common concepts also referred to as their ontology. According to Garlan et
al. such ontologies generally comprise of components, connectors, systems,
properties, constraints, styles [GMW00].

Acme

Acme Project claims that Acme is a ”simple, generic software architecture de-
scription language (ADL) that can be used as a common interchange format for
architecture design tools and/or as a foundation for developing new architec-
tural design and analysis tools” [Acm13]. Acme was initially started to support
the interchange of architectures between (other) ADLs and their respective
tools. But over the time Acme has grown into a feature-rich ADL itself. Acme
features both a graphical annotation and a definition language as its syntax.
Fig. 3.6 shows a most simple example of the graphical annotation. Acme sup-
ports an overall of seven core entities:

Components
The basic building blocks which store data and contain business logic.

52CHAPTER 3. COMPONENT-BASED DEVELOPMENT AND ARCHITECTURE

Figure 3.6: Simple Client-Server Diagram. [GMW00]

Ports
The interfaces for provided and requested services of a component.

Connectors
The connections between the components through which the connected
components can communicate and interact.

Systems
The entities of the highest-level. Systems are build from components and
their connectors.

Roles
The interfaces of the connectors. They define the participants of the
interaction executed by the connector.

Representations
Architecture descriptions of a lower level. Every component or connector
can have an internal architecture description. This enables a hierarchical
description of the system including individual descriptions of its parts and
subparts.

Rep-maps
Mappings of the internal ports of the individual representations into the
external ports of component or connector.

Fig. 3.7 shows a system composed by components which interact through
a connector. Additionally the role of the connector at the receiving end is
depicted.

Listing 3.3 shows the same architecture definition as shown in Fig. 3.7 but
given in Acme’s formal language:

Apart from the aforementioned entity types Acme also supports properties that
can be appended to all presented types. These properties are not interpreted
by Acme but may contain valuable information for users or tools. Fig. 3.8 de-
picts entities enhanced with properties and representations.

Acme features a set of tools: AcmeStudio is an eclipse-based graphical design
tool for software architectures based on the Acme annotation. Acme-Web is

3.3. COMPONENT MODELS 53

Figure 3.7: Elements of an Acme Description. [GMW00]

Listing 3.1: Simple Client-Server System in Acme. [GMW00]
System simple cs = {

Component c l i e n t = { Por t sendRequest }
Component server = { Por t receiveRequest }
Connector rpc = { Roles { c a l l e r , c a l l e e } }
Attachments : {

c l i e n t . sendRequest to rpc . c a l l e r ;
server . receiveRequest to rpc . c a l l e e }

}

Figure 3.8: Representations and Properties of a Component. [GMW00]

54CHAPTER 3. COMPONENT-BASED DEVELOPMENT AND ARCHITECTURE

a visualization tool which generates from a definition in the Acme language
a graphical representation viewable with a standard web browser. AcmeLib
offers a parser for Acme definitions and access to entities from a parsed defi-
nition.

Unified Modeling Language (UML)

The Unified Modeling Language (UML) is currently the dominant domain-independent
modeling language. Since its first release in the late 1990s UML contains com-
ponents and component diagrams. That makes UML a promising candidate to
function as an ADL as well. Using UML for defining architectures has two ma-
jor advantages:
First, most people involved in software development (either academic or in-
dustrial) ”speak” UML, i.e. they know at least the common UML features and
annotations. That relieves the potential consumers from the necessity of learn-
ing a new modeling language.
Second, as UML is so widespread, it offers a very good tool support. This
would enable system architects to use the same tools for modeling entities on
a higher levels (architecture definitions) and lower levels (e.g. class diagrams).

However, despite the fact that UML ”is a de facto standard general modeling
language for software developments” [RKJ04] UML does not provide the com-
plete feature set that ADLs commonly provide. UML’s component diagrams
are static in the sense that component instances cannot be replaced and con-
nectors cannot be changed at run-time. Also connectors cannot have complex
semantics or structures which are often needed in ADL definitions as the con-
nector may implement a specific protocol. Furthermore UML is too flexible re-
garding components as they can consist of many types (e.g. classes) which is
not desirable for the top-level view of ADLs. Components should be restricted
thusly to contain only other components. Since version 2.0 UML provides abil-
ities to customize the language in an accurate way. Roh et al. describe their
attempt in [RKJ04].

3.3.3 Concrete component frameworks

CORBA

The Common Object Request Broker Architecture (CORBA) is a standard
defined by the Object Management Group (OMG) to enable development of
distributed software components independently from programming languages
and platforms. CORBA is designed in an object-oriented manner (even if it
supports procedural languages like C). Interaction between components is
therefore done through invoking methods on (possibly remote) objects. By

3.3. COMPONENT MODELS 55

this a client-server behavior is formed in which the client calls methods of an
object residing on the server. The most important part of CORBA is the Ob-
ject Request Broker (ORB) which is responsible for carrying requests over the
border of the requesting component to the requested component (and carrying
the result back to the requester). The ORB therefore transforms the request
call of its (client) object to the inter-ORB protocol (IIOP) and sends the request
to the ORB of the (server) object, where it is transformed back to be intelligible
to the (server) object. Fig. 3.9 shows the generalized situation of two CORBA
objects with the client on the left and server on the right side. Note that the two
objects may reside in different processes, can be written in different program-
ming languages or even be distributed over a network.

Figure 3.9: CORBA overview [SGM02]

JavaBeans

JavaBeans form an intraprocess component model for the Java Technology.
JavaBeans explicitly support manipulation from tools after implementation and
before deployment as the definition extracted from the JavaBeans Specifica-
tions reveals:

”A Java Bean is a reusable software component that can be manip-
ulated visually in a builder tool.” [TMPL+00]

In contrast to the aforementioned CORBA model JavaBeans are neither lan-
guage independent nor platform independent, as JavaBeans can only be writ-
ten in Java and need the Java Virtual Machine (JVM) as their run-time en-
vironment1. JavaBeans expose their properties through a naming conven-

1It can be argued that JavaBeans are platform independent as they require only the JVM
and no particular OS or hardware

56CHAPTER 3. COMPONENT-BASED DEVELOPMENT AND ARCHITECTURE

tion for the getter/setter method pair which controls the property. (The Jav-
aBeans Specifications calls this naming convention ”Design Patterns for Prop-
erties” [TMPL+00] which is misleading to they say the least.) JavaBeans use

Listing 3.2: Naming convention to expose a property. [SGM02]
public <PropertyType> get<PropertyName> () ;
public void set<PropertyName> (<PropertyType> a) ;

a common event source/event listener model which is based on the Observer
design pattern [GHJV95]. Both properties and event source/listeners can be
introspected and manipulated by (graphical) tools. This allows for changing
the properties of JavaBeans and setting up connections between different Jav-
aBeans (wiring them) by an assembly tool before deployment.

Enterprise JavaBeans

Enterprise JavaBeans (EJBs) form a distributed component model for the Java
Technology. Beside the name and the fact that both technologies support only
Java, JavaBeans and EJBs have nothing in common (in particular EJBs are not
the successors of JavaBeans). Unlike JavaBeans EJBs are not wired through

Figure 3.10: Architectural overview of J2EE [SGM02]

an assembly tool. Instead components make up their connections on their

3.3. COMPONENT MODELS 57

own. The degree of composability of a developed EJB depends on the imple-
mentation and not on the component model. However EJBs support contex-
tual composition, that is ”the automatic composition of component instances
with appropriate services and resources” [SGM02]. Every EJB specifies its re-
quired components, services and its context. The run-time environment than
guaranties that the EJB will be only executed in a context that matches its re-
quirements. This context is implemented as a container around each EJB and
communication between EJBs is solely done through the containers and not
EJB instances. This enables additional functionality like network-transparency,
so that EJBs can be distributed over a network. Other functionalities include
support for concurrency, transactions and persistence, all introduced by the
component model and achieved by its implementation. Two (formerly three)
general types of EJBs are distinguishable: Session bean, Message-driven
bean and Entity bean (deprecated).

Session Bean Session beans are divided three subtypes: Stateless, Stateful
and Singleton. As the name suggests Stateless Beans have no (ob-
servable) state. This allows the run-time environment to both recycle
Stateless Beans and execute different instances of the same Stateless
Bean in parallel. Stateful Beans carry a state which changes through
invocation of its methods. Concurrent execution is prohibited and con-
current accesses are simply serialized and executed consecutively. A
Singleton Bean allows only the initiation of one instance (as the name
indicates). Singleton Beans can control how concurrency on single in-
stances is managed.

Message-driven Bean A Message-driven Bean is used for asynchronous com-
munication. Message-driven beans cannot be instantiated by other beans
or otherwise looked up. Instead a Message-driven Bean registers itself
for some messages and when receiving such, processes them. If only
Message-driven Beans are used for interaction in the software system it
forms a message oriented architecture (MOA). Message driven architec-
tures are very flexible but not appropriate for systems featuring an UI.

Entity Bean (deprecated) Entity Beans feature the representation of objects
in (normally relational) databases. They provide access to the com-
mon CRUD-operations (Create, Read, Update, Delete) of databases.
However Entity Beans were deprecated through version Enterprise Jav-
aBeans 3.0 in 2006. Today persistence should easily be achieved by
using the Java Persistence API (which itself is not bound to EJBs).

In summary both JavaBeans and Enterprise JavaBeans are language depen-
dent component models. While JavaBeans allow wiring through assembly
tools, Enterprise JavaBeans provide containers that wrap the EJBs and guar-
antee their requested context. EJBs also have access to high-level functional-
ities provided by the run-time environment including concurrency and transac-
tions, which ease implementation.

58CHAPTER 3. COMPONENT-BASED DEVELOPMENT AND ARCHITECTURE

Microsofts COM/DCOM/COM+

In contrast to the Object Management Group (OMG) Microsoft (MS) does not
rely on global standards for its component models. Instead Microsoft releases
own implementations of its proprietary Component Object Model (COM). COM
serves as the base for more specific component models like object linking and
embedding (OLE) or ActiveX. Szyperski has summarized the basics of COM
as the following:

”COM is a binary standard – it specifies nothing about how a par-
ticular programming language may be bound to it. COM does not
even specify what a component or an object is. It neither requires
nor prevents the use of objects to implement components. The one
fundamental entity that COM does define is an interface.” [SGM02]

COM is completely language independent as it only uses the binary form of
an interface. In order to enable a programming language to use COM only
a binding for such interfaces must be provided. In COM a component must
implement COM’s base interface (named IUnknown) but can implement an
arbitrary number of additional interfaces. Microsoft also provides its own in-
terface definition language (IDL) which is simply named IDL. Microsoft COM’s
IDL can be used with Microsoft IDL compiler (MIDL) to create COM-enabled
binaries. As COM is a binary standard the usage of IDL is not mandatory but
eases the usage of COM. The definition of the IUnknown interface in COM’s
IDL is as follows. Obviously the interface requires the implementation of three

Listing 3.3: IDL definition of the IUnkown interface. [SGM02]
[uuid (00000000−0000−0000−C000−000000000046)]
i n t e r f a c e IUnknown {

HRESULT Query In ter face ([i n] const I ID i i d , [out , i i d i s (i i d)] IUnknown i i d) ;
unsigned long AddRef () ;
unsigned long Release () ;

}

methods: The second and third method provide automatic memory manage-
ment through cooperative reference counting2. The first method is used to
determine whether a given component has implemented a specific interface.

Microsoft has continuously improved and expanded COM and renamed it COM+
in the year 2000. Most notably Microsoft added the possibility to distribute com-
ponents over a network by adding a transparent network layer to COM which
is than referred to as Distributed COM (DCOM).

2Each component is asked to increase the reference counter of another component before
using it and decrease the counter when the other component is no longer needed.

3.4. CONCLUSION 59

In summary (D)COM(+) is a language independent and distributed component
model based on a binary standard. As COM and its extensions are proprietary
standards hold by Microsoft it is mainly used on Microsoft Windows platforms
(although open-source and proprietary implementation for other platforms do
exist).

3.4 Conclusion

This paper examines how the usage of components can contribute to software
development. Components should be based on a component model. In fact
they are always, but the component model might only be implicitly defined.
Six different component models were presented. The first two Acme and UML
are architecture definition languages which serve the goal to define the ar-
chitecture of a software system on the top level. While Acme was designed
to interchange definitions from different ADLs it has matured to an ADL itself.
Acme has some tool support but seems not to have a widespread usage in
the industry. UML in contrast has widespread usage, but it is not perfectly
usable to define architectures through components. Since version 2 UML pro-
vides customization abilities and there are attempts to adopt UML in order to
transform it into an ADL (with conforming component support). The other four
component models do not enable system definition through components but
enable the implementation of components. From these four CORBA is the
only global standard. It defines communication between components through
proxies called Object Request Brokers (ORBs). Although CORBA is a quite
mature approach (with its first important release of CORBA version 2 in 1997)
and seems promising as an open standard backed by many major software
development companies it suffers from many problems. CORBA is already
seen as a vanishing technology by some people, e.g. Michi Henning, who
worked on CORBA as a member of the OMG’s architecture board and as an
ORB implementer, consultant and trainer:

”Overall, however, CORBA’s use is in decline and it cannot be
called anything but a niche technology now.” [Hen06]

The remaining three component models are all platform respectively language
dependent standards forged by single companies. Microsoft’s COM and its
successors enables components written in different programming languages to
communicate and interact. However Microsoft only publishes implementations
for its own operating system Windows. Despite the availability of implementa-
tions for other OSes it only plays a major role on Windows systems. The last
two component models JavaBeans and Enterprise Java Beans were invented
by Sun Microsystems (now part of Oracle) and are bound to the Java Technol-
ogy. Nevertheless they are both platform independent in the sense that they

60CHAPTER 3. COMPONENT-BASED DEVELOPMENT AND ARCHITECTURE

can be used on all platforms which have an implementation of the Java Vir-
tual Machine. JavaBeans were designed to form graphical components which
can be wired together in (graphical) assembly tools. In contrast Enterprise
JavaBeans were designed to allow components to require a satisfying context
which is provided in run-time through containers that wrap the individual com-
ponent. While JavaBeans can reside both on the client and server side, EJBs
can only be executed inside a server.

Both Acme and UML provide wiring through their graphical annotations. In
addition Acme provides wiring through its textual definition language. The re-
maining component models presented differentiate regarding component bind-
ing. JavaBeans support connection-oriented programming (wiring) through
graphical tools. EJB, COM and CORBA all support (static) wiring through
global identifiers which normally is done in the implementation phase.

In conclusion component based development is still promising. On the one
hand ADLs like Acme or the adoption of the widespread UML can be used to
define systems by component composition. On the other hand tangible com-
ponent frameworks like COM, CORBA, JavaBeans and EJB enable the com-
ponent implementation. However there are still severe drawbacks for com-
ponents: There is currently no widely accepted ADL which leads to lesser
tool support for component based system architecture. It also forces system
architects to learn several ADLs or leaves them with UML as the least com-
mon denominator. Graphical wiring during assembly is only possible for spe-
cific components (most namely graphical components, e.g. implemented with
JavaBeans). Hard coding the component connections during implementation
costs much of the flexibility components promised and contextual composition
introduces possibilities of error (like composition mismatches). Furthermore
development of a component is most likely much costlier than development in
the traditional way. Although it is hard to measure Szyperski et al. suspect:

”As a rule of thumb, most components need to be used three times
before breaking even.” [SGM02]

Component based development is (currently) not the ultimate solution to all
software development problems as it sometimes praised. It is however a sen-
sible approach for some software systems and it is a promising item for further
research.

Bibliography

[Acm13] Acme Project. Acme - the acme architectural description language
and design environment. http://www.cs.cmu.edu/~acme/, Jan-
uary 2013.

BIBLIOGRAPHY 61

[CH01] Bill Councill and George T. Heineman. Definition of a soft-
ware component and its elements. In George T. Heineman and
William T. Councill, editors, Component-based software engi-
neering, chapter Definition of a software component and its el-
ements, pages 5–19. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2001.

[dz812] dz863.com. Nte1362integrated circuitaudio power amp,
5.5w. http://www.dz863.com/pinout-810646863-NTE1362/,
2012. [Online; accessed 21-January-2013].

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design patterns: elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

[GMW00] David Garlan, Robert T. Monroe, and David Wile. Foundations
of component-based systems. chapter Acme: architectural de-
scription of component-based systems, pages 47–67. Cambridge
University Press, New York, NY, USA, 2000.

[Hen06] Michi Henning. The rise and fall of corba. Queue, 4(5):28–34,
June 2006.

[LW07] Kung-Kiu Lau and Zheng Wang. Software component models.
Software Engineering, IEEE Transactions on, 33(10):709 –724,
oct. 2007.

[Mci69] Doug Mcilroy. Mass-produced Software Components. In J. M.
Buxton, P. Naur, and B. Randell, editors, Proceedings of Software
Engineering Concepts and Techniques, pages 138–155. NATO
Science Committee, January 1969.

[RKJ04] Sunghwan Roh, Kyungrae Kim, and Taewoong Jeon. Architecture
modeling language based on uml2.0. In Software Engineering
Conference, 2004. 11th Asia-Pacific, pages 663 – 669, nov.-3 dec.
2004.

[SGM02] C. Szyperski, D. Gruntz, and S. Murer. Component Software: Be-
yond Object-Oriented Programming. Component Software Series.
Prentice Hall, 2002.

[TMPL+00] Enterprise Team, Vlada Matena, Eduardo Pelegri-Llopart, Mark
Hapner, James Davidson, and Larry Cable. Java 2 Enterprise
Edition Specifications. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2000.

[Wik12] Wikipedia. Screw — wikipedia, the free encyclopedia. http://en.
wikipedia.org/w/index.php?title=Screw&oldid=527938384,
2012. [Online; accessed 21-January-2013].

62CHAPTER 3. COMPONENT-BASED DEVELOPMENT AND ARCHITECTURE

Chapter 4

Model-driven Architecture

Hongyu Chen

Contents
4.1 Introduction . 64
4.2 Basic concepts . 65

4.2.1 Definition in Model-Driven Architecture 66
4.2.2 Related Standards . 66

4.3 The principles of Model-Driven Architecture 68
4.3.1 Models in Model-Driven Architecture 68
4.3.2 Transformations between models 69

4.4 Model-Driven Architecture in practice 74
4.5 Related work . 78

4.5.1 Domain Specific Languages 78
4.5.2 Architecture Reconstruction 78

4.6 Conclusion . 80
Bibliography . 80

63

64 CHAPTER 4. MODEL-DRIVEN ARCHITECTURE

Abstract: Model-Driven Architecture (MDA) has been used in software sys-
tem development more than 10 years. MDA includes two main parts : one
is Model, the other is Transformation between models. This paper introduces
the basic concepts of MDA and illustrates the transformations between mod-
els, we also compare them in generally. An example of MDA is given to make
it easy understanding. Related work about MDA is also introduced. Finally,
we summarize the advantages and disadvantages of MDA.

4.1 Introduction

In 2001, the Object Management Group (OMG) introduced the Model-Driven
Architecture (MDA).

What is the Model-Driven Architecture? Model-Driven Architecture is an
approach using modeling languages to develop software systems. In figure4.1,
I illustrate the processes of software development with the traditional way and
the MDA approach.
With the traditional way, we generally get requirements from customers, then
managers and developers analyze the requirements and build relevant models
for the future software. The next step is to determine which platform should
be chosen, and design each module depending on the analysis documents
and platform. After the preliminary design, developers should write code to
implement these modules. As well known, test and debug are necessary after
coding. The final step is to deploy software systems.

The right part of figure4.1 presents the process used when employing an MDA
approach. From the picture we can see clearly that the main parts of MDA
are models and the transformations between models. The models in MDA in-
clude Computation Independence Model (CIM), Platform Independence Model
(PIM), Platform Specific Model (PSM) and Code which can also be called Im-
plementation. Generally the transformations are:

- From CIM to PIM

- From PIM to PSM

- From PSM to CODE

- From PIM to CODE directly

CIM is the same as Requirements part, because its main function is to model
requirements and show the business environment where the system will oper-
ate; A PIM plays a role similar to the traditional Analysis part, because it gets
information from CIM and enriches it to form a detailed view of a system by

4.2. BASIC CONCEPTS 65

Figure 4.1: Development with traditional way and MDA

employing various modelling languages. A PSM is corresponding to the De-
sign part, because in a PSM, the platform should be decided and technical
details should be contained. Finally, the Code is the same as Implementation
part.

This paper’s purpose is to give an overview of the MDA standard and is divided
in 4 chapters, as follows: Basic concepts, The principles of Model-Driven Archi-
tecture, Model-Driven Architecture in practice, Related work and Conclusion.

4.2 Basic concepts

Figure4.2 is the logo of MDA. It illustrates which standards the MDA uses.

66 CHAPTER 4. MODEL-DRIVEN ARCHITECTURE

Figure 4.2: OMG’s Model Driven Architecture. [OMG]

4.2.1 Definition in Model-Driven Architecture

Model-Driven

”MDA is an approach to system development, which increases the power of
models in that work. It is model-driven because it provides a means for using
models to direct the course of understanding, design, construction, deploy-
ment, operation, maintenance and modification.”[MM+03]

Architecture

”The architecture of a system is a specification of the parts and connectors of
the system and the rules for the interactions of the parts using the connectors.”[MM+03]

4.2.2 Related Standards

As mentioned in Introduction part, MDA includes many important standards
defined by OMG. In the following part, I give these definitions of standards and
how they support the MDA, then I explain the reason why MDA uses these
standards. Finally, the relations between are given.

4.2. BASIC CONCEPTS 67

UML

”The Unified Modeling Language (UML) is a standard modeling language for
visualizing, specifying, and documenting software systems.”[MM+03] It was
created by the Object Management Group. Now we often use the version of
UML 2.0. In the MDA, both PIMs and PSMs will be defined using UML profiles.

MOF

”MOF provides the standard modeling and interchange constructs that are
used in MDA. Other standard OMG models, including UML and CWM, are
defined in terms of MOF constructs. This common foundation provides the ba-
sis for model/metadata interchange and interoperability, and is the mechanism
through which models are analyzed in XMI. MOF also defines programmatic
interfaces for manipulating models and their instances spanning the applica-
tion lifecycle.” [OBD+01]

CWM

”Common Warehouse Metamodel (CWM) is the OMG data warehouse stan-
dard. It covers the full life cycle of designing, building and managing data ware-
house applications and supports management of the life cycle. ”[OBD+01] In
the context of MDA, the CWM specification is especially useful for legacy inte-
gration.

XMI

”XML Metadata Interchange XMI is a standard interchange mechanism used
between various tools, repositories and middleware.”[OBD+01] So any UML
model can be represented in this XML-based format.

Relevance of the used standards

Model-Driven Architecture is based on the models and model transformations.
So it needs standards to create models and transformation specifications.

- For the model specification, UML is a popular and well-defined language
for model developing.

68 CHAPTER 4. MODEL-DRIVEN ARCHITECTURE

Figure 4.3: Relations between standards. Modified from [Joh]

- MOF metamodels, UML metamodel, CWM metamodel and interchanges
between them are always used to transform from PIM to PSM.

- XMI is used to map the MOF to the XML.

So these standards are necessary and play important roles in MDA. Using
these standards can help an architect to employ an MDA approach. Figure4.3
shows the relations between standards as mentioned before.

4.3 The principles of Model-Driven Architecture

4.3.1 Models in Model-Driven Architecture

As mentioned in Introduction part, models specified by MDA are: CIM, PIM,
PSM and Code. In the next, I will give more details about each of these mod-
els.

CIM

Computation Independent Model (CIM) is a simple representation which mod-
els requirements for software systems and shows the business environments

4.3. THE PRINCIPLES OF MODEL-DRIVEN ARCHITECTURE 69

in which it will operate. The CIM plays a similar role in MDA, as the re-
quirements elicitation and analysis play in a traditional development process.
[MM+03] offers more information about this.

PIM

Platform Independent Model (PIM) is a detailed view of a system. A PIM will
contain information from CIM, in other words, transforms the requirements into
elements of PIM. One important rule is that every element in a PIM can be
traced to the requirements in a CIM. The information can be business func-
tionality and behaviour, but not shows technical details of platforms which will
be used. So it means the PIMs do not decide the Platform. So from a PIM, we
can get different PSMs by transforming [MM+03].

PSM

Platform Specific Model (PSM) is a detailed view of a system. It includes not
noly the information provided by a PIM, but also the technical details (such as
Java methods, primary key in database) based on a specific platform which
will be used to develop the system. In other words, in PSM, the platform is
determined and the technical details of the platform should be illustrated in
this PSM. The PSM should be specific and contains enough information to
generate code. [MM+03]

Code

In the final step of the development is the transformation of PSMs to code.
Code is the lowest level in a system development. Most of basic code is gen-
erated from models using MDA tools automatically. The complex code describ-
ing algorithm or others should be written manually.

4.3.2 Transformations between models

Model transformation is the process of converting one model to another model
of the same system [MM+03]. In MDA, the model transformation means the
transformations between these four models. Figure4.4 shows the basic trans-
formations in MDA. They are CIM-to-PIM, PIM-to-PSM, PSM-to-Code, and a
special one, PIM-to-Code. [OBD+01] also introduces the PIM-to-PIM, PSM-
to-PSM and PSM-to-PIM.

70 CHAPTER 4. MODEL-DRIVEN ARCHITECTURE

Figure 4.4: Model transformation in MDA

CIM-to-PIM

[NSN08] introduced that ”CIM presents specification of the system at problem
domain level and can be transformed into elements of PIM”. In other words,
CIM-to-PIM transformation is a process in which the requirements in CIM are
transformed into the elements of PIM and described by modeling languages
such as UML. So in this transformation, the most important thing is that we
should make sure that every requirement is illustrated in PIM and based on
modeling languages rules. [ZMZY05] shows a method named ”A Feature-
Oriented Component-Based Approach” for transformation from CIM-to-PIM.
”It uses the feature model (consisting of a set of features and relationships
between features) to structure requirements in CIM, and use the software ar-
chitecture (consisting of a set of components and interactions between com-
ponents) to organize elements at the PIM level.”

PIM-to-PSM

Transformation from PIM to PSM is the main part of MDA. Figure4.5 describes
an example of a PIM and its transformation into three different PSMs. That
means a PIM can be transformed into different PSMs. [OBD+01] [MM+03]
show that mapping plays a key role in PIM-to-PSM transformation.
What is the mapping? A mapping is an approach which provides rules and
techniques used to transform from a PIM into a PSM. There are two main
kinds of mapping in MDA. One is Model Type Mapping, the other is Model In-
stance Mapping. The difference between them is explained below.
I merged some pictures from [MM+03] to form a new drawing, Figure4.6 which
shows the mechanism of PIM-to-PSM by mappings. In figure4.6, the actions
are Marking and Mapping. The green path shows the Model Instance Mapping
approach for PIM-to-PSM transformation. It means the model elements in the
PIM are marked by marks. These marks represent a concept in the PSM and

4.3. THE PRINCIPLES OF MODEL-DRIVEN ARCHITECTURE 71

Figure 4.5: An example of PIM to PSM mappings [Bro04]

indicate how the elements in PIM is to be transformed. Then PIM becomes to
”marked PIM”. After mapping, the marked PIM is transformed to a PSM. On
the anther hand, the red path shows the Model Type Mapping approach for
PIM-to-PSM transformation. It means that the types described in the PIM are
specified in models expressed using types from a PSM language directly. In
Model Type Mappings, metamodel mapping is a specific example, the types of
model elements in the PIM and the PSM are both specified as MOF metamod-
els [MM+03]. There are also many other type mappings. They all provide rules
and/or algorithms to PIM-to-PSM transformation. Figure4.6 can also show the
Combined Type and Instance Mapping. In this way, the advantages of using
Model Type Mapping and Model Instance Mapping are combined.

As introduced in [MM+03], mappings can also include templates: ”A template
specifies a particular kind of transformation using parameterized models or
patterns of model elements that are used as rules in model type mappings
and model instance mappings.” Sometimes when we mark the PIM, some ad-
ditional information is also added to guide the transformation. For example,
some information describes the quality of service in the model. I merge the
Pattern applications and additional information to form a new picture. Figure
4.7 shows how PIM-to-PSM transformation works with pattern and additional
information. The green line shows the Model Instance Mapping with additional
information and patterns. In the process from PIM to Marked PIM, the addi-
tional information and patterns can be used. Furthermore, from Marked PIM
to PSM, they can also be used to guide the transformation. The red line shows
the Model Type mapping with patterns.
Figure 4.8 shows the table summarized by me to compare Model Type Map-

ping and Model Instance Mapping.

72 CHAPTER 4. MODEL-DRIVEN ARCHITECTURE

Figure 4.6: PIM-to-PSM transformation by mappings

PSM-to-Code and PIM-to-Code

In figure 4.4, I have illustrated that there are two transformations to code. One
is PIM-to-Code, the other is PSM-to-Code. PIM-to-Code is a direct transfor-
mation without producing PSMs. In this transformation, the PIM must includes
enough information to be transformed to code. It is not often used in software
development.

PSM-to-Code is a familiar transformation to generate code. In PSMs, the in-
formation about requirements and technical details for the platform are speci-
fied. So what developers should do is using tools to generate code automati-
cally or write/fix codes manually by following the platform language semantics.
Figure4.9 illustrates an example of the transformation from PSM to code. In
the picture, a PIM transforms to three kinds of PSM including J2EE, .NET and
CORBA. Then each PSM is transformed to its own language. J2EE generates
JAVA code, .NET generates C# code, CORBA generates C++ code. Transfor-
mation from a PSM to code also is supported by Model-To-Code transforma-
tion [KWB03]. There are two approaches for Model-To-Code [CH03].

• Visitor-Based Approaches

4.3. THE PRINCIPLES OF MODEL-DRIVEN ARCHITECTURE 73

Figure 4.7: PIM-to-PSM transformation by pattern and additional information.
Modified from [MM+03]

Figure 4.8: Compare Model Type Mapping with Model Instance Mapping

74 CHAPTER 4. MODEL-DRIVEN ARCHITECTURE

Figure 4.9: Transformation

• Template-Based Approaches

4.4 Model-Driven Architecture in practice

[MF05] gives an example about CIM-PIM-PSM using OptimalJ. The example
is summarized below:

Create CIM

First, based on the textual requirements specified by the stakeholders which
can be found in [MF05], the following CIM-relevant model has been proposed
as fig4.10 which shows the workflow.

CIM-to-PIM

The following part is the transformation from CIM to PIM. As mentioned, it
needs model languages to create a PIM. In this case, PIM was created using
UML 2.0 and Rational Rose 2003. Through analyzing the CIM, it defined six

4.4. MODEL-DRIVEN ARCHITECTURE IN PRACTICE 75

Figure 4.10: CIM of a web-based application to track chemical shipments
[MF05]

classes and illustrated the n-to-n or 1-to-n relations. The important thing is
that every element in the PIM must be traced to CIM. Figure4.11 is the PIM
transformed from CIM.

PIM-to-PSM

In this case, the target platform is J2EE. So it used OptimalJ to generate
PSM from PIM. Figure4.12 shows the EJB-based PSM. ”This model includes
platform-specific details, such as the addition of two finder methods in the Ship-
mentItem class, one by key and another by shipment, not present in the PIM.”
Figure4.13 illustrates a platform-specific database model transformed from the
PIM by OptimalJ. This model includes database-specific attributes and rela-
tionships. ”For example, the DeliveryTruck relation shows that it has a primary
key named ID and that it participates in a many-to-many relationship with Ship-
ment. The model also lists specific data types for each relation.” Because of
the requirements, this case choosed the JAVA platform as PSM target. But
if the requirements change to use .Net as the target platform, we should use
OptimalJ to generate a PSM using .Net rules.

76 CHAPTER 4. MODEL-DRIVEN ARCHITECTURE

Figure 4.11: Platform independent model in Rational Rose 2003 [MF05]

Figure 4.12: Platform-specific EJB model in OptimalJ [MF05]

4.4. MODEL-DRIVEN ARCHITECTURE IN PRACTICE 77

Figure 4.13: Platform-specific database model in OptimalJ [MF05]

PSM-to-Code

The final step is to transform PSM to Code. It is not complex. Most code would
be generated from PSM by tools such as OptimalJ automatically. While some
code should be modified by developers manually, because it is too complex to
be defined in models.

Tools for MDA Now there are many tools including open source tools and
Commercial tools for MDA. I list some popular Open source tools:

- OpenMDX, which supports code generation towards J2EE and .Net.

- Kermeta, which is built as an extension to Eclipse EMF.

- MOFScript, which based on one of the OMG MOF Model to Text Trans-
formation submissions and metamodels/models in EMF.

Some popular commercial tools including:

- OptimalJ

- ArcStyler

- MCC (Model Component Compiler)

78 CHAPTER 4. MODEL-DRIVEN ARCHITECTURE

4.5 Related work

4.5.1 Domain Specific Languages

Definition

As mentioned in [VDKV00], ”a domain-specific language (DSL) is a small, usu-
ally declarative corresponding to the language that offers expressive power
focused on a particular problem domain”. A DSL is a specialized and problem-
oriented language. It forces on describing a domain of knowledge accurately.

Relation to MDA

A CIM is sometimes called a domain model [MM+03]. A DSL is specific to a
given domain, so DSLs make contribution to CIM. [LJJ07] said ”In model-driven
engineering, a Domain-Specific Language (DSL) is a specialized language,
which, combined to a transformation function, serves to raise the abstraction
level of software and ease software development.” In MDA approach, PIMs use
model languages to abstract software systems and then are transformed to
PSMs. DSLs are languages which can make contribution to PIMs not only on
system abstraction but also on transformation from PIMs to PSMs. Especially
the UML, has been used in MDA generally.

4.5.2 Architecture Reconstruction

Definition

[Kos09] said ”Software architecture reconstruction is the form of reverse engi-
neering in which architectural information is reconstructed for an existing sys-
tem. Those information is gathered from the source, the system’ execution,
available documentation, stakeholder interviews, and domain knowledge.” In
other words, Architecture reconstruction is a reverse engineering from the im-
plementation. Depending on [Riv02], Architecture reconstruction can be con-
ducted in the following phases :

- Developers map the high level concepts with the source code or imple-
mentation.

- Depending on the mapping, developers build a model of the system. The
model of the system is just at a very low level of abstraction.

4.5. RELATED WORK 79

Figure 4.14: Relation between MDA and Architecture reconstruction [MF05]

- Enrich the model with domain specific knowledge that will lead to a high
level view of the system. From the enriched model, we can get a global
understanding of the system.

Relations to MDA

In MDA approach, we also need Architecture reconstruction. During the de-
velopment, the requirements or other documents always have to be changed.
What we should do is to change CIM and PIM, change the models to adapt
the new plan. But it is complex and waste resource if we rebuild the whole
models since some small requirements changes. So we can use Architecture
reconstruction to make it easy. Figure4.14 illustrates the relation between MDA
and Architecture reconstruction. In MDA part, we can generate Code v1 from
Model v1. When some new requirements are added, we can write the new
code first, then merge them with Code v1 and get Code v2. In Architecture
reconstruction part, we abstract the Code v2 to form Model v2. Finally, we
compare Model v2 with Model v1 and form Model v3. For this system, that is
enough. While when we do some new systems similar to it, we can generate
Code v3 from Model v3 directly.

80 CHAPTER 4. MODEL-DRIVEN ARCHITECTURE

4.6 Conclusion

MDA has been developed for more than ten years. There are many advan-
tages using MDA to develop software systems. Firstly, it increases application
re-use and reduces the development cost. For example, if a software system
has been developed in J2EE platform, and now the same or another customer
wants to deploy the same system on a .Net platform, we can use tools to
transform the same PIM to another PSM suitable for the .Net platform. In this
way, the time and cost for developing CIM and PIM can be saved. Secondly,
it makes the cross-platform interactive easy. Because one PIM can be trans-
formed to several PSMs depending on the requirements.

Now from many examples we find that MDA has succeeded in large, dis-
tributed, industrial software development, but in small business and small project,
MDA has not been used widely. There is a big disadvantage using MDA. That
is the time invested in the models. There is a tradeoff between grasping the
code and program directly and invest more time in the models. Describing ev-
erything at the model level can be very time consuming and hard. For example,
describing a search algorithm in a model is much harder that just implementing
it. So the tradeoff needs to be analysed carefully beforehand. In the future, I
think MDA should be developed towards small projects and make the develop-
ment process more easy.

Bibliography

[Bro04] Alan W Brown. Model driven architecture: Principles and practice.
Software and Systems Modeling, 3(4):314–327, 2004.

[CH03] K. Czarnecki and S. Helsen. Classification of model transforma-
tion approaches. In Proceedings of the 2nd OOPSLA Workshop on
Generative Techniques in the Context of the Model Driven Architec-
ture, volume 45, pages 1–17, 2003.

[Joh] John D. Poole. Model-Driven Architecture: Vision, Standards And
Emerging Technologies.

[Kos09] R. Koschke. Architecture reconstruction. Software Engineering,
pages 140–173, 2009.

[KWB03] A. Kleppe, J. Warmer, and W. Bast. Mda explained. the practice
and promise of the model driven architecture, 2003.

[LJJ07] B. Langlois, C.E. Jitia, and E. Jouenne. Dsl classification. In OOP-
SLA 7th Workshop on Domain Specific Modeling, 2007.

BIBLIOGRAPHY 81

[MF05] T.O. Meservy and K.D. Fenstermacher. Transforming software de-
velopment: an mda road map. Computer, 38(9):52 – 58, sept. 2005.

[MM+03] J. Miller, J. Mukerji, et al. Mda guide version 1.0. 1. Object Man-
agement Group, 234:51, 2003.

[NSN08] O Nikiforova, U Sukovskis, and V Nikulsins. Principles of Model
Driven Architecture for the task of study program development.
Joining Forces in Engineering . . . , 2008.

[OBD+01] Architecture Board Ormsc, Carol Burt, Desmond Dsouza, Keith
Duddy, William El Kaim, William Frank, Sridhar Iyengar, Joaquin
Miller, Jeff Mischkinsky, Jishnu Mukerji, Jon Siegel, Richard Soley,
Sandy Tyndal, Axel Uhl, Andrew Watson, and Bryan Wood. Model
Driven Architecture (MDA) Document number ormsc / 2001-07-01.
pages 1–31, 2001.

[OMG] OMG. http://www.omg.org/mda/index.htm.

[Riv02] C. Riva. Architecture reconstruction in practice. In Proc. Working
Conf. on Software Architecture (WICSA), 2002.

[VDKV00] A. Van Deursen, P. Klint, and J. Visser. Domain-specific languages:
An annotated bibliography. ACM Sigplan Notices, 35(6):26–36,
2000.

[ZMZY05] W. Zhang, H. Mei, H. Zhao, and J. Yang. Transformation from cim to
pim: A feature-oriented component-based approach. Model Driven
Engineering Languages and Systems, pages 248–263, 2005.

82 CHAPTER 4. MODEL-DRIVEN ARCHITECTURE

Chapter 5

Software Architecture
Evolution

Afshin Ghanizadeh

Contents
5.1 Introduction . 84

5.1.1 Problem Statement . 84
5.1.2 Research Motivation 84
5.1.3 Research Outline . 84

5.2 Background . 85
5.2.1 Software Architecture 85
5.2.2 Basic Concepts . 86
5.2.3 Architectural Views and Viewpoints 87
5.2.4 Level of Abstraction 88

5.3 Related Works . 88
5.3.1 Software Evolution . 88
5.3.2 Architecture Recovery 90
5.3.3 Model-Driven Architecture 90
5.3.4 Dynamic Evolution of Software Architecture 91

5.4 Software Architecture Evolution 92
5.4.1 Introduction . 92
5.4.2 Model-Driven Software Evolution 94
5.4.3 Dynamic Software Evolution 95

5.5 Conclusion . 96
Bibliography . 97

83

84 CHAPTER 5. SOFTWARE ARCHITECTURE EVOLUTION

Abstract: Most systems are built to be used for a long time and will be con-
sidered as long-lived systems. Due to uncertainty of market, social and eco-
nomic, most systems will be updated over a long period of time. This study
is concerned with the design of different architectures and dynamic evolvable
softwares.

5.1 Introduction

5.1.1 Problem Statement

Evolution of software systems is considered as inevitable changes of software
specifications and is a natural process.Every evolution can take place at dif-
ferent level of abstraction of software like architectural level. It is important
to design a software with ease of extension and it depends on how well the
structure of the software is built.

5.1.2 Research Motivation

In this study, we are going to explore the relationship between evolution and ar-
chitecture. For this purpose, some architecture evolution models are described
in details like Architecture-Driven Software Development, Model-Driven Soft-
ware Evolution, and Dynamic Software Evolution.

5.1.3 Research Outline

The problem statement is explored in the first chapter of this study. In the sec-
ond chapter, some backgrounds on software evolution, Architecture Recovery,
Model-Driven Architecture, and Dynamic Evolution of Software Architecture
are provided. Software evolution architecture will be studied as an inevitable
process in chapter 4. Finally, report is concluded in chapter 5.

5.2. BACKGROUND 85

5.2 Background

5.2.1 Software Architecture

Definition

Several definitions about software architecture have been proposed in the last
decade. The first definition explained here is proposed by Perry and Wolf
[PW92] which is one of the most widely extended and accepted definitions:

Software Architecture={Elements, Form, Rationale}
Elements capture the system’s building blocks, which can be of three types:
processing elements, data elements and connecting elements.
Form captures how the (architectural) elements are organized in the archi-
tecture, by means of weighted properties and relationships. That is, the form
captures how the elements are composed (i.e. The architecture configuration),
the characteristics of their interactions, and their relationship with their operat-
ing environment.
Rationale captures the motivation for the choice of an architectural style, the
choice of elements, and the form. That is, the system designer’s intent, as-
sumptions, choices, external constraints, selected design patterns, and other
information that is not easily observable from the architecture.

Practical characterizations of this definition were later provided by Taylor, Med-
vidovic, and Dashofy [TMD09] using What, How and Why questions:

Elements help to answer the What questions about the architecture: What are
the elements of a system? What are their primary purpose and the services
that they provide?
Form helps to answer How questions about the architecture: How is the ar-
chitecture organized? How are the elements composed to accomplish the
system’s key task? How are the elements distributed?
Rationale helps to answer Why questions about the architecture: Why are par-
ticular elements used? Why are they combined in a particular way? Why is the
system distributed in a given manner?

Another definition is given by ANSI/IEEE Standard 1471-2000:

Architecture is the fundamental organization of a system, embodied in its com-
ponents, their relationships to each other and the environment, and the princi-
ple governing its design and evolution.

One of the most recent definitions comes from the software architecture book
written by Taylor et. al [TMD09]:

A software system’s architecture is the set of principal design decisions made

86 CHAPTER 5. SOFTWARE ARCHITECTURE EVOLUTION

about the system. Design decisions encompass every aspect of the system
under development, including: system structure, functional behavior, interac-
tion, nonfunctional properties and implementation. Principal is a term that im-
plies a degree of importance and topicality that grants a design decision ar-
chitectural status, that is, that makes it an architectural design decision (i.e. It
impacts system’s architecture).

This definition is the most abstract definition among aforementioned definitions
which gives the architecture a central role in development of a system. There-
fore, architecture not only includes the structure of a system, but describes
main functional behavior, the non-functional properties and the technology.
Despite different issues in each definition, all of them are mainly concerned
with behavior and structure. Both terms is specified using Architectural De-
scription Language (ADL).

5.2.2 Basic Concepts

Some concepts that are common in all ADLs are presented in this section.

Component

A component is a computational element with a high level of encapsulation that
allows users to structure the functionality of a software system.
A software component is an architectural entity that [TMD09]:

1. encapsulates a subset of the systems’s functionality and/or data.

2. restricts access to that subset via an explicitly defined interface.

3. has explicitly defined dependencies on its required execution context.

Connector

A connector is an architectural element tasked with effecting and regulating
interactions among components. [TMD09]
Connectors are the locus of relations among components. They mediate in-
structions but are not ”things” to be hooked up. Each Connector has a protocol
specification that defines its properties. These properties include rules about
the types of interfaces it is able to mediate for, assurances about properties of
the interaction, rules about the order in which things happen, and commitments
about the interaction such as ordering, performance, etc. [SG96]

5.2. BACKGROUND 87

Configuration

An architectural configuration is a set of specific association between the com-
ponents and connections of a software system’s architecture.[TMD09]

System

Systems represent architectural configurations that are made of connectors
and components built in a hierarchical way. The Concept of system differs
from configuration in that a system is a building block that can be reused in
several software systems, whereas a configuration defines the structure of a
specific system. [CS11]

Port

Ports are points where architectural elements can interact with other elements
of a software.

5.2.3 Architectural Views and Viewpoints

In order to record an architecture, architectural views can be described as de-
scriptive groups. In fact, representing an entire system based on a group of
issues constitutes a view. In order to create and use a view, specific conven-
tions are required, which can be specified as a viewpoint.

The viewpoint determines the languages to be used to describe the view and
any associated modeling methods or analysis techniques to be applied to
these representations of the view. [PGJ05] In order to fully describe a soft-
ware, it is greed that various views and viewpoints are essential. Studies have
been done that all categorize different view models. For example, [HNS00]
suggested views including: conceptual architecture, module interconnection
architecture, execution architecture, and code architecture.

Bass et al.[BCK03], on the other hand, proposed Three categories of architec-
tural views:

Module Views, which contain elements that can describe the implementation
units of the whole software system.
The second one is components and connector views, whose elements are
computational units like clients, servers, databases which are called the com-
ponents, and communication instructions such as remote procedure calls, named
pipes, and sockets that constitute the connectors.

88 CHAPTER 5. SOFTWARE ARCHITECTURE EVOLUTION

Allocation Views are the third category which contains elements that are com-
ponents, connectors, modules, and environmental resources.
There are three categories of relationships used in views regularly modules,
which are units of functionality in implementing softwares:

The first type of relationship is is-part-of, which defines a part/whole relation-
ship between a submodule and a module.

The second type, depends-on, defined a relationship of dependency between
two different modules. This type is commonly used in the beginning stages of
the design.

”is-a” is the third type of relationship which defines a relationship of generaliza-
tion between a particular modules and general modules, which can be related
to as the parent of the first module, which is often called the child.

5.2.4 Level of Abstraction

There are various levels of abstraction for software implementation views. These
levels often depend on concerns that are to be represented.

1. Architecture: The first level includes architectural viewpoints which indi-
cate the parts of the system that are related to the architecture.

2. Design: The design aspects of the softwares can be described using
design viewpoints which are often represented using models of source
code which include all the details.

3. Code: The syntactic structure of the source files and classes are repre-
sented by the code viewpoints.AST (Abstract Syntax Tree) is commonly
used to model the syntactic structures.

4. Source Text: Source files, build commands, configuration files and other
documents make up part of the implementation of the system.

5.3 Related Works

5.3.1 Software Evolution

Lehman and Belady’s Laws of Software Evolution [LB85] work concluded that
a more complex and a more resource consuming system will be established as
the system evolves. Besides that, successful systems become less useful over
time in that environment. Many design patterns, specially all of the patterns in

5.3. RELATED WORKS 89

the original Design Patterns book [VHJG95] are meant to increase flexibility,
however they become more costly in terms of complexity. Rules that mod-
erate system growth and evolution were established by software architectures
[SG96], however, some changes can break the assumptions of an architectural
style.

Several approaches analyze the influence these changes have on evolving
software system. The influence of changes on the maintainability of software
systems by defining a set of measurements or depict the complexity of the
calls were analyzed by [BM99]. Gold and Mohan [GM03] defined a framework
to understand the conceptual changes in an evolving system .

Analysis at the level of entities in a meta-model was suggested by [ZWDZ04].
Their main concern was priding a mechanism that warns programmers about
the consequences of the changes being made.

Later, Ying et al. applied data mining techniques to the change history of the
code base to identify change patterns [YMNCC04]. The Hipikat [CM03] ap-
proach was introduced by Cubranic and Murphy . Hipikat used project informa-
tion to provide recommendations for a modification task. Project information
includes different sources, including the source code versions, modification
task reports, newsgroup messages, email messages, and documentation.

Fenton and Ohlsson report was based on an experiment with two commer-
cial software systems where they tested a range of basic software engineering
hypotheses relating to: The Pareto principle of distribution of faults and fail-
ures [FO00]. No evidence to support the hypothesis that size and complexity
of modules are good predictors of either fault-prone or failure-prone modules
were found. Their results showed that the most fault-prone prerelease mod-
els are among the least fault-prone postrelease, while, the most fault-prone
postrelease are among the least fault-prone prerelease.

Lanza et al. introduced the Evolution Matrix by taking into account different
releases of a system [Lan01] that represent the history of classes. The history
of changes in software systems to detect the hidden dependencies between
modules was analyzed by [GHJ98]. Their analysis was at the file level rather
than dealing with the real code and considered release and version information
of software units. The concept of logical coupling was extended by Fischer et
al., they also defined a filtering mechanism and a data scheme for such an
integration in [FPG03]. Their data scheme is the initial version of the Release
History Database (RHDB).

Based on CVS data Krajewski et al. discovered change couplings: developers
checking in and out files within certain periods of time and the relationship of
these files discovered dependencies that are difficult to detect by other means
and pointed to several bad code smells [FB99] by means of visualizations using
JGraph [GJK03].

90 CHAPTER 5. SOFTWARE ARCHITECTURE EVOLUTION

5.3.2 Architecture Recovery

Research on architecture recovery spans a wide area of activities: approaches,
such as Bookshelf [FHK+97], and Dali [KC99]follow the Extract-Abstract-View
Metaphor described in [RW02]. They focus on the creation of condensed high-
level views to facilitate program understanding. Most tools differ in the underly-
ing fact extraction technique, in the methods and details of fact representation,
and in the analysis and visualization techniques.

Murphy and Notkin proposed a reconstruction technique based on reflexion
models [MNS95]. The user starts with a structural high-level view model that
is mapped against the source code. The result of the mapping is a reflexion
model that shows the differences between the developer’s high-level and the
recovered model. Koschke and Simon have extended the original reflexion
models to hierarchical architecture models [KS03].

Extracting architectural properties from large open source systems such as the
Mozilla system has been addressed by Godfrey et al. [GL00]. Their work relied
on PBS which is a reverse engineering workbench containing the Relational
Algebra tool Grok.

Riva proposed a view-based architecture reconstruction approach named NIMETA
[Riv04].Similar to Krikhaar the approach is based on relational algebra. NIMETA
emphasizes the scrupulous selection of architectural concepts and architec-
turally significant views that are reflecting the stakeholders’ interests.

Other works concentrate on diverse coupling metrics: in [BDW99] Briand et
al. discuss a unified framework for coupling measurement in object-oriented
systems based on source model entities. Based on these metrics they verified
in [BWL99] the coupling measurements on file level using statistical methods
and change coupling information based on a ”ripple effects”.

In terms of analysis of evolution history data, Zimmermann et al. inspected
release history data of several software systems for change coupling between
source code entities [ZWDZ04]. They conclude that augmentation of archi-
tectural data with evolutionary information could reveal new otherwise hidden
dependencies between source code entities. Even though a number of other
work used release history data as well, a detailed evaluation of the correlation
between source model entities and the properties of change coupling is still
missing.

5.3.3 Model-Driven Architecture

a Architectural documentation and models must be distinguished in order to
properly use the automated software engineering tasks of UML for documen-

5.3. RELATED WORKS 91

tation

An Architecture must be defined that contains the high-priority decisions re-
garding the software design in order to develop a software design.

Architectural Descriptors containing models and architectural views are part of
the Model-Driving Architecture Framework.

Models, that can be used for tasks like code generation and analysis, often
follows MetaModels, which along with viewpoints address a specific group of
concerns.

In Model-Driven architecture, models and views re usually connected using
UML diagram. Views are created from the same models as the source code
using the connection between the view and models. In this way, views become
model driven.

A metamodel for a viewpoint can be defined based on an ADL that is about
a related concern. A viewpoint description can be used and the metamodel
relations and elements are generated. Metamodels are normally created very
easily due to the simplicity of the ADL syntaxes.

The mapping between the metamodel and UML is specified and implemented
using model transformation languages. In order to transform an architectural
model to a UML model, existing architectural model mappings to UML can be
specified as model transformations.

The UML diagram doesn’t represent the architectural model precisely, but it is
suitable for communication purpose. This is why UML is so commonly used
for architectural documentation in industry.

5.3.4 Dynamic Evolution of Software Architecture

The diversity and complexity of the existing software systems have made soft-
ware architecture more important.

Dynamic Software Architectures are the architecture descriptions that include
the descriptions of the both fixed and changing parts. This means that the
dynamic software architectures can react to specific requirements or events by
run-time reconfiguration of its components and connections.

If the structure of the system is changed, the dynamism is of the dynamic
reconfiguration type, and if the types that compose the structure are changed,
it is of the dynamic evolution architectural types.

Dynamic reconfiguration is the first evolution type that is about run-time changes
in the software structure. According to Endler and Wei [EW92], dynamic re-

92 CHAPTER 5. SOFTWARE ARCHITECTURE EVOLUTION

configuration is the changing part of an application while it operates.

Magee and Kramer [MK96] define dynamic reconfiguration as a feature of
ADLS used to describe and model software systems with a dynamic structure.

Dynamic Evolution of architectural types, which is the second type of dynami-
sism discussed in this report, can be used to change the type of an element
of architecture and its instances at runtime. This type is essentially required to
create open systems or to update highly-available systems.

Dynamic Evolution of architectural types can introduce architectural types and
links, can remove already existing architectural types, and can modify such
architectural types at run-time. Instances of the above-mentioned modification
include updating a component type or a connector type and the migration of
the state of all the instantiations of an architectural type.

It is important to note that the dynamic reconfiguration acts at the configuration
level, which the dynamic evolution of architectural types acts at the type level.
In specific cases such as changing the topology of a software, both kinds of
dynamism are required together.

5.4 Software Architecture Evolution

5.4.1 Introduction

Software Maintenance vs Software Evolution

Software evolution is often considered equivalent to software maintenance be-
cause of the lack of a standard definition. Software maintenance is defined in
the ISO/IEC 14764 IEEEStd 14764-2006 standard as:

The totality of activities required to provide cost-effective support to a software
system. Activities are performed during the pre-delivery stage (Planning for
post-delivery operations, supportablity, and logistics) as well as the post- de-
livery stage (software modification, training, and operating a help desk).

The majority of following evolution-related research themes are crucial ac-
tivities in software maintenance: software comprehension, reverse engineer-
ing, testing, impact analysis, cost estimation, software quality, software mea-
surement, process models, configuration management, and re-engineering
[MWD+05].

However, these two terms should not be considered as synonyms. The main-
tenance itself indicates that the software should naturally weaken or get worse
over time, which is not the case at all. In general, software maintenance is a

5.4. SOFTWARE ARCHITECTURE EVOLUTION 93

supporting process of a software product which keeps the operationality and
usability of the product. Maintenance activities are a correcting process that
improves the performance or other attributes, or to help the software adapting
to a changing environment, such as an upgraded operation system. On the
other hand, adding new functionality to a software is considered an evolution-
ary activity and not a maintenance activity. For instance, in software versioning
(Apache, 2010), major version number reflects important changes and minor
version number reflects improvements or corrections.

Evolutionary activities are performed at the architectural level involving sub-
stantial improvements, while maintenance activities involves minor changes in
components.

Evolution as part of the Development Process

Since the term software evolution is perspectively broader, many authors pre-
ferred this term over maintenance when refering to a software life cycle phase
which starts from the initial creation of the product and ends until its retire-
ment. This results in the following development methods where evolution plays
a crucual part: Evolutionary developement (, the Spiral model, the Staged
model, and Agile Software Developement. The software evolution phase in-
volve adapting the product to new requirements:

[The phase of] software evolution takes place only when the initial development
was successful. The goal is to adapt the application to the ever- changing user
requirements and operating environment. The evolution stage also corrects
the faults in the application and responds to both developer and user learning,
where more accurate requirements are based on the past experience with the
application.

In conclusion, software evolution can be defined as activities and processes
that improve, correct, reduce or extends its current functionality to fulfill new
requirements based on experience from the past.

Architecture-Driven Software Development

Software development is an executable specification of its behavior, commonly
in the form of source code derived from a large number of design decisions.
For years, the pay off of considering software system’s structure and organiza-
tion alongside it’s behavior for reasons of dependability, understandability, and
maintainability has been concluded.

To ensure designs remain comprehensible in complex software systems, mul-
tiple levels of abstraction are mandatory which results in several types of de-

94 CHAPTER 5. SOFTWARE ARCHITECTURE EVOLUTION

sign. It is challenging to define the notion of software architecture in a single
definition. Many definitions has been collected by The Software Engineering
Institute in 2006. A model of software architecture provided by Perry and Wolf
[PW92] consists of elements which are processing, data, and connecting ele-
ments, form which includes the relationships between architecture elements,
and rationale which provides the motivation for the decisions that produces a
particular set of elements and form.

The definition found in IEEE-1471 not only includes elements and their rela-
tions, but also principles such as the use of a particular architectural style or
particular conventions during design and maintenance of a software system. A
more frequently used definition given by Bass et al. [BCK03] states that there
is no such thing as the structure of a software system and to describe the archi-
tecture of a single system, different types of structures can be used. Kruchten
[Kru04] states that software architecture encompasses a set of significant deci-
sions regarding system organization, selection of elements, their composition,
and selection of an architectural style to guide these decisions.This definition
was later developed by Jansen [JB05].

To summarize, software architecture can be defined in two ways: 1) as a set
of (architectural) design decisions, or 2) as the structure that is the result of
those decisions. Definitions thus far gave rise to unclarity of whether a design
decision is architectural or not. To clarify, Eden et al. [EHK06] provided a
criterion that can be applied to design statements. This criterion states that a
design statement is local if the system cannot be violated by mere expansion.
Architecture statements are in the class of non-local statements. For instance,
expanding one of the layers with a component that interacts with components
in nonadjacent layers can violate the layered architectural style of a software
system. Conversely, a design pattern cannot be violated by only expanding
a system. Thus, decisions regarding design patterns are not architectural. In
industry architecture is defined differently and different sets of decisions are
considered to be architectural.

5.4.2 Model-Driven Software Evolution

Architectural documentation and models must be distinguished in order to
properly use the automated software engineering tasks of UML for documen-
tation.

An Architecture must be defined that contains the high-priority decisions re-
garding the software design in order to develop a software design.

Architectural Descriptors containing models and architectural views are part of
the Model-Driving Architecture Framework.

Models, that can be used for tasks like code generation and analysis, often

5.4. SOFTWARE ARCHITECTURE EVOLUTION 95

follows MetaModels, which along withviewpoints address a specific group of
concerns.

In Model-Driven architecture, models and views re usually connected using
UML diagram. Views are created from the same models as the source code
using the connection between the view and models. In this way, views become
model driven.

A metamodel for a viewpoint can be defined based on an ADL that is about
a related concern. A viewpoint description can be used and the metamodel
relations and elements are generated.

Metamodels are normally created very easily due to the simplicity of the ADL
syntaxes.

The mapping between the metamodel and UML is specified and implemented
using model transformation languages. In order to transform an architectural
model to a UML model, existing architectural model mappings to UML can be
specified as model transformations.

The UML diagram doesn’t represent the architectural model precisely, but it is
suitable for communication purpose. This is why UML is so commonly used
for architectural documentation in industry.

5.4.3 Dynamic Software Evolution

The diversity and complexity of the existing software systems have made soft-
ware architecture more important.

Dynamic Software Architectures are the architecture descriptions that include
the descriptions of the both fixed and changing parts. This means that the
dynamic software architectures can react to specific requirements or events by
run-time reconfiguration of its components and connections.

If the structure of the system is changed, the dynamism is of the dynamic
reconfiguration type, and if the types that compose the structure are changed,
it is of the dynamic evolution architectural types.

Dynamic reconfiguration is the first evolution type that is about run-time changes
in the software structure. According to Endler and Wei [EW92], dynamic re-
configuration is the changing part of an application while it operates.

Magee and Kramer [MK96] define dynamic reconfiguration as a feature of
ADLS used to describe and model software systems with a dynamic structure.

Dynamic Evolution of architectural types, which is the second type of dynami-
sism discussed in this report, can be used to change the type of an element

96 CHAPTER 5. SOFTWARE ARCHITECTURE EVOLUTION

of architecture and its instances at runtime. This type is essentially required to
create open systems or to update highly-available systems.

Dynamic Evolution of architectural types can introduce architectural types and
links, can remove already existing architectural types, and can modify such
architectural types at run-time. Instances of the above-mentioned modification
include updating a component type or a connector type and the migration of
the state of all the instantiations of an architectural type.

It is important to note that the dynamic reconfiguration acts at the configuration
level, which the dynamic evolution of architectural types acts at the type level.
In specific cases such as changing the topology of a software, both kinds of
dynamism are required together.

5.5 Conclusion

The goal of the research presented in this study is to investigate and under-
stand software evolution architecture to reduce the risks and costs involved in
the evolution of software architectures.Building the evolvability models are are
the first steps towards understanding and studying evolvability.Software archi-
tecture evolution is an inevitably fact due to many changes based on techno-
logical and business subjects over the life time of softwares.

BIBLIOGRAPHY 97

Bibliography

[BCK03] L. Bass, P. Clements, and R. Kazman. Software architecture in
practice. Addison-Wesley Professional, 2003.

[BDW99] L.C. Briand, J.W. Daly, and J.K. Wust. A unified framework for
coupling measurement in object-oriented systems. Software En-
gineering, IEEE Transactions on, 25(1):91–121, 1999.

[BM99] E. Burd and M. Munro. An initial approach towards measuring
and characterising software evolution. In Reverse Engineering,
1999. Proceedings. Sixth Working Conference on, pages 168–
174. IEEE, 1999.

[BWL99] L.C. Briand, J. Wust, and H. Lounis. Using coupling measure-
ment for impact analysis in object-oriented systems. In Software
Maintenance, 1999.(ICSM’99) Proceedings. IEEE International
Conference on, pages 475–482. IEEE, 1999.

[CM03] D. Cubranic and G.C. Murphy. Hipikat: Recommending pertinent
software development artifacts. In Software Engineering, 2003.
Proceedings. 25th International Conference on, pages 408–418.
IEEE, 2003.

[CS11] C. Costa Soria. Dynamic evolution and reconfiguration of soft-
ware architectures through aspects. 2011.

[EHK06] A.H. Eden, Y. Hirshfeld, and R. Kazman. Abstraction classes in
software design. IEE Proceedings Software, 153(4):163, 2006.

[EW92] M. Endler and J. Wei. Programming generic dynamic reconfig-
urations for distributed applications. In Configurable Distributed
Systems, 1992., International Workshop on, pages 68–79. IET,
1992.

[FB99] M. Fowler and K. Beck. Refactoring: improving the design of
existing code. Addison-Wesley Professional, 1999.

[FHK+97] P.J. Finnigan, R.C. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H.A.
Muller, J. Mylopoulos, S.G. Perelgut, M. Stanley, and K. Wong.
The software bookshelf. IBM Systems Journal, 36(4):564–593,
1997.

[FO00] N.E. Fenton and N. Ohlsson. Quantitative analysis of faults and
failures in a complex software system. Software Engineering,
IEEE Transactions on, 26(8):797–814, 2000.

[FPG03] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating bug
report data for feature tracking. In Proceedings of the 10th Work-
ing Conference on Reverse Engineering, page 90. IEEE Com-
puter Society, 2003.

98 CHAPTER 5. SOFTWARE ARCHITECTURE EVOLUTION

[GHJ98] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical cou-
pling based on product release history. In Software Mainte-
nance, 1998. Proceedings. International Conference on, pages
190–198. IEEE, 1998.

[GJK03] H. Gall, M. Jazayeri, and J. Krajewski. Cvs release history data
for detecting logical couplings. In Software Evolution, 2003. Pro-
ceedings. Sixth International Workshop on Principles of, pages
13–23. IEEE, 2003.

[GL00] M.W. Godfrey and E.H.S. Lee. Secrets from the monster: Ex-
tracting mozilla’s software architecture. In Proceedings of Second
Symposium on Constructing Software Engineering Tools, 2000.

[GM03] N. Gold and A. Mohan. A framework for understanding con-
ceptual changes in evolving source code. In Software Mainte-
nance, 2003. ICSM 2003. Proceedings. International Conference
on, pages 431–439. IEEE, 2003.

[HNS00] C. Hofmeister, R. Nord, and D. Soni. Applied software architec-
ture. Addison-Wesley Professional, 2000.

[JB05] A. Jansen and J. Bosch. Software architecture as a set of archi-
tectural design decisions. In Software Architecture, 2005. WICSA
2005. 5th Working IEEE/IFIP Conference on, pages 109–120.
IEEE, 2005.

[KC99] R. Kazman and S.J. Carrière. Playing detective: Reconstructing
software architecture from available evidence. Automated Soft-
ware Engineering, 6(2):107–138, 1999.

[Kru04] P. Kruchten. The rational unified process: an introduction.
Addison-Wesley Professional, 2004.

[KS03] R. Koschke and D. Simon. Hierarchical reflexion models. In Pro-
ceedings of the 10th Working Conference on Reverse Engineer-
ing, page 36. IEEE Computer Society, 2003.

[Lan01] M. Lanza. The evolution matrix: Recovering software evolution
using software visualization techniques. In Proceedings of the 4th
international workshop on principles of software evolution, pages
37–42. ACM, 2001.

[LB85] M.M. Lehman and L.A. Belady. Program evolution: processes of
software change. Academic Press Professional, Inc., 1985.

[MK96] J. Magee and J. Kramer. Dynamic structure in software architec-
tures. In ACM SIGSOFT Software Engineering Notes, volume 21,
pages 3–14. ACM, 1996.

BIBLIOGRAPHY 99

[MNS95] G.C. Murphy, D. Notkin, and K. Sullivan. Software reflexion mod-
els: Bridging the gap between source and high-level models. In
ACM SIGSOFT Software Engineering Notes, volume 20, pages
18–28. ACM, 1995.

[MWD+05] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld,
and M. Jazayeri. Challenges in software evolution. In Principles
of Software Evolution, Eighth International Workshop on, pages
13–22. IEEE, 2005.

[PGJ05] M. Pinzger, H. Gall, and M. Jazayeri. Archview–analyzing evolu-
tionary aspects of complex software systems. Vienna University
of Technology, 2005.

[PW92] D.E. Perry and A.L. Wolf. Foundations for the study of soft-
ware architecture. ACM SIGSOFT Software Engineering Notes,
17(4):40–52, 1992.

[Riv04] C. Riva. View-based software architecture reconstruction. 2004.

[RW02] J.E.B.K.V. Riediger and A. Winter. Gupro–generic understanding
of programs. Electronic Notes in Theoretical Computer Science,
72(2), 2002.

[SG96] M. Shaw and D. Garlan. Software architecture: perspectives on
an emerging discipline. 1996.

[TMD09] R.N. Taylor, N. Medvidovic, and E.M. Dashofy. Software architec-
ture: foundations, theory, and practice. Wiley Publishing, 2009.

[VHJG95] J. Vlissides, R. Helm, R. Johnson, and E. Gamma. Design pat-
terns: Elements of reusable object-oriented software. Reading:
Addison-Wesley, 1995.

[YMNCC04] A.T.T. Ying, G.C. Murphy, R. Ng, and M.C. Chu-Carroll. Predict-
ing source code changes by mining change history. Software
Engineering, IEEE Transactions on, 30(9):574–586, 2004.

[ZWDZ04] T. Zimmermann, P. Weibgerber, S. Diehl, and A. Zeller. Mining
version histories to guide software changes. In Software Engi-
neering, 2004. ICSE 2004. Proceedings. 26th International Con-
ference on, pages 563–572. IEEE, 2004.

100 CHAPTER 5. SOFTWARE ARCHITECTURE EVOLUTION

Chapter 6

Software Architecture
Reconstruction

Zheng Zhou

Contents
6.1 Introduction . 102

6.1.1 Architecture Description 102
6.1.2 Basic Notions . 103

6.2 Software Architecture Reconstruction Goals 104
6.3 Architecture Reconstruction Process 105
6.4 SAR Inputs . 109

6.4.1 Nonarchitectureal Inputs 109
6.4.2 Architectural Inputs . 110

6.5 Reconstruction Techniques 111
6.5.1 Quasi-Manual Techniques 111
6.5.2 Semi-Automatic Techniques 111
6.5.3 Quasi-Automatic Techniques 113

6.6 SAR Outputs . 113
6.6.1 Visual Software Views 114
6.6.2 As-Is Architecture Description 114

6.7 Model Driven Architecture Reconstruction 114
6.8 Summary and Future Research Opportunities 117
Bibliography . 117

101

102 CHAPTER 6. SOFTWARE ARCHITECTURE RECONSTRUCTION

Abstract: This seminar paper summarizes the current software architecture
reconstruction techniques and methods. The state of the art techniques and
methods relates to the different viewpoints that have been proposed in archi-
tecture design. Using model driven architecture helps software architecture
reconstruction as whole process. Software architecture reconstruction (SAR)
is the form of reverse engineering. SAR gathers information from the domain
knowledge, source code, source code documentation, system’s execution,
stakeholder interviews.

6.1 Introduction

Software architecture reconstruction is the process of obtaining a documented
architecture for an existing software system. Software architecture reconstruc-
tion is a reverse engineering approach, and its purpose is to rebuild a viable
software application architecture view. The documented architecture includes
domain knowledge, available documentation, stakeholder interviews. Ducasse
et al. present deep and large survey of work using process oriented taxonomy
[DP09] and my study of this seminar paper is based on it.

The structure of this paper is as follows. In this paper, a conceptual review
for architecture reconstruction is introduced. Section 2 describes the goals of
software architecture reconstruction. Section 3-6 cover the inputs, process,
techniques and output of architecture reconstruction. Before conclusion, Sec-
tion 7 surveys model driven architecture reconstruction as well.

6.1.1 Architecture Description

Architecture descriptions document the intended architecture. The definition
for software architecture is given by the standard IEEE Recommended Prac-
tice for Architectural Descriptions [MEH01]: ”Software architecture is the fun-
damental organization of system embodied in its components, the relationship
of those components to each other and to the environment, and the principles
guiding its design and evolution.” Thus, software architecture and its compo-
nents and the way they interact each other are important for comprehending
the software system. Many approaches have been developed from different
aspects to help comprehend software systems. To understand a software sys-
tem as a whole, a summary of different views and domain knowledge of it can
be helpful.

” The software architecture is the structure or structures of the system that
is consisted of software elements and external visible properties of these el-
ements and the relationships among them” [BCK03]. The definition implies
that there are always several views of architectural structures. Each struc-
ture is modelled by means of software elements (e.g. components) and their

6.1. INTRODUCTION 103

Figure 6.1: Development with Architecture.

relationships. All external properties of all software elements needed for in-
teraction of the components have to be defined. Figure 6.1 shows that the
architecture is very important in the development process and has the deci-
sive role in software qualities. Therefore, changes in software systems need
a global understanding of the system to be changed. Such changes influence
software qualities. The first law of Lehman’s software evolution [LL96] present
about continuing change that a problem is used and as an implementation of
its specification reflects some reality, undergoes continual change or becomes
progressively less useful. Hence, the system will change over its life time.
Consequently, a software architecture must cope with changes.

Instead of defining a merger set of described architecture structures, the IEEE
Standard P1471 [MEH01] recommend to describe a software system by sev-
eral views. A view of an architecture describes it from a particular stakeholder’s
perspective. For an explicit interpretation, the content of views must be defined
clearly and exactly.

6.1.2 Basic Notions

• Views and Viewpoints

V iew View is a representation of the whole system from the perspective
of a related set of concerns. To correlate domain information and existing
software systems, different viewpoints are considered and modelled.

V iewpoint Viewpoint is a form of abstraction achieved using a selected
set of architectural constructs and structuring rules, in order to focus on
particular concerns within a system. Viewpoints guide the extraction of
architectural views, later the different system facets would be represent-
ing. Architectural domain knowledge expresses as viewpoints in order

104 CHAPTER 6. SOFTWARE ARCHITECTURE RECONSTRUCTION

to guide the extraction process [BH92]. It provides multiple architectural
views according to multiple given viewpoints. Kruchten [Kru95] proposed
the very good examples of viewpoint are the logical, physical, process
and development viewpoints.

• Conceptual Architecture

Conceptual Architecture is the architecture that is concepted in human
mind or in the software documentation. In the literature, concepted archi-
tecture can be also named as logical, as-designed, intended or idealized
architecture [TH99].

• Concrete Architecture

Concrete Architecture is the architecture that stems from the source
code. It can also be named as the physical, realized, as-built or as-
implemented architecture [KC99] [TH99].

• Software Architecture Reconstruction (SAR) As a reverse engineering
method, Software Architecture Reconstruction targets at the recon-
struction of viable architectural views of software system or software ap-
plication. It is also known as the discovery, recovery, mining, architecture
extraction or reverse architect [ME03]. The term discovery refers to a top-
down process and the term recovery refers to a bottom-up process. SAR
usually involves three steps: extracting raw data on the system, applying
the appropriate abstraction technique, and visualizing or presenting the
obtained information.

6.2 Software Architecture Reconstruction Goals

Redocumentation and Understanding

One of the main goal of software architecture is to provide architectural views,
which describes an abstraction of software system and provides understanding
of its overall design [vDHK+04] [SG01].

Reuse Investigation and Product Line Migration

Architectural descriptions facilitate reuse at multiple levels. Besides, the reuse
of large or small components and frameworks, into which components can
be integrated, can be facilitated by architecture design. In software, product
line makes it possible to share commonalities among products, as well as to
customize products. Architectural views can help identifying commonalities
and variabilities among products in a line [EOGB98] [SO01].

6.3. ARCHITECTURE RECONSTRUCTION PROCESS 105

Conformance and Coevolution

Software Architecture Reconstruction helps in the evolution of a software ap-
plication by means of conformance checking. It can examine the conformance
between the concepted and the actual architectures [MNS95] [Mur96]. Disco-
Tect [YGS+04], DAMRAM [ME03], Focus [DM01] [MJ06], SARTool [FKVO98]
and Symphony [vDHK+04] are good example to check conformance within
Software Architecture Reconstruction.

Architectural views shows clearly the actual constraints and indicates the better
expected trend/direction of evolution for the software application. As two levels
of abstraction, architecture and implementation evolve with different paces. In
a ideal situation, these two levels of abstraction should be kept synchronise,
so that architectural drift can be avoided [DP09] [Gar00].

Analysis

The application of new analyses is based on the high abstraction level of ar-
chitectural view. Examples of these new useful analysis include quality at-
tribute analysis, dependence analysis or style conformance analysis. An anal-
ysis framework can possibly control a Software Architecture Reconstruction
framework, as it offers architectural views to compute architectural quality anal-
ysis. As a result, such analysis frameworks help stakeholders in the process
of decision making [SOV03] [SROV06] [DP09] [Gar00].

Evolution and Maintenance

The success of the development task depends on which extent is the view of
the software system clear to the developers. Software architecture reconstruc-
tion provides the first step to software evolution and maintenance [Gar00].

6.3 Architecture Reconstruction Process

This section describes the architecture reconstruction process which is based
on views and viewpoints. Software architecture reconstruction usually involves
three steps: extracting raw data on the system, applying the appropriate ab-
straction technique, and visualizing or present the obtained information. The
process can be performed in bottom up, top down, or hybrid. A hybrid process
is conducted in two major phases: reconstruction design and reconstruction
execution. These two phases are highly incremental and iterative.

106 CHAPTER 6. SOFTWARE ARCHITECTURE RECONSTRUCTION

Figure 6.2: Reflexion model: is- and should-architecture.

• Bottom Up Process

Bottom up process in figure 6.3 starts from low level knowledge to re-
cover architecture. The level of abstraction from the source code model
raise gradually until it reaches a high level understanding of the appli-
cation. The analysis of the source code to fill in a repository, which is
queried to abstract system representations, then presented in an appro-
priate interactive form to reverse engineers.

• Top Down Process

The top down process in figure 6.4 begins with high level knowledge such
as requirements or architectural styles. The goal is to find the architec-
ture through formulating conceptual hypotheses and matching them to
the source code.

• Hybrid Process

Hybrid process in figure 6.5 is the combinations of bottom up with top
down processes. The hybrid process conducts in two major phases:
reconstruction design and reconstruction execution. These two phase
are highly incremental and iterative [Kos08] .

• Reconstruction Design

Reconstruction design from Symphony by Koschke [Kos08] in figure 6.6
determines the problem, to plan the reconstruction by defining source, to
set the context and target views using viewpoint with the mapping rules.

• Reconstruction Execution

The reconstruction execution phase from Symphony by Koschke [Kos08]
in figure 6.7 executes the plan, analyses the system with reverse en-

6.3. ARCHITECTURE RECONSTRUCTION PROCESS 107

Figure 6.3: A bottom up process: From the source code, (1)views are extracted
and (2) refined [DP09].

Figure 6.4: A top down process. (1) A hypothesized architecture is defined.
(2) The architecture is checked against the souce code. (3) The architecture is
refined [DP09].

108 CHAPTER 6. SOFTWARE ARCHITECTURE RECONSTRUCTION

Figure 6.5: The Reflexion Model, a top down process. (1) A hypothesized
architecture is defined. (2) Rules map source entities to architectural elements.
(3) RM tool compares the extracted and hypothesized architectures and the
process iterates [DP09].

Figure 6.6: Activities in Reconstruction Design [Kos09].

6.4. SAR INPUTS 109

gineering, extracts the source views and applies the mapping rules to
propagate the target views.

Figure 6.7: Activities in Reconstruction Execution [Kos09].

6.4 SAR Inputs

6.4.1 Nonarchitectureal Inputs

• Source Code Constructs

Most applications consider the source code as a ubiquitous trustwor-
thy source of information. Some of the approaches also directly inte-
grate the source code within regular expressions like Revealer[PG02] or
RMTool[FKVO98].

• Symbolic Textual Information

The symbolic information available in the comments[PFGJ02] [PG02]
or in the method names[MSRM04] [KDG07] are utilized in some ap-
proaches.

• Dynamic Information

Static information supplies with only a limited vision into the runtime in-
tent of the analysed software. Therefore, it is insufficient for SAR. As
more relevant dynamic information is needed [LN95], dynamic informa-
tion is even exclusively alone utilized in some Software Architecture
Reconstruction approaches. [YGS+04] Other approaches mix static knowl-
edge and dynamic information [RR02] [RD99] [QHS+05] [HMY06]. Dy-
namic information is illustrated by Walker et al. [WMSR00] to architec-
tural views. In a lot of approaches, dynamic information is used to extract
design views [Sys99] [RD99] [KJG+05] [HLL04] [HLBAL05].

110 CHAPTER 6. SOFTWARE ARCHITECTURE RECONSTRUCTION

• Physical Organization

Architectural information can often be sketched out by observing the
physical organisation of application in terms of files. For example, map-
ping classes or packages to components and using hierarchical physical
organization in some approaches as architectural input [LSP05] [PFG04]
[Wuy98].

• Human Organization

It is written in Conway’s thesis that the communication structure of an
organization will be reflected in the system design by this organisation.
Thus the human organization can have an influence on the extracted
architectures or views [Con68] [BH98].

• Human Expertise

Although human knowledge is not totally trustworthy, it can be helpful
when it is available. Software Architecture Reconstruction is iterative
at high abstraction levels and thus human knowledge is needed to guide
it and to validate its results [MNS95] [MJ06] [HH04].

6.4.2 Architectural Inputs

As architectural styles and viewpoints are the primitives of software architec-
ture, they are necessary to be analyse, if Software Architecture Reconstruction
approaches take them for inputs to control the extraction process.

• Styles

Like design patterns, the architecture styles represent recurrent architec-
tural situations and they are very common. Examples are like pipes and
filters, data flow and layered system. In a top down process, require-
ments can be helpful as high level knowledge to discover the conceptual
architecture. In a bottom up process, system implementation can be
used to recover the concrete architecture [ME03].

• Viewpoints

The system architecture works as a mental model that is shared among
stakeholders [Hol02] . The diverse interests of the stakeholders decide
the importance that Software Architecture Reconstruction needs to
consider the different viewpoint of stakeholders [IEE00] [SHI+01].

• Mixing Inputs

Although multiple inputs are needed for the generation of different ar-
chitectural views, most approaches need to work under conditions of a
limited source of information [KC99] [LN95]. Knodel et al. [KJG+05] de-
scribes the mixing inputs such like source code, documents and historical
data.

6.5. RECONSTRUCTION TECHNIQUES 111

6.5 Reconstruction Techniques

The comprehensive summary of existing architecture reconstruction techniques
will be listed. There are a lot of technologies and approaches supporting ar-
chitecture reconstruction. A variety of formalisms that are used to represent,
query, and exchange into three automation levels will be introduced [DP09].

6.5.1 Quasi-Manual Techniques

Quasi−manual. The reverse engineers uses tools manually to identify archi-
tectural elements and can assist them to understand their findings [DP09].

Construction-Based Techniques

These techniques manually abstract low level knowledge and thereby recon-
struct the software architecture, by means of interactive and expressive visu-
alization tools like GraphViz [GN00], CodeCrawler [LD03], Verso [LSP05], Rigi
[MTW93] [KM10], or 3D [MSRM04].

Exploration-Based Techniques

These techniques guides reverse engineers with the implementation tools like
Softwarenaut [LLG06] and in this way provides them an architectural views of
the system. The architectural view is thus closely associated with the devel-
oper’s view.

6.5.2 Semi-Automatic Techniques

Semi − automatic. The reverse engineers manually use tool to automatically
discover refinement or recover abstractions. Semi-automatic techniques au-
tomatize the repetition perspectives in Software Architecture Reconstruction.
The reverse engineer controls the iterative refinement or abstraction and even-
tually identifies architectural elements.

Abstraction-Based Techniques

The goal of these techniques is to mapping low-level concepts with high level
concepts. Reverse engineers identify specific reusable abstraction rules and

112 CHAPTER 6. SOFTWARE ARCHITECTURE RECONSTRUCTION

apply them automatically. The following process will be listed:

Relational queries.Out of entity-relation databases, data abstraction can often
be done by relational algebra engines. Example like ARMIN [OSL05] and Dali
to define grouping rules with SQL queries [KC99].

Logic queries. These queries are powerful, as their underlying unification mech-
anism makes it possible to write close multivalued queries. Wuyts [Wuy98],
Kramer and Prechelt [KP96] identify design patterns with Prolog queries.

Programs. Analyse are built in some approaches as in plain object oriented
programs. For example, Nerstrasz et.al [NDG05] expressed groupings made
in Moose as object oriented problem to manipulate model represents different
input.

Lexical and structural queries. The lexical and structural information in the
source code provides directly foundation for some approaches [Mur96] [MNS95]
[PFGJ02] [PG02] .

Investigation-Based Techniques

These techniques mapping high level concepts with low level concepts. The
high level concepts mentioned here include a wide range from architectural
descriptions and styles to features and design patterns. The following ap-
proaches will be listed:

Recognizers. Tools such as ART [FATM], Cliche[FTAM96], ARM [GAK99] and
ManSART [HRY95] [YHC97] rely on recognizers for architectural styles or pat-
tern as basis, which are written in query language. These tools inform the
source code elements in a accordance with the recognized structures.

Graph pattern matching. It is possible to transform pattern definitions into
graph pattern in ARM [GAK99] to match a graph-based source code represen-
tation. It is similar to Alborz’s method [Sar03].

State engine. State engine are used to examine architectural styles confor-
mance in DiscoTect [YGS+04]. The state machine description satisfies the
system execution at run time and outputs architectural events.

Maps. On basis of the Reflexion Model [Mur96] [MNS95] use rules, Software
Architecture Reconstruction approaches mapping hypothesized high level en-
tities with source code entities [CTH95].

6.6. SAR OUTPUTS 113

6.5.3 Quasi-Automatic Techniques

Quasi− automatic. The tool takes the control and the reverse engineer drives
the iterative recovery process and most automated approaches. Concept,
dominance and clustering algorithms are often combined in approaches in this
area.

Concepts

Formal concept analysis can be defined as a branch of lattice theory to recog-
nize modules [SR99] , features [GD05] [EKS03] or design patterns [ABN04].

Cluster analysis techniques

Clustering Algorithms recognize groups of objects with similar member in some
way. They are applied to produce software views of applications [AL99] [AFL99]
[Wig97].

Dominance

Dominance analysis recognizes the connected parts in an application in soft-
ware maintenance. Within the framework of software architecture extraction,
in accordance with Koschke’s paper, Trifu combines cluster and dominance
analysis techniques, in order that architectural components can be retrieved in
object oriented legacy systems [Tri01] [CV95] [GK97].

Layers and Metrics

Applications are constructed with layers in conception: the lower layers should
not exchange information with the upper ones. Dependency Structure Ma-
trix (DSM) identifies cycles and layers in large applications. The dependency
structure matrix is adapted from process domain management to analyse ar-
chitectural dependencies in software [SJSJ05] [SGCH01].

6.6 SAR Outputs

Most approaches mentioned above concentrate on the recognition and presen-
tation of software architectures. There are some others that provides valuable

114 CHAPTER 6. SOFTWARE ARCHITECTURE RECONSTRUCTION

additional information, for example, conformance of architecture and imple-
mentation. The SAP Goals and outputs are obviously related.

6.6.1 Visual Software Views

Supporting Visualization Tools

Architecture as boxes. Source code entities are presented and grouped as
boxes in source visualization approaches with the tool like ArchVis, GraphViz
or CodeCrawler[Sar03] [PG02] [KC99] [FHK+97].

Source entity visualization. Adjacent to true architectural entities, some tools
concentrate on source code visualization or abstractions. For example, con-
densed views of software source code entities are presented in CodeCrawler
[LD03], Distribution Map [DGK06], and Package Blueprints [ADPA10] . Like-
wise Verso uses 3D to integrate more information per entity .

Architectural views. Enhanced views with architectural information [LLG06]
are provided by some tools. In this case, some approaches use 2D/3D [FDJ98]
[MFM03] for the improvement of their visualizations. Erben and Loehr specify
dedicated tool support to illustrate architectural elements and layers [EL05].

6.6.2 As-Is Architecture Description

Good SAR approaches provide better understanding and better architectural
views to stakeholders. With the evolution of codes, some approaches concen-
trates on the coevolution of the reconstructed architecture. With its implemen-
tation the architecture are intensively synchronized and the differences due
to evolution are highlighted [MKPW06]. Some approaches lay their emphasis
on identifying conformance of an application to a certain architecture. There
are two kinds of architecture conformance: vertical conformance at different
abstraction levels and horizontal conformance between similar abstractions
[Men00].

6.7 Model Driven Architecture Reconstruction

The reconstruction process and techniques are presented in the first half of
this paper. Here we present a abstract perspective on software architecture
reconstruction with model driven software engineering.

Because model driven software engineering has the potential to cover the

6.7. MODEL DRIVEN ARCHITECTURE RECONSTRUCTION 115

whole spectrum of software engineering process, the integrating model driven
engineering and software architecture reconstruction is much more promising.
Software architecture reconstruction can just be seen as a particular model
driven engineering process.

Favre [Fav04] present a generic metamodel driven process for software archi-
tecture reconstruction called Cacophony. In Cacophony, the metamodels are
keys for representing viewpoint. The differences between Model and Meta-
model and View and Viewpoints are key to understand how model driven en-
gineering and software architecture can be integrated.

Figure 6.8: A megmodel for architecture recovery [Fav04]

The overall structure of the Cacophony process in figure 6.9 can be described
in six steps, as a whole, they are by nature iterative and incremental.

Buchgeher et al. [BW09] present an Architecture Description Languages (ADLs)
approach called LISA (Language for Integrated Software Architecture). Based
on LISA architecture models, components and system can be modelled on
the system layer with high-level abstraction, low-level architectural abstraction
(class and interfaces in object-oriented software) is connected to the high-level
abstraction during system modelling.

Callo Arias et al. [CAAA+11] present an approach based on metamodel to
construct execution views of large software intensive system. The execution
views show the software system at runtime with dynamic analysis technique.
The source of information in the metamodel (set of concepts and relationships
between them) can be used to describe the runtime of system.

116 CHAPTER 6. SOFTWARE ARCHITECTURE RECONSTRUCTION

Figure 6.9: The Cacophony metamodel-driven process [Fav04]

6.8. SUMMARY AND FUTURE RESEARCH OPPORTUNITIES 117

6.8 Summary and Future Research Opportunities

This paper presents a state of the art in software architecture reconstruction
approaches. Software architecture are mostly not documented sufficiently.
When we change the system, the architecture description must be recon-
structed.

For maintenance and understanding of large applications, it is important to
know their architecture. The first problem is that unlike classes and packages,
architecture is not explicitly represented in the code. The second problem is
that successful applications evolve over time, so their architecture inevitably
drifts. Reconstructing the architecture and checking whether it is still valid is
therefore an important aid. Future research should better address the discrep-
ancies.

Bibliography

[ABN04] Gabriela Arevalo, Frank Buchli, and Oscar Nierstrasz. Detecting
implicit collaboration patterns. In Proceedings of the 11th Working
Conference on Reverse Engineering, WCRE ’04, pages 122–131,
Washington, DC, USA, 2004. IEEE Computer Society.

[ADPA10] Hani Abdeen, Stéphane Ducasse, Damien Pollet, and Ilham Al-
loui. Package fingerprints: A visual summary of package interface
usage. Inf. Softw. Technol., 52(12):1312–1330, December 2010.

[AFL99] Nicolas Anquetil, Cédric Fourrier, and Timothy C. Lethbridge. Ex-
periments with clustering as a software remodularization method.
In Proceedings of the Sixth Working Conference on Reverse En-
gineering, WCRE ’99, pages 235–, Washington, DC, USA, 1999.
IEEE Computer Society.

[AL99] Nicolas Anquetil and Timothy C. Lethbridge. Recovering software
architecture from the names of source files. Journal of Software
Maintenance, 11(3):201–221, May 1999.

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software Architec-
ture in Practice, Second Edition. Addison-Wesley Professional,
April 2003.

[BH92] Erich Buss and John Henshaw. Experiences in program under-
standing. In Proceedings of the 1992 conference of the Centre
for Advanced Studies on Collaborative research - Volume 1, CAS-
CON ’92, pages 157–189. IBM Press, 1992.

118 CHAPTER 6. SOFTWARE ARCHITECTURE RECONSTRUCTION

[BH98] Ivan T. Bowman and Richard C. Holt. Software architecture recov-
ery using conway’s law. In Proceedings of the 1998 conference of
the Centre for Advanced Studies on Collaborative research, CAS-
CON ’98, pages 6–. IBM Press, 1998.

[BW09] Georg Buchgeher and Rainer Weinreich. Connecting architec-
ture and implementation. In Robert Meersman, Pilar Herrero,
and Tharam S. Dillon, editors, On the Move to Meaningful In-
ternet Systems: OTM 2009 Workshops, Confederated Interna-
tional Workshops and Posters, ADI, CAMS, EI2N, ISDE, IWSSA,
MONET, OnToContent, ODIS, ORM, OTM Academy, SWWS,
SEMELS, Beyond SAWSDL, and COMBEK 2009, Vilamoura, Por-
tugal,, volume 5872 of Lecture Notes in Computer Science, pages
316–326. Springer, 2009.

[CAAA+11] Trosky B. Callo Arias, Paris Avgeriou, Pierre America, Krelis
Blom, and Sergiy Bachynskyy. A top-down strategy to reverse
architecting execution views for a large and complex software-
intensive system: An experience report. Sci. Comput. Program.,
76(12):1098–1112, December 2011.

[Con68] M.E. Conway. How do committees invent. Datamation, 14(4):28–
31, 1968.

[CTH95] I. Carmichael, V. Tzerpos, and R. C. Holt. Design maintenance:
unexpected architectural interactions (experience report). In Pro-
ceedings of the International Conference on Software Mainte-
nance, ICSM ’95, pages 134–, Washington, DC, USA, 1995. IEEE
Computer Society.

[CV95] Aniello Cimitile and Giuseppe Visaggio. Software salvaging and
the call dominance tree. Journal of Systems and Software,
28(2):117–127, 1995.

[DGK06] Stephane Ducasse, Tudor Girba, and Adrian Kuhn. Distribution
map. In 22nd IEEE International Conference on Software Mainte-
nance (ICSM 2006), 24-27 September 2006, Philadelphia, Penn-
sylvania, USA, pages 203–212. IEEE Computer Society, 2006.

[DM01] Lei Ding and Nenad Medvidovic. Focus: A light-weight, incremen-
tal approach to software architecture recovery and evolution. In
Proceedings of the Working IEEE/IFIP Conference on Software
Architecture, WICSA ’01, pages 191–, Washington, DC, USA,
2001. IEEE Computer Society.

[DP09] Stephane Ducasse and Damien Pollet. Software architecture re-
construction: A process-oriented taxonomy. IEEE Trans. Softw.
Eng., 35(4):573–591, July 2009.

BIBLIOGRAPHY 119

[EKS03] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating
features in source code. IEEE Trans. Softw. Eng., 29(3):210–224,
March 2003.

[EL05] N. Erben and K. Lohr. Sab - the software architecture browser.
In Proceedings of the 3rd IEEE International Workshop on Visu-
alizing Software for Understanding and Analysis, VISSOFT ’05,
pages 7–, Washington, DC, USA, 2005. IEEE Computer Society.

[EOGB98] Wolfgang Eixelsberger, Michaela Ogris, Harald Gall, and Berndt
Bellay. Software architecture recovery of a program family. In Pro-
ceedings of the 20th international conference on Software engi-
neering, ICSE ’98, pages 508–511, Washington, DC, USA, 1998.
IEEE Computer Society.

[FATM] R. Fiutem, G. Antoniol, P. Tonella, and E. Merlo. Art: An architec-
tural reverse engineering environment.

[Fav04] Jean-Marie Favre. Cacophony: Metamodel-driven architecture re-
covery. In Proceedings of the 11th Working Conference on Re-
verse Engineering, WCRE ’04, pages 204–213, Washington, DC,
USA, 2004. IEEE Computer Society.

[FDJ98] Loe Feijs and Roel De Jong. 3d visualization of software architec-
tures. Commun. ACM, 41(12):73–78, December 1998.

[FHK+97] P. Finnigan, Ric C. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H. A.
Müller, J. Mylopoulos, S. G. Perelgut, M. Stanley, and K. Wong.
The software bookshelf. IBM Systems Journal, 36(4):564–593,
1997.

[FKVO98] L. Feijs, R. Krikhaar, and R. Van Ommering. A relational approach
to support software architecture analysis. Softw. Pract. Exper.,
28(4):371–400, April 1998.

[FTAM96] R. Fiutem, P. Tonella, G. Anteniol, and E. Merlo. A cliche-based
environment to support architectural reverse engineering. In Pro-
ceedings of the 3rd Working Conference on Reverse Engineer-
ing (WCRE ’96), WCRE ’96, pages 277–, Washington, DC, USA,
1996. IEEE Computer Society.

[GAK99] George Yanbing Guo, Joanne M. Atlee, and Rick Kazman. A
software architecture reconstruction method. In Proceedings of
the TC2 First Working IFIP Conference on Software Architecture
(WICSA1), WICSA1, pages 15–34, Deventer, The Netherlands,
The Netherlands, 1999. Kluwer, B.V.

[Gar00] David Garlan. Software architecture: a roadmap. In Proceedings
of the Conference on The Future of Software Engineering, ICSE
’00, pages 91–101, New York, NY, USA, 2000. ACM.

120 CHAPTER 6. SOFTWARE ARCHITECTURE RECONSTRUCTION

[GD05] Orla Greevy and Stéphane Ducasse. Correlating features and
code using a compact two-sided trace analysis approach. In Pro-
ceedings of the Ninth European Conference on Software Mainte-
nance and Reengineering, CSMR ’05, pages 314–323, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[GK97] Jean-Francois Girard and Rainer Koschke. Finding components in
a hierarchy of modules: a step towards architectural understand-
ing. In Proceedings of the International Conference on Software
Maintenance, ICSM ’97, pages 58–65, Washington, DC, USA,
1997. IEEE Computer Society.

[GN00] Emden R. Gansner and Stephen C. North. An open graph visual-
ization system and its applications to software engineering. Softw.
Pract. Exper., 30(11):1203–1233, September 2000.

[HH04] Ahmed E. Hassan and Richard C. Holt. Using development his-
tory sticky notes to understand software architecture, 2004.

[HLBAL05] Abdelwahab Hamou-Lhadj, Edna Braun, Daniel Amyot, and Tim-
othy Lethbridge. Recovering behavioral design models from exe-
cution traces. In Proceedings of the Ninth European Conference
on Software Maintenance and Reengineering, CSMR ’05, pages
112–121, Washington, DC, USA, 2005. IEEE Computer Society.

[HLL04] Abdelwahab Hamou-Lhadj and Timothy C. Lethbridge. A survey
of trace exploration tools and techniques. In Proceedings of the
2004 conference of the Centre for Advanced Studies on Collabo-
rative research, CASCON ’04, pages 42–55. IBM Press, 2004.

[HMY06] Gang Huang, Hong Mei, and Fu-Qing Yang. Runtime recovery
and manipulation of software architecture of component-based
systems. Automated Software Engg., 13(2):257–281, April 2006.

[Hol02] R. Holt. Software architecture as a shared mental model. Pro-
ceedings of the ASERC Workhop on Software Architecture, Uni-
versity of Alberta, 2002.

[HRY95] David R. Harris, Howard B. Reubenstein, and Alexander S. Yeh.
Reverse engineering to the architectural level. In Proceedings of
the 17th international conference on Software engineering, ICSE
’95, pages 186–195, New York, NY, USA, 1995. ACM.

[IEE00] IEEE. Working group. ieee recommended practice for architec-
tural description of software-intensive systems. IEEE Architecture,
pages 1471–2000, 2000.

[KC99] Rick Kazman and S. Jeromy Carrière. Playing detective: Re-
constructing software architecture from available evidence. Au-
tomated Software Engg., 6(2):107–138, April 1999.

BIBLIOGRAPHY 121

[KDG07] Adrian Kuhn, Stéphane Ducasse, and Tudor Gı́rba. Semantic
clustering: Identifying topics in source code. Inf. Softw. Technol.,
49(3):230–243, March 2007.

[KJG+05] Jens Knodel, Isabel John, Dharmalingam Ganesan, Martin
Pinzger, Fernando Usero, Jose L. Arciniegas, and Claudio Riva.
Asset recovery and their incorporation into product lines. In Pro-
ceedings of the 12th Working Conference on Reverse Engineer-
ing, WCRE ’05, pages 120–129, Washington, DC, USA, 2005.
IEEE Computer Society.

[KM10] Holger M. Kienle and Hausi A. Müller. Rigi-an environment for
software reverse engineering, exploration, visualization, and re-
documentation. Sci. Comput. Program., 75(4):247–263, April
2010.

[Kos08] Rainer Koschke. Architecture reconstruction. In Andrea De Lu-
cia and Filomena Ferrucci, editors, Software Engineering, Inter-
national Summer Schools, ISSSE 2006-2008, Salerno, Italy, Re-
vised Tutorial Lectures, volume 5413 of Lecture Notes in Com-
puter Science, pages 140–173. Springer, 2008.

[Kos09] Rainer Koschke. Architecture reconstruction. Tutorial on reverse
engineering to the architectural level., pages 140–173. Berlin:
Springer, 2009.

[KP96] Christian Kramer and Lutz Prechelt. Design recovery by auto-
mated search for structural design patterns in object-oriented soft-
ware. In Proceedings of the 3rd Working Conference on Reverse
Engineering (WCRE ’96), WCRE ’96, pages 208–, Washington,
DC, USA, 1996. IEEE Computer Society.

[Kru95] Philippe Kruchten. The 4+1 view model of architecture. IEEE
Softw., 12(6):42–50, November 1995.

[LD03] Michele Lanza and Stéphane Ducasse. Polymetric views-a
lightweight visual approach to reverse engineering. IEEE Trans.
Softw. Eng., 29(9):782–795, September 2003.

[LL96] M M Lehman and Mm Lehman. Laws of software evolution re-
visited. In Lecture Notes in Computer Science, pages 108–124.
Springer, 1996.

[LLG06] Mircea Lungu, Michele Lanza, and Tudor Girba. Package patterns
for visual architecture recovery. In Proceedings of the Conference
on Software Maintenance and Reengineering, CSMR ’06, pages
185–196, Washington, DC, USA, 2006. IEEE Computer Society.

[LN95] Danny B. Lange and Yuichi Nakamura. Interactive visualization
of design patterns can help in framework understanding. In Pro-

122 CHAPTER 6. SOFTWARE ARCHITECTURE RECONSTRUCTION

ceedings of the tenth annual conference on Object-oriented pro-
gramming systems, languages, and applications, OOPSLA ’95,
pages 342–357, New York, NY, USA, 1995. ACM.

[LSP05] Guillaume Langelier, Houari Sahraoui, and Pierre Poulin.
Visualization-based analysis of quality for large-scale software
systems. In Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, ASE ’05, pages
214–223, New York, NY, USA, 2005. ACM.

[ME03] Nenad Medvidovic and Alexander Egyed. Stemming architectural
erosion by coupling architectural discovery and recovery, 2003.

[MEH01] Mark W. Maier, David E. Emery, and Rich Hilliard. Software
architecture: Introducing ieee standard 1471. IEEE Computer,
34(4):107–109, 2001.

[Men00] Kim Mens. Automating Architectural Conformance Checking by
Means of Logic Meta Programming. PhD thesis, Department of
Computer Science, Vrije Universiteit Brussel, Belgium, Septem-
ber 2000.

[MFM03] Andrian Marcus, Louis Feng, and Jonathan I. Maletic. 3d repre-
sentations for software visualization. In Proceedings of the 2003
ACM symposium on Software visualization, SoftVis ’03, pages
27–ff, New York, NY, USA, 2003. ACM.

[MJ06] Nenad Medvidovic and Vladimir Jakobac. Using software evolu-
tion to focus architectural recovery. Automated Software Engg.,
13(2):225–256, April 2006.

[MKPW06] Kim Mens, Andy Kellens, Frédéric Pluquet, and Roel Wuyts. Co-
evolving code and design with intensional views. Comput. Lang.
Syst. Struct., 32(2-3):140–156, July 2006.

[MNS95] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software re-
flexion models: bridging the gap between source and high-level
models. In Proceedings of the 3rd ACM SIGSOFT symposium on
Foundations of software engineering, SIGSOFT ’95, pages 18–
28, New York, NY, USA, 1995. ACM.

[MSRM04] Andrian Marcus, Andrey Sergeyev, Vaclav Rajlich, and Jonathan I.
Maletic. An information retrieval approach to concept location in
source code. In Proceedings of the 11th Working Conference on
Reverse Engineering, WCRE ’04, pages 214–223, Washington,
DC, USA, 2004. IEEE Computer Society.

[MTW93] Hausi A. Müller, Scott R. Tilley, and Kenny Wong. Understanding
software systems using reverse engineering technology perspec-
tives from the rigi project. In Proceedings of the 1993 conference

BIBLIOGRAPHY 123

of the Centre for Advanced Studies on Collaborative research:
software engineering - Volume 1, CASCON ’93, pages 217–226.
IBM Press, 1993.

[Mur96] Gail C. Murphy. Lightweight structural summarization as an aid to
software evolution, 1996.

[NDG05] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̌rba. The story
of moose: an agile reengineering environment. In Proceedings of
the 10th European software engineering conference held jointly
with 13th ACM SIGSOFT international symposium on Founda-
tions of software engineering, ESEC/FSE-13, pages 1–10, New
York, NY, USA, 2005. ACM.

[OSL05] Liam O’Brien, Dennis Smith, and Grace Lewis. Supporting mi-
gration to services using software architecture reconstruction. In
Proceedings of the 13th IEEE International Workshop on Software
Technology and Engineering Practice, STEP ’05, pages 81–91,
Washington, DC, USA, 2005. IEEE Computer Society.

[PFG04] Martin Pinzger, Michael Fischer, and Harald Gall. Towards an in-
tegrated view on architecture and its evolution. In In Proceedings
of the Software Evolution through Transformations: Model-based
vs. Implementation-level Solutions (SETra¡¯04). Elsevier Science
Publishers, page 2005, 2004.

[PFGJ02] M. Pinzger, M. Fischer, H. Gall, and M. Jazayeri. Revealer: A
lexical pattern matcher for architecture recovery. In Proceed-
ings of the Ninth Working Conference on Reverse Engineering
(WCRE’02), WCRE ’02, pages 170–, Washington, DC, USA,
2002. IEEE Computer Society.

[PG02] Martin Pinzger and Harald Gall. Pattern-supported architecture
recovery. In Proceedings of the 10th International Workshop on
Program Comprehension, IWPC ’02, pages 53–, Washington,
DC, USA, 2002. IEEE Computer Society.

[QHS+05] Li Qingshan, Chu Hua, Hu Shengming, Chen Ping, and Zhao Yun.
Architecture recovery and abstraction from the perspective of pro-
cesses. In Proceedings of the 12th Working Conference on Re-
verse Engineering, WCRE ’05, pages 57–66, Washington, DC,
USA, 2005. IEEE Computer Society.

[RD99] Tamar Richner and Stéphane Ducasse. Recovering high-level
views of object-oriented applications from static and dynamic in-
formation. In Proceedings of the IEEE International Conference
on Software Maintenance, ICSM ’99, pages 13–, Washington,
DC, USA, 1999. IEEE Computer Society.

124 CHAPTER 6. SOFTWARE ARCHITECTURE RECONSTRUCTION

[RR02] Claudio Riva and Jordi Vidal Rodriguez. Combining static and dy-
namic views for architecture reconstruction. In Proceedings of
the Sixth European Conference on Software Maintenance and
Reengineering, CSMR ’02, pages 47–, Washington, DC, USA,
2002. IEEE Computer Society.

[Sar03] Kamran Sartipi. Software architecture recovery based on pat-
tern matching. In Proceedings of the International Conference
on Software Maintenance, ICSM ’03, pages 293–, Washington,
DC, USA, 2003. IEEE Computer Society.

[SG01] Davor Svetinovic and Michael Godfrey. A lightweight architecture
recovery process, 2001.

[SGCH01] Kevin J. Sullivan, William G. Griswold, Yuanfang Cai, and Ben
Hallen. The structure and value of modularity in software design.
SIGSOFT Softw. Eng. Notes, 26(5):99–108, September 2001.

[SHI+01] Kari Smolander, Kimmo Hoikka, Jari Isokallio, Mika Kataikko,
Teemu Maekelae, and Heikki Kaelviaeinen. Required and optional
viewpoints – what is included in software architecture?, 2001.

[SJSJ05] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Us-
ing dependency models to manage complex software architec-
ture. SIGPLAN Not., 40(10):167–176, October 2005.

[SO01] Christoph Stoermer and Liam O’Brien. Map - mining architectures
for product line evaluations. In Proceedings of the Working IEEE/I-
FIP Conference on Software Architecture, WICSA ’01, pages 35–,
Washington, DC, USA, 2001. IEEE Computer Society.

[SOV03] Christoph Stoermer, Liam O’Brien, and Chris Verhoef. Moving to-
wards quality attribute driven software architecture reconstruction.
In Proceedings of the 10th Working Conference on Reverse En-
gineering, WCRE ’03, pages 46–, Washington, DC, USA, 2003.
IEEE Computer Society.

[SR99] Michael Siff and Thomas Reps. Identifying modules via concept
analysis. IEEE Trans. Softw. Eng., 25(6):749–768, November
1999.

[SROV06] Christoph Stoermer, Anthony Rowe, Liam O’Brien, and Chris Ver-
hoef. Model-centric software architecture reconstruction. Softw.
Pract. Exper., 36(4):333–363, April 2006.

[Sys99] T. Systä. On the relationships between static and dynamic models
in reverse engineering java software. In Proceedings of the Sixth
Working Conference on Reverse Engineering, WCRE ’99, pages
304–, Washington, DC, USA, 1999. IEEE Computer Society.

BIBLIOGRAPHY 125

[TH99] John Tran and Richard C. Holt. Forward and reverse repair of soft-
ware architecture. In Proceedings of the IBM CAS Conference,
1999.

[Tri01] A Trifu. Using cluster analysis in the architecture recovery of
object-oriented systems. 2001.

[vDHK+04] Arie van Deursen, Christine Hofmeister, Rainer Koschke, Leon
Moonen, and Claudio Riva. Symphony: View-driven software ar-
chitecture reconstruction. In 4th Working IEEE / IFIP Conference
on Software Architecture (WICSA 2004), 12-15 June 2004, Oslo,
Norway, pages 122–134. IEEE Computer Society, 2004.

[Wig97] T. A. Wiggerts. Using clustering algorithms in legacy systems re-
modularization. In Proceedings of the Fourth Working Confer-
ence on Reverse Engineering (WCRE ’97), WCRE ’97, pages
33–, Washington, DC, USA, 1997. IEEE Computer Society.

[WMSR00] Robert J. Walker, Gail C. Murphy, Jeffrey Steinbok, and Martin P.
Robillard. Efficient mapping of software system traces to architec-
tural views. In Proceedings of the 2000 conference of the Centre
for Advanced Studies on Collaborative research, CASCON ’00,
pages 12–. IBM Press, 2000.

[Wuy98] R. Wuyts. Declarative reasoning about the structure of object-
oriented systems. In Proceedings of the Technology of Object-
Oriented Languages and Systems, TOOLS ’98, pages 112–,
Washington, DC, USA, 1998. IEEE Computer Society.

[YGS+04] Hong Yan, David Garlan, Bradley Schmerl, Jonathan Aldrich, and
Rick Kazman. Discotect: A system for discovering architectures
from running systems. In In Proc. 26th International Conference
on Software Engineering, pages 470–479, 2004.

[YHC97] Alexander S. Yeh, David R. Harris, and Melissa P. Chase. Manip-
ulating recovered software architecture views. In Proceedings of
the 19th international conference on Software engineering, ICSE
’97, pages 184–194, New York, NY, USA, 1997. ACM.

126 CHAPTER 6. SOFTWARE ARCHITECTURE RECONSTRUCTION

Chapter 7

Extraction of the static view of
software architectures

Endri Gjino

Contents
7.1 Introduction . 128
7.2 SAR Approaches and Frameworks 129

7.2.1 Practice Scenarios . 129
7.2.2 The Reflexion Model 131
7.2.3 Symphony and CaCOphoNy 132
7.2.4 X-Ray Approach for Distributed Systems 135

7.3 Recovery Algorithms . 135
7.3.1 Cluster-based . 135
7.3.2 Pattern-based . 138

7.4 Tools Overview . 139
7.4.1 Classification . 139
7.4.2 Tools . 141

7.5 Visualization Techniques . 145
7.5.1 Visualization Overview 145
7.5.2 Innovative visualization techniques 146

7.6 Conclusion . 147
Bibliography . 148

127

128CHAPTER 7. EXTRACTION OF THE STATIC VIEW OF SOFTWARE ARCHITECTURES

Abstract: Code comprehension for new and old developers, keeping the
software in synch with the initial design, as new user requirements come
in, checking for architectural violations, and retrieving architecture views tar-
geted to specific stakeholders are crucial in the software development life-
cycle. Architecture reconstruction has the potential to greatly help with the
above problems. This paper is a survey of architecture reconstruction, based
on static analysis. The paper explores the different approaches (eg. The Re-
flexion Model), algorithms (eg. Revealer) and tools (eg. the SAVE tool), from
the early 2000 to today, on retrieving architectural views from source models.
This paper is therefore ideal for scholars, new to the topic, that want a quick
tour into the most influential proposals on extracting the static views, of the
architecture of a software system.

7.1 Introduction

Software architecture is an abstraction of the software system. It comprises a
set of views that target specific concerns of specific stakeholders. Managers
are, for example, interested in the module view, describing the layering and
subsystem organization, of the software architecture so that they can appro-
priately plan for resource distribution. A developer would be interested in the
model view to get a highly abstract idea of the system or on the logic view,
describing functional requirements in class diagrams and class templates, if
he wants to create a clear picture of the classes of a specific subsystem. But
software is in continuous evolution driven by changing requirements therefore
it becomes paramount to be able to synchronize the software architecture de-
scription, if it was ever formally defined, with the current running implemen-
tation of the system. The benefits are clear. As development teams change
continuously, new developers will need to get acquainted with the current archi-
tecture, new managers need to be able to estimate the effort needed for a new
customer requirement and a VIP manager would be interested if he/she can
come up with product lines that would eventually drive costs and development
time down for the company. Software architecture reconstruction becomes
thus essential and makes it possible that stakeholders can:

• Evaluate the conformance of the as-built architecture to the as-documented
architecture and stop the architecture erosion [Mer10a] .

• Reconstruct the architecture descriptions that are poorly documented or
for which documentation is not available.

• Analyze and understand the architecture of existing systems, to enable
modification of the architecture to satisfy new requirements.

• Developers can continuously check during development that changes
they make do not adversely effect the architecture, by for example break-
ing the layers or making components dependent on each other’s internal
working. [BW08]

7.2. SAR APPROACHES AND FRAMEWORKS 129

In section 2 of this paper I will survey some approaches that have been pro-
posed by the academic community on Software Architecture Reconstruction.
I will describe from the very specific “The Practice Scenarios” proposed by
[OSV02] to the more general approaches like the “Reflexion Model”, ‘CaCOphoNy”,
“Synphony” [Fav] [Kru95] and the “X-Ray Approach for Distributed Systems”
[Men]. In section 3 I will describe shortly the algorithms that can be used to
assist the user in recovering architecture views: the cluster-based approach
by [CKS] and the patten-based approach like the one described by [Sar06] or
the hybrid approach in “Revealer” [PFGJ02] that combines syntactic analysis
with lexical analysis. Section 4 goes over some tools that are out there. Sec-
tion 5 brings some visualization techniques that have been employed in some
of the tools presented in the previous section and some new methods that
have the potential to increase the information throughput without adding visual
cluttering.

7.2 SAR Approaches and Frameworks

7.2.1 Practice Scenarios

The attempt to reconstruct software architecture starting from source code is
not an easy job. The nature (eg. distributed) of the system, the use of dif-
ferent languages, the use of binary components from third party vendors that
are not interested in revealing their code or the absence of solid documenta-
tion for such components are some of the problems faced by analysts trying to
reconstruct the software architecture. Some other issues arise when trying to
match the output terminology, concepts and layout of the reconstruction pro-
cess with the stakeholders needs and background. [OSV02] tried to address
these issues and others by compiling a set of practice scenarios that the soft-
ware architect can apply according to the striking similarities with his task at
hand.

The first, described by [OSV02], is the View-Set Practice Scenario. It tries
to address the problem of identifying the appropriate architectural view that
sufficiently describes the different stakeholders’ needs. The output of this ap-
proach is a collection of views and the appropriate terminology that can act as
a contract between the stakeholder and the analyst responsible for performing
the reconstruction.

Another scenario that [OSV02] named The Enforced-Architecture Scenario
addresses the problem of matching the as-build with the as-desired architec-
ture. The output of this scenario concerns the identification of patterns in the
design. The problematic addressed here is the absence of constructs in the
programming language that directly implement architecture concepts such as
layers for example. During the implementation phase of the development the

130CHAPTER 7. EXTRACTION OF THE STATIC VIEW OF SOFTWARE ARCHITECTURES

programmer sometimes applies his/her interpretation of such concepts in the
respecting programming language driving focus out of the design, towards
easiness of implementation. The writer stresses the importance of methods
and tools used in the implementation that put emphasis toward implementation
guidelines that would strengthen the bond between design and implementation
decisions.

Another scenario, The Quality-Attribute-Changes Scenario, underlines the
importance of identifying the contribution of certain architecture patters in sat-
isfying the quality attributes of the system, which are sometimes competing
with each other and driving design from one architecture patter to another.
There is always a need for a tradeoff, driven by business goals the system
should fulfill. This scenario stresses both the importance of singling out the ar-
chitecture patterns that contribute to a certain quality attribute and the design
tradeoffs. The solution to this need, according to [OSV02], should comprise a
set of methods and tools that identify how a system quality attribute is fulfilled
by architecture patterns.

The Common and Variable Artifacts Scenario addresses the need of iden-
tifying the common and variable parts in the software portfolio of an organi-
zation, as the first step in defining product lines, or the consolidation into one
system of many software products used by a company. The solution according
to [OSV02] should comprise methods and tools for identifying common and
variable parts across products. The benefits are immediate since this analysis
can be used as an argument to the company’s management for product lines
or for consolidating software products within the company into one.

The Binary Components Scenario, in [OSV02], deals with third party binary
components which are becoming more and more used in the development life-
cycle. Because the vendors ship usually in binary format to hide implemen-
tation details, very important here becomes the third party artifact description
and interface. It addresses the problem of assessing the feasibility of using
such components and assessing the conformance to the interface description.
A common solution to this scenario, used in industry, is by building small proof-
of-concept “toys” of the component to mitigate the risk when using them in the
real product. Software architecture reconstruction of these components, start-
ing from component description and not source code, would help the architects
assess whether the binary component fulfills requirements and how it interacts
with the other components.

The last scenario that [OSV02] looks into is The Mixed-Language Scenario.
This scenario focuses of the needs for techniques to reconstruct the architec-
ture views of a system implemented with heterogeneous languages and lan-
guage types. The writer suggests that the reconstruction in such cases can be
driven by elements other than language such as configuration files and direc-
tory structure. But more approaches are needed to combine the abstractions
from the competing languages in common architecture views.

7.2. SAR APPROACHES AND FRAMEWORKS 131

7.2.2 The Reflexion Model

The Reflexion, introduced by [MNS95] summarizes the concrete view, derived
from the static analysis of source code, in terms of the hypothetical view, an
abstraction of the system from the architect point of view. The concrete view
contains concrete entities which are extracted from the tool ([MNS95] used
awk) together with source dependencies derived from a class hierarchy, in-
clude headers ,method calls or even the source code directory structure. On
the other hand the hypothetical view, also containing entities and relations be-
tween these entities, is manually constructed by the analyst reflecting the per-
ceived system architecture and containing a lot of architecture patterns such
as layers, subsystems, components etc. The next step in deriving the reflexion
model is a manual or tool-assisted, user-driven mapping of concrete entities
into hypothetical entities.

The result of the process is a graph with 3 disjoint types of edges connecting
the hypothetical entities:

• Convergence Edges: when a connection between 2 hypothetical enti-
ties is also present in the mapped-to concrete entities.

• Divergence Edges: when a connection between 2 concrete entities is
not present in the mapped-to hypothetical entities.

• Absence Edges: when a connection between 2 hypothetical entities is
not present in the mapped-to concrete entities.

[MNS95] showed that the reflexion model can be computed relatively fast al-
lowing for a user driven, iterative approach to building the entire overview of
the system. The model was used to reconstruct the module view of NetBSD
(a unix flavor). [MNS95] brings 3 examples that show the benefits of using
the reflexion model in re-engineering, assessing design conformance and sys-
tem understanding. A software engineer at Microsoft was able to quickly un-
derstand the architecture of Excel and plan accordingly re-factoring activities.
The authors of [MNS95] were able to check whether layer constrains in the
hypothetical view where also preserved in the concrete view (extracted from
source) of Grisworld’s reconstruction tool. They were also able to clarify, in
another situation, why students at university of Washington had major difficul-
ties in extending a compiler, which turned out, shown by a high number of
divergence edges in the reflexion model, to suffer from a high degree of cou-
pling. [CKS] extend the Reflexion Model with automatic clustering to ease the
demanding activity of mapping concrete entities with hypothetical entities. De-
tails about their approach will be given in the next section.

132CHAPTER 7. EXTRACTION OF THE STATIC VIEW OF SOFTWARE ARCHITECTURES

Figure 7.1: Reflexion Model [MNS95].

7.2.3 Symphony and CaCOphoNy

Symphony, introduced by [vDHK+04], is a general method aiming at guiding
the reconstruction process. It includes 3 main steps and several sub-steps
that try to reconcile the stakeholder needs with the information presented in
the views recovered by the reconstruction process.

Symphony, as described by [vDHK+04], can be broken down into the following
steps:

1. Problem Elicitation. In this step the different perspective of each inter-
ested stakeholder are consolidated in a big picture through workshops,
checklists, role-playing and scenario analysis, into a two page memoran-
dum describing the problem at hand.

2. Concept Determination. In this step the problems and motivations,
identified earlier, are translated into views understood by the stakehold-
ers.

(a) First, potential useful viewpoints are identified, with the help of stake-
holders and are later refined into target viewpoints and a prioritized
list of views that the reconstruction process should generate, where
candidate views, relationships between these views and their re-
spective priorities are identified, and assigned in an iterative man-
ner.

(b) Second, source views containing only the information needed by
the stakeholders are defined together with their mappings to the

7.2. SAR APPROACHES AND FRAMEWORKS 133

target view. The mapping produced here contains both formal and
informal parts.

(c) And last, the hypothetical views and their role in answering stake-
holder needs are determined. The authors distinguish two main
roles for hypothetical views: as a guide to the reconstruction pro-
cess and as a baseline in interpreting the conformance of the as-
build architecture with the desired architecture. Hypothetical views
are usually embedded in the target views and their viewpoint are
defined as part of the target viewpoint.

3. Reconstruction Execution is realized by an iterative extract-abstract-
present approach. It is further subdivided into 3 sub-steps:

(a) Data-Gathring, where results from a static analysis of the source
code artifacts and dynamic analysis of the system execution are
gathered and analyzed by the architect with the goal of producing
the views that conform to the viewpoints defined in the previous
step. This process can be done by manual inspection, using lexical
analysis tools such as grep, parser based (where a parser builds
a parse tree representation of source code language constructs),
through fuzzy parsing (which discards tokens that are considered
unimportant to the reconstruction), or through semantic analysis
(which looks at things like naming conventions or type resolution).

(b) Knowledge Inference, whose goal is to derive the target views out
of the source views, produced in Data-Gathring. This can be done
according to [vDHK+04] using a manual, semi-automatic or fully
automatic approach. All approaches use the formal and non-formal
mapping rules defined earlier.

(c) Information Interpretation is the final sub-step. Target views are
selected, inspected and interpreted to solve the problems listed in
the memorandum. It is worth mentioning here that because of the
high user involvement in this step visualization takes special impor-
tance.

CaCOphoNy, introduced in [Fav], can be viewed as a complement to Sym-
phony in that it also focuses in identifying the stakeholders needs and for-
malizing them in a set of viewpoints. The authors designed the method by
focusing on the idea that the definition of software architecture in a big com-
pany is imbedded in the company’s know how and on the company’s culture.
For them there is not a single definition of software architecture but software
architecture is rather a group consensus among stakeholders and material-
ized by a large set of tools and repositories used in the company to develop
the software products. [Fav] introduces the term Appliware to refer to the set
of software developed by the company and Metaware to refer to the set of
software the company uses in the development life-cycle. Metaware and Apli-
ware together are important elements in defining the companies’ know-how in
tangible terms.

134CHAPTER 7. EXTRACTION OF THE STATIC VIEW OF SOFTWARE ARCHITECTURES

[Fav] propose to use Metamodels, to represent viewpoints, used to cover the
architecture views, and argue that Metamodels represent the neat conceptual
part of Metaware. On the other part models are the neat conceptual part of
Appliware. The big picture comes together in [Figure. 7.2] with the views de-
scribed by the viewpoints addressing the stakeholder concerns.

Figure 7.2: Merging Model Driven Engineering and Software Architecture into
one model [Hol].

A summary of CacOphony process is given below:

• Metaware domain and asset analysis. Since tools and repositories codify
the company’s know how, their analysis is very important. A metaware
inventory is build by the analyst and the metamodels that describe them
are recovered by incrementally going through metaware-items. Meta-
models are then integrated to produce a global metamodel which is at
the end broken down into clusters to manage the complexity.

• Metaware requirement analysis. As with any analysis phase, actors
(stakeholders) and meta-level use-cases are identified and the metamod-
els are improved through meetings aiming at identifying inconsistencies
and missing elements.

• Metaware specification. In this step the identified use-cases are run in
order to identify with precision the subset of the global metamodel in use
by the company.

• Metaware implementation, metaware evaluation and metaware evo-
lution. These steps are the “productive” steps in that their goal is to de-
liver the concrete metaware from the specifications gathered in the pre-
vious steps. These steps finally enable the analyst to describe what soft-
ware architecture means in terms of views targeting specific stakehold-
ers. It is worth noting that the metaware continuously evolves through
the evaluation and feedback gathered from the stakeholders.

7.3. RECOVERY ALGORITHMS 135

On a personal note, I consider this model to be too general. It is also only
focused on big companies, which does not always apply since a considerable
number of start-ups are of relatively small size and do not contain a significant
number of metaware-items.

7.2.4 X-Ray Approach for Distributed Systems

Traditional programming languages do not provide explicit constructs for dis-
tributed high level design abstractions such as client, server, filters, pipes. A
significant challenge when analyzing such systems is their distributed nature at
runtime. The traditional approach for describing distributed systems has been
from a multiple view perspective. X-ray, introduced by [Men], is an integrated,
static analysis technique for distributed systems. X-ray encompasses 3 static
analysis techniques:

1. The component module classification technique distinguishes source
code models and maps them to processes.

2. The syntactic pattern matching technique discovers specific code frag-
ments that implement component interaction features.

3. Structural reachability analysis maps code fragments, discovered by
syntactic pattern matching, to executable units

These techniques exploit and enrich the mappings of artifacts in the 4 views:
the logical view, the process view, the development view and the physical view
described by [Kru95]. The module classification technique maps elements of
the development view to those in the process view. The pattern matching and
reachability analysis techniques enrich mappings of elements in the logical
view to elements in the physical view.

7.3 Recovery Algorithms

7.3.1 Cluster-based

[CKS] introduced an extension to the Reflexion Model in order to help the user
map concrete (source) entities into hypothetical entities. Their main assump-
tion is that modules of existing software are build respecting the principles
of low coupling and high cohesion. They use clustering techniques to group
source entities together into clusters, to create additional candidate mappings
given a number of already mapped source entities. Candidates of unmapped
source entities are ranked and presented to the user. These candidates fall into

136CHAPTER 7. EXTRACTION OF THE STATIC VIEW OF SOFTWARE ARCHITECTURES

the same cluster with already mapped source entities maximizing cohesion
and minimizing coupling with other source entities mapped into other clusters.
A relationship between concrete entities is established when the one concrete
entity calls/is-called-by (eg. a function calls another in C) or it accesses vari-
ables and fields (eg. calls or accesses to member functions/fields in Java) of
the second entity. Similarities between identifiers, naming conventions are also
used.

Before going into the details of the similarity functions [CKS] introduces to
drive the clustering algorithm, lets first formalize the concepts introduced by
the Reflexion Model in the previous section with the same notation that [CKS]
uses.

The Hypothesized View represented as a graph by HV = (NH , EH) :
NH = {h1, h2, . . . , hn}, n ∈ N : as the set of hypothesized entities,
EH ⊆ (NH ×NH) as the set of hypothesized dependencies
partof : NC → NC function representing hierarchies.

The Concrete View represented as a graph CV = (NC , EC) :
NC = {c1, c2, . . . , cn}, n ∈ N set of concrete entities,
EC ⊆ (NC ×NC) set of concrete entity dependencies.

The maps − to : NC → NH function maps concrete entities into hypothesized
entities. This mapping is either user-defined (represented by dmaps − to) or
inherited from the parent concrete entity. Otherwise the concrete entity is clas-
sified as unmapped.

maps−to(c) =

dmaps− to(c) if c ∈ dom : dmaps− to
maps− to(c′) if c /∈ dom : dmaps− to ∧ part− of(c) = c′

undefined otherwise

Additionally an edge in either EC or EH can be assigned a type and one edge
type may be a subtype of another edge type, forming an is-a type hierarchy.
The function type takes a concrete entity and returns its type while the hierar-
chy is given by the function is− a which returns true if the type is a subtype of
another type or false otherwise. The motivation resides in representing class
hierarchies. In order to be consistent with the graph representation, the output
of the reflexion model is represented by [CKS] as another graph summariz-
ing convergences, divergences and absences between hypothesized entities
R = (NH , ER):

convergence(hi, hj) ∈ ER
1 :⇔

∃[ck, cr] ∈ EC , [hi, hj] ∈ EH : maps − to(ck) = hi ∧ maps − to(cr) = hj ∧
type([ck, cr]) is− a type([hi, hj])

1When an expected relation between 2 hypothesized entities can also be found between the
concrete entities that map into them [CKS][MNS95].

7.3. RECOVERY ALGORITHMS 137

absence(hi, hj) ∈ ER
2 :⇔

@[ck, cr] ∈ EC , ∃[hi, hj] ∈ EH : maps − to(ck) = hi ∧ maps − to(cr) = hj ∧
type([ck, cr]) is− a type([hi, hj])

divergence(hi, hj) ∈ ER
3 :⇔

∃[ck, cr] ∈ EC , @[hi, hj] ∈ EH : maps − to(ck) = hi ∧ maps − to(cr) = hj ∧
type([ck, cr]) is− a type([hi, hj])

Now the Algorithm is straight-forward. The Goal is to map automatically con-
crete entities for which the decision is unambiguous and to help the user with
a more restricted set of entities to choose from otherwise.

1. Filter unmapped concrete entities. The algorithm relies on source rela-
tionship between unmapped and mapped concrete entities to find miss-
ing mappings. Therefore it is problematic when an unmapped entity con-
tains many source relationship with other unmapped entities as opposed
to mapped entities. A filtering function δ is applied and concrete entities
that do not pass the threshold w are not considered. δ(S ⊂ NC) = {ci ∈
S| |{(cj ,ci)∈Ec|cj∈dom(maps−to)∧ci 6=cj}|

|{(cj ,ci)∈Ec|ci 6=cj}| ≥ w

2. Calculate attraction matrix for concrete unmapped to hypothesized enti-
ties. [Fav] suggests 2 functions to calculate the attraction CountAttract
and MQAttract with the first giving better experimental results. More-
over the values returned by CountAttract are more spread out than the
ones returned by MQAttract thus easier to read. For this reason I am
only going to present the calculations for CountAttract.

CountAttract(ci, hk) = overrall(ci)− toOthers(ci, hk)

overrall(ci) =
∑

∀(ci,cj)∈EC :cj∈dom(maps−to)

λ((ci, cj))

toOthers(ci, hk) =
∑

∀(ci,cj)∈EC :cj∈dom(maps−to)∧maps−to(cj)6=hk

γ((ci, cj))

γ((ci, cj)) =

{
λ(type((ci, cj)))× φ if ∃maps− to(ci),maps− to(cj) ∈ EH

λ(type((ci, cj))) otherwise

λ function applies a weight on source dependencies to reflect their se-
mantic importance. In case of unwanted coupling the function γ returns

2When an expected relation between 2 hypothesized entities can not be found between the
concrete entities that map into them [CKS][MNS95].

3When an unexpected relation shows up between 2 hypothesized entities and is backed up
by an existing relation between the concrete entities that map into them [CKS][MNS95].

138CHAPTER 7. EXTRACTION OF THE STATIC VIEW OF SOFTWARE ARCHITECTURES

its weight unchanged while for allowed coupling it multiplies the weight
by a factor φ ∈ [0, 1]. φ = 1 has the effect of ignoring conceptual in-
formation. CountAttract subtracts from the overall attraction value the
attraction value of the concrete entity to all the other hypothetical entities
except the one under consideration.

3. Find potential mappings based on the attraction matrix.

4. Automatically map concrete entities to a hypothetical entity for which only
a single candidate could be detected.

5. Otherwise present to the user, ranked by their attraction, all candidates
for a manual selection.

The main deficiency of this algorithms is that it assumes that the developers
follow the principle of high cohesion and low coupling.

7.3.2 Pattern-based

The Pattern-based approach relies on first extracting a set of architectural pat-
terns, expressing them in some format, saving them into a repository and then
querying the source model for those patterns, recovering thus the system ar-
chitecture piece by piece. The problem with this approach has always been in
expressing architectural constructs into a language that is flexible enough and
that allows defining queries to express architecture patterns. For this purpose
Architecture Description Language (ADL) and Architecture Query Language
(AQL) [Sar06] have been developed to express the architecture and architec-
ture patterns respectively for a system. They have not found their way into
the industry though mainly because of their lack of integration and synchro-
nization capabilities with the source. The synchronization problem has been
addressed by variants of ADL such as xADL and Fractal ADL but both of them
provide only 1 way mapping [BW09].

The approach presented in [Sar06] consists of an offline and an online phase.
During the offline phase the source code is parsed and represented as an
attribute relation graph. In the online phase, first architecture patterns (eg.
pipes, filters, client/server) are retrieved through expert analysis, documenta-
tion analysis and tool provided analysis and then they are expressed into AQL.
The second step of the online phase is the graph pattern matching where the
patterns defined in AQL are tested against the attribute graph generated in the
offline phase. In the last step the user investigates the results and if it is sat-
isfactory stops the recovery process. Otherwise he/she augments the pattern
repository and runs the graph pattern matching step ones more.

[PFGJ02] comes with an innovative approach in Revealer. Revealer com-
bines lexical and syntatic analysis and overcomes the problems associated

7.4. TOOLS OVERVIEW 139

with parsing. Parsing is a heavy-weight process, needs all the information to
be ready available (included files) and considers everything not just the in-
teresting parts (where the elements of a design patter are being declared or
used). On the other hand a pure lexical approach with regular expressions
has problems considering white spaces. Revealer comes with a language to
define patterns and combine them into pattern graphs expressing architec-
tural hotspots. The language is furthermore written in XML, which makes it
easy to read. At the base we have primitive patterns: RegExp (to handle reg-
ular expressions), StringExp (to handle simple strings) and Block (to handle
blocks enclosed by start and end delimiters). To match continuous text blocks,
patterns are linked into pattern sequences with only white-spaces allowed be-
tween matches. This is realized by the rel tag which contains the start and
end attribute containing the pattern-ids and the type attribute which can be
next for combining sequences of patterns or contain for unordered contain-
ment test. Other constructs such as ORPattern or ANDPattern can be used
to combine patterns into more complex ones. Revealer also provides a mech-
anism for nesting patterns (a rel tag of type=constraint) by having the outer
pattern match only if all the inner patterns match. With these mechanisms the
user can easily define patterns that describe islands of interest in the code and
associate them with a design pattern without focusing to much on the details
in the code.

A drawback of this approach, and of all lexical approaches in general, is that
the lack of control and data flow information does not allow to follow certain
paths through the source code to find all relationships of code pieces that are
concerned with a particular architectural aspect [PFGJ02]. The main advan-
tage of Revealer is that it allows the analyst to define design patterns easily
and quickly for any text based language and filter the source code with focus
on only architectural hot-spots interesting to him/her.

7.4 Tools Overview

7.4.1 Classification

There are many aspects to Software Architecture Reconstruction, therefore
no single classification exists. Tools have been classified by [Pol09] as being
quasi-manual, semi-automatic or quasi-automatic depending on their role and
degree of automation in the reconstruction activity.

In the Quasi-manual technique the tool assists the analyst in understanding
his findings. It is further subdivided into construction-based and exploration-
based techniques with the first assisting the analyst in manually constructing
the views and the second guiding the analyst to the highest abstraction levels
through input exploration, zoom-in an abstraction level, zoom-out capabilities

140CHAPTER 7. EXTRACTION OF THE STATIC VIEW OF SOFTWARE ARCHITECTURES

Listing 7.1: The following pattern is a class that uses a SocketServer [PFGJ02]
<RevealerPat tern>
<pe i d = ”SS” type= ” Pat te rn ” />
<pe i d = ”new” type= ” Str ingExp ”>
<a t t r name= ” expr ” value= ”new SocketServer ” />

< / pe>
<pe i d = ” param ” type= ” Block ”>
<a t t r name= ” s t a r t D e l ” value= ” (” />
<a t t r name= ” endDel ” value= ”) ” />

< / pe>
<pe i d = ”CL” type= ” Pat te rn ” />
<pe i d = ” c lass ” type= ” Str ingExp ”>
<a t t r name= ” expr ” value= ” c lass ” />

< / pe>
<pe i d = ” c l I d ” type= ” Var ” />
<pe i d = ” b lock ” type= ” Block ”>
<a t t r name= ” s t a r t D e l ” value= ” { ” />
<a t t r name= ” endDel ” value= ” } ” />

< / pe>
< r e l from= ”new” to= ” param ” type= ” next ” />
< r e l from= ”SS” to= ”new” type= ” con ta in ” />
< r e l from= ” c lass ” to= ” c l ID ” type= ” next ” />
< r e l from= ” c l ID ” to= ” b lock ” type= ” next ” />
< r e l from= ”CL” to= ” c lass ” type= ” con ta in ” />
< r e l from= ” b lock ” to= ”SS” type= ” c o n s t r a i n t ” />

< / RevealerPat tern>

7.4. TOOLS OVERVIEW 141

[Pol09].

For the Semi-automatic approach, according to [Pol09], the analyst instructs
the tool on how to refine the abstraction that has been recovered. It is fur-
ther subdivided into abstraction-based techniques and into the concrete ap-
proaches such as Graph queries, Relational queries, Logic queries, Lexical
and Structural queries. The second subdivision consists of investigation-based
techniques, with the main approach being Recognizers, Graph-Pattern Match-
ing, State Engine and Maps. Abstraction-based techniques aim at mapping
low-level concepts into high level ones such as styles and design patterns.
On the other hand investigation-based techniques aim at mapping high level
concepts into low level ones.

For the Quasi-automatic technique, according to [Pol09], the analyst only
steers the iterative recovery and the tool does the rest. Pure automation does
not exist. The two main approaches are clustering and concept dominion.
Clustering techniques try to subdivide the system into loosely coupled clusters
exhibiting high cohesion (see section 3.1). Concept dominion relates to graph
theory and identifies parts of the source that belong together by singling out
dominating nodes and their subordinates in the source dependency graph.

On the other hand [Pol09] classifies the whole approach as being top-down,
bottom-up or hybrid. In the top-down approach the analysts starts with a high-
level abstraction of the system derived from architectural styles, documenta-
tion, interviews, the company’s organization and experts opinion. Iteratively
the analyst formulates hypothesis of the system architecture and tries to match
them with the implementation. In the bottom-up approach on the other hand
the analysts starts with a model derived from the implementation details such
as source code, configuration files or directory structure and then tries to ab-
stract this constructs in a higher level of abstraction. [Pol09] refers to it as a
extract-abstract-present approach. The hybrid is just a mixture of the top-
down and the bottom-up approach. At the same time low-level knowledge is
abstracted using various techniques and high-level knowledge is refined and
confronted against the previously extracted views.

7.4.2 Tools

The Dali Toolkit is bundled together with other utilities such as Rigi, used for
visualization, and a PostgreSQL providing for information storage and query-
ing capabilities. After the source information is exacted, it is loaded into the
PostgreSQL database. Queries, representing design patterns, defined in SQL
and Perl are then run against the information stored in the database. Views
are visually materialized and manipulated in Rigi [OSV02].

Lisa Toolkit, described in [BW09], is an Eclipse plug-in and provides for vi-
sualization, validation and integration. It comes together with an architecture

142CHAPTER 7. EXTRACTION OF THE STATIC VIEW OF SOFTWARE ARCHITECTURES

description language, Lisa-ADL, that supports 2 way integration of both the ar-
chitecture and implementation. Traditional architecture description languages
such as ADL, xADL, Fractal ADL and ArchJava provide at most 1 way synchro-
nization. Another advantage of Lisa is that it is possible to detach architecture
and implementation and fully simulate refactoring to close architecture viola-
tions such as layer violations and interface violations. Lisa-ADL is expressed
in XML thus allowing for extensions and is able to express relationships be-
tween heterogeneous language components. The mapping of implementation
and architectural concepts is supported through technology bindings (eg. java
technologies), but is not limited to only Object-Oriented languages. Consis-
tency checks are also defined and observed into the Model Validation per-
spective. In Figure. 7.3 shows the violation detection functionality of Lisa at
work.

Figure 7.3: Violation: static dependencies instead of access through a defined
interface [BW09].

Softwarenaut, as described in [LL06], is another tool designed in the form of
a framework and supports visualization and exploration of different abstraction
levels of the system at hand. It also comes with multiple perspectives such
as: Exploration Perspective, Detailed Perspective and Map Perspective. The
Exploration Perspective presents a graph of the visible modules. The Detailed
Perspective visualizes only the currently selected entity and the Map Perspec-
tive shows the position in the hierarchy of the entity in order to give the analyst
some sense of context and orientation. Softwarenaut also provides primitive
operations such as expand, filter and collapse. It features 3 analysis types:
Package Dependency that uses conventions to group subpackages into pack-
ages, Directory Include Relationships that considers include relations aggre-
gated at the directory level, and Semantic Cluster Interaction that uses Latent
Semantic Indexing to detect concepts.

SotoArc and SonarJ supports various languages such as Java and C++.
Source code information is extracted from a parser and inserted into a mysql

7.4. TOOLS OVERVIEW 143

database, similarly to Dali toolkit. The main functionality of SotoArch is to ex-
plore architecture violations and also simulate refactoring. It visualizes these
violations in an intuitive manner using red for violation dependencies and green
for allowed dependencies [Figure. 7.4]. It also comes with algorithms for de-
tecting and breaking cyclic dependencies. SonarJ uses the same database
and provides for searching for design patterns and is also capable of display-
ing extensive trend analysis metrics. [hel12b] [hel12a] [BW09] [Mer10b].

Figure 7.4: Visualizing of access violations in SotoArch [Mer10b].

Structure Analysis for Java (Stan4J) is another eclipse plug-in that supports
structural analysis and include code exploration, dependency analysis and vi-
sualization of the system components. It uses build library includes and code
dependencies to generate and aggregate dependencies between java pack-
ages. It includes operations such as filter through drag and drop, expand and
collapse. It also shows dependency violations using red arrows. [Sof12] notes
that the tool has been design to be used by developers to measure quality and
report design flow during and after implementation. It also uses some of the
novel visualization techniques like color cushions which are described in the
next section.

Bauhaus from Axivion, described in [Mer10a], supports multiple languages
like C/C++, Java but also COBOL and VB. It stores its information about the
system into an intermediate language and resource flow graph files. Influ-
enced by the Reflexion Model, it features two perspectives, laid out side by
side, one showing the is-architecture, extracted from the static analysis of the
implementation, and the other the should architecture defined by the architect.
Divergence edges are displayed in red in the is-architecture. It also supports
metrics, trend analysis and user defined queries describing a design pattern
to be found in the is-architecture. Different from other tools described so far,
Bauhaus is also capable of detecting cloned code [Axi12] [Figure. 7.5].

144CHAPTER 7. EXTRACTION OF THE STATIC VIEW OF SOFTWARE ARCHITECTURES

Figure 7.5: Visualizing of access violations in Bauhaus [Mer10b].

Structure 101 supports multiple languages such as Java, C/C++, .Net, PHP
etc. The user can also define parsers for new languages and integrate them
into Structure101. The architect defines a reference architecture diagram, ca-
pable of expressing containment, visibility and layering of the system, and then
maps physical code to blocks in the diagram through regex patterns. Stric-
ture101 additionally from displaying current violations [Figure.7.6], discovered
after the mappings have been defined, also warns developers at compile time
when code changes introduce new violations. Structure101 comes with a free
plugin (Sonar) that tracks quality metrics and how architecture violations in the
implementation evolve over time [str12].

Figure 7.6: Visualizing of access violations in structure101 [Mer10b].

7.5. VISUALIZATION TECHNIQUES 145

SAVE is the last tool I will explore. It has been developed by the “Fraunhofer
Center for Experimental Software Engineering” under the vision of having an
environment that connects architectural rules and constrains, and implemen-
tation of a system throughout the entire software life-cycle [LM08]. SAVE au-
tomatically extracts and visualizes the architecture module views. It has the
capability of detecting strong dependencies and extensive coupling. It helps
the developer understand the architecture and identify commonalities and devi-
ations between different software product. The later functionality comes handy
for companies interested in identifying the potential for product lines. SAVE’s
extraction tool is able to analyze the source code in C/C++, Java, Ada, Del-
phi, Fortran and Simulink. SAVE follows the process defined by the Reflexion
Model. In the first two steps the planed and as-build architecture are defined,
the first one manually and the second extracted from the tool. The third step
corresponds to manually mapping the 2 views. In the forth, fifth and last step
the deviations are identified, some are manually marked critical and a plan is
build for removing them. Research is under way in adding forward engineering
capabilities to SAVE by having it identify violations before they are committed.
Also researchers are looking into adding requirement traceability to SAVE or
integrating it with behavior modeling tools such as Simuling and Reactis which
have shown to be quite useful in the embedded software industry.

7.5 Visualization Techniques

7.5.1 Visualization Overview

Typical visualization techniques for the tools I have surveyed so far consist pri-
mary of text and simple geometric shapes to highlight aspects of the software
systems. Colors have found limited use for displaying violations and allowed
dependencies. Violations are usually featured with red arrows in SotoArch
[Figure. 7.4] and Bauhaus [Figure. 7.5]. A red background has been used in
Structure101 [Figure. 7.6] to emphasis layer violations. In SotoArch [Figure.
7.4] layer violations in the should architecture are shown by counterclockwise
red arrows while clockwise red arrows show interface violations, where compo-
nents bypass the public interface and use instead a concrete implementation.
Sometimes the graphical dependency, which gives only a quick overview, is
supplemented by a separate numerical representation for highlighting mea-
sures of for example coupling between packages [Mer10b]. Because of the
overwhelming volume of information, most of the time, these traditional visu-
alization techniques are not able to keep visual cluttering at bay. Filtering or
zoom-in and zoom-out features have been employed to ease the problem but
on the other hand filter out some of the surrounding context the user needs to
better interpret the view at hand. Visual cues like shading (lighting effects) and
texture are not used, although the human visual system is very well capable of
processing them [HVW05].

146CHAPTER 7. EXTRACTION OF THE STATIC VIEW OF SOFTWARE ARCHITECTURES

7.5.2 Innovative visualization techniques

[Hol] [HVW05] suggests and gives simple examples that visualization tech-
niques such as treemaps, cushions, color, texture and bump mapping can help
the tools display high volumes of information without introducing additional vi-
sual cluttering.

Treemaps and Cushions can be used to visualize hierarchies. [HVW05] uses
rectangle to represent a node. The size of the rectangle is used to give the
user a sense of the size of a component in terms of LOC. Internal rectangles
are used to represent sub-components and subdivide the enclosing rectangle
into parts proportional to the size of the sub-component. In order to make the
division clear the direction is alternated between two adjacent levels. [HVW05]
also suggests that Cushions can be used together with Treemaps to make the
distinction between components clearer to the human eye and at the same
time convey more information. The depth between valleys created between 2
adjacent rectangles is proportional to the distance between nodes in the tree.

Color and Texture can also be used to visualize scalar and ordinary types
of arbitrary software metrics. [HVW05] uses color to visualize a single soft-
ware metric at the leaf level and texture to visualize another type of metrics.
Color ranges are defined by interpolating between a start and end color. A
model calculates the texture look and feel by direct manipulation of a texture’s
spatial frequency, regularity and contrast characteristics. [HVW05] suggests
that Bump mapping can be added to yield images with realistic looking sur-
face wrinkles without the need to model each wrinkle as a separate surface
element.

By putting everything together, [HVW05] shows an example of using the afore-
mentioned techniques to visualize fan-in and code smell in [Figure. 7.7].

Figure 7.7: Visualizing software metrics using cushions, treemaps, texture,
color [Hol].

7.6. CONCLUSION 147

In [Hol], the authors demonstrate another technique developed by them to dis-
play a hierarchical graph [Figure. 7.8]. Their approach consists of bundling
adjacent edges and bending them towards the center as a B-spline curve. The
hierarchical bundling reduces visual clutter. The relationship between 2 parent
nodes is realized visually by the edges bundled together in the respective child
nodes. In [Figure. 7.8] the hierarchy is shown using standard techniques.

Figure 7.8: Visualizing hierarchies [Hol].

7.6 Conclusion

In this paper, I demonstrated the importance of Architecture Recovery in an-
swering the needs of different stakeholders. First I went through some of the
approaches and frameworks that can be used by the analyst to reach the goals
set for the Architecture Recovery. I first went through the Practice Scenarios
of [OSV02], with each exploring a specific set of stakeholder concerns. When
and if the analyst finds similarities between one of the practice scenarios and
his task at hand, he can use the scenario to guide him in the reconstruc-
tion process. Then, I made a resume of the influential Reflexion Model. I
also presented the generic approaches of Symphony and its complement Ca-
COphoNy. Both are quite general and can be adapted to a specific situation.
The generality of these approaches is both an advantage and disadvantage.
It is an advantage in that they can be adapted to a big range of possible ar-
chitecture recovery goals, and a disadvantage in that their generality makes
them difficult to adapt. The last approach, X-Ray provides for a guide in re-
covering architectural views of distributed systems. The techniques listed in
X-Ray exploit and enrich the mappings of artifacts in the 4 views described by
[Kru95].

148CHAPTER 7. EXTRACTION OF THE STATIC VIEW OF SOFTWARE ARCHITECTURES

In section 3, I presented the reader with an algorithm that adds automatic clus-
tering to the Reflexion Model, with the intention of helping the analyst in the
demanding task of mapping concrete entities to hypothetical entities. The al-
gorithm defines a similarity function between unmapped concrete entities and
hypothetical entities and uses it to limit the set of unmapped concrete entities
presented to the user at each mapping decision. Then in Revealer, I presented
an approach that combines syntatic analysis with lexical analysis. I also gave,
among other things, a short example of the XML based pattern language defi-
nition introduced in Reveler and its advantages over parsing techniques.

In section 4, I made a summary of some of the tools that use static analysis.
Most of these tools try to help the user identify violations in the architecture
patterns exhibited by the software under consideration. Moreover tools like,
for example, Lisa can simulate the removal of such violations while tools like
SAVE can be used throughout the entire life-cycle of software development.
Section 5, on the other hand, presented some traditional and some innovative
techniques that can be used in displaying the recovered views. Since there
does not exist any fully automatic recovery tool, visualization is really important
since the user has to rely on an iterative extract-abstract-present approach.
Techniques like: treemaps, cushions, colors and texture come with the promise
of adding extra information to the different views presented to the user without
introducing additional visual cluttering.

Bibliography

[Axi12] Axivion bauhaus. http://www.axivion.com/products.html,
2012.

[BW08] Georg Buchgeher and Rainer Weinreich. Integrated Software Ar-
chitecture Management and Validation. 2008 The Third Inter-
national Conference on Software Engineering Advances, pages
427–436, October 2008.

[BW09] Georg Buchgeher and Rainer Weinreich. Connecting Architecture
and Implementation. pages 316–326, 2009.

[CKS] A. Christl, R. Koschke, and M.-A. Storey. Equipping the Reflexion
Method with Automated Clustering, pages 89–98. IEEE.

[Fav] J.-M. Favre. CaCOphoNy: metamodel-driven software architec-
ture reconstruction, pages 204–213. IEEE Comput. Soc.

[hel12a] hello2morrow. Sonargraph. http://www.hello2morrow.com/

products/sonargraph, 2012.

[hel12b] hello2morrow. Sotoarc. http://www.hello2morrow.com/

products/sotoarc, 2012.

BIBLIOGRAPHY 149

[Hol] Danny Holten. Interactive Software Visualization within the RE-
CONSTRUCTOR Project. pages 4–5.

[HVW05] D. Holten, R. Vliegen, and J.J. van Wijk. Visual Realism for the
Visualization of Software Metrics, pages 1–6. IEEE, 2005.

[Kru95] P Kruntchen. Architectural Blueprints. The 4 + 1 View Model
of Software Architecture. IEEE Software, 12(November):42–50,
1995.

[LL06] M. Lungu and M. Lanza. Softwarenaut: exploring hierarchical sys-
tem decompositions. Conference on Software Maintenance and
Reengineering (CSMR’06), pages 2 pp.–354, 2006.

[LM08] Mikael Lindvall and Dirk Muthig. (SAVE) Bridging the software
architecture GAP. Computer, (June):93–96, 2008.

[Men] Nabor C Mendonça. Architecture Recovery for Distributed Sys-
tems. Automated Software Engineering.

[Mer10a] Bernhard Merkle. Stop the Software Architecture Erosion : Build-
ing better software systems. pages 129–137, 2010.

[Mer10b] Bernhard Merkle. Stop the Software Architecture Erosion : Tutorial
SplashCon 2010. pages 295–297, 2010.

[MNS95] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software re-
flexion models: bridging the gap between source and high-level
models. In Proceedings of the 3rd ACM SIGSOFT symposium on
Foundations of software engineering, SIGSOFT ’95, pages 18–
28, New York, NY, USA, 1995. ACM.

[OSV02] L. O’Brien, C. Stoermer, and C. Verhoef. Software architecture
reconstruction: Practice needs and current approaches. Technical
report, DTIC Document, 2002.

[PFGJ02] Martin Pinzger, Michael Fischer, Harald Gall, and Mehdi Jazayeri.
Revealer : A Lexical Pattern Matcher for Architecture Recovery.
Main, 2002.

[Pol09] Damien Pollet. Software Architecture Reconstruction : A Process-
Oriented Taxonomy. Architecture, 35(4):573–591, 2009.

[Sar06] Kamran Sartipi. Software Architecture Recovery based on Pattern
Matching. Computational Complexity, 2006.

[Sof12] Odysseus Software. Stan: Structure analysis for java. http://

stan4j.com/, 2012.

[str12] Structure101. http://structure101.com/products/, 2012.

150CHAPTER 7. EXTRACTION OF THE STATIC VIEW OF SOFTWARE ARCHITECTURES

[vDHK+04] A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and
C. Riva. Symphony: view-driven software architecture reconstruc-
tion. In Software Architecture, 2004. WICSA 2004. Proceedings.
Fourth Working IEEE/IFIP Conference on, pages 122 – 132, june
2004.

Chapter 8

Extraction of the Dynamic View
of Software Architectures

Alexey Ledovskiy

Contents
8.1 Introduction . 152
8.2 General Information . 152
8.3 Dynamic View Extraction Techniques 153

8.3.1 Aspect-Oriented Programming 153
8.3.2 Dynamic Program Slicing 155

8.4 Dynamic View Extraction in Practice 156
8.4.1 DiscoTect . 156
8.4.2 Alborz toolkit . 157

8.5 Case Study . 158
8.5.1 Description of Kieker Framework 158
8.5.2 Example of using Kieker Framework 160

8.6 Summary . 163
Bibliography . 164

151

152CHAPTER 8. EXTRACTION OF THE DYNAMIC VIEW OF SOFTWARE ARCHITECTURES

Abstract: This work gives a general overview of existing methods, ap-
proaches and techniques for extraction of the dynamic view of software ar-
chitectures. Tools that are widely used in the industry are presented here.
Moreover, the use case of the Kieker framework is shown in this work. Re-
sults from the use case and conclusions given in the last part of the work.

8.1 Introduction

There are a lot of large software systems, sue to a fast growing industry. These
systems are extremely hard to maintain and understand. Thus, we need spe-
cific tools that help to understand the workflows of these systems. This work is
aimed to describe approaches and systems for extraction of the dynamic view
of software architecture. These techniques are very helpful for getting different
kinds of information about the system at runtime.

The first part is going to describe a general and background information. It will
include motivation of using dynamic analysis and some general terms.

The second part gives a description and overview of different techniques for
extracting the dynamic view of software architecture. This includes following
techniques: Aspect-oriented programming and dynamic program slicing.

The third part includes an overview and some specific descriptions of imple-
mented tools, frameworks and plugins, which are based on the techniques
mentioned previously. These are the Kieker framework, DiscoTect and its vi-
sual representation in AcmeStudio(plugin for Eclipse) and the Alborz toolkit.

A case study is presented in part four. It contains two parts: the first part is a
detailed description of one of the tools; the second one is an example of using
this tool on a simple program.

Results and conclusions are presented in the summary part.

8.2 General Information

There are many software systems that are complex and take a lot of time to
understand how they work. One of the approaches could be researching the
source code, but it is time consuming and some times, in large systems, an
impossible task. Another method could be to extract a static architecture view
from the system. Extracting the static view is a better approach, because it has
more human readable appearance, but this will only offer a static representa-
tion of the system[4]. Usually, in a static view there is not enough information
about how does the system’s components interact with each other.

8.3. DYNAMIC VIEW EXTRACTION TECHNIQUES 153

However, it is necessary to have a clear and complete understanding of the
software system to be able to do tasks such as maintain, extend, modify, reuse
the system or track errors in the system. Many approaches exist to extract dif-
ferent kinds of information about systems. The ”4+1” view model of software
architecture one of the complex approach to describe the architecture of the
software-intensive systems. It is using multiple different views to get a com-
plete description of the program. It includes logical view, development view,
physical view, process view, scenario. The logical view is about the logic of the
system and what services it should provide to a user. The process view shows
a performance requirements. The software development modules represented
in the development view. The physical view shows physical requirements of the
system. To synchronize all components, the model uses the scenario, which
provides use cases for interaction between components.

In order to get more clear view of the software system, it is good to know
how different components interact with each other during runtime. This part
of analyzing is more difficult than static, because user analyzes the system at
runtime, and applies different techniques and use special tools.

8.3 Dynamic View Extraction Techniques

Extraction of dynamic view of software architecture could be performed by
certain techniques. This part has an overview of some common techniques.
This includes Aspect-oriented programming(AOP), Dynamic Program Slicing
technique.

8.3.1 Aspect-Oriented Programming

Overview

Aspect-oriented programming(AOP) is a programming paradigm[2], which al-
lows to modify the program, and inject pieces of functionality into existing code.
It uses aspects for these purposes. An aspect contains pointcuts. Pointcut is a
term that let the program know where to apply a cross-cutting concern. Cross-
cutting concern (for Java it usually calls joinpoint) consists synchronization,
logging, memory allocation and etc. Aspect-oriented approach can be used,
for example, in metrics injecting into your code. The Advice is an extension
to the definition of joinpoints, represented as an additional code to an existing
source code. It could be logging for example, to log each method call.

154CHAPTER 8. EXTRACTION OF THE DYNAMIC VIEW OF SOFTWARE ARCHITECTURES

Existing Frameworks

Frameworks that use an aspect-oriented approach became commonly used.
Therefore, exists many tools and frameworks which use an AOP approach.
Overview and basic description about few of them is presented in this part.

AspectJ There is one popular framework: AspectJ[3]. This is an aspect-
oriented extension for Java. It is in an Eclipse foundation open-source projects.
It became hugely popular because of it simplicity. It also has IDE integrations
for displaying cross-cutting structure. One of the aspects of AspectJ needs to
be considered, that it injects functionality during compiling time. AspectJ has
two mechanisms to implement joinpoints: 1) dynamic crosscutting; 2) static
crosscutting. AspectJ consists of joinpoints, pointcuts, advices and aspects.

AspectWerkz Another framework for extraction information from a running
software system made for Java is an aspect-oriented programming framework
AspectWerkz[9]. It has a lot of dynamic AOP operations: 1) add or remove an
advice at a specific pointcut; 2) reorder advices at specific pointcut; 3) swap
the implementation of a mixin. For dynamic constructs, AspectWerkz uses
approach based on a static weaver. Static weaver is a component of AOP for
integrating aspects in to program at specified location of the program. Using
bytecode modification AspectWerkz allows to modify your classes at different
moments: runtime, build-time, class load time. AspectWerkz widely used now
because it is fairly lightweight and dynamic framework.

Conclusion

Description of these instruments shows us that there are not complicated
methods and tools to extract information about software systems at runtime.
All this approaches were presented for Java, although there are many tools
with the same approach for different languages, for example a framework As-
pectC++ is made for C++. These tools successfully using aspect-oriented pro-
gramming technique, that helps to find performance problems.

AOP approach has some advantages for analyzing systems:

1. This instrumentation can be applied during deployment process without
any source code modification

2. Inserting probes into specific method. It helps to do not overload the
analysis of the software.

8.3. DYNAMIC VIEW EXTRACTION TECHNIQUES 155

3. There are many open source frameworks that are use AOP. That makes
development and profiling of software systems cheaper and easier.

8.3.2 Dynamic Program Slicing

In order to get an information of a software system there is another techniques
called dynamic program slicing. This part contains description of that ap-
proach. There are different parts that need to be reviewed to get an idea about
the dynamic program slicing. Overview is about a general idea and more spe-
cific parts of the technique[7]. On the next section is description of the tools
and frameworks. Conclusion summarizes the topic about dynamic program
slicing.

Overview

Dynamic program slicing is aimed to find all statements in a program that
somehow affect the value of a variable occurrence. The definition of term pro-
gram slice — is a set of statements that might change value of a variable, and
it is totally independent of the input values to the program.There are several
approaches for dynamic slicing. First two approaches extract a static view of
the program. Third uses Dynamic Dependence Graph for dynamic view.

Existing Frameworks

Few tools and frameworks exist which use dynamic program slicing. In fol-
lowing part, two tools are going to be described. It will give brief overview of
existing tools in industry.

JSlice First tool calls JSlice[10]. It is a tool that makes debugging and errors
finding of the program easier. JSlice is a high performance tool, because com-
presses execution trace and then analyzes it. That approach helps to JSlice
make faster automatic search of an error. It supports execution trace compres-
sion at runtime. That is one innovation that makes analyzes of large systems
faster. Another special thing about JSlice is that it can analyze a non-human
readable code (machine code). That particular ability allows JSlice to collect
information about external libraries. Therefore, all these features of JSlice be-
came widely applied in industry today.

The Wisconsin Program - Slicing Tool The Wisconsin Program is a second
tool[8]. The Wisconsin Program is aimed to support programs written on C lan-

156CHAPTER 8. EXTRACTION OF THE DYNAMIC VIEW OF SOFTWARE ARCHITECTURES

guage. It also uses different types of slicing programs: forward and backward
slicing, and also chopping. However, the Wisconsin Program has different ap-
proach that JSlice. Nevertheless, it is also very efficient. It creates a program
dependences and a control-flow graph. One of the main package of the Wis-
consin Program made for ”manipulating program dependence graph”[8]. This
package extends this graph to a system dependence graph. Slicing tool gives
to users many capability, including different types of program slicing. Chopping
of a program aimed to part of program or specific target, and showing compo-
nent dependencies inside a program. The Wisconsin Program - Slicing Tool
was tested and made for SunOS also known as Solaris 2.5.1.

Conclusion

Many tools use different techniques of dynamic program slicing. Moreover, we
can say that it is widely used in industry now. Because, some of them build for
specific systems. As we can see, slicing tools developed not only for regular-
users systems that are most popular (such as Windows, Mac OS, Linux), but
as we see for the Wisconsin Program Slicing Tool is made for Solaris system.
Dynamic program slicing, in general is a good approach for extracting runtime
information. It also can show a dynamic dependence graph, which is good
because user can see how different components of the program interact with
each other.

8.4 Dynamic View Extraction in Practice

There are many tools, frameworks for monitoring programs and extracting dif-
ferent information at runtime. Here, I am going to present few of them: Kieker
framework, DiscoTect and its visual representation in AcmeStudio(plugin for
Eclipse), Alborz toolkit.

8.4.1 DiscoTect

Overview

DiscoTect is a toolkit for deriving software architecture from the system at run-
time, and also for monitoring and analyzing the system during execution. The
system uses probes that are inserted in methods and functions calls, and
tracks value changing, creation of an object, etc. Then DiscoTect analysis
runtime events and map it to architectural events. Architectural events then
interpreted by architectural tool and presents the runtime architecture.

8.4. DYNAMIC VIEW EXTRACTION IN PRACTICE 157

Technical aspects

One of the technical aspects is a DiscoSTEP Programming approach. It con-
tains three components: 1) Events; 2) Rules; 3) Compositions. Events are
basically the XML scheme that defines how to receive events from the sys-
tem. Next, Rules contain information how to get an architectural view from
events. It has four specific terms: Input events, Output events, Trigger (checks
input, if we should apply the rule or not), Actions (actions for producing output).
Composition allows to create complicated sets of rules.

The DiscoTect Formal model is fairly not complicated. The best representation
of this mode is the Colored Petri Nets (CPN). The DiscoTect Formal model
has the same approach. Each rule has an equivalent of CPN transition. Each
event is a place in CPN representation. The concept is that we have an input
value for certain rule, then it check if it suited by the color of the event, then
it maps place into transition and complete petri net, by moving token from the
transition to the final place.

Conclusion

DiscoTect toolkit now widely used by many software developers. It has been
used for deriving architecture in software systems, such as mobile systems,
Enterprise JavaBeans (EJB) systems. The DiscoTect tool in many use-cases
shows good results. The DiscoTect technical aspects allow to extract an archi-
tectural dynamic program view significantly good. As The DiscoTect develop-
ers says[6] that results of using program are different to origin. Some of the
dynamically extracted architectures has differences comparing to the original
architecture. The DiscoTect tool is easy to use, but I personally had problems
with finding new builds of the tool. All versions that I found was for old versions
of a software (Eclipse).

8.4.2 Alborz toolkit

Overview

Alborz toolkit[5] analyzes a program from two perspectives. Therefore, it can
provide an architectural information form both static and dynamic views. It is
developed as an Eclipse plugin. Frequent pattern of execution traces tech-
niques in software system allows Alborz dynamically analyze the program.

158CHAPTER 8. EXTRACTION OF THE DYNAMIC VIEW OF SOFTWARE ARCHITECTURES

Technical aspects

The Alborz toolkit consist of following components: User interface component,
Datastore component, System analysis component, I/O component. The User
interface component interacts with user, and helps to a user to create a specific
request. It has wizard options for analyzes, which makes it easy to use. Data-
store component is used for storing all analyzed information. Datastore also
helps the system components communicate with each other. System analysis
component is a main component of the Alborz tool. It contains all mechanism
and functions for online analyzes. That also includes algorithms for processing
the data, for example search algorithms. I/O component is also very impor-
tant component and holds a lot of functionality. That component received the
data from different sources, create an output data using evaluation component.
Creates a wrapped source code for visualization tools.

Conclusion

Summarize all aspects of the Alborz toolkit there is some lack of the system
at this moment. One of them is that it analyzes the program by extracting the
execution trace of a certain order of tasks. Therefore, the user has to know the
domain of the software system. Also, with reference to developers of the Al-
borz toolkit[5], the tool has memory size constraints, so it cannot process very
large systems. In summary, I think that system need to be improved before it
can be used on full strength in software developing companies.

8.5 Case Study

This part shows how extraction of dynamic view of a software architecture
could be done in practice. Therefore, I am going to present a use-case of the
Kieker framework.

8.5.1 Description of Kieker Framework

Overview

One of the frameworks for dynamic view extraction is the Kieker framework[7].
Kieker framework is the framework that monitors the program at runtime. More-
over, it has measurement probes for analyzing performance of the software. It

8.5. CASE STUDY 159

is a useful tool for analyzing runtime behavior and representing visually archi-
tecture model with quantitative observation.

Technical aspects

Here are presented Kieker framework components. Which contains: monitor-
ing probes, monitoring records, monitoring writers, monitoring readers, moni-
toring log and stream, analysis and visualization plugins. These components
of the framework allows to analyze software systems. Components overview is
presented on Figure 8.1. Monitoring writers and corresponding readers com-
ponents are just logging and monitoring writers and readers for different parts
of the system such as a file system, a database, a virtual memory and etc.
Monitoring records component allows to save monitoring data of operations
that collected during the execution. Monitoring probes include methods and
mechanisms that allow to monitor method calls and also timing information for
a particular method. From the analysis and visualization plugins Kieker can vi-
sualize the architecture of the monitored system by representing it as call tree,
dependency graph or sequins diagram.

Figure 8.1: Shows components of the Kieker framework[7]

Conclusion

In summary, all components are properly divided by certain functionality. That
really helps to understand the framework itself. Therefore, it leads us to bet-
ter usage of this tool. In general, Kieker framework is a growing framework,
according to the official web page[1], besides Java language, currently under
developing the versions for Visual Basic 6, .NET, COBOL programming lan-
guages.

160CHAPTER 8. EXTRACTION OF THE DYNAMIC VIEW OF SOFTWARE ARCHITECTURES

8.5.2 Example of using Kieker Framework

In this part I will try to make a simple practical example that will help to under-
stand workflow of analyzing software systems.

Overview of an example program

The test application is represented as a Bookstore[7] that has a Catalog of
books in the store. It also has Customer Relationship Manager(CRM). Thru
Customer Relationship Manager Bookstore can search books. Catalog is
meant to be a list of books that the bookstore has. Customer can get an item
thru the bookstore. For clear understanding I present a class diagram (Figure
8.2) of this program.

Figure 8.2: Class diagram of test application

8.5. CASE STUDY 161

Important parts of the source code

In this example I will try to extract a sequence diagram of the application, an
operation dependency graph and a call tree. In a source code there is not
much to describe. The code is pretty much straight forward. Here are a cou-
ple important things and program work-flow. The program starts with Book-
storeStatrer class. It starts sending requests to Bookstore by triggering the
searchBook() method. Then the Bookstore calls the getBook() method from
the Catalog class and sends a request to the CRM by calling the getOffers()
function. The CRM.getOffers also calls the getBook method from the Catalog.
In the Catalog class the getBook function checks an input value for true or
false, and just pause the program.

Integrating Kieker framework into the code

For Integrating Kieker framework into code Kieker framework has probes of
AspectJ. For declaration these probes in code we have to use Kieker annota-
tion: @OperationExecutionMonitoringProbe. The following part shows, where
in the program we add probes to monitor methods.

In class Catalog we add one probe:

public class Catalog

{

@OperationExecutionMonitoringProbe

public void getBook(final boolean complexQuery)

{

...

}

}

The same approach we use in CRM class:

... @OperationExecutionMonitoringProbe

public void getOffers() { ... }

Bookstore class:

... @OperationExecutionMonitoringProbe

public void searchBook() { ... }

162CHAPTER 8. EXTRACTION OF THE DYNAMIC VIEW OF SOFTWARE ARCHITECTURES

For using these probes we need to use kieker — aspectj library. That library
comes along Kieker framework.

Execution application

In this part I will go step by step to build an application and show the main flow
of the program execution and extraction data from the program:

1. First of all, we need to build the project. For that class path needs to be
specified as following:

-classpath lib/kieker-1.6_aspectj.jar

2. Now when we have builded classes, we execute the program and extract
data from the program executions. In order to do that we put aop.xml and
property files to META-INF folder. And then run:

java -javaagent: lib/kieker-1.6_aspectj.jar

-classpath build/kieker.examples.userguide.ch5bookstore.BookstoreStarter

3. As a result after the previous step we have two files kieker — ... — .dat
and kieker.map. They contain extracted data about the execution trace
of the program.

4. Then we need to analyze this data. Keiker.TraceAnalysis made for ex-
tracting useful data from these files. Procedure is following: on these
files we need to apply shell script named trace-analysis.sh.

5. After fourth step we have gotten the system-entities.html file which con-
tains information about system components. Also deploymentSequence-
Diagram — {threadID}.pic, deploymentOperationDependencyGraph.dot
and callTree — {threadID}.dot files, which contain a sequence diagram,
an operation dependency graph and a call tree respectively.

6. Finally, after getting these files, we can visualize these properties of the
system by converting them in to image files.The results are going to be
presented in the following part.

Results

Diagram of the system’s workflow shown on following figures. On Figure 8.3
shown the call tree. We can see that it is work as it should work accordingly to
a description of the program. The operation dependencies graph presented on
Figure 8.4. It shows how components of the program interact with each other.
Finally the sequence diagram is on Figure 8.5. The sequence diagram shows
the object interactions during a period of time.

8.6. SUMMARY 163

Figure 8.3: The call tree

Conclusion of use-case

Kiker Framework provides good instruments for extracting the information about
a program at runtime. It is highly flexible and easy to apply. From the one raw
source file we can extract a lot of information about the program at runtime.
One of negative sides of this framework I would name, that data from the anal-
ysis is hard to visualize. For that you need to use other tools or scripts which
does not have any opportunity to customize an output.

8.6 Summary

In summary, there are many approaches for extracting dynamic view of a soft-
ware system at runtime. They are all have their pros and cons, and may be
applied to specific problems. Therefore, one approach can be better in one
area of the industry and another approach in a different direction. In my opin-
ion, this is extremely important part of software developing process. Because,
that helps to find errors faster, which makes development of software cheaper
and more efficient. It helps to understand and modify old programs, which
have been working and not modified for a long time because of its complexity.

164CHAPTER 8. EXTRACTION OF THE DYNAMIC VIEW OF SOFTWARE ARCHITECTURES

Using dynamic analysis helps to understand work-flow of a system, and how
components communicate with each other inside the system. Building the sim-
ple program in this work, I easily extracted a lot of information which is enough
to understand a workflow of the program. In this work also was considered dif-
ferent frameworks and techniques that are commonly used in industry. Many
of them are growing really fast and promise to be good soon. In general anal-
ysis of the programs need to be used, it makes development more efficient,
productive, easier and cheaper, and all these aspects are hugely valuable now
days in the software systems development industry.

Bibliography

[1] Kieker Framework. Web-page of project [online]. 2012. URL: http:
//kieker-monitoring.net/.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, and
J. Irwin J. Loingtier. Aspect-oriented programming. the European Confer-
ence on Object-Oriented Programming, 1997.

[3] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of aspectj. pages 327–353.
Springer-Verlag, 2001.

[4] Welf Lowe, Andreas Ludwig, and Andreas Schwind. Understanding soft-
ware - static and dynamic aspects. In 17th International Conference on
Advanced Science and Technology, 2001.

[5] Kamran Sartipi, Lingdong Ye, and Hossein Safyallah. Alborz: An interac-
tive toolkit to extract static and dynamic views of a software system. IEEE
International Conference on Program Comprehension, 2006.

[6] Bradley Schmerl, David Garlan, and Hong Yan. Dynamically discovering
architectures with discotect. SIGSOFT Softw. Eng. Notes, 30(5):103–106,
September 2005.

[7] Kiel University Software Engineering Group. Kieker 1.6 user guide, 2012.
URL: http://kieker-monitoring.net/documentation/.

[8] The Wisconsin Program-Slicing Too. Web-page of project [online]. URL:
http://research.cs.wisc.edu/wpis/slicing_tool/.

[9] Alexandre Vasseur. Dynamic AOP and runtime weaving for Java—How
does AspectWerkz address it? In Robert Filman, Michael Haupt, Katha-
rina Mehner, and Mira Mezini, editors, DAW: Dynamic Aspects Workshop,
pages 135–145, March 2004. URL: http://aosd.net/2004/workshops/
daw/Proc-2004-Dynamic-Aspects.pdf.

BIBLIOGRAPHY 165

[10] T. Wang and A. Roychoudhury. Jslice: A dynamic slicing tool for Java
programs.

166CHAPTER 8. EXTRACTION OF THE DYNAMIC VIEW OF SOFTWARE ARCHITECTURES

Figure 8.4: The operation dependencies graph

BIBLIOGRAPHY 167

Figure 8.5: The sequence diagram

168CHAPTER 8. EXTRACTION OF THE DYNAMIC VIEW OF SOFTWARE ARCHITECTURES

Chapter 9

Architecture evaluation

Hafiz Hasanov

169

170 CHAPTER 9. ARCHITECTURE EVALUATION

Contents

171

172 CONTENTS

Abstract: Software Architecture(SA) is one of the most important artifacts
during software development process, because the rest of implementation
is build upon it. Therefore, it is also crucial to ensure the correctness of
SA, because it is time and resource consuming to apply possibly required
changes in later stages of development life-cycle. The evaluation of the SA
is required to achieve this. In this paper we will discuss costs, benefits and
some major challenges of conducting SA evaluation. Also, we classify and
compare several evaluation methods which are widely used in industry.

9.1 Introduction

Software architecture (SA) evaluation has become one of the most important
phases of a software development life-cycle, because it reveals potential risks
and possible architectural discrepancies early in the process, thereby avoid-
ing costs and effort which would have been spent later on. However, software
evaluation requires some resources and effort as well. Therefore, it is cru-
cial to ensure that conducting a SA evaluation is more beneficial than it is
costly. Sometimes, for this purpose, it is required to conduct an additional
pre-evaluation cost-benefit analysis. Such an analysis can also be required to
persuade the owner of a project, who is financially responsible for it, to pay
these costs.

In the next section we will introduce some common terms to build our discus-
sion upon. Then in section 1.3 we will continue on discussing about costs,
benefits and some purposes of, and major challenges on SA evaluation. Af-
terwards, in section 1.4 we will classify and compare some of the well known
evaluations methods. Finally, in section 1.5 we will sum everything up by a
conclusion.

9.2 Background

In this section we will introduce some terms which will be used throughout the
rest of this paper. Basically this section contains some introduction on SA,
when it is designed, how it is commonly represented and what information
this representation contains. Moreover, we will talk about architecture quality,
quality attributes and SA metrics.

9.2.1 Software Architecture

Software architecture (SA) is the main output of the design phase of a software
system. It is defined as follows: ”The software architecture of a program or
computing system is the structure or structures of the system, which comprise

9.2. BACKGROUND 173

software elements, the externally visible properties of those elements, and the
relationships among them” in [BCK03]. In other words, it is a blueprint, that
the system would be build upon and/or the foundation of the future software
system. It contains all details on functionality, requirements, as well as design
decisions that are crucial for the lifespan of the system it is designed for. More-
over, SA is an abstraction of the structure of a system, which is much easier to
understand and explain. Therefore, SA is also a common ground for communi-
cation for each of the stakeholders like customer, developer, architect, project
manager and so on [ISO11, Sha90].

SA representation

A software system can have stakeholders of different specialization background
(e.g customer, user, developer, etc.). Each of these stakeholders might be in-
terested in some characteristics of the system and don’t event want to under-
stand the specification of other aspects. Therefore, to represent a SA, different
architectural views are needed, for people of various backgrounds.

In [Kru95], a representation of SA in 5 views is suggested, which is widely
used in industry. Each of these views describe some part of SA, from a certain
perspective as shown in Figure 9.1. Each view would then be described dif-
ferently, by means of diagrams and notation, which are understandable to the
audience the view is referring to.

Figure 9.1: The ”4+1” view model. [Kru95]

According to another source, SA is described by static, map, dynamic and

174 CONTENTS

recourse views [LBK+97].

So, although there is no single idea of which views are more useful, they all
basically serve one purpose: ”Separating different aspects into separate views
help people manage complexity” [DN02], divide and conquer principle.

Moreover, in [ISO11] a thorough diagram is given, which clearly depicts archi-
tecture description.

9.2.2 Quality of SA

The quality of a software system is measured by its relevance to project re-
quirements. In other words, if a system meets all its requirements, it can be
considered as a high quality system.

Functional and non-functional requirements. A required functionality of a sys-
tem is categorized as a set of functional requirements of that system. These
define, what and when the system should do certain things as well as how it
should react to some actions and/or inputs. Non-functional requirements, on
the other hand, define the level of quality, at which the system should perform
the required functionality. Therefore, non-functional requirements are often re-
ferred as quality attributes.

Quality attributes

As we already mentioned above, quality attributes of a software system are it’s
non-functional requirements. A quality attribute is defined as ”A characteristic
of software, or a generic term applying to quality factors, quality sub-factors, or
metric values” in [IEE98].

Depending on the purposes of the SA evaluation, various combinations of
quality attributes can be defined. Although the standard [IEE98] does not
mandate any specific attributes to choose and leaves this decision to the or-
ganization that does the evaluation, it states that the required attributes should
be precisely defined. As a result, the chosen combination of quality attributes
basically define the SA quality.

Although the paper’s topic is related only to architectural level, it is very impor-
tant to state that, the quality attributes are not dependent only on this level, but
also have to be monitored during the implementation and deployment phases.
There are some commonly referred quality attributes that we will be discussing
in more detail:

• Performance: We concentrate on user-centric software systems and

9.2. BACKGROUND 175

not on automated systems or others. Performance of a software system
comprises three sub-elements: the execution time of a single user oper-
ation, the resource access and the amount of memory used. Execution
time is the sum of time of an operation to go through the whole stack
of software layers(e.g client-side, back-end, business logic, data sources
and etc.). Resource access refers to the efficiency by which the system
accesses the resources. The latter sub-factor addresses the efficiency
of memory usage. Sometimes, only one or two of these sub-factors are
considered to be enough to represent the performance, but this doesn’t
have to always be the case. So, performance partially depends on com-
munication among different components, which is defined in architec-
ture, but it also depends on the algorithms that are implemented for the
required functionality.

• Modifiability: For a system to be modifiable, it should be readable and
easy to understand. These are determined by implemented coding styles
and how the required functionality is divided among components respec-
tively [BCK03]. The first one is handled implementation phase and the
latter needs to be designed in architectural level. In our case, we are
interested only in architectural level procedures.

• Usability: How easy the system is for the user to use defined by its
usability level. Whether user has the functionality to be able to provoke
some action once she clicks cancel, import or save button solely de-
pends on whether this functionality was included in architectural design.
However, the alignment and sizes of these buttons in user interface also
effect the usability of the system.

• Reliability: It is defined by probability that the system is working and
is available for use. It can be broken down into sub-attributes like fault
tolerance and recoverability, which means that the system is tolerant to
failures and can recover in those cases.

• Flexibility: ”The ease with which a system or component can be modi-
fied for use in applications or environments other than those for which it
was specifically designed” [IEE90]. We can see from the definition, that
flexibility is closely related to modifiability and also maintainability, which
we discuss next. So, this attribute defines in what level the software can
be modified(if needed) and how much effort it will require for this.

• Maintainability: This quality attribute is also very tightly related with flex-
ibility and modifiability. The standard [IEE90] defines it as ”The ease with
which a software system or component can be modified to correct faults,
improve performance or other attributes, or adapt to a changed environ-
ment”.

• Portability: It defines only one sub-element of maintainability or mod-
ifiability, namely the ease of software to adapt to some changes in the
environment(e.g platform change).

176 CONTENTS

• Security: In general, it is the ability of a system to deny system usage
and services to unauthorized users, while providing its services to autho-
rized users without negatively affecting the quality of service. However,
in more specific systems(e.g banking, military, etc.) the purpose of this
attribute may differ [BKLW95]. For example, while in a banking system,
the unauthorized modification of user information is the central risk, in
military or government related systems the secrecy of information is the
main concern.

An important message here on quality attributes is that ”Architecture is critical
to the realization of many qualities of interest in a system, and these qualities
should be designed in and can be evaluated at the architectural level” [BCK03].

Another important aspect is the relationship between quality attributes. As
some of the attributes’ improvement can lead to other attributes’ deterioration.
For example, the increasing number of servers in a web-application system
would positively affect the performance. However, the security would suffer,
because there would be more attack points. Thus, sometimes there should be
trade-off between different quality attributes while evaluating them to achieve
some level of quality. In such cases a trade-off might be needed.

Other quality attributes

Apart from commonly referred attributes we introduced earlier, there are also
several other attributes that also used quite often and need a special attention:

• Sustainability: According to [Koz11], a sustainable software system is
long-living and can be cost-effectively modified according to changing
requirements or environment. Sustainability is different from other rela-
tive quality attributes like evolvability, maintainability, etc., because they
consider notions of longevity and/or cost-effectiveness only to a limited
extent [BE02].

• Adaptability: It can be defined as sub-characteristic of portability as
the ability of a software system to adapt its functionality to environment
changes. However, in [Tar07], the run time changes(which is not the case
with portability) and behavioral and structural changes in requirements
are also considered.

• Evolvability: It defines how easy it would be to adapt the system to the
changes in the requirements with the least possible costs.

As it is seen from all examples, quality attributes are in a tight relationship
with each other, where some overlap while others negatively effect each other.
Therefore, it is crucial to consider these factors while choosing the attributes
for quality definition of a SA.

9.3. BENEFITS AND COSTS OF EVALUATION 177

9.2.3 Architecture quality metrics

A software quality metric is basically a function, as defined in [IEE98], which
takes in software data and outputs some numerical value interpreted as the
level of quality for the desired quality attribute. A quality metrics framework
shown in Figure 9.2, depicts that quality is defined as a collection of it’s sub-
factors, where each quality factor has its direct metric. Direct metric is just a
quality metric that only depends on its direct quality factor and not on any other
factor. For example, depending on aims of evaluation, performance quality

Figure 9.2: Quality metrics framework [IEE98].

attribute can have several quality metrics as throughput, latency or memory
access. One may need only one of these metrics, or in other case all three of
them, depending on the purpose. Coupling is anther example for SA metrics.
It is the number of relations between different components. Coupling can be
used to measure the maintainability or flexibility of a SA.

9.3 Benefits and costs of evaluation

As it is always important to conduct a benefits versus costs analysis before
starting any SA evaluation activity, it is intuitive to look into possible costs as
well as benefits of evaluation activities in general. Additionally, various pur-
poses for conducting SA evaluations and major challenges are discussed in
detail in this section.

178 CONTENTS

9.3.1 Benefits

First of all, SA evaluation saves time and effort for changes related to poor
design decisions, which without evaluation would probably have been detected
later on software development process, and would have costed a lot more. So,
there are apparently financial benefits, excluding the case that the evaluation
would cost more than its benefits. Therefore, Clements et al. introduced rules
on when to conduct an evaluation in [CKK01] : i) hold the evaluation when the
development team start to make decisions that depend on the architecture;
and ii) when the cost of undoing those decisions would outweigh the cost of
holding the evaluation. For the second rule, a team basically should conduct
an additional analysis as discussed earlier.

Additionally, SA evaluation has some extra benefits like positively affecting
the communication between stakeholders. Also, conducting evaluation filters
out some possible defects and/or unclear specifications from SA documenta-
tion. Thus, this basically results in avoidance of unexpected modifications later
on. Moreover, conducting evaluations reveals and highlights some function-
ality or requirements that could have been forgotten and not been discussed
thoroughly otherwise. This may naturally result in misunderstandings, in later
stages of development, and some additional inevitable costs later on. These
matters are discussed in more detail in [RG08].

9.3.2 Costs

Conducting most of the SA evaluation activities requires the highest possible
level of expertise in the field. Therefore, evaluation teams are made up of
experts of various backgrounds. This naturally reduces development produc-
tivity in some other ongoing projects, or even might be affecting the current
project. Although it most probably introduces some other costs, the cost of
reduced productivity can be mitigated by constantly refreshing the evaluation
team, which is of course possible mostly in large organizations. The prob-
lem with this is that, new team members would need some time for training
sessions, until they learn the current state, etc., which in turn introduces some
additional time and resource costs. Nevertheless, such costs don’t mean much
for large organizations and are part of their daily routine.

Because of lack of experience and maturity, for start up companies, on the
other hand, these costs can mean a lot, especially when they are beginning to
apply architecture evaluation to their development life-cycle. These matters are
discussed in more detail in [GLP+97]. Some SA evaluation methods require
performing simulations and/or creating prototypes during some of the phases,
which is very costly most of the time. However, these procedures are part of
the standard software development process anyway.

9.3. BENEFITS AND COSTS OF EVALUATION 179

9.3.3 Purposes

The most concrete aim of architecture evaluation is to identify potential risks
and verify quality requirements. For this, evaluation of the quality of differ-
ent aspects of architecture is needed. We define these aspects as quality
attributes, which we introduced in previous section. The nature of the aspect
or the combination of these aspects(or quality sub-factors), which are being
evaluated, determines the actual purpose of the evaluation. Apart from major
goals, there are some other purposes for SA evaluation, which can be listed
as follows:

To choose among several different SA design alternatives. Many times, there
are several alternatives for specific parts of SA. In this case, evaluation is con-
ducted to somehow score all alternatives and be able to compare their results.

Product line potential. This is analysis of several, independently designed ar-
chitectures, to evaluate how well they fit together in a product line. For this
purpose, several quality attributes for each SA may be evaluated to get the
final results.

Reuse potential. To decide if reuse candidate fits the architecture, evaluation
if conducted to find out the degree of dependencies, need for adaptation, cost
of performing the operations and etc.

Completeness. When part of documentation such as some of the SA views are
missing, static SA evaluation methods can be used to recover the whole SA
from the implementation, in the later stages of software development process.
This can be used to ensure the completeness of documentation.

These and some more are given in: [KLMN06].

9.3.4 Major challenges

Although it is very beneficial to conduct SA evaluation, it is a challenging pro-
cess overall and not every organization has the capacity to conduct evalua-
tions. Some major challenges described in [GLP+97] are as follows:

Evaluation teams should be gathered from experienced people of different or-
ganizational levels of a company, so that each team member would have a
different technical as well as non-technical background. However, this could
be costly for reasons discussed on costs of SA evaluation.

SA and requirements are very hard to specify precisely. This is the main rea-
son why most of the evaluation methods we would look at in the next section
require involvement of stakeholders at least in initial steps of evaluation. The
problem with this, is that it is difficult to gather all stakeholders together.

180 CONTENTS

9.4 Methods of SA evaluation

In this section, we first introduce some categories of SA evaluation methods
from different perspectives. Then, several methods are discussed and com-
pared in more detail.

9.4.1 Classification of SA evaluation methods

SA evaluation methods are often classified according to different perspectives.
As SA evaluations can and should be conducted(according to [GLP+97]) sev-
eral times during any phase of software development process, they are com-
monly classified by the time, they are applied to the SA. Thus, early evaluation
is conducted before implementation of a system, where late evaluation is con-
ducted after start of implementation [RG08].

Another perspective that is commonly described [GLP+97, RG08, DN02] is
whether evaluation method is based on qualitative or quantitative matters. Of-
ten, they are also referred as questioning techniques and measuring tech-
niques respectively. Questioning techniques basically used to evoke discus-
sions, by generating some questions on specific or general requirements and
design decisions. There are three questioning techniques:

• Scenarios: defined as ”Description of single interaction of user with sys-
tem” in [RG08]. They are a good way to define a general understanding
of quality attributes, because once generated, they represent a system’s
functionality, by describing the set of actions which lead to the execution
of a certain function.

• Questionnaires: is a list of questions related to quality requirements.

• Checklists

Measuring techniques, on the other hand, come up with solid, quantitative re-
sults that refer to the questions that may have been raised by the team mem-
bers. These results are based on the measurements calculated on some met-
rics suggested and/or defined by the team. Measuring techniques include:

• Metrics

• Simulations, prototypes and experiments

Of course, in practice it is possible to mix the questioning and measuring tech-
niques, which is actually done in some case studies [KDG+12]. The whole

9.4. METHODS OF SA EVALUATION 181

classification is given in Figure 9.3. Moreover, regarding generality of evalu-
ation, there can be also general, domain-specific or system-specific evalua-
tion methods as given in [DN02]. The scenario-based approaches are mostly

Figure 9.3: Classification of evaluation methods from different perspectives.
Perspective 1 here is, phase of development life-cycle, when the method is
applied, Perspective 2 is whether method is qualitative or quantitative

used to evaluate non-operational quality attributes such as maintainability and
reusability, whereas simulation and mathematical model-based methods are
more suitable for estimation of operational attributes. The Experience-based
method results, on the other hand, solely depend on intuition and experience
of the team.

In this paper we concentrate on the scenario-based SA evaluation during early
evaluation and the metrics-based as late evaluation methods because, these
methods are the most commonly applied in industry [RG08, LRVA, TLC02].
Although mathematical model-based early evaluation methods are also com-
mon, especially on estimating reliability and performance attributes, we de-
cided to leave them out of the paper’s scope.

9.4.2 SA evaluation methods comparison framework

To compare all the methods, we will be using simple framework, which is a
tear-down version from [DN02]. All evaluation methods are compared and
described against each item of the framework. Table 9.1 shows the criteria
which we will use later on.

182 CONTENTS

Item Description
Specific goals Which specific attributes does the method aim?
Inputs What are the inputs of this method?
Outputs What are the results
Experts involved Which experts should be involved in evaluation?
Stakeholders involved Is stakeholders attendance needed, in what level?
Activities What are the activities of the method?

Table 9.1: SA methods characterization and comparison framework items.

9.4.3 Early SA evaluation methods

Early evaluations are helpful because most of the times it is extremely costly
to make changes or fix errors and incorrect design decisions on later stages
of the project. Therefore, it is useful to start early evaluation iteration even
when SA itself hasn’t been completely described. In that case, evaluation is
conducted on specific parts of SA, iteratively going through other parts and/or
enlarging the evaluation scope.

Scenario-based SA evaluation

Scenario-based methods are applied to SA with the set of scenarios of interest.
The scenarios of interest are dependent on the specific goal of an evaluation.
For example, if evaluation aims to assess the evolvability of a system, then
these scenarios should encounter some potential future changes, referred as
change scenarios [LRVA]. Afterwards, the scenarios which are not supported,
or in other words, cannot be executed on the system, reveal possible errors
or potential improvements. Also, scenario-based methods list the changes
needed for the SA to comply to those scenarios and estimate the costs. These
methods require the presence of stakeholders mostly during the generation of
the scenarios, which as we stated before, is challenging and can be consid-
ered as a drawback. Another disadvantage is the fact that there is no particular
number of scenarios that is needed to be generated, to assure the correctness
of the SA. This is one of the reasons for an evaluation team to be consisted
of experienced professionals, which reduces the negative effect. Also, the out-
come is based on intuition, rather than solid quantitative results, in which case,
we do not gain any specific statistical values. For example, these methods
cannot estimate concrete numeric value on how costly would a change be, but
only gives abstract results.

9.4. METHODS OF SA EVALUATION 183

Scenario-based SA Analysis Method(SAAM)

The main goal of SAAM is to verify if the given SA representation complies
to the basic principles of architecture design like architectural styles or design
principles, on a desired level. During this process, it requires the evaluation
team to focus on potential trouble areas which helps the team to asses the risks
and detect requirement conflicts. Moreover, SAAM can be used to compare
several architecture alternatives.

Specific goals. SAAM does not refer to one or several specific quality re-
quirements. The attributes that it assesses are defined by the scenarios that
are evoked by the team.

Inputs. The main inputs are problem statement, SA description and quality
requirements.

Outputs. The outputs are the scenarios which refer to quality attributes of in-
terest and also, required modifications and estimated effort, required to realize
the scenarios.

Experts involved. Because this method does not address specific quality
attributes, it does not require any specific experts. So the people involved in the
evaluation can be any professional. However, as for any evaluation method,
team members are selected among experienced professionals, because of
required estimations and other activities which require special expertise.

Stakeholders involvement. Stakeholders are required to attend in require-
ment specification, SA description and scenarios elicitation steps.

Activities. There are six steps of conducting SAAM according to [RG08],
which are as follows:

1. Specifying requirements and design constraints.

2. Description of SA. Here, candidate architectures are described by means
of views [Kru95], with addition of several other views like relationship view
between components(represented by UML communication diagram) and
dynamic view(UML sequence diagram). The requirement of any of these
views depends on the goal of evaluation. If the goal is to reason about
performance, for example, then process view is required.

3. Elicit scenarios. In this step, presence of stakeholders is required for
brainstorming sessions. The desired set of scenarios are generated ac-
cording to the goals of the evaluation. This is of course, as depicted in
Figure 9.4, together with prioritization of the scenarios step are done
iteratively.

4. Prioritize scenarios. In this step, scenarios are prioritized and weighted

184 CONTENTS

according to importance. The level of importance is defined by stake-
holders’ thoughts and opinions.

5. Evaluate SA with respect to chosen scenarios. The scenarios are
applied by investigating the impact of the scenario on the SA. Accord-
ing to this impact, the scenarios are categorized to indirect(modifications
needed on SA) and direct(requires no modification to SA). In case of an
indirect scenario, changes needed to be made are explored, and effort
is estimated by listing all components and relations which are affected
by this modification. In case, where the goal of evaluation is to choose
the best SA candidate, the results of all alternatives are compared in the
end. Naturally, the weight of each scenario is taken into account in this
process.

6. Interpretation of results. Finally, the results are analyzed in this step.
For example, the high number of relations among components of un-
related scenarios may indicate high coupling. However, as stated ear-
lier, SAAM does not give any precise metrics of fitness, for example, but
rather just some estimates for comparison on scenario basis.

Figure 9.4: Activities of SAAM [RG08].

The Architecture Trade-Off Analysis Method(ATAM)

Although SAAM is very useful in early evaluation of SA, this method does not
take into account the relationship among quality attributes. It does not analyze
the effects that one attribute may have on other attributes. ATAM on the other
hand, shows how quality attributes interact with each other. This is crucial
mainly because, the trade-off decision needs to be made.

9.4. METHODS OF SA EVALUATION 185

Specific goals. Same as SAAM, ATAM does not refer to specific attributes and
covers multiple attributes. The range of attributes varies by the the generated
scenarios.

Inputs. Inputs of ATAM are architecture, business goals and perspectives. It
does not mean that these are final versions, and in fact, are redefined when
the evaluation reveals some problems.

Outputs. The outputs are sensitivity points, trade-off points and potential risks.

Experts involved. ATAM also does not concentrate on specific quality at-
tribute, allowing evaluation of various attributes. Therefore, no specific expert
involvement is required.

Stakeholders involved. All stakeholders involvement is required by ATAM.

Activities. ATAM can be used at various stages of software development pro-
cess. However, it is crucial to find the trade-off between the quality attributes
early in the SA design process. The steps of conducting ATAM might seem
similar to SAAM, however, there are some differences and additional steps. In
brief, the steps are as follows:

Presentation

1. Present the ATAM. The method and it’s activities are explained to stake-
holders.

2. Present business drivers. The business goals and motivation that drive
the project are described by project manager.

3. Present architecture. With the emphasis on how it refers the business
goals, the candidate architecture is described in this step.

Investigation and analysis

4. Identify architectural approaches. Architectural approaches are iden-
tified.

5. Generate quality attribute utility tree. The high priority scenarios are
elicited with respect to quality attributes using utility trees. It is done by
specialization, starting from an attribute towards the scenarios that affect
that attribute. Three type of scenarios are important for ATAM, which are

– use case scenarios: depict typical uses of the system.

– growth scenarios: represent potential changes and modifications to
the system in the future.

– exploratory scenarios: which represent extreme cases, which help
to explore the system’s peak performance(referred to any quality
attribute).

186 CONTENTS

6. Analyze architectural approaches. During this step the architectural
approaches that refer to the scenarios are identified and analyzed. The
sensitivity points and trade-offs between quality attributes are also iden-
tified during this step. Sensitivity points are key architectural decisions
that have a huge effect on the system.

Testing

7. Brainstorm and prioritize. The scenarios are further filtered by voting,
which involves all stakeholders.

8. Analyze architectural approaches. This step is a reiteration over step
6, but this time with a focus on scenarios with the highest priority. These
scenarios are chosen to be test cases and therefore may reveal further
risks, sensitive points, etc.

Reporting

9. Present results. Previously collected information on scenarios, archi-
tectural approaches, utility tree, sensitivity points, etc. is presented in a
systematic reports and presentation to the whole group of stakeholders.
These reports also may contain mitigation strategies and so on.

Important point here is that the order of these steps is not in a straightforward
waterfall process, but rather can be executed in parallel, previous steps might
be restarted or internal iterations can be performed. This can depend on var-
ious aspects such as availability of involved personnel or artifacts and so on.
ATAM is discussed in more detail in [KKC00].

Scenario-Based Architecture Re-engineering(SBAR)

SAAM does not provide a specific way for evaluating operational quality at-
tributes, which is understandable, because it is hard to estimate run time spe-
cific attributes only by scenarios. Unlike SAAM, SBAR provides four tech-
niques for quality attribute estimation, to assess each attribute in a more suit-
able way. These techniques are scenario-based, simulation-based, mathemat-
ical model-based and experience-based, as we discussed earlier. For exam-
ple, for operational attributes, such as stability and performance.

In general, SBAR aims to estimate how well the SA reaches it’s quality re-
quirements. This is achieved by iterative transformation of SA, until it meets
all requirements. First, the initial version of SA is defined. Then estimation is
done for each quality attribute by the chosen approach. The results are inter-
preted and compared. If all quality goals are met, the re-engineering process
is finished. Otherwise, SA is transformed and taken into next iteration.

In case of scenario-based technique, suitable scenarios are elicited for each
attribute and manually executed. The ratio of scenarios that can be handled

9.4. METHODS OF SA EVALUATION 187

by SA and the ones that cannot be handled defined the level of quality for each
attribute. For scenario elicitation, the team have two options, complete and
representative. In complete approach, all possible scenarios should be gener-
ated, where as in representative option, only extreme cases are chosen, which
represent all different scenarios. Both approaches have disadvantages as for
first approach, it is merely possible to find all possible cases, especially for a
large architecture and for latter approach, it is unclear how the representative
scenarios are chosen.

Additionally, there are five transformation techniques, provided by SBAR. These
are:

• Impose architectural style

• Impose architectural pattern

• Apply design pattern

• Convert non-functional requirements to functionality

• Distribute requirements

SBAR does not require many stakeholders to be involved in evaluation. The
evaluator is the designer of SA. SBAR is described in more detail in [BB98].

Architecture-Level Modifiability Analysis(ALMA)

The scenario-based methods discussed so far, address multiple quality at-
tributes. ALMA on the other hand, is designed to evaluate only modifiability.
This method is specialized on modifiability, therefore it analyses this attribute
in more detail, hence resulting in more clear estimations. However, it needs
to be accompanied by other evaluation methods, because, as we already, it is
crucial to analyze several quality attributes and their relationships.

Specific goals. ALMA specifically assess modifiability of SA.

Inputs. Architecture description.

Outputs. Depending on the goal which is set in the first step of evaluation,
output may slightly differ. It can be identification high-cost changes, estimation
of possible maintenance costs or comparison of alternative architectures with
respect to maintenance costs.

Experts involved. The SA designer and several evaluators are main experts
involved in the process.

Stakeholders involved. Stakeholders’ involvement is required almost in all
steps of the evaluation.

188 CONTENTS

Activities.

• Goal setting. There are three goals that ALMA can be used to achieve.
In this step, it is crucial for the stakeholders to decide on the purpose of
the evaluation. This is important mainly because, the scenarios that will
be generated slightly differ according to the goal of evaluation. These
goals are:

– Maintenance cost prediction
– Risk assessment
– Alternative SA-s comparison and selection

• Architecture description. In this step, the representation of the part(or
view) of architecture is collected, which is related to modifiability. This
representation needs to contain information on components of the sys-
tem, the interaction between these components and their relationship
with the system’s environment.

• Change scenario elicitation. The scenarios that are generated in this
step of evaluation are dependent on the aim of evaluation chosen in first
step. If the goal is to estimate maintenance costs and effort then change
scenarios with high probability are chosen. On the other hand, if the goal
is to assess risks, the scenarios that underline those risks are generated.
Finally, for comparison of alternative architectures, the team needs to
elicit the scenarios which accentuate those differences.

An example change scenario elicitation is given in [LRVA], for the aim of
identifying risks. The scenarios that are generated are somewhat com-
plex changes that likely to occur. Also, the complex changes are cate-
gorized into changes that involve different system owners, that strongly
affect the architecture and those that introduce version conflicts, etc.

• Change scenario evaluation In this step, the effects of the change sce-
narios on architecture is estimated. This consists of three main steps:

– Determine the directly affected components.
– Identify the nature of effects on these components.
– Determine ripple effects.

The most difficult step here is the last one, because the ripple effect
can propagate into more than several layers. It may even take a cyclic
form and hence, make it very hard to detect the level of propagation.
Moreover, there is not much information on ripple effects on architectural
level, which makes it even harder to estimate. In such case, the experi-
ence of team members helps to do an average estimation. Also, there
some quantitative approaches on calculating the approximate impact of
changes on SA.

• Interpreting results This step is straightforward, the collected and esti-
mated data is processed and visualized.

9.4. METHODS OF SA EVALUATION 189

Adaptability Evaluation Method(AEM)

AEM is designed to evaluate adaptability of a system. It defined how adaptabil-
ity can be represented in SA and how this SA can be assessed and validated
whether quality goals are met. AEM consists of four phases which are as
follows:

• Defining adaptability goals. In this phase the adaptability requirements
are collected with the involvement of stakeholders. These requirements
then refined and mapped to specific functionality of a system. Also, trade-
off analysis is conducted to assess the risks of conflicts with other quality
attributes.

• Representing adaptability in SA. This phase guides the team on map-
ping the selected scenarios to elements of SA so that it can be evaluated
directly in architecture.

• Adaptability evaluation. AEM provides both qualitative as well as quan-
titative techniques for evaluation of SA for adaptability requirements. These
techniques are rather complementing each other to gain more thorough
results. The goal of qualitative evaluation is to calculate the impact of
scenarios and find out the adaptability level under these changes. Quali-
tative evaluation aims to reason about the problems that may occur if the
adaptability requirements are not met by the candidate SA.

AEM is thoroughly discussed in [Tar07].

9.4.4 Late SA evaluation methods

Late evaluation methods are helpful for static evaluation, in other words, map-
ping the implemented architecture to earlier intended SA to check whether it
complies to addressed quality requirements. There can be various reasons for
deviation; the developers may not always follow the the best way to implement
modifications, many different developers may work on same implementation
and change according to their understanding and etc. Therefore, the process
of evaluation should be iterative, so that evaluation would be applied on each
implementation and etc.

Metrics-based SA evaluation

Metrics-based approaches are often applied late in the development process,
because it is easier to define metrics after the implementation is started.

190 CONTENTS

Tvedt et al.’s method

A metric-based approach suggested in [TLC02] helps the analysis team to
prevent the architecture from deviation by regular and systematic application
of this method. Here are the steps of this method in brief:

• First step is to choose a perspective, to be evaluated. On the other hand,
choose a specific goal, a one or set of quality attributes that we want to
prevent from degeneration.

• Then, the team needs to define the design guidelines and respective
metrics with respect to selected perspective. For example, if flexibility or
maintainability are under assessment, the guideline could be that com-
ponents should be loosely coupled and metric can be derived from it,
to be some threshold value for the number of relations between certain
components.

• Afterwards, the planned SA is defined. This is basically the input of the
evaluation, the SA which is under assessment.

• Next, the actual implemented architecture is derived from the source
code. This is the abstracted version of implementation. There are some
tools available for reconstruction of static views of SA. Different tools are
available for various programming languages.

• The architectural deviations are identified in the next step. These are
the differences between actual architecture and the planned one. The
differences can be, for example, the values of metrics which exceeded
the predefined threshold.

• Finally, some high-level recommendations towards changes, to recover
the SA to planned version are formulated. Moreover, after the changes
are applied, the whole process is repeated again, for verification of cor-
rectness of changes.

This approach, together with a case study is presented in more detail in [TLC02].

9.5 Conclusion

In this article, we first started with defining main terms, needed for discussion
on SA, SA quality and it’s evaluation. Next section, contains information on
benefits and costs, purposes and major challenges of conducting SA quality
evaluations. This basically is to answer why and when evaluations need to be
conducted and when not. Afterwards, we discussed the classification of SA

BIBLIOGRAPHY 191

quality evaluation methods and presented several important evaluation meth-
ods. To conclude, it can be seen that scenario-based methods appear to be
used more than other evaluation methods.

Bibliography

[BB98] P.O. Bengtsson and J. Bosch. Scenario-based software architec-
ture reengineering. In Proceedings of International Conference of
Software Reuse 5 (ICSR5), June 1998.

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software Architec-
ture in Practice, volume 2nd of SEI series in software engineering.
Addison-Wesley Professional, 2003.

[BE02] Rami Bahsoon and Wolfgang Emmerich. Evaluating software ar-
chitectures : Development , stability , and evolution. Foundations,
2002.

[BKLW95] Mario Barbacci, Mark H. Klein, Thomas A. Longstaff, and
Charles B. Weinstock. Quality attributes. Technical report
CMU/SEI-95-TR-021, Software Engineering Institute, 1995.

[CKK01] Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software
Architectures: Methods and Case Studies. Addison-Wesley, 2001.

[DN02] L Dobrica and E Niemela. A survey on software architecture
analysis methods. Software Engineering, IEEE Transactions on,
28(7):638–653, 2002.

[GLP+97] Gregory Abowd, Len Bass, Paul C. Clements, Rick Kazman, Linda
M. Northrop, and Amy Zaremski. Recommended Best Industrial
Practice for Software Architecture Evaluation. Technical report,
1997.

[IEE90] Ieee standard glossary of software engineering terminology. IEEE
Std 610.12-1990, page 1, 1990.

[IEE98] Ieee standard for a software quality metrics methodology. IEEE Std
1061-1998, 1998.

[ISO11] ISO/IEC/IEEE. Systems and software engineering – architecture
description. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC
42010:2007 and IEEE Std 1471-2000), pages 1 –46, 1 2011.

[KDG+12] Heiko Koziolek, Dominik Domis, Thomas Goldschmidt, Philipp
Vorst, and Roland J Weiss. MORPHOSIS : A Lightweight Method
Facilitating Sustainable Software Architectures. 2012.

192 CONTENTS

[KKC00] Rick Kazman, Mark Klein, and Paul Clements. Atam: Method for
architecture evaluation. Technical Report CMU/SEI-2000-TR-004,
Carnegie Mellon Uiversity, Software Engineering Institute, 2000.

[KLMN06] J. Knodel, M. Lindvall, D. Muthig, and M. Naab. Static evaluation of
software architectures. Conference on Software Maintenance and
Reengineering (CSMR’06), pages 10 pp.–294, 2006.

[Koz11] Heiko Koziolek. Sustainability evaluation of software architectures:
a systematic review. In Proceedings of the joint ACM SIGSOFT
conference – QoSA and ACM SIGSOFT symposium – ISARCS on
Quality of software architectures – QoSA and architecting critical
systems – ISARCS, QoSA-ISARCS ’11, pages 3–12, New York,
NY, USA, 2011. ACM.

[Kru95] P Kruntchen. Architectural Blueprints - The ”4+1” View Model of
Software Architecture. IEEE Software, 12(November):42–50, 1995.

[LBK+97] Chung-horng Lung, Sonia Bot, Kalai Kalaichelvan, Rick Kazman,
Canada Ky, and Canada Nl. An Approach to Software Architec-
ture Analysis for Evolution and Reusability Department of Com-
puter Science Nortel University of Waterloo. pages 144–154, 1997.

[LRVA] Nico Lassing, Daan Rijsenbrij, Hans Van Vliet, and About Alma.
Experience with ALMA. (c).

[RG08] Banani Roy and TCN Graham. Methods for evaluating software
architecture: A survey. School of Computing TR, 2008.

[Sha90] Mary Shaw. Toward higher-level abstractions for software systems.
Data Knowl. Eng., 5(2):119–128, July 1990.

[Tar07] Pentti Tarvainen. Adaptability Evaluation at Software Architecture
Level, volume 02. IEEE Computer Society, Washington, DC, USA,
compsac ’0 edition, 2007.

[TLC02] Roseanne Tesoriero Tvedt, Mikael Lindvall, and Patricia Costa. A
process for software architecture evaluation using metrics. In Pro-
ceedings of the 27th Annual NASA Goddard Software Engineering
Workshop (SEW-27’02), SEW ’02, pages 191–, Washington, DC,
USA, 2002. IEEE Computer Society.

BIBLIOGRAPHY 193

