
Proceedings
of Seminar

Full –Scale Software Engineering

2014
Editors: Horst Lichter

Ana Nicolaescu
Andreas Steffens
Andrej Dyck
Firdaús Harun

The current state of ’Infrastructure as Code’ and how it
changes the software development process

Joel Hermanns
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

joel.hermanns@rwth-aachen.de

Andreas Steffens
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

andreas.steffens@swc.rwth-aachen.de

ABSTRACT
In recent years the DevOps movement gained much popu-
larity. A key aspect of DevOps is automation, and one part
of the automation is the so called “Infrastructure as Code”
principle. This paper will describe goals and use cases of
“Infrastructure as Code” and show benefits when integrating
this principle in the software development process. There-
fore we will look at different levels of infrastructure, from
single machine level to multi-cloud systems, to see different
use cases and point out the advantages and problems that
may appear in these cases. Furthermore we will compare ex-
isting ideas and concepts to handle the infrastructure as code
and analyze tools that implement these concepts. Finally we
will look at ways to integrate these principles into the soft-
ware development process, especially in terms of testing the
infrastructure code.

Keywords
DevOps, Infrastructure as Code, Cluster, Provisioning

1. INTRODUCTION
Since the first DevOpsDays in 2009, the DevOps move-

ment generated lots of interest and became very popular[18].
Similar ideas were already present before 2009, but not known
as DevOps. For example, describes Debois the need for in-
frastructure agility 2008[13]. The concept of combining the
roles of developers and operations was fastly adopted by var-
ious companies. The goal of this concept is to avoid com-
mon problems when operations and developers are separated
teams. Developers want to iterate fast and deploy often,
whereas operations are more interested in creating a stable
and reliable infrastructure and want to avoid changes. Since
agile processes became more popular recently the need for
DevOps practices increased a lot, especially in fast moving
environment at smaller companies and startups[18].

Similar to the processes, the datacenter and infrastruc-
ture needs have evolved in the recent years. As Hashimoto
describes, the datacenter has changed from a single server

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2014/15 RWTH Aachen University, Germany.

structure to more complex scenarios combining virtualized
hardware with several on-demand services [19]. Whereas
software formerly ran on a single server, today’s software
may be deployed to fleets of virtualized servers, making use
of various XaaS providers. These complex scenarios can
no longer be handled manually by multiple administrators.
Thus new ways are needed to manage and administrate the
infrastructure. This is where DevOps ideas, especially “In-
frastructure as Code“, get important. Specialized software
is used wherever repetitive tasks can be replaced and auto-
mated. The community and industry has produced a large
amount of tools and techniques for this purpose in the recent
years. This ranges form various provisioning and configura-
tion management tools, which are meant to replace error-
prone shell scripts, making it easier to manage the state of
multiple machines, to software to manage clusters of servers.
Frameworks like Mesos let applications view a cluster as a set
of resources that can be allocated [20]. A similar idea is be-
hind CoreOS, a minimial linux distribution, that works like
an operating system for a cluster by providing a distributed
init system to run applications in isolated containers [2].

These techniques allow better scalability and flexibility.
For example, Spotify was able to scale to about 300 servers
per operations engineer, which would have never been pos-
sible without a vast amount of infrastructure automation
[24]. At Salesforce DevOps principles also reduced cost, in
terms of time and money, for developing software, since each
engineer is able to run production similar environments on
the development machine without the hassle of setting up
complex environments by themselves [23].

We can see that infrastructure automation is a hot topic
and already widely adopted. In this paper, we will look at
the variety of tools and concepts to maximize automation
and see how it changes the software development process.

The rest of this paper is structured as follows. The sec-
ond section will introduce the concept of provisioning and
configuration management. Additionally, we will give two
examples of tools. Section 3 will describe tools to setup ma-
chine enviroments and share them. We will look at Vagrant,
a tool to setup development environments, and Docker, a
tool to create Linux Containers. In section 4, we will look at
multi-cloud systems, i.e. techniques to combine and manage
various cloud related services. Section 5 will discuss changes
in the software development process and will especially look
at changes in testing and deploying software as well as test-
ing infrastructure code. Finally, in the last section we will
discuss similarities and differences between the tools and
concepts we have looked at.

2. PROVISIONING AND CONFIGURATION
MANAGEMENT

2.1 Basic Concepts
The focus of provisioning and configuration management

tools is to replace error-prone shell scripts that are used to
manage the state of machines. For example, installing a
certain set of packages and applying defined configurations
to running services. Shell scripts may get hard to maintain
and it is not easy to produce modular, reusable code. The
idea is to provide or use another language to define these
properties without the limitations of shell scripts. These
languages are designed to allow great modularity to max-
imize reusability. The concept of the language itself may
vary from a domain specific language (DSL) implemented
in a common programming language (e.g. Puppet[6]), over
tools using an existing language and acting in terms of a
framework (e.g. chef[1]), to tools inventing a new language
with specific, desired properties (e.g. Nix [15]). These lan-
guages are often declarative and describe the desired state
of the system, instead of a way to achieve it.

Of course there are various other configuration tools de-
signed for different purposes (e.g. IBM Tivoli System Au-
tomation for Multiplatforms or HP Server Automation Sys-
tem) that may follow other principles, but a more detailed
look at these is out of scope for this paper (for a better
overview see [14]).

In the following, we will look at two different tools: Pup-
pet, based on Ruby, as a popular representant for open
source configuration tools, and NixOS, coming from aca-
demica, based on the Nix language.

2.2 Puppet
In Puppet, everything is treated as a so-called resource.

A resource can be a file, a package, a user or a group [26]. A
Puppet installation consists of a server and multiple clients,
where the server provides the configuration for each client.
The various configurations are grouped into so-called man-
ifests and stored on the server. The configuration on the
server describes the desired state for each of the clients, by
matching the clients hostname. The clients connect to the
server and fetch and apply their configuration. The config-
urations itself can be organized in manifests and classes.

The following is a very basic example to show how the
Puppet language looks like. If this manifest is applied, it
will ensure that a package called “apache2” is installed, a
user called “admin” is present and a file “/tmp/foo” with the
content “I’m the foo file” and permissions 0640 is present in
the system:

1 package { ”apache2 ”
2 ensure => i n s t a l l e d
3 }
4 user { ”admin ”
5 ensure => pre sent
6 }
7 f i l e { ’ foo ’ :
8 path => ’/tmp/ foo ’ ,
9 ensure => present ,

10 mode => 0640 ,
11 content => ”I ’m the foo f i l e . ” ,
12 }

2.3 NixOS
NixOS is a purely functional linux distribution, build on

top of the package manager Nix that works on UNIX based
systems [15]. Purely functional means that each package is
treated as kind of an immutable data structure. All pack-
ages are installed in a so-called Nix store on the filesystem.
The file path consists of a cryptographic hash that is com-
puted using the dependencies of the corresponding package.
To describe how the package is built and installed, Nix uses
a functional language called Nix. Since each package is in-
stalled in its own unique path and symlinked to all other
packages that depend on it, Nix allows to have multiple dif-
ferent versions of one package installed without dependency
problems. This way, Nix is able to allow (nearly) atomic
upgrades and rollback of your installed packages.
NixOS extends the approach of package management to con-
figuration management [16]. Basically every static part of
the system (i.e. configuration files, bootup scripts, all other
parts that do not change during runtime) is treated the way
Nix works with packages. This allows to build the whole op-
erating system based on configuration files written in Nix,
including partitions, filesystems, packages, services and their
configuration files. Everything is based on the functional
language Nix, without the need to know different configura-
tion formats or languages. When the configuration file has
changed, the user can build it with optional activation at
next boot. Furthermore, the user can also create a virtual
machine with these changes, without affecting the host sys-
tem. Because of Nix purely functional manner, the same
configuration file guarantees to produce the same result, ei-
ther if you install from scratch or upgrade an existing system
(except globally mutual data such as database contents or
personal data).
The following shows an example of a NixOS configuration.
Each configuration is basically a function. The first line
defines the head of the function, which takes at least two ar-
guments: “config” and “pkgs”. The function returns a set of
option definitions, which is denoted by the block between {
and }. In this case it sets two options. The first one enables
a service called “httpd” and the second sets the attribute
“documentRoot” of this service to “/webroot”.

1 { con f i g , pkgs , . . . } :
2
3 { s e r v i c e s . httpd . enable = true ;
4 s e r v i c e s . httpd . documentRoot = ”/ webroot ”;
5 }

Summary.
As we have seen configuration management and provi-

sioning tools try to add better flexibility for the installation
process of single machines. The most common concept to
achieve this flexibility is the use of a DSL.

3. MACHINE ENVIRONMENTS
This section is about environments applications are run-

ning in. A common problem with software that is deployed
in production, is the enviroment. Software needs to be devel-
oped and tested in production like environments. Virtualiza-
tion and recently containerization are concepts to make such
environments portable, but without any additional tools this
may get hard as well. In this section, we will focus on tools

that aim to improve this situation. We will introduce Va-
grant, a framework to set up more complex development
environments, which is used by various projects. Secondly,
we will look at Docker, because it is currently a very popular
tool for creating and sharing containers and its ecosystem is
moving fast.

3.1 Vagrant
Vagrant is basically a Ruby abstraction layer on top of the

creation of development environments [9]. It comes with a
command line application that reads a so-called Vagrantfile.
The Vagrantfile contains information about the desired sys-
tem in form of Ruby code. The developer describes the base
image of the resulting machine, some system settings like
hostname, network settings and provisioning methods. Ad-
ditionally, one can add shared folders, i.e. folders on the host
system that can be accessed from within the machine. With
just a few commands Vagrant will create and provision the
machine and connect via SSH. This way, the development
can take place on the developers machine, also if complex
production like settings are needed, whereas the Vagrantfile
and any needed scripts can easily be shared via version con-
trol systems. A sample Vagrantfile could like the following:

1 Vagrant . c o n f i g u r e (”2 ”) do | c o n f i g |
2 c o n f i g .vm. box = ”hash icorp / p r e c i s e 6 4 ”
3 c o n f i g .vm. s y n c e d f o l d e r ” s r c /” , ”/ srv /

webs i te ”
4 c o n f i g .vm. p r o v i s i o n ” s h e l l ” ,
5 i n l i n e : ”echo Hel lo , World ”
6 end

In this example a base box called “hashicorp/precise64” is
used. If the box is not present locally, it will be down-
loaded from a publicly available catalog. Line 3 defines a
synced folder. This syncs the local subfolder “src/” with the
folder “/srv/website”. Additionally, we define a shell pro-
visioner in line 4 and 5. It will run “echo Hello, World”
when the machine has booted successfully the first time.
Besides shell, Vagrant supports various other provisioning
techniques, such as Puppet or Chef.

Vagrant is able to create machines via different providers,
such as VirtualBox and VMware.

3.2 Docker
Docker is a tool that lets you create environments called

images, share them and run isolated applications inside.
The concept of containerization is similiar to virtualization.
Whereas a virtual machine runs on a set of virtualized re-
sources, a container shares the resources with its host. Docker
uses different techniques offered by the Linux kernel to iso-
late and abstract the container form the host system. The
Linux kernel allows to group processes into different names-
paces, where different groups cannot see the processes of
each other. This namespace isolation allows Docker to run
each container in its own sandbox. Using these techniques,
Docker is able to run applications in an environment similar
to virtualization, but way more lighweight. Because of this
very little overhead, a container can be started in just a few
seconds instead of minutes. Another important aspect of
Docker is the way to share and distribute images. A Docker
image is always derived from a base image, e.g. ubuntu or
fedora. On top of this basic environment one can perform
different actions, such as adding an environment variable,

Figure 1: Basic components of Docker

adding a persistent volume or running arbitrary commands.
Everytime one of these actions is performed a new layer is
added on top of the current file system of the image. Ba-
sically an image consists of multiple layers that are merged
together at startup. Because these layers can be shared sep-
arated, only the missing layers need to be downloaded.

Docker allows basically two ways to create an image. The
first way is to use the Docker CLI. It allows to perform
actions on an existing image and to save the result as a new
image. This is quite similar to commiting in version control
systems and therefore it is called commit. The second way
to create a docker image is to use a so-called Dockerfile.
Docker images can be built using a specific file that contains
meta information and the action to perform when building.

The following would create a container with the current
directory copied to /data and a simple HTTP server running
on port 8080:

1FROM ubuntu : l a t e s t
2ADD . / data
3WORKDIR / data
4RUN apt−get update
5RUN apt−get i n s t a l l −y python
6 EXPOSE 8080
7CMD python −m SimpleHTTPServer 8080

In figure 1 the basic components of Docker are shown.
The Docker daemon is responsible for running containers,
building images, etc. The Docker client/CLI is used to com-
municate with the daemon via a socket or its RESTful API,
therefore client and daemon do not need to run on the same
host. Additionally, a Docker Registry can be used to dis-
tribute the images, the publicly available registry is also
known as the Docker Hub.

Summary.
As we have seen there are different solutions to create

machine environments. Both, Vagrant and Docker, simplify
the creation of portable environments using their own DSL.
Whereas Vagrant focuses on environments for development
and testing, Docker containers may be used from develop-
ment to production and allow great scalability for deploy-
ment in large clusters.

4. MULTI-CLOUD SYSTEMS
In today’s software world, everyone can easily setup servers

on demand in just a few minutes. Creating new resources on
cloud services like Amazon Web Services or Google Compute
Engine is a matter of minutes. All these platforms provide
RESTful APIs, which allow develpers to create tools that
add a new abstraction layer on top.

In [22] a pattern based deployment service is introduced
that is able to deploy applications and services in different
cloud systems, including AWS and local OpenStack installa-
tions. The user describes the application (e.g. a JavaEE web
application) and required external services (e.g. MySQL,
nginx) in a XML based language and the service is able to
fully automatically deploy the application. It will startup
the required server and generate chef code to provision them.
Furthermore, it will create connections between different ser-
vices if required.

Breitenbücher et al. introduce a technology to connect
service centric platforms (e.g. AWS, Microsoft Azure) and
script centric provisiong solutions, like Puppet or chef [10].
Based on so-called Planlets, the technology is able to use
different solutions and combine them to create and provision
resources and deploy applications. They are able to use
different cloud systems and provision solutions in a single
deployment.
In the following, we will show two tools that try to create a
consistent view on infrastructure related cloud services. We
will look at Terraform as a tool developed in industry and
NixOps, an extension for NixOS, coming from academica.

4.1 Terraform
Terraform is built by the developers behind Vagrant and

focuses on launching infrastructure on different service-centric
platforms [8]. It supports various providers (including Google
Cloud, AWS, DigitalOcean, Heroku) and makes it easy to
add more. Based on its declarative description language,
the user describes the infrastructure with provider specific
resources:

1# Clus te r nodes
2 r e sou r c e ” d i g i t a l o c e a n d r o p l e t ” ”node ” {
3 image = ”coreos−s t a b l e ”
4 name = ”node−${ count . index }”
5 reg i on = ”AMS3”
6 s i z e = ”4GB”
7 pr ivate ne twork ing = true
8 s sh keys = [123456]
9 count = ”${var . no nodes }”

10 }

The example defines a resource “node” with the type “dig-
italocean droplet” (basically a cloud server). The attribute
“count” defines the number of instances we want to create,
which is taken from the variable “no nodes”. The name of
each instance, set by the “name” attribute, includes its in-
dex. The attributes “image”, “region”, “size” and “ssh keys”
are specific for the type we use. “Image” and “size” describe
the server and “region” defines in which datacenter we want
to create it. “ssh keys” contains a list of IDs for keys that
should be added to the created instance.

A command line application is then used to apply this
description. The current state is saved in text based files, so
it can be shared.

4.2 NixOps
Based on Nix and NixOS, NixOps (formerly known as

Charon [17]) came up in 2013. NixOps extends the idea of
NixOS to a set of machines or “network of machines“. Ba-
sically, it allows to provide Nix based configuration to dif-
ferent machines. In addition, to the configuration of every
NixOS host the user describes the provider to use for deploy.
NixOps supports different providers, including Amazon EC2
and VirtualBox, so one can deploy the same configuration
to a production environment or a local virtual machine used
for testing purposes. When deploying multiple machines
to a cloud based service, NixOps will add connections be-
tween the different machines. The state of each deployment
is saved in a SQLite database so NixOps will remember what
has already been done.

Summary.
As we have seen, cloud provisioning tools act very similar

to the previously introduced configuration management and
provisioning tools, but on a much higher level. DSLs are
used to create a consistent view on infrastructure built using
different cloud services.

5. THE SOFTWARE PROCESS
In the previous sections we introduced the variety of tools

for setting up and managing infrastructure with code, re-
spectively creating development or testing environments. The
following discusses how to integrate these concepts into a
typical software development process and how it has changed
the software development already.

5.1 Testing infrastructure
This section is about testing infrastructure code. We will

cover different solutions to test written Puppet code and
look at a new service developed by Spotify, which is able to
test services in docker containers based on JUnit tests.

Puppet CLI and puppet-lint.
The Puppet command line tool already gives the oppor-

tunity to run the agent, without acutally applying the man-
ifests. This way the developer can already catch various
issues. But since a human is involved and this process can-
not be automated, puppet-lint was created[5]. Puppet-lint,
as all other linting tools, analyzes the code and tries to find
common mistakes. Additionally, puppet-lint can find style
guide issues to force a consistent format.

Rspec-puppet.
Whereas puppet-lint may already catch many issues, it

does not actually test the code. Rspec-puppet tries to solve
this problem. With rspec-puppet the developer can test if
the Puppet mainfests get compiled the right way. It allows
testing of different hosts, i.e. if each host gets the right con-
figuration, if certain files get certain attributes and contents.

Rouster.
The engineering teams at Salesforce adopted DevOps prin-

ciples recently [23]. But the quality assurance team was not
satisfied with the existing testing solutions for Puppet, so
they developed Rouster, which allows to write functional
tests for Puppet manifests [7]. Basically the difference to
testing with rspec-puppet is that the manifests are actually

applied. So the final result is tested instead of a state inbe-
tween.

Basically, rouster is just a Ruby wrapper around the Va-
grant command line interface and SSH. Additionally, there
is an extension to check running EC2 instances, instead of
a Vagrant machine, since Rouster only needs an SSH con-
nection. This way you can run arbitrary commands on the
corresponding machine and check the results. With prede-
fined methods, to check for example if certain directories or
files exist, this can easily be written as unit tests, but will
actually test existing machines.

JUnit testing Docker container.
Spotify recently started migrating from mainly Puppet

managed servers that get updates via Debian packages, to
a solution backed by Docker containers. Since they did not
found a solution that satisfies their requirements, they built
Helios [24]. “Helios is a Docker orchestration platform for
deploying and managing containers across an entire fleet“[3].
One feature of Helios is the ability to test the built Docker
containers using JUnit test cases. Helios will create the
needed containers temporarily (based on what is described
in the JUnit test) and run tests against these.

5.2 Testing and deploying software
DevOps practices and tools also change the way how test-

ing and deployment of software is done. We already looked
at Vagrant to simplify development environment and will
now see how Docker simplifies testing and deploy of soft-
ware.

Soni and Hunnargikar describe how Ebay’s internal CI so-
lution works [25]. They are running a Mesos powered cluster,
in which Jenkins servers are running. Each Jenkins job will
then be executed in a Docker container. During the build
process, a new docker image will be created containing the
result of the software build. The resulting Docker image is
then published to an internal private registry and can easily
be brought to a production server.

At Gilt the process works similar [12]. They are cur-
rently experimenting with immutable infrastructure. Each
new version of software is deployed onto a new server in a
docker container. After successfull tests the new service will
be brought to production side by side with older versions of
the service. Instead of updating the old versions each new
one gets a completely fresh environment to avoid problems
with mutating the system’s state.

At Google I/O 2014 Google introduced their own con-
tainer cluster manager, called Kubernetes [4, 11]. This man-
ager extends the container idea to a set of containers that
belong together, a so-called pod. Kubernetes will supervise
all containers to make sure the desired state is valid.

Another testing solution comes with NixOS. Van der Burg
and Dolstra show how complex test case scenarios can be au-
tomated using Nix and NixOS [27]. Because of the declar-
ative model of Nix, each configuration will be the same re-
gardless on which host it is running. With this idea, they
can spin up virtual machines that share their host’s Nix store
and run complex tests without corrupting the user’s system
in an automatable way. For example, they are able to write
tests for a multiplayer game, involving a server and a client
in different machines.

Summary.
We have seen how infrastructure code can be tested and

how “Infrastructure as Code“ concepts have changed testing
and deployment of software. With Mesos, Kubernetes and
Helios we have introduced tools that act on a cluster or
datacenter level.

6. DISCUSSION
The basic idea of all these tools is to add an abstrac-

tion layer to give a high level interface to some low level
functionality. This varies from managing configuration and
provisioning servers to managing resources and services in
large clusters. Basically, it is similar to concepts in software
development, where code is structured into functions, mod-
ules and libraries to give a consistent, high level interface to
lower level tasks and maximize reusability. Nevertheless, we
can see certain differences in how these abstraction layers
are achieved. The concepts can be divided into two cate-
gories, script-centric and service-centric approaches. In the
following we want to explain these into more detail.

Script-centric approaches are based on some kind of code.
In this category a common concept to add the abstraction
layer is a DSL. So a programming language is used and the
tool transforms the source code into another form. This con-
cept is similar to a compiler of a general purpose language.
Tools that belong to this category are for example Vagrant,
Terraform or Nix/NixOS/NixOps.

Service-centric approaches try to give an abstraction layer
by offering services. The provided interface may vary. It can
be a RESTful API, a web UI or a configuration file based
approach. Furthermore, the level on which these tools are
implemented varies. Most often the tools itself are imple-
mented as an application or service, e.g. Mesos, Kubernetes
or Helios, but there exist other solutions. For example, in
CoreOS the services are deeply coupled with the operating
system itself.

These two categories are not clearly distinct. We can find
various tools that belong to both categories. Puppet, for
example, is one of these. The Puppet language itself is
definitely a script-centric approach whereas the distribution
of configuration among multiple nodes done by the Puppet
master would reside in the script-centric category.

Summary.
We have seen that infrastructure management exists at

various levels. In figure 2 you can see how different tools
and parts of infrastructure management build upon each
other and create a hierarchy. The figure does mainly include
tools and techniques we introduced in this paper, so it is not
complete. Furthermore, the limitations are not clearly fixed.
Functionality of certain tools may spread across multiple
levels.

Additionally, we have seen that infrastructure related tasks
are part of all stages of the software development process,
from creating development environments, over setting up
build pipelines, to deployment. So the infrastructure man-
agement literally embraces the development process. Infras-
tructure and software are deeply coupled and can be de-
veloped and deployed simultaneously, in other words, the
infrastructure is shipped with the software.

Figure 2: View on levels of infrastructure tools

7. CONCLUSION
As you can see DevOps and ’Infrastructure as Code’ are

hot topics. There is already a vast amount of techniques
and tools to support these ideas. Especially Docker is cur-
rently gaining a lot of popularity and its ecosystem is grow-
ing quickly.

We have seen that these principles bring a lot of bene-
fits to the software development process and have already
changed the way software is developed or deployed and this
shift is still going on. In the future, software will be used
to create, control and manage nearly all parts of the in-
frastructure. Technologies like Software Defined Networks
(SDN) are getting more popular and will result in ideas like
Software Defined Infrastructure (SDI, [21]). It will be inter-
esting to see where this is leading to.

8. REFERENCES
[1] Chef. https://www.chef.io/chef/. Accessed:

2014-12-20.

[2] Coreos. https://coreos.com/. Accessed: 2014-12-20.

[3] Helios. https://github.com/spotify/helios.
Accessed: 2014-12-20.

[4] Kubernetes. https:
//github.com/GoogleCloudPlatform/kubernetes.
Accessed: 2014-12-20.

[5] Puppet-lint. http://puppet-lint.com/. Accessed:
2014-12-20.

[6] Puppetlabs. http://puppetlabs.com/. Accessed:
2014-12-20.

[7] Rouster. https://github.com/chorankates/rouster.
Accessed: 2014-12-20.

[8] Terraform. https://www.terraform.io/. Accessed:
2014-12-20.

[9] Vagrant. https://www.vagrantup.com/. Accessed:
2014-12-20.

[10] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and
J. Wettinger. Integrated cloud application
provisioning: Interconnecting service-centric and
script-centric management technologies. In On the
Move to Meaningful Internet Systems: OTM 2013
Conferences, pages 130–148. Springer, 2013.

[11] C. M. Brendan Burns. Containerizing the cloud with
docker on google cloud platform. Google IO (Video,
2014.

[12] M. Bryzek. Immutable infrastructure with docker and
ec2 at gilt. Docker Con (Video), 2014.

[13] P. Debois. Agile infrastructure and operations: how
infra-gile are you? In Agile, 2008. AGILE’08.
Conference, pages 202–207. IEEE, 2008.

[14] T. Delaet, W. Joosen, and B. Van Brabant. A survey
of system configuration tools. In LISA, 2010.

[15] E. Dolstra, M. De Jonge, and E. Visser. Nix: A safe
and policy-free system for software deployment. In
LISA, volume 4, pages 79–92, 2004.

[16] E. Dolstra and A. Löh. Nixos: A purely functional
linux distribution. In ACM Sigplan Notices,
volume 43, pages 367–378. ACM, 2008.

[17] E. Dolstra, R. Vermaas, and S. Levy. Charon:
Declarative provisioning and deployment. In Release
Engineering (RELENG), 2013 1st International
Workshop on, pages 17–20. IEEE, 2013.

[18] B. Erk. Wie sich devops in der it etabliert - weg von
der insel. Admin Magazin, 4:58–60, 2014.

[19] M. Hashimoto. Taming the modern datacenter.
FutureStack14 (Video), 2014.

[20] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. H. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource sharing in
the data center. In NSDI, volume 11, pages 22–22,
2011.

[21] M. Kuppinger. Software defined infrastructures -
offeene zentralverwaltung. ITAdministrator, 7:50–52,
2014.

[22] H. Lu, M. Shtern, B. Simmons, M. Smit, and
M. Litoiu. Pattern-based deployment service for next
generation clouds. In Services (SERVICES), 203 IEEE
Ninth World Congress on, pages 464–471. IEEE, 2013.

[23] D. Mangot and R. Mathew. On the journey of an
enterprise transformation, quality is still job 1. Devops
Enterprise Summit (Slides, Video), 2014.

[24] R. Singh. Docker at spotify. Docker Con (Video), 2014.

[25] M. Soni and A. Hunnargikar. Delivering ebay’s ci
solution with apache mesos and docker. Docker Con
Video, 2014.

[26] J. Turnbull and J. McCune. Pro Puppet. Books for
professionals by professionals : The expert’s voice in
open source. Apress, 2011.

[27] S. van der Burg and E. Dolstra. Automating system
tests using declarative virtual machines. In Software
Reliability Engineering (ISSRE), 2010 IEEE 21st
International Symposium on, pages 181–190. IEEE,
2010.

https://www.chef.io/chef/
https://coreos.com/
https://github.com/spotify/helios
https://github.com/GoogleCloudPlatform/kubernetes
https://github.com/GoogleCloudPlatform/kubernetes
http://puppet-lint.com/
http://puppetlabs.com/
https://github.com/chorankates/rouster
https://www.terraform.io/
https://www.vagrantup.com/
https://www.youtube.com/watch?v=tsk0pWf4ipw
https://blog.docker.com/2014/07/dockercon-video-immutable-infrastructure-with-docker-and-ec2/
https://www.youtube.com/watch?v=7rR4TSgfA34
http://www.slideshare.net/dmangot/on-the-journey-of-an-enterprise-transformation-quality-is-still-job-1
https://www.youtube.com/watch?v=H4ZwBO0P7-E&list=UUp73Sm1VraxgJZwiNrk8Efg&index=15
https://blog.docker.com/2014/06/dockercon-video-docket-at-spotify-by-rohan-singh/
http://blog.docker.com/2014/06/dockercon-video-delivering-ebays-ci-solution-with-apache-mesos-docker/

Software Health Management in Information Systems

Vasil Borozanov
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

vasil.borozanov@rwth-aachen.de

Horst Lichter
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

lichter@swc.rwth-aachen.de

ABSTRACT
For large-scale systems it is important to detect, diagnose,
predict and mitigate the errors caused by the software. Soft-
ware Health Management (SWHM) is the field that comes
up with the tools and technologies to automate these pro-
cesses.

Safety-critical systems, such as those in the aircraft indus-
try, machinery and cars are already implementing SWHM
techniques. These systems rely heavily on sensor data and
have a clear specification what the output looks like, which
makes the anomaly detection easier. Here a two level strat-
egy is applied for managing the health (health of individual
components and health of the overall system).

The paper will investigate the appropriate health models
and see what how they can be modeled. It will give overview
of the factors that make the system ill, propose metrics to
measure the health and introduce basic actions to mitigate
the risks. It will also give an overview of symptoms and
the factors that degrade the performance. The paper will
propose an approach for health management of Information
Systems. It will describe the main components and the gen-
eral architecture. This approach will be complemented with
an example and from it, we will see which are the potential
obstacles. The paper will be concluding with the summary
and it will propose further steps.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—health measures

Keywords
Software Health Management, Information Systems, Soft-
ware Health Metrics

1. INTRODUCTION
Health of a software is a question that gets importance

lately. Information Systems (IS) that grow in size are get-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2014/15 RWTH Aachen University, Germany.

ting extremely complex to maintain [2]. Adding or changing
a feature requires great amount of work and patience, while
trying to avoid the risk of introducing new errors. Although
producing error-free software is impossible, we can take all
the steps to apply techniques that minimize this problem.
Software Health Management (SWHM) is an extension of
the classic fault tolerant systems and typically includes the
activities of anomaly detection, fault source identification,
mitigation, maintenance, and fault prognosis [11] . We will
focus our study on the general understanding of the health
of a software, review the causes which make the software ill
and briefly overview a implementation for health manage-
ment. The paper is structured as follows:
Section 2 explains what is an aged system. This will give an
introduction to the symptoms and the causes.
Section 3 will define the term health and it will introduce
measurable metrics.
Section 4 will introduce the term SWHM and list several
approaches.
Section 5 will investigate one of those approaches and adapt
it for our needs.
The final section will give a summary of the paper.

2. WHEN DID OUR SYSTEM BECOME AGED?
Software products are in constant evolution: applying

changes, fixing bugs or adding features - they all lead to
alteration. If a product does not undergo these changes, it
becomes obsolete. While taking all the measures to prevent
this, each change can potentially introduce errors. By ag-
ing, we refer to degradation of the performance or a sudden
crash of a software system due to exhaustion of operating
system resources, fragmentation and accumulation of errors
[6].
The definition shows that effects can vary from slow response
up to total failure. Software failure occurs when the deliv-
ered service deviates from the specifications of the system.
Failures are not limited to the whole system; they can ap-
pear in a single component as well. Regardless of the ap-
pearance, they are much more severe than simple bugs or
reduced response time: the outcome of the procedure is not
acceptable. We consider the system aged when it shows one
of the following symptoms: [10]

- Inability to keep up: software tends to grow in size. This
leads to harder maintenance: adding methods is difficult,
documentation can get cumbersome, finding the right part
of the code takes time etc.

- Reduced performance: Larger systems require more re-
sources. For example, the increased demand for storage size
leads to larger database.
- Decreased reliability: Frequent changes introduce errors,
which reduces the stability of our system (decreases the en-
tropy).

Large-scale software systems suffering from these symptoms
can cause enormous amount of money. Instead of investing
in new features in the system, the focus will be put on fixing
the problems caused by the degradation of the system.
Different factors can lead to decayed state. Resource leak-
age (unreleased memory, file handlers or sockets), fragmen-
tation, round off error accumulation and data corruption are
among the most common ones. [10]. All of them cause ab-
normal behaviour that may differ from case to case (slow
calculation, out of memory exception etc.). This raises the
question of classification of the aging effects. An internal
vs external classification, or a technical one (OS- vs App-
specific) will not help us into ranking them per severity.
Volatile and non-volatile groups have been proposed [6],
where the main criteria is the ability of the system to func-
tion properly after a reboot. We can view this as classi-
fication by impact of the system: more serious symptoms
cannot be fixed by a simple reset command. This means
that if the rating is higher, then the chances of the normal
behaviour of the system are slimmer. We are going to con-
sider this classification to serve us as a way of measuring the
well-being of the system.

3. ESTIMATING THE HEALTH OF A SYS-
TEM

To successfully measure the health of software, we need
to come up with a health model. A healthy software should
behave stable, be easy to use, easy to maintain and functions
without errors. These are all part of a quality attributes.
Several definitions for software quality exist. For our pur-
poses, we take the definition from a manufacturing (engi-
neering) point of view, which defines it as conformance to
specification [8]. Deviation from the specification will be
considered as a deviation from the health model (illness).
The ISO 9126 lists the following characteristics for soft-
ware quality: functionality, reliability, usability, efficiency,
maintainability and portability. A proposal to measure the
maintainability of the system as a health has already been
given ([2]), since up to 60-80 percentage of the work effort
can go into maintenance [3]. To measure and quantify the
maintainability of a system as a health model, we need to
calculate its index. There are several possible methods for
measuring the maintainability index (MI). They are based
on attributes such as average lines of code (aveLOC), aver-
age Halstad Volume per module (aveVol), average extended
Cyclomatic Complexity per module (aveV(g)) and number
of comments per sub-module in percentage (perCM). The
most simple methods are:
1. Hierarchical multidimensional assessment model (HP-
MAS): MI index is calculated as product of different dimen-
sion criteria (control structure, information structure and
typography). By assigning an optimal trigger value range
(example aveLOC ranges 10-50), each time when the metric
falls out (example module with LOC size 70), weighted de-
viation is computed [2].

The same study showed an interesting result. The MI rises
slowly with only avgLoc as an attribute. That means se-
lecting only few attributes cannot capture the health of the
maintenance good enough.
2. N - Metrics Polynomial: The goal is to create a poly-
nomial equation, where the MI is expressed as function of
metric attributes, obtained by linear regression [2]. This
model requires a lot of testing and calibrating for the most
suitable coefficients.
Thorough trial and error, we can end up with a four-metric
polynomial example in the following form:

Maintainability = 1715.2 ∗ ln(aveV ol)0.23 ∗ aveV (g)−

16.2 ∗ ln(aveLOC) + (50xsinSQRT (2.46 ∗ perCM))

Another variation widely used in practice is the three-
metric polynomial. Selecting fewer arguments will not result
in a reliable MI. Selecting many arguments will result in a
complex function which will require a substantial amount of
effort to be fitted (basically more coefficients means more
try-error attempts). As stated, the weights given to the re-
gression function will differ from system to system. The
measurement is not restricted to the code only. It can in-
clude combined factors as bugs per module size, produc-
tivity of the programmer (LOC per unit of time), stability
of requirements (initial number of requirements vs current
number of requirements) or spoilage of the system (effort in
bug fixing vs total effort) [7].
The downside of these metrics is that they exclude a funda-
mental part of the system. Better approach is to focus not
solely on the correctness of the system, but on the economic
effectiveness on the software as well. In other words, the
system is healthy if the costs for maintenance are low. [12].

This quality model organizes the criteria in two dimen-
sions: activities and facts (Figure 1). The top attributes are
the activities performed on the system, each having its own
cost, and left are the facts that describe the technical state of
the system. Separation is important to keep the consistency
of the model and to successfully describe the dependencies
between different criteria. For example, on the figure we
can see that the Tool fact, which consists of Debugger and
Refactoring, does not influence the the coding, which is part
of the implementation (for modern IDEs, this is not true, as
they provide a lot of integrated tools for increasing produc-
tivity, e.g. Eclipse can automatically organise imports. The
purpose of this example is to illustrate how the Cost matrix
is constructed and how dependencies are viewed).
The end result is a model consisting of code-facts (copy-
paste, unused code, naming quality), documentation (level
of completeness, homonym ratio) and organizational facts
(number of employees with required technical knowledge,
number of employees with in-depth system knowledge) and
relation between them.
This model was also put into practice and health check was
performed. The project was over 3.5 MLOC written in dif-
ferent technologies (COBOL, C++, Java). The analysis
demonstrated that maintenance cost could be reduced down
to 30 percent [13]. If we consider the annual costs for main-
tenances of large scale systems, then we can have a reduction
worth up to the range of millions of dollars.
In the next section we will consider a different set of tech-

Figure 1: 2D Quality/Health model depicting main-
tenance effort.

niques that will be based upon the health models described
here. Their goal is to keep the system stable and prevent
failures before they occur.

4. SOFTWARE HEALTH MANAGEMENT
As we saw, software failures can happen easily, especially

with the increased complexity. For some systems there is
an acceptable failure rate, but safety critical systems zero
error tolerance. The latter systems(aviation and automo-
tive industry, hydraulics etc.) have to be prepared for any
anomalies in advance and resolve them accordingly. Soft-
ware Health Management (SWHM) is a modern discipline
which extends the classical software-tolerance techniques, by
investigating the tools and practices for automated anomaly
detection, diagnosis prediction and mitigation of events due
to software anomalies [5]. Similarly like the embedded safety-
critical systems, SWHM for IS has the same goals. Here we
lack the strictness imposed from the hardware components,
such as maximum altitude, minimal speed of movement or
acceptable pressure in a vault. Instead, we try to identify,
isolate and mitigate the errors that occur when deviating
from the health models in a system that deals with data-
intensive applications. That does not mean that we lack
standards - on the contrary, we have to develop them care-
fully and enter them in the SWHM framework. SWHM
observes the entire system, not just a part of it. It needs to
address the following characteristics [14] :

- continuously monitoring the software
- SWHM must be able to minimize the number of fault pos-
itives and fault negatives
- SWHM needs to be reliable
- must be integrated seamlessly with the traditional Valida-
tion and Verification techniques, but not to replace them.

To achieve this, there is vast number of SWHM techniques
available Figure 2.

Here, they are analysed by the concepts:
- fault handling: how the technique deals with the fault.
Originating from the software tolerant systems, it can per-
form prevention, removal of the error or tolerate it and allow
small deviations.
- fault detection-isolation-recovery capability (FDIR): detec-
tion is the process of identifying the fault, isolation is the
process of identifying the source of the error and isolating it
from the rest. Recovery is the sequence of the actions taken
in order to return the system to its normal functioning state.
- degree of automation: How much help from the engineer
is needed.
- requirements of resources: mainly, here we focus on mem-
ory and CPU power i.e. how much computation is required
for the SWHM.
- completeness: the ability to provide complete results; if
that is not possible, it performs statistical estimation of the
missing values).

The next section will investigate the model-based SWHM
and explain the level of applicability for IS.

5. MODEL-BASED SWHM FOR INFORMA-
TION SYSTEMS

Inspired from the ARINC component model [9], we pro-
pose a model-based approach for health management.
The approach consists of two-level hierarchy: component
level with a local view (CLHM) on the problem and at a
system level with the global view (SLHM) [5].

5.1 Component Level Health Management
The purpose of the CLHM is to detect the fault locally,

take a suitable mitigation action and report to the high-level
manager [4]. Regarding IS, the equivalence of a component
is a software module with defined interfaces for communi-
cating, pre-defined states and events. For the health status
to be evaluated successfully, all the discrepancies are entered
in a Monitor Specification Table. Here we define the abnor-
mal conditions. For example, if the component is a data
access object, a sample condition would be a double value
which represents the time threshold to read the data from
storage. The health of a component is not an isolated case:
it can also depend from the status of another components.
Suppose component A is in state A1, which is normal for it.
Similarly, component B is in B1 normal state. For a com-
ponent C which accepts as input the states from A and B,
it can be in a state which is abnormal, if at the same time
the components are in state A1 and B1 respectively.

To be able to describe these type of conditions, compo-
nents need to communicate through their well-defined inter-
faces, so they can know other states. This interaction can be
done in synchronous (using composition of objects) or asyn-
chronous manner (using callbacks). Each component can be
configured individually. The components are connected to
monitor, which detects abnormal behaviour or violation in
the constraints. For each component, a separate monitor is
deployed, acting as an observable object and the connected
component as an observer. When any monitor detects a
discrepancy from its related monitor specification table, the
status is reported to the Component Level Health Manager

Figure 2: Classification of SHM Techniques.

Figure 3: CLHM and monitoring a component

(CLHM). The role of the CLHM is to issue the appropri-
ate mitigation action for that component. The mitigation
actions can be of different nature. If the severity of the
deviation is low, the IGNORE command is issued. If the
component needs to be reverted to an original state, com-
mands RESTART or REVERT are issued. If the severity is
extremely high, then the operation must stop after issuing
the STOP command. CLHM is responsible on a component
level; however, if the mitigation cannot be executed there
(for example, the appropriate mitigation action is unknown
by manager), the call is propagated to the system level. The
flow of the messages and the described organisation of com-
ponents is depicted in Figure 3. We are not limited to the
size of the components: the framework supports from very
complex (e.g. a layer of the system) down to components
with very narrowed functionality (e.g. parser). Each size
comes with a trade-off: a large component will have many
conditions in the monitor specification table and it will be

harder to maintain, where as many small components will
introduce an overhead in the system due to the increased
communication between them.

5.2 System Level Health Management
The component level deals with only small part of the sys-

tem. By definition, SWHM has to cover the entire system.
The higher level system health management (SLHM) deals
with the system as a whole. The input to this system are the
discrepancy messages generated from the component man-
agers. To identify the fault-source, an additional component
Diagnosis Engine (Diagnoser) is introduced. The purpose of
this component is to reason over the detected discrepancies
and isolate the fault source. For diagnosis of the system,
the Timed Failure Propagation Graphs (TFPG) model is
used, as in the ARINC component model. This diagnose
engine can be reused, due to the structure of the TFPG:
the nodes represent the discrepancies (anomalies) and the
directed edges describe the propagation of the failure effect.
This allows the engine to detect and distinguish between the
faults [1], and infer the actual deviation. The system level
manager can respond with an appropriate mitigation action
when needed. These actions are sent to a corresponding
component, which is not necessarily the one who reported
the deviation. The actions are similar as the ones issued
my the component manager: IGNORE, RESTART, STOP,
REVERT.

In addition, mitigation action can be issued to several
component at once (several components need to be reverted).
The depiction of the whole process is given in Figure 4. The
existing solution can be extended with a reporting compo-
nent: if the mitigation strategy fails, its job is to alert the
development team to intervene manually.

5.3 Example
To understand the process of the health management, we

will look at a simple scenario of a poorly indexed database.
Component A tries to read the data, but the process takes a
longer time than usual. The time threshold is entered in the

Figure 4: Event and action propagation SLHM.

monitor specification table as a deviation for that compo-
nent. This triggers the monitor to report INVALID-DATA
to the corresponding manager. The manager receives this
event and sends a REVERT command to the component to
take the default data. It also propagates the event to the
system level manager. The component A accepts this and
goes back into normal state.
However, component A also acts as a publisher to compo-
nent B. It will report this state to component B via the
pre-defined interface. The monitor specification table in B
has an entry that doesn’t allow for component A to have
this case in specific scenario. So it sends INVALID-STATE-
A signal to its manager, which in turn propagates the event
to the system level manager. Now, at the system-level, we
have a TFPG model with two nodes: INVALID-DATA ->
INVALID-STATE-A. The diagnose engine can easily infer
the cause of the problem and report to the developers the
data access problems. This can be acted accordingly and
prevent the decay of the system in early stages.
If we compare with the attributes from Figure 2, our frame-
work fulfils the following criteria:
- Fault Handling: It prevents the faults. Regarding the mit-
igation strategies, they appear when the state enters fault
mode; it is not able to do tolerance. Also there is no method
to remove the fault.
- Fault Detection-Isolation-Recovery: It detects abnormal
behaviour (not the error itself). This means that it cannot
be isolated from the system. Recovery is also not imple-
mented.
- Automation: Semi-automatic, it can be configured to alert
the engineers when either an error cannot be reasoned or a
mitigation strategy cannot be found.
- Resources: moderate to high. It depends from the code
size and from the decision of the size of the components.
- Completeness: Not applicable, since we are not dealing
with missing values here

Hierarchical two-level SWHM can be applied on informa-
tion systems. The advantage of this approach is in its mod-
ularity. For a large-scale system, having one large com-
plex block for health manager might only increase the ef-
fort of maintenance. Here, the encapsulation into compo-
nents allows self-management without notifying the system

level for minor deviations. This means that many moni-
tors must be deployed, which results in additional resource
consumption. Furthermore, the intensive monitoring and
component-communication operations generate additional over-
head in the system. For further research, other approaches
listed from Figure 2 might be more suitable, especially As-
pect oriented SWHM approach, due to the increased mod-
ularity.

6. CONCLUSION
Large-scale software systems need to have high-value of

well-being. This is an important attribute due to the in-
creased costs of maintenance. The degradation over time
is inevitable, but SWHM can reduce this and rejuvenate
the system (which in turn, means higher reliability and less
maintenance from the human-side). We presented a modi-
fication to the original SWHM technique. Instead of inputs
of signals, like gyroscope values or accelerometer readings,
we re-structured the input to be suited for software health
model typical for information systems: LOC, Maintainabil-
ity Index and economic effectiveness and so on. SWHM re-
quires well-established health model and creating one takes
effort. It requires experience and in-depth knowledge of how
the system works. Selecting the important metrics can be
done through analysis and trial-error approach. Later on,
the model will require tweaking and improvement to suit
the software needs. Once having a model, our system is
eligible for SWHM. Efforts are made into automating the
detection and analysis of the faults [14]. We showed that
implementing the Model Based SWHM can be an expensive
step. Firstly, it requires a experienced developer, someone
that can successfully design the components of the CLHM.
The constant monitoring of the system has the additional
need of resources. Adding the framework will sure increase
the complexity of the system. These drawbacks come from
the fact that SWHM is intended for safety-critical applica-
tions. To evaluate the success of the framework, the next
step would be testing a prototype on a several different in
size information system. Comparing the satisfactory level
with the complexity of the system can show when this so-
lution is most suitable. This paper focused on the technical
factors that made the software act ill. In real environment,
poor team communication, incomplete documentation and
vague project description also contribute to aging. Future
research proposal is to take into account the management
factors as well when creating the health model. Separate
problematic is to come up with measurement and corre-
sponding model for these attributes, as their nature is rather
different than maintainability. Detecting and preventing or-
ganizational issues or healing the requirement specification
can further reduce the risk of reduced maintainability and
lower the annual costs.

7. REFERENCES
[1] S. Abdelwahed and G. Karsai. Notions of

diagnosability for timed failure propagation graphs. In
Autotestcon, 2006 IEEE, pages 643–648. IEEE, 2006.

[2] D. Ash, J. Alderete, L. Yao, P. Oman, and B. Lowtber.
Using software maintainability models to track code
health. In Software Maintenance, 1994. Proceedings.,
International Conference on, pages 154–160, Sep 1994.

[3] D. Coleman, D. Ash, B. Lowther, and P. Oman. Using
metrics to evaluate software system maintainability.
Computer, 27(8):44–49, Aug. 1994.

[4] A. Dubey, G. Karsai, and N. Mahadevan. Model-based
software health management for real-time systems. In
Aerospace Conference, 2011 IEEE, pages 1–18, March
2011.

[5] A. Dubey, N. Mahadevan, and G. Karsai. A
deliberative reasoner for model-based software health
management. In The Eighth International Conference
on Autonomic and Autonomous Systems, St. Maarten,
Netherlands Antilles, 03/2012 2012.

[6] M. Grottke, R. Matias, and K. Trivedi. The
fundamentals of software aging. In Software Reliability
Engineering Workshops, 2008. ISSRE Wksp 2008.
IEEE International Conference on, pages 1–6, Nov
2008.

[7] C. Kaner and W. Bond. Software engineering metrics :
What do they measure and how do we know ? Direct,
8:1–12, 2004.

[8] B. Kitchenham and S. L. Pfleeger. Software quality:
The elusive target. IEEE Softw., 13(1):12–21, Jan.
1996.

[9] N. Mahadevan, A. Dubey, and G. Karsai. Application
of software health management techniques. In
Proceedings of the 6th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems, pages 1–10. ACM, 2011.

[10] D. L. Parnas. Software aging. In Proceedings of the
16th international conference on Software engineering,
pages 279–287. IEEE Computer Society Press, 1994.

[11] K. Pipatsrisawat, A. Darwiche, O. J. Mengshoel, and
J. Schumann. Software health management: A short
review of challenges and existing techniques. In Proc.
of 1st International Workshop on Software Health
Management (SHM 2009), Pasadena, CA, July 2009.

[12] M. Pizka and F. Deißenböck. How to effectively define
and measure maintainability. SMEF 2007, page 93,
2007.

[13] M. Pizka and T. Panas. Establishing economic
effectiveness through software health-management.
Technical report, Lawrence Livermore National
Laboratory (LLNL), Livermore, CA, 2009.

[14] J. Schumann, O. J. Mengshoel, A. N. Srivastava, and
A. Darwiche. Towards software health management
with bayesian networks. In Proceedings of the
FSE/SDP workshop on Future of software engineering
research, FoSER ’10, pages 331–336, New York, NY,
USA, 2010. ACM.

Adoption of emerging Architectural Approaches in German
Software Companies

Jan Wittland
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

jan.wittland@rwth-aachen.de

Andreas Steffens
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

andreas.steffens@swc.rwth-aachen.de

ABSTRACT
Every once in a while, new architectural styles for develop-
ing, distributing and maintaining software come into the dis-
cussion of developer communities or conferences with promis-
ing arguments to make use of them. In the last decade this
can be observed especially for service-oriented architectures.
One of these new styles is the Microservices architectural
style, which is described by Fowler [4].

Despite of the fact that new approaches arise, only a few
is known about the reasons for a success or failure of them.
In this study we try to identify the reasons from the per-
spective of software company employees. We conducted a
survey with employees of German software companies and
asked them about their attitude towards the adoption of
new architectural styles and presented them two example
architectures for a comparison.

The statistical results of the survey analysis revealed an
overall positive attitude towards changes in the architecture,
with a couple of limitations. Some potential problems have
been identified regarding controversy opinions between em-
ployees and the company, in the question of the importance
of certain architectural aspects. A proposal for the most
important aspects of a new architecture has been derived.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
K.6.3 [Management of Computing and Information
Systems]: Software Management

Keywords
Microservices, App Servers, Market Penetration, Survey

1. INTRODUCTION
The so-called Microservices architectural style, which is

described by Fowler [4], is a frequent topic in the current
discussion on software architectures and becomes more and
more public especially in 2014 [9]. With the announcement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2014/15 RWTH Aachen University, Germany.

of the Microservices Conference in Berlin 2015 [7] it be-
comes even more clear that the approach gains a high atten-
tion. In addition, we already see implementations in modern
companies such as NetFlix or Soundcloud [5, 1, 6, 2]. From
a scientific perspective, more intense research on the topic
seems to be required, since there only exist a few publica-
tions regarding the term Microservices.

With its modular approach, Microservices seem to be very
promising for companies that want to move away from their
heavy-weight monolithic architectures, which become more
and more difficult to maintain. But what are the factors,
which influence the successful adoption of a new architecture
such as Microservices in companies in general?

Multiple potential problems may occur, if an established
architecture is changed. We all know the saying ”never
change a running system”, which of course is misleading in
terms of being long-term competitive in the vastly growing
software market. With the saying in mind, we assume that
the success of a new architecture strongly depends on the
readiness of the employees to invest time and brainpower
into a change. This could be affected by the individual atti-
tude towards new technologies and by the constraints given
by the company. With this study, we want to get some
insights on the thoughts and attitude of software company
employees towards changing to a new architecture. An ob-
jective is to identify key requirements for a new architecture
to be successfully adopted by companies.

In Chapter 2, we describe a potential problem of archi-
tectural change and discuss the idea behind Microservices.
Afterwards we describe the research method used for the
study in Chapter 3, where we give an insight on the ques-
tionnaire construction and the constraints of the data as-
sessment, preparation and analysis. In Chapter 4 we present
the results of the study with descriptive statistics and sig-
nificant differences between groups where applicable. The
paper ends with a discussion of the results in Chapter 5 and
a short conclusion in Chapter 6.

2. BACKGROUND

2.1 Changing the Software Architecture
Compared to a building, changing the architecture of a

software seems to be rather easy, since software architecture
in essence is a collection of design decisions made during the
evolution of the software. The shared understanding about
the central components of the system and the interaction
between them is kept among the people who are involved in
this continuous process. Since software is immaterial, these

decisions may be revised later on if the decision makers are
willing to [3].

As Lehman’s Law states, there has to be a continuous
change in a software system, because of the growing de-
mands of the customers, which will in addition increase the
complexity of the system over time [10, p. 532]. The re-
quired changes may also affect the architecture and therefore
the developers have to be willing to accept major changes ac-
companied by investing time and brainpower into new tech-
nologies.

Considering this, the willingness and attitude of software
company employees towards such changes has to be the key
to success or failure of a new architectural style such as
Microservices, which is discussed along this paper.

2.2 From a Monolith to Microservices
The idea behind conducting this study arose by the ques-

tion: ”Is the App Server dead - and are Microservices the
future?”. Since the question is very specific and bound to
certain technologies it would be hard to answer it in gen-
eral. Instead we decided to widen it to a more generic level
of abstraction: Monolithic Architectures vs. Modular Ar-
chitectures. In general, we want to know which approach is
preferred by software company employees today and what
the reasons for or against using them are.

As an example, we present the App Server as a monolithic
and Microservices as a modular architecture to the partici-
pants of our survey. Of course we know that an App Server
is not a monolith by default and a system can be built on it
in a modular fashion, but it can be a monolith, if you think
of the fact that you build your entire system with increasing
dependencies on a single platform. As the software grows in
functionality, it will more and more depend on the particu-
lar system, becomes monolithic and lacks of scalability and
maintainability.

The key idea behind Microservices and its modular ar-
chitecture is described by Fowler [4]. It differs from other
modular approaches in a more fine grained decomposition
of the software into very small functional units, which are
called Microservices. Each service is independent deployable
and exchangeable, runs in an own process with maybe differ-
ent environments and can have its own separated databases.
Microservices communicate with each other via agreed in-
terfaces e.g. over HTTP/REST. One of the main benefits is
that the system can be scaled individually by the affordances

Figure 1: Monolith vs. Microservices [4]

of a single service, compared to a monolith which only scales
by replicating the whole monolith (see Figure 1). The over-
all maintainability of the system may increase, because each
of the small services can be supervised by its development
team along the whole life-cycle of the product.

Altogether, Microservices seem to be a promising archi-
tecture for companies that want to break up their mono-
liths. With our exploratory survey, we want to identify,
how software company employees think about the two ap-
proaches. What is their general attitude towards changes
and new technologies? Where do they see a future and
what is important for them? Are there any conflicts be-
tween employee and company requirements? And finally,
can the initial question be answered positively?

3. RESEARCH METHOD

3.1 Survey construction
To gain direct information from company employees we

decided to construct an online-questionnaire. This form of
survey was the means of choice to reach as much different
companies in size, age and field of business as possible, be-
cause it is less intrusive and not very time-consuming.

The questionnaire should reveal the situation of the com-
pany the employee works for and the individual attitude
towards new technologies or architectures. To be more il-
lustrative, the questionnaire introduces the mentioned ar-
chitecture examples, which will be individually rated and
compared by the subject, to identify which approach is pre-
ferred in general.

These requirements resulted in 10 individual questionnaire
pages. The first two pages are for introduction purposes and
require the subject to read. The further pages are interactive
and numbered from I to VIII. Most of the interactive blocks
implement Likert scales with forced choice (even number of
items) and represent ratio scales [11]. The default coding
ranges from 0 (most negative) to 5 (most positive). The
parts of the questionnaire can be described as the following:

Introduction: Welcome Page
Greeting, thank for participation, topic, privacy assurance.

Background: Two architecture samples
To clarify the topic, the opposing approaches of App Servers
and Microservices are described with illustrations and a short
text, to be referred to later on in some of the questions.

I. Common information
Common data of the subject such as age, gender, education
and field of work are assessed and also information on the
company, such as size, age, business sector, field of develop-
ments, team size and the current architecture state (mono-
lithic/hybrid/modular). Most of the items can be used as
factors for analysis, e.g. between start-ups and established
companies or between younger and older participants.

II. Dealing with technology
The four items in this scale identify the general technical
affinity of the subject as a factor, to analyze if technical
affinity influences the other results. Since all participants
had a very high technical affinity, this factor will be ignored
for the analysis of the results (x̄ = 4.5, s = 0.6, n = 30).

III. Individual experience with software development
This page consists of two equivalent 8 item blocks, and asks
the subjects for their individual experience in 8 areas of soft-
ware development such as design, development, user sup-
port, etc. The first block asks for the Perceived Ease of Use
(PEOU) (no experience (0), hard (1) - easy (4)) and the
second block for the Usage Frequency (UF) (never (0), few
times a year (1) to daily (4)). By combining PEOU and
UF to and multiplicative index, we calculate an indicator
for the general experience in software development. Exam-
ple: if a subject states that designing is easy for him/her
and performs the activity on a daily basis, we can assume
that he/she is kind of an expert in designing. The overall
experience can be expressed as what we name Software De-
velopment Experience Index (SDEI), which can be used for
analysis:

SDEI =
(8∑

i=1

(PEOUi × UFi)/4
)
/8, SDEI ∈ [0, 4] (1)

Lower values express expertise on a narrow level (e.g. only
one area) and higher values on a wider level (e.g. multiple
areas).

IV. Individual attitude towards integrating technologies
This block consists of 8 items on the individual attitude
towards new technologies and the learning impact of work.
The subject has to rate on the default scale if he/she agrees
or disagrees to the statements such as: ”I think it is better to
stick to established approaches instead of testing new ones.”.

V. Requirements for using an architecture
This page consists of two similar blocks to rate the impor-
tance of 10 categories for a possible commitment to a new ar-
chitectural approach. Categories are e.g. learnability, main-
tainability, scalability and costs. The first block asks the
subject to sort the categories by importance from the com-
pany perspective and the second block asks for the same
categories but from an individual perspective. For the indi-
vidual perspective the subject can assign the same priorities,
where for the company perspective a strict hierarchy is built,
which enables conflict detection between both perspectives.

VI. Individual attitude towards monolithic and modu-
lar approaches
This page contains two equivalent 8 item blocks on the indi-
vidual attitude towards monolithic and modular approaches.
The subject rates if he/she agrees or disagrees to the state-
ments, which enables to see how the subject rates the two
approaches individually. Example: ”I think that this ap-
proach will have no future in the market.”

VII. Comparison of the two architectures
This question block contains 8 statements on a direct com-
parison of the two approaches. The subject has to assign a
position to each of the statements ranging from monolithic
(-3) over neutral (0) to modular (+3), which enables to see
which approach is preferred in a direct comparison. Exam-
ple: ”I think this approach is more flexible towards changes.”

VIII. Final question
The last page comes with the Net-Promoter Score (NPS) as
a final question. This instrument was introduced by Reich-

Figure 2: Employee assigned working areas (n = 30)

held [8] and tries to forecast the market success of a prod-
uct by rating if the subject would recommend the product
to a colleague or friend. The possible answer ranges from
”Never” (0) to ”Absolutely” (10) and partitions the subjects
into three clusters among Promoters (9-10), Passively Sat-
isfied (7-8) and Detractors (0-6). In this case we ask for
Microservices, to estimate their overall chance of success.

3.2 Data assessment
The online-questionnaire survey period ranges from Novem-

ber to December 2014. The required time to fill the ques-
tionnaire ranges from 10 to 15 minutes and varies slightly
depending on reading skills and experience. For convenience,
the questionnaire is provided in German and English.

The participants were selected in different ways. Personal
contacts to some companies were used to pass the question-
naire to the employees. On the other hand, we acquired
companies via email requests.

3.3 Data preparation
The data from the online-questionnaire was imported to

the SPSS statistics software. For statistical tests such as
F-Test for 1-factorial variance analysis we determined the
significance level of α = 0.05 as significant and α = 0.01 as
very significant. For the data analysis, descriptive statistics
such as min, max, mean (x̄) and standard deviation (s) are
used. In addition, mean comparisons were made between
groups using SPSS ANOVA with the calculated factors.

3.4 Description of the sample
During the assessment period n = 30 software company

employees took part in the survey. There were 27 male and 3
female participants with an average age of x̄ = 35.4 (s = 8.7)
years. The youngest subject is of 22 years and the oldest of
57 years, so a wide age range has been covered. Nevertheless,
no significant impact on the results was attributed to the
age factor. The majority of the subjects with 77% has a
university or polytechnic degree.

The average number of years the subjects work for a soft-
ware company is x̄ = 9.8 (s = 7.0) with a minimum of 2 and
a maximum of 34 years. We created three groups of equal
distribution with: ≤ 5 years (Beginners), 6-9 years (Estab-
lished) and 11+ years (Experienced). The subjects work in
a wide range of working areas, most of them in design or
development (70.0%), as can be seen in Figure 2.

For the business sector of the companies, we also got a
wide distribution with 10 of 19 provided areas. Most em-
ployees come from the Human Health/Social Work (26.7%)
and the Information/Communication sector (16.7%). The
companies itself develop software for a variety of platforms,

Figure 3: Company development platforms (n = 30)

Figure 4: Company size (left) / age (right) (n = 30)

as can be seen in Figure 3. Most prominent are Web Apps
(73.3%) and Desktop Apps (60.0%).

We also asked the subjects for the company’s age in years
and size regarding the number of employees (see Figure 4).
For the age we classified the companies into Startups (< 5),
Young (5-10), Established (10-25) and Longtime companies
(> 25). The majority of the subjects works for companies
of Small (27.0%) or Medium size (33.0%) and most of the
companies are Young (27.0%) or Established (27.0%).

The majority of the subjects states that the company they
are working for realizes monolithic (56.7%) or hybrid archi-
tectures (33.3.%). Only a small group (23.3%) states that
modular architectures are implemented. The team size in
the companies varies from 1 to 15, with an average of x̄ = 6.6
(s = 4.2). We have built three groups for further analysis:
Small (≤ 4), Average (5-8) and Large (9+) teams. Most of
the subjects work in small (36.7%) or average teams (40.7%).

4. RESULTS

III. Individual experience with certain working
areas of software development
With the items from this section, we calculated the SDEI
index introduced in chapter 3.1. The calculation resulted
in an average of x̄ = 1.6 (s = 0.6, n = 30) for our sam-
ple. Therefore we can state that most of the subjects have
experiences in multiple fields of work. We calculated three
groups for further comparison with the SDEI factor: ≤ 1.00,
1.01 − 2.00 and 2.01+. With 56% most of the subjects be-
long to the medium group (cf. Figure 5). The lowest group
expresses experiences in a narrow field of work (e.g. only
development) and the highest group expresses knowledge in
multiple fields (e.g. design + development + ...).

We did not include a role-based analysis of the employee,

Figure 5: SDEI groups of the subjects (n = 30)

since this would exceed the capacity of this paper. Why?
The average number of different working areas by subject,
which resulted from section I, is x̄ = 4.2 (s = 2.1) - a very
high value. Most of the subjects even work in 5 to 6 working
areas (35.6%). This massive divergence makes it difficult
to classify the subjects into strict groups like developers or
designers. The average SDEI is much lower compared to the
number of working areas and therefore seems to be more
realistic, so we will chose the SDEI groups as a role factor
for our analysis. In further research, a question for the main
working area could simplify a role-dependent analysis.

IV. Individual attitude towards the integration
of new technologies

Question x̄ s min max

1. I like to test new approaches 4.1 1.0 2 5
to fulfill my tasks.

2. I think it is better to stick 1.7 0.7 0 3
to established approaches.

3. It is very difficult for me to 1.1 0.6 0 2
learn a new approach.

4. I have no time to address 2.1 1.0 0 4
new approaches.

5. I can learn at work from a 3.8 1.1 1 5
technical point of view.

6. I like to educate myself after 3.9 1.2 1 5
work to learn sth. new.

7. I would like to attend more 4.0 0.9 2 5
advanced training.

8. I use already learned techno- 3.2 1.0 1 5
logies at work most of time.

Table 1: Results of individual attitude towards in-
tegrating and learning new technologies (n = 30)

In section IV we asked the subjects for their attitude to-
wards integrating and learning new technologies. You find
the results per item in Table 1. The subjects like to test
new approaches and negate having difficulties with learning.
They also think that it is rather bad to stick to established
processes and confirm that they would like to attend more
advanced training to improve their knowledge.

Significant differences were identified for the SDEI on item
8. The subjects with a low SDEI have an average of x̄ = 4.0
(s = 0.7), where subjects with a high SDEI result in x̄ = 2.6
(s = 1.1) - a neutral position (n = 29, p = 0.05, F = 3.45).
The higher value for the low SDEI group expresses that peo-
ple, who only work on a certain field, most of the time use
existing technologies. This could mean that working in dif-
ferent fields comes with using new technologies.

V. Affordances for integrating new architectures
In section V we asked the subjects to rate 10 different cate-
gories by importance regarding the implementation of a new
architecture. In the first task the subjects should sort the
categories by importance from rank 1 (most important) to
10 (least important) from the company perspective. Since
the items are not easy to analyze because of the large num-
ber of possible assignments, we only present the three top
and flop ranks with the three most positioned categories on
the related ranks in Table 2. The most important categories
therefore are low costs, minimal migration effort and flexi-
bility. Low cost has 15 votes in the top 3x3 and flexibility
14 votes. Learnability also seems to be important in the top
3 with 12 votes. Least important is the currentness of the
architecture with 22 votes in the flop ranks.

Rank 1st most 2nd most 3rd most

1 Low costs Flexibility Learnability
2 Migration Maintainability Learnability
3 Flexibility Low costs Learnability

8 Currentness Collaboration Sustainability
9 Currentness Collaboration Scalability
10 Currentness Deployment Sustainability

Table 2: Categories for top and flop ranks with 1st,
2nd and 3rd most votes for the related rank (n = 29)

In the second task the subjects should rate the categories
from an individual perspective. In Table 3 the average values
are listed in descending order. The most important facts are
that flexibility, sustainability and maintainability seem to be
most important from the individual perspective, whereas low
cost is the most unimportant category - which is the opposite
from the company perspective for costs and sustainability.
Flexibility seems to be important from both directions.

Category n min max x̄ s

High flexibiltiy 28 2 5 4.3 0.8
Maintainability 28 2 5 4.3 0.9
Sustainability 28 2 5 4.0 1.0
High scalability 28 1 5 3.4 1.3
Learnability 28 1 5 3.3 1.2
Collaboration 27 2 5 3.2 1.1
Currentness 28 1 5 3.0 1.3
Simple deployment 28 0 5 2.9 1.2
Migration effort 28 0 5 2.9 1.4
Low costs 28 0 5 2.1 1.4

Table 3: Categories rated individually by impor-
tance (0=least, 5=most) (n = 27)

We found a significant difference for the rating of scala-
bility among beginners and established workers. Beginners
therefore rate scalability on average with x̄ = 2.5 (s = 1.0),
whereas established workers rate it with x̄ = 4.2 (s = 1.3,
n = 27, p = 0.02, F = 4.64). So scalability seems to
be more important to established workers than beginners,
which would make perfect sense because the long-time work
on a growing software project may increase the demand for
scalability.

VI. Individual attitude towards monolithic and
modular approaches
Section VI contains two equivalent 8 item blocks for an in-
dividual rating of monolithic and modular approaches. The
average results are shown in Table 4. Item 1 shows that the
subjects see a more probable future in the market for mod-
ular than for monolith architectures. Item 3 got the overall
highest rating, even if we know from section V that deploy-
ment does not play an important role. The subjects see
significant advantages in the modular approach and would
prefer to develop with it (cf. item 5 and 6).

Monol. Modul.
Question x̄ s x̄ s

1. I think that this approach will 2.3 1.2 1.2 1.3
have no future in the market.

2. I already made satisfying expe- 3.0 1.1 2.5 1.5
riences with such approaches.

3. I think this approach comes with 1.9 1.1 4.0 0.7
flexible deployment opportunities.

4. I like this approach because it 1.8 1.2 3.0 1.4
fits to our business solution.

5. I can not see significant advan- 2.6 1.2 1.1 1.2
tages in this approach.

6. I would prefer to develop soft- 1.4 0.9 3.5 1.2
ware with this approach.

7. I think this approach is easier to 2.5 1.2 2.9 1.2
understand for new employees.

8. I think this approach simplifies 1.6 0.9 3.4 1.1
the collaboration in the team.

Table 4: Results of attitude towards monolithic
(left) and modular (right) approaches (n = 28)

There is a significant difference for item 1 among beginners
and experienced developers. Beginners do not see a strong
future in the market for monoliths (x̄ = 1.9, s = 1.3), where
long time experienced subjects are still optimistic (x̄ = 3.3,
s = 1.3, p = 0.04, F = 3.74, n = 27). Another interesting
difference was found regarding the team size and item 4.
Large teams state that the modular approach does not fit
their business (x̄ = 1.8, s = 1.5), whereas average teams
confirm it (x̄ = 3.8, s = 1.3, p = 0.02, F = 5.02, n = 26).

VII. Comparison of both approaches
In section VII we asked to assign statements to either a
monolithic (-3) or a modular (+3) approach. The results
are shown in Table 5. Despite of item 4, all advantages
are attributed to the modular approach. The most positive
answers were given for the scalability and flexibility.

There was a very significant difference for the SDEI, where
subjects with a low SDEI see a promising future for modular
approaches x̄ = 2.8 (s = 0.4) and medium SDEI subjects
tend to neutrality (x̄ = 1.0, s = 1.2, p = 0.01, F = 6.79).

VIII. Final Question
Finally, we asked for the Net-Promoter Score of Microser-
vices. It results in an average of x̄ = 7.6 (s = 1.9, n = 28),
which is quite good, but did not reach the promoter state.
Instead it represents that the subjects are passively satisfied.
The original score is the relative amount of subtracting de-
tractors from promoters. There were 10 promoters and 8
detractors, which results in 7.1% - only a small chance for
the market success of Microservices, if you believe the NPS.

Question x̄ s min max

1. I think that this approach 2.1 1.3 -2 3
is more scalable.

2. I think that the development 0.6 1.6 -2 3
is easier with this approach.

3. I think that this approach is 2.3 1.0 0 3
more flexible towards changes.

4. I think that this approach is -0.5 1.7 -3 3
harder to maintain.

5. I think that this approach is 1.6 1.3 -2 3
more promising for the future.

6. I think that this approach sim- 1.3 1.3 -1 3
plifies work in teams.

7. I think that this approach can 1.3 1.6 -2 3
save costs over time.

8. If I had a choice I would rather 1.6 1.3 -1 3
develop under this approach.

Table 5: Results of direct comparison of monolith
and modular approach (n = 28)

5. DISCUSSION
The survey revealed very interesting facts on our topic,

regardless of the relatively small sample.
We have seen an overall positive attitude towards archi-

tectural change, but certain requirements could also be iden-
tified. The subjects showed a broad willingness towards ar-
chitectural change and state that learning new approaches
is not an obstacle. Most of the participants also want more
advanced training, which can be interpreted as a key re-
quirement for a successful architecture: the employees have
to be involved and trained equally.

Several potential conflicts for architectural change were
identified in the comparison of category importance. The
costs seem to be most relevant for companies, which is the
opposite for employees. This may sound logical, but in fact
it is a problem, if employees desire a change, but the com-
pany does not grant financial support. The currentness of
the architecture does not seem to play a role at all, which
may explain why companies stick to established structures.
Instead, the most important category for both is the flexi-
bility. So a new architecture in ideal would have: low costs,
high flexibility, good maintainability and an easy migration.
To increase acceptance among employees it should be easy
to learn and sustainable.

The comparison between the monolithic and modular ap-
proaches showed that modular approaches are preferred in
general today and a promising future is attributed to them.
We also saw that monolithic approaches are still appealing
if they are applicable for the situation. Even if the results of
the direct comparison were very positive we cannot conclude
that monoliths are going to die in the next years.

The new architectural style of Microservices, which was
the activator for this study, got good ratings in the compar-
isons and also in the final question. Nevertheless, there also
were a lot of distractors regarding the NPS, which stresses,
that Microservices will not heal the world from all problems.
So in the end, we can preliminary answer the initial ques-
tion of the study as: nope, the App Server is not dead and
hopefully will survive for some years and continue to be a
reliable solution for many software companies.

To consolidate the results, further research is required.
The study could be repeated on a larger scale with more
preparation time, to gather more participants. The validity

and reliability of the results cannot be guaranteed to be the
same with another sample, since this was a pure exploratory
study without any strict assumptions and conditions.

Criticism can be applied to the selection of the App Server
as a monolith and Mircoservices as a modular approach. For
further research, more evident examples should be chosen.
Some participants argued that App Servers are also modu-
lar, which is not wrong as stated in the background chapter,
because an App Server of course can be modular, too.

6. CONCLUSIONS
Altogether, we have seen an interesting and challenging

study on the current distribution of monolithic and modu-
lar architectures in German software companies with several
interesting results and a good potential for further research.

Future work could be applied in form of broader surveys
or expert interviews with experienced software company em-
ployees, to verify the presented results.

7. ACKNOWLEDGMENTS
We thank all the participants very much for their readiness

to spend some rare time on contributing to our survey!

8. REFERENCES
[1] P. Calçado. Building Products at SoundCloud —Part

I-III. https://developers.soundcloud.com/blog/
building-products-at-soundcloud-part-1-

dealing-with-the-monolith, 2014. Retrieved
December 1, 2014.

[2] B. Christensen. Optimizing the Netflix API.
http://techblog.netflix.com/2013/01/

optimizing-netflix-api.html, 2013. Retrieved
December 1, 2014.

[3] M. Fowler. Design - who needs an architect? Software,
IEEE, 20(5):11–13, September 2003.

[4] M. Fowler and J. Lewis. Microservices. http:
//martinfowler.com/articles/microservices.html,
2014. Retrieved December 1, 2014.

[5] D. Glozic. SoundCloud is Reading My Mind.
http://dejanglozic.com/2014/06/16/, 2014.
Retrieved December 1, 2014.

[6] D. Jacobson. Embracing the Differences : Inside the
Netflix API Redesign.
http://techblog.netflix.com/2012/07/embracing-

differences-inside-netflix.html, 2012. Retrieved
December 1, 2014.

[7] microxchg2015. The Microservices Conference in
Berlin. http://microxchg.io, 2015. Retrieved
December 1, 2014.

[8] F. F. Reichheld. The one number you need to grow.
Harvard Business Review, 81(12):46–54, December
2003.

[9] C. Richardson. Microservices: Decomposing
Applications for Deployability and Scalability. http:
//www.infoq.com/articles/microservices-intro,
2014. Retrieved December 1, 2014.

[10] I. Summerville. Software Engineering. Pearson
Studium, Munich, 2007.

[11] W. M. Trochim. Likert Scaling. http:
//www.socialresearchmethods.net/kb/scallik.php,
2006. Retrieved December 1, 2014.

https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-1-dealing-with-the-monolith
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-1-dealing-with-the-monolith
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-1-dealing-with-the-monolith
http://techblog.netflix.com/2013/01/optimizing-netflix-api.html
http://techblog.netflix.com/2013/01/optimizing-netflix-api.html
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://dejanglozic.com/2014/06/16/
http://techblog.netflix.com/2012/07/embracing-differences-inside-netflix.html
http://techblog.netflix.com/2012/07/embracing-differences-inside-netflix.html
http://microxchg.io
http://www.infoq.com/articles/microservices-intro
http://www.infoq.com/articles/microservices-intro
http://www.socialresearchmethods.net/kb/scallik.php
http://www.socialresearchmethods.net/kb/scallik.php

Applicability of Test-driven development in the industry

Reyhaneh Yazdani
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

reyhaneh.yazdani@rwth-aachen.de

Horst Lichter
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

lichter@swc.rwth-aachen.de

ABSTRACT
Test Driven Development (TDD) is a software development
technique which tests are written incrementally before codes
in the development process. Several empirical evaluations in
different environments are done in order to evaluate the of-
fered benefits and detect the downsides. Each evaluation
provides results based on the existing test conditions, which
lead to pros and cons opinions about TDD.

The objective of this paper is to first assess the benefits
and downsides of TDD, and then prioritize them in such
a way that guide a company to decide about TDD. In an-
other view, using TDD makes a favor or an obstacle that
needs hard progress to be resolved. As well, if TDD meets
the company’s development criteria, what should be done to
apply TDD successfully in the industry?

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
Test-Driven Development, TDD benefits, TDD downsides

1. INTRODUCTION
Test driven development (TDD) is an agile software de-

velopment style derived from Extreme Programming (XP)
[8]. According to the Scott W. Ambler, Test Driven De-
velopment (TDD) is an evolutionary approach to software
development that combines the idea of writing automated
tests before developing the original code and refactoring [1].
Refactoring is improving the structure of an existing body
of code without changing its external behavior [11].

Using tests for ensuring the quality of software is not a
new idea, but the brand new point of this approach is the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2014/15 RWTH Aachen University, Germany.

importance of tests and how a development is started by
writing tests. In the light of this view, designing tests are
extended from being a development tool to an approach that
all sectors of development, including analysis, design, and
implementation, are also affected.

In the traditional development approaches with compre-
hensive planning, detailed documentation and expansive de-
sign [3], developers write tests after code software. The same
programmers or testers may write unit tests, while in TDD,
programmers write tests before the code. Traditional tech-
niques are started with the analysis of the requirements, and
then continued by designing phase. In the implementation,
coding is started in several modules and units. Later in in-
tegration and test phase, all those units are integrated into
a unique system and tested for verification and validation
purposes. Also, refactoring occasionally occurs during the
test phase when programmers address the detected software
defect [14].

The process steps of TDD are the following [5] [14]:

1. Pick a piece of functional requirement

2. Write an automated test for that piece

3. Execute the automated test to make sure the new test
fails

4. Write implementation code and repeat step 3 as long
as the execution of automated test fails

5. Refactoring of existing code when test is executed suc-
cessfully

6. Run all tests to make sure that refactoring did not
change the external behavior

7. Repeat the whole process by going back to step1 and
implementing other requirements.

There are several TDD attributes [4]. In the first place,
TDD is test oriented. It starts by writing just enough tests
for a specific functionality before coding that. In another
view, the first coding task is the planning and writing auto-
mated (unit) tests that would determine whether the func-
tional requirement is met [4].

The next attribute of TDD is continuing the development
process in the incremental and iterative way. Developers
add tests gradually during the development process [4].

Another characteristic of TDD is the automation of the
unit tests using frameworks such as xUnit. This means the
frequent regression testing, an integral part of TDD, is au-
tomated [4].

The last is refactoring. Refactoring is part of how we do
things in TDD but was not emphasized to the same degree
in the traditional test-last experiences [4].

Recently, various empirical investigations are done to find
the benefits and constraints of using TDD in comparison
to the traditional approach. These are done in different
industrial and academic environments which made several
proponents and critics of TDD.

Although TDD is used and examined for decades, recently
a keynote from David Heinemeier published on his blog, ex-
pressed his dissatisfaction with TDD, led to a sequence of
conversations in a theme of Is TDD dead? [16]

In this paper, we present the benefits and downsides of
TDD, which are determined by several investigation of eval-
uating Test Driven Development approach.

We organize this paper as follows. Section 2 presents ad-
vantages and disadvantages of TDD, followed by the pre-
sentation of limiting factors in applying TDD and offered
solutions for the introduced limitation in section 3, and sec-
tion 4 comes up with a conclusion.

2. THE ADVANTAGES AND DISADVANTAGES
OF TDD

Doing various empirical investigations to find out the ef-
fect of TDD in development cycles and compare the results
in order to get the general findings, is not an apt approach.
Each industrial environment has its own specific characteris-
tics, such as level of developer’s experiences in writing tests
and knowledge of the Test-driven approach. In addition,
time and financial constraints put pressure on the devel-
opers and manager, which affect the project’s outputs and
manager’s decisions. These are the kind of factors that can
influence the project. Moreover, several empirical studies
are done in controlled and isolated environments, while in
reality there are some variables that may change the results.

Further, a lot of experiments and case studies were de-
vised in different conditions to analyze the advantages and
disadvantages of TDD. Varied from projects in an academic
or industrial environments to being conducted by students
or professional developers or mixed of them. Most of them
had developed small projects and rarely real and large ones.
Even though this software development method has been
introduced more than ten years ago, there is still doubt re-
garding all benefits, which this approach claims posses [5].
By considering the fact that existing studies produced con-
tradictory results, we are going to present the importance of
those findings as advantages and disadvantages of TDD.

2.1 Advantages of TDD

1. Increased External Code Quality
External code quality is measured using a couple of dif-
ferent metrics. In experiment settings, external qual-
ity means number of passed acceptance tests. In the
case studies, external quality usually means number
of defects found before release or defects reported by
customers [13]. Most of the findings show that TDD

increases the external quality, whereas there are some
results that present no difference in external quality
of test-first and test-last approach. TDD discipline
put developers to write simple and clean source codes,
while without the discipline it is easier to work less
and write messy codes. Therefore, by following the
discipline, we will get codes with higher quality [2].

2. Simple Design
As design is done while tests are written, developers
add classes and methods if they are required. This
leads to a decrease in the complexity of the design
and makes it simple. Also, developers can adapt to
the changes and new features during implementing and
maintenance phases [14] because of the easily under-
standable simple design.

3. Increased Application Quality
Due to more testing during the implementation, soft-
ware will have fewer defects in the released version.
Therefore, reliability of the application is increased.
As well, clients will also get the expected values more
than when developing the application in traditional
methods [4]. Buchan, Li and G.MacDonell [4] made a
comparison between different results of various expe-
riences regarding the quality of the application. The
notable finding is that, most of the studies that stu-
dents had conducted, didn’t present any improvement
in the quality of application. However in significant
industrial case studies, they show improvement in the
quality of application.

4. Improve Overall Productivity
Although TDD increases the time on coding and de-
veloping tests on early stages, as the development pro-
gressed, writing new functionality needs less work in
comparison to the test-last method [4]. Also, in TDD,
errors and bugs are identified and removed in early
phases, because developers remember more about the
developed code than later in development life cycles.
One of the interviewees in [4] described this matter as
“It is a lot cheaper in terms of resources to fix the issue
immediately rather than months down the track when
they may be discovered”. In addition, if the project is
implemented in accordance with the TDD rules, it will
be more productive than the test-last method in main-
tenance phase, as later in maintenance, source codes
are easier to understand by others who did not write
the codes.

5. Increased test coverage
Higher test density and test coverage were also per-
ceived to be encouraged by the use of TDD practices
[4]. Due to the characteristic of the TDD, first test
should be developed followed by the corresponding codes.
Here, it is more probable that all tests are covered in
comparison to the test-last approaches. In the test-
last approaches, it is common to left some tests out
because of time constraints, or it is unlikely to write
tests for the parts that passed the acceptance tests of
client or system tester.

6. Best understanding of the project’s requirements
Test Driven Development encourages better understand-
ing of requirements by spending more time in develop-

ment analyzing scenarios, business requirements and
more contact with the client [4]. If developers face
uncertainly about a piece of the requirements during
writing tests, they can ask client for clarification and
more explanations about that part. In another view,
the extra effort invested into understanding what the
functional code had to do before writing it, resulted in
a clear idea of the objects and methods required in the
functional code [4].

7. Increasing developer and client confidence
One of the features of TDD is that developer can per-
ceive the requirements more clearly. This made it pos-
sible for the developers to get more confidence as they
implement what client exactly wants and the uncer-
tainty around software releases is reduced [4]. This
leads to more job satisfaction for developers. In ad-
dition, clients have more contact with the developers
during the project development. This makes clients
more satisfied and confident that what they get is in
accordance with what they require.

2.2 Disadvantages of TDD

1. Decreased Productivity
Experiments and case studies used varied metrics for
productivity. The used metric may be total develop-
ment effort, lines of code per hour or number of im-
plemented user stories [13]. Thus, it is hard to get a
determined result. By considering the variety of met-
rics and test conditions, most of studies found out that
TDD used more time in testing and coding. However,
several studies report on less productivity, but at the
same time they report improved external quality [13].

2. No up-front design
Proponents of TDD believe that applying TDD makes
software design more simple with high quality [4]. This
works properly only for a well-written and understand-
able source code. This means when bugs and defects
are found in the maintenance phase, there is no formal
design and documentation available [18] to help pro-
grammers to understand or remind the architecture
and design of the software.

3. More maintenance
In maintenance phase of general software development
approaches, detected bugs are removed or some en-
hancements and customization may be done. In a
Test driven development method, these activities need
to be done on test cases too. Therefore, more tasks
should be done in TDD maintenance in comparison to
the traditional approaches. So, TDD leads to higher
maintenance costs, which makes it unattractive for the
managers.

4. No ease of learning
In contrast to the findings of the research question that
Kumar and Bansal presented about the ease of learn-
ing TDD approach that shows neutral view about it
[14], David Tchepak has an alternative opinion. He
posted an article on his blog as a TDD coacher about
the difficulty of learning TDD in an effective way [19].
He minded that it is related to the wrong idea about
TDD. Most of the training resources expressed TDD

as a perfect way of coding and who does not apply
TDD, develops complex code with low quality. The
unrealistic expectations can cause people to become
overly focused on the process, without understanding
the rationale behind it [19]. This results in developers
applying TDD in an ineffective manner [19]. In addi-
tion, it is hard to practice TDD. It has simple rules
but the learner needs to have comprehensive knowl-
edge about OO design, patterns, SOLID, DRY, etc.
[19] in order to apply TDD effectively and with success.
Moreover, changing the mindset and thinking model in
software development from traditional to Test-driven
development is challenging [17]. Most software devel-
opers have learned traditional approaches and Test-
driven development is a complete different method.

3. APPLYING TEST-DRIVEN DEVELOPMENT
Based on the systematic review on 48 papers that Adnan,

Daniel and Sasikummer have made [6], some limiting fac-
tors in TDD adoption are identified. Their report provides
an overview about TDD and helps us to understand what
should be done to apply TDD successfully in the industry.
In this section, we present the limitations in applying TDD
and later, propose solutions to deal with them.

3.1 Limiting factors in adopting TDD

• LF1: Long Development time
Development Time can be a critical factor for customer
and organization, since by long development time, the
cost of the project will be raised and customer will not
be satisfied completely. Most of the experiences that
have been done on evaluating TDD, have declared that
in comparison to traditional development, TDD needs
more time for developing. However, others claimed
since the time for testing phase will be decreased in the
TDD approach, the overall time in TDD is less than
traditional method. How much this factor is critical,
depends on the organization and its maturity [6].

• LF2: Insufficient TDD knowledge and experience
Based on the report [6], lack of the knowledge of TDD
and experience in using TDD, are factors that could
make problems in applying TDD in the industry. How-
ever, this subject can be applied on other approaches
and techniques too. Even in developing software with
traditional approach, it is expected that developers
have enough knowledge and experience in them. This
is a common factor that can be applied on every method.
However, in comparison to the traditional approaches,
the amount of the developers who have enough knowl-
edge about the TDD and writing efficient tests, are
less than test-last methods.

• LF3: Insufficient developer testing skills
TDD is a method based on test cases, in which de-
velopers use tests to guide the design of the system
under development [8]. Therefore, it is essential that
developers have enough testing skills to produce suit-
able test cases. Moreover, in traditional approach, the
system can be designed by the designer and imple-
mented by the programmer and tested by tester, while
in TDD developers designed the system by implement-
ing test cases and then corresponding source codes.

LF1 LF6 LF3 LF5

LF2

LF4

Figure 1: Causal relationships among limiting fac-
tors

Thus, TDD-developers need to have more knowledge
than test-last developers.

• LF4: Insufficient adherence to the TDD protocol
Each development technique has several steps that de-
velopers should observe them. In TDD, test cases are
written, and then tested to examine their failure and
after that, corresponding source code is implemented.
Based on the findings of the review [6], most of the
industrial case studies informed that developers were
not adherence to the TDD protocol, which may lead
to the low quality.

• LF5: Domain and tool specific limitations
In a TDD project, developer needs a unit testing frame-
work (xUnit tool) for writing test cases and a test run-
ner to run the written tests. However, the type of the
project is the matter. One of the common critics about
the TDD is that it does not suit for GUI projects, as it
is tough and effortful to perform automated GUI test-
ing. The findings of the most investigation [6] on TDD
shows that most of the developers have a problem in
using TDD on a GUI projects.

• LF6: Lack of accepting the benefits of TDD by project
team
As TDD is not usually used in the industry, when an
organization decides to apply it, its member’s mindset
about the TDD should be prepared. If some of the
members are skeptical about the TDD usages, they
can affect on the process of development and make
tension in the team.

We also have identified causal relations among the lim-
iting factors of adapting TDD in the industry. All of the
causal relations lead to the same limiting factor Insufficient
adherence to the TDD protocol. Figure 1 shows the causal
relations and they are explained as follows.

• Long development time in TDD (LF1) might lead to the
situation that developers do not perform TDD proto-
col completely (LF4). As the manager may force them
to finish the project earlier, developers would not fol-
low the TDD protocol.

• It is possible that some of the developers do not recognize
the TDD’s advantages (LF6). Therefore, they do not
follow routine’s steps of TDD (LF4).

• TDD is an approach which is based on testing. That
means developers who want to obtain good experiences
in TDD, are required to have testing knowledge (LF3).
Thus, missing testing skills could lead to achieving less

Table 1: Limiting Factors and Recommended Solu-
tions

Limiting Factor Recommended Solution

Long development time Select optimal approach
based on received benefits

Insufficient TDD
knowledge/experience

Setting lectures and
lab material in TDD, train-
ing developers on site

Insufficient
developer testing skills

Observe quality
of written test cases

Insufficient
adherence to TDD protocol

make discipline
Monitor testing procedure,
adapt developer’s mindset

Domain
and tool specific limitations

Use introduced
techniques in articles, mar-
ket produce and develop de-
sired tool

Developer’s
skeptical about TDD

Remind developers
TDD’s benefits - feedback
system

experiences in TDD (LF2), which provides a situation
that developers do not perform TDD perfectly well
(LF4).

• In the development based on TDD, tools and frameworks
are needed. The lack of TDD-tools for some specific
domains (LF5) lead to developers obtain not enough
knowledge and experience in those domains (LF2). It
could lead to difficulty for developers applying TDD,
therefore they would not adherence to it (LF4).

3.2 Solutions to limiting factors
In order to apply TDD successfully in an organization,

we should remove the limiting factors. However, we can
still apply TDD in the industry by accepting some of the
constraints, but it is less probable to gain all TDD bene-
fits. In this subsection, we are going to propose potential
solutions for the mentioned limiting factors. The important
point is that we have ordered them based on the priority.
That means limiting factors with high priority have more
effects on the TDD success. The rationale behind the of-
fering priorities is the causal relations between the limiting
factors that are introduced in subsection 3.1. Table 1 shows
the solutions briefly.

• Priority 1: Long development time
It should be clear from the beginning of the TDD-
project that development time of the project is not
only implementation time, but also writing tests, and
refactoring. In this part, the manager role is impor-
tant. The manager should consider this matter that
implementation time in TDD is more than traditional
development and should not pressure to deliver that
code quickly. It does not mean that TDD is not suit-
able for the project that has a restrict time limitation.
As a successful project that Roberto has described [15]
and time was a restrict constraint, the team finished
the project by using TDD on time.

• Priority 2: Domain and tool specific limitations
Although more developers have the opinion that TDD
is not suitable for GUI projects because the GUI code
was not covered by any automated unit tests [12], re-
cent articles like [9] and [10] introduced techniques
that allow GUI test cases written and tested simply in
TDD. However, it needs more effort to develop stan-
dards and official tools that support TDD in GUI type
of projects. This is a real hard progress that is not easy
to resolve, thus by considering the existing tools, TDD
does not completely fit in project with GUI domain.

• Priority 3: Lack of acceptance the benefits of TDD by
project team
The best way to encourage developers to use TDD is
to understand the reasons of their unwillingness to ap-
ply TDD. However, we can apply the following meth-
ods. During the development process, the outcome
from TDD can be monitored and recorded, and in
several time slots, expressed to the developers to re-
mind them the benefits of their work. Moreover, if
the project team consists of several groups, it is bet-
ter to assign a TDD-experienced as a group leader to
motivate members and believe on TDD. In addition,
we should let other developers present their opinions
about how TDD affects on the project. For this, we
can provide a feedback system. Another way for in-
creasing TDD acceptance is showing developers TDD
benefits practically instead of using official arguments.
It can be done by creating small projects to demon-
strate them how TDD is helpful. Finally, we should
not be dogmatic of TDD, because it leads to reluc-
tance. We should try out to have a rational discussion
with developers about TDD and show them that even
without applying TDD, they are as qualified as other
developers who can implement great codes.

• Priority 4: Insufficient developer testing skills
As the quality of test cases can express the quality of
designed system, it is recommended that a professional
developer observe the quality of written test cases dur-
ing the development. It is like the design verification
in traditional test-last method.

• Priority 5: Insufficient TDD knowledge and experience
When a developer is asked to contribute in a develop-
ing of a project, he or she should have enough knowl-
edge on the specific method and if not, the organi-
zation should set up training for him or her. Since
TDD is younger than traditional approaches, fewer de-
velopers are familiar with it. More universities and
Software-Center trainings should set lectures in TDD
subject and define lab materials to getting students fa-
miliar with this approach, as it is currently done for
traditional ones. Also, an organization can increase the
TDD-skill of its developers such as writing tests and
refactoring by providing on-site trainings. Typically, it
is costly and expensive to train the organization’s de-
velopers, but without having TDD-trained developers,
the successful project is not reachable. In addition,
by developing more standards tools for using in TDD,
more developers will be interested in TDD and obtain
TDD-knowledge.

• Priority 6: Insufficient adherence to the TDD protocol
For achieving the offered benefits of an approach, one
must follow its phases completely. Lack of adhering
to protocol is not related only to TDD. This is also
possible for traditional approaches. Boby and Laurie
had done an investigation about Test Driven Develop-
ment in the industry [7], and in their investigation they
asked control pairs who coded in a traditional fashion
to write test cases after finishing code implementation.
Lastly, only one group performed. There are reasons to
avoid some steps of an approach such as time pressure,
lack of discipline and shortage of perceived benefits
[6]. Following the protocol should be monitored and
controlled. Also, developer’s mindset should be estab-
lished to be aware of the approach’s benefits. It can
also be managed by working with TDD-experienced
developers instead of non TDD-experienced.

4. CONCLUSIONS
In this paper, we presented advantages and disadvantages

of Test Driven Development based on the different reviews
of the several empirical studies. Also, existing researches
and studies have indicated the limiting factors in applying
TDD in the industry. These factors are:

• Long development time

• Insufficient TDD knowledge and experience

• Insufficient developer testing skills

• Insufficient adherence to the TDD protocol

• Domain and tool specific limitations

• Lack of accepting the benefits of TDD by project team

Although several empirical studies have reported many
findings, those results are mixed and cannot produce a unique
and particular decision about TDD. That indicates further
researches need to be done about effectiveness of TDD in
the industry, and for this we propose to use more TDD pro-
fessionals and experts instead of students, and real projects
contrary to sample and small projects.

We also provided some solutions to help removing those
limiting factors and thus make it possible to apply TDD in
the industry successfully. In addition, we prioritized them
in a way that factor with high priority represents the con-
straint that leads to more difficulty on adapting TDD in
the industry. For solving those constraints, we need money,
time, tools and expert human resources. Test Driven De-
velopment is still new and novice in the industry and fewer
professional and experienced developers exist in this area.
As well, effective tools that ease developing with this ap-
proach are not plenty available in the market. These lead
to apply TDD less in industry compared to traditional ap-
proaches.

We cannot decide explicitly whether TDD is dead or not.
TDD is like a newcomer in the industry and still needs time
to prove itself. However in some cases, lack of consideration
in running TDD will lead to unavoidable failure. In case
that a management team does not support TDD and puts

on pressure on developers, TDD will break down. When-
ever using developers who all of them have early knowledge
of TDD, it will fail or in the best case, it will be too dif-
ficult and time-consuming project. However, using high-
level TDD-experience developers is not compulsory for suc-
cess. Developers and managers should consider these facts
and limitations, then decide about TDD by considering the
trade-off, apply it at the right place and right time.

5. REFERENCES
[1] S. W. Ambler. Introduction to Test Driven

Development (TDD).
http://www.agiledata.org/essays/tdd.html, 2012.
Retrieved November 8, 2014.

[2] M. F. Aniche and M. A. Gerosa. Most common
mistakes in test-driven development practice: Results
from an online survey with developers. In Software
Testing, Verification, and Validation Workshops
(ICSTW), 2010 Third International Conference on,
pages 469–478. IEEE, 2010.

[3] M. Awad. A comparison between agile and traditional
software development methodologies. University of
Western Australia, 2005.

[4] J. Buchan, L. Li, and S. G. MacDonell. Causal factors,
benefits and challenges of test-driven development:
Practitioner perceptions. In Software Engineering
Conference (APSEC), 2011 18th Asia Pacific, pages
405–413. IEEE, 2011.

[5] A. Bulajic, S. Sambasivam, and R. Stojic. Overview of
the test driven development research projects and
experiments. In Proceedings of the Informing Science
and Information Technology Education 2012
Conference (InSITE), pages 22–27, 2012.

[6] A. Causevic, D. Sundmark, and S. Punnekkat. Factors
limiting industrial adoption of test driven
development: A systematic review. In Software
Testing, Verification and Validation (ICST), 2011
IEEE Fourth International Conference on, pages
337–346. IEEE, 2011.

[7] B. George and L. Williams. An initial investigation of
test driven development in industry. In Proceedings of
the 2003 ACM symposium on Applied computing,
pages 1135–1139. ACM, 2003.

[8] A. Geras, M. Smith, and J. Miller. A prototype
empirical evaluation of test driven development. In
Software Metrics, 2004. Proceedings. 10th
International Symposium on, pages 405–416. IEEE,
2004.

[9] T. D. Hellmann, A. Hosseini-Khayat, and F. Maurer.
Supporting test-driven development of graphical user
interfaces using agile interaction design. In Software
Testing, Verification, and Validation Workshops
(ICSTW), 2010 Third International Conference on,
pages 444–447. IEEE, 2010.

[10] T. D. Hellmann, A. Hosseini-Khayat, and F. Maurer.
Test-driven development of graphical user interfaces:
A pilot evaluation. In Agile Processes in Software
Engineering and Extreme Programming, pages
223–237. Springer, 2011.

[11] D. S. Janzen and H. Saiedian. Test-driven
development: Concepts, taxonomy, and future
direction. Computer Science and Software

Engineering, page 33, 2005.

[12] D. S. Janzen and H. Saiedian. On the influence of
test-driven development on software design. In
Software Engineering Education and Training, 2006.
Proceedings. 19th Conference on, pages 141–148.
IEEE, 2006.

[13] S. Kollanus. Test-driven development-still a promising
approach? In Quality of Information and
Communications Technology (QUATIC), 2010 Seventh
International Conference on the, pages 403–408.
IEEE, 2010.

[14] S. Kumar and S. Bansal. Comparative study of test
driven development with traditional techniques. Int J
Soft Comput Eng (IJSCE), 3(1):2231–2307, 2013.

[15] R. Latorre. A successful application of a test-driven
development strategy in the industrial environment.
Empirical Software Engineering, 19(3):753–773, 2014.

[16] M.Fowler. Is TDD Dead?
http://martinfowler.com/articles/is-tdd-dead/,
2012. Retrieved November 8, 2014.

[17] R. Mugridge. Challenges in teaching test driven
development. In Extreme Programming and Agile
Processes in Software Engineering, pages 410–413.
Springer, 2003.

[18] O. P. N. Slyngstad, J. Li, R. Conradi, H. Ronneberg,
E. Landre, and H. Wesenberg. The impact of test
driven development on the evolution of a reusable
framework of components–an industrial case study. In
Software Engineering Advances, 2008. ICSEA’08. The
Third International Conference on, pages 214–223.
IEEE, 2008.

[19] D. Tchepak. Why learning TDD is hard, and what to
do about it?
http://www.davesquared.net/2011/03/why-

learning-tdd-is-hard-and-what-to-do.html, 2011.
Retrieved November 14, 2014.

http://www.agiledata.org/essays/tdd.html
http://martinfowler.com/articles/is-tdd-dead/
http://www.davesquared.net/2011/03/why-learning-tdd-is-hard-and-what-to-do.html
http://www.davesquared.net/2011/03/why-learning-tdd-is-hard-and-what-to-do.html

Pioneering in Software Engineering

Tanja Ulmen
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

tanja.ulmen@rwth-aachen.de

Prof. Dr. Horst Lichter
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

lichter@swc.rwth-aachen.de

ABSTRACT
The term software engineering was used for the first time
by the NATO in 1968. After that software engineering was
constantly changing. Both, industry and academia invented
new concepts, methods, languages, processes and technolo-
gies to make software engineering even more efficient. In
this paper we want to find out if there is a general tendency
to industry or academia, where more means of software en-
gineering were developed and if there was a shifting from in-
dustry to academia or from academia to industry. To work
this out we go into the history and use some innovations
of software engineering. Another interesting point will be
the impact of this different innovations and to find out if
academia or industry had a bigger impact on the practice in
software engineering. The last thing we are going to work
out are the different categories of software engineering and
which innovation belongs to which category. This may lead
to other findings within the topic of pioneering in software
engineering.

1. INTRODUCTION
In 1968 the term software engineering was used for the

first time within a conference sponsored by the NATO. The
following years software engineering grew rapidly. The inno-
vations of software engineering were basically developed by
academia and industry. In this paper we want to find out if
there is a general tendency to academia or to industry and if
there is a shifting from one to the other part. To work this
out we use some innovations of software engineering. An-
other interesting part that we want to respect in this paper
is the impact of the different innovations on the practice and
if there is a connection between the impact on the practice
and innovations developed by industry or academia. The
last part of this paper will be a sorting of these different
innovations into categories. This may lead to some other
findings within the topic academia vs. industry.

Thus, this paper is split into four sections. The Section

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2014/15 RWTH Aachen University, Germany.

2 is about the history of the different innovations. When
the respective innovations were developed, by whom and if
they were influenced by someone else. The Section 3 han-
dles the impact of the different innovations on the practice.
Section 4 deals with the categories of software engineering
and if there is a connection between innovations from the
academic sector or the industrial sector. Finally in Section
5 follows a short summery of the findings we made.

2. TIMELINE
To work out which sector developed the most of the in-

novations, we constructed a timeline to list when each in-
novation was developed (Table 1). At the right side of this
table are the years when the innovation was developed, the
different colours distinguish if they are developed by indus-
try (gray) or by academia (black). Below the name of the
particular innovation are the names of the developers and if
the development was influenced by another idea outside the
software engineering sector.

For example the design patterns were developed by the gang
of four (Erich Gamma, Richard Helm, Ralph Johnson and
John Vlissides) in 1994. They all worked for different com-
panies, thus this innovation came from the industry. The
idea of the design patterns was based on the idea of pat-
tern languages that was developed by an architect named
Christopher Alexander in 1978.

Another example is structured programming that was de-
veloped in 1970 by Edsger W. Dijkstra. During this time he
was Professor for mathematics at the Technical University
Eindhoven thus, this innovation came from the academic
sector.

The last example is the agile software development that
started in 2001, after seventeen independent software de-
velopers signed the agile manifesto. All of the seventeen
software developers came from the industry, thus this inno-
vations is also located as developed by industry.

1967 • Object Oriented Programming (Simula)
by Ole-Johan Dahl, Kirsten Nygaard [15]

1970 • Structured Programming
by Edsger W. Dijkstra [17]

• Waterfall Model
by Winston W. Royce [33]

influenced by Herbert D. Benington 1956

1972 • Information Hiding
by David Parnas [30]

• Smalltalk IDE/ MVC-based GUIs
by Alan Kay [21]

1974 • Abstract Data Types
by Barbara Liskov, Stephen Zilles [25]

• Structured Query Language (SQL)
by Donald D. Chamberlin, Raymond F. Boyce [13]

1975 • Modular Programming (Modula)
by Niklaus Wirth [38]

1979 • Structured Analysis/ Structured Design
by Edward Yourdon, Larry L. Constantine [39]

• Function Points
by Allan J. Albrecht [3]

1981 • Constructive Cost Model (CoCoMo)
by Barry Boehm [6]

1986 • Design by Contract
by Bertrand Meyer

• Component Based Develpment
by Brad Cox [14]

influenced by Doug McIlroy 1968 [32]

1987 • Cleanroom Development
by Harlan D. Mills et al. [27]

1988 • Capability Maturity Model (CMM)
by Watts S. Humphrey [22]

• Framework based Development
by Ralph E. Johnson, Brian Foote [23]

1991 • Java
by James Gosling et al.[34]

• Common Object Request Broker Architecture
(CORBA)

by OMG [16]

1992 • Refactoring
by William F. Opdyke [29]

1994 • Design Pattern
by Erich Gamma et al. [20]

influenced by Christopher Alexander 1977 [4]

• Goal Question Metric (GQM)
by Victor R. Basili, David Weiss [12]

1995 • Scrum
by Ken Schwaber [35]

• Javascript
by Brendan Eich [36]

1996 • Unified Modeling Language (UML)
by James Rumbaugh et al. [10]

• Extensible Markup Language (XML)
by SGML Editorial Review Board [11]

• Service Oriented Architecture (SOA)
by Gartner [28]

1998 • Continuous Integration
by Kent Beck [8]

• Rational Unified Process (RUP)
by Philippe Kruchten [24]

• JUnit
by Erich Gamma, Kent Beck [9]

• Product Line Engineering
by Paul Clements, Len Bass, Linda Northrop [7]

influenced by David Parnas 1976 [31]

1999 • Extreme Programming (XP)
by Kent Beck [8]

• Test Driven Development (TDD)
by Kent Beck [8]

2000 • Representational State Transfer (REST)
by Roy T. Fielding [19]

2001 • Eclipse IDE
by IBM et al.

• Agile Software Development
by Kent Beck et al. [5]

2003 • Model Driven Architecture (MDA) / Model
Driven Development (MDD)

by J. Miller, J. Mukerji [26]

•
Industry Academia

Table 1: Timeline containing the innovations of soft-
ware engineering. The left column contains the
dates when the respective innovation of software en-
gineering were developed, the right side contains
the names of the developers and if the innovation
was influenced by someone else. The colours dis-
tinguish between developed by industry (gray) and
developed by academia (black).

2.1 Possible reasons for industrial dominance
In Table 1 we can see that the most of the innovations

were developed by the industry. Out of 36 innovations only
9 innovations were developed by the academic sector. There
might be several reasons:

• One reason might be that the industrial sector needs
the economic competition. Industrial concerns need to
be up to date to be able to bring their products to the
market. This could be the reason why industry devel-
oped much more innovations of software engineering
than the academic sector. Universities are not that
affected by the economic competition. Of course the
reputation of a university gets better if they are always
up to date with their research topics but it is not as
important as for the industry.

An example is Nokia. Until 2006 they were leaders in
the mobile phone market. Then Apple started with
the smartphone production and one year later in 2007
the market share of Nokia fell from 50% to only 39%,
in 2012 they had a market share of only 16% [1]. All
mobile phone companies switched over to smartphones
but Nokia missed this trend. The result is that Nokia
was bought by Microsoft in April 2014. Thus, this
is one example what might happen to a company if
it does not follow the market. Thus, this might be
one reason why the industry developed so much more
innovations than academia.

• Another reason might be the capacity of an industrial
company in contrast to a university. A big company
like IBM for example has much more employees than
a chair of a university and thus, much more capacity.
Thus, they are faster and more efficient in developing
new means of software engineering. For example the
Software Engineering chair (i3) of the RWTH has 48
members [2], IBM in Dortmund has 230 employees [18].

• A further point is that companies nowadays are much
more specialized than universities or chairs of univer-
sities. There are companies like cisco that work exclu-
sively in the telecommunication sector. In universities

are also different chairs but usually only one for the
whole sector of software engineering.

• The last reason might be, that universities have less
money than industrial companies. In industry success-
ful products are sold and the obtained money is used
for the next developing process. In universities the
gained money is used for several purposes, like teach-
ing and things like that.

Another thing that is visible in the Table 1 is, that after
1994 are less innovations developed by academia than be-
fore 1994. Thus, there is no real shifting from academia to
industry but it is visible that in the last 20 years academia
produced less innovations than in the early years of software
engineering.

One possible explanation is the growth of the software
sector. There were a lot of changes in the software engineer-
ing sector, like the growth of the gaming industry and the
embedded systems for example. Nowadays nearly each elec-
trical machine contains embedded systems like cars, fridges,
dish washers or even whole houses (smart homes) and like
mentioned above industrial companies are more specialized
than universities. Thus, companies have much more capaci-
ties to develop new products in such a wide range of software
than academia has.

3. IMPACT
Another interesting point is the impact that the different

innovations had on the practice. To find out how strong this
influence was, we did a survey that contained all of the for-
mer mentioned innovations. In this survey the participant
had to choose if the respective innovation had a very strong
impact on the practice, a strong impact, a weak impact, no
impact or if an innovation is unknown to him. The partici-
pants were people working for the RWTH Aachen and other
computer scientists. The results of this survey are in Table
2.

At the top of the table are the innovations that had a very
strong influence on the practice. Below are the innovations
that had a strong influence and at the bottom are the inno-
vations that had only a weak influence on the practice. The
written values are the highest values for every innovation,
the “unknown” values are left out. With this table we want
to find out if there is a connection between the impact, that
an innovation had on the practice and if this respective in-
novations came from industry or academia. Thus if it is pos-
sible that innovations from industry for example had more
impact to the practice than innovations from academia.

With this table 2 it is visible that both, industry and
academia produced a lot of innovations that had a strong
influence on the practice and also some innovations that had
only a weak influence on the practice. This table shows that
there is no connection between the impact of an innovation
and if it is developed by the industry or academia. It might
be that the values of Table 2 would change if we worked with
a lot more participants, because 32 is not very significant.

very strong influence

Innovation highest Percentage

Object Oriented Programming 91 %

Java 53 %

SQL 50 %

Design Pattern 48 %

Modular Programming 45 %

Refactoring 45 %

Javascript 41 %

XML 41 %

Eclipse IDE 38 %

REST 26 %

strong influence

Agile Software Development 48 %

Smalltalk IDE 48 %

Continuous Integration 48 %

Structured Analysis/ Design 45 %

Structured Programming 41 %

Abstract Data Types 41 %

Information Hiding 39 %

UML 39 %

SOA 39 %

Framework based Development 38 %

JUnit 34 %

Scrum 32 %

MDA/ MDD 26 %

CORBA 24 %

CMM 23 %

RUP 20 %

weak influence

Extreme Programming (XP) 47 %

Waterfall Model 41 %

TDD 38 %

Component Based Develpment 36 %

Design by Contract 34 %

Goal Question Metric (GQM) 27 %

Cleanroom Development 23 %

Product Line Engineering 23 %

Function Points 19 %

CoCoMo 19 %

Industry Academia

Table 2: Results of a survey with 32 participants.
The survey is about the impact of the different inno-
vations on the practice. The values are the highest
values of all possibilities (no influence, weak influ-
ence, strong influence, very strong influence) except
“unknown”.

4. CATEGORIES
The last point that we want to focus on is the different

categories of software engineering. We decided to sort the
innovations into the following categories: languages, meth-
ods, concepts, processes and technologies. Thus the sorting
is as follows:

Languages
1 Java
2 JavaScript
3 Extensible Markup Language (XML)
4 Structured Query Language (SQL)
5 Unified Modelling Language (UML)

Methods
1 Extreme Programming (XP)
2 Test Driven Development (TDD)
3 Goal Question Metric (GQM)
4 Constructive Cost Model (CoCoMo)
5 Continuous Integration
6 Service Oriented Architecture (SOA)
7 Refactoring
8 Capability Maturity Model (CMM)
9 Structured Analysis (SA)/

Structured Design (SD)
10 Function Points

Concepts
1 Representational State Transfer (REST)
2 Design by Contact
3 Abstract Data Types
4 Structured Programming
5 Modular Programming
6 Object Oriented Programming
7 Design Pattern
8 Model Driven Architecture (MDA)

Model Driven Development (MDD)

Processes
1 Cleanroom Development
2 Component-based Development
3 Scrum
4 Agile Software Development
5 Product Line Engineering
6 Framework-based development
7 Relational Unified Process
8 Waterfall Model

Technologies
1 Eclipse IDE
2 Smalltalk IDE or MVC-based GUIs
3 Corba
4 JUnit

Table 3: Sorting of innovations of software engi-
neering into the categories languages, methods, con-
cepts, processes and technologies.

Here we can observe that the most of the innovations were
methods (10) followed by concepts (8), processes (8), lan-
guages (5) and technologies (4). Thus, there are a lot more

methods than for example technologies. This might have
the following reasons:

• One point may be that technologies like Eclipse IDE
are further developed, there are a lot of new plugins
every year. Thus, these plugins are no new technolo-
gies, they complete the Eclipse IDE. Whereas a devel-
opment of Test Driven Development will end up in a
completely new method. Behaviour Driven Develop-
ment is such a method that is based on Test Driven
Development [37].

• Another reason might be that new technologies are not
as required as new methods.

In Table 4 we sorted the innovations with their respective
categories like in Table 2. The innovations with a very strong
impact on the practice are above, followed by the innovations
with a strong influence and at last the innovations with a
weak influence on the practice. With this sorting we want
to find out if there is a connection between the impact and
the category of software engineering. Thus, if it is possible
to say that for example languages had more impact on the
practice than methods. Another thing that might be visible
is which category is developed by which sector. Maybe it is
possible to say that academia developed only methods.

very strong influence

Innovation category

Object Oriented Programming concept

Java language

SQL language

Design Pattern concept

Modular Programming concept

Refactoring method

Javascript language

XML language

Eclipse IDE technology

REST concept

strong influence

Agile Software Development process

Smalltalk IDE technology

Continuous Integration method

Structured Analysis/ Design method

Structured Programming concept

Abstract Data Types concept

Information Hiding concept

UML language

SOA method

Framework based Development process

JUnit technology

Scrum process

MDA/ MDD concept

CORBA technology

CMM method

RUP process

weak influence

Extreme Programming (XP) method

Waterfall Model process

TDD method

Component Based Develpment process

Design by Contract concept

Goal Question Metric (GQM) method

Cleanroom Development process

Product Line Engineering process

Function Points method

CoCoMo method

Industry Academia

Table 4: Sorting of the different innovations and re-
spective categories like in Table 2. The innovations
with a very strong influence are on top, followed
by innovations with a strong influence and at the
bottom innovations with a weak influence on the
practice. The colours distinguish if the innovations
are developed by industry (grey) or by academia
(black).

The sorting of the categories shows that languages had
a very strong influence on the practice. For example Java
had a very strong influence, SQL, JavaScript and also XML.
Nobody of the participants said that a language had a weak
or no influence on the practice. Another interesting point
is that nobody selected a process as an innovation with a
very strong impact. Four processes had a strong influence
and four processes only a weak influence. There is also only
one method, refactoring, that had a very strong influence,
whereas five methods had only a weak influence. Three tech-
nologies out of four in total had a strong influence and con-
cepts are between a very strong and a strong influence, for
both categories exists four concepts.

Thus, we can say that

• languages had a very strong influence on the practice
(4 of 5 innovations)

• concepts are between very strong and strong in-
fluence (each 4 of 8 innovations)

• technologies had a strong influence on the practice
(3 of 4 innovations)

• processes are between strong and weak influence
(each 4 of 8 innovations)

• methods had a weak influence (5 of 10 innovations)

The last point that is visible in Table 4 is, that academia
developed 6 concepts out of 8 in total, 2 methods of 10 and
1 process of 8. Hence, nearly all concepts are developed
by academia whereas not a single technology or language
came from academia, they were all developed by industry.
This might have similar reasons like mentioned in Section 3:
Companies are much more specialized than universities are
and they have much more capacities.

5. CONCLUSIONS
To sum up it is possible to say that industry developed a

lot more innovations of software engineering than academia
did. This might be due to the fact that industry needs some
kind of competition to get a high market share and to survive
at the market. Companies are also more specialized than
software engineering chairs and they have more employees
and thus more capacities than a chair of a university.

Especially after 1994 the industrial sector developed much
more innovations than academia. This might be because
the software engineering sector changed a lot. The gaming
industry grew for example, also the sector of embedded sys-
tems because today for instance every car has a lot of soft-
ware inside, just as household aids and also whole houses.
Thus, because we said that industrial companies are more
specialized and because they have more capacities, they are
able to develop much more innovations than academia does.

With a small survey we found out that there is no connec-
tion between the impact that innovations had on the practice
and if they are developed by academia or industry. Both
developed innovations with a very strong influence on the
practice and ones with only a weak influence on the prac-
tice. This result might be caused by the size of the survey.
We had only 32 participants and this is no significant num-
ber. Thus, with a bigger survey this result might change.

Another thing we wanted to point out are the categories
of software engineering and if there is maybe a connection
between the categories and the impact on the practice. We
found out that languages had a very strong influence on
the practice, technologies had a strong influence whereas
methods had only a weak influence on the practice.

A further interesting point is that out of these 36 innova-
tions we had only 4 technologies and 10 methods. Reasons
for that may be that technologies are further developed,
for example every year people develop a lot of plugins for
Eclipse, but Eclipse stays the same. If a method like Test
Driven Development is developed there might result a total
new method out of that, such as Behaviour Driven Devel-
opment.

The last finding is that all languages and technologies were
developed by industry whereas nearly all concepts were de-
veloped by academia. This might also be due to the fact that
industry is much more specialized and has more capacities
than academia.

6. REFERENCES
[1] Nokia hat den anschluss verpasst, 2013.

[2] Members of the chair, 2014.

[3] A. J. Albrecht. Measuring application development
productivity. In Proceedings of the Joint
SHARE/GUIDE/IBM Application Development
Symposium, volume 10, pages 83–92, 1979.

[4] C. Alexander. A Pattern Language. Oxford University
Press, 1977.

[5] A. Alliance. Agile manifesto, 2001.

[6] B. Barry. Software engineering economics, 1981.

[7] L. Bass, G. Chastek, P. Clements, L. Northrop,

D. Smith, and J. Withey. Second product line practice
workshop report. arXiv preprint cs/9811007, 1998.

[8] K. Beck. Extreme programming: A humanistic
discipline of software development. In Fundamental
Approaches to Software Engineering, pages 1–6.
Springer, 1998.

[9] K. Beck and E. Gamma. Test infected: Programmers
love writing tests. Java Report, 3(7):37–50, 1998.

[10] G. Booch, J. Rumbaugh, and I. Jacobson. The unified
modeling language. Unix Review, 14, 1996.

[11] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau. Extensible markup language (xml).
World Wide Web Consortium Recommendation
REC-xml-19980210. http://www. w3.
org/TR/1998/REC-xml-19980210, 1998.

[12] V. Caldiera and H. D. Rombach. The goal question
metric approach. Encyclopedia of software engineering,
2(1994):528–532, 1994.

[13] D. D. Chamberlin and R. F. Boyce. Sequel: A
structured english query language. In Proceedings of
the 1974 ACM SIGFIDET (now SIGMOD) workshop
on Data description, access and control, pages
249–264. ACM, 1974.

[14] B. J. Cox and A. J. Novobilski. Object-oriented
programming: an evolutionary approach, volume 2.
Addison-Wesley Reading, MA, 1986.

[15] O.-J. Dahl and K. Nygaard. SIMULA: A Language for
Programming and Description of Discrete Event
Systems. Introduction and User’s Manual: by
Ole-Johan Dahl and Kristen Nygaard. Norwegian
Computing Center, 1966.

[16] I. de Jong et al. Web services/soap and corba.
Compilation from comp. object. corba user group, 2002.

[17] E. W. Dijkstra, E. W. Dijkstra, and E. W. Dijkstra.
Notes on structured programming. Technological
University Eindhoven Netherlands, 1970.

[18] I.-S. Dortmund. Ibm deutschland gmbh, 2014.

[19] R. T. Fielding. Architectural styles and the design of
network-based software architectures. PhD thesis,
University of California, Irvine, 2000.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-oriented
Software. Addison-Wesley Longman Publishing Co.,
Inc., 1995.

[21] A. Goldberg and A. Kay. Smalltalk-72: Instruction
Manual. Xerox Corporation, 1976.

[22] W. S. Humphrey. Characterizing the software process:
a maturity framework. Software, IEEE, 5(2):73–79,
1988.

[23] R. E. Johnson and B. Foote. Designing reusable
classes. Journal of object-oriented programming,
1(2):22–35, 1988.

[24] P. Kruchten. The rational unified process: an
introduction. Addison-Wesley Professional, 1998.

[25] B. Liskov and S. Zilles. Programming with abstract
data types. In Proceedings of the ACM SIGPLAN
Symposium on Very High Level Languages, 1974.

[26] J. Miller, J. Mukerji, et al. Mda guide version 1.0. 1.
Object Management Group, 234:51, 2003.

[27] H. D. Mills, M. Dyer, and R. C. Linger. Cleanroom
software engineering. 1987.

[28] Y. V. Natis. Service-oriented architecture scenario,
2003.

[29] W. F. Opdyke. Refactoring object-oriented
frameworks. PhD thesis, University of Illinois at
Urbana-Champaign, 1992.

[30] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15:1053–1058, 1972.

[31] D. L. Parnas. On the design and development of
program families. Software Engineering, IEEE
Transactions on, (1):1–9, 1976.

[32] B. R. Peter Naur.

[33] W. W. Royce. Managing the development of large
software systems. In proceedings of IEEE WESCON,
volume 26, 1970.

[34] H. Schildt. Java: The Complete Reference, Seventh
Edition. McGraw-Hill, Inc., 2007.

[35] K. Schwaber. Scrum development process. In Business
Object Design and Implementation, pages 117–134.
Springer, 1997.

[36] C. Severance. Java script: Designing a language in 10
days. Computer, 45(2):0007–8, 2012.

[37] C. Soĺıs and X. Wang. A study of the characteristics
of behaviour driven development. In Software
Engineering and Advanced Applications (SEAA), 2011
37th EUROMICRO Conference on, pages 383–387.
IEEE, 2011.

[38] N. Wirth. Modula: A language for modular
multiprogramming. Software: Practice and
Experience, 7(1):1–35, 1976.

[39] E. Yourdon and L. L. Constantine. Structured design:
Fundamentals of a discipline of computer program and
systems design, volume 5. Prentice-Hall Englewood
Cliffs, 1979.

Release Engineering vs. DevOps - An Approach to Define
Both Terms

Ralf Penners
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

ralf.penners@rwth-aachen.de

Andrej Dyck
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

andrej.dyck@swc.rwth-aachen.de

ABSTRACT
Delivering software to the customer as fast as possible is es-
sential for software development organizations, in order to
keep in pace with competitors. As a consequence, release en-
gineering, a software engineering discipline concerned with
the delivery process of a software product, plays an impor-
tant role in organizations. Furthermore, in recent years the
term DevOps gained popularity in the IT world. It describes
an approach to improve the collaboration between develop-
ment and IT operations teams, in order to streamline soft-
ware engineering processes. Until now there is no scientific
definition for neither of these terms, and therefore, everyone
uses his or her own definition. Thus, they are often confused
or even used as synonyms.

In this paper, we will tell those two terms apart by con-
trasting available definitions and descriptions for both of
them. Additionally, we will provide a scientific definition
for release engineering and DevOps, which we developed in
cooperation with some experts in these fields.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—productivity, software configu-
ration management, programming teams

Keywords
Release Engineering, DevOps, Definitions

1. INTRODUCTION
After improving software development processes for many

years, for example, by adapting agile methods like Scrum,
organizations started to recognize the importance of soft-
ware delivery processes. If an organization has developed a
new feature, but is not able to ship it fast and reliably to
the customers, it is useless in the end. As a result, proper
approaches and practices to improve the software delivery
process arose.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2014/15 RWTH Aachen University, Germany.

Release engineering is concerned with the delivery process
of a software product to the customer; meaning, all activi-
ties between the point when the software is developed and
the final deployment to the production environment. Since
about 2009 a new approach called DevOps came up [5].
It tries to close the gap between development and IT op-
erations, which originates through the different goals both
have for their daily work, respectively. The developers want
to deploy changes frequently, whereas the operators prefer
less changes for stability reasons of the production environ-
ment [7]. As a countermeasure, DevOps improves the col-
laboration between those teams in order to reduce this bar-
rier and accelerate the deployment. At first glance, someone
could assume that both terms try to solve somehow the same
problem, and thus, have the same meaning. The available
definitions and descriptions of both terms so far convey the
impression that there seems to be at least a big overlap [2,
3, 4, 6, 7, 8, 9, 10, 15, 20, 21, 22, 24, 25, 26]. For ex-
ample, the English Wikipedia for release engineering states
that it “is often the integration hub for more complex soft-
ware development teams, sitting at the cross between devel-
opment, product management, quality assurance and other
engineering efforts, also known as DevOps” [25]. It is obvi-
ously a common problem to point out the difference due to
the lack of precise definitions. Based on that, we try to find
a scientific definition for both terms, release engineering and
DevOps. To this end, we want to illustrate the similarities
and differences between those two terms. Moreover, we in-
volved some experts in these fields, discussing the proposed
definitions.

In the first part of this paper, we will explain the terms
from our point of view with the help of available descriptions
and contrast them afterwards to point out the differences
between them. Subsequently, we present existing definitions,
our definitions and evaluate the corresponding feedback from
the experts. Finally, we will give a short discussion, provide
a perspective for future research, and give a short summary.

2. RELEASE ENGINEERING VS. DEVOPS
In this section, we start with the description of release

engineering and DevOps, and point out the differences be-
tween both afterwards. The currently available descriptions
of both terms have a strong focus on how to realize each
of them in an organization, respectively. This often leads
to confusion of release engineering and DevOps, since most
practices and tools in this context like continuous delivery
are suitable for both of them. For that reason, this section
will concentrate on the meaning of both terms.

2.1 Release Engineering
Release engineering is concerned with the delivery pro-

cess of a software product to the customer. So at the first
glance, the word release in release engineering might sug-
gest that it only comes into play after a software product
was completely developed. But actually release engineering
is part of a software project right from the beginning. There
are many aspects that need to be considered beforehand and
during the software development phase to establish a reliable
and predictable delivery process in the end. Just like Dinah
McNutt, a release engineer at Google, recommended in her
keynote talk at RELENG 2014 “to keep the big picture in
mind” [20, 18]; meaning, to constantly review all processes
throughout the project that are related to the software de-
velopment itself as well as to the delivery process of the
software product.

It begins by choosing appropriate technologies and tools
to compile, assembly, test, manage, and finally deploy the
software. As an example the following technologies and
tools can be used: Build and test tools (e.g., Maven and
Jenkins), version control systems (e.g., Subversion or Git),
system configuration tools (e.g., Puppet or Vagrant), and
package manager (e.g., RPM or APT).

Next, the automation of recurring steps, like building and
testing the software, is an important task. It improves the ef-
ficiency of those steps, and reduces failures and errors, since
the manual execution is more error-prone. For instance, the
following practices can be applied: Continuous delivery, con-
tinuous deployment, and infrastructure as code.

In addition to the technical aspects, the management of
the software and the people involved in the corresponding
project is also a central point of release engineering. A
proper configuration and change management is needed to
keep track of changes and quickly react on defects. That
is accompanied by risk management in form of approaches
like dogfooding and canary. Last but not least, coordinating
the project and establishing a good overall communication
between all project participants is an important task of a
release engineer.

In summary, release engineering covers all aspects that
have an impact or influence on the delivery process of a
software product to the customer. John O’Duinn, who in-
troduced the rapid release cycle at Mozilla, compared the
task of a release engineer in his talk at GoogleTechTalks [21],
which was also his keynote talk at RELENG 2013 [17], as
“building a pipeline”. To draw on that, a release engineer de-
velops a construction plan about how to build that pipeline.
Afterwards, they select the suitable materials to realize it.
So the main task of release engineering is the construction
of the processes; the practices and tools are just possible
solutions to implement it.

2.2 DevOps
The term DevOps is an abbreviation of development and

IT operations. Since 2009 there is a high interest in DevOps
as the Google Trends analysis shows in Figure 1. While the
amount of search requests for release engineering is more
or less constant, the amount of search requests for DevOps
increases continuously. The evolution of the term DevOps
was generally influenced by several talks and papers since
2007, nicely summarized by Damon Edwards [5], co-author
of the upcoming book DevOps Cookbook [1], in a blog post
and by Michael Hüttermann in his book [7]. But one of the

Figure 1: Google Trends statistic about the search
requests of release engineering (blue) and DevOps
(red) [14].

most determining talks was given by John Allspaw and Paul
Hammond, both engineers at Flickr, at Velocity 2009 [2, 19].
This talk describes nearly everything what is today known
as DevOps.

Hüttermann found out that in most bigger software de-
velopment organizations the development teams and IT op-
erations teams are separated from each other [7]. This is
because of the different functions each of them have, re-
spectively. The developers job is to evolve the software
through changes, such as new features or bug fixes. Apart
from that, the operators are focused on stability of the sys-
tems and therefore are anxious about changes. According to
Lehman’s law of continuing change, a program must change
or it “becomes progressively less useful” [11]. Thus, a busi-
ness can only grow further through changes. But a fail-
ure in the production environment, possibly caused by such
changes, will damage the business of the organization. In
principle, both teams want to increase the value to the cus-
tomer through high quality software and resilient systems.
However, their individual way to realize that is contradic-
tory. Moreover, Hüttermann described the problem that
nowadays the idea of agile is widely adapted in software
development [7]. Whereas in IT operations still non-agile
approaches are applied. It is not uncommon that the devel-
opers create a new increment for a software every two weeks,
but the operators only deploy it in hard defined release win-
dows every six weeks or even longer.

The DevOps approach aims to establish a new culture and
mindset in an organization. It focuses on a closer collabo-
ration between developers and operators, and extends the
idea of agile to IT operations. Consequently, the goal is to
develop high quality software and operate resilient systems.
According to Puppet Labs et al. it also improves the IT
performance of an organization [15]; meaning, it leads to a
higher deployment frequency with lower failure rates.

The implementation of a DevOps culture comprises four
areas as shown in Figure 2, which Patrick Debois, a central
figure in the context of DevOps, described in a blog post [4].
The first and second areas are concerned with the feedback
cycles. The developers support the operators in the deliv-
ery process, and the operators communicate the status and
information of the production environment to the develop-
ers. Thereby, the operators can better build the produc-
tion environment according to the needs and requirements
of the developers, and the developers are able to consider the
shared information during their development. Areas three
and four cover the cross-functional way of working between
development and IT operations; meaning, the developers
will take over some operational tasks and vice versa. These

Figure 2: Four areas of DevOps [4].

four areas are then implemented with the help of practices
and tools. For example, continuous delivery and deploy-
ment, infrastructure as code, and usage of a version control
system are popular and important aspects for establishing a
DevOps culture.

In summary, as PuppetLabs et al. explained “the heart
of DevOps” are the cultural aspects like “good information
flow, cross-functional collaboration, shared responsibilities,
learning from failures and encouragement of new ideas” [15].
Practices and tools play only a subordinated role, since they
just support the implementation. That is similar to what
Katherine Daniels, an operations engineer at Etsy, stated in
her talk at DevOpsDays 2014 in Minneapolis [3, 13]. Ac-
cording to her, tools can only reinforce culture. Instead,
she interpreted the meaning of DevOps as empathy between
the teams of an organization: “Empathy allows a developer
to understand why the sysadmin craves reliability and [does
not] want the site to go down. [...] It allows that same sysad-
min to realize why the developer needs to release all their
shiny new features. Empathy is what allows people to really
work together” [3].

2.3 Differences
In the previous two sections, we described the meaning

of release engineering and DevOps. Now, in this section we
want to point out the differences between them. Both try
somehow to improve the customer added value by enabling
the organization to deliver high quality software. Simulta-
neously, both rely on common practices and tools like con-
tinuous delivery. This leads to an overlapping of both terms,
and thus, often to confusion. For example, Chuck Rossi, a
release engineer at Facebook, explained in his keynote talk
at RELENG 2014 the concept of “on-call for the week” [22,
18], which is used in their release process: If something goes
wrong during the deployment of a software, one developer
is responsible that it will be fixed as soon as possible. So
it involves developers into the delivery process and feedback
from the production environment is pushed back to the de-
velopers. This concept also covers the DevOps areas one and
two described in the previous section and shown in Figure 2.

The difference will become clear by recognizing that re-
lease engineer is a job title and DevOps not. There are
many organizations that try to hire DevOps engineers or
want to create a DevOps team. But like Jez Humble, an IT
consultant at ThoughtWorks, explained in his keynote talk
at PuppetConf 2013: “You can not hire a culture” [8, 16].

To our understanding, this is caused by the strong focus
on practices and tools. However, these are only approaches
for how the specific goals can be achieved, not what they
actually are about.

A release engineer creates a plan about how the software
can be delivered to the customer, considering all factors that
have an impact on that. To realize this plan they need prac-
tices and tools. For example, they think about how to ensure
high quality of the software in order to reduce failures dur-
ing and after the deployment. To do so, continuous delivery
could be implemented. In other words, a release engineer has
to analyze the specific situation in his or her organization,
create a plan tailored on that situation, and then choose the
fitting practices and tools to implement the plan.

DevOps tries to establish a culture, where people in an
organization do not work in functional silos [9], but in-
stead, they collaborate with each other and work in a cross-
functional way. Note that DevOps is not only limited to de-
velopment and IT operations. This culture can be – or even
should be – established in the whole organization to reduce
barriers. In the end, this enables the productivity in form of
higher deployment frequencies with less failures [15], which
eventually increases the product value. There are several
practices and tools, which help to implement such a culture.
However, none of them is special or explicitly required for
DevOps.

All in all, by focusing only on the meaning of release en-
gineering and DevOps the differences become more clear:
While release engineering is concerned with the delivery pro-
cess of the software to the customer in a holistic way, DevOps
establishes a culture and mindset to perform, for instance,
such processes more efficiently. It could be argued, that
DevOps is another approach in the arsenal of a release en-
gineer, since their work might be easier with such a culture
in an organization.

3. DEFINITIONS
With the meaning of release engineering and DevOps, and

the differences between them in mind, we want to propose a
scientific definition for both terms in this section. Since to
our knowledge, there is no scientific definition for neither of
these terms so far. As a consequence, everyone uses his or
her own definition, which results in confusion about those
terms. For that reason, we consolidated with experts from
both fields, to find a common basis. We hope that with our
definitions it will be easier to keep release engineering and
DevOps apart. For each term we will start by analyzing the
available definitions, present then our scientific definition
and explain it afterwards by evaluating the feedback of the
experts.

3.1 Release Engineering
The English Wikipedia defines release engineering as “a

sub-discipline in software engineering concerned with the
compilation, assembly, and delivery of source code into fin-
ished products or other software components. [...]” [25]. In
this definition the aspect of improvement and efficiency is
missing. After an initial software delivery process has been
created, it should then be permanently improved to be more
efficient and, as a consequence, deliver software as fast as
possible to the customer. McNutt defined release engineer-
ing in a more abstract and figurative way: “Accelerating
the path from development to operations” [20]. This corre-

sponds with our understanding as it contains the improve-
ment factor in the word accelerating. Additionally, the word
path points out the holistic approach of release engineering
throughout the project and that the focus is not just on the
delivery itself. However, this definition is somewhat unspe-
cific due to a high abstract level. Based on the analysis of
these definitions and the descriptions in the previous sec-
tions, we developed a scientific definition for release engi-
neering in cooperation with some experts in this field.

Release Engineering is a software engineer-
ing discipline concerned with the development,
implementation, and improvement of processes
to deploy high quality software reliably, and pre-
dictably.

Discussing the definition with Bram Adams (personal com-
munication, November 14, 2014), an assistant professor at

the École Polytechnique de Montréal, and Humble (personal
communication, November 13, 2014), we noticed the impor-
tance of high quality software as a central goal of release
engineering. A software product has to fulfill all quality
requirements before it is deployed into the production envi-
ronment. It should not lead to a system crash or produce
errors, while the customer is using the software. In such a
case just a fast, reliable, and predictable deployment process
will not provide any benefit for the organization.

Adams remarked (personal communication, November 11,
2014) that the term improvement might be implied by de-
velopment. We decided to itemize the terms development,
implementation, and improvement to emphasize the three
main tasks of a release engineer: Starting from an organi-
zation, where no defined and controlled processes exist for
releasing a software product, the first task is to develop suit-
able processes. After that, they need to be implemented
with the help of practices and tools. If there is one reliable
and predictable process chain, it then can be further im-
proved to make it more efficient. So the implementation part
covers also the consideration of Professor Lichter (personal
communication, November 16, 2014), head of the software
construction research group at RWTH Aachen University,
that methods and tools are important aspects of release en-
gineering.

Adams suggested (personal communication, November 11,
2014) to specify the single tasks as “[...] processes to in-
tegrate, build, test, package and deliver [...]”; similar to
Wikipedia’s definition [25]. The problem with such a list-
ing is, that it might suggest release engineering comprising
only those tasks. As we described in the previous sections,
release engineering is concerned with many different tasks
and responsibilities throughout the whole software project.

Humble also commented (personal communication, No-
vember 13, 2014) to use the words delivery and deployment
simultaneously in the definition. In this context, Martin
Fowler, an IT consultant at ThoughtWorks, described in
a blog post the difference between continuous delivery and
deployment [6]: When using continuous delivery the soft-
ware is always in a releasable state, since every change of
a software is automatically tested in an production-like en-
vironment. The next step is then continuous deployment,
where the software is automatically deployed into the pro-
duction environment once all tests passed. Adapting this,
we decided to even remove the word deliver in our definition,
because it is already covered by the word deploy.

In conclusion, McNutt and Akos Frohner, also a release
engineer at Google, stated that this definition covers what
they mean at Google. Kim Moir, a release engineer at
Mozilla, and Gene Kim, author and researcher in the area of
release engineering and DevOps, said that they like our defi-
nition of release engineering. Moreover, Rossi noted that all
keywords he considers critical in release engineering namely
reliability, predictability, and delivery are covered.

3.2 DevOps
The English Wikipedia defines the term DevOps as “is a

software development method that stresses communication,
collaboration and integration between software developers
and Information Technology (IT) professionals [...]” [26]. We
disagree with this definition, because DevOps is not a soft-
ware development method; it does not define any proce-
dures or techniques like, for example, Scrum does in form of
sprints. However, we partially agree with stressing on com-
munication, collaboration, and integration between develop-
ment and IT operations. Moreover, the definition is missing
the cultural aspect. Hüttermann’s definition of DevOps is“a
mix of patterns intended to improve collaboration between
development and operations [...]” [7]. We mostly agree on
that. On the one hand, there are many recommended pat-
terns or practices about how to establish a DevOps culture.
On the other hand, the definition suggests that if a combi-
nation of those patterns or practices is used, then an organi-
zation has successfully implemented DevOps. In brief, this
definition does not emphasize that DevOps is a mindset,
and that there are no practices or tools only dedicated to
DevOps. So just like for release engineering, we developed a
scientific definition for DevOps based on the analysis of the
available definitions, descriptions in the previous sections,
and the feedback of some experts in this field.

DevOps is a mindset, encouraging cross-func-
tional collaboration between teams - especially de-
velopment and IT operations - within a software
development organization, in order to operate re-
silient systems and accelerate delivery of changes.

In general, there seems to be at least a common ground
that DevOps is about improving the collaboration between
teams in an organization. But the goal that DevOps wants
to achieve with this improved collaboration is either com-
pletely missing or differs strongly. Adams suggested the goal
of DevOps is (personal communication, November 11, 2014),
for example, the acceleration of feedback, higher quality of
software, and faster deployment. This is correct, because a
sub-goal of DevOps is to reduce barriers and improve feed-
back cycles between development and IT operations in order
to increase the software quality and be able to deploy faster.
However, through the discussion with Jeff Sussna (personal
communication, November 25, 2014), founder and principal
of Ingineering.IT, we noticed that DevOps is about more
than fast deploying high quality software. He stated that “it
is about operating software services [and delivering] change
to those services”. This is similar to what also Humble used
in his proposed definition (personal communication, Novem-
ber 13, 2014): “[DevOps is a] cross-functional community of
practice dedicated to the study of building, evolving and op-
erating rapidly changing resilient systems at scale”. Those
definitions also include the comment of Frohner (personal
communication, October 30, 2014) to “emphasize the ’oper-

ational’ part of [DevOps] [...]”. So an important aspect is
to focus on software and the production environment as a
whole, as expressed through the word systems. Such sys-
tems need to change rapidly, in order to add value to the
organization. At the same time, the systems have to be
resilient, since a crash will have a negative impact on the
business. Furthermore, as Professor Lichter (personal com-
munication, November 16, 2014) remarked, developing and
maintaining those systems is performed by the developers
and operators jointly. Kim et al. provide another definition
for DevOps in their upcoming book DevOps Cookbook, that
corresponds with the other comments and definitions: “The
term ‘DevOps‘ typically refers to the emerging professional
movement that advocates a collaborative working relation-
ship between Development and IT Operations, resulting in
the fast flow of planned work (i.e., high deploy rates), while
simultaneously increasing the reliability, stability, resilience
and security of the production environment” [1]. This defi-
nition is also published in an online available paper [10].

4. DISCUSSION
We mentioned in the previous sections that DevOps is

another approach, which can be used by a release engineer.
Moreover, we stated that DevOps can be extended to other
teams in an organizations. In this section, we want to discuss
these two aspects more in detail. Additionally, we came up
with a question about which organizations can implement
release engineering and DevOps.

Kim considers (personal communication, November 15,
2014) that DevOps is a superset of release engineering. As
discussed previously, DevOps is a culture, whereas release
engineering is a discipline; meaning, it would be more the
other way around. In short, DevOps is one possibility for a
release engineer to improve the delivery processes, because
with such a culture in an organization it might be easier
and more efficient. Referring to our definitions, the over-
lap between both terms is in the common goal. Both want
to provide high quality software for the customer as fast as
possible. The difference is that DevOps tries to improve the
collaboration between all participants in order to reach that
goal, whereas release engineering addresses this goal in a
holistic way. Thus, if at all possible to define both by using
sets, DevOps would be a subset of release engineering. Con-
sidering that the elements of DevOps are not new: Expect
from the cultural part, all practices and tools for realizing a
DevOps culture can also be used in the area of release en-
gineering. Many organizations have been using them even
before the term came up and gained popularity. For ex-
ample, Rossi mentioned that DevOps gave him a name for
the things they have been doing at Facebook organically
in their release process even before the term came up [22].
Furthermore, release engineering exists as long as software
engineering is used for developing software in a engineering-
like fashion.

New terms for extending DevOps to other areas of an or-
ganization came up in recent times as mentioned in Sussna’s
talk [24]. Acronyms like DevSecOps or DevNetOps express
the inclusion of other departments, for instance, informa-
tion security or network administration, into the DevOps
approach. The acronym DevOps was invented through the
first DevOpsDays in 2009 and the resulting Twitter hashtag
#DevOps for that event [5, 12]. The reason why it just con-
tains the words development and IT operations is, that this

conference focused mainly on the problems between those
two teams in an organization. But the mindset of DevOps
can be extended to any other team in order to make the
whole organization more efficient. In brief, there is no need
for another term to express the same content.

Another more radical approach is known as NoOps with
the aim to completely replace IT operations with devel-
opment. Hüttermann clarified [7], that this is difficult to
achieve: On the one hand, is administrating infrastructure
a completely other skill than developing software. On the
other hand, even if developers replace operators, they, nev-
ertheless, have to do operational tasks like deploying the
software and setting up the production environment.

During an internal discussion we came up with a ques-
tion which organizations can implement release engineering
and DevOps. Release engineering can be applied by all or-
ganizations that deliver a software product to a customer.
But for DevOps it depends somehow on the interpretation
of the word IT operations. One the one hand, if IT opera-
tions is interpreted as operating a production environment,
then only organizations, that operate their software on their
own, can use it. One the other hand, if the word is meant for
all activities and tasks, that are not related to development
or management areas of an organization, then all organiza-
tions can implement it, since all of them will have some in-
frastructure that needs to be operated. Furthermore, as we
explained in this section, DevOps can be extended to other
teams of an organization. By focusing on the cultural part
of DevOps, it could be even used in non-software develop-
ment organizations. Since based on Daniel’s interpretation
of DevOps [3], working in a software development organi-
zation is not a precondition for improving the collaboration
and developing empathy.

5. CONCLUSION
In this paper, we aimed to showcase the differences be-

tween the terms release engineering and DevOps. We sum-
marized how both are described and defined in available
books, blog posts, papers, and talks. Due to missing sci-
entific definitions, we developed such in collaboration with
some experts in these fields. Based on that, it might now be
easier to keep both terms apart.

Admittedly, our research has a threat to validity, since the
definition for DevOps is still discussable. ScriptRock, an or-
ganization developing cloud-based solutions to monitor dy-
namic data centers, stated in a blog post that it is unpleasant
to find a simple definition or explanation for DevOps [23].
They explained that many DevOps definitions so far have a
subjective focus, since everybody considers another aspect
as most important [23]. Furthermore, they claimed that “[it
is] not only necessary, but important, that DevOps be de-
fined simply and in such a way that anyone in the office could
understand” [23]. Although we already tried to remove the
subjective focus by discussing our definitions with some ex-
perts, the feedback for DevOps was not as consistent as for
release engineering. For a more precise definition of DevOps
additional experts should be interviewed and a survey with
organizations practicing DevOps could be done.

Finally, based on our definitions we want to point out
the difference between release engineering and DevOps once
again: Release engineering is a discipline concerned with
the establishment and improvement of predictable and re-
liable processes in an organization to deliver high quality

software to the customer. DevOps improves the collabora-
tion between teams in an organization through a cultural
change. It enables development and IT operations to oper-
ate resilient systems, and deliver changes to them quickly at
the same time.

6. ACKNOWLEDGMENTS
We give many thanks to Jez Humble, Jeff Sussna, Gene

Kim, Bram Adams, and Professor Lichter for the contri-
bution to our definitions. Additionally, we thank also Akos
Frohner, Kim Moir, Chuck Rossi, Dinah McNutt, and Patrick
Debois for giving us feedback.

7. REFERENCES
[1] J. Allspaw, P. Debois, D. Edwards, J. Humble,

G. Kim, M. Orzen, and J. Willis. The DevOps
Cookbook.
http://itrevolution.com/books/devops-cookbook/,
to be published. [Online; accessed: 12-07-2014].

[2] J. Allspaw and P. Hammond. 10+ Deploys Per Day:
Dev and Ops Cooperation at Flickr.
http://www.youtube.com/watch?v=LdOe18KhtT4,
June 23, 2009. [Online; accessed: 11-10-2014].

[3] K. Daniels. DevOps Is Dead (Long Live DevOps).
https://www.youtube.com/watch?v=OUUNJTq890E,
July 18, 2014. [Online; accessed: 12-07-2014].

[4] P. Debois. Devops Areas - Codifying devops practices.
http://jedi.be/blog/2012/05/12/codifying-

devops-area-practices/, May 12, 2012. [Online;
accessed: 11-14-2014].

[5] D. Edwards. The History Of DevOps.
http://itrevolution.com/the-history-of-devops/,
September 17, 2012. [Online; accessed: 11-10-2014].

[6] M. Fowler. Continuous Delivery. http://
martinfowler.com/bliki/ContinuousDelivery.html,
May 30, 2013. [Online; accessed: 01-10-2015].

[7] M. Huettermann. DevOps for Developers. Apress,
2012.

[8] J. Humble. Stop Hiring DevOps Experts and Start
Growing Them by Jez Humble.
http://www.youtube.com/watch?v=6m9nCtyn6kE,
January 16, 2014. [Online; accessed: 11-10-2014].

[9] J. Humble. There’s No Such Thing as a ’Devops
Team’.
http://continuousdelivery.com/2012/10/theres-

no-such-thing-as-a-devops-team/, October 19,
2012. [Online; accessed: 11-14-2014].

[10] G. Kim. Top 11 Things You Need To Know About
DevOps. http://itrevolution.com/pdf/
Top11ThingsToKnowAboutDevOps.pdf, June 20, 2013.
[Online; accessed: 11-20-2014].

[11] M. M. Lehman. Programs, life cycles, and laws of
software evolution. Proceedings of the IEEE,
68(9):1068, September 1980.

[12] DevOpsDays Ghent 2009.
http://devopsdays.org/events/2009-ghent/,
October 30-31, 2009. [Online; accessed: 12-12-2014].

[13] DevOpsDays Minneapolis 2014.
http://devopsdays.org/events/2014-minneapolis/,
July 17-18, 2014. [Online; accessed: 12-10-2014].

[14] Google Trends.
http://www.google.com/trends/explore#q=

release%20engineering%2C%20devops&cmpt=q,
December 11, 2014. [Online; accessed: 12-11-2014].

[15] Puppet Labs, IT Revolution Press, and
ThoughtWorks. State of DevOps Report 2014.
http://puppetlabs.com/2014-devops-report, June
4, 2014. [Online; accessed: 11-13-2014].

[16] PuppetConf 2013. http:
//puppetlabs.com/resources/puppetconf-2013,
August 22-23, 2013. [Online; accessed: 11-10-2014].

[17] RELENG 2013.
http://releng.polymtl.ca/RELENG2013/, May 20,
2013. [Online; accessed: 11-09-2014].

[18] RELENG 2014.
http://releng.polymtl.ca/RELENG2014/, April 11,
2014. [Online; accessed: 11-09-2014].

[19] Velocity 2009.
http://velocityconf.com/velocity2009, June
22-24, 2009. [Online; accessed: 12-10-2014].

[20] D. McNutt. The 10 Commandments of Release
Engineering.
https://www.youtube.com/watch?v=RNMjYV_UsQ8,
April 11, 2014. [Online; accessed: 11-09-2014].

[21] J. O’Duinn. Release Engineering as a Force Multiplier.
http://www.youtube.com/watch?v=7j0NDGJVROI,
May 28, 2013. [Online; accessed: 11-09-2014].

[22] C. Rossi. Moving to mobile: The challenges of moving
from web to mobile releases.
https://www.youtube.com/watch?v=Nffzkkdq7GM,
April 11, 2014. [Online; accessed: 11-09-2014].

[23] ScriptRock. The Problem with Defining DevOps.
http://www.scriptrock.com/blog/the-problem-

with-defining-devops, December 3, 2014. [Online;
accessed: 12-10-2014].

[24] J. Sussna. Promising Digital Service Quality.
https://www.youtube.com/watch?v=0j4czz0OwJY,
July 18, 2014. [Online; accessed: 12-03-2014].

[25] Wikipedia. Release engineering.
http://en.wikipedia.org/w/index.php?title=

Release_engineering&oldid=585442891, December
10, 2013. [Online; accessed: 11-14-2014].

[26] Wikipedia. DevOps. http://en.wikipedia.org/w/
index.php?title=DevOps&oldid=633593434,
November 12, 2014. [Online; accessed: 11-14-2014].

http://itrevolution.com/books/devops-cookbook/
http://www.youtube.com/watch?v=LdOe18KhtT4
https://www.youtube.com/watch?v=OUUNJTq890E
http://jedi.be/blog/2012/05/12/codifying-devops-area-practices/
http://jedi.be/blog/2012/05/12/codifying-devops-area-practices/
http://itrevolution.com/the-history-of-devops/
http://martinfowler.com/bliki/ContinuousDelivery.html
http://martinfowler.com/bliki/ContinuousDelivery.html
http://www.youtube.com/watch?v=6m9nCtyn6kE
http://continuousdelivery.com/2012/10/theres-no-such-thing-as-a-devops-team/
http://continuousdelivery.com/2012/10/theres-no-such-thing-as-a-devops-team/
http://itrevolution.com/pdf/Top11ThingsToKnowAboutDevOps.pdf
http://itrevolution.com/pdf/Top11ThingsToKnowAboutDevOps.pdf
http://devopsdays.org/events/2009-ghent/
http://devopsdays.org/events/2014-minneapolis/
http://www.google.com/trends/explore#q=release%20engineering%2C%20devops&cmpt=q
http://www.google.com/trends/explore#q=release%20engineering%2C%20devops&cmpt=q
http://puppetlabs.com/2014-devops-report
http://puppetlabs.com/resources/puppetconf-2013
http://puppetlabs.com/resources/puppetconf-2013
http://releng.polymtl.ca/RELENG2013/
http://releng.polymtl.ca/RELENG2014/
http://velocityconf.com/velocity2009
https://www.youtube.com/watch?v=RNMjYV_UsQ8
http://www.youtube.com/watch?v=7j0NDGJVROI
https://www.youtube.com/watch?v=Nffzkkdq7GM
http://www.scriptrock.com/blog/the-problem-with-defining-devops
http://www.scriptrock.com/blog/the-problem-with-defining-devops
https://www.youtube.com/watch?v=0j4czz0OwJY
http://en.wikipedia.org/w/index.php?title=Release_engineering&oldid=585442891
http://en.wikipedia.org/w/index.php?title=Release_engineering&oldid=585442891
http://en.wikipedia.org/w/index.php?title=DevOps&oldid=633593434
http://en.wikipedia.org/w/index.php?title=DevOps&oldid=633593434

A Comparison of Architectural Debt Measurements

Piro Lena
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

piro.lena@rwth-aachen.de

Muhammad Firdaus Harun
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

firdaus.harun@swc.rwth-aachen.de

ABSTRACT
Over the last two decades the term of technical debt has
gained much attention among the software development com-
panies. Since the metaphor of technical debt is used for the
first time, researches are conducted in order to measure it.
These are mainly focused on source code and implementa-
tion anomalies. Recently, the focus has shifted into finding
different methods and techniques to measure debt from the
software architecture perspective. However, the studies con-
ducted so far are new and still need improvements. In this
paper we investigate different methods: Modularity metrics,
Dependency Metrics and Value Oriented Architecture Anal-
ysis. Furthermore, we make a comparison mainly in terms
of measurement units, economic attributes, refactoring costs
and complexity of above mentioned methods.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
Technical debt, architectural debt, modularity metrics, value
oriented architecting, dependency metrics

1. INTRODUCTION
”Shipping first time is like going into debt. A little debt

speeds development so long as it is paid back promptly with
a rewrite... The danger occurs when the debt is not repaid.
Every minute spent on not-so-quite-right code counts as in-
terest on that debt. Entire engineering organizations can be
brought to a stand-still under the debt load of an unconsoli-
dated implementation, object-oriented or otherwise.”

This definition ([4]) is used for the first time to define tech-
nical debt. It states that neglecting the design is like bor-
rowing money. Refactoring, it’s like paying off the principal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2014/15 RWTH Aachen University, Germany.

debt. On the other hand, developing slower because of this
debt is like paying the interest on the loan. Another defini-
tion is by Kruchten et al:A design or construction approach
that’s expedient in the short term but that creates a tech-
nical context in which the same work will cost more to do
later than it would cost to do now (including increased cost
over time). However, the concept is clear, there are still
problems on finding solution to identifying, measuring, con-
trolling and eliminating the technical debt. This comes as a
consequence of the various reasons from which the debt in
software development cycles is accumulated. Some of these
technical debts can be identified on social, test, code or ar-
chitectural level.
The scope of this paper is to focus on architectural tech-
nical debt. On this category are included inconsistent or
poor design solutions, casual mistakes due to agile working
or choices that turn to be wrong while gaining experience
[10],[3], [8]. The difficulty in identifying the Architectural
Technical Debt (ATD) is that it becomes visible later in the
project. ATD is presented in Section 2. The metrics which
are used to estimate or identify and reduce the impact of
ATD on software projects are increasing in number, espe-
cially during the recent years. However, we focus on the
Modularity Metrics [5],[9], Value-Oriented Architecture[6]
and Dependency Metrics methods[7],[2]. The approaches,
case-studies and contribution of each of them is described in
details in Section 3. Despite the fact that these techniques
are relatively new, a comparison among them in terms of
architectural elements used on each of the methods, mea-
surement units, costs, complexity, time of refactoring and
maintenance details are presented in Section 4. Discussion
and conclusions will adduce our remarks regarding these ap-
proaches.

2. ARCHITECTURAL TECHNICAL DEBT
Software architecture is defined as the core component of

a software system. It specifies the fundamental concepts or
properties of a system in its environment embodied in its el-
ements, relationships and in the principle of its design evo-
lution.[3]
Despite its importance, due to the fast development during
agile software development, most of the time the architec-
ture of software is neglected. For instance, at the beginning,
a small software project rarely uses all the principles of soft-
ware architecture. Some of them are just used by individual
developers. With the passing of the time the project grows
and its complexity increases, the architecture principles and
structuring tend to be postponed. At the beginning all of

these may seem irrelevant until the whole architecture de-
grades. At this point there is no turning back, the whole
architecture has to be repaired. The costs of this are tremen-
dously high, and it is here when the architectural technical
debt importance arises.
As it is noticed not only from companies but also from indi-
vidual developers, supported also the recent studies [7],[5],
the architectural debt merely effects the future project sus-
tainability rather than the present functionality or quality.
This might come as a result of the technics of software devel-
opment. Agile developing usually tend to ”hurry” in coming
with the next release of the software product. This inten-
tionally or not, tend to place on second place the archi-
tectural issues. When a crisis finally happens, only then the
teams tend to turn back to it, trying to prioritize the backlog
of restructuring tasks. As it is noticed above, the architec-
tural debt is more related to the prediction abilities of the
managerial teams. The later the intervention the higher the
debt.
In contrast with normal code level decay, architectural de-
cay is not as well defined and understood [7]. Sometimes it
is possible that the two types of decay happens at the same
time, on the same project. The impact of the two of them
is high,but [7] the costs of architectural decay are higher.
Moreover, in comparison with code decay instances that are
defined based on source code analysis, the architectural de-
cays refer to a higher level of abstraction. This increases the
difficulty of analyzing its costs, especially while dealing with
concepts that goes beyond the architectural definitions (for
example, concerns regarding future decisions).
The complexity for correctly identifying the architectural de-
cays is high and measuring the technical architectural debt
is difficult. The recent studies have shown useful methods to
tackle these issues. On these paper are presented only three
of them, but there are others defined or not-fully defined
methods that might be used by companies and researchers.

3. ATD APPROACHES
As already mentioned above, Architectural Technical Debt

(ATD) is accumulated when intentional or not design deci-
sions compromise the Quality Attributes of a project. Usu-
ally the once which are mostly effected are maintainabil-
ity and evolvability. Considering that ATD does not show
any observable behaviour to end users, any negative feed-
back from them is not expected. This increase the difficulty
of detecting it. In the following sections are presented the
methods commonly used to approximately measure ATD.

3.1 Indicating ATD by using Modularity Met-
rics approach

A way of measuring architectural technical debt is to cal-
culate the average number of modified components per com-
mit (ANMCC). A commit is a unit of modification to the
source code of a software system [5]. The question that rises
at this point is how ANMCC is related to ATD. The follow-
ing give a reasonable explanation:
• ANMCC reflects the complexity and difficulty of making
changes to a software system.
• The higher the complexity and difficulty of making changes
the higher the accumulated ATD.
• A higher ANMCC means more ATD in a software system.
On a first glance the calculation of ANMCC seems very easy.
The problem which makes it more difficult is the lack of

records used to calculate the modified commits. This makes
it almost impossible to directly measure ATD. [5] and [8]
proposed a methodology which can be directly calculated
using the available source code and is correlated with AN-
MCC. [5] introduced software modularity metrics which can
be directly measured. Based on that they found a valuable
correlation with ANMCC which on its own relates to ATD.
Referring to ISO/IEC 25010 standard, modularity is a char-
acteristic of maintainability, which is compromised by ATD.
By definition (from [5]), Modularity is the degree to which
a system or computer program is composed of discrete com-
ponents such that a change to one component has minimal
influence on the other components.
By having this definition and making a naive reasoning, we
can come up with the idea that the modularity metrics of
all the previous changes of a project source code reflect the
difficulty of making changes to the project code in the fu-
ture. On its own this one represents the ATD. So, if the
modularity of a software system increases, ANMCC have to
decrease, which means ATD decreases as well. To come up
with the ”scientific” approach of our intuitive result, [5] con-
ducted a case study on 13 C# open source software (OSS)
projects on Github. According to this study, the reason for
choosing OSS projects is to come closer to real life context.
In this way, both modularity and ANMCC can yield more
realistic results than being monitored in isolation. The only
restriction applied on their case study was related to the
number of releases per each of the projects and the number
of components per each release. This was done to guarantee
that the project is ”matured”enough to not have tremendous
changes from the previous releases. Also, the project that
was selected should have been computable, so as to generate
the code maps. The measurements that was done referring
to [5] were related with the following records:
• Index of Inter-Package Usage (IIPU)- The ratio of
the number of Use dependencies between classes within a
local package against the total number of Use dependencies
between classes of the whole software system.
• Index of Inter-Package Extending (IIPE)- The ratio
of the number of Extend dependecies between classes within
a local package against the total number of Extend depen-
dencies between classes of the whole software system.
• Index of Package Changing Impact (IPCI)- The per-
centage of the number of the non-dependency package pairs
against the total number of all possible package pairs. This
measures the strength of the independency of packages.
• Index of Inter-Package Usage Diversion (IIPUD)-
The average event of how diverse the classes used by a spe-
cific package distribute in different packages.
• Index of Inter-Package Extended Diversion (IIPED)-
The average event of how diverse the classes extend by a
specific paskage distribute in different packages.
• Index of Package Goal Focus (IPGF)- The average
extent of the overlap between the different service sets pro-
vided by the same component to other different components
in a software system. This shows the average extent that
the services of a specific package serve the same goal.
•Average Number of Modified Components per Com-
mit (ANMCC)- The average number of components that
are modified durign each commit(revision) in the studied
period.
Each of the measurements from modularity metrics are com-
pared with normalized ANMCC results using Spearman’s

Figure 1: ATD Conceptual Model

correlation. In Table 1, below are presented the results of
this tests.

ρ -value p-value
IIPU -0.099 0.3741
IIPE -0.104 0.3671
IPCI -0.828 0.0001

IIPUD -0.138 0.3261
IIPED -0.028 0.4631
IPGF -0.522 0.0341

Table 1: Correlations of modularity metrics and ANMCC

As it can be seen from the table the IPCI and IPGF have
a significant negative correlation with the normalized AN-
MCC. The other metrics doesn’t show a significant corre-
lation with it, so they cannot be considered while measur-
ing ATD. Furthermore, IPCI is more correlated (negatively)
with normalized ANMCC than IPGF. From this follows,
that it is necessary to measure only IPCI to understand the
behavior of ATD. The higher the IPCI, the lower the nor-
malized value of ANMCC, the lower the value of architec-
tural technical debt. The same reasoning if the IPCI value
is low. Actually this results give a powerful methodology
to both researchers and practitioners to highly approximate
the costs accumulated by ATD.

3.2 Measuring ATD through Value-Oriented
Architecting

As mentioned earlier on the previous chapters, technical
debt can be seen as a consequence of trade-offs made by
designers while developing a software system. The costs of
these decisions influence the project in all of its levels, in-
cluding architectural once. In this section, is shown another
method to calculate and manage architectural debt, by con-
sidering it from a value-oriented prospective. Referring to
[6], the ATD conceptual model is shown on the Figure 1. In
center of this model is ATD item, which is a term introduced
to be used for further analysis. The other components are
also useful. A full description of them could be found at [6].
The focus is mainly on the costs of long term maintenance

and software evolutionary, by not taking into consideration
the short term visible costs. Maintainability cover character-
istics like modularity, reusability, analyzability, modifiability
and testability. On the other side evolvability measures how
easy is to add new or change existing requirements. ATD

Figure 2: ATD Item

compromises both maintanability and evolvability. In order
to measure its impact on software projects, Value Oriented
Architecting method, uses its own ATD conceptual model,
shown on Figure 1. By analysing the ATD Item a decision
is taken for the future proceedings of the project.
ATD Item is defined by [6], as a basic unit which is inquired
by an architecture decision that compromises one of the sys-
tem quality attributes mentioned above. Through the ATD
items, all the possible scenarios are analysed, as well as esti-
mating the interest and probability of them to happen. The
result from this detailed analysis of ATD Item is used on the
next step of this method, named ATD Management. First
we demonstrate the usage of ATD Item by an actual use
case taken by a software project decision (shown on Figure
2).

The ATD Management process consists of several steps,
each of which deals with specific characteristics of the ATD
Item. The following steps are the following:
•ATD Identification - As presented above, the correspond-
ing ATD Item is identified. An Item is created when a prob-
lem occurs, and it starts to increase the costs and risks to
the project. The Item is ”labaled”, and based on its rationale
it is categorized as a threat to maintanability or evolvability.
•ATD Measurement - Analyzes the ATD Item consider-
ing its costs, benefits and possible changes of scenarios. The
last ones are analyzed regarding the new features that are
going to be added to the system, the already existing main-

tanance tasks and the new requirements. Difficulties are
faced especially when new unpredicted requirements have
to be added. They might change the whole architecture or
a significant part of it. In these cases the measurements are
based on the interest of related ATD items. This is done in
order to see the scale of changes to the system.
•ATD Prioritization - On this step, all the ATD items
are sorted according to some criteria which may varies from
company to company (usually depends on the business goal
and preferences). Considering that it is quite impossible to
solve an ATD item without influencing the other ones, some
prioritization on which one has to be solved first is necessary
to be made. While performing this activity several aspects
of ATD item has to be considered: 1) total costs of resolving
it, 2) the ratio between cost and benefit of an ATD item, 3)
the interest rate, 4) for how long has an ATD item been
unresolved, 5) the complexity of solving it. What is actu-
ally measured in this step, is based on the experience and
approximation of the costs. However there exists tools on
which we can rely on approximately measure each of the
factors used in prioritization.
•ATD Repayment - Sometimes making changes to the ex-
isting architecture is not an easy decision. When an ATD
is identified, its negative impacts are to be eleminated or
mitigated, in order to reduce the costs on the project. In
such cases, when the impact is dramatically high, only sev-
eral parts of architectural debt are solved, while the others
are simply postponed to a second time. For the part that
is solved, in a certain way it repays its costs to the project,
and at the same time a less complicated item is created for
the unresolved part.
•ATD Monitoring - This step garanties the closing loop
of ATDM. Monitoring over time of all the unresolved items
is crucial in estimating the costs, impacts and efforts that
has to be made to fix them. Documented files of all the
ATD items are keept, and compared repeatedly to check if
any update or new item occurs.
As it can be seen ATDM is organized iteratively and after
each iteration a release, increment or a Sprint in Scrum is
created.

3.3 Dependency Metrics on measuring ATD
A software architecture is seen as a set of principal de-

sign decisions that are ”connected” together. Based on this
concept, the dependency metrics method transforms the ar-
chitectural components and concerns related to that into an
augmented constraint network(ACN) [7], [8]. This graph is
further used to model the constraints among design deci-
sions and environmental conditions. Design decisions cover
all the decisions taken during iterative process of a software
development. Environmental condition is a broaden con-
cept which involves a set of strategies, including the work
environment, the evaluation and procurement of hardware
equipment, the provision for immediate access to comput-
ing resources through local area networks, the building of
an integrated set of tools to support the software develop-
ment life cycle and all project personnel, and a user support
function to transfer new technology, [1]. Referring to [7], it
is possible to extend ACN model to a new Extended ACN
(EACN) model. From the new one it is possible to derive
the relations among components, connectors, interfaces and
concerns. Referring to [7], an ACN is defined as a set of
constraint network (CN), a dominance relation (DR) and

Figure 3: DSM Representation of ERS-Architecture

cluster set (CS), [so ACN = 〈CN,DR,CS〉]. CN itself rep-
resents a set of variables V, domains D, and constraints C.
The variables are used to represent classes, algortithms or
other concerns. The domain of a variable defines its values,
by giving them a possible choice withing a certain dimen-
sion. In more formalized definition, the CN = 〈V,D,C〉.
Another component of ACN is dominance relation (DR),
which models an asymetric relation among decisions, for-
malizing the concept of design rule. The last component of
ACN is cluster set (CS). In its own it introduces the modu-
larity concept, which is essential for software designing. CS
has many clusters, representing different stakeholders views
of the design.
Having created the ACN (EACN), leads us to the pairwise
dependence relation (PWDR). This is formally defined as:
PWDR ⊆VxU and if (u,v) ∈ PWDR, then v depends on u
[7],[8]. This means that if u changes then v has to change in
a way that the consistency of constraint network is retained.
Finally, based on PWDR, ACN and a clustering of it, the
design structure matrix is derived. This one is a square ma-
trix, in which columns and rows are labeled. Each cluster of
ACN is used to determine the DSM variable order. For ex-
ample, if (u,v) ∈ PWDR, then the cell in row v and column u
will be marked to show their dependency. The blocks along
the main diagonal are used to show the clusterings of ACN.
For the EACN construction, and other formal details regard-
ing connectors and concerns, refer to [7]. In order to show
how all the architectural decay instances are modeled using
PWDR, which can be visualized using DSM, we take an ex-
ample from [7]. Other examples can be found on [8] and [2].
This example shows ERS - Emergency Response System,
which is designed using C2 architectural style, implemented
in JAVA usding PrismMW [7]. A typical characteristic of
C2 architecture is its layered design. Communication among
layers is done tramit message passing. For the sake of space,
we are not going into the details of this architecture (the full
description can be found online or on official publication by
Malek). In Figure 3, is presented the corresponding DSM
of ERS example. From the picture it is visible the cluster-
ing in two top level modules, the first one has 10 variables
and the second one 17 ones. The second one is also clus-
tered into 15 other clusters. These are represented with the
bold squares in Figure 3. The first cluster represents the
10 concerns found on the system, whereas the next block
represents 3 architectural elements and other components.
The dependency between a component being involved in a

specific concern is represented by the column index. The
probability of this dependency is shown by the numbers
writen on the cells. There exists a language named LDA
(Latent Dirichlet Allocation) which is used to make this
calculations. From the DSM representation of EACN, we
can easily observe multilevel of dependencies. For example:
components like DeploymentAdvisor and SimulationAgent
depend on ResourceMonitor, which itself depends on Con-
nectorInterface. Additionally, we can also observe that all
the components depend on DataInterface (because at least
once they have to rely on Sending/Receiving Events). So,
summing up, this method is used in creating a general un-
derstanding of the dependencies among components, values
and concerns. By DSM and LDA all the possible scenarios
can be depicted and further analysed.

4. COMPARISON OF THE APPROACHES
The reason for focusing on each of the three above men-

tioned methods is because we believe that their approaches
to correctly measuring technical debt is more intuitive than
the other ones. Each of them is different from the other
two, so we think that we cover a wide area of recent studies
focusing of approximetely measuring ATD. In this section
we make a comparison of them by focusing on architectural
elements used in these methods, measurement units, com-
plexity, time for refactoring and maintanance, and outputs.
The reason for focusing on these attributes is that these
give general understanding of each of the methods. Also,
these are key attributes which are of interest of our field and
within scope of this paper. For simplicity we are referring
to each of the methods by using some abreviations: Modu-
larity Metrics (MM), Value-Oriented Architecting (VOM)
and Dependency Metrics (DM).
• Architectural elements - The MM method, bases its
measurements in source code level of the projects. From
this are analyzed the commits for ANMCC. On the other
hand, DM, which is based in constructing the augmented
constraint network (ACN), uses software components and
connectors among them to build the pair-wise dependency
relations (PWDR). This one are used to build the depen-
dency matrix, that is used for evaluating the ATD. In con-
trast with the first two, VOM is based on ATD-Item concept,
that is created on purpose for estimating the costs of ATD,
and is further used for its management.
• Measurement Units - As the name suggests MM mea-
surement units are modularity metrics (IIPU, IIPE, IPCI,
IIPUD, IIPED, IPGF, ANMCC). These shows the degree of
which a system or computer program is composed of discrete
components such that a change to one of them has minimal
impact on other components. On VOM, the measurement
unit is total interst, calculated by the formula (1):

totalInterest =

n∑
k=1

Ik × Pk (1)

A detailed explanation of each of the terms mentioned in this
formula is shown earlier on this paper. The outcome from it
are monetary value of ATD. DM measurement units are ba-
sically, the ones which are used to make comparison among
dependency metrics, such as probability that one component
is dependent on other ones, etc.
• Complexity - Taking into consideration all the three
methods, we believe that DM and MM have the same level

of complexity in comparison with VOM, which requires less
computation and data than the first two. We see com-
plexity, as the amount of effort needed by humans or com-
puters to collect and interpret the data needed to come
up with some results. DM and MM complexity is based
on respectively computation for constructing the ACN and
IPGF/IPCI. Both of them are based on actual state of source
code and dependencies among software components. This
makes it possible to directly compute the results, leading to
a fast analysis step.
•Refactoring and Maintanance - MM is based on source
code analysis, this means that refactoring and maintanance
doesn’t require that much time and effort to be performed.
The only problem that has to be taken into consideration
is the time on which IPGF/IPCI and ANMCC is measured.
Regarding the VOM method, refactoring require a lot of
time and effort due to the elements that has to be taken
into consideration for its analysis. If a component is re-
placed or updated, then the calculations, analysis, has to
be recalculated from the beginning, by backtracking all the
possible consiquences. The DM method doesn’t require any
extra efforts for refactoring. However, maintanance costs,
especially when the level of dependencies between one com-
ponent and the others is high, and that specific component
is replaced or modified. That will cost an update of all the
related components, which increase the maintanance costs.
• Expected Result - MM returns the values of IPGF and
IPCI (recent papers suggests that IPCI is enough for de-
terming the negative correlation with ANMCC). The VOM
method evaluated all the ATD Items, and picks the one
whose costs are higher, such as the overall costs of the project
will not increase with the passing of the time. Regarding the
outputs of DM, the dependency matrix is analysed. From
this ”concerns”, ”components” and relation among them is
expressed in percentages. Matrixes are compared with each
other, and the cheapest path represented by each of them is
picked as solution for redusing ATD costs.

5. DISCUSSION
The purpose of this paper was not only to give a gen-

eral overview of the techniques used to detect, measure and
reduce architectural technical debt, but also to make a com-
parison among them. These three techniques were chosen
so to cover a major area of recent studies in the area of ar-
chitectural debt. Modularity metrics usually are used when
sources are available to be analysed. It represents a fast
way of estimating ATD, by telling if it is high or low, but
no exact value of its costs is known. Another drawback,
of this method is that it estimates the costs of only recent
developments, by not giving any further information of fu-
ture estimations, or ways how to reduce it. Value oriented
method, as it is understood from its name, is focused only
on the value part of architectural debt, by mainly focusing
on the causes of this debt. Furthermore, this method de-
scribes all the possible future scenarios of the architectural
changes to the software system. It evaluates the cost of ATD
Item, and tries to resolve it in a specific order, depending
on its priority. This methods turns usuful only when the
documentation is available, the costs of individual architec-
tural components are clearly stated, and objective of the
project is well defined. For other software systems (small
projects, or fast evolutive once), this method fails in esti-
mating ATD value, as the system changes faster than the

time required to analyse each ATD issue. Last but not the
least is dependency model. It is usually used to estimate the
level of dependencies between the architectural components
and concerns. The strong point of this method lays on its
simplicity of interpretation through DSM. Also, by calcu-
lating automaticaly the probabilities of these dependencies,
developing teams will be able to understand the spread of
their problem, the components that will directly or indrectly
conditioned by the changes and so forth. Knowing this char-
acteristics of these methods increases the chances of chosing
the appropriate technic according to the given situation. In
the table below (Table 2), is presented a general overview of
the above comparison:

MM VOM DM
Architectural
Elements

Source Code ATD-Item Components
and connec-
tors

Measurement
Units

Modularity
Metrics

Total Inter-
est($)

Probability

Complexity Relatively
Low

Relatively
High

Relatively
Low

Refactoring
& Main-
tanance*

Low High Moderate

Expected
Result

IPGF&
IPCI-which
are neg-
atively
correlated
with AN-
MCC. This
estimates
ATD costs.

Make a pri-
oritization of
ATD Items
based on the
interest and
future risks
of that item.

Visualises
all the de-
pendencies
among com-
ponents and
concerns.
Shows the
probability
that one
component
will depend
on that
conncern.

Table 2-*Comparison in terms of efforts needed for the task

6. CONCLUSIONS
In this paper we stated that Modularity metrics is a valid

way to measure ATD inderectly, through IPCI and IPGF.
This is a good substitute to ANMCC which is hard to cal-
culate. Furthermore, we can test in the future studies that
only IPCI will be necessary to be measured, as it is more
negatively correlated than IPGF. Also, extending our results
into other projects rather than C# and developing IDE tools
for automatic calculations of IPCI and IPGF. Regarding the
Value Oriented Architecting method, we can say that it is
relatively new on itself. It introduces a completely new con-
ceptual model based on ATD Items, and ATD Management
system. It can be used for facilitating the decision mak-
ing and decision evaluation in a value oriented perspective.
ATDM can be used in the future as a template and docu-
mentation for the whole process of software developing, in-
cluding changes of scenarios and solutions to the individual
problems. Another method used to detect the architectural
decays is by constructing the Dependency Models (for exam-
ple DSM). Although it was proven that it is efficient on con-
structing DSM based on the lines of code, in the future it is
possible to conduct research on constructing DSM by UML

models. Based on that, we can derive dependeces directly
based on architectural components, by neglecting code be-
hind them. With this paper we think that we have covered
the most important points of all these methods focusing on
possible scenarios where they can be used. Further studies
have to be conducted in the future to develop each of them,
and increase the validity of the respective methods.

7. REFERENCES
[1] B. W. Boehm, M. H. Penedo, E. D. Stuckle, R. D.

Williams, and A. B. Pyster. A software development
environment for improving productivity. Computer,
17(6):30–44, June 1984.

[2] J. Brondum and L. Zhu. Visualising architectural
dependencies. In Managing Technical Debt (MTD),
2012 Third International Workshop on, pages 7–14,
June 2012.

[3] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim,
P. Kruchten, E. Lim, A. MacCormack, R. Nord,
I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, and
N. Zazworka. Managing technical debt in
software-reliant systems. In Proceedings of the
FSE/SDP Workshop on Future of Software
Engineering Research, FoSER ’10, pages 47–52, New
York, NY, USA, 2010. ACM.

[4] W. Cunningham. The wycash portfolio management
system. SIGPLAN OOPS Mess., 4(2):29–30, Dec.
1992.

[5] Z. Li, P. Liang, P. Avgeriou, N. Guelfi, and
A. Ampatzoglou. An empirical investigation of
modularity metrics for indicating architectural
technical debt. In Proceedings of the 10th
International ACM Sigsoft Conference on Quality of
Software Architectures, QoSA ’14, pages 119–128, New
York, NY, USA, 2014. ACM.

[6] I. Mistrik, R. Bahsoon, R. Kazman, and Y. Zhang.
Economics-Driven Software Architecture. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
1st edition, 2014.

[7] R. Mo, J. Garcia, Y. Cai, and N. Medvidovic.
Mapping architectural decay instances to dependency
models. In Proceedings of the 4th International
Workshop on Managing Technical Debt, MTD ’13,
pages 39–46, Piscataway, NJ, USA, 2013. IEEE Press.

[8] R. L. Nord, I. Ozkaya, P. Kruchten, and
M. Gonzalez-Rojas. In search of a metric for managing
architectural technical debt. In Proceedings of the 2012
Joint Working IEEE/IFIP Conference on Software
Architecture and European Conference on Software
Architecture, WICSA-ECSA ’12, pages 91–100,
Washington, DC, USA, 2012. IEEE Computer Society.

[9] R. Schwanke, L. Xiao, and Y. Cai. Measuring
architecture quality by structure plus history analysis.
In Proceedings of the 2013 International Conference
on Software Engineering, ICSE ’13, pages 891–900,
Piscataway, NJ, USA, 2013. IEEE Press.

[10] M. Shahin, P. Liang, and Z. Li. Do architectural
design decisions improve the understanding of
software architecture? two controlled experiments. In
Proceedings of the 22Nd International Conference on
Program Comprehension, ICPC 2014, pages 3–13, New
York, NY, USA, 2014. ACM.

Monitoring Heterogeneous Systems.
Current State of the Art and Remaining Challenges

Nikola Velinov
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

nikola.velinov@rwth-aachen.de

Ana Nicolaescu
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

ana.nicolaescu@swc.rwth-aachen.de

ABSTRACT
The current trends in software development demand prod-
ucts with extensive functionality while, minimizing develop-
ment time and resources. This is usually achieved by reusing
existing systems and libraries. As a result, the architec-
ture of such products and its description play a crucial role
in achieving the quality attributes demanded by the stake-
holders. However, during the development cycle, the im-
plemented architecture could drift away from its description
due to undocumented implementation decisions. Therefore,
a mechanism to verify the systems’ conformance to its archi-
tectural description at every stage of the product life cycle is
needed. This paper focuses on identifying the problems that
are faced when trying to extract information about the in-
teractions within and between components in heterogeneous
systems. By studying the OpenWebRTC project, the paper
examines current available techniques for collecting run-time
tracing data and argues about their capabilities and appli-
cability.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

Keywords
Software Architectures, Architecture Reconstruction, Com-
ponent Interaction, Heterogeneous Systems

1. INTRODUCTION
The architecture of a software product plays a major role

in achieving the qualities demanded by all stakeholders. How-
ever, it is usually defined in the beginning of the product’s
development cycle and tends to mismatch the actual imple-
mentation in the final phases. This usually happens because
during the development phase developers make design deci-
sions which are not part of the original architecture or are in
direct contradiction with it. Also, in the advanced stages of
the product development cycle, the effort is mostly focused

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2014/15 RWTH Aachen University, Germany.

on achieving the demanded functional and non-functional
requirements and thus the architecture’s documentation is
not properly updated. This mismatch can easily lead to
difficulties in maintenance and poor extensibility. The de-
scribed problem can be tackled if one has always a clear and
global understanding of the component structure and is able
to trace the inter-component communications.

In this paper we concentrate on tools or frameworks that
collect information from a running system to aid the process
of reconstructing its architecture. Many techniques have
been documented to collect such information from homo-
geneous systems. Custom code instrumentation is always
applicable but is error prone and could drastically change
the behavior of the software. Using aspect oriented pro-
gramming provides a safer alternative to this, however it is
very specific to the programming language used to construct
the inspected system. Utilizing low level information such
as bytecode or machine instructions has also been used. The
DTrace framework, which will be inspected later in the pa-
per, allows tracing software compiled to machine code with-
out the need to instrument the code of the inspected system.
Scripting languages like Python or JavaScript can easily be
instrumented to provide the required data thanks to their
purely object oriented nature.

Some methods of the aforementioned can be used to trace
systems composed of multiple programming languages. In
this paper we use the OpenWebRTC as a reference heteroge-
neous system. It connects a Linux daemon with JavaScript
code executing in a browser through a Websocket. With
such an example, we were not able to identify a tool, method
or a framework that is able to trace this interaction and pro-
duce useful data. Hence, we approach this problem by iden-
tifying methods or tools that are suitable for tracing each
technology and then argue about how those methods can
be improved or extended in order to successfully trace the
interactions in OpenWebRTC.

The remainder of this paper is organized as follows: in
Section 2 the studied system is presented and the goals for
the dynamic analysis are defined. In Section 3 the tools,
techniques and frameworks for collecting the needed infor-
mation are discussed. In Section 4 a conclusion is drawn
and the benefits of collecting dynamic traces are discussed.
Related work is discussed in Section 5.

2. THE EXAMINED SYSTEM AND GOALS

2.1 OpenWebRTC
Throughout this paper we will examine the OpenWebRTC

framework [1]. It provides WebRTC APIs to browsers and
will serve as a good example of a heterogeneous system.
The WebRTC standard is designed to give browsers simple
JavaScript interfaces for Real Time Communication by uti-
lizing peer-to-peer (P2P) architectures and access to audio
and video streams from the host system. OpenWebRTC is
developed by Ericsson as a research project. The project’s
goal is to create a universal module that gives access to We-
bRTC APIs to both browsers and native operating system
components. Hence the module that realizes the WebRTC
standard is a separate application from the consumers of its
APIs. This differs from the approach taken by Google or
Mozilla. They integrate the WebRTC realization in their
browsers.

OpenWebRTC can be used via the“Bowser”browser, which
is also an Ericsson developed project, as a plug-in for the Sa-
fari browser, or as a standalone daemon for Linux systems.
In this paper we will examine a Linux system running the
daemon and a browser that connects to it. Figure 1 describes
the setup and shows a connection between two systems.

Linux2System

Daemon

Browser

Webpage2using
OpenWebRTC

Linux2System

Daemon

Browser

Webpage2using
OpenWebRTC

Legend

A B
Components2A2and2B2

have2a2P2P2connection

A B
Components2A2and2B2are

connected2via2a2Websocket

Figure 1: The OpenWebRTC Component Diagram

The dashed lines in this diagram represent the Websocket
connection between the JavaScript code and the daemon.
This Websocket is the only way the JavaScript in the browser
can utilize the services provided by the OpenWebRTC back-
end. This means that every web page that requires the We-
bRTC API must have a specific piece of JavaScript code in-
jected in it. This can be achieved with tools like Greasemon-
key or Tampermonkey. Basically, this connection is realized
by the browser, but for clarity it is indicated that it is done
by the web page itself. The solid line represents a connec-
tion that is supposed to be established between two systems
running the daemon if peer-to-peer services are used.

OpenWebRTC was chosen because the interaction between
the different components of the system is challenging. There
are a lot of techniques that can trace C programs or JavaScript
scripts. But none of them can trace both simultaneously.
Therefore, one must collect data separately and later pro-
cess it in order to get a complete understanding of the in-

teractions between the two components of the system.
In conclusion to trace this system we need a tool which

can trace a JavaScript executing in a browser and a daemon
written in C. It must also be able to link this information or
generate homogeneous results in order to produce an inter-
action diagram. We have not yet discovered a single system
capable of solving this task. Therefore we believe that iden-
tifying how current techniques that address this problem will
be a valuable contribution.

2.2 Goals
Having defined the system that this paper is focusing on,

now we present the goals that we would like to achieve with
our run-time analysis:

• G1: Collect information about the function calls within
the Linux daemon, information about the method or
function calls in the JavaScript code. The collected
data must allow a single operation to be traced thor-
oughly. By operation we mean any sequence of func-
tion calls and data packets that is a result of the JavaScript
code invoking a service provided by the daemon.

• G2: We need to be able to specify pieces of the code
that will be traced and pieces that will not be traced.
E.g. we are not always interested in every single call
to the C standard library, because some of them do
not give any information for the interactions between
the different functions within the program.

G2 is relevant because the collected data can be used to
test if a certain interaction pattern is met. If one is interested
in the internal workings of the daemon itself, one would
only like to trace functions within the daemon and see the
JavaScript consumer code as a single entity. On the other
hand, one might need to trace all functions invoked when a
specific event occurs, meaning all of the JavaScript and C
interactions must be visible.

As was already mentioned before we have not identified
a single framework, product or technique that satisfies the
aforementioned goals. That is why the remainder of paper
tackles each technology separately and then argues how to
combine the results. We evaluate each technique by the
following criteria:

• C1: The amount of manual code modification required
to successfully gather the required information should
be minimal and does not interfere with the existing
functionality.

• C2: The overhead imposed by the collection of the
required information is negligible compared to the run-
time of the system.

• C3: It is possible to specify granularity of the data that
is to be collected. E.g. trace specific functions, trace
functions with common names, functions that receive
a specific parameter.

• C4: The method is extendable to provide support for
other technologies.

3. ANALYZING OPENWEBRTC
In this chapter the studied techniques will be presented

and arguments about their applicability will be given. We

will only consider tools and techniques that are freely avail-
able or have a published paper that explains their functional-
ity in detail. Some approaches are more sophisticated than
others, but they all address our goal to trace function or
method calls, or to trace the data transferred over sockets.
First, tracing C code is explored, then the JavaScript.

3.1 The C Daemon
The C daemon relies heavily on external libraries for its

functionality. Depending on the specific goals of the analy-
sis, one may need to examine the libraries in detail or just
identify them as black boxes. It is possible that the library
plays a crucial role in the system’s work flow. OpenWebRTC
uses glib for its main loop. This means that this library must
be traced in order to gain a deeper understanding of the
function interactions within the daemon. One might also be
interested in how the audio and video streams are fetched,
for example, and thus need to inspect the gstreamer library
as well. Henceforth, it is obvious that even before we begin
our dynamic analysis we need some basic understanding of
how the used libraries interact and what kind of information
we need, so that we can collect data accordingly.

3.1.1 Compiler Flags
Most compilers offer the functionality to run functions at

the beginning and at the end of each function executed. For
this purpose the functions must be available to the linker
at link time. The compiler inspected here is gcc and the
flag that enables this is -finstrument-functions. The two
functions that must be available are cyg profile func enter
and cyg profile func exit. When called, these functions
are passed the current address of the function being called
and the caller’s point of address. This information is not
very useful because the address must be resolved in order
to get the actual function name (usually done post execu-
tion). Furthermore, if one would like to inspect the parame-
ters passed to the function, one must know the exact calling
convention and perform complex stack or register analysis.
Another drawback is that libraries and the whole project
must be rebuilt with the relevant compiler flags. Finally,
this technique can only be used with C or C++ and only
with compilers that allow this. This is however a quick and
easy to implement solution for small projects, which may
require more post-processing of the collected data.

When we look at our defined criteria, this method is not
extendable to anything else than C or C++ languages, mean-
ing C4 is not satisfied. It is possible to selectively collect data
for specific functions if the addresses passed as parameters
are checked against the executable’s symbolic information
or if a flag is inserted to the declaration of each function
to be traced. This means that our criterion for granular-
ity of the collected could be satisfied, but it will require
great programming effort. The instrumented functions will
be called for every function executed unless specified other-
wise in the code itself. This means there will be significant
overhead involved. Hence, our criteria for the overhead C2
will not be satisfied. Finally, C1 (low manual code modifi-
cation) is not satisfied, because if one wants to gather infor-
mation for only a specific set of functions, one must either
manually add small amounts of code to them or one must
implement a lot of logic in the cyg profile func enter and

cyg profile func exit functions.
Applying this technique in OpenWebRTC will first require

modification of the build system for every library that shall
be traced. Furthermore, once the data is collected it will
have to be post-processed in order to extract meaningful in-
formation. In short, it will require a lot of effort to trace the
daemon and the JavaScript scripts will remain unaddressed.

3.1.2 Aspect Oriented Programming
Another approach is to use Aspect Oriented Programming

(AOP) to instrument the code. This is an approach that is
researched in [2] and [11]. A few projects exist that create an
additional compiler that instruments the code automatically
with functions, which allow programmers to use aspects in
C/C++ programs. To name some: AspectC, AspectC++,
AspectX/Weaver, Arachne, aspicere etc. In this paper we
will not concentrate on a specific one but we will argue about
their common behavior with respect to our goals.

With this approach, one also needs to rebuild all libraries
that the program depends on and are interesting for the
analysis. However, this approach gives the opportunity for
information gathering, without manually editing the code of
the inspected system. Function names can be easily recov-
ered as well as information about the parameters of the func-
tion calls. The instrumentation utilizes a so called weaver.
This takes the source code and the aspect information as in-
put and produces instrumented source code. An exception
to this is Arachne which actually uses dynamic machine in-
struction insertion into a program. The latter is however
not stable when used with different processor architectures
simply because it is created to work with a specific one. In-
strumenting the source code is a much more stable approach,
because it relies in the robustness of the compiler.

The downside to using this approach is that the build
system must be heavily modified, because none of the afore-
mentioned tools provides a complete solution for the weav-
ing and linking process. Depending on the build mechanism
used for the system, this could be a big challenge.

To summarize this approach we should note that C1(low
manual code modification) is partially fulfilled due to the
fact that the build system will inevitably change and one
must write the aspect oriented code for the collection. The
overhead imposed by this approach depends on how many
functions are traced and how much information is gathered.
Hence, our criterion for overhead C2 could be fulfilled. Se-
lective tracing is achievable, because enough data is available
for the code in the aspect to utilize. One can extend this
approach to other technologies. For example ApsectJ is an
aspect oriented extension to JAVA. Languages like Python
or JavaScript can be easily adapted to the aspect oriented
paradigm due to their dynamic nature.

Applying this technique in OpenWebRTC will require heavy
modification of the build system. However, in contrast to the
previous approach, this one will generate information that
can be directly fed into another tool which can be used to
reconstruct parts of the architecture.

3.1.3 DTrace
The DTrace Framework was initially developed by Sun

Microsystems. It is a comprehensive dynamic tracing frame-
work originally developed for Solaris and later partially ported
to other Linux-like systems [3]. It consists of a core ker-
nel module which manages the collection of the data. The
framework itself is not bound to a specific technology. There-
fore it does not instrument the programs itself, but delegates

the task to the so called providers, which are loadable kernel
modules for the framework. These providers publish probes
in the DTrace framework, which can then be enabled to
collect actual data. The probes are the actual points of in-
strumentation. They ”fire“ when an event occurs and they
collect data, which is passed to their respective provider. An
example for a probe is a probe that fires when a function is
entered. It provides information like the name of the func-
tion, its parameters, the thread that executes the function
and so on. Figure 2 shows the architecture of DTrace.

SolarisfSystem

Dtrace

Providerf1 Providerfn

Probef1 Probef2 Probef3 Probefn

DfScript Application

1
2

3...

4

Legend

1 Selectfafprobe
andfenablefit

2 Instrumentfthef
application

3 Datafisfretreived
fromfthefapplicationf

4 Datafisfsentftofthef
scriptfforfprocessing

...

Figure 2: The DTrace Architecture

The probes that shall be used to sample information are
requested by the so called D scripts. They are written in the
D language, which is defined and executed by the DTrace
framework. It is a language with syntax similar to C and
allows arbitrary operations on the collected data. With this
technology the framework allows the so called speculative
tracing. This means that data can be purged of unnecessary
noise in the process of collection, effectively reducing the
amount actually stored.

Once a probe has been selected, the respective provider
starts instrumenting the application that shall be traced.
The collected information is then sent back to DTrace and
passed to the script for processing.

DTrace distinguishes between two types of tracing:

• Dynamic Tracing: The providers are able to instru-
ment the inspected system at run-time and provide
the framework with the necessary data.

• Static Tracing: The inspected system contains manual
code that simulates the instrumentation and manually
sends the necessary data a stub provider, which for-
wards it to the DTrace framework.

For our use case we need to instrument a C application.
A provider called ”pid“ can be used. It can dynamically in-
strument functions by hooking to their entry and exit points.

The information about the function names is retrieved from
the inspected executable or library, which means that it
should contain debug symbols. Furthermore, “pid” can hook
to a running process without restarting it, so it requires no
down time. It also does not require any changes to the code
and hence it is not expected to influence the behavior of the
application.

Comparing DTrace to our criteria yields promising results.
No manual code modification is required if one uses dynamic
tracing, hence our criterion C1 is completely fulfilled. The
amount of overhead imposed by DTrace is proportional to
the amount of data collected which can be easily tweaked by
the probes utilized, so we consider C2 to be fulfilled. C3 is
completely satisfied, because one can gather as much infor-
mation from a running system as one requires and even filter
it during the collection process. The concept of providers
and static tracing also allows one to trace arbitrary tech-
nologies. Henceforth, we can consider C4 satisfied as well.

However DTrace has some major drawbacks. First it is
only available for Solaris, FreeBSD and MacOS X. Further-
more, the providers utilize shared objects to contact the
DTrace framework in the kernel. This means that if one
would like to trace JavaScript for example, one must pro-
vide wrappers for the interfaces in the shared objects in the
JavaScript environment. This means that each JavaScript
engine that will be traceable with DTrace must have such
wrappers within it. This shall be discussed in detail later,
in the chapter which concentrates on the JavaScript code.

The OpenWebRTC framework is meant to be built on
MacOS and Ubuntu[1]. Therefore, if we would like to test
this approach we must adapt the build process to work on
Solaris. However, DTrace is the only studied product that
can trace the software without any code modification and,
as shall be discussed later, can be adapted to work with
JavaScript as well.

3.2 The JavaScript Code
JavaScript is a prototype-based scripting language that

treats functions as first-class objects. This means that trac-
ing can be achieved in a more straight forward way. One can
simply create wrappers that trace the execution for each ex-
isting function by iterating and altering all the functions in
the global name space. Other approaches utilize built-in
capabilities of browsers and plug-ins like Firebug or stan-
dalone applications like spy-js[14]. However these methods
are designed for debugging purposes and may have difficul-
ties recording the collected data.

In this chapter we will examine two approaches that ac-
tually collect tracing data, with the purpose of storing it.

3.2.1 DTrace Providers
As already mentioned DTrace has support for arbitrary

providers and can be used to trace the execution of JavaScript
code. We found two sources that discuss how this is achieved:
[12], [13]. [12] edits the Firefox’s JavaScript engine Spider-
Monkey manually by adding static probes in it. [13] uses a
flag in the build configuration to include static probes for
DTrace. This means that the developers of Firefox has al-
ready taken DTrace into consideration and has code that
allows tracing JavaScript.

Both approaches are able to collect information about the
function interactions within the JavaScript code. One can
also identify functions, through which the JavaScript inter-

acts with the daemon and can relate the execution traces.
We shall not go into detail in comparing this approach

with our criteria, because we have already discussed Dtrace
in Section 3.1.3. We will only note that the presented meth-
ods use the static tracing mechanisms of DTrace, which
means that providers must be present in the system.

With the DTrace providers one can trace the JavaScript
code of OpenWebRTC without any modification of the scripts.
Combining this with the previously mentioned advantages,
DTrace seems to be a promising framework. However, we
once more mention that it is limited to only Solaris based
systems.

3.2.2 Jalangi
Jalangi is a framework that supports dynamic analysis of

JavaScript scripts. It is focused on recording sequences of
execution of JavaScript code and later replaying them for
analysis purposes [8]. When replayed additional checks and
observations can be done in order to identify problems or
errors in the code.

Our interest in this tool lies in its ability to record the
execution of a script. The approach taken by the authors of
the tool however is tailored for their needs of replaying the
recorded execution. In order to do it, they keep track of the
states of variables and record the execution in a more data
oriented manner. This means that extracting information
about the function interactions from the records could be
challenging.

In conclusion, the authors of the tool report twenty-six
times slower execution speed when collecting data. Hence-
forth, our criterion C2 is not satisfied. This technique is
addressed solely to JavaScript, so C4 is not satisfied as well.
Granularity can be achieved, because the tool allows collec-
tion of data from only specific pieces of code. Finally, no
manual code modification is required so C1 is satisfied.

Jalangi can be used to record the script execution of the
JavaScript part of the OpenWebRTC framework without
any code modifications. However, it is not certain how the
collected data can be exported for further processing.

3.3 Summary
Here we present a table that compares the studied tools

and techniques against our defined criteria.

Method C1 C2 C3 C4

Compiler
Flags

* - * -

AOP * + + +
DTrace + + + +
Jalangi + - + -

Table 1: Summary of the Studied Tools

+ criteria is met
- criteria is not met
* considerable effort is required to meet criteria

As was already discussed, the compiler flags approach re-
quires a lot of efforts, before actually producing meaningful
results. It is also not extendible to to technologies other
than C/C++. The aspect oriented programming still re-
quires modifications in the build system, however it is ex-
tendible to other technologies. DTrace satisfies all defined

criteria and is a promising framework. However its major
drawback is that most of its functionality is only available
in the Solaris operating system. Jalangi is a solution that
works for JavaScript only. On one hand it provides the valu-
able functionality of replaying a script’s execution. On the
other extracting the actual data with respect to the function
calls within the script is challenging.

4. CONCLUSION
Collecting run-time tracing data from applications can

provide two valuable possibilities:

• It can be used to visualize the relationships between
different components of a single system.

• It can be used to visualize the interactions between the
components of a system for a specific test case scenario.

All the techniques and tools discussed so far provide trac-
ing capacities. Some of them provide more sophisticated so-
lutions, while others are more basic and require more manual
work in order to produce useful data.

In this paper we were looking for solutions that require
minimal manual code modification in order to collect data.
This is useful for systems that are currently in heavy use, for
which a change would impose risk of failing to fulfill their
business goals. DTrace is valuable in this sense, because of
its ability to use dynamic tracing by simply attaching to
running applications. The dynamic probes however must
be initially present in the system that runs the application.
For example, if one would like to dynamically trace JAVA
code with Dtrace, then a JAVA Virtual Machine that con-
tains the corresponding providers must be available in the
system. And as was previously noted, most of the providers
of DTrace are only available on the Solaris OS.

For systems in that are being built the situation is dif-
ferent. They are probably not operational during their de-
velopment and hence time could be invested to make the
systems traceable.

There are interesting results published by Google on the
topic in [9]. The authors present their experience in us-
ing the Dapper system, which is a large scale distributed
systems tracing infrastructure. Their approach requires de-
velopers to use specific middleware or libraries and follow
specific guidelines when coding in order to add tracing capa-
bilities in their systems. They have also developed a “Depot
API”, which provides direct access to all the collected traces.
With this tool they have developed numerous applications
that interpret the data for different purposes, ranging from
profiling to understanding system behavior.

The authors also report that during re-engineering of cer-
tain service, the results from the Dapper and the Depot API
were valuable in the following aspects:

• The developers were able to trace the performance of
the service as it was being built and immediately iden-
tify optimization opportunities.

• They were able to optimize their database accesses.

• They were able to redesign their dependencies and
their interactions in order to minimize the load on
them.

• They used Dapper for validating test scenarios.

Henceforth processing the traced data is as important as
collecting it.

[4] provides an extensive overview of the methods avail-
able for this. However, they do note that a tool that pro-
cesses data of heterogeneous systems is still not available.
This problem is mentioned in older reports [6], meaning it
is a persistent one. The different programming paradigms
that are more or less imposed by the used programming lan-
guage are one challenge that must be overcome. A tool that
would support multiple technologies would have to identify
the paradigm in order to produce a correct diagram repre-
senting the interactions that are happening.

Further research would be needed in order to identify how
the traced data should be saved in a unified format, so that
the different technologies can be linked together in order to
provide information for the complete interactions between
them.

5. RELATED WORK
Investigating the problem of tracing software execution

during run-time is not new.
[10] analyzes the challenges of monitoring heterogeneous

systems utilizing Java and C/C++. They manually create
probes to collect the required data and then construct a
framework which monitors the behavior of the software dur-
ing run-time. They proceed to evaluate their method based
on flexibility and performance.

[7] test the conformance of state machines in software
of Electric Control Units to their corresponding models.
They utilize create probes manually and insert them in the
C/C++ code to collect data. They then proceed to write
scripts that run tests and use the collected data to test
weather the state machine implementation corresponds to
their defined model.

[2] provide extensive analysis on the available possibilities
for AOP in C/C++ languages. They proceed by present-
ing their AOP compiler for C called “aspicere”. After it is
presented they report their experience in using AOP tech-
niques for recovering architectures of legacy systems. They
also discuss the difficulties they meet when integrating their
compiler with the existing build system of the legacy system
and argue about the threats to the validity of the results that
they gather.

[5] provides a survey on existing tools for analyzing col-
lected traces. The tools discussed are: Shimba, ISVis, Ova-
tion, Jinsight, Program Explorer, Avid, Scene, and Collab-
oration Browser. The argue about how execution traces can
be modeled and the possible levels of abstraction of dia-
grams extracted from a system’s traces. They proceed with
discussing how the studied tools manage large traces with
methods like filtering or data collection techniques.

[4] Gives an extensive overview on the process of Software
Architecture Recovery (SAR). They define taxonomies and
goals of the SAR process. They also categorize the SAR
processes by their approach – whether it is top down, bot-
tom up or hybrid. SAR inputs are also discussed and they
give an extensive overview of the tools available for the dif-
ferent types of input – dynamic or static. They categorize
the techniques used to perform the actual SAR process and
finally discuss the outputs that are produced.

6. REFERENCES
[1] OpenWebRTC. http://www.openwebrtc.io/, 2014.

[2] B. Adams, K. D. Schutter, A. Zaidman, S. Demeyer,
H. Tromp, and W. D. Meuter. Using Aspect
Orientation in Legacy Environments for Reverse
Engineering using Dynamic Analysis -An Industrial
Experience Report. Technical report, Software
Engineering Research Group, Delft University of
Technology, 2008.

[3] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal.
Dynamic instrumentation of production systems. In
Proceedings of the Annual Conference on USENIX
Annual Technical Conference, ATEC ’04, pages 2–2,
Berkeley, CA, USA, 2004. USENIX Association.

[4] S. Ducasse and D. Pollet. Software architecture
reconstruction: A process-oriented taxonomy. IEEE
Transactions on Software Engineering, 35:573–591,
2009.

[5] A. Hamou-Lhadj and T. C. Lethbridge. A survey of
trace exploration tools and techniques. In Proceedings
of the 2004 Conference of the Centre for Advanced
Studies on Collaborative Research, CASCON ’04,
pages 42–55. IBM Press, 2004.

[6] L. O’Brien, C. Stoermer, and C. Verhoef. Software
architecture reconstruction: Practice needs and
current approaches. Technical report, Carnegie
Mellon, 2002.

[7] M. Saadatmand, D. Scholle, C. W. Leung,
S. Ullström, and J. F. Larsson. Runtime verification of
state machines and defect localization applying
model-based testing. In Proceedings of the WICSA
2014 Companion Volume, WICSA ’14 Companion,
pages 6:1–6:8, New York, NY, USA, 2014. ACM.

[8] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs.
Jalangi: A selective record-replay and dynamic
analysis framework for javascript. In Proceedings of
the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, pages
488–498, New York, NY, USA, 2013. ACM.

[9] B. H. Sigelman, L. A. Barroso, M. Burrows,
P. Stephenson, M. Plakal, D. Beaver, S. Jaspan, and
C. Shanbhag. Dapper, a large-scale distributed
systems tracing infrastructure. Technical report,
Google, Inc., 2010.

[10] M. Vierhauser, R. Rabiser, P. Grunbacher, C. Danner,
S. Wallner, and H. Zeisel. A Flexible Framework for
Runtime Monitoring of System-of-Systems
Architectures. In 2014 IEEE/IFIP Conference on
Software Architecture, pages 57–66. IEEE, 2014.

[11] A. Zaidman, B. Adams, K. De Schutter, S. Demeyer,
G. Hoffman, and B. De Ruyck. Regaining Lost
Knowledge through Dynamic Analysis and Aspect
Orientation - An Industrial Experience Report. In
Proceedings of the Conference on Software
Maintenance and Reengineering (CSMR), pages
91–102, Bari, Italy, 2006. IEEE.

[12] Dtrace meets JavaScript. https://blogs.oracle.
com/brendan/entry/dtrace_meets_javascript, 2006.

[13] Optimizing JavaScript with DTrace.
https://wiki.mozilla.org/Performance/

Optimizing_JavaScript_with_DTrace, 2008.

[14] Spy-js. https://github.com/spy-js/, 2014.

http://www.openwebrtc.io/
https://blogs.oracle.com/brendan/entry/dtrace_meets_javascript
https://blogs.oracle.com/brendan/entry/dtrace_meets_javascript
https://wiki.mozilla.org/Performance/Optimizing_JavaScript_with_DTrace
https://wiki.mozilla.org/Performance/Optimizing_JavaScript_with_DTrace
https://github.com/spy-js/

Are Code Smell Detection Tools
Useful in Dealing with Technical Debt?

Johannes Krude
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

johannes.krude@rwth-aachen.de

Muhammad Firdaus Harun
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

firdaus.harun@swc.rwth-aachen.de

ABSTRACT

The term Technical Debt originated as a metaphor for ship-
ping code of low quality. It compares typical consequences
of shipping low quality code to the financial terms of interest
and payback. Lately, some research focuses on identifying
Technical Debt on code-level through the use of code smell
detection tools. Many fundamental questions on this iden-
tification approach are still unanswered. Without answers
to these fundamental questions it is unknown whether these
identification approaches have the potential to provide a use-
ful analysis.
The Technical Debt definition varies between different lit-

erature. For which of these definitions of Technical Debt
is the existence of code smell actually a Technical Debt in-
dicator? Technical Debt can be categorized according to
different criteria. Examples for such criteria are the vis-
ibility to stakeholders and the intention in introducing the
Technical Debt. Which kinds of Technical Debt can be iden-
tified by code smell detection tools? The Technical Debt
metaphor focuses on terms like interest and payback. How
does code smell relate to Technical Debt beyond identifica-
tion? A lot of code smell research predates most Technical
Debt research. Is code smell actually a useful indicator for
low quality in software?
We have read a subjectively chosen subset of the avail-

able Technical Debt and bad code smell detection papers.
We highlight promising Technical Debt identification tech-
niques and show which techniques do not (yet) reside on
solid ground.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management—cost esti-
mation; D.2.8 [Software Engineering]: Metrics—process
metrics, product metrics

Keywords

technical debt, code smell detection, literature review

This work with the exception of the figures is licensed under the Creative
Commons Attribution 4.0 International License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/.
SWC Seminar 2014/15 RWTH Aachen University, Germany.

1. INTRODUCTION
The term Technical Debt originated as a metaphor by

Ward Cunningham [3]. This Technical Debt metaphor com-
pares consequences of shipping low quality code to the fi-
nancial terms of debt, interest, and principal. It’s early use
had the intention of easing communication between techni-
cal staff and management.

Code smells are easy to spot indications for underlying
problems in object oriented program code [8]. Here is an
example:

switch (x) {

case 1:

...

break;

case 2:

...

The usage of switch statements is often regarded as an in-
dicator for a lack of using appropriate object oriented con-
structs. Switch statements should supposedly be replaced
by object oriented polymorphism. Code smells were origi-
nally designed to be easy to spot by humans. Today, a wide
range of automated tools exist to detect code smell. Lately,
some research focuses on evaluating whether such code smell
detection tools also identify Technical Debt [13, 6, 14].

But, many important fundamental questions on Techni-
cal Debt, code smell, and the identification of Technical
Debt through code-level detection are still unanswered. For
this paper, we drafted for important fundamental questions.
Without answers to these questions it is unknown whether
this identification approach has the potential to provide a
useful analysis. We want to know whether code smell detec-
tion has the potential to usefully identify Technical Debt.
It is also important to know the limitations on the analysis
results of such tools. We read a subjectively chosen set of
papers to evaluate the current knowledge. We investigate
which kinds of analysis tools may provide which kind of use-
ful analysis and which results are impossible to identify by
such tools.

Our fundamental questions are explained in Section 2. We
explain and discuss the reviewed literature and the findings
on these questions in Section 3. In Section 4 we discuss
the future research which is needed to definitely answer our
questions.

2. DEVELOPING QUESTIONS
We want to evaluate whether code smell detection tools

are useful in identifying Technical Debt. For this purpose,

we examine four fundamental questions on Technical Debt,
code smell, and the identification of Technical Debt through
code-level detection.

The term Technical Debt originated as a metaphor. But,
Technical Debt as used in Software Engineering did not per-
sist to be solely a metaphor. Nowadays, Technical Debt
is often used as a term to describe certain aspects of arti-
facts in software. To distinguish which aspects are instances
of Technical Debt and which aspects are not instances of
Technical Debt, a Technical Debt definition is needed. In
different Technical Debt literature different Technical Debt
definitions are in use. These definitions vary a lot in sub-
stance and preciseness. Different authors state different po-
sitions on which aspects are instances of Technical Debt.
Some definitions are rather unambiguously. Some authors
state their definitions very vaguely. Some literature even
omits an explicit Technical Debt definition. In these cases
the reader is left with the task of implicitly deducting the au-
thors Technical Debt definition from how he uses the Tech-
nical Debt term. For different definitions different aspects
are instances of Technical Debt. An aspect which is a Tech-
nical Debt according to a Technical Debt definition may not
be a Technical Debt according to another Technical Debt
definition. This leads us to our first question on code smell
based Technical Debt detection:

1. For which Technical Debt definition is the existence of
code smell possibly a useful Technical Debt indicator?

This is the question of which Technical Debt definitions al-
low for a reasonable discussion on Technical Debt identifi-
cation through code smell detection tools. This is also the
question whether code smell detection can possibly be use-
ful when interested in Technical Debt according to a specific
Technical Debt definition.

Instances of Technical Debt can be categorized using dif-
ferent kind of characteristics. One categorization is on the
stakeholders knowledge of existence of Technical Debt in-
stances. This is the division into visible and invisible Tech-
nical Debt [10]. Another categorization is on the intention of
introducing the Technical Debt instance into the software.
This is the division into deliberate and inadvertent intro-
duced Technical Debt [7]. Technical Debt is also categorized
according to the development step it was introduced. Ex-
amples of these categories are architectural Technical Debt,
design Debt, code-level Technical Debt, test Debt, and docu-
mentation Debt. Our questions on Technical Debt categories
is:

2. Technical Debt of which categories can possibly be de-
tected by code smell detection tools on code-level?

This is the question on the limits of code smell detection
tools detecting Technical Debt on code-level. This is also
the question on which kinds of results we can not expect
from Technical Debt identification through code smell de-
tection.

Code smells are code-level indicators for problems in soft-
ware. These indicators manifest themselves on concrete
parts of program code. Code smell detection tools may pos-
sibly identify Technical Debt associated parts of program
code. A very important part of the Technical Debt disci-
pline are rationales on future consequences which emerge

from current states of software artifacts. These future con-
sequences are in the Technical Debt metaphor expressed as
interest and principal. An important Technical Debt ques-
tion is on how to decide whether to repay a debt or not [1].
Identifying concrete parts of program code by itself does not
necessarily carry any clues on interest and principal. In or-
der to provide a useful Technical Debt analysis, a Technical
Debt analysis tool should not be independent of possible
future consequences. Therefore we ask the question:

3. How does code smell relate to Technical Debt in terms
of interest and principal?

This is the question whether code smell gives indications
on future problems in software. This is also the question
whether code smell detection tools can help in software de-
velopment management decisions.

Code smells are indicators for certain problems in soft-
ware. Refactoring is usually proposed as a solution to these
problems [8]. A wide range of literature discussing code
smell detection tools for Technical Debt identification exist.
Nonetheless, none of the literature we read gives concrete
reason on why to consider code smell detection as a promis-
ing approach for Technical Debt identification. We therefore
developed a small theory on why code smell detection is so
widely considered for the use of Technical Debt identifica-
tion. The original Technical Debt metaphor [3] speaks of low
quality code. If this low quality code is not repaid, interest
must be paid. We believe that certain similarities between
common code smell beliefs and the Technical Debt metaphor
exist. Code with occurrences of code smell is often regarded
as low quality code. Refactoring this code can be viewed as
a form of repaying the debt. If this code is not refactored, in-
terest supposedly must be paid. This conclusion holds only
if code smell actually is a useful indicator for problems in
software. Thus, the following question arises:

4. Are code smells a useful indicator for problems in soft-
ware?

This is the question whether code smell detection actually
identifies aspects which either need to be repaid or interest
must be paid. This is also the question whether Techni-
cal Debt identification through code smell detection has a
chance to be a promising approach.

We phrased four fundamental questions on code smell de-
tection in the context of Technical Debt identification. In the
following we describe the knowledge related to these ques-
tions we found in existing literature, and discuss how this
impacts useful Technical Debt identification.

3. FINDINGS
We read a subjectively chosen set of papers to determine

the currently existing knowledge related to our four ques-
tions. This section lists these findings.

3.1 Question 1: Technical Debt Definition
Different Technical Debt literature uses different Techni-

cal Debt definitions. Some definitions are stated in very
precise language, some definitions are stated rather vaguely.
Regularly, Technical Debt literature even omits to specify
their working definition of Technical Debt. Some random

examples of literature with various implicit Technical Debt
Definitions are [13, 6, 14]. The popularity of the Technical
Debt metaphor originates from folklore amongst practition-
ers [12] rather than from research. This may be the reason
for these widespread implicit and varying Technical Debt
definitions. It is rather hard to devise solid arguments based
on facts which can only be read between the lines. There-
fore, we ignore most implicit definitions. In the following we
discuss 3 Technical Debt definitions in detail.

We start with a rather precisely stated but very broad
Technical Debt definition [1]:

One way to understand technical debt is a way to
characterize the gap between the current state of
a software system and some hypothesized “ideal”
state in which the system is optimally successful
in a particular environment.

There are two main concepts in this definition. Technical
Debt is the divergence of a software system from an “ideal”
state. This “ideal” state is characterized as enabling the
software system to be optimally successful in a particular
environment. These two concepts are very broad.
Not all software systems are evaluated for their successful-

ness in the same single standardized environment. Different
software systems target very different environments. It can
be easily thought of environments in which the absence of
code smell is mandatory for success as well as environments
in which the absence of code smell hinders success. A soft-
ware development organization could be bound by a legal
contract to deliver code without any occurrences of code
smell. A code smell detection will indeed identify Techni-
cal Debt for this definition and environment. Let’s assume
a software system is developed for a highly memory con-
strained environment. Replacing a single switch statement
in the code by a collection of polymorphic classes may intro-
duce a high burden on the memory usage. The abstinence
from code smell will prevent this software system from being
successful in it’s target environment. A code smell detection
tool will identify aspects which are kind of the opposite of
Technical Debt for this definition and environment.
The “ideal” state which enables a software system to be

optimally successful in a particular environment may not
necessarily be unique. Two different “ideal” states may exist
which both may enable a software system to be optimally
successful in the same environment. Under these circum-
stances, a Technical Debt identification tool or code smell
detection tool may identify aspects which are Technical Debt
and are not Technical Debt simultaneously.
This Technical Debt definition is too broad to aid in mean-

ingful Technical Debt discussion. It highly depends on the
software systems target environment whether code smell de-
tection tools have the potential to identify Technical Debt.
This Technical Debt definition also seems to be a synonym
for low software quality [11]. There is no usefulness in evalu-
ating the same phenomenon twice just with different names.

We want to point to one specific implicit Technical Debt
Definition. We found the term code smells Debt in the title
of a paper [6]. Neither a general Technical Debt definition
nor a specific code smell Technical Debt definition is men-
tioned in this paper. Nonetheless we believe based on the
usage of this term, the authors of that paper have some

kind of Technical Debt definition for which code smell in-
stances are Technical Debt instances. For such a Technical
Debt definition, the existence of code smell instances is al-
ways a Technical Debt indicator. But, whether the existence
of code smell is a useful Technical Debt indicator depends
on whether code smell detection itself is useful for some-
thing. We outline the general findings on the usefulness of
code smell detection without referring to the Technical Debt
metaphor in Section 3.4.

The next Technical Debt definition does only indirectly
define Technical Debt. It only lists necessary but no suffi-
cient conditions for an aspect to be Technical Debt. It is
the most useful Technical Debt definition we have encoun-
tered in our review. The following excerpt from this defini-
tion puts important burden on Technical Debt identification
through code smell detection [11]:

A design choice that has no permanent conse-
quence on future cost of changes, that is, incurs
no form of interest payment, probably should not
be labeled as technical debt, but just as an alter-
native choice. The presence of some form of in-
terest, either constant [. . .], or in the form of a
balloon payment [. . .], should be an important cri-
terion for deciding if a design approach is in debt
[. . .].

Therefore, for code smell detection tools to be able to iden-
tify Technical Debt, the presence of code smells must imply
the presence of interest. Similarly, it is stated on require-
ments for Technical Debt tool support [4]:

In practice, the system must estimate the prin-
cipal, the interest, and the probability to deliver
the product on-time.

With this Technical Debt definition, for code smell detection
tools to be able to identify Technical Debt, the code smell
detection tool must identify some interest. Whether code
smell detection tools identify interest is not intuitively obvi-
ous. The findings on the relation of code smell detection to
interest are presented in Section 3.3.

Some common Technical Debt definitions are too broad or
too unspecific to reasonably work with. Based on the useful
Technical Debt definitions we found, interest and payback
are important parts of useful Technical Debt analysis. We
discuss the relation of code smell to interest and payment in
the finding on our third question.

3.2 Question 2: Technical Debt Categories
Technical Debt is commonly categorized according to dif-

ferent criteria. Figure 1 shows some such categories. We
do not know whether all of these shown categories represent
Technical Debt in all common Technical Debt definitions.
To simplify matters in this section we assume they all do
represent some Technical Debt. The following are the find-
ings on the relation of useful Technical Debt identification
through code smell detection to Technical Debt categories.

Code smells are indicators for problems in program code.
They were invented to point to opportunities for refactoring
of program code. Refactoring is the activity of improving

architecture code

Coding style violations

Architectural debt

Structural debt

Test debt

Documentation debt

Low internal quality

Te
ch

no
lo

gi
ca

l g
ap

Code complexity

Defects

Low external quality

New features

Additional functionality Code smells

Visible Mostly invisible

Evolution issues: evolvability Quality issues: maintainability

Visible

Figure 1: Some Technical Debt categories from [10].

an existing design [8]. Although code smell detection works
on code-level, it primarily detects design-level problems.
Design is only one single step amongst many in the pro-

cess of software engineering. Examples for Technical Debt
categories corresponding to other steps in software engineer-
ing can be found in the “Mostly Visible” section of Figure 1.
It can not be ruled out that there exist other non design
related problems which typically coincide with problems de-
tected through code smell detection. Nonetheless, it feels
very unintuitive to use code smell detection for example to
detect problems in documentation. We believe Technical
Debt instances identified by code smell detection tools are
mainly design Debt instances. This believe is also shared by
others [6, 14, 13].
Code smell detection may help in improving software de-

sign. If interested in Technical Debt identification on any
other level than design, other tools should be employed. The
findings on the relation of code smell to design problems are
discussed in Section 3.4.

One possible criteria for Technical Debt categorization is
the visibility to stakeholders [1]. Whether some software
lacks important features is typically visible to developers,
managers, and costumers. Although a developer may know
the poor design of a software, this low quality of the design is
mostly invisible to manager and customers. Figure 1 shows
some examples of rather visible and mostly invisible Techni-
cal Debt categories. We already covered the mostly visible
Technical Debt subcategories in the previous paragraph.
Is it possible to detect visible Technical Debt through

the use of code smell detection tools? Aspects like miss-
ing features or defects are deviations from explicit or im-
plicit requirements. To check whether code and require-
ments match, both of them need to be examined and com-
pared. But code smell detection is done on code-level only.
Code smell detection results are independent of any specific
requirements. We believe, code smell detection can typi-
cally not identify whether an important feature is not im-
plemented. We present the findings on the relation of code
smell to defect-proneness in Section 3.4.

The Technical Debt quadrant categorises Technical Debt
according to two criteria [7]. The first criterion is intention.
It differentiates whether a certain Technical Debt instance
was introduced deliberate or inadvertent. The second crite-
rion is caution. It differentiates whether a certain Technical

Figure 2: The Technical Debt Quadrant from [7]

Debt instance was introduced out of prudence or reckless-
ness. Figure 2 shows how this constitutes a quadrant. Both
intention and caution are mental states of human minds.
They are not directly reflected in program code. We do not
know of any approach to measure mental states on code-
level. Therefore, code smell detection can not distinguish
deliberate from inadvertent and reckless from prudent Tech-
nical Debt.

Manifold Technical Debt categories exist. Code smell de-
tection tools may identify design Debt. They may even pre-
dict defect-proneness. We do not believe in the ability of
code smell detection to identify any Technical Debt which
is not design or defect Debt. In our opinion code smell de-
tection is not able to categorize the states of the minds of
humans introducing Technical Debt instances. We outline
the findings on defect-proneness and design Debt in the fol-
lowing Section 3.3 and Section 3.4.

3.3 Question 3: Interest and Principal
Reasonable Technical Debt definitions require Technical

Debt instances to incur interest. An important factor in
deciding whether to repay a Technical Debt is the economic
difference between the interest and principal. Useful Techni-
cal Debt tool-support should therefore estimate the interest
and principal. This estimation should be expressed as eco-
nomic consequences [4].

We reviewed code smell detection based Technical Debt
identification literature. Some of this literature measures
change- and defect-proneness [14, 9]. Change- and defect-
prone parts of program code are more likely to be changed
in the future and involved in defects. The reviewed litera-
ture detected changes in program codes by comparing mul-
tiple revisions of the same software. Exactly those defects
which were listed in defect tracking systems were examined.
Both changes and defects are not directly economical con-
sequences. None of the reviewed literature illustrates the
relation of change- and defect-proneness to economical con-
sequences. But we can imagine situations in which changes
and defects lead to economical consequences.
Code smells are indicators for problems in program code.

The reviewed literature [14, 9] examines whether the pres-
ence of code smell instances increase change- and defect-
proneness. Neither the change- and defect-proneness of the
same program code with removed code smell instances, nor
the effort needed to remove these code smell instances, were
evaluated. Useful Technical Debt tool-support should esti-
mate and compare the interest and principal. Change- and
defect-proneness, which are the consequences of not repay-
ing the debt, correspond in some way to interest. We did
not find any corresponding principal estimation.
Change- and defect-proneness are compared between dif-

ferent code fragments with and without code smell instances.
These different code fragments do not implement the same
functionality. Whether, a certain code smell corresponds
to an underlying problem is dependent on the application
domain and the chosen design patterns [5]. The reviewed
literature [14, 9] compares the change- and defect-proneness
of code implementing different functionality. I our opinion,
code of the same functionality with and without code smell
occurrences should be compared. This way, it could be eval-
uated whether a certain change- and defect-proneness results
from presence of code smell and not from different function-
ality. We lack any literature which analyzes change- and
defect-proneness according to our here presented criteria.

Zazworka et al. [14] investigated the impact of various
code-level anomalies with respect to change- and defect-
proneness. Among several other anomalies, they investi-
gated 10 different code smells. Most of these investigated
code smells are not part of the original 22 code smells from
Fowler et al [8]. They found a correlation between the code
smell “dispersed coupling” and defect-proneness. They did
not find any correlation between any of the other 9 inves-
tigated code smells and defect-proneness as well as no rela-
tion at all between any investigated code smell and change-
proneness.
Khomh et al. [9] investigated the impact of code smells on

change-proneness without referring to the Technical Debt
metaphor. They investigated 29 different code smells, most
of which were not among the original 22 code smells. In the
software they analyzed, classes with smells are more likely
to be changed.
Some code smells correlate with sizes of classes. It is dis-

puted whether code smell results should be normalized or
not according to the number of lines of code [13]. The
change-proneness results on big classes vary depending on
whether such normalization is done.

A Commercial software exists which allegedly measures

Technical Debt on code-level in terms of economical conse-
quences [2]. The claims of doing so, are not accompanied by
a substantial proof or explanation of the approach. Claims
in advertisements without a proof can not reasonably be
considered as findings.

Useful Technical Debt tool-support should estimate the
interest and principal as economical consequences. We dis-
covered only literature estimating the interest of code smell
as the non economical change- and defect-proneness. Code
smells were developed to be useful in finding opportunities
for refactoring. Unfortunately, no results on comparing the
costs of change- and defect-proneness to the costs of refactor-
ing exist. For some code smells, a change-proneness corre-
lation was shown. A correlation with defect-proneness was
only shown for one single code smell. The following Sec-
tion 3.4 presents the general code smell findings.

3.4 Question 4: Code Smells
Code smells are indicators for underlying problems in pro-

gram code. In common software engineering belief, code
smells are useful for improving code quality. For some, this
maybe a reason to explore the potential of code smells in a
Technical Debt context. The following are the findings on
the general usefulness of code smells as code problem indi-
cators.

Fowler et al. [8] originally introduced 22 code smells. The
original code smells were intended to be combined with in-
formed human intuition to provide inspiration for refactor-
ing opportunities. Other literature and tool authors intro-
duced subsequently their own code smells. Most of the code
smells evaluated by Zazworka et al. [14] and Khomh et al. [9]
are not among the original 22 code smells. Even fewer code
smells exist wich are evaluated by both Zazworka et al. [14]
and Khomh et al. [9]. Some of these code smells seem, in con-
trast to the original 22, to be more tailored to be detectable
through software metrics. Since their code smells are mostly
disjoint, their results are hardly comparable. Each of them
may provide results on the usefulness of their selected code
smells. None of them can claim to provide general code smell
results.

Zhang et al. [15] provided in 2011 an overview of current
knowledge on the usefulness of code smells. At that time
they collected the current code smell knowledge through a
systematic literature review. For comparability they con-
strained their findings to the original 22 code smells. They
found, from these 22 original code smells only 7 were evalu-
ated by researchers for their usefulness. Only 3 code smells
were shown to be useful. For one of the code smells contra-
dicting results exist. Most of the original 22 code smells are
not yet evaluated for their usefulness.

Different authors use different code smells. Results on
mostly disjoint code smell sets can hardly be compared.
From the original 22 code smells, only 3 are known to be
useful indicators for problems in software. Most code smells
are unexplored by researchers for their usefulness.

4. DISCUSSION
Our fundamental questions on Technical Debt identifica-

tion through code smell detection are mostly unanswered.
We do not know whether code smell detection tools are use-

ful in dealing with Technical Debt. Future fundamental re-
search is necessary to determine this usefulness. For this
objective, we propose the following research tasks.
Without a useful Technical Debt definition common to

most researchers and practitioners no reasonable Technical
Debt discussion is possible. This holds for code smell Tech-
nical Debt as well as for general Technical Debt. Therefore:

• Establish a common useful Technical Debt definition.

Management rationales are based on economical conse-
quences. Code smell can only aid in management discussions
if it’s economical consequences can be estimated. Therefore:

• Determine the economical consequences of code smell.

Most code smells are unexplored by researchers. General
code smell results are only possible if most common code
smells are considered. Therefore:

• Explore the usefulness of more than only a few code
smells.

5. CONCLUSION
Researchers seek for automated Technical Debt identifica-

tion tools. Some envision code smell detection to be a useful
tool in identifying Technical Debt on code-level. We asked
four fundamental questions on this approach. We reviewed a
subjectively chosen set of literature to determine the current
knowledge on these questions.
Multiple Technical Debt definitions are in use. Most defi-

nitions are troublesome in a code smell detection based Tech-
nical Debt identification evaluation. A reasonable Techni-
cal Debt definition should include the interest and principal
terms. Technical Debt can exist for various different soft-
ware engineering aspects. Code smell primarily concerns
merely the design-level. The so called “visible” Technical
Debts are opaque to code smell detection. Whether a Tech-
nical Debt was introduced deliberate, inadvertent, reckless,
or prudent, can hardly be detected on code-level. Code
smell detection may help in providing more visibility of de-
sign Debt. Useful Technical Debt tools should measure in-
terest and principal in economical terms. No economical
term based evaluation on code smell detection based Tech-
nical Debt identification exist. Instead, different code smells
were evaluated with respect to change- and defect-proneness.
Only few correlations were detected. Different literature
evaluates different code smells. Some publications are even
mostly disjoint in their code smell selection. Such results
are not comparable. No general code smell detection based
Technical Debt identification results exist. Only 3 of the
original 22 code smells, were detected to be useful. Most
code smells are mostly unexplored.
We have presented an analysis of the foundation of code

smell detection based Technical Debt identification. In our
opinion, a widely accepted useful Technical Debt definition
is needed. We believe, automated code smell detection is
mainly constrained to a few Technical Debt aspects. How
code smell relates to economical consequences is not yet ex-
plored. Even the usefulness of most code smells is still un-
known.

6. REFERENCES
[1] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. K. and

Philippe Kruchten, E. Lim, A. MacCormack, R. Nord,
I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, and
N. Zazworka. Managing Technical Debt in
Software-Reliant Systems. In Proceedings of the
FSE/SDP workshop on Future of software engineering
research, pages 47–52. ACM, 2010.

[2] CAST. How to Monetize Application Technical Debt.
Technical report, 2011.

[3] W. Cunningham. The WyCash Portfolio Management
System. In Addendum to the Proceedings on
Object-oriented Programming Systems, Languages, and
Applications, pages 29–30. ACM, 1992.

[4] D. Falessi, M. A. Shaw, F. Shull, K. Mullen, and
M. Stein. Practical Considerations, Challenges, and
Requirements of Tool-Support for Managing Technical
Debt. In 4th International Workshop on Managing
Technical Debt, pages 16–19. IEEE, 2013.

[5] F. A. Fontana, V. Ferme, A. Marino, B. Walter, and
P. Martenka. Investigating the Impact of Code Smells
on System’s Quality: An Empirical Study on Systems
of Different Application Domains. In 29th IEEE
International Conference on Software Maintenance,
pages 260–269. IEEE, 2013.

[6] F. A. Fontana, V. Ferme, and S. Spinelli. Investigating
the impact of code smells debt on quality code
evaluation. In Third International Workshop on
Managing Technical Debt, pages 15–22. IEEE, 2012.

[7] M. Fowler. TechnicalDebtQuadrant. http://martinfo
wler.com/bliki/TechnicalDebtQuadrant.html

(accessed 04.11.2014).

[8] M. Fowler, K. Beck, J. Brant, and W. Opdyke.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[9] F. Khomh, M. D. Penta, and Y.-G. Guéhéneuc. A
Exploratory Study of the Impact of Code Smells on
Software Change-proneness. In 16th Working
Conference on Reverse Engineering, pages 75–84.
IEEE, 2009.

[10] P. Kruchten, R. L. Nord, and I. Ozkaya. Technical
Debt: From Metaphor to Theory and Practice. IEEE
Software, 29(6):18–21, 2012.

[11] P. Kruchten, R. L. Nord, I. Ozkaya, and D. Falessi.
Technical Debt: Towards a Crisper Definiton; Report
on the 4th International Worksop on Managing
Technical Debt. SIGSOFT Software Engineering
Notes, 38(5):51–54, 2013.

[12] R. O. Sṕınola, N. Zazworka, A. Vetrò, C. Seaman, and
F. Shull. Investigating Technical Debt Folklore. In 4th
International Workshop on Managing Technical Debt,
pages 1–7. IEEE, 2013.

[13] N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman.
Inestigating the Impact of Design Debt on Software
Quality. In Proceedings of the 2Nd Workshop on
Managing Technical Debt, pages 17–23. ACM, 2011.

[14] N. Zazworka, A. Vetrò, C. Izurieta, S. Wong, Y. Cai,
C. Seaman, and F. Shull. Comparing four approaches
for technical debt identification. Software Quality
Journal, 22(3):403–426, 2013.

[15] M. Zhang, T. Hall, and N. Baddoo. Code Bad Smells:
a review of current knowledge. Journal of Software
Maintenance and Evolution: Research and Practice,
23(3):179–202, 2011.

http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html

Investigation of Code Smells in Different Software
Domains

Marin Delchev
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

marin.delchev@rwth-aachen.de

Muhammad Firdaus Harun
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

firdaus.harun@swc.rwth-aachen.de

ABSTRACT
The increasing need of developing high quality software de-
fines the necessity of deep understanding of the problems
that may occur on different levels of abstraction in the soft-
ware. Code smells investigate the signs of potential problems
that may occur in the software. These signs may be used
for automatic detection and prevention of often occurring
software problems.

Unfortunately, to date there are neither clear classification
nor rank indicating the code smells importance and severity.
The lack of deeper understanding of the code smells prevents
improvements of the current methodologies for developing
high quality software.

The purpose of this work is to investigate and compare
the impact and the severity of code smells in different appli-
cation domains.

In order to investigate the code smells impact and sever-
ity we performed a survey among developers in various ap-
plication domains then we compared statistical values of
the answers. Domains that are taken into consideration
are (web desktop applications, embedded systems, computer
games/graphics). All results and conclusions of this work are
based on the examination and comparison of the statistical
values of the responses.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Refactoring; D.2.8 [Software
Engineering]: Metrics—quality measures, code smell mea-
sures, refactoring

Keywords
code smells, survey, classification, software domains

1. INTRODUCTION
Martin Fowler introduces the code smells in his book Refac-

toring [6]. There he defines them and introduces a flat list of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar KUR2014/15 RWTH Aachen University, Germany.

all 22 code smells. Since then the most wildly spread under-
standing of what is code smell is: ”bad code”. Unfortunately
that is misleading interpretation. Code smells are defined as
symptoms or signs that there might be a problem in the de-
sign of the software. Some of the well known design patterns
described by ”gang of four” contain code smells themselves.
An example is the well known ”Visitor” pattern, it contains
the smell - ”Feature Envy” [2].

Code smells are topic of various researches, some define
ontologies to determine the relationship between code smells
and the problems that cause them [11], others introduce
logical groups of the code smells [8]. But neither of them
takes into account the software domain as a factor which
influences the smells.

Strong relationship exist between code smells and refac-
toring [6]. Refactoring is important process which improves
the quality and the cost of the software systems. It is a
significant part of the software life-cycle. According to [8]
Microsoft reserves 20 percent of every project for refactor-
ing. This means that projects reserve 20 percent of their
development effort on reworking the weak parts of the prod-
uct. Code smells may be used as an indicator when one
should apply refactoring. They may be a clear sign that the
code should be improved. Unfortunately the decision if the
cause of a code smell is to be refactored depends only on the
experience of the software developer. Our goal is to create
categories and ranks of the code smells severity.

Such ranking would make the decision if a code smell
should be refactored less dependent on the developers ex-
perience. It would allow better methodologies for detecting
if refactoring is needed and it will reduce the required re-
sources.

This work is organized as follows: Chapter 1 Introduces
the current state of the art of detecting code smells and
methodologies that use them to improve the software. Intro-
duces the problems and benefits of possible solutions. Chap-
ter 2 Explains the approach used for gathering information
about the smells. The structure of the survey. Its target
groups, questions and the included code smells. Chapter 3
Statistical approaches are used to study the answers. The
results are reviewed and possible explanations about the
smells severity and importance in the domains are intro-
duced. Chapter 4 Conclusions.

2. RELATED WORK
In his work [8], Mika Mantyla conducted a smell survey.

He investigated the correlations between smell evaluations.
He showed how the background variables affects the devel-

opers‘ smell evaluations. In his work he compared the smell
evaluations and the source code metrics to provide more in-
formation on the reliability of smell evaluations.

[11] ”defines an ontology-based methodology to provide a
formalized description of the concepts of anti-patterns, code
smells, refactoring, detections, and their relation. In their
work they conduct a small survey to give a a priority to the
most important smells.”

[7] studies possible correlations existing among smells and
the values of a set of software quality metrics. In their work
they examine the smells frequency in different domains and
their correlation with different metric values.

3. CODE SMELLS STATE OF THE ART
In this chapter research trends about the code smells will

be described. Current tools for detecting code smells will be
presented. Possible use cases of the smell classification will
be described.

Since the code smells were introduced by Martin Fowlerr
in his book Refactoring they were subject of various stud-
ies. The main goals of these studies is to provide effective
approaches for detecting and removing smells. An example
for such study is [11]. Researchers tried to introduce better
taxonomies than the flat list that Martin Flower initially de-
fined but we could not find any work that investigates how
smells are perceived in the different software domains. This
work continues the effort for providing better approaches for
detecting smells by introducing and measuring two terms:
smell severity and smell frequency.

Smell severity is defined as: ”The amount of harm that a
smell causes to the overall quality of the software.”Smell fre-
quency is defined as: ”The number of occurrences of a smell
in a software project.”This work introduces various rankings
and ordering of the smells by using these two terms and tak-
ing into consideration various domains, programming lan-
guages and the experience of the programmers. The smells
ranking could be used for implementing better tools for smell
detection. These tools may take into consideration the con-
text. Currently there exists a lot of smell detection tools
and frameworks.

• JDeodorant:[10] Is an eclipse plugin that detects code
smells. This tool uses the eclipse’s JDT ASTParser
API to detect bad smell in the source code. It also al-
lows adding of expert knowledge to its configurations.

• inCode:[3] Is an eclipse plugin for smell detection. It
uses various object oriented metrics to detect the bad
smells.

• SonarQube: is an open platform to manage code qual-
ity. It is a web-based application an it could detect
code smells by using various software metrics. It al-
lows adding rules and metrics.

• StenchBlossom:[9] is a smell detector that provides an
interactive ambient visualization designed to first give
programmers a quick, high-level overview of the smells
in their code, and then, to help understand the sources
of the code smells.

• InFusion:[4] allows to detect more than 20 design flaws
and code smell.

• iPlasma:[1],[5] is an integrated platform for quality as-
sessment of object-oriented systems that includes sup-
port for all the necessary phases of analysis.

There are various tools but they rely on the fact that the
user will have the knowledge to configure them correctly.
Our goal is to introduce a domain specific rankings of the
smells. These rankings should summarize the expert knowl-
edge of the software professionals in a given domain.

4. METHODOLOGY
In this chapter the approach used for gathering informa-

tion will be introduced. The goal of the survey will be de-
fined. The survey structure, questions, target groups, do-
mains will be described. Smells used in the questions will
be defined and explained.

To extract and compare the domain specific knowledge
about the code smells the current works employs a survey.
The survey was conducted via online platform. 1 The sum-
mary of the results is available at the following link. 2

To explain the goal of the survey we need to explain some
terms that we will use. Frequency of a smell is a measure
which answers the following question: ”How often is a smell
encountered ?” That term reflects the repetition of a given
smell. Severity of a smell is a measure which answers the fol-
lowing question: ”How problematic is a smell ?” That term
reflects how serious is the influence that a smell has over
the overall quality of the software. Since we defined the
frequency and the severity of a smell we are ready to state
the goal of the survey. The main goals of the survey are
the following: To measure the software professionals‘ per-
ception of the smells‘ frequency and severity. The survey
was conducted online the target group was software profes-
sional in different fields of work. The target domains were:
Web/Desktop application development, Embedded systems,
Computer Graphics/Games, Mobile development. The sur-
vey was distributed among various developers forums and
among the following companies:

A: works in the domain of computer graphics and 3D ren-
dering. B: works in the domain of visualization software. C:
works in the domain of web applications. D: works in the
domain of web banking applications. E: works in the do-
main of web applications. F: works in the domain of search
engines. G: works in the domain of embedded automotive
software. H: works in the domain of web applications. I:
works in the domain of web applications.

The survey structure is the following: It consist of 26
questions. The first part consist of 6 questions asking about
the experience and the background of the respondents.

• How many years of professional experience do you have?

• What is your domain of work?

• What is your role?

• Which is the main programming language that you
use?

• How big is your project?

1https://docs.google.com/forms/d/1bqDVBfLrGKW_
LMjtfD84GAnzajrjSd2w_T0NgGlK_n4/viewform
2https://docs.google.com/forms/d/1bqDVBfLrGKW_
LMjtfD84GAnzajrjSd2w_T0NgGlK_n4/viewanalytics

https://docs.google.com/forms/d/1bqDVBfLrGKW_LMjtfD84GAnzajrjSd2w_T0NgGlK_n4/viewform
https://docs.google.com/forms/d/1bqDVBfLrGKW_LMjtfD84GAnzajrjSd2w_T0NgGlK_n4/viewform
https://docs.google.com/forms/d/1bqDVBfLrGKW_LMjtfD84GAnzajrjSd2w_T0NgGlK_n4/viewanalytics
https://docs.google.com/forms/d/1bqDVBfLrGKW_LMjtfD84GAnzajrjSd2w_T0NgGlK_n4/viewanalytics

• What software/IDE/Tools do you use for your project?

The second part consists of twenty questions. Two ques-
tions are asked for every smell :

• How often do you encounter the described code?

• How often do you change the described code?

The purpose of the first question is to measure the fre-
quency of the smell. The scale of the answers for that ques-
tion is given in the range from 1 to 5. Where 1 corresponds
to ”I do not encounter that smell” and 5 corresponds to ”I
always encounter that smell.”

The purpose of the second question is to measure the
severity of the smell. The scale of the answers for that ques-
tion is given in the range from 1 to 4. Where 1 corresponds
to ”No need to change the code” and 4 corresponds to ”That
code is unmaintainable I always change it.”

Since we wanted to maximize the number of people that
fill the survey we tried to reduce the number of questions.
Based on my academic and professional experience as soft-
ware developer I selected a subset of 10 code smells. I con-
sider that these 10 smells are most probable to have various
severity and frequency according to the context that they are
observed. The smells used in the survey are the following:

• Data Class

I selected that smell because it is often encountered in
development frameworks and it is a potential candi-
date for interesting results.

• Long Parameter List

I believe that the large number of arguments is typical
for some programing languages. If that is the case the
frequency of that smell should be high in some domains
and low in others.

• Switch statements

That smell breaks basic principles of polymorphism it
severity should be high in all domains.

• Message Chains

A lot of frameworks contain this smell but it is in-
teresting if the developers that use these frameworks
perceive that smell as a problem.

• Primitive Obsession

I believe that using many primitives is more often in
the embedded software.

• Data Clumps

I have encountered that smell often in the web domain
and I believe it is more common there.

• Refused Bequest

That smell violates basic inheritance principles and its
severity should be high in all domains. It is an interest-
ing question if it is encountered often in some specific
domain.

• Feature Envy In my opinion this smell is often en-
countered when the data is being separated from the
algorithm that is applied to it.

• Shotgun Surgery This smell violates the basic oop prin-
ciples and I believe its severity will be high in all do-
mains.

• Long Method This smell is really common. Based on
my experience I consider that in the game domain this
smell is encountered often.

5. RESULTS
In this section statistics of the survey‘s responses will be

studied and compared. Possible explanations of the results
will be suggested and if possible classification of the smells
will be introduced.

The survey collected 73 responses. In order to classify
and compare the smells: First we created a summary of
the responses and studied the results. Second we searched
for significant differences in the answers among the domains.
Third we assigned and ordered the smells according our find-
ings.

In the first phase of exploring the data we created data
overview.3

Figure 1: Distribution of the responses according
the domain.

Figure 2: Distribution of the responses according
the programming language.

The observations of the first part of the survey are: The
experience of the respondents is evenly distributed. Twelve
respondents have less than a year of working experience and
22 respondents have more that 10 years of working experi-
ence. Great part of the respondents work in the web domain:
74 percents. The rest of the respondents are approximately

3The detailed summary can be accessed at:
https://docs.google.com/forms/d/1bqDVBfLrGKW_
LMjtfD84GAnzajrjSd2w_T0NgGlK_n4/viewanalytics

https://docs.google.com/forms/d/1bqDVBfLrGKW_LMjtfD84GAnzajrjSd2w_T0NgGlK_n4/viewanalytics
https://docs.google.com/forms/d/1bqDVBfLrGKW_LMjtfD84GAnzajrjSd2w_T0NgGlK_n4/viewanalytics

evenly distributed among the mobile, game and embedded
domains. Most of the respondents are Developers (59 per-
cents) or Senior Developers (30 percents) The most used
programming languages are: Java 32 percents, C++ 16 per-
cents, CSharp 15 percents, Php 14 percents Most of the pro-
grammers work on a large projects: 56 percents answered
that they work on a project which has more than 50 000
lines of code.

Observations based on the second part of the survey are:
Long Method: Half of the corespondents encounter that
method often and assigned to it frequency 4 out of 5 but
51 percent consider that the smell is not a serious problem
and assigned to it severity 2 out of 4.

Data class: 45 percents observe that smell rarely and as-
signed to it frequency 2 out of 5. The number of developers
which do not consider that smell to be problem is signif-
icant. Data access objects (DAOs) and Data transfer ob-
jects (DTOs) are possible explanation for that. DAO is an
object that provides an abstract interface to some type of
database or other persistence mechanism. DTOs are ob-
jects that carry data between processes. DAOs and DTOs
are heavily used in most of the current development frame-
works to implement database abstraction. As a result most
of the developers are used to it and they do not consider it
as a problem.

Shotgun Surgery: Most of the corespondents assigned fre-
quency 3 to that smell. That smell violates basic principle
such as encapsulation and loose coupling and as a result it
has severity 4 out of 4 according to 29 percents of the de-
velopers. No other smell has so many percents of responses
assigning to it severity 4.

According to the answers the rest of the smells have ap-
proximately equally distributed severity and frequency. An
interesting observation is the fact that most of the smells
are refactored only if they cause a problem. If a smell is not
detected in the early phase of the software development it
will not be refactored later. This is a clear indicator that an
effective approaches for effective smell detections are highly
necessary.

In the second phase we mapped the answers of the ques-
tion ”How often do you encounter the described code ?” to
numerical values in the range from 1 to 5. Where 1 means
that the smell very rare and 5 means that the smell is very
repetitive. The answers of the question ”How often do you
change the described code ?” were mapped to numerical val-
ues in the range from 1 to 4. Where 1 means that there
is no need for a change while 4 means that the change is
imminent.

We grouped the answers according three different criteria.
The first criterion was the software domain. The groups ac-
cording the domains were: web, game, embedded, mobile,
others The second criterion was the programming language.
The groups were: Java, C++, C sharp, php, C, Scripts. The
script category sums up javascript, actionscript 3, python,
ruby. The third grouping criterion was the years of experi-
ence that the respondent has. We created 3 groups according
to the programmers‘ experience. The first group is develop-
ers with less than 4 years experience. The second group is
for people with 4 or 5 years experience and the final third
group is for people who has more than 5 years of professional
experience.

The following sections explain in details the findings and
the priorities that we assigned to the smell according each

grouping criterion.
Using the answers that belong to the same software do-

main we formed 5 categories web, game, embedded, mobile,
others. In each category we computed the mean for every
smell. The results are in the following tables:

Figure 3: Smell frequencies according the domain.

In this table the rows are the names of the software do-
mains and the columns are the names of the smells. The
values in each cell are the mean of the frequencies that the
respondent assigned. Having that data we were able to sort
in increasing order the smells‘ frequencies in each domain.
The ordering is as follows: Web: Refused Bequest, Data
clumps, Switch statement, Data class, Primitive Obsession,
Feature envy, Long argument list, Shotgun surgery, Message
chain, Long method. Analogously we created orderings for
the other domains. An impression in the table makes the
high frequency of the Long Method smell in the game do-
main. Possible explanation may be that the long methods
are inevitable for the implementation of the game logic.

Figure 4: Smell severities according the domain.

In the above table the means of the severities are pre-
sented. The increasing ordering that we created based on
the means is the following:

• Web domain: Data Class, Primitive Obsession, Data
clumps, Message chain, Switch statement, Long list,
Long method, Refused bequest, Feature envy, Shotgun
surgery.

• Game domain : Switch statements, Data clumps, Shot-
gun surgery, Data class, Feature envy, Primitive obses-
sion, Message chain, Long method, Long list, Refused
Bequest.

• Embedded domain: Long list, Message chain, Long
method, Primitive obsession, Data class, Switch state-

ments, Refused bequest, Data clumps, Feature envy,
Shotgun surgery.

• Mobile domain: Data class, Refused bequest, Primi-
tive obsession, Long list, Data clumps, Feature envy,
Message chain, Switch statements, Shotgun surgery,
Long method.

As suggested before the fact that Data classes are heavily
used by most web development framework influences the
smell severity. While the web developers are highly tolerant
to the Data class smell, the game developers are tolerant
to switch statements and embedded developers tolerate the
long list of arguments.

Next criterion that we used for grouping the responses
is the programming language. We split the answers into six
groups. For each group we computed the means. The results
are shown into the following tables.

Figure 5: Smell frequencies according the program-
ming language.

According to the results ”Long method” is often encoun-
tered smell in Java C++ and CSharp projects. In contrast
Php developers assign to ”Refused bequest” and ”Primitive
obsession” lowest frequency and to ”Message chain”the high-
est. While for Java projects ”Long list” is with lowest fre-
quency it has the highest frequency in projects implemented
with scripting languages.

Figure 6: Smell severities according the program-
ming language.

After we ordered the results in ascending order we ob-
served the following: For Java developers most unharmful

smells are Data class and Primitive obsession while the most
severe are Message chain and Shotgun surgery. For Php
Long method and Data clumps have the lowest severity and
Message chain and Shotgun surgery the highest. For C++,
scripts and C message chain has the lowest severity. Both C
and C++ give highest severity to Shotgun surgery.

The last criterion that we used to group the data was the
experience of the developers. We used the mean to assign a
numerical value to the smell‘s severity and frequency. Since
we have only three groups we did not use a table to repre-
sent the obtained values. The results are represented in the
following parallel plots.

Figure 7: Smell frequencies according the profes-
sional experience.

Every vertical line in the above plot represents a specific
smell. The order of the bars is: Long method, Data class,
Feature envy, Shotgun surgery, Refused bequest, Primitive
obsession, Message chain, Switch statement, Long list, Data
clumps.

The colored lines that cross the horizontal lines are the
groups of answers. The black line represents the developers
with less than 4 years experience. The green line represents
the developers with more than 6 years of experience. The
red line represents people with 4 or 5 years of professional
experience. Numbers at the bottom and at the top of every
vertical line represent the minimal and the maximal mean
values per group of answers. The crossing points between
the colored lines and the vertical lines are the mean values
of the frequencies. For example checking the third verti-
cal line and its crossing point with the green line tells us
that people with more than 6 years of experience assigned
average frequency of 2.97 to the third smell. The paral-
lel plot is suitable for demonstrating multidimensional data.
In our case it clearly demonstrates the differences among
the smells’ frequencies. Users with high experience tend to
encounter smells less often than the other two groups. Pos-
sible explanation is that they work in environments where
the team members have a lot of experience and they tend to
avoid introducing smells in the code.

The final plot is again a parallel plot similar to the pre-
vious one but it displays the means of the smells’ severities.
The vertical lines are smells and the order is equivalent to
the one given above. The red line corresponds to developers
who have more than six years of experience. The green line
corresponds to people who have 4 or 5 years of experience

Figure 8: Smell severities according the professional
experience.

and the black line indicates people with less than 4 years
of experience. While we observed that highly experienced
people encounter smells less often than the others, the cur-
rent plot indicates that the same group is highly intolerant
to most of the smells. Comparing the black and the red
lines it is obvious that the less experienced developers tend
to assign lower severity to the smells.

The data overview and the data means computed and pre-
sented in this chapter were used to create context dependent
orderings of the smells. This orderings could be used for im-
plementing context aware smell detection tools.

6. CONCLUSIONS
The current study included only 10 smells in future works

the number of studied smells should be higher. In the cur-
rent work approximately 75of the answers were from the web
domain. In future works the survey should be distributed
among various companies. Furthermore the examples of the
smells were in Java in future works for better results pseudo
code may be a better solution.

Current state of the art studies in the area of code smell
were introduced. A number of smell detection tools and their
qualities were presented. A possible idea for context de-
pendent smell detection was introduced. The terms smell‘s
severity and smell‘s frequency were defined. These terms
were used to to assign priorities to a subset of all 22 smells.
We introduced a possible scenario for improving the smell
detection frameworks by taking into consideration the con-
text of the software system. We conducted a survey among
software experts in different domains. We introduced the
structure and the purpose of the survey. We studied the
answers and observed interesting tendencies then we used
the answers to assign frequency and severity to the smells.
Three different group of the answers were formed. The first
group was based on the software domain, the second group
on the programming language and the final group on the ex-
perience of the programmers. For each group two different
rankings were presented one based on the frequency of the
smells, second based on the severity of the smells.

7. REFERENCES
[1] iPlasma.

http://loose.upt.ro/reengineering/research/

iplasma?_s=IUriqezunUFZjB5j&_k=f136Xjmo&_n&14.

[2] Code smell in Visitor. http:
//sourcemaking.com/refactoring/feature-envy.

[3] InCode.
http://www.intooitus.com/products/incode.

[4] InFusion.
http://www.intooitus.com/products/infusion.

[5] P. M. D. R. C. Marinescu, R. Marinescu and
R. Wettel. iplasma: An integrated platform for quality
assessment of object-oriented design. Proceedings of 21
stInternational Conference on Software Maintenance
(ICSM2005), Tools Section, 2005.

[6] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley Publishing Company,
Reading, Massachusetts, 1999.

[7] A. M. B. W. P. M. Francesca Arcelli Fontana,
Vincenzo Ferme. System‘s quality: An empirical study
on systems of different application domains. IEEE
International Conference on Software Maintenance,
2013.

[8] M. Mantyla. Bad smells in software - a taxonomy and
an empirical study. May 2003.

[9] E. Murphy-Hill and A. P. Black. An interactive
ambient visualization for code smells. ACM Trans.
Program. Lang. Syst. Proceedings of SOFTVIS‘’10
USA.

[10] N. T. T. Chaikalis and A. Chatzigeorgiou. Jdeodorant:
Identification and removal of type-checking bad smells.
European Conference on Software Maintenance and
Reengineering, 12:329–331, November 2008.

[11] D. L. C. Yixin Luo, Allyson Hoss. An ontological
identification of relationships between anti-patterns
and code smells. Software Engineering Lab Louisiana
State University 225-578-1378.

http://loose.upt.ro/reengineering/research/iplasma?_s=IUriqezunUFZjB5j&_k=f136Xjmo&_n&14
http://loose.upt.ro/reengineering/research/iplasma?_s=IUriqezunUFZjB5j&_k=f136Xjmo&_n&14
http://sourcemaking.com/refactoring/feature-envy
http://sourcemaking.com/refactoring/feature-envy
http://www.intooitus.com/products/incode
http://www.intooitus.com/products/infusion

Is software architecture still a shared hallucination?

Aarij Siddiqui
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

aarij.siddiqui@rwth-aachen.de

Ana-Maria-Cristina Nicolaescu
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

ana.nicolaescu@swc.rwth-aachen.de

ABSTRACT
A question arose in a technical report [1] written in 1997 that
claimed software architecture to be a shared hallucination.
This claim was based on two observations: the architecture
of the system is either not properly documented, or it is
documented in such an abstract way that it is almost im-
possible to directly map it on the code. The manifestation
of these situations was later referred to as the model-code-
gap (or architectural erosion). This gap leads to problems in
maintainability, and understandability of the system. The
academia and industry have, over the time, realized the need
to reduce this gap as much as possible. Therefore they re-
searched and developed various tools to detect the creation
of a gap in its early phases and allow corrective actions to
be taken such that the code and architecture remain aligned
with each other.

This paper aims to conduct a survey and reassess the an-
swer to the same question 17 years later. The main purpose
is to analyse how efficient and practical were the efforts made
by academia and industry to reduce the model-code-gap.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

Keywords
Software Architecture, shared hallucination, model-code-gap,
architecture reconstruction, architecture erosion, architec-
ture drift

1. INTRODUCTION
Architecture of a system is one of the most important and

critical part of its structure, this also applies to the soft-
ware architecture [2]. The importance of software architec-
ture has long been recognized and is continuously increasing
[3]. However in 1997 a technical report was published which
stated that software architecture is a shared hallucination
[1]. The reasons were said to be related with inappropriate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2014/15 RWTH Aachen University, Germany.

documentation and the abstract nature of the architecture.
Here hallucination refers to the scenario where architecture
that was designed initially does not really remain the same
as the development proceeds, this happens due to many rea-
sons, which we have discussed later in the paper.

We discovered that since then, a number of mechanisms
were identified and numerous tools were developed, e.g., [1],
[4], [5], etc., to minimize the level of hallucination, and to
reduce the difference between the architecture description
and the actual system. The most practised of these concepts
were Software Architecture Reconstruction (SAR), and Soft-
ware Architecture Monitoring. Software Architecture Re-
construction represents the scenario where the architecture
description is recreated from the existing code, so that it can
be compared with what was designed initially. It should give
a fairly clear idea of how much the code has deviated from
the designed path. Software Monitoring is the idea where
code is continuously monitored through different tools (IDE
plugins, etc.) to check if the current implementation violates
the rules defined in the architecture.

The aim of this research is to reassess the claim, after
17 years, if software architecture is still a shared halluci-
nation. We decided to attempt a bidirectional approach,
i.e., to search for the answer in the published literature as
well as conduct interviews. For the literature review we
searched the articles from ”sciencedirect.com”, IEEE, and
ACM search engines with the following queries ”Software
Architecture Reconstruction”, ”Software Architecture Mon-
itoring”, ”Software Architecture erosion”, ”Architecture as
a shared hallucination”, ”Model code gap”, and ”Architec-
ture Drift”. We then selected the publications from 2000
till now. For the interviews our target audience were the
employees, working in industry as well as in the academia.
The main purpose was to understand the researchers along
with the professionals and present both side by side. It was
very fundamental to find out what is the importance of this
hallucination in the real life scenarios. Since only then we
can discuss its existence or non-existence, and go further
into the reasoning. It was also very important to know if
the researches done by the academia have any impact on
the industry, or both of them work as different entities.

We have structured the paper in the following sections:
Approaches to reduce the model-code-gap(2): here
we presented the description of the discussed approaches
used to reduce the difference between architecture descrip-

tion and actual architecture, Literature review(3): here
we analyse the research contribution to the under discussion,
Interview analysis(4): here we discuss the background of
our interviewees and present survey results, and Conclu-
sion and future work(5): here we conclude the results
from both analysis i.e. research and interview, discuss their
impact on each other and also present the future work.

2. APPROACHES TO REDUCE THE MODEL-
CODE-GAP

In this section of the paper we will discuss the various ap-
proaches to reduce model-code-gap. Which can also be re-
ferred to as the difference between architecture description
and actual architecture of the system. The first approach
we came through was Software Architecture Reconstruc-
tion. Software Architecture reconstruction (SAR) presents
the idea where architecture of an existing software system
is built. The SAR implementation can follow either of the
following three processes: bottom-up, a top-down, or a hy-
brid opportunistic process as described in [6]. The bottom-
up process targets first the low-level information and then
proceed towards the high level knowledge [7], [8]. The top-
down process aims to achieve the reconstruction starting
with high-level details which includes the style of architec-
ture and requirements, and reconstruct the architecture by
understanding the conceptual background and then map-
ping it to the code in the implemented system [9], [10], [8].
The hybrid process combines both of the aforementioned
processes [8], [11], and run them in parallel. Architecture
reconstruction exists in various forms, e.g. some profession-
als perform it manually by analysing the code, and others
use tools for the purpose 4.3.

The second approach we analysed was Software architec-
ture monitoring. This technique refers to the mechanism
where the architecture of the system is monitored, and com-
pared with the actual architecture description, as the de-
velopment of the system proceeds. It is efficient in a way
that any deviation from the actual architecture is noticed
immediately, and therefore effective measures can be taken
without spending extra resources.

3. RELATED WORK
In this section we aim to explore deeper into the concept

of architecture being a shared hallucination. Other than [1]
we found another publication [12] that discusses the similar
topic but in a different perspective. Booch believed soft-
ware architecture to be a hallucination because it does not
represent any real system yet. He referred to it as a com-
mon ground for all the stake holders of a project to agree
upon, since it is very important to start the implementation.
Our direction from here on was to discover the techniques
and methodologies recommended in the articles to reduce
the difference between architecture description and the im-
plementation. We have divided the related work into two
sections: Concepts, and Tools.

3.1 Concepts
Software architecture is usually documented using either

one of the following three techniques: ”Formal” architecture
representation refers to a complete and thorough description

of the system, following the organization guidelines and pre-
senting it in a very sophisticated manner. On the other hand
”Informal” refers to filling a shallow generic template which
gives an overview of the system, it can also be a diagram
on a white board. It variates in both cases how deep and
detailed the description is, mainly depending on the com-
plexity of the system which is supposed to be designed. ”On
the fly” depicts the situation where not even an informal
documentation exists. The designing is done as the devel-
opment proceeds.

The concepts presented to reduce the difference between
architecture description and the implementation are all based
on the assumption that some kind of architecture descrip-
tion already exists. Some of these concepts include Software
Architecture Reconstruction, Software Architecture Moni-
toring, Automatic Code Generation, etc. In [6] it is men-
tioned that architecture reconstruction is needed for the big
applications which have evolved over time and therefore it
became very important to verify and compare the architec-
ture description to the architecture of the current applica-
tion, to make sure it still reflects the architecture of the
implemented system. They concluded that it is complex
to extract architectural components from source code, and
usually they are mapped to packages or files, which cannot
be compared with the architecture description because of
the difference in their perspectives. Very few works take
the architectural information and style into consideration.
There are different viewpoints (such as data viewpoint, and
capability viewpoint [13]) for which the architecture can be
reconstructed. A framework was developed by [14] to re-
construct the architecture in a quality driven perspective.
It discusses a framework for technical reasoning and high-
lights the information which is needed from the reconstruc-
tion process to map it to the business goals of the company.
It was called QADSAR (Quality Attribute Driven Software
Architecture Reconstruction). In [15] they provide mapping
between TAXForm, which is an exchange format for frame-
works at the software architecture level, and other formats
used in other frameworks for the software architecture re-
construction. To support the reason for having mappings,
it was said that Software engineers can use different frame-
works to verify the result applied on the same input, and also
use tools from various frameworks for different purposes, like
a tool for parsing from one framework, and a tool for clus-
tering from another.

The next keyword was software architecture erosion which
might also be referred to as software architecture drift. But
according to [16] there is a difference between these two
terms. Software architecture erosion occurs when the archi-
tecture is violated, whereas architectural drift occurs when
the rules implied by the architecture are not clear to the soft-
ware engineers. These both are very interconnected concepts
and in most of the situations might imply each other. Soft-
ware architecture erosion was consider to be a common issue
of software engineering by [17]. It was found to be unsolv-
able, irrespective of how determined the designers were. The
design of the system will eventually drift from the initial ver-
sion. In most cases it was considered a better option to have
the application redesigned than modifying or updating the
existing documentation. The main reason of this redesign-
ing to occur is ever changing requirements. The problems
that were mentioned are: Traceability of design decisions

(notations are not expressive enough to express the design),
increasing maintenance cost (tasks become very complex as
the system develops hence making it hard to understand and
maintain), accumulation of design decisions (the dependency
of one design decision on the other), iterative methods (aim
to design such that it can accommodate future changes). Ac-
cording to [18] the main purpose of software architecture is
to document all the important properties of a software appli-
cation. Therefore it is highly recommended that it is being
followed while the application is being developed. Whenever
the actual system deviates from the designed architecture
there is a possibility that critical problems will be faced.
This deviation usually occurs when the system grows, mak-
ing it hard to follow the design which leads to architecture
erosion. The paper also discussed some tools, techniques and
technologies to prevent architecture erosion. They divided
the approaches into three categories namely, minimize, pre-
vent and repair. In the ”Minimize” approach it contains the
following: process-oriented architecture conformance, archi-
tecture evolution management, and architecture design en-
forcement. ”Prevent” consists of, architecture to implemen-
tation linkage, and self-adaptation. In ”Repair” it includes:
architecture recovery, architecture discovery, and architec-
ture reconciliation (refers to the methods that reduce the
gap between code and designed architecture of an applica-
tion). It was concluded that none of the methods mentioned
above single handedly provides solution to the problem of
architecture erosion. But if used in combination with each
other they will produce positive results.

Another technique that was discovered is software archi-
tecture monitoring. There is a very small difference between
reconstruction and monitoring, in reconstruction the archi-
tecture is reconstructed after the system is developed, where
as in monitoring it is continuously checked for updates and
differences.

In our further researches we discovered that the under
discussion phenomenon might also be referred to as ”Model-
Code-Gap”. This addresses the gap which exists between
the model that was made and the code that was developed.
In [19] the concept of final software implementation to be
directly generated from the model was discussed. It is said
that to achieve reliable results the model is required to be
detailed and complete. The concept of StateWORKS is con-
sidered to be helpful and can provide a path to ”Executable
UML”. But since in this way all the complexity is moved
towards the modelling phase, it can be hard to achieve. In
[20], they explained that all the information that is required
in the target code cannot be accumulated in the model, they
also proposed solutions for this limitation.

3.2 Tools
Even though there is an awareness about the importance

of software architecture, according to [20], [21], [22] complete
and up-to-date architecture descriptions rarely exist. Keep-
ing this in view various tools have been developed, based
on different mechanisms, to regenerate the architecture de-
scription or to restrict the developers from deviating from
the architecture description. In 1997, [1] developed a pro-
totype system by the name Dali. This tool was developed
to help the reconstruction process. Unlike other tools that
were previously constructed, it does not automate the whole

reconstruction process instead it extracts the information
from the implemented system automatically. Then it gives
user the opportunity to feed the architectural pattern and
matches or link it with the extracted information. Later the
resulting architecture is visualised for validation by the user.

In 2010, [5] presented an architecture monitoring tool.
Archer is an Eclipse [23] IDE based plug-in. It is capa-
ble of identifying architectural patterns from the code and
validate them against the architecture description that was
initially fed to the system.

In 2013, [4] developed a software architecture monitoring
tool ARAMIS which can produce meaningful real-time vi-
sualizations of interactions. The results were very positive
and were tested on a software project in different stages of
development. The tool formulates sequence diagrams on the
bases of received data from the system that is being mon-
itored. Later in 2014, the same group of researchers pre-
sented ARAMIS-CICE [24] that was able to automatically
test the current architecture from the implementation and
compare it to the architecture description. This too gave
promising results.

To conclude the research section we can certainly state
that significant efforts were made and are still being made
to discover the techniques and develop tools that will help
in reducing the gap between the architecture description
and current implemented system. Whether it is architecture
reconstruction or architecture monitoring, erosion avoiding
techniques or automated code generation from models, all
the approaches are being made available for the profession-
als to be used. Although it is something entirely different
how practical the developed tools are, and how well they
achieve the goal they are developed for. We expect to an-
swer this question in our interview section, and look into
the professional scenario of software development process
and importance of architecture description and how they
address architecture hallucination.

4. INTERVIEW ANALYSIS
For conducting the interviews we specifically targeted the

professionals working in industry and academia who are re-
lated to the field of architecture design, e.g.: software ar-
chitects, solution architects, etc. We followed evolutionary
interview methodology, therefore all the interviews were in-
spired from the previous interviews. We have conducted
seven interviews, out of these seven interviewees four were
from the software industry. The other three are from academia
but with work experience in the industry. In the following
subsection we have presented a background of our intervie-
wees, later we discuss the goals and present the analysis.

4.1 Background
In this section we aim to discuss the backgrounds of our

interviewees since we targeted individuals from different en-
vironments. Two of our interviewees are senior software
developers, working in the information services department
of a multinational insurance company having a CMMI level
3 certification. One of them is working on a project as big
as 100 to 200 man years. He uses incremental approach of
software development, and believes in variable methodolo-
gies depending on the type, size, and requirements of the

project. Our second interviewee is involved in infrastruc-
ture development, he joined his current project in the mid-
dle of development phase therefore he found it a bit difficult
to understand without the presence of architecture descrip-
tion. Hence he believes that architecture description should
be there in a well documented form to assist the future de-
velopment.

Our third interviewee also works in a multinational firm
providing software, hardware, engineering services. He is
responsible for the integration of different components be-
longing to one big enterprise level software system. He finds
it very important that all the sub teams working on different
components of the system deliver exactly what was designed,
and hence emphasize greatly on the existence of architecture
description that is not just documented but also understood
by all the individuals. But he also believes that there should
be freedom to a certain extent for the developers to modify
the architecture, since in his opinion architecture is not a
static entity.

Our fourth interviewee works as a solution architect in the
information services department of an insurance company.
The company employs 1400 employees in their information
services department. Our interviewee strictly believes that
in any case architecture description should be updated at
all times. According to him there is no technical way of
ensuring this but usually is done by emphasizing on it and
including it in the company guidelines. In his scenario, so-
lution architect is a part of development team who is not
responsible for development but accessible whenever there
is a need.

Our remaining three interviewees belonged to academic
environment, but they have worked in industry along with
their education or in previous years. One of them provides
services to an organization in relation to the reconstruction
of architecture of an existing system, he emphasizes on hav-
ing up-to-date architecture description, mainly because of
the evolving nature of big applications making it extremely
hard and resource intensive to extend and maintain the ap-
plication later on. The second interviewee from academic
sector has an extended freelancing experience where he de-
veloped big projects as well as small ones, he believes in on
the fly design of application, because he consider architec-
ture to be an ever changing artefact. Our third academia
related interviewee has managerial responsibilities for mul-
tiple small projects, he prefers an informal architecture de-
sign for the software systems. He believes there should be
some documentation that can be referred to at any point in
the project, because informally depicted mental models are
prone to confusions and misconceptions.

4.2 Goals
In the interviews we have pursued the following goals:

1. Understand the architecting process.

2. Interviewees’ point of view on architecture and its im-
portance.

3. Analyse if the interviewees perceive a gap between the
description and architecture.

4. Identify the tasks that are performed to reduce the
aforementioned gap.

Table 1: Architecture Documentation done by the
industrial professionals

Documentation Type Usage
Formal 25%
Informal 50%
On the fly 25%

4.3 Analysis
Regarding the architecting process (1), in industry, as

mentioned by three out of seven of our interviewees, the
usual approach which is followed for the architecture design
is incremental [25], i.e., they design and develop the system,
component by component. This gives the architecture the
opportunity to evolve. In spite of following similar method-
ologies for software development, the respondents had very
different opinions regarding if and how the software architec-
ture description should be documented. Sometimes, the rep-
resentation of the architecture does not give the developer a
complete idea of the system, and sometimes the architecture
description is not documented at all. As showed in 1 indus-
trial professionals tend to document the architecture in an
”informal”way. Although there are professionals who follows
the ”formal” approach, equally there are individuals follow-
ing the ”on the fly” approach as well. The professionals who
follow ”on the fly” technique usually consider architecture to
be a non static entity and do not believe in documenting it.

In relation to the view and importance of architecture (2)
and if the gap was perceived (3), two out of seven profes-
sionals consider architecture to be a non-static entity, they
find the alteration of architecture description to be very
important and, sometimes, even beneficial to the system.
According to them, these changes improves the system on
performance and logic level and if documented, software ar-
chitecture gives a very static look therefore people refrain to
modify it. Both the aforementioned situations usually lead
to have one common problem, when the architecture was
modified in a later stage, the architecture description (if ex-
ists) is not updated to reflect the changes. Therefore archi-
tecture remains only in the minds of the individuals involved
in the process. This later on (usually in the big projects)
cause problems, since the architecture description cannot be
referred, as everyone knows it is not up-to-date and there-
fore a rather informal approach, of calling and meeting with
people who have worked with the system, is followed. This
typically means that the knowledgeable people will have to
explain the mental model which takes more time and might
still not be clear. This problem was considered to be the
key factor that creates the difference between the architec-
ture description and the implemented system. The reason
for the existence of this difference according to three out of
seven professionals is unclear or changing requirements, for
two of our interviewees it is insufficient time to design the
architecture. This insufficient time to design the architec-
ture lead to rather superficial architecture design, which is
destined to change in later stages.

Table 2: Reconstruction Mechanisms used by industry and academia
Tools and Mechanisms Industrial professionals Academical professionals
Of-the-shelf Reconstruction Tools 33%
Self developed tools for reconstruction 25%
Manual Reconstruction 25%

Table 3: Opinions, if Model-code-gap has increased or decreased
Tendency Industrial professionals Academical professionals
Increased 25% 33.3%
Decreased 75% 66.7%

Discussing the tasks that were performed to reduce the
aforementioned gap (4), as depicted here 2 three out of
seven of our interviewees uses architecture reconstruction,
either manually or with the help of tools, out of these three,
two belonged to the industry. The choice for the tool entirely
depends on which perspective (process, component, etc.) of
the system is required to be reconstructed, and if there is no
tool available that fulfils the requirement then one of our in-
terviewees uses manual reconstruction and one other of our
interviewees does it through self-developed tools. Two of
the interviewees believe that if architecture description was
made with proper consideration and analysis then it can be
expected that very minimal amount of changes will happen
in implementation phase. Other factor to achieve the small
difference is to have architecture designed by the members of
the development team but this cannot be applied in all cases.

There are also different opinions if this particular gap has
increased or decreased in the last two decades 3. Five of
our interviewees believe it has decreased since organizations,
architectures and developers are aware of this issue and its
consequences, therefore they are trying to reduce this gap.
In addition to that there are also many tools available to
assist in the process. Two of our interviewees believe that
this gap has increased. One of them suggest that it is due
to the increased usage of agile methodologies, mainly be-
cause of Agile’s flexible and incremental nature [26], which
usually leads to an outdated architecture description. Other
believed that it is due to the increasing complex nature of
the software systems.

All the interviewees expressed their concern on the func-
tionalities provided by the tools for the reduction of this
gap. They want to have something that generates the archi-
tecture from the code on the same granularity level as the
architecture description so that it is comparable. But usu-
ally it generates something very detailed which cannot be
compared to the description. They found the industry pro-
duced tools to be relatively more practical, but academia
produced tools are gradually reaching to the point where
they can also be used in the real life scenarios. At present
they lack maturity and only address the most important is-
sues.

To conclude these interviews, it can be said that all in-
terviewees approached by us are aware of this gap and its
consequences. Therefore, they are working to minimize this
difference between the architecture description and the im-
plemented system. Different people use different techniques

to achieve this goal. Some use architecture reconstruction
tools, others have a manual in place in the forms of company
guidelines which enforces regular update of the architecture
description to keep both architecture description and imple-
mented system in accordance with each other.

We learned about different opinions, where some people
consider the gap to be a good thing, since they believe that
the gap indicates things were not feasible in the architecture
therefore it changed during the development phase and the
whole system improved. Some also believe that this archi-
tecture and code difference cannot be completely avoided,
but it can of course be decreased. So what can be concluded
is that people on individual as well as on organization level
are working to reduce the difference but it is hard to state
the effect of this effort on the end result.

5. CONCLUSION AND FUTURE WORK
To conclude the question ”Is software architecture a shared

hallucination” we can say that significant research has been
done to develop new tools and techniques, and as we con-
cluded above in our interview section that industrial profes-
sionals are using these tools to a certain extent, although
manual methods are also in practice. During the interviews
we found that all professionals have a different view regard-
ing the difference between the architecture description and
actual architecture of the system, some believe it to be a
good thing, and some otherwise. The researchers, working
in different universities and in research institutes are also
trying to devise new and efficient mechanisms to solve the
under discussion problem. What we learned is that in most
cases industrial professionals are not aware of the tools de-
veloped by academia. Their main concern is that those tools
are not yet in the position to contribute to the mainline in-
dustrial projects. The industrial professionals are specifi-
cally looking for something that saves time and in the case
of architecture reconstruction produces an artefact which is
on the same granularity level as their architecture descrip-
tion.

6. THREATS FOR VALIDITY
We aimed to find the concrete answer to the question,

however, it is very hard to say if it is still a shared hallucina-
tion or not. To answer this question it needs quantification
and statistical analysis of the software systems throughout
their development cycle. Due to the lack of time we were

just able to interview 7 professionals. It would be a good
point for any preceding research to continue the survey. It is
possible that the tendencies change and whole new perspec-
tives come into the equation when more people are involved
in the process.

7. ACKNOWLEDGEMENTS
We would like to extend our gratitude towards all the

interviewees who took the time and sat down with us for
hour long sessions to discuss about our research topic.

8. REFERENCES
[1] Rick Kazman and S. Jeromy Carriere. Playing

detective: Reconstructing software architecture from
available evidence. October 1997.

[2] David Garlan. Software architecture: A roadmap. In
Proceedings of the Conference on The Future of
Software Engineering, ICSE ’00, pages 91–101, New
York, NY, USA, 2000. ACM.

[3] L. Bass. Software Architecture in Practice. The SEI
series in software engineering. Pearson Education,
2007.

[4] Horst Lichter Ana Dragomir. Run-time monitoring
and real-time visualization of software architectures.
In 2013 20th Asia-Pacific Software Engineering
Conference (APSEC), pages 396–403. IEEE, 2013.

[5] Vitor Correia Alves, Rafael Henrique Santos Rocha,
Rodrigo de Barros Paes, Evandro de Barros Costa,
Leandro Dias da Silva, and Gustavo Robichez de
Carvalho. Archer: An architectural monitoring tool. In
SERVICE COMPUTATION 2010, The Second
International Conferences on Advanced Service
Computing, pages 146–152, 2010.

[6] D. Pollet S. Ducasse. Software architecture
reconstruction: A process-oriented taxonomy. In IEEE
Transactions on Software Engineering, pages 573–591.
IEEE, 2009.

[7] Ruven Brooks. Towards a theory of the comprehension
of computer programs. International journal of
man-machine studies, 18(6):543–554, 1983.

[8] M-AD Storey, F David Fracchia, and Hausi A Müller.
Cognitive design elements to support the construction
of a mental model during software exploration.
Journal of Systems and Software, 44(3):171–185, 1999.

[9] Ian Carmichael, Vassilios Tzerpos, and Richard C
Holt. Design maintenance: unexpected architectural
interactions (experience report). In Software
Maintenance, 1995. Proceedings., International
Conference on, pages 134–137. IEEE, 1995.

[10] Gail C Murphy, David Notkin, and Kevin Sullivan.
Software reflexion models: Bridging the gap between
source and high-level models. In ACM SIGSOFT
Software Engineering Notes, volume 20, pages 18–28.
ACM, 1995.

[11] Arie Van Deursen, Christine Hofmeister, Rainer
Koschke, Leon Moonen, and Claudio Riva. Symphony:
View-driven software architecture reconstruction. In
Software Architecture, 2004. WICSA 2004.
Proceedings. Fourth Working IEEE/IFIP Conference
on, pages 122–132. IEEE, 2004.

[12] Grady Booch. Architecture as a shared hallucination.
IEEE Software, 27:96–96, 2010.

[13] Lih ren Jen and Yuh jye Lee. Working group. ieee
recommended practice for architectural description of
software-intensive systems. IEEE Architecture, pages
1471–2000, 2000.

[14] C. Verhoef C. Stoermer, L. O’Brien. Moving towards
quality attribute driven software architecture
reconstruction. In 10th Working Conference on
Reverse Engineering, pages 46–56. IEEE, 2003.

[15] R.C. Holt I.T. Bowman, M.W. Godfrey. Connecting
architecture reconstruction frameworks. Information
and Software Technology, 42(2):91–102, 2000.

[16] Alexander L. Wolf Dewayne E. Perry. Foundations for
the study of software architecture. ACM SIGSOFT
Software Engineering Notes, 17(4):40–52, 2002.

[17] Jan Bosch Jilles van Gurp. Design erosion: problems
and causes. Journal of Systems and Software,
61(2):105–119, 2002.

[18] Dharini Balasubramaniam Lakshitha de Silva.
Controlling software architecture erosion: A survey.
Journal of Systems and Software, 85(1):132–151, 2012.

[19] P. Wolstenholme F. Wagner, T. Wagner. Closing the
gap between software modelling and code. In
Proceedings. 11th IEEE International Conference and
Workshop on the Engineering of Computer-Based
Systems, pages 52–59. IEEE, May 2004.

[20] W. Hasselbring R. Reussner. Handbook of Software
Architecture (in German). dpunkt.verlag, 2009.

[21] D. Muthig M. Lindvall. Bridging the software
architecture gap. In Proceedings of Journal of IEEE
Computer, volume 41, pages 98–101. IEEE, 2008.

[22] C. Del Rosso. Continuous evolution through software
architecture evaluation: a case study. In Proceedings of
Journal of Software Maintenance and Evolution:
Research and Practice, volume 18, pages 351–383,
2006.

[23] Eclipse. http://www.eclipse.org/, 2010.

[24] Johannes Dohmen Hongyu Chen Ana Dragomir,
Horst Lichter. Run-time monitoring-based evaluation
and communication integrity validation of software
architectures. In 2014, 2014.

[25] Galka R. Tran, P. On incremental delivery with
functionality. In Tenth Annual International Phoenix
Conference on Computers and Communications, pages
369–375. IEEE, 1991.

[26] M. Aoyama. Agile software process model. In
Proceedings Twenty-First Annual International
Computer Software and Applications Conference
(COMPSAC’97), pages 454–459. IEEE, 1997.

http://www.eclipse.org/

Evolution of Object Oriented Software Coupling Metrics

Yi Xu
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

yi.xu@rwth-aachen.de

Ana Nicolaescu
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

ana.nicolaescu@swc.rwth-aachen.de

ABSTRACT
A software metric is a quantitative measure of the degree to
which a software item possesses a given quality attribute. In
object oriented software systems, coupling is one of the most
important factors, which affects the quality of the whole
software system. With this background, we studied exist-
ing publications from the period around 1990s, when the
researchers began to focus on the topic of metrics for ob-
ject oriented software systems, including coupling metrics.
In this paper, the research works we chose are divided into
three time periods, to show how research focuses regarding
coupling metrics have been evolving over the time. For each
time period, we reviewed the coupling metrics in the litera-
ture, and analyzed the characteristics of the metrics in this
time period and which quality attributes are measured by
these metrics.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
software metrics, software coupling, software quality attributes

1. INTRODUCTION
In the 1990s, researchers realized that the traditional met-

rics developed for non-object-oriented software systems are
not so suitable for object-oriented(OO) design. From the
research of Wilde et al.[36], the traditional methods could
not be adapted to OO notions such as classes, inheritance,
encapsulation and message passing. The discussion of devel-
oping metrics specific for OO design came into researchers’
view. Tegarden et al. and Billow were among the first au-
thors, who thought that theoretical foundations should be
taken into account in the design of object oriented met-
rics[35, 10]. The first OO metric was proposed in 1988

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2014/15 RWTH Aachen University, Germany.

in Morris’s master thesis[28]. Some years later other re-
searchers such as Copien[16] and Pfleeger[30] implemented
some initial metrics in the C++ environment. Lieberherr
et al. provided in 1988 the first formal definition of ob-
ject oriented programming styles based upon the concepts
of coupling and cohesion[24]. Whereas Rajaraman et al.
first tried to implemente coupling metrics in C++ programs
in 1992[31].

Since metrics for object oriented software systems is a too
wide topic, we decide to focus in this paper only on met-
rics measuring one specific aspect of OO software systems.
Many of the existing works we found are mentioning cou-
pling metrics, so we assume that coupling is an important
factor in object oriented software systems, which will affect
the quality attributes of the whole system. Thus we nar-
row the topic of this paper to reviewing and analyzing OO
software coupling metrics.

In order to retrieve the existing research works, we use
a search expression ”software AND coupling OR (measure-
ment OR metrics) AND (object OR class OR system OR
component OR architecture) AND (oo OR object oriented)”
and we set the time limit from 1990 until 2014. We used this
search expression in 10 databases, and finally chose 6 of them
according to the relevance of the results. The databases
we chose are IEEE Xplore Digital Library1, ACM Digital
Library2, CiteSeerX3, ScienceDirect4, Google Scholar5 and
The Collection of Computer Science Bibliographies6. We
sorted the results according to two criteria, namely rele-
vance based on the relevance algorithm of each database
and number of citations.

First, we searched the citation databases, and got 210
matched documents from The Collection of Computer Sci-
ence Bibliographies and 418 documents from CiteSeerX. We
read the top 50 titles and abstracts of each database, and
divided the papers into three periods, namely the papers in
the 1990s, 2000s, and from 2010 until now. We observed
the papers in these time periods and realized that in the be-
ginning of the research of OO coupling metrics, researchers
concentrated more on the static behaviors of the software in
class level. After about 10 years, the research focus shifted
to the dynamic behaviors of the software at object level. In
recent years, researchers began to take the metrics in com-

1IEEE, http://ieeexplore.ieee.org/search/advsearch.jsp?tag=1
2ACM, http://dl.acm.org/dl.cfm
3CiteSeerX, http://citeseerx.ist.psu.edu/index
4ScienceDirect, http://www.sciencedirect.com/
5Google Scholar, http://scholar.google.de/
6Collection, http://liinwww.ira.uka.de/bibliography/index.html

ponent or system level into consideration.
Then, we queried the other four databases and sorted the

results according to relevance. We retrieved 10625 results
from IEEE Xplore Digital Library, 247 results from ACM
Digital Library, 27300 results from Google Scholar and 42510
results from ScienceDirect. We filtered the results according
to different time periods and chose 10 papers in each time
periods to review in this paper.

The remainder of this paper is organized as follows. In
section 2 the classical metrics in the 1990s will be discussed.
Ten representative coupling metrics will be reviewed in sec-
tion 2.1, following the analysis of the metrics in this period
in section 2.2. In section 3, the modern metrics in the 2000s
will be discussed in section 3.1. Afterwards, we will make
an analysis of the metrics in section 3.2. In section 4, ten
metrics in the 2010s will be described firstly in section 4.1,
and then analyzed in section 4.2. Section 5 concludes the
paper.

2. CLASSICAL METRICS IN THE 1990S
In this section, we chose ten influential metrics in the

1990s. The first two sets of metrics we chose is the cou-
pling metric from the CK Metric Suite[15] and the MOOD
Metric Set[20], which are top cited in the citation databases
of IEEE and The Collection of Computer Science Bibliogra-
phies. The remaining 8 papers are chosen from the top 30
results from each of the database we use, judging from the
titles and abstracts, which seems most relevant to our topic.

In the first part of this section, we will explain the main
idea of each metric we chose. In the second part, we will
make an analysis of these metrics.

2.1 Classical Metrics Review
The most influential static metrics measuring coupling is

the ”CK” metric suite[15]. Chidamber and Kemerer pre-
sented six metrics in their work, among which we take out
the CBO (Coupling Between Object Class) metric to ex-
plain in detail. The Definition of this metric is that CBO
for a class is the count of the number of other classes to
which it is coupled[15].The idea behind this metric is that
one class is coupled to another, when it uses the methods or
instance variables defined by the other class, and measuring
the degree, to which these two classes are coupled is impor-
tant, because excessive coupling between classes will hinder
modular design and prevent reuse.

The next metric to evaluate is the coupling metric in the
MOOD Metric Set[20]. The coupling metric in this met-
ric set is called CF (Coupling Factor) metric. The metric
measures the coupling between classes, excluding coupling
due to inheritance[20]. CF is calculated among all possible
pairwise sets of classes by observing whether the classes in a
pair are related to each other. When two classes pass mas-
sages to each other, or use the attributes or methods of each
other, they are considered to be coupled.

The next three research works to investigate are the pa-
pers from Briand et al.[9, 12, 11]. They reviewed the CK
Metric Suite[15] in 1996 in their work[9], and implemented
an experiment of the metrics. In their experiment, they used
three libraries, namely a public domain library with C++
classes, a GNU library and a C++ database library. They
figured out that the CBO value is significantly small for UI
classes. Then in 1997, Briand and his colleagues provided a
new suite of coupling metrics which are especially suitable

for OO Systems developed by C++[12]. They developed
their metrics according to three facets, namely Relationship,
Locus and Type. Relationship refers to the type of relation-
ship, for example friendship or inheritance. Locus refers to
the impact of change flows towards a Class (import) or away
from a Class (export). Type refers to type of interactions
between classes, which may be Class-Attribute interaction,
Class-Method interaction, or Method-Method interaction.
After two years in 1999, Briand and his co-workers contin-
ued their work, and provided a framework for Coupling Mea-
surement in OO Systems[11]. In their Coupling Frameworks,
they defined three dimensions of coupling, namely Interac-
tion Coupling, Component Coupling and Inheritance Cou-
pling. Two methods are interaction coupled if one method
invokes the other, or they communicate via sharing data.
Two classes c and c’ are component coupled, if c’ is the
type of either an attribute of c, or an input or output of a
method of c, or a local variable of a method of c, or an input
or output parameter of a method invoked within a method
of c[11]. Two classes c and c’ are inheritance coupled, if one
class is an ancestor of the other.

In Moser et al.’ work, they described a formal meta-model
based approach measuring class coupling[29]. In their paper,
they defined two types of coupling to measure. The first one
is active coupling, which measures the extent to which the
second class contributes to the implementation of the first
one. The values of coupling will range from 0 to 1, with
larger values corresponding to greater degree of coupling.
The second type of coupling is passive coupling, which mea-
sures the efficiency of the first class in implementing the
second one. The values indicate to what extent one class
uses the methods of another class.

In the research work of Brito et al.[13], they evaluated
experimentally the impact of OO design on software qual-
ity characteristics using the MOOD Metric Set mentioned
above[20]. They performed a controlled experiment, and ex-
amined the degree to which MOOD metrics allow to predict
defect density (a reliability measure) and normalized net-
work (corrective maintenance effort, a maintainability mea-
sure).

The the paper of Lee et al.[23], they first reviewed the
CK Metric Suite[15], and then proposed the measurement
of three forms of coupling. The first form of coupling is
Coupling Through Inheritance. They used DIT (Depth of
Inheritance Tree) and NOC (Number Of Children) to mea-
sure the inheritance characterization[23]. The second form
of coupling is Coupling Through Message Passing, which is
measured by MPC (Message Passing Coupling) metric[23].
The last form of coupling is the coupling through ADT (Ab-
stract Data Type), which is measured by the DAC (Data
Abstraction Coupling) metric[23].

The next research work we chose is the work from Allen
et al.[2]. They discussed in their paper how to measure the
coupling of subsystems, namely intermodule coupling. They
measured coupling regarding to five properties of coupling
of a modular system. The attributes are nonnegativity, null
value, monotonicity, merging of modules and disjoint mod-
ule additivity[2]. They used these five attributes in a mea-
surement protocol and generated a graph representing some
aspects of software design such as the design decisions.

The last research work to discuss is the paper from Eder
et al.[17]. In their work, they also divided coupling into
three categories like Lee et al. did in their work[23], namely

interaction coupling, component coupling and inheritance
coupling. Other than that, they also showed the interplay
of the three coupling dimensions taking transitive method
invocations into account.

2.2 Classical Metrics Analysis
From the ten papers reviewed in the last subsection, we

found out that 90% of the metrics in this time periods are
static. Most of the researchers consider the metrics at class
level at OO design phase, namely at the early stage of the
software engineering. The well-known CK Metric Suite has
a great impact on the research works afterwards. Many
researchers evaluated CK metrics and implemented exper-
iments based on these metrics. We can also come to the
conclusion that Briand’s works are also important in this
time period, since three of his papers are cited among the
top cited list.

From the static point of view, software coupling is mainly
measured by how close the classes are related to each other.
When a class depends to a large extent on other classes, it
will increase its error density, because it may not use the
other classes’ methods correctly. Moreover, a minor change
of one of the classes, which this class depends on, will also
cause errors in this class. It will also increase the classes’
cost of maintenance. Because this class is vulnerable to any
changes of the other classes, on which it depends. When one
of the classes changes, it has to update and be careful not to
misuse the changed class. Furthermore, more interactions
with other classes may reduce the usability of this class,
because it will be very complicated, so that other classes will
have difficulties correctly using the methods of this class.

3. MODERN METRICS IN THE 2000S
In this section, we chose ten representative metrics in the

2000s. Firstly, we choose the research works from Mitchell[25,
26, 27] and Arisholm[5], which are ranked among the top
cited papers in IEEE Citation Search, CiteSeerX and The
Collection of Computer Science Bibliographies. Then we
limited the time range from 2000 to 2009 in all the other
databases we chose, and sorted them by relevance. From
the search results, we selected 8 papers with highest rele-
vance from the top 30 papers of each database.

In the first part of this section, We will describe the met-
rics from the 10 papers we chose. In the second part, we will
make an analysis of these metrics.

3.1 Modern Metrics Review
The first three metrics we want to mention are the re-

search works from Mitchell et al.[25, 26, 27]. In their pa-
per in 2004, they described a set of run-time object-oriented
metrics to complement existing static coupling metrics. They
used a number of statistical techniques including descrip-
tive statistics, a correlation study and principal component
analysis to assess the properties of measures, and investi-
gated whether their metrics are redundant with respect to
the CBO metric mentioned in the last section[25]. A year
later, they proposed some object-level run-time metrics to
study coupling between objects[26]. They used statistical
techniques like agglomerative hierarchical clustering anal-
ysis to identify objects from the same class, that exhibit
non-uniform coupling behaviour when measured dynami-
cally[26]. The dynamic metrics they provided are also based
on the CBO metric. These metrics seek to quantify cou-

pling at different layers of granularity, that is at class-class
and object-class [26]. In 2006, Mitchell and his colleague
extended their work to explain the relationship between the
CBO metric and some of its dynamic counterparts[27]. The
results of their study showed that static and dynamic cou-
pling metrics can be used independently. But they suggested
that dynamic coupling metrics might be more suitable in the
context of coverage measures, rather than as stand-alone
software metrics[27].

The next metric set to discuss is the research work by
Arishom[5]. In their work, they classified their coupling
measures to three criteria, namely entity of measurement,
granularity and scope[5]. Since dynamic coupling is based
on dynamic code analysis, coupling may be measured for a
class or one of its instances, thus the entity can either be a
class or an object[5]. The scope determines which objects
or classes, depending on the entity of measurement, are to
be accounted for when measuring dynamic coupling[5].

In the research work of Yacoub et al.[37], they presented
in their work a dynamic metric suite to measure the quality
of OO designs at an early development phase. The suite con-
sists of metrics for dynamic complexity and object coupling
based on execution scenarios[37]. They provided two dy-
namic coupling metrics, namely EOC (Export Object Cou-
pling) and IOC (Import Object Coupling). The export cou-
pling for object A with respect to object B is the percentage
of the number of messages sent from A to B with respect
to the total number of messages exchanged between A and
B during the execution of the scenario[37]. Whereas import
coupling for object A with respect to object B is the per-
centage of the number of messages received by object A that
were sent by object B with respect to the total number of
messages exchanged during the execution of the scenario.

The next research work to mention is the metric from
Hassoun et al.[21]. In their work, they observed object cou-
pling as it evolves during program execution and proposed a
measure which takes object interactions into account. They
defined coupling as follows: two objects are coupled if either
one of them can influence the history of the other. The his-
tory of an object here is defined as the sequence of its states
in time. A coupling measures between two arbitrary objects
P and Q, thus depends on the time during which P influ-
ences the history of Q and vice-versa. It also depends on
the number of objects involved and on their complexity[21].

In the research work of Zaidman et al.[38], they used a
dynamic coupling metric, which measures interaction be-
tween runtime objects, to collect and analyze the event trace
of large-scale industrial application. The coupling metric
they use is the EOC metric mentioned above by Yacoub[37].
They calculated the EOC for each participating object, which
results in a matrix of coupling-values. Since this information
is too detailed and difficult to understand, they proposed an-
other metric to measure how many unique messages a cer-
tain object has sent, namely the Object Request For Service
metric. This metric calculates the total number of messages
that object O has sent during the program run.

The next research work to present is the paper from Ti-
bor et al.[19]. This paper describes an application of the
CK metric suites in open source software systems. They
used regression and machine learning methods to validate
the usefulness of these metrics for fault-proneness predic-
tion.

In the research work of Jagdish et al.[8], they described

an improved hierarchical model for the assessment of high-
level design quality attributes in object oriented [8]. In this
model, structural and behavioral properties of classes, ob-
jects, and their relationships are evaluated using a suite of
OO design metrics[8]. They mainly use two small set of
metrics DSC (Design Size in Classes) and NOH (Number
of Hierarchies) to assess the two design properties Design
Size and Hierarchies. The quality attributes they measured
are reusability, flexibiity, understandability, functionality,
extensibility and effectiveness.

The last research work in this time period to describe is
the paper from Abdulruda et al.[1]. In their work, they eval-
uated metrics to model industrial processes with Peri Net
Object Oriented Data Structure. MHF (Method Hiding Fac-
tor) and AHF (Attribute Hideing Factor) metrics are used
jointly by them as measures of encapsulation. MIF (Method
Inheritance Factor) and AIF (Attribute Inheritance Factor)
metrics are together used as measures of inheritance. PF
(Polymorphism Factor) metric is used as a measure of poly-
morphism potential, and CF (Coupling Factor) is used to
measure coupling between classes.

3.2 Modern Metrics Analysis
In this period of time, the researchers began to think that

static coupling metrics may not be enough for measuring
the coupling of object oriented software programs, so they
started to consider to measure the run-time behavior of the
software programs. For instance, Mitchell mentioned in his
work, that static metrics fail to quantify all the underlying
dimensions of coupling, as program behaviour is a function
of its operational environment as well as the complexity of
the source code[25]. Arisholm also mentioned in his paper,
that the static coupling measures are imprecise as they do
not reflect the actual coupling taking place among classes at
run-time, because of polymorphism, dynamic binding and
unused code in the software.

The metrics in this time period are mostly at object level.
The research works of dynamic coupling metrics are basi-
cally divided into two main categories. One focuses on the
import and export of the classes [37, 38, 25, 26, 27]and ob-
jects, the other emphasizes the evolution of the metrics over
a period of time[21, 33]. Many researchers also based their
metrics on the influential CBO metric mentioned in the last
section, and many other researchers have implemented the
dynamic metrics in experiments or even in industry.

Although the measurement of the dynamic software cou-
pling metrics are very different with measuring the static
coupling metrics, the quality attributes which are taken into
considerations are basically the same, namely the maintain-
ability, understandability, reusability and error-propagation.
Some of the works also takes flexibility, functionality, ex-
tendibility and effectiveness into consideration.

4. LATEST METRICS IN THE 2010S
In this section, we choose ten prominent metrics in the

2010s. We found out that the papers in this time period
are not so often cited than the older papers. Therefore, we
directly sorted the result according to relevance and filtered
the time period from 2010 to 2014. We chose 10 papers from
the top 30 results in each database mentioned above. In the
first part of this section, we will make a brief review of the
ten papers in this time period. In the second part, we will
make an analysis of the metrics in these research works.

4.1 Latest Metrics Review
The first metric in this time period to discuss is the met-

ric from Aloysius et al.[3]. They presented in their paper a
new cognitive complexty metric namely cognitive weighted
coupling between objects for measuring coupling in object
oriented systems[3]. In this metric, five types of coupling
that may exist between classes are control coupling, global
data coupling, internal data coupling, data coupling and lex-
ical content coupling[3].

The second research work to mention is the paper from
Kebir et al.[22]. In their work, they measure coupling met-
rics at component level. Firstly, they found three properties
of components. The first one is that a component is au-
tonomous if it has no required interface. The second is that
a component can be composed by means of its provided and
required interfaces[22]. The last one is that the component
which provides many interfaces may provide various func-
tionalities. Each interface can offer different services. Thus
the higher the number of interfaces is, the higher the num-
ber of functionalities can be[22]. Then they matched the
properties to metrics.

The next research work to discuss is the paper by Rathore
et al.[33]. Their work is to investigate the relationship of
class design level OO metrics with fault proneness of object
oriented software system. They evaluated the capability of
the design attributes related to coupling etc. to predict fault
proneness. They defined coupling as the measure of the
strength of association established by a connection from one
module to another. The coupling metrics they use are CBO,
RFC, CA, CE and DAM.

In the research work of Alshammari et al.[4], they realized
in their work that metrics which measure the quality at-
tribute of information security have received little attention.
So they focused on the design of an object oriented applica-
tion and defined a number of security metrics derivable from
a program’s design artefacts. In particular, they presented
security metrics based on coupling and other attributes of a
given object oriented, multi-class program from the pointing
of view of potential information flow. The coupling metric
proposed by them is called CCC (Critical Classes Coupling),
which aims to find the degree of coupling between classes and
classified attributes in a given design. It is calculated based
on the theory of directed weighted links. This metric aims
to penalise programs with high coupling.

In the research work of Gether et al.[18], the researchers
found out that many existing coupling metrics lack the abil-
ity to identify conceptual dependencies, which could spec-
ify underlying relationships encoded by developers in iden-
tifiers and comments of source code[18]. So they proposed
a RTC (Relational Topic based Coupling) metric at class
level, which uses RTM (Relational Topic Models), genera-
tive probabilities model to capture latent topics in source
code classes and relationships among them[18].

The next metric to mention is the research work from
Carliss et al.[7]. They describe in their work a methodol-
ogy based upon directed network graphs which can identify
linkages between components in a system. They found out
that most software releases are using Core-Periphery struc-
ture, where Core subsystems have been defined as those that
are tightly coupled to other subsystems, whereas peripheral
subsystems tend to posses only loose connections to other
subsystems[7]. They also use a square Matrix DSM (Design
Structure Matrix) to calculate metrics, which capture the

level of coupling for each component.
In the research work of Chen et al.[14], the authors argued

that the traditional metrics are not suitable to measure cou-
pling in component-based software system (CBSS). So they
provided new metrics to specifically measure coupling and
cohesion. In their paper, coupling in CBSS is defined as
how one component depends on the other. They regard the
CBSS as a directed graph, where the components in CBSS
are vertices.

The next research work to evaluate is the paper from Babu
et al.[6]. The researchers of this paper found out that met-
rics for centralized systems are not suitable for distributed
systems with service oriented components. So they propose
a hybrid model in Distributed Object Oriented Software to
measure the coupling at runtime.

Poornima et al.[34] focused on measuring coupling to con-
trol the complexity level as requirements increases. They
take two kinds of metrics into consideration, namely, static/class
level coupling metrics and dynamic/object level coupling
metrics. For the static metrics, they consider Efferent Cou-
pling, Afferent Coupling and Depth of Inheritance Tree. For
dynamic metrics, they used CBO and RFC in to measure the
complexity of the system.

The last research work to discuss is the paper from Naren-
dra et al.[32]. In this paper, the authors presented a mea-
surement to measure coupling between objects, number of
associations between classes, number of dependencies in met-
ric, number of dependencies out metric and number of childen
in OO programming. The metric values of class inheritance
and interface prove which program is good to use specifically
for C# users[32].

4.2 Latest Metrics Analysis
The software coupling metrics in the latest five years have

some new changes compared to the last two decades. There
exists many metrics which measures not only coupling met-
rics at class or object level, but also at component or system
level. Measuring the coupling of components will not be ad-
equate if it is measured just like classes as described in the
last two sections. It will be necessary to count the interfaces
as well. The researchers involve some models like directed
network graphs and some kinds of structure matrix to better
measure the coupling between components. Other than the
granularity changes towards components, some researchers
also consider the conceptual dependencies, and use some
probabilistic methods to measure and identify the relation-
ships between components.

Like the static and dynamic software coupling metrics dis-
cussed in the last two sections, the metrics in this time pe-
riod also focus on measuring the quality attributes of the
software artefacts regarding maintainability, understandabil-
ity, reusability and error-propagation. Other than these
quality attributes, some researchers also proposed metrics
for measuring security at an early design phase.

5. CONCLUSIONS
In this paper, we first did a literature search according

to our topic of software coupling metrics in the context of
object-oriented software systems. From the results we di-
vided the research works into three time periods. In each
time period, we chose ten representative works, and made an
elaborate review of the methodologies of the coupling met-
rics. After the literature reviews of each time period, we did

an analysis about the typical coupling measurement meth-
ods and which quality attributes the researchers consider
important for the software system.

We found out that despite different research focuses, most
of the researchers think the quality attributes of maintain-
ability, understandability, reusability and error-propagation
are important. Thus we suppose that these four quality at-
tributes are important in the measurement of software cou-
pling metrics. For future work, researchers could possibly re-
view more metrics in the existing research works, and make
a coupling metrics catalogue similar to catalogues of design
patterns, which will be helpful for future researchers to get
some inspiration of developing their new metrics and also for
practitioners to choose the proper metrics that fit in their
software development.

6. REFERENCES
[1] A. A. Alfize. Metrics evaluation for industrial oo petri

nets models. 2002.

[2] E. B. Allen and T. M. Khoshgoftaar. Measuring
coupling and cohesion: An information-theory
approach. In Software Metrics Symposium, 1999.
Proceedings. Sixth International, pages 119–127. IEEE,
1999.

[3] A. Aloysius and L. Arockiam. Coupling complexity
metric: A cognitive approach. International Journal of
Information Technology and Computer Science
(IJITCS), 4(9):29, 2012.

[4] B. Alshammari, C. Fidge, and D. Corney. Security
metrics for object-oriented designs. In Software
Engineering Conference (ASWEC), 2010 21st
Australian, pages 55–64, April 2010.

[5] E. Arisholm, L. C. Briand, and A. Foyen. Dynamic
coupling measurement for object-oriented software.
Software Engineering, IEEE Transactions on,
30(8):491–506, 2004.

[6] S. Babu and R. M. S. Parvathi. Design dynamic
coupling measurement of distributed object oriented
software using trace events. 2011.

[7] C. Baldwin, A. MacCormack, J. Rusnak, et al. Hidden
structure: Using network methods to map system
architecture. In Harvard Business School Working
Paper. Citeseer, 2013.

[8] J. Bansiya and C. Davis. A hierarchical model for
object-oriented design quality assessment. Software
Engineering, IEEE Transactions on, 28(1):4–17, Jan
2002.

[9] V. Basili, L. Briand, and W. Melo. A validation of
object-oriented design metrics as quality indicators.
Software Engineering, IEEE Transactions on,
22(10):751–761, Oct 1996.

[10] S. Billow. Applying graph-theoretic analysis models to
object oriented system models. 1992.

[11] L. Briand, J. Daly, and J. Wust. A unified framework
for coupling measurement in object-oriented systems.
Software Engineering, IEEE Transactions on,
25(1):91–121, Jan 1999.

[12] L. Briand, P. Devanbu, and W. Melo. An investigation
into coupling measures for c++. In Proceedings of the
19th international conference on Software engineering,
pages 412–421. ACM, 1997.

[13] F. Brito e Abreu and W. Melo. Evaluating the impact
of object-oriented design on software quality. In
Software Metrics Symposium, 1996., Proceedings of
the 3rd International, pages 90–99. IEEE, 1996.

[14] J. Chen, H. Wang, Y. Zhou, and S. D. Bruda.
Complexity metrics for component-based software
systems. International Journal of Digital Content
Technology and its Applications, 5(3):235–244, 2011.

[15] S. Chidamber and C. Kemerer. A metrics suite for
object oriented design. Software Engineering, IEEE
Transactions on, 20(6):476–493, Jun 1994.

[16] J. Coplien. Looking over one’s shoulder at a c++
program. AT&T Bell Labs. Tech. Memo, 1993.

[17] J. Eder, G. Kappel, and M. Schrefl. Coupling and
cohesion in object-oriented systems. Technical Reprot,
University of Klagenfurt, Austria, 1994.

[18] M. Gethers and D. Poshyvanyk. Using relational topic
models to capture coupling among classes in
object-oriented software systems. In Software
Maintenance (ICSM), 2010 IEEE International
Conference on, pages 1–10, Sept 2010.

[19] T. Gyimothy, R. Ferenc, and I. Siket. Empirical
validation of object-oriented metrics on open source
software for fault prediction. Software Engineering,
IEEE Transactions on, 31(10):897–910, Oct 2005.

[20] R. Harrison, S. Counsell, and R. Nithi. An evaluation
of the mood set of object-oriented software metrics.
Software Engineering, IEEE Transactions on,
24(6):491–496, Jun 1998.

[21] Y. Hassoun, R. Johnson, and S. Counsell. A dynamic
runtime coupling metric for meta-level architectures.
In Software Maintenance and Reengineering, 2004.
CSMR 2004. Proceedings. Eighth European Conference
on, pages 339–346. IEEE, 2004.

[22] S. Kebir, A.-D. Seriai, S. Chardigny, and A. Chaoui.
Quality-centric approach for software component
identification from object-oriented code. In Software
Architecture (WICSA) and European Conference on
Software Architecture (ECSA), 2012 Joint Working
IEEE/IFIP Conference on, pages 181–190, Aug 2012.

[23] W. Li and S. Henry. Maintenance metrics for the
object oriented paradigm. In Software Metrics
Symposium, 1993. Proceedings., First International,
pages 52–60. IEEE, 1993.

[24] K. Lieberherr, I. Holland, and A. Riel. Object-oriented
programming: An objective sense of style. In ACM
SIGPLAN Notices, volume 23, pages 323–334. ACM,
1988.

[25] Á. Mitchell and J. F. Power. An empirical
investigation into the dimensions of run-time coupling
in java programs. In Proceedings of the 3rd
international symposium on Principles and practice of
programming in Java, pages 9–14. Trinity College
Dublin, 2004.

[26] A. Mitchell and J. F. Power. Using object-level
run-time metrics to study coupling between objects.
In Proceedings of the 2005 ACM symposium on
Applied computing, pages 1456–1462. ACM, 2005.

[27] Á. Mitchell and J. F. Power. A study of the influence
of coverage on the relationship between static and
dynamic coupling metrics. Science of Computer
Programming, 59(1):4–25, 2006.

[28] K. Morris. Metrics for object oriented software
development. master thesis, MIT, Sloan School of
Management, Cambridge, MA, 1988.

[29] S. Moser and V. B. Misic. Measuring class coupling
and cohesion: A formal metamodel approach. In
Software Engineering Conference, 1997. Asia Pacific...
and International Computer Science Conference 1997.
APSEC’97 and ICSC’97. Proceedings, pages 31–40.
IEEE, 1997.

[30] S. Pfleeger and J. Palmer. Software estimation for
object-oriented systems. In 1990 Int. Function Point
Users Group Fall Conf, pages 181–196, 1990.

[31] C. Rajaraman and M. R. Lyu. Some coupling
measures for c++ programs. In TOOLS (8), pages
225–234. Citeseer, 1992.

[32] N. Rathore and R. Gupta. A novel coupling metrics
measure difference between inheritance and interface
to find better oop paradigm using c#. In Information
and Communication Technologies (WICT), 2011
World Congress on, pages 467–472, Dec 2011.

[33] S. Rathore and A. Gupta. Investigating
object-oriented design metrics to predict
fault-proneness of software modules. In Software
Engineering (CONSEG), 2012 CSI Sixth International
Conference on, pages 1–10, Sept 2012.

[34] P. U. S. and S. V. Significance of coupling and
cohesion on design quality, 2014. Comment: 6 Pages, 2
Figures.

[35] D. P. Tegarden, S. D. Sheetz, and D. E. Monarchi.
Effectiveness of traditional software metrics for
object-oriented systems. In System Sciences, 1992.
Proceedings of the Twenty-Fifth Hawaii International
Conference on, volume 4, pages 359–368. IEEE, 1992.

[36] N. Wilde and R. Huitt. Maintenance support for
object oriented programs. In Software Maintenance,
1991., Proceedings. Conference on, pages 162–170.
IEEE, 1991.

[37] S. M. Yacoub, H. H. Ammar, and T. Robinson.
Dynamic metrics for object oriented designs. In
Software Metrics Symposium, 1999. Proceedings. Sixth
International, pages 50–61. IEEE, 1999.

[38] A. Zaidman and S. Demeyer. Analyzing large event
traces with the help of coupling metrics. In Proc. the
5th International Workshop on OO Reengineering,
Oslo, Norway, 2004.

Continuous Delivery in Open-source Projects

Stefan Dollase
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

stefan.dollase@rwth-aachen.de

Andrej Dyck
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

andrej.dyck@swc.rwth-aachen.de

ABSTRACT
Continuous delivery is a concept to quickly publish changes
to a software project as a new release. As this is useful
for every software project, it is also useful for open-source
projects. It enables the developers to react fast if a bugfix is
needed, but it also allows them to release new functionality
frequently.

In open-source projects it is especially difficult to use con-
tinuous delivery, because it requires the developers to fre-
quently integrate all changes into the mainline. However,
in open-source project there are not only full time software
developers, but also some hobby developers. These are less
active which might lead to long lived branches. This paper
discusses how continuous delivery can be realized even with
many hobby developers in the project.

GitHub is a platform for software development and is used
by many open-source projects. It offers lots of tools like a
version control system, issue tracker, wiki, and code reviews,
but it does not offer build services. However, Travis CI offers
build services for GitHub projects. This paper describes
how GitHub and Travis CI can be used together to create
a continuous delivery pipeline for open-source projects. It
also discusses the limits of this approach.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—productivity, programming teams,
software configuration management

Keywords
continuous delivery, open-source, GitHub, Travis CI

1. INTRODUCTION
Open-source projects need to release their software at

some point. Since many developers work on the same code
base, this can become a problem, especially if the developers
do not know each other personally and many developers do

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2014/15 RWTH Aachen University, Germany.

not work full time on the project. If the project has no real
concept for the publishing of releases, it is likely that the
releases become very infrequent. This also means that bugs
cannot be fixed quickly and new functionality has to wait
a long time until it is released. A manual release process
might also lead to releases of buggy versions of the software.
If the project is broken, meaning it is too unstable to be
released, and the developer who publishes the new release
does not check whether the project is stable, meaning not
broken, an unstable release might me published. To prevent
these problems, this paper examines how continuous delivery
can be integrated into the common workflow of open-source
projects to frequently publish new releases.

In this paper, we first describe the principles of continu-
ous integration and continuous delivery. We investigate the
common workflow of open-source projects and how it can
work with continuous delivery. Afterwards, we investigate
how GitHub and Travis CI help us to practice continuous
delivery for open-source projects. Finally, we discuss the
limits of this approach and conclude the paper.

2. CONTINUOUS DELIVERY
Integration conflicts are expected in software development.

As multiple people work at the same code base at the same
time they apply interfering changes to the code. These con-
flicts need to be resolved.

Continuous Integration helps to minimize integration con-
flicts. This is done by integrating all changes to the mainline
as early as possible [16, p. 55]. This means that every de-
veloper integrates their own changes with the mainline at
least once a day [13]. Thereby, integration conflicts consists
at most of the work of one day, so continuous integration
prevents big merges.

As all developers work on the mainline it is necessary to
verify that the mainline is always stable [13]. To do so, the
code is built and tested as soon as new commits arrive at
the mainline. If the build or one of the tests failed, the
developers should bring the mainline in a stable state as
soon as possible, since all developers depend on the stability
of the mainline. To lower the risk of committing unstable
code to the mainline, each developer should run the tests
before each commit. It is worth noting that the tests need
to cover a good portion of the code to make the passing of
the tests meaningful. Furthermore, all tests should finish
quickly, to give fast feedback to the developers.

Continuous delivery helps software developers to frequently
release a new stable version of their software. To do so, the
build, test and release processes are automated. A build in-

frastructure which runs these automated processes is called
the continuous delivery pipeline. It consists of multiple
stages.

The commit stage is the first stage of the continuous deliv-
ery pipeline. It realizes the build automation of continuous
integration: It builds the application, executes a set of tests
and provides fast feedback to the developers. As in contin-
uous integration, the test suite of the commit stage should
cover most of the code, so the passing of the tests is mean-
ingful.

The build process and test execution should finish fast, so
the developers get fast feedback from the commit stage. This
does not mean, that long running tests cannot be used with
continuous delivery, but the commit stage is the wrong place
for them. Fast feedback is important for the developers, so
they are able to react fast if they break the mainline.

The last step of the commit stage is to make the build
artefacts available for the other stages of the continuous de-
livery pipeline. Hereby, it is ensured that the application is
built only once per pipeline execution, so all stages of the
pipeline use the same artefacts.

All build artefacts should be traceable. The reason for
this is, that each build artefact might be part of a release,
if it passes all stages of the continuous delivery pipeline. To
make all artefacts traceable, the commit stage adds the build
number and commit hash to the name of each build artefact
before it makes the artefacts available to the other stages.

The second stage of the continuous delivery pipeline is
automated acceptance testing. This means the project is
verified to provide functionality that is valuable to the users
[16, p. 187]. So, as opposed to unit tests, acceptance tests
do not verificate requirements of developers but validate re-
quirements of the users. There are tools available for auto-
mated acceptance testing. One of them is FitNesse [3].

The third stage of the continuous delivery pipeline tests
non-functional requirements. This stage is the right place
for long running tests, for example performance tests. If it
is possible, the application should be installed on production
like environments as this produces more realistic test results.

The last stage publishes the new release. As this is the
last stage of the continuous delivery pipeline, a new release
is only published if all other stages passed. It is worth not-
ing, that the release of a new version of the application is
not the same as the deployment of the application. A release
makes a new executable version of the application publicly
available, while a deployment installs for example a web ap-
plication to a publicly available web server.

Continuous delivery is an extension of continuous integra-
tion. Continuous integration ensures, that the mainline is al-
ways stable. However, the tests that are executed with con-
tinuous integration cannot provide sufficient feedback on the
production readiness of the application, because they should
finish fast. Therefore, mainly unit tests are executed, but
just a few or no acceptance and non-functional tests. The
automatic execution of these long running tests is added in
the continuous delivery pipeline.

The introduction of continuous delivery simplifies the pro-
cess of releasing the application. If all stages of the pipeline
pass, a new release is published automatically, so a release is
no longer a significant event. This is an advantage of contin-
uous delivery over continuous integration. With continuous
integration the mainline is always stable, but the latest sta-
ble version of the application is not available as executable

download most of the time.

3. WORKING IN OPEN-SOURCE PROJECTS
Developer communities of open-source projects can be di-

verse. The developers may not know each other personally,
they may not even live on the same continent. One may
work on the project as its full time job while another may
want to gain first experiences in software development. So
it is a challenge to work with all the different people.

In general, it is possible to separate the developers in two
main groups [16, p. 411]. One group is very active and has
good knowledge of the project. These are the main devel-
opers. The other group has less knowledge of the project
and is less active. These are the hobby developers and they
mainly consist of users which might for example report a
bug, provide a bugfix, ask for a feature or provide a user
interface translation. As time goes by, a hobby developer
might become a main developer and vice versa.

In open-source projects a strategy is needed to work with
the main and hobby developers on the same code base. Since
the main developers are very active, they can use continuous
delivery. This is not so easy for the hobby developers since
they are not so active and their changes might take a long
time, so these changes cannot be integrated in the mainline
once a day. Furthermore, it is also a security risk for the
project to allow write access to the mainline to everyone.

For a long time patches have been sent via email to pro-
pose changes to open-source projects. One of the main de-
velopers of the project had to review the changes and apply
the patch manually. This enabled everyone to collaborate,
but also protected the mainline from malicious changes at
the same time. Additionally, there was a chance to detect
bugs during the code review.

Since distributed version control systems like git and mer-
curial are popular, nobody needs to send patches via email.
Instead, a hobby developer can clone the main repository,
commit their proposed changes and then allow read access
to the main developers. A main developer is able to pull
the changes from the repository of the hobby developer, re-
view the changes and try to integrate them. If it is possi-
ble to integrate the changes, the main developer will push
the integrated changes of the hobby developer to the main
repository. So, using distributed version control systems has
the same advantages as the sending of patches (code review,
no direct write access to mainline), but they are also more
convenient for the developers to work with.

In distributed version control systems, the development
of a feature in a separate branch is called feature branching
[14]. A feature is not necessarily new functionality, but it
can also be for example a bugfix. The advantage of feature
branching is, that the developers do not disturb each other
during the development of different features. They can work
on the feature until it is done and integrate it with the main-
line afterwards. The simultaneous development of different
features in separate repositories is also feature branching.

The problem with feature branching is the long living
branches, which may live for several days, weeks, month
or even years. These branches can occur when too big fea-
tures should be implemented. Another reason for the occur-
rence of such branches is, that the development of the feature
has been paused for a while and should be resumed later.
The problem with these branches arises as soon as they are
merged back into the mainline, because not only the feature

1 2 3 4 5 6

Figure 1: The GitHub Flow [5]

branch has changed but also the mainline has changed a
lot. Functionality that used to be in the mainline might be
removed or the behaviour might have changed. If the new
feature uses such functionality, the integration becomes very
difficult. In general, the integration conflicts become bigger
as the lifetime of the feature branch increases.

Feature branches are not always bad to use. They are
useful, if each feature is kept small and all feature branches
have a short lifetime. This prevents big integration conflicts,
because the mainline has not changed significantly since the
branch was created and the branch itself does not introduce
a lot of changes. However, it requires experienced developers
that understand the risk of long lived feature branches to
successfully use feature branching.

Feature branching and continuous delivery seem to rep-
resent two different concepts [16, p. 410-412]. A key part
of continuous delivery is to integrate the changes of all de-
velopers as early as possible, while feature branches help to
separate the changes until the implementation of a feature
is done.

However, to use continuous delivery in open-source projects
we need to combine continuous delivery with feature branch-
ing. By using only short lived feature branches continuous
delivery can still be realized, because we are still able to
integrate often with the mainline.

This concept works for the main developers and the hobby
developers. The main developers can work directly on the
main repository since they have write access. They can use
short lived feature branches during the development of small
features. The hobby developers can clone the repository and
offer their proposed changes to the main developers by giving
them read access. The main developers can review the code,
integrate it and push it to the main repository. Since hobby
developers do not work full time on the project it might
happen that their feature branches exist for a longer period
of time. However, that should not cause too big integration
conflicts, since hobby developers will do minor changes most
of the time [16, p. 411].

4. GITHUB
GitHub is a platform that provides a set of tools for col-

laborative software development [4]. Some of the features

of GitHub are a version control system, an issue tracker, a
wiki, support for code reviews and an API for third parties.

On GitHub each user owns a set of repositories. By default
everyone can read public repositories, but only the owner
has write access. However, the owner can add other users as
collaborators, which enables them to write to the repository
as well. The owner and the collaborators of a repository are
the main developers.

Since not all users have write access to all repositories,
GitHub provides the forking mechanism. If a hobby devel-
oper wants to write to a foreign repository, they can fork
it and then commit changes to the fork. A fork clones the
main repository to the hobby developer’s own user account.
Thereby, the hobby developer can make changes without
having write access to the main repository.

GitHub Flow is a workflow that is proposed by GitHub to
contribute changes to an open-source project [5]. It is visu-
alized in figure 1. If a hobby developer wants to contribute
a change they should follow these steps:

1. Create an issue.

2. Fork the repository and create a branch.

3. Implement a first version.

4. Create a pull request.

5. React to feedback.

6. Wait for the merge.

Before a developer starts to implement a new feature, they
should create an issue and describe what they want to im-
plement. This enables the main developers to keep track of
all changes that are currently in progress. Furthermore, the
main developers can help to refine the idea and to find the
files for the changes. Also, they might not be interested in
our changes. In this case the developer that proposes the
changes can decide to do the changes anyway and provide
them in an own repository, or they can decide to drop the
changes which saves a lot of probably unnecessary work. It
is important to keep track of the size of the feature. If it
grows to big, it should be split into multiple features.

Now, that the changes are specified the implementation
can begin. Therefor, we create a fork of the repository if
necessary, create a new branch and implement a first ver-
sion of the new feature in the new branch. A main devel-
oper can skip the step of forking the repository as they have
write access to the main repository. All changes that are
made to implement the new feature should be committed in
the new feature branch. This enables the main developers
to review the changes before they are integrated into the
mainline. Before the next step is started, the developer that
implements the feature should do this as good as they can.
Ideally, they completely implement the feature and the cor-
responding test cases. A good first version of the feature
implementation helps the main developers to focus on code
reviews that really need help.

As soon as the first version is implemented, the developer
that implemented the feature can create a pull request from
the feature branch. Thereby, they ask for a code review of
the implementation and for feedback about what still needs
to be changed before the feature is integrated into the main-
line. To support this discussion, GitHub provides a discus-
sion page for each pull request. The pull request is bound to
the branch from which it was created, so the changes that
are made in this branch after the pull request was created are
reflected on the pull request’s discussion page. This helps to
keep track about which changes are implemented as a result
to which suggestions. If the branch that is associated with
the pull request can be merged with the mainline without
any conflicts, GitHub offers a button to merge the branch
with the mainline, which also closes the pull request. It is a
good idea to link the issue from step one and the pull request
to each other to know what belongs together.

A key part of this workflow is, that the developer which
implemented the feature keeps track of the pull request’s
discussion page until it is merged into the mainline or finally
rejected. They need to react to feedback and adjust the
implementation as it is requested by the main developers. If
the developer that implemented the feature stops working
on it before it gets integrated into the mainline, the feature
might never get merged at all and the time that was spent
on it becomes wasted time.

This workflow realizes the concept described in section 3.
It allows us to work with feature branches and to review the
code before it gets integrated into the mainline. However,
it is important to always implement only small features and
to break bigger features into multiple small ones to be able
to quickly finish the feature implementation which results in
short lived feature branches, so big integration conflicts are
prevented. Up to this point, we ensured that we integrate
often. The other part of continuous delivery is to have an
automated build, test and release process.

5. TRAVIS CI
Travis CI is a continuous integration service which inte-

grates with GitHub [6]. It is able to automatically build,
test, release and deploy software. It supports multiple lan-
guages, build tools, deployment providers, and notification
mechanisms. Every change in a GitHub project can trigger
the execution of the build lifecycle in figure 2.

First, Travis CI prepares the host on which it will exe-
cute the build. It restores a snapshot of a virtual machine,
to ensure that the environment is clean for each build. Af-
terwards, it clones the GitHub project that should be built,

Figure 2: Travis CI flowchart, created with the de-
scription in [8] and [12].

changes the current directory to the repository directory and
checks out the correct commit.

Next, the project dependencies are installed. Therefor,
Travis CI executes the install commands. What is exe-
cuted depends on the language of the project. For exam-
ple, if Travis CI is configured to build the project as a Java
project and a pom.xml file is found in the root directory
of the project, Travis CI will use Apache Maven to install
the project dependencies. Many other languages and build
tools are supported [11]. However, it is also possible to over-
write the install commands with self defined commands. It
is worth noting that Travis CI can be configured to exe-
cute custom before install commands before the install com-
mands. These can be used to prepare the system without
overwriting the default install commands.

After the installation of dependencies, the build and test
process is triggered. Travis CI uses the script commands for
this task. Similar to the install commands, Travis CI auto-
matically determines which build tool should be used, based
on the configured language and the available configuration
files. Also, the developer can overwrite the script commands
and configure before script commands.

Travis CI also allows to define a more complex operation
as a build step. Since the operating system which is used by
Travis CI is a Linux distribution, it is possible to set each of
the commands to a shell script that is placed in the GitHub
repository. In the shell script the developer can define a set
of custom commands.

This build step can also be used to ensure the traceability
of all artefacts, as it is recommended by continuous delivery.
Therefore, a shell script can rename the artefact files, so each
filename contains information like the branch, tag or commit
hash which was build and the build number of the Travis
CI build. For this purpose, Travis CI offers environment
variables like TRAVIS_BRANCH, TRAVIS_TAG, TRAVIS_COMMIT

and TRAVIS_BUILD_NUMBER [1].
The further build lifecycle is determined by the success

or failure of the previous steps. As depicted in figure 2, the
build fails if any of the before install, install, before script or
script commands failed. The success or failure of a command
is determined by its exit code. The exit code zero means
success, while all other exit codes mean failure.

If the build failed, the developers are notified about the
failed build, the after failure commands are executed and
the after script commands are executed. By default, Travis
CI sends emails to notify about the build status. However,
is can be configured to send messages to an IRC channel
and to call webhooks to inform a webserver about the build
status [7]. Custom notification mechanisms can be executed
via the after failure commands.

If the build succeeded, the developers are notified about
the successful build, the after success commands are exe-
cuted and the after script commands are executed. The no-
tification mechanism works as described above for the failure
of a build.

To publish a new release after a successful build, Travis CI
offers deployment providers. For example, it can upload the
build artefacts directly to Amazon S3 or Google Cloud Stor-
age. Furthermore, Travis CI can attach the build artefacts to
a release on GitHub. Currently, there are about 20 different
deployment providers available [9]. Furthermore, the devel-
oper can configure a custom deployment via the after success
commands. There exists a setting in the configuration file to

specify conditions when a deployment should be executed.
For example, the developer can restrict deployments to a
specific branch or to tagged commits. This is useful to have
a better control over the publishing of releases. Also, the de-
veloper can configure custom before deploy and after deploy
commands.

To realize the continuous delivery pipeline with Travis CI,
the main developers need to create a configuration file for
Travis CI, named .travis.yml, and place it in the root di-
rectory of the repository. They need to configure the proper
language, deployment providers and notification mechanisms.
The main part of the continuous delivery pipeline is the
building and testing process. To get this to work properly,
the main developers have multiple options. First, they can
use a build tool like Apache Maven to execute the build, unit
tests, acceptance tests and non-functional tests. The other
option is to use a shell script to execute different tools for
building and testing separately. This might be the simpler
way if the build tool has limited functionality. Note, that
the exit code of the shell script has to reflect the success or
failure of the build and test runs.

A great thing about Travis CI is, that it is able to build all
branches of a GitHub repository. This also includes branches
of pull requests from forks. This simplifies it to detect in-
tegration conflicts with feature implementations of hobby
developers. Furthermore, it is possible to try to automati-
cally merge the feature branch with the master branch be-
fore the build and test process starts [16, p. 79-82]. This
can be realized with a before install command. If the merge
was successful, the next steps are executed directly on the
integrated feature branch. If the merge fails, the build fails.
However, this merge is only performed locally on the Travis
CI host systems and not pushed back to GitHub.

Travis CI has no user interface to configure the build pro-
cess. Instead, it uses a configuration file in the root direc-
tory of the repository, as described above. This method
of configuration has advantages and disadvantages. An ad-
vantage is, that no extra rights management is needed for
Travis CI. Everyone with write permissions to the GitHub
repository, and thereby all main developers, can adjust the
build configuration. Another advantage is, that Travis CI
always takes the configuration from the commit that it cur-
rently builds. Thus, each build should be reproducible and
it is easily possible to have different build configurations for
different branches. One disadvantage is, that the commit
history of the project is cluttered with changes of the build
configuration.

The configuration file might contain confidential informa-
tion, such as API keys for the deployment providers, email
addresses, or other notification settings. This might be a
problem, because it is placed in the public GitHub repos-
itory. Therefor, Travis CI can read encrypted information
from the configuration file [10]. To encrypt this information,
Travis CI generates a pair of private and public RSA keys
for each repository. The private key is only known to Travis
CI, so the main developers can encrypt confidential informa-
tion in the configuration file with the public key. Travis CI
offers the command line tool travis to perform the encryp-
tion. Note, that all encrypted information is not available
for forks of the repository as those use another private key.
Furthermore, encrypted information is unavailable for builds
of branches of pull requests from forks.

6. DISCUSSION
There is a problem with performance tests on Travis CI.

Since Travis CI only provides their build servers, there is
no production like environment available to execute per-
formance tests that would actually produce meaningful re-
sults. However, since the software project is an open-source
project, it can be run on any machine, so it is difficult to
define a goal for performance tests. However, the Travis CI
Team is working on faster and more reliable builds, which
can also be execute on own hardware, especially for their
enterprise customers [2].

As described at the end of section 5 it is possible to in-
tegrate each feature into the mainline before the build is
executed. This idea can be extended to not only merge the
feature branch that triggered the build, but to always merge
all feature branches before a build is started [15]. If the inte-
gration of at least one feature fails, the build fails. This be-
haviour helps to quickly identify integration issues between
different features. This idea can also be realized with Travis
CI by adding commands to the before install section. How-
ever, while this is useful for teams in the business world, it
is not realistic to use this in open-source projects, as this
implies that the build status of the whole project depends
on feature implementations of hobby developers.

7. CONCLUSION
After implementing the continuous delivery pipeline as de-

scribed in this paper for an open-source project on GitHub,
the creation of a new release becomes a no event. After
the development of a feature is finished and the feature
branch passes all tests, a main developer will merge the fea-
ture branch into the mainline. This triggers a new build in
Travis CI. As soon as this is finished, Travis CI automati-
cally publishes a new release. Thus, we reached the goal to
describe how to realize continuous delivery for open-source
projects, so manual releases are no longer necessary. How-
ever, we only described the concrete realization for GitHub
and Travis CI, since these are very popular platforms for
open-source projects. How this can be done on other open-
source platforms like SourceForge, Google Code and Bit-
bucket needs further investigation.

8. REFERENCES
[1] The build environment.

http://docs.travis-ci.com/user/ci-environment/.
Accessed: 2015-01-12.

[2] Faster builds with container-based infrastructure and
docker.
http://blog.travis-ci.com/2014-12-17-faster-

builds-with-container-based-infrastructure/.
Accessed: 2015-01-12.

[3] Fitnesse. http://www.fitnesse.org/. Accessed:
2014-11-20.

[4] Github. https://github.com/. Accessed: 2014-11-06.

[5] Github flow.
https://guides.github.com/introduction/flow/.
Accessed: 2014-11-19.

[6] Travis ci. https://travis-ci.com/. Accessed:
2014-12-12.

[7] Travis ci: Configuring build notifications.
http://docs.travis-ci.com/user/notifications/.
Accessed: 2014-12-12.

[8] Travis ci: Configuring your build. http:
//docs.travis-ci.com/user/build-configuration/.
Accessed: 2014-11-20.

[9] Travis ci: Deployment.
http://docs.travis-ci.com/user/deployment/.
Accessed: 2014-12-12.

[10] Travis ci: Encryption keys. http://docs.travis-
ci.com/user/encryption-keys/. Accessed:
2014-12-12.

[11] Travis ci: Getting started. http://docs.travis-
ci.com/user/getting-started/. Accessed:
2014-11-06.

[12] Travis ci: The lifecycle of a travis ci build. http:
//docs.travis-ci.com/user/build-lifecycle/.
Accessed: 2014-11-20.

[13] M. Fowler. Continuous integration.
http://www.martinfowler.com/articles/

continuousIntegration.html. Accessed: 2015-01-12.

[14] M. Fowler. Featurebranch. http:
//martinfowler.com/bliki/FeatureBranch.html.
Accessed: 2015-01-12.

[15] S. Goff-Dupont. Story branching and continuous
integration: a swords-to-plowshares tale.
http://blogs.atlassian.com/2012/07/feature-

branching-continuous-integrationgit-bamboo/.
Accessed: 2014-11-21.

[16] J. Humble and D. Farley. Continuous Delivery:
Reliable Software Releases Through Build, Test, and
Deployment Automation. Addison-Wesley
Professional, 1st edition, 2010.

http://docs.travis-ci.com/user/ci-environment/
http://blog.travis-ci.com/2014-12-17-faster-builds-with-container-based-infrastructure/
http://blog.travis-ci.com/2014-12-17-faster-builds-with-container-based-infrastructure/
http://www.fitnesse.org/
https://github.com/
https://guides.github.com/introduction/flow/
https://travis-ci.com/
http://docs.travis-ci.com/user/notifications/
http://docs.travis-ci.com/user/build-configuration/
http://docs.travis-ci.com/user/build-configuration/
http://docs.travis-ci.com/user/deployment/
http://docs.travis-ci.com/user/encryption-keys/
http://docs.travis-ci.com/user/encryption-keys/
http://docs.travis-ci.com/user/getting-started/
http://docs.travis-ci.com/user/getting-started/
http://docs.travis-ci.com/user/build-lifecycle/
http://docs.travis-ci.com/user/build-lifecycle/
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/bliki/FeatureBranch.html
http://martinfowler.com/bliki/FeatureBranch.html
http://blogs.atlassian.com/2012/07/feature-branching-continuous-integrationgit-bamboo/
http://blogs.atlassian.com/2012/07/feature-branching-continuous-integrationgit-bamboo/

Does canary releasing lead to better software and less
downtime?

Philipp Franke
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

philipp.franke@rwth-aachen.de

Andrej Dyck
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

andrej.dyck@swc.rwth-aachen.de

ABSTRACT
In our rapidly changing world, where complex software han-
dles almost everything and downtime means losing money,
release engineers need strategies to keep the costs as little as
possible. This paper introduces canary releasing, which is a
way to roll out software for a small subset of users in order
to test in production/real-life. The main thesis is why com-
panies should use canary releases and why it leads to better
software. This is proven by statistics and leading authorities
in fields of releasing engineering.

Keywords
Canary releasing, complex software, beta testing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2014/15 RWTH Aachen University, Germany.

Towards Systematic Logging

Jan Simon Döring
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

jan.simon.doering@rwth-aachen.de

Andreas Steffens
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

andreas.steffens@swc.rwth-aachen.de

ABSTRACT
With logs being a rich source of information about a soft-
ware system, logging plays a key role for many software sys-
tem management tasks like debugging & troubleshooting,
anomaly detection & security and performance monitoring.
As different studies discovered, logging is not performed in
a systematic way which negatively affects the log quality.
Often developers are either not aware of the importance of
logging or they simply do not know what to log as they don’t
get any requirements. First of all, this paper motivates the
need for logging and analyzes current logging practices. As
the main reason for today’s problematic logging practices, a
missing logging formalization is identified. By understand-
ing logging as a discipline and not as a requirement, it pro-
poses a logging process that is aligned to the testing process
as defined in ISO 29119-2.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.5 [Software
Engineering]: Testing and Debugging—Debugging aids,
Diagnostics, Monitors, Debugging

Keywords
Logging, Guidelines, Logging Formalization

1. INTRODUCTION
Logging, the process of recording information during a

program’s runtime, is a well-known programming practice
[23]. The recorded artifacts are called logs, which, accord-
ing to the National Institute of Standards & Technology, are
composed of log entries containing information related to a
specific event that has occurred [12]. Every log entry can be
classified as a security, operating system, or application log
entry [12]. Independent of their type, every log entry’s life-
cycle typically consists of four phases, which are performed
by different stakeholders. By specifying log statements, de-
velopers define the phase of creation. Since developers often

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2014/15 RWTH Aachen University, Germany.

are responsible for configuring the logging system, they also
influence the second phase of log collection & storage. The
third phase which comprises analysis of log entries is gener-
ally performed by system operators (except for application
debug logs). In the fourth phase system operators typically
specify a retention policy determining when to remove the
log entry.

Based on the stakeholder’s perspective, the log producer
(developer) differs from the log consumer (system operator).
For this reason, it is important that developers know what
information they are required to record. Another challenge
is introduced by the unstructured nature of log messages.
For example, developers can use arbitrary field identifiers
(e.g. date vs timestamp vs creationDate) or different mes-
sage formats (e.g. XML vs JSON vs plain text) introducing
conflicts regarding the processing and comparability of log
messages. In that case, system operators would be forced to
continuously adapt and reconfigure their log analysis tools.
As recent work by Yuan discovered, these challenges are not
tackled. Logging is done in an ad-hoc and arbitrary way,
which results in log quality problems [27]. Due to the log
quality problems this paper improves current logging prac-
tices in a systematic way. First of all, section 2 establishes
the need for logging in order to motivate these logging im-
provements. Section 3 analyzes current logging practices
and identifies concrete problems, which are addressed in sec-
tion 4 and section 5 outlining a logging process and tool
support. Section 6 concludes this paper.

2. NEED FOR LOGGING
96% of the participants of a survey by Fu et. al [9] strongly

agree that logging is important for system development and
maintenance, which requires an understanding of the sys-
tem’s runtime behavior (dynamic program analysis). Al-
though there are other possibilities for dynamic program
analysis, like automated software instrumentation techniques
[5], these techniques often introduce high overhead. As
Shang stated, software instrumentation and profiling are of-
ten performed by non-system experts with limited domain
and system knowledge after the system has been build [24].
For this reason, enormous volume of data is produced, since
the non-system expert instrument the code in a blind man-
ner due to their limited system knowledge. Overall, system
operators and developers typically only rely on the software
system’s logs to understand the system’s run-time behavior
and to diagnose bugs [24].

Since the unstructured, textual nature of logs provides a
rich source of information, logs are multipurpose. As recent
work demonstrated, logs can not only be used to diagnose
bugs [10] or to understand the system behavior [8], they can
also be used for anomaly detection [14], to generate work-
load information for capacity planning [16] or to diagnose
performance problems ([18]). Moreover, they can be used
to improve the software quality in general [23]. Overall, log-
ging often is the only feasible way to provide information
for different software system management tasks. The im-
portance of logging can also be derived from its commercial
acceptance. It is an common industrial practice to request
logs upon system failures (i.e. ”send error report”) or their
systems even automatically send logs periodically (i.e. ”call-
home”) [27]. Beside these ”convenient tasks”, there are also
regulations and laws (like PCI DSS [21], FISMA[19]) which
systems and their logs need to comply with. Overall, it is
crucial not only to log, but also to log the ”right” information
to make use of them. For this reason, the following section
analyzes current logging practices to identify possible prob-
lems.

3. CURRENT LOGGING PRACTICES
As J. Arrasz and J. Buch discovered, there are many prob-

lems regarding current logging practices [1]. Todays logs of-
ten don’t have any meaningful content, their huge amount
hides important information (”needle in a haystack”) and
they are rarely index-able and therefore hard to search or
evaluate. To analyze current logging practices in a struc-
tured way, the following subsections examine if developers
log at all respectively which events they logged (section 3.1).
Moreover, they analyze which data is included (section 3.2).

3.1 Which events are logged
According to Yuan et al. [27] there is one line of logging

code every 30 lines of code (on average and at least in Open
Source Software) meaning that developers do log. Fu et. al
discovered, that half of their considered log snippets were
logged due to unexpected situations [9]. In addition, 57% of
their interviewed developers considered exception types and
function calls related to exceptions (46%) as important fac-
tors for logging decisions. Other factors like security (20%)
are considered less important for logging decisions. Overall,
developers do log but mainly events they are personally in-
terested in (like exceptions for debugging purposes).

Yuan et al. also analyzed the churn rate of logging code.
The code churn measures changes made to a component [17].
In this context, added, modified or deleted logging state-
ments from one version to another version are examined.
Yuan et al. discovered that the churn rate of logging code
is almost two times higher (1,8) than the churn rate of of
the entire code [27]. This fact implicates an active mainte-
nance of logging code, as well as some uncertainty of what
events should be logged (since statements are added, moved,
etc.). Moreover, 26% of all log modifications are log level ad-
justments meaning hat developers spend significant effort to
(re-) prioritize log messages [27]. Overall, they don’t seem
to get log specific requirements. Instead, they implement
log messages after a failure happened and logs are required.
Same goes for prioritizing log messages. Since they seem-
ingly don’t get any definition when to use which log level,
they have to estimate the cost (importance vs overhead) on

their own [27].

Concluding the findings of Yuan and Fu ([27], [9]) re-
garding which events are logged, developers log in an arbi-
trary way. It’s their subjective decision which events to log.
Mainly they log events that are valuable to them, meaning
they only consider their debugging context. Missing events
or information are added as ”after-thoughts” [27]. The fol-
lowing sections analyzes, which concrete information they
are missing to record.

3.2 Which data is (not) included
In general, a basic log message syntactically consists of

time stamp, source and data. Semantically it comprises
state (any program information contained in variables, re-
turn values, stack information etc.) and context and should
tell what happened and why it happened. According to
Chuvakin’s five W’s of logging [4] and many blog posts ([6],
[22], [13]), respectively articles ([3]), it should answer the
following:

Who was involved? The log message should include in-
formation (user identify, source address) about the in-
volved user or machine.

What happened? The log message should include the af-
fected system component (object), the event impor-
tance (priority), the cause action, the action result
(event status) and a description.

Where did it happen? The log message should answer
where the event happened by specifying the system,
application, component or code location.

When did it happen? The log message should include a
timestamp and timezone.

Why did it happen? By providing a reason the log mes-
sage helps to answer why the event happened.

Therefore an example of an useful log message would look
like the following:

2015/09/01 10 : 58 : 00AM GMT+1,
p r i o r i t y =3,
system=mainserver ,
module=authent i ca t i on ,
source =127 .0 . 0 . 1 ,
user=mustermann ,
ac t i on=log in ,
ob j e c t=database ,
s t a t u s=f a i l e d ,
reason=”password i n c o r r e c t ”

Although these guidelines exist and even different organi-
zations published their logging guidelines (Microsoft [15],
Open Web Application Security Project [20], IBM [2]), some
information are missing in real world logging. Shang no-
ticed that around 80% of the logging statements provide
the meaning of the log lines. Other aspects, like the cause,
context, and impact are often omitted [24]. As a result, de-
velopers modify 36% of their log statements at least once
(according to a study by Yuan et al. [27]. The majority of
these log modification (27%) are a result from adding new
variables to gather more context information. Fu et al. ex-
plain this fact by developers only consider function (69%)

and block level (61%) as the scope for logging decisions [9].
As a result, Petersson depicts the following log message as
an real-world example [3]:

Aug 11 09 : 11 : 19 xx n u l l p i f ? e x i t ! 0

This example not only illustrates that developers often log
data only valuable and understandable (!) to them, but also
demonstrates the difficulty of parsing the log message’s con-
tent, since developers don’t follow a consistent format but
use an arbitrary textual representation. For this reason, ev-
ery log message content modification might forces system
operators to adapt their log processing applications.

Overall, developers are not only not aware of the sys-
tem operator’s log importance, but also subjectively decide
which information they need. For this reason, even today
the power of logs cannot be fully leveraged. To tackle these
problems a systematic logging approach is required, which
the following section introduces.

4. LOGGING PROCESS
To introduce an organization-wide awareness about the

importance of logging and to improve the log quality, an
formalized logging process is needed, which this sections pro-
poses. As Yuan et al. identified, logging plays a significant
part in software evolution, because of its ad-hoc practice.
Thus, a formalized logging process would not only improve
log quality, but also shorten development time.

Since Logging is structural similar to testing, the outlined
logging process is influenced by the Testing Process as de-
fined in ISO-29119-2 [11]. Figure 1 illustrates the proposed
logging process. In general, the process comprises differ-
ent stages like the ISO testing process. The first stage is
about creating and maintaining an Organizational Log-
ging Policy which defines the scope of logging in an organi-
zation by specifying high-level principles and goals. Because
the Logging Policy should be understandable on executive
management level, it doesn’t contain any technical details.
For example, an organizational logging policy could state
”All logging should follow the CEE 1.0 specification”. Based
on the Logging Policy, the second process stage defines an
organizational-wide Logging Strategy, which is a technical
document that details the expected logging practice across
the organization. It provides guidelines and reusable tem-
plates for project specific logging plans which are created
on the third stage of the logging process. Both the Logging
Policy and the Logging Strategy ensure that a consistent
logging approach is maintained across all projects of an or-
ganization.

While the first two logging process stages are performed at
organizational level, the third stage is performed on project-
level. Thinking of smaller organization, not every organiza-
tion requires to establish a custom logging policy and strat-
egy. Instead, existing guidelines and best practices ([6], [22],
[13], [15], [20], [2]) can be adopted. No matter what is used
as a basis for the logging strategy, the third stage is heavily
influenced by the logging strategy. Since this third stage is
at the core of our logging process, it is described separately
in the following subsection.

4.1 Project Logging Process

The project-level logging process is illustrated in figure 1.
It comprises three major activities (Project Log Plan Devel-
opment, Implementation, Log Analyse) which are performed
in a continuous manner. Prior to describing these activities,
the following introduces main roles and responsibilities in
the logging process.

4.1.1 Roles and Responsiblities
As logging is a cross-functional team activity, different

stakeholders are involved in the logging process. Using their
relationship to log messages as a taxonomy, two different
stakeholder can be identified.

Developers implement log statements. Normally they use
logging only for debugging purposes and are not aware
of other stakeholders and their log related interests
or system limitations (e.g. resource limitations). To
improve their awareness and to ease implementation,
the logging process requires them to communicate with
other stakeholders and plan logging upfront for defin-
ing concrete requirements. Since they are expected to
deliver high-quality software, they require field-knowledge
answering how the software performs in operation. As
Shang stated, this field-knowledge can be gathered by
using logs if developers and system operators cooper-
ate [23]. Therefore developers are not only responsible
to realize logging specific requirements, they are also
responsible to specify them in a cross-functional man-
ner.

System operators use logs for management tasks of their
system, which they are responsible for. They analyze
the log messages content to gather information deal-
ing with performance, security or other run time as-
pects. Since they do not implement log statements,
their analysis possibilities heavily depend on the logged
information specified by developers. To use these in-
formation at all, they require developers to log in a
consistent way. To support developers and to gather
development knowledge to enhance their log message
understanding, operators are responsible to plan and
define concise logging related requirements and to com-
municate field knowledge to developers.

4.1.2 Activities
The project-level logging process comprises several activ-

ities, which are detailed below.

Log Plan Development To tackle the current ad-hoc log-
ging practice (see section 3), the proposed logging pro-
cess relies on planning. Before implementation, the
project’s logging approach and the logging require-
ments are specified in the log plan, which basically is a
project specific (tailored) logging strategy. Thus, the
log plan is a document that specifies both technical and
functional log related aspects. For the technical as-
pects it defines logging mechanism to be used through-
out the project, message encapsulation and transport
formats. In addition, other technical aspects like log
message storage and disposal are specified. The func-
tional aspects comprise concrete requirements which
events to log, how to exactly log (e.g. use dedicated
loggers for different contexts) and define reusable log

Project Logging Process

Developer

System Operator

Project Log Plan
Development

Implementation

Log Analysis

Control / Feedback

influences

LogPlan

Log Message

Organizational Logging Policy Development

Organizational Logging Strategy Development

Organizational Logging Policy Feedback on Logging Policy

Regulations

Logging Strategy

Feedback on Logging Strategy

performs

performs

Project Change Management

ReportsChanges

Figure 1: Logging Process

statement templates. Both, developers and system op-
erators perform this activity together. This ensures
not only their logging commitment and awareness of
each ”world” but also enables to specify and communi-
cate(!) their stakeholder specific requirements. That
way different logging contexts (Debugging, Security,
Performance, Compliance etc) can be addressed. As
stated, the log plan is a tailored logging strategy. Since
the tailoring not only bases on the stakeholder require-
ments, but also on (external) regulations and laws the
projects needs to comply to, figure 1 explicitly illus-
trates that the log plan development is influenced by
regulations like PCI DSS (Data Security Standard [21])
or FISMA (Federal Information Security Management
Act [19]).

Implementation After one iteration of project specific log
planning is done and a log plan has been created, devel-
opers can begin to implement logging and the required
log statements. One important aspect of coding these
statements is documentation. As Shang identified, one
way to improve the log quality and analysis possibili-
ties is to provide system operators with development
knowledge [23]. Therefore, developers are required to
document their log statements to persist development
knowledge. Referring to the high churn rate of logging
code of current logging practices (see section 3), it is
important to note that evolving log statements must
be communicated upfront and of course still need to
comply with the log plan.

Log Analysis While run-time, log processing applications
which assist in storing, querying and analyzing logs
(e.g.Splunk [25] or LogStash [7]) collect occurring log
events. System Operators then gain field knowledge

by using these tools to monitor the log event produc-
ing application and to evaluate the data. Most im-
portantly, system operators need to share this field
knowledge with developers enabling them to improve
the software quality. In addition, they have to use any
gained information as feedback to reiterate the logging
process to adjust the log plan. For example, they could
experience that the amount of performance related log
messages with an informative priority, i.e. Log Level
INFO, is too huge such that these messages cannot be
leveraged. For this reason, they reiterate the log plan-
ning phase reducing priority and filtering mechanisms
or they vote on an adaptive logging approach (logging
on-demand [9]), which only emits a log message, when
certain (performance-related) criteria a met, e.g. re-
sponse time > 200ms.

Log Strategy Feedback In addition to the log plan feed-
back originating from the Analysis, there is feedback
for the organizational log strategy. Because Log Strat-
egy Feedback is only applicable if an organizational
log strategy is employed, which must not be the case
thinking of smaller organizations, this feedback activ-
ity is described separately, although it is part of the
log planning activity (since log planning is about tai-
loring the organizational log strategy and therefore the
appropriate place to perform the feedback activity).
Overall, developers and system operators perform this
log strategy feedback activity. Based on the experi-
ences they made while realizing logging for a specific
project, they are able to give generalized guidelines
or improved practices. Taken an organization into ac-
count that mainly develops software for U.S. federal
agencies, every projects needs to comply with the Fed-
eral Information Security Management Act (FISMA),

which also states logging requirements [12]. In this
case it would be reasonable to facilitate compliance
with FISMA by specifying a project independent way
in the logging strategy and not to plan the way of
reaching compliance for every single project over and
over again.

Change Management System Operators analyze collected
log data for example to detect application failures.
They report these failures as bug reports enabling de-
velopers to trace and fix problems. Of course there are
other kind of reports. According to Chuvakin, popular
report categories beside failure and critical error re-
ports are: Authentication and Authorization Reports,
System and Data Change Reports, Network Activity
Reports, Resource Access Reports and Malware Activ-
ity Reports [4]. In reaction to these reports, code mod-
ifications might be required. For example there might
be bugs, security vulnerabilities or some resources are
exhausted because of inefficient implementations. Fix-
ing these problems requires code modifications and
possibly added or modified log statements. Moreover,
software evolves over time (thinking of new releases /
features). To this reason, developer and system op-
erator perform change management whenever a code
modification is required. They plan and agree upon
code modifications and by reiterating the logging pro-
cess they also consider required logging modifications
and ensure a consistent logging approach.

Overall, these activities respectively the log planning en-
sures that developers don’t have to log in an ad-hoc manner.
Assuming the log plan is accurate, they don’t need to decide
which information and events should get recorded. They just
have to follow the log plan. With the logging process being
defined, the following section shortly analyzes if there is tool
related logging support.

5. TOOLING
Considering the proposed project logging process, only

log message analysis related tools are available. As one par-
ticipant of a survey made by Fu et al. explicitly stated
(”...more automatic for writing logs, instead of writing all
by myself ”) [9], developers need and want support regard-
ing the log statement implementation. With the log plan
offering reusable log statement templates and defining con-
crete rules for log message priorities etc., developers get some
support. Nevertheless, they would benefit from tool support
regarding the realization of the log plan.

Some tool related research has been made. Yuan et al.
presented a tool for enriching existing log statements [28]
which could be integrated to an IDE providing developers
with valuable feedback on their log statements. Park et
al. introduced a tool to automatically insert log statements
[26], but this approach is limited to failure diagnosis leaving
the need for future work in this area. In addition, both ap-
proaches are not designed to incorporate the project-specific
log plan.
As logging might produce huge amounts of data resulting
in a performance overhead, operators should have tools to
easily configure the log level during run-time to reduce the
produced data amount. Ideally, this configuration can be
automated in a proactive manner dynamically adapting the

log level based on certain conditions. But to the best of our
knowledge, these tools don’t exist yet.

6. CONCLUSION & FUTURE WORK
Logs are a means to communicate important run-time be-

havior. Their rich nature introduced many log processing
applications (e.g. Splunk, LogStash) that assist system op-
erators in storing, querying and analyzing logs. As research
demonstrated with a wide variety of use cases for log data,
logs are multipurpose. But leveraging their rich but tex-
tual nature introduces many challenges. Based on the stake-
holder perspective, the log producer (developer) often differs
from the log consumer (system operator). To this reason it
is important that developers know which information sys-
tem operators require them to record for analysis purposes.
The unstructured nature of log messages introduces another
challenge. For example, developers can use arbitrary field
identifiers (e.g. date vs timestamp vs creationDate) or dif-
ferent message formats (e.g. XML vs JSON vs plain text)
introducing conflicts regarding the processing and compara-
bility of log messages. In that case, system operators would
be forced to continuously adapt and reconfigure their log
analysis tools to make use of the log data.

Even today these challenges are not tackled. Logging is
done in an ad-hoc and arbitrary manner resulting in log
quality problems. Feeling they own the logs, developers of-
ten change and update log statements making an useful anal-
ysis really difficult. In addition they rarely get any logging
specific requirements leading them to record only informa-
tion they need or they understand. Although if all required
information are included, understanding these messages of-
ten requires development knowledge which system opera-
tors don’t have. Thus, system operators can not make use
of these messages. Interestingly, there are many guidelines
and tips supporting developers in deciding what, when and
how to log, but developers rarely follow these guidelines. Ei-
ther they are not aware of them or consider logging only for
debugging purposes. Since the importance of logging with
more and more large scale applications will only grow, it
is important to improve current logging practices. To this
reason a logging process is needed which formalizes and in-
strumentalizes logging. This paper outlined such a logging
process which is aligned with the testing process as defined
in ISO 29119-2.

To cope with many stakeholder related logging challenges,
the outlined logging process focuses on communication and
planning. In a cross-functional manner, developers and sys-
tem operators create a project specific log plan which contin-
uously is adapted and details the expected logging practice.
Based on this plan, developers implement and realize logging
which system operators then make use of during run-time
and continuously improving the log quality by giving feed-
back regarding log messages content. To ease the adoption
of the outlined logging process, which needs to be formalized
in future work, tool support is required. While tools sup-
porting system operators in log analysis already exists (e.g.
Splunk [25], Logstash [7]), tools supporting developers in
implementing log statements or enabling system operators
to configure logging during run-time don’t or barely exist
yet, which gives plenty of opportunity and need for future
work. Given the logging process and appropriate tools in

future, the power of logging then can be fully leveraged.

7. REFERENCES
[1] J. Arrasz and J. Buch. Die Kunst des Logging.

http://jaxenter.de/artikel/logging-production-

ready-176454, 2014. Retrieved 31/12/14.

[2] C. Chan. Effective logging practices ease enterprise
development. http://geekdetected.files.
wordpress.com/2013/12/effective-logging-

practices-ease-enterprise-development.pdf,
2005. Retrieved 09/12/14.

[3] A. Chuvakin and G. Peterson. How to Do Application
Logging Right. IEEE Security and Privacy,
8(4):82–85, 2010.

[4] A. Chuvakin, K. Schmidt, and C. Phillips. Logging
and Log Management: The Authoritative Guide to
Understanding the Concepts Surrounding Logging and
Log Management. Syngress Publishing, 2013.

[5] B. Cornelissen, A. Zaidman, A. van Deursen,
L. Moonen, and R. Koschke. A Systematic Survey of
Program Comprehension through Dynamic Analysis.
IEEE Transactions on Software Engineering,
35(5):684–702, Sept. 2009.

[6] C. Eberhardt. The Art of Logging.
http://www.codeproject.com/Articles/42354/The-

Art-of-Logging, 2014. Retrieved 09/12/14.

[7] Elastic Search Inc. Logstash.
http://www.elasticsearch.org/overview/logstash,
2015. Retrieved 12/01/15.

[8] Q. Fu, J.-G. Lou, Q. Lin, R. Ding, D. Zhang, and
T. Xie. Contextual Analysis of Program Logs for
Understanding System Behaviors. In Proceedings of
the 10th Working Conference on Mining Software
Repositories, MSR ’13, pages 397–400, Piscataway,
NJ, USA, 2013. IEEE Press.

[9] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin,
D. Zhang, and T. Xie. Where do developers log? an
empirical study on logging practices in industry. In
Companion Proceedings of the 36th International
Conference on Software Engineering - ICSE
Companion 2014, ICSE Companion 2014, pages
24–33, New York, New York, USA, 2014. ACM Press.

[10] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul,
V. Orgovan, G. Nichols, D. Grant, G. Loihle, and
G. Hunt. Debugging in the (Very) Large: Ten Years of
Implementation and Experience. In Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 103–116, New
York, NY, USA, 2009. ACM.

[11] ISO. Software and systems engineering – Software
testing – Part 2: Test processes. ISO 29119-2,
International Organization for Standardization, 2013.

[12] K. Kent and M. P. Souppaya. SP 800-92. Guide to
Computer Security Log Management. Technical
report, Gaithersburg, MD, United States, 2006.

[13] I. Levent. Application Logging: What, When, How.
http://java.dzone.com/news/application-

logging-what-when, 2009. Retrieved 09/12/14.

[14] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li. Mining
Invariants from Console Logs for System Problem
Detection. In Proceedings of the 2010 USENIX
Conference on USENIX Annual Technical Conference,

USENIXATC’10, page 24, Berkeley, CA, USA, 2010.
USENIX Association.

[15] Microsoft. Logging Guidelines (Windows).
http://msdn.microsoft.com/en-us/library/

windows/desktop/aa363667%2528v=vs.85%2529.aspx.
Retrieved 09/12/14.

[16] M. Nagappan, K. Wu, and M. A. Vouk. Efficiently
Extracting Operational Profiles from Execution Logs
Using Suffix Arrays. In 2009 20th International
Symposium on Software Reliability Engineering, pages
41–50. IEEE, Nov. 2009.

[17] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In
Proceedings of the 27th international conference on
Software engineering - ICSE ’05, page 284, New York,
New York, USA, May 2005. ACM Press.

[18] K. Nagaraj, C. Killian, and J. Neville. Structured
Comparative Analysis of Systems Logs to Diagnose
Performance Problems. In Proceedings of the 9th
USENIX Conference on Networked Systems Design
and Implementation, NSDI’12, page 26, Berkeley, CA,
USA, 2012. USENIX Association.

[19] NIST SP. 800-53. Recommended Security Controls for
Federal Information Systems, pages 800–853, 2013.

[20] Open Web Application Security Project (OWASP).
Logging Cheat Sheet - OWASP. https:
//www.owasp.org/index.php/Logging_Cheat_Sheet,
2014. Retrieved 09/12/14.

[21] PCI. Data Security Standard.
https://www.pcisecuritystandards.org/

documents/pci_dss_v2.pdf, 2010. Retrieved
11/12/14.

[22] R. Sethi and N. Bhalla. Building Secure Applications:
Consistent Logging. http:
//www.symantec.com/connect/articles/building-

secure-applications-consistent-logging, 2010.
Retrieved 09/12/14.

[23] W. Shang. Bridging the divide between software
developers and operators using logs. 2012 34th
International Conference on Software Engineering
(ICSE), pages 1583–1586, June 2012.

[24] W. Shang. Log Engineering: Towards Systematic Log
Mining to support thedDevelopment of ultra-large scale
software systems. PhD thesis, Queen’s University,
2014.

[25] Splunk Inc. Splunk. http://www.splunk.com/, 2015.
Retrieved 12/01/15.

[26] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee,
X. Tang, Y. Zhou, and S. Savage. Be Conservative:
Enhancing Failure Diagnosis with Proactive Logging.
In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation,
OSDI’12, pages 293–306, Berkeley, CA, USA, 2012.
USENIX Association.

[27] D. Yuan, S. Park, and Y. Zhou. Characterizing
Logging Practices in Open-source Software. In
Proceedings of the 34th International Conference on
Software Engineering, ICSE ’12, pages 102–112,
Piscataway, NJ, USA, 2012. IEEE Press.

[28] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage.
Improving Software Diagnosability via Log
Enhancement. SIGPLAN Not., 47(4):3–14, 2011.

http://jaxenter.de/artikel/logging-production-ready-176454
http://jaxenter.de/artikel/logging-production-ready-176454
http://geekdetected.files.wordpress.com/2013/12/effective-logging-practices-ease-enterprise-development.pdf
http://geekdetected.files.wordpress.com/2013/12/effective-logging-practices-ease-enterprise-development.pdf
http://geekdetected.files.wordpress.com/2013/12/effective-logging-practices-ease-enterprise-development.pdf
http://www.codeproject.com/Articles/42354/The-Art-of-Logging
http://www.codeproject.com/Articles/42354/The-Art-of-Logging
http://www.elasticsearch.org/overview/logstash
http://java.dzone.com/news/application-logging-what-when
http://java.dzone.com/news/application-logging-what-when
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363667%2528v=vs.85%2529.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa363667%2528v=vs.85%2529.aspx
https://www.owasp.org/index.php/Logging_Cheat_Sheet
https://www.owasp.org/index.php/Logging_Cheat_Sheet
https://www.pcisecuritystandards.org/documents/pci_dss_v2.pdf
https://www.pcisecuritystandards.org/documents/pci_dss_v2.pdf
http://www.symantec.com/connect/articles/building-secure-applications-consistent-logging
http://www.symantec.com/connect/articles/building-secure-applications-consistent-logging
http://www.symantec.com/connect/articles/building-secure-applications-consistent-logging
http://www.splunk.com/

	SWC_2014_submission_1
	Introduction
	Provisioning and Configuration Management
	Basic Concepts
	Puppet
	NixOS

	Machine Environments
	Vagrant
	Docker

	Multi-Cloud Systems
	Terraform
	NixOps

	The Software Process
	Testing infrastructure
	Testing and deploying software

	Discussion
	Conclusion
	References

	SWC_2014_submission_2
	Introduction
	When did our system become aged?
	Estimating the health of a system
	Software Health Management
	Model-Based SWHM for Information Systems
	Component Level Health Management
	System Level Health Management
	Example

	Conclusion
	References

	SWC_2014_submission_3
	Introduction
	Background
	Changing the Software Architecture
	From a Monolith to Microservices

	Research method
	Survey construction
	Data assessment
	Data preparation
	Description of the sample

	Results
	Discussion
	Conclusions
	Acknowledgments
	References

	SWC_2014_submission_4
	Introduction
	The advantages and disadvantages of TDD
	Advantages of TDD
	Disadvantages of TDD

	Applying Test-driven development
	Limiting factors in adopting TDD
	Solutions to limiting factors

	Conclusions
	References

	SWC_2014_submission_5
	Introduction
	Timeline
	Possible reasons for industrial dominance

	Impact
	Categories
	Conclusions
	References

	SWC_2014_submission_6
	Introduction
	Release engineering vs. DevOps
	Release Engineering
	DevOps
	Differences

	Definitions
	Release Engineering
	DevOps

	Discussion
	Conclusion
	Acknowledgments
	References

	SWC_2014_submission_7
	Introduction
	Architectural Technical Debt
	ATD Approaches
	Indicating ATD by using Modularity Metrics approach
	Measuring ATD through Value-Oriented Architecting
	Dependency Metrics on measuring ATD

	Comparison of the approaches
	Discussion
	Conclusions
	References

	SWC_2014_submission_8
	Introduction
	The Examined System and Goals
	OpenWebRTC
	Goals

	Analyzing OpenWebRTC
	The C Daemon
	Compiler Flags
	Aspect Oriented Programming
	DTrace

	The JavaScript Code
	DTrace Providers
	Jalangi

	Summary

	Conclusion
	Related Work
	References

	SWC_2014_submission_9
	SWC_2014_submission_10
	Introduction
	Related work
	Code smells state of the art
	 Methodology
	Results
	Conclusions
	References

	SWC_2014_submission_11
	Introduction
	Approaches to Reduce the Model-code-gap
	Related Work
	Concepts
	Tools

	Interview Analysis
	Background
	Goals
	Analysis

	Conclusion and Future work
	Threats for Validity
	Acknowledgements
	References

	SWC_2014_submission_12
	Introduction
	Classical Metrics in the 1990s
	Classical Metrics Review
	Classical Metrics Analysis

	Modern Metrics in the 2000s
	Modern Metrics Review
	Modern Metrics Analysis

	Latest Metrics in the 2010s
	Latest Metrics Review
	Latest Metrics Analysis

	Conclusions
	References

	SWC_2014_submission_13
	Introduction
	Continuous Delivery
	Working in open-source projects
	GitHub
	Travis CI
	Discussion
	Conclusion
	References

	SWC_2014_submission_14
	SWC_2014_submission_15
	Introduction
	Need for logging
	Current logging practices
	Which events are logged
	Which data is (not) included

	Logging Process
	Project Logging Process
	Roles and Responsiblities
	Activities

	Tooling
	Conclusion & Future Work
	References

