
Proceedings
of Seminar

Full –Scale Software Engineering

2016
Editors: Horst Lichter

Andreas Steffens
Firdaus Harun
Konrad Fögen
Andrej Dyck
Simon Hacks

Changes in Requirements Engineering After Migrating to
the Software as a Service Model

Johannes Schäfer
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

johannes.schaefer2@rwth-aachen.de

Horst Lichter
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
lichter@swc.rwth-aachen.de

ABSTRACT
Service-oriented architectures are widely considered to be
the determining trend in software engineering. Vendors of
software products want to benefit by migrating to cloud en-
vironments. However, when transforming an existing soft-
ware system from the Software as a Product model to the
Software as a Service model the software engineering process
changes. While the process in general has been researched
sufficiently, very low effort has been put into understanding
the impact on requirements elicitation.

This paper investigates the necessary changes in the re-
quirements engineering process and provides a systematic
approach for a successful transformation. Furthermore, it
discusses the new benefits in requirements elicitation that
are inherent in a cloud environment. The paper then dis-
cusses the identified problems and developed solutions with
regards to deduced guidelines and best practices.

We conclude that the requirements engineering process
profits from a systematic transformation when migrating a
traditional software product to the Software as a Service
model.

Keywords
Software Engineering, Requirements Engineering, Software
as a Service (SaaS), Cloud Environment, Reengineering

1. INTRODUCTION
Studies show that 20% of the IT companies consider using

Software as a Service (SaaS) as important or very important.
For the majority of the IT specialists the topic is of average
importance or lower [21]. Nevertheless, this is due to reserva-
tions regarding security (75%), performance and availability
(63%) and integration with existing systems (61%), as these
companies describe [21]. Another study points out that hir-
ing a software instead of purchasing yields in a saving of 45%
of the customer’s expenses in a three year time span [17].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2015/16 RWTH Aachen University, Germany.

Service Provider (SaaS)

End User

Cloud Provider (PaaS)

Framework Computing

Web Interface

Hosting Provider (IaaS)

Utility Computing

Figure 1: The cloud computing model [1] [11] [18]

SaaS is an element of the Internet-based computing model
Cloud Computing. A cloud computing environment is essen-
tially characterized by on-demand self-service, broad net-
work access, resource pooling (using multi-tenancy), rapid
elasticity and measured service according to the National
Institute of Standards and Technology (NIST) [11].

To complete the cloud infrastructure two further elements
– besides SaaS – have been identified by the NIST. The pro-
vision of runtime environments, libraries, other services and
software tools by a certain provider is called Platform as
a Service (PaaS). The customer of a PaaS has hardly any
management control over the underlying platform compo-
nents, but full control over the deployed applications [11].
Another step away from the end user is the Infrastructure
as a Service (IaaS), which completes the cloud computing
model. The IaaS provider is accountable for storage and
network facilities and other hardware components, while the
customer can install and run arbitrary software, including
even operating systems [11].

Following the SaaS model, both the software system itself
and the user data are hosted and stored centrally. Instead
of purchasing a product, the user rents a software system,
IT infrastructure and annexed services from the vendor and
is typically charged on a pay-per-use principle [10]. A SaaS-
based software system, however, differs from one that is de-
veloped under the Software as a Product (SaaP) model in
many ways. Its architecture is mainly database-oriented,
middleware-oriented, PaaS-based and service-oriented (see

Figure 1) [18]. This results in differing non-functional re-
quirements compared to classical software products [17]. When
transforming a software product into a software service, the
vendor has to consider these changes in architecture and re-
quirements [4] and in the whole software development pro-
cess [7] [13].

In this paper, we collect differences in software require-
ments between the two models. For this purpose, we have
conducted a review of pertinent literature. We also stud-
ied research on existing software migration processes and
developed conclusions on how to consider variations in re-
quirements in such process changes. The aim of the present
work is to provide a generic approach that helps those soft-
ware developers who want to migrate their software product
to the SaaS model.

Section 2 covers the background information auxiliary for
a comprehension of the SaaS model and the concomitant
changes in software requirements. Section 3 outlines the
work related to the requirements engineering process in a
SaaS environment. In Section 4 the necessary changes in
a requirements engineering process are presented and such
a transformation is systemized. Section 5 discusses the de-
veloped process by means of deduced guidelines and best
practices. In Section 6 limitations of the proceeding are dis-
cussed and Section 7 draws conclusions and provides future
work.

2. BACKGROUND

2.1 Software as a Service
For many years, software has been produced in a supply-

side oriented manner [17]. A software vendor puts effort
into the requirements elicitation for a certain problem, de-
velops and tests the software and releases the final product
to the market. The customer or the software vendor’s sup-
port team installs a copy of the software product at the
customer’s infrastructure after purchasing a licence. While
minor software updates are usually conducted via an In-
ternet interface and included in the one-time price, major
upgrades often require buying a new software product [3].

The SaaS model, in comparison, is the trend in software
engineering of the 21st century that challenges this tradi-
tional model [1]. The customer of a SaaS-based software
purchases a usage right for a certain time span. In return,
the vendor grants access to the online service, often com-
bined with an individual number of accesses depending on
the customer’s price plan.

Since its first mentions in research in the 2000s, SaaS has
gained more and more attention both from scientific and pro-
duction points of view. While different approaches – such as
iterative and incremental development processes and modu-
lar software products – have been established to address the
issues of developing and deploying more complex software
products, the SaaS model is a radical shift of the means by
which software is engineered.

Providing Software as a Service in contrast to a product,
at a first glance, is a manner of distribution policy affecting
business issues like time to market, customer involvement
and release cycles [12]. The service-orientation of software,
however, also comes with major paradigm changes regarding
the software development. The SaaS model utilizes services
as the rudimentary factor for organizing the complexity of
software [13]. The underlying principle of software design

Service
Provider

Client
Service

Directory

BindPublish

Find

Figure 2: The service-oriented architecture model

is Service-oriented architecture (SOA), an architecture in
which loosely coupled but strictly separated software com-
ponents (usually single business functions) interact via pub-
lic interfaces as composite services. This allows for binding
components only when they are needed and in a scalable
way. SOA itself is platform-agnostic and does not define the
manner of service orchestration, security etc [13].

These services are made available by service providers
that come up with the service infrastructure and the im-
plementation and provide the interface description for ac-
cess over the Internet (web-based). In order to publish and
find integration-ready services, a common service directory
is needed (see Figure 2). Services itself are composed of
other services recursively [3].

2.2 Changed Requirements
Compared to the traditional SaaP model, SaaS relies on a

different infrastructure and varies in distribution and access
(see Section 2.1). When migrating a software product to
the SaaS model, one usually intends to maintain most of
the software’s functionality [9]. As a result, the differences
in the software engineering process narrow down to non-
functional requirements [2] and other aspects affecting the
software development process like operation, management
and architecture [17], albeit not functional requirements.

Those aforementioned differences in non-functional require-
ments are basically due to three factors:

1. SaaS-based software is necessarily hosted in cloud envi-
ronments either operated by the software vendor itself
or by a third party offering PaaS solutions (see Sec-
tion 1). A few very large companies offering software
services unify the PaaS part and the SaaS part under
a single roof, such as the on-demand video stream-
ing platform Netflix. These companies act as platform
providers for themselves.

2. Such software is primarily distributed as a web-based
application [14] [19] [20] using the Internet and associ-
ated protocols for data transmission.

3. A high proportion of software offered as a service is
realized as browser-supported applications [14] [20],
meaning that no dedicated software is necessary on the
client’s device except the already existing web browser.

Factor 1 results in a focus of the non-functional require-
ments on security, data confidentiality, privacy and compli-
ance, since the server location determines legal aspects such
as data protection laws and a company’s compliance regu-
lations [7] [17]. In addition, a cloud service provider is a

more probable victim of security attacks than a decentral-
ized structure or a company’s private network. Albeit it is
harder to conduct successful attacks on professional cloud
service providers, special precautions have to be considered.

Most differences in non-functional requirements are a con-
sequence of Factor 2: Multi-tenancy, user concurrency, con-
figurability, scalability, reliability, performance, availability,
compatibility, interoperability, portability, efficiency and im-
mediacy [5] [7] [8] [16] [17]. Other aspects include continuous
evolution, the involvement of a higher number of stakehold-
ers and increased usage monitoring [7].

Special demands on aesthetics and user interface design
and the limitations of browser-supported applications are
influenced by Factor 3.

3. RELATED WORK
Back in 2000, Bennett et. al [3] have recognized trends in

software development that are influenced by the emerging
Internet. They develop a future vision in which software
is flexible, interactive, personalized and self-adapting and
the software engineering is demand-led, service-oriented and
focusses on the requirements elicitation. In their conclusion
the authors point out that future work tshould focus on the
necessary changes in the software engineering processes.

Papazoglou [13] has published seminal work on the ba-
sic concepts behind SOA. As one of the first authors he
described the effects of SaaS on business processes and on
software engineering. Papazoglou concludes that the SOA
requires strong alterations in software design.

Olsen, the author of [12], has investigated necessary paradigm
changes from a business point of view. He outlines that a
SaaS-based software system creates a very different customer
relationship than a SaaP-based. Olsen makes the update
mechanisms responsible as they require long-term committ-
ment of the vendor and facilitate non-disruptive upgrades.
The author also points out the advantages of modularity and
rapid releases for the customers.

In their study [1] Armbrust et al. present definitions for
the different aspects of the topic cloud computing. They
locate the role of SaaS and list benefits as well as obstacles
and demonstrate means of how to avoid them.

Since these seminal works, research has made a lot of
progress. In their study [7] Kumar and Sangwan present
traditional software engineering process models and main
concepts (e.g. iterative development). They continue col-
lecting aspects which make the development of web-based
applications different from traditional software. According
to the authors the main aspect is the continuity of the pro-
cess that also requires a systematic, repeatable and iterative
process. Together with lists of attributes and characteristics
of web-based applications they provide a very general adap-
tion of a traditional software engineering process model to-
wards a model which is suitable for web-based applications.
However, the authors fail to present a detailed process as a
result that can be used for developing such applications.

Nogueira da Silva and Lucrédio [15] have also conducted
an extensive literature review. They found out that the re-
search interest has incresead over the last years. They iden-
tify the main challenge for cloud-based software engineering
to be the lack of standardization. E.g. choosing a PaaS-
provider may result in platform lock-ins where customers
cannot easily switch to another service provider. Besides
a grouping and the presentation of challenges for SaaS de-

velopers, the authors provide definitions of the terms SaaS
and SOA. They conclude that a research gap exists regard-
ing the formalization of a complete reengineering process in
terms of reconstructing the software for a new platform.

Balian and Kumar [2] group and review studies in the
field of SaaS development. They introduce literature which
focusses on development from scratch as well as studies for
migration and reengineering. Furthermore, the authors dis-
cuss research on quality models for SaaS and draw the con-
clusion that the adaption of software engineering process
models, quality models and metrics for SaaS is not suffi-
cient.

The most relevant recent works have been conducted in
the field of comparing the software engineering processes
of the SaaP model and the SaaS model. Tariq et al. [17]
address the impact a cloud environment has on the require-
ments of an application. They list technical non-functional
requirements, legal concerns and other issues from the data
management. The authors then categorize these topics and
identify the new stakeholder cloud service provider. As a
result, they propose an addition to the Capability Maturity
Model Integration (CMMI) reference model that includes a
checklist for the new stakeholders.

Research has provided detailed descriptions of the SaaP
model and the fundamentals behind the SaaS model. Recent
work also exists which covers the transformation of a service-
oriented system into a cloud-based software that follows the
SaaS model [4] [5] [9] [14] [20]. However, there is no process
support for migrating an existing software product into such
a service-based software. Furthermore, we could not find
any migration strategies that cover the differences in the
requirements elicitation process. This paper intends to fill
this gap by providing a systematic and generic approach for
sustainably migrating a traditional software product to the
SaaS model. This approach covers the software adaptions
as well as the necessary changes in the existing software
engineering process in a clear and repeatable way with focus
on the changed requirements elicitation.

4. REQUIREMENTS ENGINEERING PRO-
CESS FOR SAAS

4.1 Differences Between Processes
This section strictly focusses on the requirements engi-

neering process. However, some aspects affect different phases
of the software engineering process as well and others are as
a matter of fact just side issues from requirements’ point
of view. Nevertheless, all aspects are included in the enu-
meration in order to provide a holistic view of the differences
between the traditional and the SaaS-based requirements en-
gineering process. This understanding of the requirements
and their importance is crucial for the general software de-
velopment process [17].

First of all, in comparison with the SaaP model, SaaS
involves more kinds of stakeholders. Kumar and Sangwan
[7] identify those as analysts, graphic designers, customers,
marketing, security experts etc.

But the requirements engineering process not only has an
expanded stakeholder basis. As mentioned in Section 2.2,
SaaS comes with a stronger customer involvement and long-
term relationships between the SaaS provider and the end
user [12]. The user is motivated to provide feedback – di-

Table 1: Differences in requirements engineering between SaaP and SaaS
Software as a Product Software as a Service
Overseeable number of stakeholders Many different stakeholders
Little or no customer involvement High customer involvement
Customer relationship on a per-version basis Long-term customer relationship
User feedback only via special surveys Direct user feedback motivated through regular

updates and via usage monitoring
Bug fixes on a scheduled basis Bug fixes immediately
No feature enhancements without upgrade Continuous rollout of feature enhancements with-

out time delay
Updates and upgrades usually require downtime Seamless update integration process
Upgrades have high impact and often require re-
training

Continuous update process causes less disruptive
changes

Difficult to test and predict acceptance Two or three variations tested on small user
groups simoultanously

rectly or indirectly via usage monitoring –, since a feature
enhancement can be expected and he/she will profit from it
without extra cost and in foreseeable time. The integration
of bug fixes and new features is seamless and without in-
terruptions because the software is centrally hosted on the
company’s servers instead of on the customer’s infrastruc-
ture. They are furthermore integrated without time delay
since time to market is reduced significantly due to the fact
that new versions are released early and often and are not
considered to be a distinct software product [17].

The difference between enhancements and bug fixes be-
comes indistinguishable to the end user [12]. These less
disruptive updates, which respectively approach just a few
problems but in return happen more frequently, require fewer
amount of retraining on the end user’s side [12].

Moreover, the centrally hosted, multi-tenant software as
a service offers additional opportunities in testing new fea-
tures. The acceptance can be evaluated by rolling out the
feature to just a selected proportion of users and awaiting
their feedback. Even providing two or three variations of a
feature to several user groups is possible and allows for com-
paring differences and selecting the implementation with the
highest user approval.

The described characteristics together lead to and require
a process with continuous development, frequent modifica-
tions and feedback [7]. This means shifting from a user-
centered requirements engineering process to a service-centered
process [17] that is at best iterative and parallel to the pro-
ductive use of the software. At the same time, the require-
ments engineering and the development in general focus on
only one stable version and do not require support for legacy
software [12], which saves development resources.

Altogether, this is no less than a paradigm change in re-
quirements engineering compared to the traditional SaaP
model. Table 1 contrasts the differences of the requirements
engineering processes mentioned beforehand.

4.2 Systematic Transformation
Requirements engineering is an important part of the soft-

ware engineering process (see Figure 3). The aim is to elicit,
structure, prioritize and coordinate the particular require-
ments of the software system, respectively of a single fea-
ture of the software. When migrating a software product to
the SaaS model, the requirements engineering process has
to be transformed in order to effectively accompany the new

Requirements
Engineering

Analysis &
Design

Implementation

DeploymentTesting

Evaluation

Planning

Figure 3: The iterative software engineering process

software service, as was mentioned above.
A systematic transformation of the requirements engineer-

ing process follows these steps:

Step 1: Establish a paradigm change with respect to highly
fluctuating requirements. Developers who are used to
traditional software products need to adapt to the non-
persistence of requirements in the SaaS context. The
vicinity to agile development and the new methods of
elicitation make the requirements volatile.

Step 2: Integrate requirements engineering into an itera-
tive and incremental software engineering process. Such
a software engineering process is not a unique charac-
teristic of service-based software and can be found in
traditional software development as well. However, the
volatile nature of the requirements and the frequent
release cycles demand such iterations and regular soft-
ware increments.

Step 3: Identify and prioritize stakeholders using system-
atic methods.

Step 4: Involve customers through integration into the re-
quirements engineering process. Invitations for feature

requests and bug reports are crucial for taking advan-
tage of the migration to SaaS. The users need to get
the feeling that their involvement can have an impact
on future feature enhancements and short-term bug
fixes.

Step 5: Implement instruments for user feedback (e.g. us-
age monitoring, feedback forms). In order to encourage
customers to provide feedback (see Step 4), such a cul-
ture needs to be established. This can be achieved by
e.g. providing feedback buttons on single features, of-
fering side-wide available feedback forms and by using
the many ways of usage monitoring offered by cloud
software.

Step 6: Develop mechanisms for seamless update integra-
tions. As stated before, a major benefit of cloud-hosted
software is the deployment in the hand of the software
developers. Thus, the integration of updates comes
handy: The new software pieces only need to be in-
stalled once and on a predictable server environment
– the companies cloud server – and not the client’s in-
frastructure. In addition, the high frequency of small
updates makes it easy to integrate without shutdown
times, since the number of lines of code or the changes
in the database design are proportionally smaller. The
short downtime of parts of the system is less noticeable
than a traditional maintenance downtime of the whole
system.

Step 7: Develop support for software variations per user
group for acceptance testing reasons. The new require-
ments engineering process makes it possible to develop
multiple versions of unknown acceptance and roll out
the variations to different user groups. Acceptance can
then be tested using the methods of Step 5.

5. DISCUSSION AND BEST PRACTICES
The main goal of this paper was to outline the differences

between the requirements engineering process of a tradi-
tional software product and the process of a software service
and to provide a systematic approach for migrating from one
to the other.

Following the presented approach reduces the risk for leav-
ing out necessary changes in the requirements engineering
process. For those who consider migrating a software prod-
uct but have not decided yet, the approach defines the scope
of changes which would be intrinsic to a planned migration.
As such this paper’s approach offers benefits that can not
be found in literature as of today.

In order to accomodate the transformation approach we
provide a collection of best practices, which came across
during literature review, for some of the steps:

Step 2 is suited best by applying agile software develop-
ment methods, such as Scrum. The stakeholder analysis of
Step 3 is well conducted when using socio-digrams or power-
matrices. The authors of [6] provide an extensive descrip-
tion of their process of stakeholder identification and impact
analysis. The measurements already mentioned in Step 5 for
motivating users to provide feedback have been successfully
conducted in practice and can be recommended. That is
implementing application-wide feedback forms and applying
usage monitoring.

6. LIMITATIONS
This approach covers the requirements engineering pro-

cess, which is only one part of others in the whole software
development process. The migration of software products
to the cloud can still fail due to other implications of such a
process migration.

Another limitation of this approach is the focus on web-
based service-oriented architectures. This circumstance is
owed to the experiences from the literature review. Most
research does not differentiate between SaaS and web-based
systems, which makes the development of a transformation
approach generalized for other kinds of customer interface
nearly impossible.

7. CONCLUSION AND FUTURE WORK
The way we practice software engineering has changed

dramatically. Developing SaaS is one of the reasons why
changes in software engineering processes are indispensable.
The requirements elicitation of a software realized as a ser-
vice differs to the traditional product in many ways, some
of them are fundamental (see Section 2.2). However, the
differences come with numerous advantages, such as long-
term customer relationships, focus of resources and more
frequent feature enhancements. The requirements engineer-
ing process requires transformation when migrating from an
existing software product to the SaaS model. This paper
has offered a systematic approach for this transformation
that can be used by software developers who want to adapt
the way they determine and meet the requirements of their
software system.

Future work is to research on how to combine the benefits
of this new requirements elicitation methods with agile soft-
ware engineering processes that already focus on iterative
and incremental development.

8. REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,

R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, et al. A view of cloud computing.
Communications of the ACM, 53(4):50–58, 2010.

[2] N. Baliyan and S. Kumar. Towards software
engineering paradigm for software as a service. In
Contemporary Computing (IC3), 2014 Seventh
International Conference on, pages 329–333. IEEE,
2014.

[3] K. Bennett, P. Layzell, D. Budgen, P. Brereton,
L. Macaulay, and M. Munro. Service-based software:
The future for flexible software. In Software
Engineering Conference, 2000. APSEC 2000.
Proceedings. Seventh Asia-Pacific, pages 214–221.
IEEE, 2000.

[4] M. A. Chauhan and M. A. Babar. Migrating
service-oriented system to cloud computing: An
experience report. In Cloud Computing (CLOUD),
2011 IEEE International Conference on, pages
404–411. IEEE, 2011.

[5] M. A. Chauhan and M. A. Babar. Towards process
support for migrating applications to cloud computing.
In Cloud and Service Computing (CSC), 2012
International Conference on, pages 80–87. IEEE, 2012.

[6] A. Khajeh-Hosseini, D. Greenwood, and
I. Sommerville. Cloud migration: A case study of

migrating an enterprise it system to iaas. In Cloud
Computing (CLOUD), 2010 IEEE 3rd International
Conference on, pages 450–457. IEEE, 2010.

[7] S. Kumar and S. Sangwan. Adapting the software
engineering process to web engineering process.
International Journal of Computing and Business
Research, 2(1), 2011.

[8] J. Y. Lee, J. W. Lee, D. W. Cheun, and S. D. Kim. A
quality model for evaluating software-as-a-service in
cloud computing. In Software Engineering Research,
Management and Applications, 2009. SERA’09. 7th
ACIS International Conference on, pages 261–266.
IEEE, 2009.

[9] G. Lewis, E. Morris, and D. Smith. Service-oriented
migration and reuse technique (smart). In Software
Technology and Engineering Practice, 2005. 13th
IEEE International Workshop on, pages 222–229.
IEEE, 2005.

[10] D. Ma. The business model of software-as-a-service. In
Services Computing, 2007. SCC 2007. IEEE
International Conference on, pages 701–702. IEEE,
2007.

[11] P. Mell and T. Grance. The nist definition of cloud
computing. Special Publication 800-145, 2011.

[12] E. R. Olsen. Transitioning to software as a service:
Realigning software engineering practices with the new
business model. In Service Operations and Logistics,
and Informatics, 2006. SOLI’06. IEEE International
Conference on, pages 266–271. IEEE, 2006.

[13] M. P. Papazoglou. Service-oriented computing:
Concepts, characteristics and directions. In Web
Information Systems Engineering, 2003. WISE 2003.
Proceedings of the Fourth International Conference on,
pages 3–12. IEEE, 2003.

[14] E. Saleh. Migrating traditional web applications into
multi-tenant saas. Proc. 6th Ph. D. Retreat of the HPI
Research School Serviceoriented Syst. Eng, pages
145–155, 2013.

[15] E. A. N. d. Silva and D. Lucrédio. Software
engineering for the cloud: A research roadmap. In
Software Engineering (SBES), 2012 26th Brazilian
Symposium on, pages 71–80. IEEE, 2012.

[16] J. Song, Z. Yan, F. Han, Y. Bao, and Z. Zhu.
Introducing saas capabilities to existing web-based
applications automatically. In Web Technologies and
Applications, pages 560–569. Springer, 2012.

[17] A. Tariq, S. A. Khan, and S. Iftikhar. Requirements
engineering process for software-as-a-service (saas)
cloud environment. In Emerging Technologies (ICET),
2014 International Conference on, pages 13–18. IEEE,
2014.

[18] Q. Zhang, L. Cheng, and R. Boutaba. Cloud
computing: state-of-the-art and research challenges.
Journal of internet services and applications,
1(1):7–18, 2010.

[19] W. Zhang, A. J. Berre, D. Roman, and H. A. Huru.
Migrating legacy applications to the service cloud. In
14th Conference companion on Object Oriented
Programming Systems Languages and Applications
(OOPSLA 2009), pages 59–68, 2009.

[20] X. Zhang, B. Shen, X. Tang, and W. Chen. From
isolated tenancy hosted application to multi-tenancy:

Toward a systematic migration method for web
application. In Software Engineering and Service
Sciences (ICSESS), 2010 IEEE International
Conference on, pages 209–212. IEEE, 2010.

[21] M. Zhou, R. Zhang, W. Xie, W. Qian, and A. Zhou.
Security and privacy in cloud computing: A survey. In
Semantics Knowledge and Grid (SKG), 2010 Sixth
International Conference on, pages 105–112. IEEE,
2010.

Configuration Management in Dynamically Changing
Environments

Oleksandr Zastupailo
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

oleksandr.zastupailo@rwth-aachen.de

Dipl.Inform. Andreas Steffens
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

andreas.steffens@swc.rwth-aachen.de

ABSTRACT
In recent years, there is a tendency to use not only a single
server for hosting an application but a fleet of servers to pro-
vide flexibility and scalability to the system. The increasing
usage of distributed systems and availability of cloud com-
puting has led to new challenges in a process of IT infras-
tructure management. One of such challenges is to adapt
the system to a nature of cloud systems to change their
environments on the fly. In order to solve this kind of prob-
lems, configuration management tools come into play. This
paper defines goals and requirements for such tools as well
as explains how they are achieved in some of the most pop-
ular solutions for configuration management. Additionally,
for some of the reviewed tools examples of how companies
overcome problems of dynamically changing environments
in the industry are provided.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—productivity, programming teams,
software configuration management

Keywords
Software engineering, Configuration management, IT au-
tomation

1. INTRODUCTION
IT infrastructures grow larger and become more complex

because of the growing importance of the IT in our society.
As Hashimoto [12] states, in recent years, the datacenter
has changed from a single server structure to more complex
scenarios involving virtual machines with an increasing num-
ber of services and containers running on them. If previously
software used a single server, nowadays it can be distributed
between hundreds of servers which makes manual handling
of such fleet of servers more expensive, time-consuming and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2015/16 RWTH Aachen University, Germany.

too complicated for administrators. Nowadays cloud com-
puting provides elastic resources to its users in order to sim-
plify or completely remove the process of maintaining the
hardware in companies. However, one of the biggest chal-
lenges of the running systems in the cloud is their changing
nature. When the cloud changes frequently due to auto or
manual scaling operator doesn’t know exactly where new
resources are located. A load of different applications can
also vary from time to time, that’s why it is very significant
to have an ability to dynamically change an amount of the
running instances of the application depending on the situ-
ation in order to avoid service interruption. This problem
has been addressed in many different ways and is continuing
to evolve.

2. MOTIVATION
In order to reduce an effort needed to support dynamically

changing environments configuration management began to
be widely used. However, as configuration management field
is a broad area, a set of problems which it solves has to be
clearly defined to avoid confusion:

• Hidden knowledge/workflow - traditionally a work-
flow is implemented as a script that is dedicated to
achieve some defined set of tasks (e.g. deploying a Java
EE application to the cloud). Often the script is hard-
coded for a specific application and a specific platform.
Porting the script to another application / platform /
cloud provider requires a significant amount of work
and often affects the stability of the system, making
migrations impractical as described by Lu et al. [15].
The root cause of the problem is that knowledge of the
application and set of tasks is hidden in a dedicated
script that is not easy to understand or reuse.

• Complexity of support - the complexity of man-
aging IT infrastructures is caused by relations and
interdependencies between applications, services and
systems in an IT infrastructure. The actual configura-
tion of an infrastructure and software is determined by
many parameters, in fact in the order of thousands [7].
Whenever a configuration parameter changes, opera-
tors need to ensure the updating of all dependent con-
figuration parameters (e.g. address of the database).
Inconsistent parameters in the infrastructure lead to
application failure. Research has revealed that config-
uration errors are a big contributor to service failure
and mean time to recovery (e.g. [9], [18]).

• Changing environment/Scaling of a system -
with a wide usage of clouds and a simplicity with
which new running instances of a system can be added
there appears a possibility to scale up and scale down
the infrastructure frequently and easily. However, this
brings a problem to an operator to know where the
new resources are located, keep track of running ser-
vices and infrastructure configurations.

This paper focuses only on the research of the existing con-
figuration management tools which aim to solve the problem
of dynamically changing environments in distributed sys-
tems. In Section 3 an introduction of the concept of config-
uration management will be provided. We also will try to
define a set of requirements for a tool which in our opinion
it needs to have in order to solve the mentioned problem
above. Next section will describe the modern well-known
and widely-used tools for configuration management in run-
ning and dynamically changing environments. Such tools as
ZooKeeper, Consul, Serf, etcd and others will be covered. In
Section 5 practical use of the reviewed tools and how they
deal with frequently changing infrastructure in the produc-
tion environment nowadays will be discussed. Finally, in the
last section similarities and differences between the tools and
concepts will be summarized.

3. CONFIGURATION MANAGEMENT
Configuration management tools offer a structured ap-

proach to system administration automation. These tools
exist in a broad range of automation and abstraction capa-
bilities. At one end of the spectrum are tools that merely
provide a framework to distribute, schedule and execute cus-
tom imperative scripts and generate reports from the execu-
tion. On the other end of the spectrum are tools that offer
a desired state configuration model of the managed infras-
tructure [23]. Moreover, desired state configuration tools
can differ with a speed of configuration. Some of the tools
tend to focus on upfront modelling, managing configuration
we know and want to control over time (Ansible, Chef, Pup-
pet etc.) like version of a package or application, user per-
missions and system constraints. Others handle emergent
configuration which is a property of a running system [21]
(Consul, Eureka etc.) like load balancers and proxy back-
ends. These are solutions designed thinking about very dy-
namic infrastructure and which provide an easy interface to
keep services’ configuration updated at any moment.

In order to support an adaptive infrastructure of the dis-
tributed systems these requirements for configuration man-
agement tools are proposed:

• Service Registration - the process of a service register-
ing its location in a central registry. It registers its
host and port and sometimes authentication creden-
tials, protocols, versions numbers and/or environment
details.

• Service Discovery - the process of a client application
querying the central registry to learn about the loca-
tion of services and to be notified when a node and
service becomes unavailable.

• Low-latency Mechanism - when an operator communi-
cates with a system he wants to know the most recent
state of the system, not what was its state 30 minutes
ago to prevent failures.

• Health Checking - the process of monitoring the state
of the clients. It can deal with node power failure, host
crash, memory going bad, disk failure and so on. It
solves the problem of what happens when a registered
service fails. Usually services are required to imple-
ment heartbeating mechanism to ensure liveness.

• Key-Value Store - allows to store configuration or meta-
data for the operation of services.

• Runtime Dependencies - does a tool require any par-
ticular programming language or additional software
like JVM to be used that is not compatible with an
environment

4. TOOLS FOR DYNAMIC CONFIGURATION
MANAGEMENT

Some of modern configuration management tools meet the
mentioned requirements more fully, others are focused to
meet only some of them but do that in a simple and reliable
way. When a system comes to a point of necessary usage
of configuration management tools it implies a significant
amount in time and/or money. Before making such an in-
vestment, it is helpful to know the purpose, characteristics
and target users of such tools in order to make the right
decision [8]. In this section some of the most well-known
tools for configuration management of dynamic distributed
systems will be covered and analyzed how good they match
the specified requirements.

4.1 ZooKeeper
ZooKeeper is one of the oldest projects of this type. ZooKeeper

is a centralized service for maintaining configuration infor-
mation, naming, providing distributed synchronization, and
providing group services. [11]. The format of the data
it stores is similar to the organization of the file system.
ZooKeeper runs on a cluster of servers called an ensemble
that share the state of the data. Whenever a change is made,
it is not considered successful until it has been written to a
quorum (at least half) of the servers in the ensemble. A
leader is elected within the ensemble, and if two conflicting
changes are made at the same time, the one that is processed
by the leader first will succeed and the other will fail [16].
ZooKeeper has two basic ordering guarantees: linearizable
writes (all requests that update the state of ZooKeeper are
serializable and respect precedence) and FIFO client order
(all requests from a given client are executed in the order
that they were sent by the client) [13]. These guarantees al-
low the system to be used to implement locks, queues, and
other important primitives for distributed queueing.

It is not a service discovery system, but is instead a dis-
tributed configuration store that provides notifications to
registered clients. With this, it is possible to build a service
discovery infrastructure, however every service must explic-
itly register with ZooKeeper, and the clients must then check
in the configuration. So it requires that application devel-
opers build their own system to provide service discovery.

Health-checking is achieved with a ZooKeeper Canary health-
level check. It checks that basic client operations are working
and are completing in a reasonable amount of time by per-
forming a periodic ”canary” tests of the particular sequence
of operations [6]. The default timeout for health-checking
operations is 30 000 ms.

System needs to have Java installed before running ZooKeeper
as it depends on JVM. Usage of Java together with a consid-
erable number of dependencies makes it much more resource
hungry than its competitors [10].

Zookeeper is complex and ZooKeeper API can be difficult
to use properly. Maintaining it requires considerably more
knowledge than we should expect from an application of this
type. Because of complexity of Zookeeper Netflix released
their tool called Curator which is built on top of Zookeeper
but is easier to use.

4.2 Etcd
Etcd is a highly-available, distributed key value store that

provides a reliable way to store data across a cluster of ma-
chines [3]. Etcd was inspired by Zookeeper. It’s written in
Go for consensus and has a HTTP+JSON based API. Etcd,
similar to Zookeeper, is usually run with three, five or seven
nodes in the cluster. Clients use a language-specific binding
or implement one using an HTTP client.

Service registration is possible. However, it needs to be
combined with a third-party tool (e.g.Registrator) before it
can serve service registration objectives.

Service discovery involves listing the keys under a direc-
tory and then waiting for changes on the directory. Since
the API is HTTP based, the client application keeps a long-
polling connection open with the Etcd cluster.

Health-checking relies on using a key TTL along with
heartbeating from the service to ensure the key remains
available. If a service fails to update the key’s TTL, Etcd
will expire it. If a service becomes unavailable, clients will
need to handle the connection failure and try another ser-
vice instance [26]. By default, etcd uses a 100ms heartbeat
interval.

Etcd is a key-value store, where keys are file-like paths.
Clients have the option to retrieve all data, all data under a
specific path, or a specific key. Etcd also offers the watcher
functionality, so that clients can get real-time updates when
configuration changes [25].

Etcd is often used for service discovery, distributed lock-
ing, atomic broadcast, sequence numbers, and pointers to
data in eventually consistent stores [14].

4.3 Consul
Consul is a decentralized solution for service discovery and

configuration. Consul makes it simple for services to regis-
ter themselves and to discover other services via a DNS or
HTTP interface [11]. Pairing service discovery with health
checking prevents routing requests to unhealthy hosts. More-
over, it provides flexible key/value store for dynamic config-
uration, feature flagging, coordination, leader election and
more.

The service registration and discovery system is backed by
a service catalog, which maintains a high-level view of the
cluster and managed by the server agents. The client agents
register their services to this catalog, which offers a list of
available services and where specific services are running.
Registered services and nodes can be queried using both a
DNS interface as well as an HTTP interface.

Consul also supports checks: system health checks and
service health checks to provide a fine-grained monitoring
and control of nodes and services. The first type of health
check does a heartbeat check to determine the availability
of other nodes. Each node will randomly choose another

node to check every second. This randomness ensures that
statistically all nodes will be checked, but keeps the network
overhead of this cluster-wide checking very low [24]. The
second type of check is done locally by the agent on its own
machine. For instance, this might be HTTP checks on the
local web-server or disk-full checks. Unhealthy nodes can be
removed to reduce the cost and to create notifications [10].

Consul provides a key/value store. It can be used to store
service configuration or other metadata. Values from Con-
sul can be populated into the filesystem using the consul-
template daemon to autoconfigure a service or an infras-
tructure without any manual intervention [2]. Watches to
monitor a view of data (e.g. list of nodes, KV pairs) can be
configured and a custom handler can be launched.

Consul supports multiple datacenters out of the box. This
means users of Consul do not have to worry about building
additional layers of abstraction to grow to multiple regions.
[1].

4.4 Netflix’s Eureka
Eureka is a REST based service that is widely used for lo-

cating services for the purpose of load balancing and failover
of middle-tier servers [20]. There is a server component as
well as a smart-client that is used within application services.
The server and client are written in Java which means the
ideal use case would be for the services to also be imple-
mented in Java or another JVM compatible language. The
Eureka server is the registry for services. Netflix recom-
mends running one Eureka server in each availability zone
in AWS to form a cluster. The servers replicate their state
to each other through an asynchronous model which means
each instance may have a slightly, different picture of all the
services at any given time [26].

Service registration is handled by the client component.
Services embed the client in their application code. At run-
time, the client registers the service and periodically sends
heartbeats to renew its leases.

Service discovery is handled by the smart client as well. It
retrieves the current registrations from the server and caches
them locally. The client periodically refreshes its state and
also handles load balancing and failovers [26].

For health checking Eureka server expects a client to send
heartbeats. The heartbeat logic executes on the client side.
Eureka was designed to be very resilient during failures. If
there is a partition within the cluster, Eureka transitions to
a self-preservation state. It will allow services to be discov-
ered and registered during a partition and when it heals, the
members will merge their state again.

Like all Netflix OSS projects, it was written to run on the
AWS infrastructure first and foremost. While other Netflix
OSS projects have been extended to run in other environ-
ments, Eureka does not appear to be moving in that direc-
tion.

4.5 Serf
Serf is a decentralized solution for cluster membership,

failure detection and orchestration [4]. As well as etcd and
Consul it is also written in Go. The Serf agents periodically
exchange messages with each other in much the same way
that a zombie apocalypse would occur: it starts with one
zombie but soon infects everyone. In practice, its protocol
of communication is very fast and extremely efficient. Serf
consists of a single binary that is installed on all hosts. It

can be run as an agent, where it joins or creates a cluster, or
as a client where it can discover the members in the cluster.
Serf does a full state sync over TCP periodically [4].

For service registration, a serf agent is run that joins an
existing cluster. The agent is started with custom tags that
can identify the hosts role, env, IP, ports, etc. Once joined
to the cluster, other members will be able to see this host
and its metadata [26].

For discovery, the serf is run with the members command
which returns the current members of the cluster. Using
the members output, all the hosts can be discovered for a
service based on the tags their agent is running. But also an
effective service discovery layer can easily be built on top of
Serf’s seamless membership system.

The health checking provided by Serf is very low level and
only indicates if the agent is alive. Serf automatically detects
failed nodes within seconds, notifies the rest of the cluster,
and executes handler scripts allowing operators to handle
these events. Serf will attempt to recover failed nodes by
reconnecting to them periodically [4].

Serf is the only project in this paper that does not have a
central registry architectural style which makes it unique.

4.6 SkyDNS
SkyDNS is a distributed service for announcement and

discovery of services built on top of etcd, is written in Go.
Nodes register services using an HTTP API, and queries
can be made over HTTP or DNS to perform discovery. The
SkyDNS servers expose different endpoints for registration
and discovery [5].

For service registration, services use an HTTP-based API
to create an entry with a TTL. Services must heartbeat their
state periodically. SkyDNS also uses SRV records but ex-
tends them to also support service version, environment, and
region.

For discovery, clients use DNS and retrieve the SRV records
for the services they need to contact. Clients need to im-
plement load balancing or failover and will likely cache and
refresh service location data periodically [26].

SkyDNS health check procedure relies on naive heartbeat-
ing and TTLs, an approach which has known scalability is-
sues. Additionally, the heartbeat only provides a limited
liveness check.

If the system uses docker, skydock might be worth check-
ing out to integrate the containers with SkyDNS automat-
ically. Overall, this is an interesting mix of old (DNS) and
new (Go) technologies.

5. CONFIGURATION MANAGEMENT IN PRAC-
TICE

Several years ago the lack of existing solutions for con-
figuration management of dynamic systems has led to the
development of the tools which can provide flexibility, scala-
bility and fault tolerance of such systems. Most of these tools
were developed inside the big companies in order to cover
their specific needs (e.g. Google, Netflix). Luckily, with the
grown popularity of the open-source, plenty of configuration
management tools were released publicly. Although it can
happen very rarely that two systems have the same infras-
tructure and can use mentioned tools identically, it worth
to consider use cases of application of these tools in real-life
systems in order to improve own systems or choose the right

tool for solving particular problem.

5.1 Pinterest with ZooKeeper
Pinterest is the web and mobile application company, which

operates an eponymous photo sharing website. Like many
large scale web sites, Pinterest’s infrastructure consists of
servers that communicate with backend services composed
of a number of individual servers for managing load and
fault tolerance. They wanted the configuration to reflect
only the active hosts, so clients don’t need to deal with bad
hosts as often. ZooKeeper provided a well-known pattern
to solve this problem. Each backend service host registers
an ephemeral node in ZooKeeper in a path specific to that
service. Clients can watch that path to determine the list
of hosts. Since each node is ephemeral, it will automati-
cally be removed by ZooKeeper if the host registering fails
or shuts down. New hosts brought up automatically register
themselves at the correct path, so clients will notice within a
few seconds. Thus, the list stays up to date and reflects the
hosts that are active, which addresses the issues mentioned
above [19].

At some point an understanding came into mind that al-
though ZooKeeper can play a useful role in a backend in-
frastructure stack as shown above, like all software systems,
it can fail. The problem was a complete reliance on it for
overall functioning of the site. In essence, ZooKeeper was a
Single Point of Failure (SPoF) in the Pinterest’s stack [19].
However, the solution was actually quite simple: decoupling
applications from ZooKeeper. Applications that were con-
suming service information and dynamic configuration from
ZooKeeper connected to it directly. They cached data in
memory but otherwise relied on ZooKeeper as the source of
truth for the data. If there were multiple processes running
on a single machine, each would maintain a separate connec-
tion to ZooKeeper. Instead of this approach, they moved to
a model where the application is in fact completely isolated
from ZooKeeper [19]. Instead, a daemon process running on
each machine connects to ZooKeeper, establishes watches on
the data it is configured to monitor, and whenever the data
changes, downloads it into a file on local disk at a well known
location. The application itself only consumes the data from
the local file and reloads when it changes. It doesn’t need
to care that ZooKeeper is involved in propagating updates
[19].

A couple of weeks after roll out, there was ZooKeeper
outage, triggered by load introduced by an unrelated bug in
one of client libraries. However this outage caused no site
impact, and in fact, went unnoticed till ZooKeeper monitor-
ing alerts themselves fired. Thus the entire site functioned
normally all night despite ZooKeeper being down, thanks to
resilience changes being in place [19].

5.2 Hootsuite with Consul
Hootsuite is a social media management system for brand

management. They were improving the build and deploy
pipeline, but don’t yet have a way to handle dynamic con-
figuration of services.

The usage of Consul has also been driven by a need to
improve an existing piece of the system - the Dark Launch
mechanism. Dark Launching allows to modify the execution
of the code at runtime by setting conditions on the execution
of a certain block, such as boolean true or false, random
percentage, specific members, and more. As it has grown in

usage, the Dark Launching system has developed a number
of hotspots and could be a potential point of failure [17].

The first implementation of Consul revolved around the
key-value data store. Given problems with the Dark Launch-
ing system, Hootsuite team thought Consul would be a great
choice to replace it because of the combination of the KV
store and events. When there was a need to modify a
dark launch value admin panel was used which was run-
ning on webservers with the consul agent running. When
the value was saved, the PHP code of the admin panel
made a request to the REST API on the local agent, chang-
ing the JSON value of a key using a URL like localhost:

port/v1/darklaunch/dashboard/core/SOME_KEY

The key prefix (dashboard) is like a directory structure
or namespace within the KV store, and Consul allows to set
watches not only on individual keys but also on key prefixes.
These watches mean that when anything inside a certain
prefix is modified, a predefined script is executed and passed
the data of all the keys inside that prefix [17].

When that REST call was made, the local agent sent the
data to the cluster leader, which then sent out an event to
all the nodes that something has changed in the KV store,
and watches were called on every server where the consul
agent has been configured to respond to that type of events.

At the end, it typically took less than a second for over 100
servers to propagate the changes of the data. A small im-
provement was also seen in page execution time and reduc-
tion in CPU usage on webservers since this change because
of the simplified way of loading data.

5.3 Nirmata with Eureka
Nirmata is a software-as-a-service solution for the opera-

tions and management of cloud-native applications. It en-
ables software developers to easily manage Microservices
style applications by providing a sophisticated policy-based
automation for deploying and operating applications across
public and private clouds.

Nirmata team was thinking about right tools for their
SaaS platform from the beginning of the development phase.
At some point the initial needs for the SaaS were defined.
Such concepts like service registry, service configuration frame-
work, load balancing between mid-tier services and others
were in the root of the requirements for the new system [22].
After a research of what tools are available to support men-
tioned requirements the main attention was to Netflix tools.
The reason for this is that Netflix architecture was aligned
with what they wanted to achieve and unlike many open
source components, Netflix infrastructure has been battle
tested at scale.

Currently, Eureka is a component which provides service
registry in their system. Most of their services register with
Eureka so they can find each other dynamically. Nirmata
services use the Java based Eureka client library to interact
with the Registry. Only services shared across environments
such as Kafka and Elasticsearch do not register with Eureka
[22].

They adopted a model in which Eureka is deployed in
each environment. All service instances running in the pro-
duction environment register to a dedicated Eureka service,
same for the staging environment, or any sandbox environ-
ment used by developers. The deployment itself was made
very fast and easy by containerizing Eureka. They can then
easily deploy the entire SaaS or just a single service very

quickly to any environment [22].
The flexibility provided by Eureka also helped developers

be more productive. A typical use case was to run a copy of
the SaaS in a staging environment and debug a particular
service directly on their laptop in the IDE. The service in-
stance running on the laptop registered to the Eureka service
in the Cloud and then everything worked pretty much as if
service was running in the cloud. In doing so, they could
avoid painful remote debugging while using the full power
of IDE in a production-like environment [22].

6. CONCLUSION
In this paper we argued the importance of the configu-

ration management in dynamically changing environments.
However, depending on a problem different tools and ap-
proaches exist. We tried to define requirements and to re-
view the existing configuration management tools for fre-
quently changing infrastructures. The biggest impact on
the decision for choosing the right tool is an amount of effort
needed to apply the tool and whether all the functionality
necessary for improving the system is supported.

So in order to pick up the right instrument it is needed to
keep in mind several things. First of all, some of the reviewed
tools tightly depend on the technologies used (e.g. Eureka
and Java). It will not a problem if technologies match but
may cause a big problem to implement custom adapters to
bind the system with non-compatible tool. Secondly, al-
though some old tools can be widely used in big companies,
they also can be very complicated and hard to understand as
they were developed during a period when no other alterna-
tives existed (e.g. ZooKeeper) and maybe not so well-known
alternatives is a better option (e.g. Etcd). Finally, an im-
portant role also plays a list of functionality and features
supported by the tool. It is always easier to develop and
support a system which uses a single instrument for every-
thing than plenty of tools which are used for a particular
task and cause conflicts to each other.

Configuration management is a fast-growing area which
seriously affected the process of software deployment and
management in a good way in recent years. It provides ben-
efits to companies to successfully apply configuration man-
agement instruments in the production environments. How-
ever, it is still very important to distinguish the purpose of
different tools and to think carefully before adding them to
the configuration management process.

References
[1] Consul documentation. URL https://www.consul.io/

docs. Accessed: 11-12-2015.

[2] Automating Service Discovery Infrastruc-
ture Management using Consul. URL http:

//www.ecmanaged.com/en/automating-service-

discovery-infrastructure-management-using-

consul/press/63. Accessed: 20-12-2015.

[3] Etcd. URL https://coreos.com/etcd/. Accessed: 11-
12-2015.

[4] Serf. URL https://www.serfdom.io/docs/index.

html. Accessed: 11-12-2015.

[5] Skydns. URL https://github.com/skynetservices/

skydns. Accessed: 11-12-2015.

https://www.consul.io/docs
https://www.consul.io/docs
http://www.ecmanaged.com/en/automating-service-discovery-infrastructure-management-using-consul/press/63
http://www.ecmanaged.com/en/automating-service-discovery-infrastructure-management-using-consul/press/63
http://www.ecmanaged.com/en/automating-service-discovery-infrastructure-management-using-consul/press/63
http://www.ecmanaged.com/en/automating-service-discovery-infrastructure-management-using-consul/press/63
https://coreos.com/etcd/
https://www.serfdom.io/docs/index.html
https://www.serfdom.io/docs/index.html
https://github.com/skynetservices/skydns
https://github.com/skynetservices/skydns

[6] Cloudera Manager Health Checks: Zookeeper Canary.
URL http://www.cloudera.com/content/www/en-

us/documentation/archive/manager/4-x/4-8-

6/Cloudera-Manager-Health-Checks/hc_zookeeper.

html.

[7] Bart Van Brabant and Wouter Joosen. A framework
for integrated configuration management tools. In
IM, pages 534–540. IEEE, 2013. ISBN 978-1-4673-
5229-1. URL http://dblp.uni-trier.de/db/conf/

im/im2013.html#BrabantJ13.

[8] Thomas Delaet, Wouter Joosen, and Bart Vanbrabant.
A Survey of System Configuration Tools. In Proceedings
of the 24th International Conference on Large Installa-
tion System Administration, LISA’10, pages 1–8, Berke-
ley, CA, USA, 2010. USENIX Association. URL http:

//dl.acm.org/citation.cfm?id=1924976.1924977.

[9] Tudor Dumitraş and Priya Narasimhan. Why Do Up-
grades Fail and What Can We Do About It?: Toward
Dependable, Online Upgrades in Enterprise System. In
Proceedings of the 10th ACM/IFIP/USENIX Interna-
tional Conference on Middleware, Middleware ’09, New
York, NY, USA, 2009. Springer-Verlag New York, Inc.
URL http://dl.acm.org/citation.cfm?id=1656980.

1657005.

[10] Viktor Farcic. Service Discovery: Zookeeper
vs etcd vs Consul, September, 2015. URL
http://technologyconversations.com/2015/09/

08/service-discovery-zookeeper-vs-etcd-vs-

consul/. Accessed: 20-12-2015.

[11] Ivan Glushkov. ZooKeeper vs Consul, 2014. URL http:

//www.slideshare.net/IvanGlushkov/zookeeper-

vs-consul-41882991. Accessed: 11-12-2015.

[12] Mitchell Hashimoto. Building the World’s Largest Web-
sites with Consul and Terraform (Video), 2015. URL
https://www.youtube.com/watch?v=4QcS3kiL81g.
Accessed: 10-12-2015.

[13] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira,
and Benjamin Reed. Zookeeper: Wait-free coordina-
tion for internet-scale systems. In Proceedings of the
2010 USENIX Conference on USENIX Annual Techni-
cal Conference, USENIXATC’10, pages 11–11, Berke-
ley, CA, USA, 2010. USENIX Association. URL http:

//dl.acm.org/citation.cfm?id=1855840.1855851.

[14] Kyle Kingsbury. Jepsen: etcd and Consul,
2014. URL https://aphyr.com/posts/316-jepsen-

etcd-and-consul.

[15] Hongbin Lu, Mark Shtern, Bradley Simmons, Michael
Smit, and Marin Litoiu. Pattern-based Deploy-
ment Service for Next Generation Clouds. In
IEEE 9th World Congress on Services, Cloud Cup,
2013. URL http://ieeexplore.ieee.org/stamp/

stamp.jsp?tp=&arnumber=6655736.

[16] Sean Mackrory. How-to: Use Apache ZooKeeper
to Build Distributed Apps (and Why), 2013. URL
http://blog.cloudera.com/blog/2013/02/how-to-

use-apache-zookeeper-to-build-distributed-

apps-and-why/. Accessed: 18-12-2015.

[17] Bill Monkman. Distributed configuration man-
agement and dark launching using consul, 2014.
URL http://code.hootsuite.com/distributed-

configuration-management-and-dark-launching-

using-consul/. Accessed: 11-12-2015.

[18] David Oppenheimer, Archana Ganapathi, and David A.
Patterson. Why Do Internet Services Fail, and What
Can Be Done About It? In Proceedings of the 4th
Conference on USENIX Symposium on Internet Tech-
nologies and Systems - Volume 4, USITS’03, Berke-
ley, CA, USA, 2003. USENIX Association. URL http:

//dl.acm.org/citation.cfm?id=1251460.1251461.

[19] Raghavendra Prabhu. ZooKeeper Resilience at Pin-
terest, 2014. URL https://engineering.pinterest.

com/blog/zookeeper-resilience-pinterest. Ac-
cessed: 11-12-2015.

[20] Karthikeyan Ranganathan. Netflix Shares Cloud Load
Balancing And Failover Tool: Eureka!, 2012. URL
http://techblog.netflix.com/2012/09/eureka.

html.

[21] Gareth Rushgrove. Service Discovery and Con-
figuration Management, 2015. URL https:

//speakerdeck.com/garethr/service-discovery-

and-configuration-management. Accessed: 10-12-
2015.

[22] Damien Toledo. Getting Started With Microservices
Using Netflix OSS & Docker, August, 2014. URL
http://nirmata.com/2014/08/getting-started-

with-microservices-using-netflix-oss-docker/.
Accessed: 19-12-2015.

[23] Bart Vanbrabant and Wouter Joosen. Configuration
management as a multi-cloud enabler. In Proceeding
CCB 14 Proceedings of the 2nd International Workshop
on CrossCloud Systems, December 2014. URL https:

//lirias.kuleuven.be/handle/123456789/474209.

[24] Phil Whelan. Consul for Service Discovery -
Mitchell Hashimoto Explains, 2014. URL http:

//www.activestate.com/blog/2014/06/consul-

service-discovery-mitchell-hashimoto-explains.
Accessed: 11-12-2015.

[25] Phil Whelan. Service Discovery Solutions, 2014.
URL http://www.activestate.com/blog/2014/05/

service-discovery-solutions. Accessed: 20-12-2015.

[26] Jason Wilder. Open-Source Service Discovery,
2014. URL http://jasonwilder.com/blog/2014/02/

04/service-discovery-in-the-cloud/.

http://www.cloudera.com/content/www/en-us/documentation/archive/manager/4-x/4-8-6/Cloudera-Manager-Health-Checks/hc_zookeeper.html
http://www.cloudera.com/content/www/en-us/documentation/archive/manager/4-x/4-8-6/Cloudera-Manager-Health-Checks/hc_zookeeper.html
http://www.cloudera.com/content/www/en-us/documentation/archive/manager/4-x/4-8-6/Cloudera-Manager-Health-Checks/hc_zookeeper.html
http://www.cloudera.com/content/www/en-us/documentation/archive/manager/4-x/4-8-6/Cloudera-Manager-Health-Checks/hc_zookeeper.html
http://dblp.uni-trier.de/db/conf/im/im2013.html#BrabantJ13
http://dblp.uni-trier.de/db/conf/im/im2013.html#BrabantJ13
http://dl.acm.org/citation.cfm?id=1924976.1924977
http://dl.acm.org/citation.cfm?id=1924976.1924977
http://dl.acm.org/citation.cfm?id=1656980.1657005
http://dl.acm.org/citation.cfm?id=1656980.1657005
http://technologyconversations.com/2015/09/08/service-discovery-zookeeper-vs-etcd-vs-consul/
http://technologyconversations.com/2015/09/08/service-discovery-zookeeper-vs-etcd-vs-consul/
http://technologyconversations.com/2015/09/08/service-discovery-zookeeper-vs-etcd-vs-consul/
http://www.slideshare.net/IvanGlushkov/zookeeper-vs-consul-41882991
http://www.slideshare.net/IvanGlushkov/zookeeper-vs-consul-41882991
http://www.slideshare.net/IvanGlushkov/zookeeper-vs-consul-41882991
https://www.youtube.com/watch?v=4QcS3kiL81g
http://dl.acm.org/citation.cfm?id=1855840.1855851
http://dl.acm.org/citation.cfm?id=1855840.1855851
https://aphyr.com/posts/316-jepsen-etcd-and-consul
https://aphyr.com/posts/316-jepsen-etcd-and-consul
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6655736
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6655736
http://blog.cloudera.com/blog/2013/02/how-to-use-apache-zookeeper-to-build-distributed-apps-and-why/
http://blog.cloudera.com/blog/2013/02/how-to-use-apache-zookeeper-to-build-distributed-apps-and-why/
http://blog.cloudera.com/blog/2013/02/how-to-use-apache-zookeeper-to-build-distributed-apps-and-why/
http://code.hootsuite.com/distributed-configuration-management-and-dark-launching-using-consul/
http://code.hootsuite.com/distributed-configuration-management-and-dark-launching-using-consul/
http://code.hootsuite.com/distributed-configuration-management-and-dark-launching-using-consul/
http://dl.acm.org/citation.cfm?id=1251460.1251461
http://dl.acm.org/citation.cfm?id=1251460.1251461
https://engineering.pinterest.com/blog/zookeeper-resilience-pinterest
https://engineering.pinterest.com/blog/zookeeper-resilience-pinterest
http://techblog.netflix.com/2012/09/eureka.html
http://techblog.netflix.com/2012/09/eureka.html
https://speakerdeck.com/garethr/service-discovery-and-configuration-management
https://speakerdeck.com/garethr/service-discovery-and-configuration-management
https://speakerdeck.com/garethr/service-discovery-and-configuration-management
http://nirmata.com/2014/08/getting-started-with-microservices-using-netflix-oss-docker/
http://nirmata.com/2014/08/getting-started-with-microservices-using-netflix-oss-docker/
https://lirias.kuleuven.be/handle/123456789/474209
https://lirias.kuleuven.be/handle/123456789/474209
http://www.activestate.com/blog/2014/06/consul-service-discovery-mitchell-hashimoto-explains
http://www.activestate.com/blog/2014/06/consul-service-discovery-mitchell-hashimoto-explains
http://www.activestate.com/blog/2014/06/consul-service-discovery-mitchell-hashimoto-explains
http://www.activestate.com/blog/2014/05/service-discovery-solutions
http://www.activestate.com/blog/2014/05/service-discovery-solutions
http://jasonwilder.com/blog/2014/02/04/service-discovery-in-the-cloud/
http://jasonwilder.com/blog/2014/02/04/service-discovery-in-the-cloud/

Towards A Modularity-Based Technical Debt Prioritization
Approach

Peter Sommerhoff
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

peter.sommerhoff@rwth-aachen.de

Muhammad Firdaus Harun
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
firdaus.harun@swc.rwth-aachen.de

ABSTRACT
Technical debt (TD) refers to aspects in software develop-
ment that can have short-term benefits (e.g., faster time-to-
market) but may be detrimental in the future (e.g., due to
decreased software modifiability). TD management (TDM)
deals with activities to control TD, deciding which debt to
repay and which to defer, and monitor the effect of the in-
curred TD on business goals and productivity. Effective
TDM requires prioritization of TD items in order to re-
pay the debt with the strongest negative effects on business
priorities and software quality first. This paper gives an
overview of existing approaches for TD prioritization and
aims to analyze commonalities and differences in order to
extract prioritization rules and metrics. We focus on archi-
tecture, design and code debt that negatively impacts modu-
larity and propose a prioritization approach for modularity-
related TD.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—cost estimation, time estima-
tion, productivity

Keywords
technical debt, technical debt prioritization, design debt,
modularity

1. INTRODUCTION
Since Ward Cunningham coined the term technical debt

(TD) in 1992, its usefulness to manage software projects
more proactively and communicate to non-technical stake-
holders has been widely appreciated [3, 13]. The metaphor
refers to shortcuts taken during development which speed
up development time in the short-run but hamper produc-
tivity and software quality in the long-run [12]. Typical rea-
sons for intentionally incurred TD include business needs,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2015/16 RWTH Aachen University, Germany.

tight deadlines, strict budgets, or customer requirements
[13]. However, TD may also be incurred unintentionally,
e.g., by a development team lacking the skills to implement
a better solution [3], by acquisition of another company, or
even due to indifference towards technical debt [12]. Several
notions are associated with the TD metaphor, most impor-
tantly principal and interest. Principal refers to the total
cost involved in repaying (i.e. fixing) a particular debt. In
contrast, interest denotes the cost incurred over time due
to the debt through decreased software quality and produc-
tivity [12]. Typically, principal and interest are measured
for each TD item and then accumulated for a broader pic-
ture. A TD item is a particular debt such as a missing test
case, an interface without proper documentation, or a code
duplication.

Explicitly managing TD has several benefits: it is an
effective way to manage software projects proactively [9],
streamline refactoring activities [19], and monitor develop-
ment progress [9]. Proactive management is supported by
monitoring trends and acting upon them. For example,
when a development team fails to write sufficient software
tests, thereby incurring test debt, this problem can be identi-
fied and addressed early [9, 10]. Streamlined refactoring de-
cisions are supported by TD prioritization methods which
facilitate identifying high-impact debt [19]. Lastly, active
tracking of TD over time allows to evaluate if TD is handled
successfully or incurred uncontrollably, so that corrective ac-
tion can be taken if needed [9].

Li et al. identified 8 TDM activities, one of which is TD
prioritization. TD prioritization means ranking identified
TD items according to a set of predefined rules, e.g., using
a cost-benefit approach [12]. For example, in an object-
oriented project, one TD item may be a class violating the
Single Responsibility Principle. Another one may be lacking
documentation for an interface. The first one may take more
time to fix but probably also provide a bigger positive impact
on the software quality – this depends on the organization’s
or the project’s priorities [12].

Activities related to TDM which typically take place be-
fore prioritization are TD identification to identify inten-
tional and unintentional debt, and TD measurement to es-
timate cost and benefit of TD items in one form or another.
Further activities include TD monitoring to track changes in
cost and benefit for TD items, TD repayment to eventually
pay off selected TD items, and TD communication to raise
awareness for TD among stakeholders [12].

TD prioritization is an essential part of the TDM process

because it can be implemented in a way that it reflects not
only technical, but also business priorities, and these ulti-
mately take precedence in practice [3]. Several frameworks
for TD prioritization have been introduced by researchers [9,
6]; however, Li et al. recently identified several open chal-
lenges concerning TD prioritization. These include lacking
tool support, ways to prioritize TD to maximize benefit, and
which factors to take into account for prioritization. [12].

Several approaches for TD prioritization have been intro-
duced, most of which rely on source code and/or design met-
ric measurements to prioritize TD [19, 9, 6]. All approaches
use some way to measure the severity of a particular TD
item (e.g., its interest) and the effort involved in fixing it
(i.e. its principal). These values can then be used to pri-
oritize the TD items. We will explain some approaches in
more detail later.

The modularity-based approach presented in this paper is
mainly concerned with design debt reflected in source code.
In this regard, it is complementary to the SQALE method.
To our knowledge, there has been no previous research on
TD related to modularity in particular. We address this gap
and present a framework to prioritize this type of debt.

The paper is structured as follows. In section 2, we provide
the necessary background and analyze previous approaches
to identify commonalities, differences, and limitations. Sec-
tion 3 presents the modularity metrics identified in this pa-
per and provides a brief rationale for each. In section 4,
we demonstrate a TD prioritization approach based on the
introduced metrics. Section 5 concludes this research by
mentioning limitations of our approach and future work.

2. BACKGROUND
For the purposes of this paper, we will focus on architec-

tural, design, and code debt. These correspond to three of
the ten major types of TD identified by Li et al. in their
recent mapping study [12]. We also note that we consider
intentional and unintentional debt equally since both could
be equally detrimental to software modularity.

TDM relies heavily on TD prioritization to streamline
maintenance activities. Yet, of the 29 tools evaluated by
Li et al., only the SQALE plugin for SonarQube and the
Sonar TD plugin supported TD prioritization [12]. We will
expand upon this area by addressing modularity as a sub-
topic and hope to encourage similar research in other niche
topics which can serve as a basis for a more comprehensive
framework in the future.

2.1 Existing TD Prioritization Approaches
Previous research has developed several TD prioritization

approaches which exhibit many commonalities but also some
foundational differences.

2.1.1 Finance-based Approach
Guo and Seaman proposed a portfolio approach for TD

prioritization [6]. This approach offers a new perspective on
TDM by reusing established portfolio management strate-
gies from the finance domain. Here, TD is considered an
investment and TD items are considered assets of a portfo-
lio. Portfolio management aims to reduce risk and maximize
return on investment (with TD being the investment). This
maps nicely to the issue of TD prioritization. For this ap-
proach, important characteristics of each TD item (such as
principal, interest amount, interest standard deviation, and

correlations between TD items) must be estimated and doc-
umented. After that, a portfolio management model such as
the Modern Portfolio Theory model is used to extract the
best assets (i.e., TD items). The result is a subset of the
assets which reduces risk and maximizes return. Thus, TD
items which are not part of this portfolio should be fixed first
[6]. Guo and Seaman note that there are several incompati-
bilities between financial assets and TD items which need to
be considered: In finance, assets are divisible, and their cost
and interest are known in advance – both of which are not
the case with TD. The approach suggests using quantita-
tive methods for the estimations if possible, and qualitative
methods otherwise. Also, the performance of this approach
in practice was not tested [6].

2.1.2 Design Quality Prioritization Approach
Another prioritization approach which focuses on design

debt in particular was presented by Zazworka et al. [19].
More specifically, their paper focuses on god classes. They
present a cost-benefit approach to decide which god class to
refactor first, based on three metrics: a) weighted method
count; b) tight class cohesion; and c) access to foreign data.
For each metric, an acceptable threshold is defined. Zaz-
worka et al. note that one can assume the cost of refactoring
to increase with the distance of the class from the thresh-
old. For instance, a class with 500 methods will typically
take more effort to refactor than one with 50 methods. This
argument is made for each of the three metrics. Change his-
tory data are used to estimate change likelihood as well as
defect likelihood for each class. The distance of a class from
the thresholds then defines the cost whereas the change and
defect likelihoods define the benefit of refactoring the god
class. A cost-benefit matrix can be used in order to give an
effective overview on which god classes to prioritize [19].

2.1.3 Metrics-based Approach
The SQALE method is a metrics-based approach which

addresses eight so-called characteristics which are divided
into sub-characteristics and eventually source code require-
ments. The used characteristics are ordered by the time
they become important in the file lifecycle. They are, in
order, testability, reliability, changeability, efficiency, secu-
rity, maintainability, portability, and reusability [9]. Re-
quirements represent the definition of “right code”, e.g., no
commented out code, no interfaces without documentation,
or no public class attributes. Note that the modularity char-
acteristic is related to changeability, maintainability and
reusability. In fact, Li et al. categorized modularity as a
sub-attribute of maintainability, adhering to ISO 25010 [12].
However, the SQALE approach does not explicitly address
modularity and is restricted to only code-related debt [9,
10]. In order to estimate the amount of TD, SQALE re-
quires a remediation function for each requirement. This
represents the estimated time needed to fix a TD item (the
principal), e.g., 30 minutes to add documentation to an in-
terface. Similarly, each TD item must be associated with a
non-remediation function – the estimated cost for not repay-
ing the debt [10]. These are simply accumulated to represent
the TD for modules, subsystems or the whole system. The
SQALE method also contains ways to visualize this TD, such
as the Rating Grid, the SQALE Pyramid, and the Debt Map
[9, 10].

2.2 Analysis of Existing Approaches
We will now evaluate commonalities, differences, and lim-

itations of the aforementioned prioritization approaches.

2.2.1 Commonalities
All the approaches exhibit some definition of cost and

benefit which is used for prioritization. In the SQALE ap-
proach, the remediation and non-remediation functions cor-
respond to principal and interest, respectively. Thus they
both represent costs. However, the non-remediation func-
tions also represent the benefit achieved when repaying the
debt. In the design debt prioritization approach introduced
by Zazworka et al., the distance of a class from the threshold
can be seen as a cost (the principal for fixing the item) while
change and defect likelihood act as a measure of benefit. In
the portfolio approach, interest cost is explicitly defined as
estimated interest amount and interest standard deviation
as part of the TD items. Principal is also an explicit part
of each TD item (equivalent to the remediation function in
SQALE) [6]. Benefit is not documented explicitly but can
be derived from the interest measures.

Another commonality between the SQALE method and
the design debt prioritization method is that both rely on
metrics as a basis for measuring and prioritizing TD.
In SQALE, the requirements defined by the organization rely
on metrics in order to evaluate adherence to these require-
ments. For example, a requirement like“method should have
no more than 100 LOC”would rely on a metric such as“lines
of code in method”. SonarQube is made to provide such met-
rics which allows the SQALE method to be implemented
effectively in SonarQube. Similarly, the god class prioriti-
zation is explicitly based on the metrics weighted method
count, tight class cohesion, and access to foreign data to
identify and measure the severity of each god class. Defect
likelihood and change likelihood are two more metrics used
to estimate the relevance and severity of the debt.

Additionally, the SQALE method and the god class prior-
itization approach both include visual representations to
aid the decision process. The portfolio approach could
be extended accordingly; however, the approach has yet to
be refined and tested in practice. Especially in the SQALE
method, visualizations play an important role. Various visu-
alizations have been introduced, including the Rating Grid,
the SQALE Pyramid, and the Debt Map [9, 10]. Accord-
ingly, the SonarQube plugin implements such visualizations.
One can assume that these support both understanding and
decision-making.

2.2.2 Differences
The unique feature of the portfolio approach is that it

reuses existing knowledge from the finance domain. This
is potentially an important advantage because portfolio ap-
proaches from finance are well-understood and established.
Other approaches usually rely on previous research in fields
such as software design, software quality measurement, and
coding best practices. For instance, the design debt priori-
tization approach relies heavily on previous research on god
classes which is a well-known issue in software design and
software evolution.

The SQALE method is unique in that it has already been
widely adopted in the industry through its implementation
in SonarQube. To our knowledge, no other tool for TDM
is used as much in practice. In fact, there is no research on

the real-world implementation of the portfolio approach.
The presented comparison also highlights the fact that,

while most approaches make use of predefined metrics, other
approaches such as the portfolio approach are also conceiv-
able. These may pose a good opportunity for research since
previous research has focused on metrics-based methods.
The approach presented in this paper will rely on metrics
as well.

2.2.3 Limitations
The design debt prioritization approach introduced by Za-

zworka et al. is obviously limited to god classes in the form
presented in the paper [19]. However, the principles may be
reused for similar design flaws. For example, a similar ap-
proach for improper inheritance structures may use metrics
such as“number of child classes”, “depth of inheritance tree”,
or “composition not preferred over inheritance”. Another
limitation of the approach as presented in the paper is the
fact that it relies on historical data to estimate change and
defect likelihood. Thus, the quality of the estimate depends
on the amount of available history, making it less applicable
for newer projects.

With their portfolio approach, Guo and Seaman provide
a new perspective on TDM. However, the implementation
of this method in practice, its assumptions, conditions, and
applicability remain to be evaluated when applied in the
context of TD. They also mention some general guidelines
based on finance which need further evaluation. For ex-
ample, Guo and Seaman propose to prefer many small TD
items over one big TD item – this diversification promises
to decrease risk [6]. Similarly, one should prefer TD items
with low positive correlations. Guo and Seaman proposed
further studies for empirical evidence [6].

The SQALE method is limited to code-related debt which
is only one of the ten types of TD [12]. However, other
types of TD such as design debt or test debt are typically
associated with the code debt. Thus, fixing code debt can
also mitigate other types of debt. Also, we identified that
the SQALE method lacks an explicit measurement of mod-
ularity. The characteristics, sub-characteristics, and require-
ments of the method provide an opportunity to tweak and/or
extend it. Thus, the method could by extended by either
adding modularity as a characteristic or as a sub-charac-
teristic of maintainability, as in ISO 25010 [12]. The results
of this paper can be used to add modularity requirements
and are insofar complementary to the SQALE approach.

3. MODULARITY METRICS
The modularity of a software system refers to the capabil-

ity of its modules and subsystems to function as autonomous
modules and provide their services outside the original sys-
tem [1]. The major benefit of such modularity is the option
to substitute system components if a superior implementa-
tion becomes available. Since this option is available but
not obligatory, and potentially improves system design, it
provides a positive net value [17].

3.1 Existing Modularity Metrics
In order to measure and evaluate modularity, various re-

searchers have gathered a catalog of modularity metrics.
In 2007, Sant et al. presented 11 architectural metrics to
measure modularity [15]. They are based on the princi-
ples that a single concern should typically be realized by

a single component, that shared data and state between
components should be minimized, and that the complex-
ity of components should be reasonable. Additionally, Li
and Henry gathered maintainability metrics, some of which
can be applied for modularity concerns [11]. These include
depth of inheritance tree (DIT), lack of cohesion of methods
(LCOM), and number of child classes (NOC). A rationale
for each is given later.

Another way to discover modularity requirements is by
looking at research on modularity violations. Wong et al.
presented the CLIO tool which detects such violations by
comparing which components should change together and
which did change together according to version control his-
tory [18]. This indicates the concept that architectural and
design metrics should be mapped to measurable code metrics
if possible in order to evaluate consistency with the archi-
tecture and design.

Metrics for modularity can be mapped to source code re-
quirements, equivalent to those introduced in the SQALE
method. By identifying and prioritizing such metrics, we
will present a prioritization approach for modularity-related
TD which can be integrated into the SQALE method if de-
sired.

3.2 A Catalog of Modularity Metrics
The modularity debt prioritization approach introduced

in this paper, like many others, is based on metrics. We
present a catalog of metrics in Table 1. Typically, archi-
tectural metrics imply design metrics which in turn imply
code metrics. Note that the derivation of metrics ends on
the design level if they are measurable on that level already;
however, most of our metrics map directly to source code re-
quirements. In order to discover the modularity metrics, we
relied on previous research on architectural best practices,
modularity issues, and previously presented metrics. Most
predominantly, we derived design metrics from architectural
practices and then derived corresponding source code met-
rics. In most cases, this yielded well-known metrics from
previous research.

Note that there are two trends here. First, the derived
metrics often correspond to good design or coding practices.
Second, architectural metrics tend to imply several design
metrics which in turn tend to imply several code metrics.
This makes the methodology very fruitful to derive a range
of source code metrics.

3.3 Rationale
Table 1 shows all metrics identified in this paper and how

they are derived from each other. We will give a brief ratio-
nale for each to explain in which ways they support modu-
larity. References to other work are given where applicable.

3.3.1 Low Coupling Between Modules
Low coupling between modules is a major architectural

requirement for modularity and reusability [1]. Based on
this principle, we derived several design requirements and
metrics. First, components should communicate via well-
defined interfaces. Thus, on code level, developers should
always refer to the most general type possible [2] in order
to abstract from the concrete subtype and implementation.
Next, associations and, more strongly, compositions intro-
duce dependencies between components and should there-
fore be minimized. On code level, this can be measured by

the number of imported types. Also, the message passing
coupling can be measured by the number of method calls on
other classes [11]. Next, the use of intermediaries decouples
components by adding a layer of abstraction for commu-
nication. Such patterns include Facade, Mediator, Proxy,
Strategy, Factory, Publish-Subscribe, and Blackboard [1].
Note that these are architectural and design-level patterns,
yet could be measured semi-reliably on source code level
by relying on naming conventions or stereotypes. A strong
form of coupling is inheritance [11] which implies two design-
level metrics, the number of parent classes (i.e., the depth
in the inheritance tree in single inheritance languages), and
the number of child classes (NOC). Arguably, inheritance
couples components stronger than association [2].

3.3.2 Proper Distribution of Functionality
Second, proper distribution of functionality is a well-known

challenge for software architects [1]. Design-level require-
ments derived from this include tight class cohesion (TCC)
[14] and proper reuse of functionality. Tight class cohesion
can be measured on code level by clusters of methods that
share no common data at all (LCOM) [11]; the overall num-
ber of lines of code (LOC) may also be indicative of the
cohesion since very large classes tend to handle various con-
cerns [19]. The proper reuse of functionality is reflected
by the lines of duplicated code, corresponding to the don’t-
repeat-yourself principle of object-oriented design.

3.3.3 Information-Hiding Interfaces
Third, we chose the use of information-hiding interfaces

[17] as a separate architectural requirement since it yields
several design and coding guidelines. One metric is the num-
ber of interfaces in comparison to the number of classes to
estimate how widely information hiding is employed. This
is related to “communication via interfaces” above. Another
important metric is the number of public class attributes [4,
19] (excluding explicit class constants) since these violate
encapsulation. More generally, we propose to measure the
percentages of private, protected, and public attributes in a
class (the naming convention is based on Java and similar
languages). This allows to estimate the strength of encap-
sulation in more detail. For instance, private attributes can
reduce inheritance coupling because even subtypes cannot
access private attributes.

4. MODULARITY-BASED TD PRIORITIZA-
TION APPROACH

4.1 Overview
Based on the presented catalog of modularity metrics, dif-

ferent prioritization strategies may be defined. In the fol-
lowing, we present a cost-benefit approach which balances
principal against interest amount and probability – similar
to remediation and non-remediation functions respectively.
We note that various other prioritization strategies may be
defined based on these same metrics.

In order to derive concrete TD items from the metrics,
we must define a threshold based on our definition of “right
code”. For example, we may specify the threshold for the
depth of a class in the inheritance tree to be lower than five.
Then, in order to prioritize the TD items, we assign princi-
pal, estimated interest amount (EIA), and estimated interest

Architecture level Design level Code level

Low coupling between modules
Communication via interfaces [2] Number of type references replaceable

by more general type [2]

Number of associations to
other classes (FAN OUT [4])

Number of imported types [19]

Number of method calls on other
classes [11]

Number of associations from
other classes to this class
(FAN IN) [7]

Number of imports of this class in other
classes

Number of classes calling methods from
this class

Number of intermediaries Number of usages of Facade, Media-
tor, Proxy, Strategy, Factory, Publish-
Subscribe, Blackboard and similar pat-
terns [1]

Number of parent classes /
Inheritance depth (DIT) [11]

Number of child classes (NOC) [11]

Proper distribution of func-
tionality

Tight class cohesion (TCC) [19, 4]
Number of clusters of methods without
a shared variable (LCOM) [11]

Source lines of codes in class (LOC) [11,
4]

Weighted method count (WMC) [11,
19]

Proper reuse of functionality [19] Lines of duplicated code (SEC) [8]

Components have
information-hiding
interfaces

Percentage of interfaces vs. classes
Number of classes

Number of interfaces

Number of public class
attributes (excluding con-
stants) [4, 19]

Number of private attributes

Number of protected attributes

Number of public attributes (NOPA)
[4]

Table 1: A catalog of modularity requirements and metrics.

probability (EIP). This is not a trivial task because the esti-
mations depend on organizational and technical factors [4],
including developer skills, interdependencies between TD
items, and projected future changes. Therefore, the estima-
tions must be performed by each organization and project
individually. Principal, EIA, and EIP have all been used in
previous research [6, 16]. The principal defines the cost for
fixing the TD item and thus corresponds to a remediation
function in the SQALE approach. Similarly, interest amount
and probability define the cost for not fixing the TD items
and thus correspond a non-remediation function. The ratio-
nale behind the probability is that modules which will likely
never be changed in the future should have accordingly low
priority [5].

4.2 Cost-Benefit Formula
Once we have assigned principal, EIA, and EIP, we can

use these to prioritize the TD items. For the purposes of
this paper, we will assign to each TD item I the priority
P (I) calculated as

P (I) =
EIA · EIP

Principal
.

This is a very simple way to assign a useful priority score

which represents a cost-benefit approach – dividing benefit
by cost. Thus, the TD items I with the highest priority
P (I) should be repaid first.

4.3 Procedure
To use this approach, several steps and guidelines should

be followed. A prerequisite is the ability to measure code-
related debt. Ideally, design debt can be measured as well.
The procedure is as follows:

1. Assign a threshold to each metric to derive TD items.

2. Estimate principal, EIA, and EIP for each TD item.

3. Calculate P (I) for each item.

For step 1, Fontana et al. provide some guidance in a re-
cent study [4]. However, thresholds must be defined and
evaluated by the organization based on what works in their
context. For step 2, you should take into account your devel-
opment team’s skills, organizational constraints, and histor-
ical data to improve the estimations [16, 19]. As mentioned
above, this is a complex task due to many influencing fac-
tors. Since the quality of the approach depends directly on
the quality of the estimations, we recommend monitoring

TD Item Metric Threshold Principal EIA EIP P(I) Rank
3 public attributes in SampleClass NOPA 0 5h 3h 20% 0.12 2
4 clusters in Another-Class LCOM 2 20h 10h 50% 0.25 1
Depth of SampleClass is 7 DIT 5 25h 5h 25% 0.05 3

Table 2: List of sample TD items with threshold, principal, and interest.

and adjusting the estimations. To identify the TD items
and measure their related metrics, you may use an analysis
tool such as SonarQube.

4.4 Applying the Approach
To illustrate the presented approach and make it more

tangible, we present a brief example. We assume we have
derived the TD items listed in Table 2.

The example is set up in a way that AnotherClass is
changed much more frequently than SomeClass, thus the
higher EIP. We can see that the debt related to Another-

Class should be repaid first because P (I) is higher than that
of any other TD item. This originates from the fact that
AnotherClass is changed often and thus has high interest.
The next TD item to fix would be the first one because its
principal is low compared to that of the third item.

5. CONCLUSION & FUTURE WORK
In this paper, we have introduced a modularity-based

TD prioritization approach based on several metrics we ex-
tracted or derived from previous research.

In its current state, the presented approach lacks a way
to systematically estimate and assign values such as princi-
pal, estimated interest amount (EIA), and estimated interest
probability (EIP) which is not a trivial issue in TDM. Like
other current approaches, we rely on user input for these
estimations [9, 6]. Tools to guide the estimation of such val-
ues remain future work. Such tools should also consider the
severity of violations, e.g., by measuring the distance from
the defined thresholds [19] or other user-defined metrics. We
also note that we do not consider the presented metrics fixed
and expect future work to extend or refine the catalog. In
addition, future research focusing on niches other than mod-
ularity may provide further insights which can pave the way
to a comprehensive TDM approach. Also, other priority cal-
culations may be defined based on the provided metrics and
resulting TD items. The implementation of the presented
approach in practice remains to be evaluated to generate
empirical data.

6. REFERENCES
[1] L. Bass. Software architecture in practice. Pearson

Education India, 2007.

[2] J. Bloch. Effective Java. Java Series. Pearson
Education, 2008.

[3] F. Buschmann. To pay or not to pay technical debt.
Software, IEEE, 28(6):29–31, 2011.

[4] F. A. Fontana, V. Ferme, M. Zanoni, and R. Roveda.
Towards a prioritization of code debt: A code smell
intensity index. In Managing Technical Debt (MTD),
2015 IEEE 7th International Workshop on, pages
16–24. IEEE, 2015.

[5] G. Technical debt: Strategies & tactics for avoiding &
removing it. http://blogs.ripple-
rock.com/SteveGarnett/2013/03/05/TechnicalDebt

StrategiesTacticsForAvoidingRemovingIt.aspx.
Accessed: 2015-12-01.

[6] Y. Guo and C. Seaman. A portfolio approach to
technical debt management. In Proceedings of the 2nd
Workshop on Managing Technical Debt, pages 31–34.
ACM, 2011.

[7] S. Henry and D. Kafura. Software structure metrics
based on information flow. Software Engineering,
IEEE Transactions on, SE-7(5):510–518, Sept 1981.

[8] M. Lanza and R. Marinescu. Object-oriented metrics
in practice: using software metrics to characterize,
evaluate, and improve the design of object-oriented
systems. Springer Science & Business Media, 2007.

[9] J.-L. Letouzey. The sqale method for evaluating
technical debt. In Proceedings of the Third
International Workshop on Managing Technical Debt,
pages 31–36. IEEE Press, 2012.

[10] J.-L. Letouzey and M. Ilkiewicz. Managing technical
debt with the sqale method. IEEE Software,
29(6):44–51, 2012.

[11] W. Li and S. Henry. Object-oriented metrics that
predict maintainability. Journal of systems and
software, 23(2):111–122, 1993.

[12] Z. Li, P. Avgeriou, and P. Liang. A systematic
mapping study on technical debt and its management.
Journal of Systems and Software, 101:193–220, 2015.

[13] E. Lim, N. Taksande, and C. Seaman. A balancing
act: what software practitioners have to say about
technical debt. Software, IEEE, 29(6):22–27, 2012.

[14] R. Marinescu. Detection strategies: Metrics-based
rules for detecting design flaws. In Software
Maintenance, 2004. Proceedings. 20th IEEE
International Conference on, pages 350–359. IEEE,
2004.

[15] C. Sant Anna, E. Figueiredo, A. Garcia, and C. J.
Lucena. On the modularity of software architectures:
A concern-driven measurement framework. In
Software Architecture, pages 207–224. Springer, 2007.

[16] C. Seaman and Y. Guo. Measuring and monitoring
technical debt. Advances in Computers, 82:25–46,
2011.

[17] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen.
The structure and value of modularity in software
design. SIGSOFT Softw. Eng. Notes, 26(5):99–108,
Sept. 2001.

[18] S. Wong, Y. Cai, M. Kim, and M. Dalton. Detecting
software modularity violations. In Proceedings of the
33rd International Conference on Software
Engineering, pages 411–420. ACM, 2011.

[19] N. Zazworka, C. Seaman, and F. Shull. Prioritizing
design debt investment opportunities. In Proceedings
of the 2nd Workshop on Managing Technical Debt,
pages 39–42. ACM, 2011.

The Impact of Context on Continuous Delivery

Sebastian Rabenhorst
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

sebastian.rabenhorst@rwth-aachen.de

Andreas Steffens
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
steffens@swc.rwth-aachen.de

ABSTRACT
This paper will evaluate how the properties of production
environment and software, which is continuously delivered,
have influence on the implementation of Continuous Deliv-
ery. The evaluation is based on three case studies from dif-
ferent software development domains. The first case study
deals with the way the software engineers at Etsy use Con-
tinuous Integration for the delivery of their App. The second
example is about Box’s decision to introduce Continuous
Deployment in order to continuously deploy their desktop
software Box Sync to its customers. The last example is
about the Hewlett-Packard LaserJet Firmware Team which
implemented Continuous Delivery with great success.
These case studies will show that UI (user interface) com-
plexity, the lack of control over the production environment
and the quality of software simulators, which simulate the
production environments, are properties or derived proper-
ties which have impact on the implementation of Continuous
Delivery.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

Keywords
Continuous Delivery, Production Environment

1. INTRODUCTION
Continuous Delivery is a software development discipline

which enables “Reliable Software Releases through Build,
Test, and Deployment Automation”[9].
This paper will evaluate the impact of context on Continu-
ous Delivery implementation for software development do-
mains which are different from the classical domains of none
UI heavy backend and web applications. Software and pro-
duction environment properties present the context evalu-
ated in this paper. The evaluation is based on three different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2015/16 RWTH Aachen University, Germany.

case studies.
The structure of the paper is as follows. Section 2 provides
all important definitions and a short introduction to Con-
tinuous Delivery. Section 3 covers the three case studies,
which are first described and then analyzed. The first case
study is about the way Etsy, “often trotted out as a poster
child for Devops” [3], introduced Continuous Delivery for
their Apps (mobile applications). The second one comes
from the company Box which recently implemented Contin-
uous Deployment for their desktop software Box Sync. The
last example is the very well documented case of the HP
LaserJet Firmware Team, which increased their productiv-
ity dramatically by implementing Continuous Delivery.
After the analysis and description of all three examples they
are compared to each other in section 4 in order to identify
similarities of properties which impact the Continuous De-
livery implementation. The last section 5 will conclude the
paper and provide ideas for future work.

2. TERM DEFINITIONS
In this section the most important terms are briefly intro-

duced. More detailed information can be found in the cited
sources.

Continuous Delivery and the Deployment Pipeline
The three terms Continuous Integration, Continuous Deliv-
ery and Continuous Deployment and their coherences are
easily confused and will therefore be defined in this section.
The process of Continuous Delivery starts with continuously
integrating code. Continuous Integration “is a software
development practice where members of a team integrate
their work frequently, [...]. Each integration is verified by an
automated build (including test) to detect integration errors
as quickly as possible.” Continuous Delivery goes one
step further and ensures that“software is build in such a way
that the software can be released to production at any time”
and the software is deployable throughout its whole life cy-
cle. The last step towards complete automation is Contin-
uous Deployment. “Continuous Deployment means that
every change goes through the pipeline and automatically
gets put into production, resulting in many production de-
ployments every day.” [12]
The Core of a Continuous Delivery implementation is the
Deployment Pipeline, which models the process of get-
ting “software from version control into the hands of your
users” [7]. As figure 1, which illustrates a basic deployment
pipeline, shows some stages of a Deployment Pipeline are au-

Figure 1: Basic Deployment Pipeline[8]

tomated and some need manual interaction. The three case
studies in section 3 will show that the level of automation is
different for each specific implementation. The first stage is
the commit stage. The following two stages, automated ac-
ceptance tests and a manual testing stage, can be executed
in parallel. The last three stages are parallel again and con-
sist of the UAT (user acceptance tests), capacity tests and
going into production stage [8].
The term classical Continuous Delivery refers to Continu-
ous Delivery for web or backend applications with none or
very little UI.

Environment
An environment in the context of software development
is one specific combination of hardware properties and soft-
ware properties which build a platform to run software on.
Through the Continuous Delivery process the following en-
vironments may occur.
In traditional software development there are four differ-
ent environments for a software from development to pro-
duction. The first one is the development environment,
which represents the working environment of the developer.
After the development environment comes the integration
environment where the code changes from all developers
are combined and integrated. For smaller projects the first
two environments could be the same. The staging envi-
ronment should be as similar as possible, ideally identical,
to the production environment. It is used to simulate pro-
duction. The production environment is the environ-
ment the software was developed for [14].

3. CASE STUDIES
This section covers the three case studies on which the

evaluation in section 4 is based on. Each case is briefly de-
scribed and followed by an analysis. The goal of the analysis
is to find out which properties of the production environment
and the software had most impact on the specific implemen-
tation of Continuous Delivery. The analysis part itself will
focus on the following two questions:

• Which properties of the production environment and
the software have influence on Continuous Delivery?

• How is this reflected in the implementation of Contin-
uous Delivery?

The results of the analyses are compared to each other in
section 4 to identify similarities and determine what had the
biggest impact regarding difficulties and unresolved prob-
lems.

3.1 Mobile Application: Etsy
The first case study is taken from an article which de-

scribes how Continuous Delivery is implemented for an App
at Etsy. “Etsy is a marketplace where people around the
world connect, both online and offline, to make, sell and buy
unique goods.” [4] The example was chosen since it points
out the challenges of Continuous Delivery in the context of
an App. The article mainly focuses on the iOS Continuous
Delivery stack because at the time of writing the Android
stack wasn’t as well developed as its iOS counterpart [13].

Description
Etsy decided to use Continuous Integration since “through
Continuous Integration, they can detect and fix major de-
fects in the development and validation phase of the project,
before they negatively impact user experience”.
Automated Continuous Delivery at Etsy for mobile apps can
be summarized in one sentence: “Every commit builds the
mainline on special integration machines”. So after every
commit by a developer an integration server (Jenkins [10])
executes a build plan which consists of more than 15 jobs by
using the integration machines and notifies the developers
in case of a failure. There is also a simple homegrown dash-
board which “communicates the current test status across
all configurations” [15]. The whole CI infrastructure from
Etsy is illustrated in figure 2.
The biggest challenge was to setup an integration and test
environment which covers all important devices. For iOS
every build has to be tested on “seven different iPads, five
iPhones and a few iPods” [15]. But for Android it is even
worse because because the number of Android devices to
cover by tests is overwhelming. As integration and test en-
vironment there is a“fleet of Mac minis”which are all nearly
fully automatically provisioned. Additionally real devices in
the cloud from AWS device farm [1] are used for testing. The
setup of the integration machines could not be fully auto-
mated because of the “inability to automate the installation
of some software dependencies”. Especially the installation
and setup of the iOS IDE Xcode still needs some manual
interaction.
With these integration machines the code is build and tested
after each push to the repository to get immediate feedback.
Regression test are run nightly on a broader range of real
devices [15].
Since “most of the core logic of Etsy’s Apps relies on the
UI layer” the software engineers at Etsy focus on functional
testing which mimics the steps of an actual user. The test
include actions like “searching for listings and shops”, “regis-
tering new accounts” and “purchasing an item with a credit
card or a gift card”. One example for a concrete functional
tests is the checkout test. For this test a buyer and seller
test account is created and a real credit card is used [15].
The test is as follows:

1. “Signing in to the app with a test buyer account.” [15]

2. “Searching for an item (in the seller test account shop).”
[15]

Figure 2: Etsy’s CI infrastructure overview[15]

3. “Adding it to the cart.” [15]

4. “Paying for the item using the prepaid credit card.”
[15]

These tests run on simulators and real devices. Integration
tests, executed after every push, are run in simulators on
the integration machines of Etsy. Nightly Regression tests
are outsourced to AWS device farm [1] (previously known
as Appthwack), which provides the possibility to test Apps
on a broad range of real mobile devices [15]. Since it is
nearly impossible to test on all possible device configura-
tions, devices are chosen based on Google Analytics data.
Since the integration happened only recently there were still
some problems related to testing on physical devices and the
challenges of aggregating and reporting test status from all
the devices when the article was published [13].

In addition to the automatic integration testing there are
layers of manual QA (quality assurance). An internal build
is released daily which Etsy employees are encouraged to
install on their devices [15]. Another manual test is called
“app rotations”: “Eight volunteers gather in a room, accom-
panied by a QA facilitator and a mix of devices. The goal is
to find as many bugs as possible in a predefined timebox.”
[13]
After all automated and manual tests are passed the App
is submitted to the App Store for approval which will take
around five days [15]. So if a bug slips through all the tests
and is discovered while the App is already running on the
users devices, it takes a minimum five days to get an update
to the users.

Analysis
The goal of the software engineers at Etsy was to implement
fully automated Continuous Delivery for their Apps. They

automated the process as far as possible from pushing the
code into the repository to submitting the App to the App
Store. During the implementation of Continuous Delivery
they were faced with two major challenges.
The first challenge was the setup of the environments for
integration and testing. For testing the Android and iOS
Apps, either a software simulators or real devices is neces-
sary to run the Apps on. Simulators for Android and iOS
don’t model real devices closely enough and proved to be in-
sufficient [17], thus simulators are only used for integration
tests and real devices have to be used for regression tests. So
the first property with influence on the Continuous Delivery
implementation is the inability to properly model mobile de-
vices with software simulators.
The need to use real devices for tests results in the next
problem. Which devices should be used for the tests? The
possible production environments are all iOS and Android
devices with an App Store or Google Play Store installed.
While for iOS there is a limited number of different devices
and versions, the number of Android devices and versions is
far to big to run tests on all of them, because that would
lead to unmanageable number of devices to run tests on.
Opensignal reports there are over “24,000 distinct Android
devices seen in 2015” [16]. So it’s impossible to cover all
existing devices with tests and a specific set of iOS and An-
droid has to be chosen for tests. Thus the second property
with influence on the implementation of Continuous Deliv-
ery is a to big variety of possible production environments
which have to be covered with tests.
The second challenge was the automated testing of the UI.
The functional tests used for this purpose will only discover
basic bugs and App crashes. Additionally the aggregation
and evaluation of the test data from the AWS device farm
devices used for regression testing is still an unsolved prob-
lem, which is again a result of the variety of possible pro-
duction environments. These problems made it necessary
to add the described manual QA stages. So one identified
property of the production environment which has impact
on Continuous Delivery is UI complexity. It results in the
inability to fully automate tests, which makes manual qual-
ity assurance necessary.
Another property is control over the deployment process.
The five days approval process of the App Store was one
reason for an additional manual test stage. So the inability
to deploy a hotfix immediately results in even more accurate
testing.

3.2 Desktop Application: Box
Box is a company which provides “secure content and on-

line file sharing for businesses” [2]. One part of their product
is their desktop software Box Sync which syncs their cus-
tomers desktop computers with Box ’s online services. “In
an effort to maintain the agility of our startup days and
deliver the best software possible, Box has been moving to-
wards Continuous Deployment”. Since the software engi-
neers at Box had huge success with Continuous Deployment
and web development they decided to use their experience
and knowledge and adapt it for their desktop software [18].

Description
“In order to do Continous Deployment you must be doing
Continous Delivery” [12]. Therefore the team at Box imple-
mented“automated acceptance testing” in a first step. Basic

functionality of Box Sync, syncing files from one computer
to another, is easy to test since network and file system could
easily be simulated [18]. They used standard best practice
for web development:

1. “Every time a developer pushes a new commit, the ap-
plication is built in its entirety (“continuous integra-
tion”) and the full suite of tests is run.” [18]

2. “If a test fails, the build cannot be deployed and fur-
ther commits are rejected until the test failure is fixed
(“stop the line”).” [18]

Since the Box Sync software “is light on UI and its basic job-
ensuring two sets of files in two different places match-is very
easy for a computer to verify” [18] there is full code cover-
age through unit tests. They have three types of automatic
integration tests:

1. Full code coverage via unit tests.[18]

2. “The main syncing algorithm is covered by integration-
style tests which simulate the network and file system
called B to Y (the local file system is A, and the net-
work is Z).” [18]

3. “Full-scale integration tests that launch the built ver-
sion of Sync (the full .app or .exe, depending on plat-
form), play with files on the local hard drive or on Box,
and verify the right things end up in the right place at
the end. They call this “chimp”.” [18]

All of the described tests are run on each supported plat-
form and operating system. Since the Box Sync software
relies heavily on the Box web API, another suit of integra-
tion tests called “chimp-staging” is run to ensure compati-
bility. But “deploying client software is completely unlike
deploying a web app, so their first goal was to make the pro-
cess as consistent as possible, while respecting the different
domain requirements and maintaining high user experience
standards” [18].
As a result of Continuous Deployment of Box Sync all up-
dates had to be backward compatible to a lot of prior ver-
sions since the production environment of Box Sync are
desktop computers which might be offline for days or weeks.
The risk of rendering a client useless with a failed update is
too high and therefore older versions of Box Sync are manu-
ally updated with consecutive updates before the release of
a new version [18].
To make sure that there are no problems during the auto-
mated deployment the Box Sync clients are monitored re-
motely and bad things like “exceptions, errors, or warnings
the clients encounter” are reported. But also things like up-
loads, downloads, and authentication session renewals are
monitored to assure that the clients don’t stop working com-
pletely. All the data is aggregated by the client and send to
the servers in a bandwidth saving manor to prevent Denial-
of-service attacks by the own client [18].
But there are still three problems to be solved for real Con-
tinuous Deployment :

1. “Shipping a complete copy of the application multiple
times a day would saturate bandwidth. Differential
updates could solve this problem.” [18]

2. The UI elements of Box Sync are still checked manually
for each platform [18].

3. The reading of feedback from the clients is not auto-
mated [18].

The author of the article summarizes the implementation of
Continuous Deployment for Box Sync as follows: “One of
the things we learned while building Box Sync is that even
if we cannot reach true continuous deployment for technical
reasons, having it as a goal makes a strong, positive impact
on our culture and development practices.” [18]

Analysis
The Box team had a lot of experience with Continuous
Deployment for web applications and tried to apply their
knowledge to the delivery and deployment of their desktop
software Box Sync. This worked out very well for the Con-
tinuous Integration stages of their pipeline because the core
functionality of Box Sync was easy to verify and the imple-
mentation was very similar to an implementation for classi-
cal Continuous Integration.
The regression test stage, which was executed on “real com-
puters”, however could only be partly automated. The core
functionality was again easy to test since there was no com-
plex UI and the result of an test could easily be verified
automatically on real computers. UI tests in contrast were
too complex for the Box Sync team to implement and there-
fore the UI is tested manually before each release. So again
the UI couldn’t be tested fully automated.
But the major challenge for the Box Sync team was to keep
each release backward compatible to prior releases. This
problem was a result of no control over the production en-
vironment since it’s an decision of the customer when the
client is online and can update itself. This is a big difference
to web servers, the target environment for classical Contin-
uous Delivery, which are fully owned and are mostly incre-
mentally updated. This problem couldn’t be solved with
automated tests instead they had to add a manual approval
stage.

3.3 Embedded System: HP Printer Firmware
The last case study is about the HP LaserJet Firmware

Team which made their way out of a crisis and increased pro-
ductivity by implementing Continuous Delivery. The whole
process is very well documented in the book“A Practical Ap-
proach to Large-Scale Agile Development” [6] by the project
leader Gary Gruver, which I recommend for further details.
This case study was selected since it’s completely different
from the other two case studies and shows that fully auto-
mated Continuous Delivery is possible for software develop-
ment domains different from web and backend.
When Gary Gruver joined the HP LaserJet Firmware Team
they spent only 5 % of their resources on developing new fea-
tures and the average time of one regression test cycle was
six weeks. This is why they decided to implement Continu-
ous Delivery and changed the architecture of their software.
We will focus on the implementation of Continuous Integra-
tion as described in chapter 6 of Gruver’s book [6].

Description
Before they implemented Continuous Delivery they had to
change the structure of the code first. They reorganized
their code base and changed from multiple branches, one

Figure 3: Continuous Delivery system at HP [6]

for each printer model, to one single branch. Instead of
defining the specific capabilities for each printer with a C
#ifdef directive [5] they used XML configuration files for
the definition of the capabilities. For the integration tests
they developed their own printer simulators and deployed
them on 2000 virtual servers. For the later test stages they
used hardware emulators to get more accurate results [11].
Figure 3 shows the Continuous Integration and test setup
of the HP LaserJet Firmware Team. The system has four
different levels of testing [6]:

• L1: Is executed after each commit. If there is a failure
it will be automatically reverted.

• L2: More detailed tests, which run every 2 hours and
use last working commit from L1. If a test fails an
email with everything needed to replicate the failure is
sent to the developer who committed the code.

• L3: Same as L2 but runs on dedicated emulator hard-
ware every 4 hours.

• L4: All automated tests are combined to a regression
test suite and run daily around midnight. “Provides a
complete view of the quality of the system” and is an
indicator for the release readiness of the firmware.

With the introduction of Continuous Delivery the HP
LaserJet Firmware Team could strikingly decrease the time
and resources needed for code integration and tests. While
the team spent 10 % of their resources for code integration
before the changes now it’s only 2 %. They could decrease
the resources needed for testing from 15 % to 5 %. This
allowed them to spend 40 % instead of 5 % on new features
and innovations [6].

Analysis
The HP team also had the challenge of covering multiple
production environments with tests. But in contrast to the
other two case studies, their models of the simulators are
very good and they have full control over each possible pro-
duction environment. This way they could reach full cover-
age of all possible production environments. Additionally,

since there was no complex UI, all the test data could be
evaluated automatically and for some tests there was also
automated feedback to the developers. But there was also
the problem of software simulators not being good enough
and therefore they used hardware simulators for the regres-
sion test stage.

4. EVALUATION
This section sums up and evaluates the results of the anal-

ysis parts in Section 3.

UI complexity
The first two case studies showed that the level of UI com-
plexity of the software has a big influence on the degree of
manual test stages required for Continuous Delivery. To
reach full test coverage for an UI heavy software all possible
input paths have to be covered and each result has to be ver-
ified. User Input can be simulated with the help of scripts.
The problem is the automated aggregation and evaluation
of the test data from all devices. The software engineers at
Etsy can only detect crashes and low level bugs with au-
tomated UI tests. The UI of Box Sync is tested manually
because implementing tests would be too complex. The case
study from HP, in contrast, is a good example for software
with very little UI and UI interaction of the user. As a result
they could completely automate their tests.
Therefore UI complexity is one property of the software
which has an impact on the implementation of Continuous
delivery.

Lack of control over the production environment
The impact of lack of control over the production environ-
ment showed itself in three different variants.
The first one comes from the Etsy case study which showed
that if there are no constraints on the configuration of the
production environments, that could lead to a fragmenta-
tion of the production environment. This might result in an
unmanageable number of possible production environments.
This again results in the problem how to implement the in-
tegration and test environments, since it is impossible to
run tests on all possible production environments. The HP
case study in contrast shows that it is possible to cover all
production environments with tests, even if there is a big
number of them.
The second variant about lack of control over the production
environments is the lack of control over when and how up-
dates are deployed to the production environment. The Box
Sync case shows that if you continuously deploy your soft-
ware into production there might be problems because some
clients skip updates and therefore updates have to be com-
patible to all prior versions. So the lack of control over the
production environment could lead to an additional manual
approval stage
The last one is a result of no control over the deployment
process. Bugs that slip into production can’t be immedi-
ately fixed with a hotfix. This makes it necessary to test
several nightly builds manually before every release.
So the lack of control over the production environments has
a lot of impact on all stages which are connected to tests.

Quality of software simulators
The HP and Etsy case studies showed that quality of soft-
ware simulators, which simulate the production environ-
ment, have impact on the test stages of Continuous Delivery.
Tests with simulators are mostly not sufficient since simu-
lators are unable to properly imitate some properties of the
production environment. Therefore the software running on
simulators won’t show the same behavior and performance
as on the real devices. As a consequence, tests in simula-
tors won’t discover all bugs that are found with tests on real
devices. For this reason in both case studies from HP and
Etsy simulators are only used for early test stages. But with
the use of hardware based simulators or real devices the ag-
gregation and evaluation of test data is more complex. This
results in more effort for the implementation of tests or even
inability to process the data automatically.
So with decreasing quality of software emulators for an pro-
duction environment the complexity of tests increases.

5. CONCLUSION & FUTURE WORK
The analysis of the case studies showed some of the pos-

sible impacts of production environment and software prop-
erties on the implementation of Continuous Delivery.
The following three properties were extracted from the anal-
ysis of the case studies:

• With increasing UI complexity the test data from
UI tests can’t be processed automatically and manual
test stages are necessary.

• The Lack of control over parts or the whole of the
production environment influences the implementation
of the different test stages.

• Quality of software simulators is connected to com-
plexity of the test stages.

Since this paper could only evaluate a limited number of case
studies examples from other software development domains
should be examined to confirm and expand the results.
One of the consequence of the found properties is the need
for additional test stages which require manual interaction.
Especially the evaluation and feedback for UI tests are done
manually for two of the three case studies. In order to solve
this problem further investigation of UI testing is necessary
to identify the reasons which prevent the full automation.
The lack of control over the production environment com-
bined with an unmanageable number of possible production
environments made it impossible to reach full test coverage
for them. There are two problems suitable for further inves-
tigation. The first one is how to prevent the fragmentation
of a production environment which leads to an uncontrol-
lable number of possible production environments. And if it
can’t be prevented how to maximize the coverage of relevant
production environments.
The case studies also showed that if the production environ-
ment is fully under control of the team and UI complexity is
low it’s possible to implement fully automated Continuous
Delivery.

6. REFERENCES
[1] Amazon. Aws device farm.

http://aws.amazon.com/device-farm/?nc1=f_ls,
2015. Retrieved December 03, 2015.

[2] box. box.com. https://www.box.com, 2015. Retrieved
December 06, 2015.

[3] L. Chen. Continuous delivery: Huge benefits, but
challenges too. Software, IEEE, 32(2):50–54, Mar
2015.

[4] Etsy. About etsy. https://www.etsy.com/de/about/,
2015. Retrieved December 06, 2015.

[5] gnu.org. Ifdef, 2015. Retrieved December 16, 2015.

[6] G. Gruver, M. Young, and P. Fulghum. A Practical
Approach to Large-Scale Agile Development: How HP
Transformed LaserJet FutureSmart Firmware.
Addison-Wesley Professional, 1st edition, 2012.

[7] J. Humble. Continuous delivery: Anatomy of the
deployment pipeline. http://www.informit.com/
articles/article.aspx?p=1621865, 2010. Retrieved
December 11, 2015.

[8] J. Humble. Deployment pipeline anti-patterns.
http://continuousdelivery.com/2010/09/

deployment-pipeline-anti-patterns/, 2010.
Retrieved December 12, 2015.

[9] J. Humble and D. Farley. Continuous Delivery:
Reliable Software Releases Through Build, Test, and
Deployment Automation. Addison-Wesley
Professional, 1st edition, 2010.

[10] W. Jenkins. Meet jenkins, 2015. Retrieved December
15, 2015.

[11] G. Kim. The amazing devops transformation of the hp
laserjet firmware team (gary gruver).
http://itrevolution.com/the-amazing-devops-

transformation-of-the-hp-laserjet-firmware-

team-gary-gruver/, 2015. Retrieved December 06,
2015.

[12] F. Martin. Continuousdelivery. http://
martinfowler.com/bliki/ContinuousDelivery.html,
2013. Retrieved November 22, 2015.

[13] J. Miranda. How etsy does continuous integration for
mobile apps.
http://www.infoq.com/news/2014/11/continuous-

integration-mobile, 2014. Retrieved December 03,
2015.

[14] P. Murray. Traditional
development/integration/staging/production practice
for software development, 2006. Retrieved December
18, 2015.

[15] K. Nassim. Etsy’s journey to continuous integration
for mobile apps. https:
//codeascraft.com/2014/02/28/etsys-journey-to-

continuous-integration-for-mobile-apps/, 2014.
Retrieved November 22, 2015.

[16] opensignal. Android fragmentation visualized (august
2015).
http://opensignal.com/reports/2015/08/android-

fragmentation/, 2015. Retrieved December 19, 2015.

[17] M. Poschenrieder. Testing on emulators vs real
devices, 2015. Retrieved December 17, 2015.

[18] B. Smith. Continuous deployment in desktop software.
https://www.box.com/blog/continuous-

deployment-in-desktop-software/, 2013. Retrieved
December 03, 2015.

http://aws.amazon.com/device-farm/?nc1=f_ls
https://www.box.com
https://www.etsy.com/de/about/
http://www.informit.com/articles/article.aspx?p=1621865
http://www.informit.com/articles/article.aspx?p=1621865
http://continuousdelivery.com/2010/09/deployment-pipeline-anti-patterns/
http://continuousdelivery.com/2010/09/deployment-pipeline-anti-patterns/
http://itrevolution.com/the-amazing-devops-transformation-of-the-hp-laserjet-firmware-team-gary-gruver/
http://itrevolution.com/the-amazing-devops-transformation-of-the-hp-laserjet-firmware-team-gary-gruver/
http://itrevolution.com/the-amazing-devops-transformation-of-the-hp-laserjet-firmware-team-gary-gruver/
http://martinfowler.com/bliki/ContinuousDelivery.html
http://martinfowler.com/bliki/ContinuousDelivery.html
http://www.infoq.com/news/2014/11/continuous-integration-mobile
http://www.infoq.com/news/2014/11/continuous-integration-mobile
https://codeascraft.com/2014/02/28/etsys-journey-to-continuous-integration-for-mobile-apps/
https://codeascraft.com/2014/02/28/etsys-journey-to-continuous-integration-for-mobile-apps/
https://codeascraft.com/2014/02/28/etsys-journey-to-continuous-integration-for-mobile-apps/
http://opensignal.com/reports/2015/08/android-fragmentation/
http://opensignal.com/reports/2015/08/android-fragmentation/
https://www.box.com/blog/continuous-deployment-in-desktop-software/
https://www.box.com/blog/continuous-deployment-in-desktop-software/

An Overview on Automated Test Data Generation

Concepts + Tool Support

Junior Lekane Nimpa
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

junior.lekane.nimpa@rwth-aachen.de

Horst Lichter
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
lichter@swc.rwth-aachen.de

ABSTRACT
Test automation is a means of reducing the time and cost
spent during software testing. It includes the automatic gen-
eration of test data which is an interesting, active and a
vast area of research in software engineering. There is a
large number of specific publications introducing new algo-
rithms and concepts without linking them to the existing
ones. In addition, some publications use expressions which
create some confusion. As an example, the expressions ”test
case generation”and ”test data generation”are often used in-
terchangeably although they denote different problems. All
that makes it hard for students and researchers interested
in this area to get a solid understanding of what generating
test data is about.

In this article, we first introduce the test case and test
data generation problems. Thereafter, we review some ba-
sic notions like constraint-based test data generation, sym-
bolic and concrete execution. Next, we focus on the state of
the art techniques of test data generation which are grouped
under the term search-based test data generation. We also
discuss some known limitations of test data generators. In
the second part of the article we present an automated black-
box test data generation technique for web services which is
based on Design by Contract and mutation testing. There-
after, we present some tools which can be used by software
testers to enrich their daily test automation experience. Fi-
nally,we conclude this article by giving our opinion on the
subject.

Categories and Subject Descriptors
D.1 [Software Testing]: Automated Test Data Generation

Keywords
Symbolic Execution, Real Execution, Evolutionary Algo-
rithms, Genetic Algorithms, Contract Mutation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2015/16 RWTH Aachen University, Germany.

1. INTRODUCTION
Although 50% of the software development costs are spent

on software testing [11], software providers still release sys-
tems which sometimes fail. Depending on the type of sys-
tems, failures may have disastrous damages on business and
the society [13]. Hence, there is a real need to find effec-
tive and economic ways of assuring the quality of software
systems.

Test automation is a means of reducing the time and cost
spent during software testing. It includes the automatic gen-
eration of test data. Since the 70’s, researchers and prac-
titioners have been developing algorithms and techniques
which were mainly based on symbolic or concrete execution
of the program under test [20]. Nowadays, a promising ap-
proach is to model the test data generation problem as a
search problem which is then solved using meta-heuristic
search algorithms like Genetic Algorithms, a sub-class of
Evolutionary Algorithms [21]. There is a large number of
specific publications introducing new ways of using these al-
gorithms to tackle the test data generation problem. These
new techniques are often not linked to the existing ones.
Besides, there is some confusion in the literature. The ex-
pressions ”test case generation” and ”test data generation”
are often used interchangeably although they denote differ-
ent problems. All that makes it hard for students and re-
searchers interested in this area to get a solid understanding
of what generating test data is about.

The contribution of this article is as follows: in section
2, we first introduce the test case and test data generation
problems. Thereafter, we review some basic techniques like
constraint-based test data generation, symbolic and concrete
execution. Next, we focus on the state of the art techniques
of test data generation which are grouped under the term
search-based test data generation. We also discuss some
known limitations of test data generators. In Section 3 we
present an automated black-box test data generation tech-
nique for web services which is based on Design by Contract
and mutation testing. In section 4 we present some tools
which can be used by software testers to enrich their daily
test automation experience. Finally, we conclude this article
in section 5 by giving our opinion on the subject.

2. CONCEPTS

2.1 Definitions
In software engineering, testing is the process of exercising

or evaluating a system or system component by manual or

automated means to verify that it satisfies specified require-
ments or to identify differences between expected and actual
results [4]. The system under test can be a method, a class,
a module or a whole application. Automating the testing
process consists of multiple facets: Automatic test execu-
tion, automatic generation of test artifacts like test scripts,
test classes, test methods, etc, automatic generation of test
cases and test data [16].

In the literature, the expressions ”test case generation”
and ”test data generation”quite often refer to the same prob-
lem although they denote in reality different problems.Given
a system under test (SUT) and a testing criterion like ”ev-
ery statement has to be executed at least once”. The goal of
software testers is to generate a set of test cases, commonly
called test suite, so that a high coverage can be achieved.
The generation of a test suite involves the generation of test
cases which in turn involves the generation of test data. The
definition of both problems given below is inspired by the
definitions found in [12, 20, 16, 4, 3].

The Test Case Generation Problem.
• Define a sequence of operations to be executed on SUT.

• Define corresponding input data and expected results.

The Test Data Generation Problem.
• Define input data which can be used to execute a se-

quence of operations on SUT.

Note that the test data generation program does not ad-
dress the problem of generating expected results since their
definition requires a third party, also called test oracle, which
can be a man or another running system.

Automating the process of generating test data is achieved
by means of a test data generator. We distinguish between
black-box, white-box and gray-box test data generators where
the latter is a combination of the first and second type of
generator.

2.2 Black-box Test Data Generator
Black-box generators are systems which produce test data

without the need to know anything about the internal struc-
ture of the system under test.

2.2.1 Random Generators
The most simple form of test data generators is a random

generator. Random generators can theoretically be used to
generate any kind of test data because data on a computer
are basically bit streams. These generators are often used
by other generator types for the generation of initial data
which are then refined depending on the technique used. We
consider in the following another type of black-box generator
called syntax-based generator.

2.2.2 Syntax-based Generators
Grammar-based or syntax-based test data generators are

generators which produce test data based on a grammar
defining the syntax of the system under test’s input [12].
The grammar can be expressed in Backus Naur Form (BNF).
Grammar-based generators were initially developed for test-
ing language processing tools like compilers and interpreters.
But, they can also be used for testing GUI applications and
command-driven software.

Figure 1: Architecture of a white-box generator

2.2.3 Other black-box generator types
Beside random and grammar-based generators, there are

other types of black-box generators. There are publications
reporting the use of meta-heuristics search techniques intro-
duced in section 2.3.3 to generate test data based on a Z
specification, a logical description, of the system under test
[21]. In section 3 we present another black-box generation
method which is based on Design by Contract and mutation
analysis.

2.3 White-box Test Data Generator
White-box test data generators get the source code of the

system under test as input and generate test data which sat-
isfy a structural testing criterion like statement, branch and
path coverage. Two well-known classes are path-oriented
and goal-oriented test data generators. The architecture of
a generator belonging to one of these classes is shown in fig-
ure 1. The program analyzer provides all relevant informa-
tion needed during the generation, such as data-dependence
graph and control flow-graph. The path selector then se-
lects the paths that need to be traversed in order to satisfy
the testing criterion. Depending on whether the generator is
path-oriented or goal oriented, the selected paths can be ei-
ther specific or unspecific [15]. A specific path is a sequence
of nodes belonging to the control flow-graph such that there
is an edge connecting each node in the sequence with its
successor node except for the last node.

Given now a set of paths, which is a singleton set in the
case of a path-oriented test data generator, the goal of the
generator is to produce test data such that these paths are
traversed during the execution of the system under test. Sev-
eral approaches to tackle this problem exist.

2.3.1 Real Execution
A random test data generator is used to produce initial

test data which are then used as input of the system under
test. During the execution, the execution flow is monitored.
In case that an undesirable path is taken, some search tech-
niques are used to determine how the input data should be
modified. The modifications are then performed and the ex-

ecution backtracks to the node where the control flow took
the wrong direction [15, 20]. This process is repeated until
the right path is taken. The generator finally outputs the
data for which the right path was taken.

2.3.2 Constraint-Based Approach
A constraint-based approach builds up a system of alge-

braic constraints in terms of the input variables which can
then be solved by a constraint solver. Sometimes, the con-
straint system is unsolvable. This can occur when floating-
point variables are used or when the constraints are non-
linear [22]. Constraint-based approaches differ in the way
the constraint system is built.

Symbolic Execution.
Symbolic execution is a technique which was widely used

in the 70’s. By symbolic execution, we mean the process
of assigning expressions to program variables as a path is
followed through the code structure [21]. Thereby, symbolic
values are used instead of real values. Consider, for example
the following program:

public boolean function(int x, int y){

if(x * y < 100){

return true;

}else{

return false;

}

}

When symbolically executing this program with symbolic
values a and b for the variables x and y respectively, we
obtain the constraint: a∗ b < 100, if we want to traverse the
”if” block.

Concolic Execution.
We have seen above an example of a non-linear constraint.

In practice, non-linear constraints are more complex. To re-
duce the complexity, researchers came to the idea of com-
bining symbolic and concrete execution of the system under
test. This is known as Concolic Execution [22]. In the above
example, the values a = 1 and b = 4, satisfy the constraint.
One can replace the symbolic value a in the constraint with
the real value 1 to get the linear constraint b < 100.

Mutation testing.
A constraint-based test data generation method which is

based on mutation analysis was introduced by Richard De-
Millo and Jefferson Offutt [14]. A brief overview on mutation
analysis is given in section 3. One goal of mutation analy-
sis is to design test data which kill program mutants1, that
is, test data which causes the program under test to pro-
duce an output which differs from that of program mutants.
That difference in output can be expressed using algebraic
constraints which depend on the input variables. By solv-
ing the obtained constraints we obtain test data which are
able to kill program mutants. Consider, for example the
following program under test:

public void swap(Object a, Object b){

Object c;

c = a;

1A mutant is obtained by performing some syntactical
changes on SUT

a = b;

b = c;

}

and the mutant

public void swapMutant(Object a, Object

b){

Object c;

c = b;

a = b;

b = c;

}

Note that the mutant is obtained by replacing the statement
c = a by c = b. To kill the above mutant, the constraint: a
!= b should hold. Setting a = 1 and b = 2 give us concrete
test data.

2.3.3 Search-based Test Data Generation
Search-based test data generation is the state of the art

in automated test data generation. A search-based test
data generator uses meta-heuristic search algorithms such
as Hill Climbing, Simulated Annealing and Genetic Algo-
rithms, special Evolutionary Algorithms [21]. These algo-
rithms are not stand-alone algorithms like merge-sort, but
rather frameworks that need to be adapted to a particular
problem. To use such an algorithm, the testing criterion
needs to be transformed into an objective function which
guides the search. Furthermore, the search space (set of all
possible program inputs) should be encoded such that neigh-
boring solutions in that space are also in the same neighbor-
hood in the encoded space [21]. For further information on
Hill Climbing and Simulated Annealing, the readers are re-
ferred to [21].

Genetic Algorithms.
Genetic Algorithms are special Evolutionary Algorithms

which use operators inspired by genetics and natural selec-
tion. These algorithms maintain a population (set) of solu-
tions which are encoded as a sequence of simple components.
As an example: the singleton population <112, 255, 52>
might be represented as 011100001111111100110100, where
each number is replaced by its 8-bits binary representation.

The population is iteratively recombined and mutated to
evolve successive populations known as generations. The
recombination operator takes two parent solutions and pro-
duces two new offsprings. As an example, consider the
following two individuals: 000000001111111100000000 (<0,
255, 0>), 111111110000000011111111 (<255, 0, 255>). A
single cross-over at location 12 yields the following children:
000000001111000011111111 (-<0, 240, 255>),
111111110000111100000000 (<255, 15, 0>). To decide which
individuals of the current population are used for the re-
combination, selection algorithms are used. The selection is
based on the ”fitness” of an individual. The ”fitness” can be
the value obtained from the objective function or that value
scaled in some way.

2.4 Limitations of Test Data Generators
We first note that the test data generation problem is the-

oretically undecidable [21]. Due to this, most of the work
presented in the literature is based on simple programs, pro-
grams short in length or low in complexity [15]. We present

in the following some known limitations of test data gener-
ators.

The probability of discovering faults which are only re-
vealed by a small percentage of the program input is low
when using random generators. These generators do not
perform well in terms of coverage. Dynamic generators,
generators which execute the system under test, perform
better. But, they require many iterations before the right
path is taken during the execution. It is not guaranteed
that such generators can find test data which traverse the
considered path. Static generators, generators which rely
on symbolic execution, have difficulties to handle function
calls, since the code of the called functions might not be
accessible. Dynamic structures like arrays, collections and
objects pose another major problem since they cannot be
inferred in a static manner if the program code is the only
source of generation [15]. If a logical description of the sys-
tem is available, then the behaviour of objects can, to some
extent, be automatically generated [17]. We also note that
constraint-based generators might sometimes fail to find a
solution since constraint-satisfaction is a difficult problem.

3. A BLACK BOX GENERATION METHOD

3.1 Mutation Analysis
Mutation Analysis is a fault-based technique which is based

on a defined fault-model. The model mimics common pro-
gramming mistakes such as using the wrong operator or vari-
able [12]. The model is implemented by the so-called mu-
tation operators which affect the syntax of the input. The
method works by applying one operator at a time on the in-
put program to create mutants. The goal is then to design
test data which kill program mutants. A mutant is killed
when its output differs from that of the program under test.
The test coverage is defined in terms of the number of mu-
tants killed [12].

3.2 Web Services
Web services are commonly used as a means to integrate

different applications. Their reliability is therefore an im-
portant concern. Since the interface expose by a web ser-
vice can be defined in a WSDL file which only focuses on
syntactic information, the World Wide Web Consortium has
proposed Web Service Semantics (WSDL-S) [10] as a means
to annotate the WSDL document with semantic information
like contract specifications.

3.3 Contract-Based Mutation for Web Services
Unlike traditional mutation analysis, which applies muta-

tion operators on program code [12], the method described
here applies them on web service interface contracts [19].
The contracts, consisting of a precondition and a postcon-
dition, are defined using WSDL-S. The grammar defined in
[18] shows the structure of the expressions which are sup-
ported when defining contracts.

3.3.1 Fault-Model
The fault-model presented below focuses on the discor-

dance between web service specification and contract defini-
tion.

Contract Negation (CN):
The contract may be mistakenly negated.

CE CS
Original Mutant Original Mutant
Precondition Postcondition Precondition True
Postcondition Precondition Postcondition False

Table 1: Effects of CE and CS

PW PS
Original Mutant Original Mutant
== >=, <= >= >, ==
> >=, != <= <, ==
< <=, != != >, <
P >= Q P >= Q-constant P > Q P > Q+constant
P <= Q P <= Q+constant P < Q P < Q-constant
forall exists exists forall
&& || || &&

Table 2: Effects of PW and PS

Condition Exchange (CE):
The precondition of the service interface may be used
to express the contract postcondition, or the postcon-
dition of the interface result may be used to define the
contract precondition.

Precondition Weakening (PW):
The contract precondition is weaker than the interface
precondition.

Postcondition Strengthening (PS):
The contract postcondition is stronger than the service
interface postcondition.

Contract Stuck-at (CS):
This fault-model element is more on the logical level.
It can be that programmer defines a contract precondi-
tion which is logically equivalent to true and a contract
postcondition which equivalent to false.

3.3.2 Mutation Operators
Five mutation operators are defined: CN, CE, PW, PS

and CS. Their effects [18] are presented in tables 1,2, 3.
These tables show how a symbol which occurs in the initial
contract can be transformed into a symbol which occurs in
the mutated contract.

3.3.3 Data Generation
The generation process consists of three major steps: ini-

tial data generation, selection of initial test data, and con-
tract mutation. The last step can be further divided into
two sub-steps which are: mutants generation and final test
data selection.

Initial Data Generation and Selection.

Original Mutant
P !P

== !=
> <=
< >=

Table 3: Effects of CN

During the generation of initial test data, equivalence class
and boundary value testing techniques are combined. For
each parameter of the service interface, the data type and
the precondition are retrieved. Then the input domain of the
parameter is partitioned into valid and invalid equivalence
classes. A certain number of random values are generated
for each equivalence class. Then the boundary values of the
class are added to the randomly generated data. Finally, the
Cartesian product of all data sets is built, resulting to the
initial test data set which is then filtered according to some
heuristics [19].

Contract Mutation.
As stated in section 3.1, the generation of contract mutant

is done by simply applying mutation operators one at a time
on the original contract. The mutants are then encapsulated
with the web service as a whole and executed on each previ-
ously selected test data. The selection of the final test data
is done one by one with the help of a greedy algorithm. A
test data is selected if it kills the maximal number of mu-
tants not killed by the previous selected data. A contract
mutant is killed if one of the following conditions holds:

• The results of the original precondition and the pre-
condition of the mutated contract are not the same.

• The results of the original postcondition and the post-
condition of the mutated contract are not the same.

3.3.4 Experimental Results
The method was applied on the triangle type program.

The contract specification for the program is as follows:
Precondition : i >= 0 ∧ j >= 0 ∧ k >= 0
Postcondition : @return == 1 ∨@return == 2

∨@return == 3 ∨@return == 4
where i, j and k denote the length of the three sides. The
return values 1,..,4 mean isosceles, equilateral, general and
not a triangle. When choosing 10 and 7 data items in the
valid and invalid equivalence class of each parameter respec-
tively, the method first generates 4913 test data [19]. That
number is reduced to 3100 after the initial selection. The
number of program mutants generated by the method is 24.
After finally selecting the data so that the largest number
of mutants is killed, we get 6 test data. With these, the
method achieved a statement coverage of 65% and a branch
coverage of 60%. The contract mutation score was 100%

4. TOOL SUPPORT
In this section we briefly present some tools that software

testers can use to generate test data.
When ”googling” for the expression ”test data generator”,

the Google search engine will return some interesting results.
Among them are the websites [1, 6]. These two sites give
testers the possibility to generate a limited number of data
records which can be used to populate a database. Both
provide the possibility to download the generated data set
as a .csv, .json, .xml or .sql file. To generate a larger number
of data records, users have to register and pay some fees.

Beside websites, there are also many language specific
tools. On the Microsoft side, PEX is an interesting choice. It
is a tool incorporated in Visual Studio [16]. The web site [7]
gives the possibility to test the capabilities of PEX by writ-
ing a method in C# which defines some constraints. The

tool will then remotely attempt to find some inputs which
satisfy the constraints specified in the method. PEX inte-
grates several techniques for test data generation: random,
Design by Contract, concolic. In the survey carried out in
[16] PEX is one of the tools which passed all tests defined
to assess to the capabilities of mature test data generators.
Randoop is another test data generator which can also be
used on the .NET platform [8].

Randoop was initially developed in Java and ported later
to .NET. The Java version is available for download [8]. It
is primarily a command-line tool. It can also be integrated
into the Eclipse IDE via the provided Eclipse plug-in [9].
The plug-in officially supports Eclipse 3.5 and 3.6. To see
how Randoop performs in comparison to the method pre-
sented in section 3, we implemented the triangle type pro-
gram. We installed the Randoop Eclipse plug-in in Eclipse
4.5. The following shows how we have configured Randoop:
Maximum test per file: 50
Maximum test size: 100
Random Seed: 0
Stopping Criterion:
When Randoop has generated 100 tests or when it has gen-
erated tests for 100 seconds. With the above configuration,
Randoop generates two test files and one file containing a
main method which can be used to launch all generated
tests. The following shows an example test method gener-
ated by Randoop:

public void test50 () throws Throwable {

if (debug) System.out

.printf("%nTriangleTest0.test50");

test.data.gen.TriangleType var0 =

new test.data.gen.TriangleType ();

int var4 = var0.getTriangeType (3,

100, 3);

int var8 = var0.getTriangeType (3, 3,

100);

int var12 = var0.getTriangeType (0, 0,

10);

int var16 = var0.getTriangeType (0, 1,

100);

int var20 = var0.getTriangeType (3,

100, 0);

int var24 = var0.getTriangeType (10,

2, 100);

// Regression assertion

//(captures the current behavior of

the code)

assertTrue(var4 == 1);

// Regression assertion

//(captures the current behavior of

the code)

assertTrue(var8 == 1);

// Regression assertion

//(captures the current behavior of

the code)

assertTrue(var12 == 1);

// Regression assertion

//(captures the current behavior of

the code)

assertTrue(var16 == 3);

// Regression assertion

//(captures the current behavior of

the code)

assertTrue(var20 == 3);

// Regression assertion

//(captures the current behavior of

the code)

assertTrue(var24 == 3);

}

The test suite achieved the following coverage results: State-
ment Coverage: 100%, Branch Coverage: 80%

Beside open source solutions, there are also commercial
ones which can be used to generate test data for Java pro-
grams. Two of them are JTest [5] and AgitarOne [2].

5. CONCLUSION
Like code generators which are supposed to speed up the

software development process, test data generators are a
means to speed up the testing process. Although many for-
tune companies rely on tools like AgitarOne and JTest to
produce top-quality software [5, 2], my personal opinion on
the subject is that test data generators are not widely used
in industry because of the following observation: Many peo-
ple tend to do what they are used to and are reluctant to
try something new. What we are used to often depends on
the teaching we received. But, since there is no special class
which teaches how to use test data generators and how to
successfully incorporate them in the testing process, many
software testers will never come across the idea of generat-
ing test data. If some do, they will probably not integrate
it in a proper way in their testing process. This will lead
to some complications and possibly to abandoning the test
data generator.

6. REFERENCES
[1] http://www.generatedata.com/. Accessed in

November-2015.

[2] AgitarOne. http://www.agitar.com/solutions/
products/automated_junit_generation.html.
Accessed in December-2015.

[3] IEEE Standard 24765-2010: Systems and Software
Engineering Vocabulary. Accessed in December-2015.

[4] IEEE Standard 610.12-1990: Glossary of Software
Engineering Terminology. Accessed in December-2015.

[5] JTest. https://www.parasoft.com/product/jtest/.
Accessed in December-2015.

[6] Mockaroo. https://www.mockaroo.com/. Accessed in
November-2015.

[7] PEX for fun. http://www.pexforfun.com/. Accessed
in December-2015.

[8] Randoop. https://randoop.github.io/randoop/.
Accessed in December-2015.

[9] Randoop Eclipse Plugin.
https://rawgit.com/randoop/randoop-eclipse-

plugin/master/plugin/doc/index.html. Accessed in
December-2015.

[10] Web Service Semantics.
http://www.w3.org/Submission/WSDL-S/. Accessed
in November-2015.

[11] D. S. Alberts. The economics of software quality
assurance. In Proceedings of the June 7-10, 1976,
National Computer Conference and Exposition, AFIPS
’76, pages 433–442, New York, NY, USA, 1976. ACM.

[12] P. Ammann and J. Offutt. Introduction To Software
Testing. Cambridge University Press, 2008.

[13] R. Charette. Why software fails [software failure].
Spectrum, IEEE, 42(9):42–49, Sept 2005.

[14] R. DeMillo and A. Offutt. Constraint-based automatic
test data generation. Software Engineering, IEEE
Transactions on, 17(9):900–910, Sep 1991.

[15] J. Edvardsson. A survey on automatic test data
generation, 1999.

[16] S. Galler and B. Aichernig. Survey on test data
generation tools. International Journal on Software
Tools for Technology Transfer, 16(6):727–751, 2014.

[17] S. Galler, A. Maller, and F. Wotawa. Automatically
extracting mock object behavior from\ dbc
specification for test data generation. 2010.

[18] Y. Jiang, S.-S. Hou, J.-H. Shan, L. Zhang, and B. Xie.
Contract-based mutation for testing components. In
Software Maintenance, 2005. ICSM’05. Proceedings of
the 21st IEEE International Conference on, pages
483–492, Sept 2005.

[19] Y. Jiang, Y.-N. Li, S.-S. Hou, and L. Zhang. Test-data
generation for web services based on contract
mutation. In Secure Software Integration and
Reliability Improvement, 2009. SSIRI 2009. Third
IEEE International Conference on, pages 281–286,
July 2009.

[20] B. Korel. Automated software test data generation.
IEEE Trans. Softw. Eng., 16(8):870–879, Aug. 1990.

[21] P. McMinn. Search-based software test data
generation: a survey. Software Testing, Verification
and Reliability, 14(2):105–156, 2004.

[22] M. Nazim and M. Yadav. Automatic program based
test data generation. International Journal of
Emerging Technology and Advanced Engineering, 5, 5
2015.

http://www.generatedata.com/
http://www.agitar.com/solutions/products/automated_junit_generation.html
http://www.agitar.com/solutions/products/automated_junit_generation.html
https://www.parasoft.com/product/jtest/
https://www.mockaroo.com/
http://www.pexforfun.com/
https://randoop.github.io/randoop/
https://rawgit.com/randoop/randoop-eclipse-plugin/master/plugin/doc/index.html
https://rawgit.com/randoop/randoop-eclipse-plugin/master/plugin/doc/index.html
http://www.w3.org/Submission/WSDL-S/

An Analysis of Information Needs to Detect Test Smells

Delin Mathew
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

delin.mathew@rwth-aachen.de

Konrad Foegen
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
konrad.foegen@swc.rwth-aachen.de

ABSTRACT
Test smells are symptoms of poorly designed test cases which
do not comply with the unit test criteria. The quality of
test codes tends to deteriorate when it is frequently modi-
fied. High quality in terms of coverage and maintainability
is necessary in order to make automated software tests ef-
fective in the long run. Refactoring is the most commonly
used technique in order to achieve this. In this paper, we
focus on three of the test smells that are specific for test
code(s), which are, (1) General Fixture (2) Eager test and
(3) Obscure Test. We identify methods to detect them and
also develop a conceptual model to describe the information
needed to detect these test smells in actual test cases and
their dependencies with each other.

Keywords
Unit test, maintainability, refactoring.

1. INTRODUCTION
Software testing has become one of the essential elements

in development cycles [1] due to the adoption of agile or
lean methodologies [2] like eXtreme Programming and Test-
Driven Development [3], [4], [5]. Every software system is
constantly evolving and unit testing takes care that these
systems do not regress. A good practice would be to perform
frequent system verification by test execution[6]. Hence, it
is necessary to write and maintain these unit tests continu-
ously. These tests are written for each class in the system
and usually in the same programming language as of the
production code. Their objectives include checking the func-
tionality of the system, verifying that the system is generat-
ing the expected results and in most of the cases, checking
for bugs and bug fix [7].

It is important for the test cases to adhere to the unit test
criteria. Some of the desired test design criteria as men-
tioned by Van Rompaey and Du Bois in their paper [8] are,
(1) Tests should be consistent in their overall behavior (2)
Every test is needed as they verify a part of the system (3)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2015/16 RWTH Aachen University, Germany.

They should be maintained and should satisfy most of the
object-oriented design principles (4) Tests should have re-
peatable outcomes (5) They should also have the expected
outcome defined to check and compare the results (6) They
should be isolated and should conform to a clear and rigorous
structure (7) They should also be independent of external
factors (8) They should be automated, persistent and run
fast to reduce the turnaround time. Tests that fail to com-
ply with any of the above criteria show symptoms of poorly
designed test cases which are termed as test smells.

The research method includes extensive literature review
and we also developed a conceptual model to understand the
detection techniques of test smells and their dependencies
with each other. This paper is structured as follows: Section
2 gives a general introduction to test smells. Section 3 gives
a detailed description of the three test smells,(1) General
Fixture (2) Eager test and (3) Obscure Test. It also gives
a brief explanation on the maintainability and causality of
each test smells and goes on to describe the techniques to
identify these smells. A conceptual model which indicates
the dependencies between these test smells is depicted in
Section 4 and we formulate a conclusion in Section 5.

2. TEST CODE SMELLS
Several test smells have been introduced by Van Deursen

in his paper [7]. He reflects upon the unit tests that are de-
pendent on external resources, tests that take long time to
run, tests that are long and complex, tests that depend on
other tests for their execution, and tests which are redun-
dant and contain undesirable duplication. This will have an
adverse effect on the maintainability and readability of the
tests and makes it hard to use tests as documentation. Such
tests will also have non-deterministic outcomes. The pres-
ence of such smells is against the test code quality criteria
and will harm the repeatability, isolation and stability of the
tests [6].

Furthermore, some of the problems caused by automa-
tion of the tests has been stated by Meszaros in his book[2].
The issues commonly associated with test automation are,
Behavior Sensitivity, Interface Sensitivity, Data Sensitivity,
and Context Sensitivity. Behavior Sensitivity occurs when
tests are broken by changes to the behavior of the System
Under Test (SUT). Interface Sensitivity is caused as a result
of the changes to the test programming API or the user in-
terface used to automate the tests. When changes are made
to the data already in the SUT, this results in Data Sensi-
tivity and Context Sensitivity occurs when tests are broken
by differences in the environment surrounding the SUT [2].

Meszaros has also made a clear distinction between the test
smells and classified them into three main categories as code
smells, behavior smells and project smells. Code smells are
coding-level anti-patterns that a developer or tester may no-
tice while reading or writing a test code. That is, the code
just does not look quite right or does not communicate its
intent very clearly. Behavior smells, on the other hand, are
much more difficult to ignore because they cause tests to fail
or in some cases not compile at all. Project smells indicate
that something has gone wrong in the project. The root
cause is more likely to be indicated by the presence of one
or more of the code or behavior smells [2].

3. TEST SMELLS AND DETECTION TECH-
NIQUES

This sections gives and overview of the three test smells,
which are, (1) General Fixture (2) Eager test and (3) Ob-
scure Test. We mainly chose these test smells because they
are very common, specific to test code and also act on dif-
ferent levels such as test case and test command.

3.1 General Fixture

3.1.1 General Description
General Fixture smell is mainly caused when the setup

fixture (also known as the test context) is too general and
has a broad functionality resulting in different tests access-
ing only certain parts of the fixture. So even if a test uses
only a small part of the entire fixture, it still has to execute
the whole fixture even though major part of the fixture is
irrelevant for that test. This will impact the performance of
the test execution which will deteriorate as the test uses a
fixture that is designed to support many other tests. The
problems that result could be, (1) This will cause the test to
be fragile, ie. the cause-effect relationship between fixture
and the expected outcomes is less visible. This results in
poor readability and the test will be hard to understand. A
change that is made for one test affects the other tests as
too much of functionality is covered in the fixture. (2) Since
they do a lot of unnecessary work, the tests run slower. This
will result in the tests taking a long time to complete and
thus interfering with other processes and ultimately leading
the programmers to avoid executing them [7], [9], [10].

A solution to this could be refactoring the General Fix-
ture by creating a minimal fixture which will contain only
the setup code that is common to all test methods. Indi-
vidual setups can be placed only in the method that uses
it. Extract class refactoring can be applied in cases where
the test methods do not share too much setup code. Ex-
tract class refactoring is a process of creating a new class
and moving methods and data from the old class to the new
one [9].

There are two kinds of General Fixtures, viz., (1) Large
Fixture, which initializes many objects during setup, (2)
Broad Fixture, which is a special case of Large Fixture. This
fixture comprises of objects which do not logically belong to-
gether as they use different production types [8].

3.1.2 Impact on Maintenance
A test case with a large fixture requires more setup and

tear down time and thus has a negative effect on the test
execution time. In case of large fixtures, it is also difficult

to understand the state of the unit under test and the test
command executing it. There also exists a risk of modifying
the General Fixture as there are many dependencies on the
production types under test. These dependencies mean that
the tests does not logically belong together and the units are
not tested under isolation[6].

3.1.3 Causality
The presence of Large or Broad Fixture can yield the fol-

lowing scenarios:

• After refactoring is done and the original unit under
test has been broken into different classes, it is required
that the tests reflects these changes. This is critical
because if test cases are not split up accordingly the
fixture tends to grow [8].

• The developers usually write unit tests for groups of
classes that logically belong together. This will lead
to the resulting fixture containing more than one pro-
duction type [8].

• The fixture tends to grow when a particular unit test-
ing framework is used to perform other types of testing,
e.g., integration testing [8].

• To verify a unit’s behavior with various data config-
urations, a test case could contain multiple instances
of the unit under test. When a bug fix is done, a test
command using an additional instance can prove that
the bug will not be reintroduced [11][8].

3.1.4 Detecting General Fixture
Charecterizing Metrics- Greiler and van Deursen in

their paper [9] have defined two indicators for the detection
of General Fixture.

• The two smell indicators to measure General Fixture in
a test method, introduced by Greiler and van Deursen
are (1)setupFlds- Fields set in implicit setups or class
header and (2)usedSetupFlds- SetupFlds used in test
methods [9]. This is a measuring technique where the
ratio of both these values (indicators) are found and
compared against a certain threshold value.

Four test case metrics have been introduced by Van Rompaey
in his paper [8] to characterize the fixture of a unit test based
on the concepts introduced by Briand et al [12].

He has defined the following two metrics for the detection
of Large Fixtures:

• He defines the Number of Fixture OBjects NFOB(tc)
as the number of attributes of a test case tc. This
includes all the implemented as well as the inherited
attributes. This is derived by considering the metrics
A(tc) and T(a) where A(tc) is a set of Attributes of a
test command tc and T(a) is the attribute type of an
attribute a belonging to the system code [8].

• The Number of OBject Uses in Setup NOBU(ts) is de-
fined as the number of method or attribute references
to non-test object uses in the test setup ts of a test
case. Both the direct and the indirect objects used by
the test setup and its test helper methods have been
hereby included [8].

The set of Direct OBject Uses DOBU(ts) from ts is
calculated using the metrics IM(ts), IMH(ts), AR(ts)
and AR(TEST); and the set of Indirect OBject Uses
IOBU0(ts) from ts is calculated using IM(h), IMH(h),
AR(h), AR(TEST) where IM is the union of set of
polymorphically invoked methods and statically invoked
methods, IMH is a set of invoked test helper meth-
ods, AR is a set of referenced attributes, h refers to
the helper method and TEST refers to the test code.
In other words, IOBU(ts) collects the set of non-test
methods and attributes invoked or referenced by helper
methods of ts [8].

Now, IOBUi+1(ts) (with i + 1 of indirection) can be
determined using IOBUi(ts) and IOBU0(h). Then,
finally the number of non-test object uses NOBU(ts)
in the setup ts of a test case is derived as a union of
DOBU(ts) and IOBUi(ts) [8].

Van Rompaey have characterized Broad Fixtures using
the following two metrics:

• The Number of Fixture Production Types NFPT(tc)
is defined as the number of production types that the
attribute set of a test case consists of. This is derived
by considering the metric UUT(tc) where UUT is the
Unit Under Test [8].

• The Number of Production Type Uses NPTU(m) has
been defined as the number of production types (1)
from a test command m or (2) from direct or indirect
test helpers called from m [8].

The set of Direct Production Type Uses DPTU(ts)
is defined using the metrics MI(c), IMP (ts), AI(c)
and ARP (ts) . And, the set of Indirect Production
Type Uses is defined as IPTU0(tc) using the metrics
MI(c), IMP (h), AI(c) and ARP (h) where MI is the
set of methods implemented in a class c, IMP is the
set of invoked production code methods, AI is a set
of implemented attributes in a class c and ARP is the
referenced production code attributes [8].

Then IPTUi+1(tc) is derived as a union of IPTUi(tc)
and IPTU0(h). Finally, for every test setup ts ∈ TCS
(Test Case Setup), NPTU (ts) is calculated using the
metric DPTU(ts) in union with the derived metric
IPTUi(ts) [8].

Interpretation- In case of the measuring technique pro-
posed by Greiler and van Deursen, the ratio of the number
of usedSetupFlds in a test method to the number of existing
setupFlds in the class is calculated. If the resulting ratio
falls below a certain predefined threshold value, then the
presence of General Fixture smell in the test method is con-
cluded. In the experiments conducted by Greiler and van
Deursen, they had set the threshold to 70% [9].

For the metrics proposed by Van Rompaey, assume we
have a group of test cases and also their respective values
which are necessary to obtain the metrics. Inorder to find
out the test cases where Gerneral Fixture smell could occur,
we can start off by distinguishing between those test cases
that have an explicit setup method and those that do not
have. For those cases which have an explicit setup method,
we can check if this method have a complex initialization. If

the NOBU value for a test case is high, then it is a clear indi-
cation of a complex fixture which contains multiple objects
of production as well as library types[8].

The NFOB and NFPT metrics are checked in the case of
test cases without an explicit setup method to detect a large
fixture. If the value for NFOB is high, then this is a clear
sign of a large fixture. And, a Broad Fixture is indicated if
the Large Fixture has a high NFPT value [8].

3.2 Eager Test

3.2.1 General Description
This smell is caused when a test tries to check several

methods of the object to be tested. This will reduce the
readability which makes the test hard to understand and
also harder to be used as documentation because the test
tries to check too many functionalities in a single method.
This will also affect the maintainability as the tests are more
dependent on each other [7].

The solution is to split the test code into several methods
that test only one method at a time, using a meaningful
name which indicates the purpose of the test method. But
separating the test code into smaller methods can slow down
the tests due to increased setup or tear down overhead [7].

3.2.2 Impact on Maintenance

• The complex body of the Eager Test method makes it
incomprehensible and hence hard to read [6].

• Since it is not very clear as to which method a test
command is checking, other tests that cover the same
production type will face a risk of being introduced [6].

• There could exists interdependencies between cycles as
a consequence of sequence of stimulate-verify subcycles
in the Eager Test Command [6].

3.2.3 Causality
Eager Test can yield the following scenarios:

• When a test command is not refactored as and when
the production code is refactored, it tends to grow [6].

• Eager test appears when all the steps in a scenario-
based testing approach that are applied to unit testing
are executed in one test command.[6]

• A production method that contains multiple parame-
ter value combinations can also result in Eager Test
[6].

3.2.4 Detecting Eager Test
Characterizing Metrics- Van Rompaey has defined the

following metric in his paper [8] based on the definitions
given by Briand et al [12].

The Production Type Method Invocations PTMI(tm) is de-
fined as the number of invocations to methods that belong
to production types from a test command.

PTMI(tm) is derived using the metrics, NSI(tm,mc),
NPI(tm,mc) and PTU where PTU is calculated as the
union of the metrics DPTU(tm) and IPTUi(tm) (see sec-
tion 3.1.4) and NSI is the number of static invocations of mc
(method calls) originating in the body of tm (test method)

and NPI is the number of polymorphic invocations of mc
originating in the body of tm.

Furthermore the previously introduced NPTU is computed
for every test command [8].

Interpretation- The value of the metric PTMI is checked
to detect Eager Test. A high value of PTMI in test com-
mands is a sign of Eager Test smell[8].

3.3 Obscure Test

3.3.1 General Description
Obscure Test is caused when a test is difficult to under-

stand at a glance and thus is not suitable for documentation
purposes. Automated tests should satisfy at least two objec-
tives. Firstly, they should serve as a documentation of how
a SUT must behave and this is generally called Test as Doc-
umentation and, secondly, there should be a self-verifying
executable specification. These two purposes often contra-
dict each other because the level of detail needed for tests to
be executable may make the test so verbose as to be difficult
to understand [2]. An in-line setup should only consists of
the steps and values to understand the test. Other irrele-
vant steps which might be essential in the long run should
be included in the helper methods. This can obstruct the
developers from seeing relevant verification steps of the test
[9].

One of the main solutions is to refactor the test code by
moving the setup code into delegate setup methods or, in
case the in-line setup is common to all tests, an implicit
setup could be used [9].

3.3.2 Impact on Maintenance

• Since the test is hard to understand, it will also be
difficult to maintain. This will lead to high test main-
tenance costs as it will take a lot of effort to for the
documentation of such a test [2].

• Another issue is that it may allow bugs to slip through
because of test coding errors hidden in the Obscure
Test. This can result in buggy tests. Moreover, fail-
ure of one declaration may lead to many more errors,
leading to loss of test debugging data [2].

3.3.3 Causality
An Obscure Test can be caused due to too much of infor-

mation or could also be the result of too less information in
a test case. Mystery Guest (explained below) is an example
of too little information and Eager Test is an example of too
much of information [2].

The root cause of Obscure Test is lack of effort in keeping
the test code as clean and simple as possible. The main
path to achieve this is by refactoring the test code frequently
because a test code is as important as the production code.
A prime cause of an Obscure Test is putting the code in-line.
This results in large and complex test methods [2].

Some of the major causes of Obscure test as listed by
Meszaros in his book [2] are:

• Eager Test: The test verifies too much functionality in
a single test method which causes the test to be hard
to understand and therefore difficult to document [2].

• Mystery Guest: The user is not able to see the cause
and effect between fixture and verification logic be-
cause part of it is done outside the test method [2].
For example, when a test is dependent on an external
resource like a file containing test data [7].

• General Fixture: The test references a larger fixture
which is too general than is needed to verify the func-
tionality in question and diffrent tests only access parts
of the fixture [2].

• Irrelevant Information: The test distracts the user by
containing a lot of irrelevant details about the fixture
and the user is not able to focus on what really affects
the behavior of SUT [2].

• Hard-Coded Test Data: This is caused due to the em-
bedding or hard-coding of data values in the fixture of
the SUT into the test method. This obscures cause-
effect relationships between inputs and expected out-
puts [2].

• Indirect Testing: The test method makes the interac-
tions more complex by using another object to indi-
rectly interact with the SUT [2].

3.3.4 Detecting Obscure Test
Characterizing Metric- Greiler and van Deursen in their

paper [9], have introduced the indicator LocalVars to detect
Obscure Test. LocalVars refers to the variables declared in
a test method. The obscurity of an in-line setup is measured
based on the number of local variables (LocalVars) directly
defined within a test method.

Interpretation-An obscure in-line setup is detected if the
number of LocalVars exceeds a certain threshold. In the ex-
periments conducted by Greiler and van Deursen, they had
set the threshold to 10 variables per method. This threshold
was chosen as it follows the best practices for the length of
a method. Greiler and van Deursen concluded that with the
increasing length of the test method, the primary focus of
the test may be hidden [9].

4. CONCEPTUAL MODEL

Figure 1: Meta Model

Figure 2: Conceptual Model

Figure 1 gives the meta model on which our conceptual
model is constructed upon. This model is relatively simi-
lar to an Entity Relationship model. Here, the entities are
written inside the rectangular boxes and the relationships
between the entities are mentioned along the links between
them. The attributes (if any) of each entity are specified
within the boxes.

The model shows Test Smells as the main entity, which
consists of three smells and their respective causes and char-
acterizing metrics based on which they are detected. Since
we are mainly focusing on the detection techniques and the
causality of test smells in this paper, we have structured
this model such that each test smell is characterized by its
respective causes and detection techniques.

Figure 2 gives the conceptual model which is constructed
based on the meta model shown above. We focus mainly
on the causes and detection techniques of test smells in this

model. Various causes of each smell are listed based on
the findings in this paper. Under the entity Characteriz-
ing Metrics, the different metrics and indicators including
the various components under them which help in the test
smell detection have been depicted. And under the metrics
NOBU(ts) and NPTU(ts), the other metrics which are used
to calculate these metrics are specified. In addition, we have
also shown the dependencies between the test smells. It is
interesting to find out that Obscure Test is caused due to
the presence of General Fixture and Eager Test in the test
code. Another dependency is, we compute the previously
introduced NPTU in General Fixture, for every test com-
mand in Eager Test. So, there is a dependency of the metric
PTU that is used in the Eager Test with the metrics in Gen-
eral Fixture such as DPTU and IPTU (which are used for
the calculation of NPTU) for the calculation of PTU.

5. CONCLUSION AND FUTURE WORK
In this paper, our main goal was to focus on the different

detection techniques and to develop a conceptual model for
the three test smells, (1) General Fixture (2) Eager Test
and (3) Obscure Test. We have briefly explained the impact
of these test smells on the maintainability and also their
consequences on the SUT. We have compiled a number of
metrics and indicators that measure certain properties of
the test code. The metrics allow us to assess the relative
significance of the test smells in the test code according to
the violation of unit test criteria [8]. The indicators specified
for General Fixture and Obscure Test measure the smell and
check it with a pre-defined threshold value [9]. Finally, we
have developed a conceptual model which depicts the various
detection techniques of General Fixtures, Eager Tests and
Obscure Tests and also the dependencies between them.

Future work is to find out more detection techniques for
each smell. It is also possible to include more test smells
that are similar to the test smells mentioned in this paper
and develop a bigger conceptual model which could throw
light to many more dependencies among the smells.

6. REFERENCES
[1] P. Runeson and J. Felsing. A Practical Guide to

Feature-Driven Development. Prentice Hall, Feb 2002.

[2] G. Meszaros. XUnit Test Patterns: Refactoring Test
Code. Addison-Wesley, May 2007.

[3] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 1999.

[4] K. Beck. Test Driven Development by Example.
Addison-Wesley, 2002.

[5] S. Palmer and J. Felsing. A Practical Guide to
Feature-Driven Development. Prentice Hall, Feb 2002.

[6] Bart van Rompaey, Bart Du Bois, Serge Demeyer, and
MatthiasReiger. “On the Detection of Test Smells: A
Metrics-Based Approach for General Fixture and
Eager Test”. IEEE Trans. Softw. Eng., 33(12):800-817,
December 2007.

[7] A. van Deursen, L. Moonen, A. van den Bergh, and G.
Kok. “Refactoring Test Code”. Proc. Second Int’l
Conf. Extreme Programming and Flexible Processes in
Software Eng., M. Marchesi and G. Succi, eds., 2001.

[8] Bart van Rompaey, Bart Du Bois, and Serge Demeyer.
“Characterizing the Relative Significance of a Test
Smell”. In Proceedings of the 22nd IEEE International
Conference on Software Maintenance. ICSM ’06,
pages 391-400, Washington, DC, USA, 2006, IEEE
Computer Society.

[9] M. Greiler, A. van Deursen, and M-A Storey.
“Automated Detection of Test Fixture Strategies and
Smells”. In Proc. Of the Int’l Conf. on Software
Testing, Verification and Validation (ICST). IEEE
CS, 2013.

[10] M. Greiler, A. Zaidman, and A. van Deursen.
“Strategies for Avoiding Text Fixture Smells during
Software Evolution”. In Proc. Of the Int’l Conf. on
Mining Software Repositories (MST). 10th IEEE
Working Conference, 2013.

[11] D. E. DeLano and L. Rising, Patterns for System
Testing, In R. Martin, D. Riehle, and F. Buschmann,
editors. Pattern Languages of Program Design 3.
Pages 503-527. Addison-Wesley, 1998.

[12] L. Briand, J. Daly, and J. Wuest. A unified framework
for coupling measurement in object-oriented systems.
IEEE Transactions on Software Engineering,
25(1):91-121, 1999.

An Analysis of Current Mutation Testing Techniques
Applied to Real World Examples

Daniel Klischies
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

daniel.klischies@rwth-aachen.de

Konrad Fögen
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
konrad.foegen@swc.rwth-aachen.de

ABSTRACT
Mutation testing, a method to improve the quality of a set
of unit tests, has been a research topic for more than 30
years but has not yet made it into widespread industry us-
age. This paper aims to evaluate a current mutation testing
tool for the Java programming language named Pitest, in
order to assess it’s practicality for industry usage. In do-
ing so several possible metrics for the applicability of muta-
tion testing frameworks in real world projects are presented
and used to determine Pitests impact on an exemplary open
source project. Whereas previous papers mostly focus on
decreasing the number of created mutations while keeping
the number of living mutants as high as possible, this paper
investigates which settings and mutation operators lead to
the best improvement of test suites relative to the time con-
sumed by conducting the relevant mutation tests. The test
results indicate that the efficiency in finding live mutants
largely differs between different mutation operators. Fur-
thermore, a very low percentage of equivalent mutants has
been discovered, suggesting that these are less of a problem
than commonly assumed. Additionally, several implemen-
tation advantages and disadvantages of byte code mutation
and mutation injection have been found, albeit generally
proofing it’s viability.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—productivity, programming teams,
software configuration management

Keywords
Mutation Testing, Java, Pitest

1. INTRODUCTION
Unit testing via test frameworks, such as JUnit, is com-

mon practice in current software projects [12]. Traditionally

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2015/16 RWTH Aachen University, Germany.

code coverage analysis is used to determine whether the used
test set is sufficient. However, this only ensures that every
line of code has been executed at least once. Especially this
does not guarantee that the code completely complies to a
given specification.

The idea of mutation testing is to automatically modify a
program for which passing tests exist. If the tests no longer
pass when run on the mutated program, they are sufficient
to detect this mutation and the mutant is considered killed.
If the mutation is not detected it is considered live. There
are two different possible reasons for this to happen. Either
the mutated program is equivalent to the original program in
that equal input always causes equal output and side effects
for both versions, or the mutated program is different, but
the tests are not sufficient to find the difference. The former
might be a sign of dead code1, as modifying dead code will
not show any difference in output, the latter is particularly
interesting since it shows that there is the possibility of a
programming mistake being undetected by the current set
of unit tests. The ratio of the number of killed mutants
over the number of total mutations is called mutation score.
The number of total mutants is determined by the used set
of mutation operators [15]. Mutation operators determine
the syntactical changes a mutation toolkit applies to the
program it mutates. The impact of different operator sets on
the number of generated mutations will be further analyzed
in section 2.1 and section 4. Figure 1 illustrates the usual
workflow of mutation testing enabled development.

Considering the following code and the test data set x =
{(0, false), (5, true)}:

Listing 1: Wrong implementation of a greater than
method.
f unc t i on greaterOne (i n t x) {

re turn (x >= 1) ;
}

For the given x this function behaves as expected and, as
every line is executed at least once, it would have 100% test
coverage. However, a mutation framework could replace >=

by > and the test set x would still pass all tests. Thus the
mutant would stay live and point the developers’ attention
to the unit test set. A test set killing all mutants is y =
{(0, false), (1, false), (2, true)}, also detecting that if (x >=

1) should be if (x > 1) since y will not pass on the original
program either.

1Code being unreachable and thus never executed.

Figure 1: Mutation testing workflow.

Develop program
and write tests

Verify tests pass

Mutate program

Verify tests fail
on mutants

This paper mainly focuses on a mutation framework called
Pitest. It is being developed by Henry Coles in a non aca-
demic context and is intended to be used in real world
projects [8]. Section 2 gives an overview of theoretical as-
pects of mutation testing and how they are implemented in
Pitest. In Section 3 several metrics are developed to measure
the quality of a test set and a suitable open source project
is chosen to determine the quality of Pitest. The results of
the conducted tests are presented in Section 4.

2. PITEST’S IMPLEMENTATION OF COM-
MON MUTATION TESTING ASPECTS

2.1 Mutation operators
The set of mutation operators determines which modifica-

tions to a program’s source code a mutation framework may
make. Historically a mutator set by King and Offutt[16],
originally designed to mutate Fortran programs, has been
used as a reference point. In 2011 Ma and Offutt adapted
this operator set to the Java programming language. For in-
stance, a commonly used mutator called ’arithmectic opera-
tor replacement’ (Ma and Offutt) or ’math mutator’ (Coles,
Pitest), searches for any arithmetic operation and replaces
it by another operation. Ma and Offutt proposed that “ba-
sic binary arithmetic operators [may be replaced] with other
binary arithmetic operators”[18].

However, in Pitest every arithmetic operation is replaced
by a predetermined arithmetic operation. Table 1 shows a
comparison between the mutator sets of Ma and Offutt and
Coles’ Pitest. For most operators, Pitest limits the possible
replacements. In doing so it reduces the search space, which
will reduce the runtime of Pitest as less mutants have to be
generated and tested but also reduces the likelihood of an
incomplete test staying live.

Apart from these standard mutators Pitest also features
mutators removing calls to methods having a void return
type, replacing constructor calls by null and replacing return
vales by constants. For a full list of all mutators and their
exact specification see [11] and section 3.3.

Pitest handles every mutation separately. It does not com-
bine multiple mutations in one test run, to see if the unit
tests detect problems caused by a cascaded fault. This re-
duces the search space exponentially, while the assumption
that almost all unit test set insufficiencies can be found still

holds. This is based on the Coupling Effect, a theorem stat-
ing that complex errors, represented by applying multiple
mutation operators at once, are likely to be detected by
a test set that detects single mutations. Offutt conducted
several experiments, suggesting that this is valid for at least
second order mutants, which are generated by applying 2
mutation operators at once [19].

2.2 Mutation level
There are two possible points in an applications lifecycle

where mutation could be applied. Either the source code is
mutated, or the byte code is mutated after the source code
has been compiled. The latter lowers the time consumption
of mutation testing, because the program does not have to
be recompiled for every mutation. However, this makes the
process of mutating more complicated for the developer of
the mutation framework, possibly leading to more errors [8].
The iinc operator, for instance, increments local variables
only, which means that while incrementing local and class
variables looks identical at source code level it is not the
same byte code instruction [17]. This also decreases the
possibilities of debugging a certain mutant as jdb’s2 source
code options do not work for byte code mutated programs.
Due to performance considerations, Pitest exclusively uses
byte code mutation.

Furthermore there are multiple ways to enable the muta-
tions for testing. One is to create one class file per muta-
tion. This is inefficient because a new JVM3 instance has
to be initialized for every mutation. Pitest uses the Java
Instrumentation API [5] instead, which allows creating all
mutations in primary memory, eliminating the bottleneck of
writing all changes to disk as well as allowing to reuse the
same JVM for each mutation within a single class, although
this causes some problems as discussed in Section 4.5 [8].

To reduce the amount of tests being run on a certain muta-
tion, Pitest initially performs a coverage analysis, and sorts
the unit test execution order by runtime. During the mu-
tation analysis, the testing phase after the mutations have
been created, only those tests which execute the mutated
line [9] are considered. This ensures that no time is wasted
on running tests unable to detect the mutation in any case.

2.3 Computability theory based problems
Mutation testing is affected by two computation theoret-

ical problems:
Each living mutant might be an equivalent of the original

program. Detecting whether two programs are equal is un-
decidable in general [22]. However, there are several ways
to decide this for some programs, for instance by converting
them into dynamic single assignment form [21] or restricting
the number of allowed differences between program to en-
able easier invariant generation [13]. None of these methods
is integrated into Pitest, but there is a Plugin API allowing
extensions to Pitest. As there is currently no such plugin,
equivalent detection has to be done by a human.

Pitest might also generate mutants which do not termi-
nate. Detecting these is again undecidable, as the halting
problem is undecidable [22]. There exist heuristics to cope
with this problem [7], but these are also not integrated into
Pitest. Instead, Pitest uses timeouts to avoid running tests

2Java debugger
3Java virtual machine

Table 1: Comparison between Ma et al. and Pitests mutation operator sets
Ma and Offutt Pitest Restrictions by Pitest

Arithmetic Operator Replacement [binary] Math Mutator Fixed replacement per operator
Arithmetic Operator Replacement/Deletion [unary] Invert Negatives Mutator Only removed negation of numbers

Arithmetic Operator Replacement [short-cuts] Increments Mutator Stack variables only, attributes are handled
by Math Mutator

Arithmetic Operator Insertion -
Arithmetic Operator Deletion [binary] -

Relational Operator Replacement Conditionals Boundary
Mutator, Negate Condi-
tionals Mutator, Remove
Conditionals Mutator

Two fixed replacements per operator

Conditional Operators Negate Conditionals
Mutator

Pitest only mutates !=

Shift Operators -
Logical Operator Replacement Math Mutator

Logical Operator Deletion -
Logical Operator Insertion -

Short-Cut Assignment Operator Replacement Math Mutator Fixed replacement per operator

forever. As the program passes the original test set, the
developer has an estimation of how long the tests need to
run and can set the timeout accordingly. Mutants violating
this timeout can be considered killed, as the test set at least
detected some change, even if it was not a change in output.
By default Pitest considers a test as timeouted if it took 1.25
times the original test runtime plus 3 seconds [10].

3. STUDY DESIGN

3.1 Metrics
The main constraints for applying mutation testing in

practice are likely to be time or low code coverage. Since
byte code mutation is extremely fast, the most time will
be spent running the test sets, which is mostly indepen-
dent from the mutation framework and depends on the test
framework. As computation time depends on the actual
machine being used as well as on the test set, the ratio of
living mutants over total mutants is a sensible metric. This
is equivalent to the inverse mutation score:

MutScore =
Mutkilled

Mutkilled + Mutlive

⇔MutScore =
Muttotal −Mutlive

Muttotal

⇔ 1−MutScore =
Mutlive
Muttotal

The idea behind this metric is that a high mutation score
indicates a good set of unit tests and since the mutation
operator set competes against the set of unit tests, a high
inverse mutation score characterizes a good mutation oper-
ator set. A good mutation operator set would create a huge
number of living mutants while spending a minimum time
on creating and testing killed mutants. This corresponds
to the “do fewer” principle introduced by Offutt and Untch
[20]. Offutt and Untch also proposed the ideas of “doing
smarter”, that means reducing workload by leveraging code
caching, as done by Pitest’s mutation injection, and “doing
faster”, which is going to be investigated by examining the
possibility of scaling Pitest.

The other time factor is time spent by humans sorting out
equivalent mutants. This is part of the human oracle prob-
lem [23], meaning that it is either very hard or impossible to
perform this work automatically. Time spent sorting should
correlate with the size of the program, as more source code
allows more mutations, which will lead to more live mutants
and equivalents. Instead of measuring this in absolute num-
bers, the ratio Req of equivalents over live mutants will be
measured. The smaller this ratio is, the less time will be
consumed by sorting out equivalents compared to the time
used to improve the test set to kill more mutants.

3.2 Test subjects
As mutants can only be killed if there are corresponding

tests executing the mutated instructions, mutation testing
requires very high test coverage. Many Apache Commons
packages have test coverage above 80%, are widely used
and thus very relevant regarding practical use. One test
candidate will be apache.commons.math4 [2], with 42392
NCLOC4 in 63 packages and 581 classes. Math4 has been
chosen as a test subject representing math heavy libraries.
It has a test coverage of 90% according to Pitest’s internal
measuring module. These 90% only include JUnit compati-
ble tests. Math4 also has R tests, for instance used to verify
probabilistic distribution functions. These cannot be auto-
matically run by Pitest, which shows one of it’s downsides:
It requires a test framework integration for all tests that
should be run on the created mutants. There is a plugin in-
terface for Pitest, allowing adding arbitrary test frameworks
but requiring additional time to set up.

The other test subject will be apache.commons.io [1], rep-
resenting operating system dependent libraries. It has 4966
NCLOC in 100 classes distributed over 7 packages. Test
coverage is 89%, all tests are JUnit compatible.

Pitest provides per-line results on which mutations were
live and which were killed. To reduce the amount of work, 6
classes have been randomly chosen to be analyzed in depth:

• org.apache.commons.math4.util.TransformerMap

4Non Comment Lines Of Code, lines of code without blank,
header, footer, import or comment lines.

• org.apache.commons.math4.geometry.VectorFormat

• org.apache.commons.math4.linear.ArrayFieldVector

• org.apache.commons.io.output.LockableFileWriter

• org.apache.commons.io.input.XmlStreamReader

• org.apache.commons.io.FileSystemUtils

3.3 Mutation operator sets
In order to analyze the implications of different operator

sets the following operator sets will be used:

Pitests default set
Conditionals Boundary Mutator weakens or strength-

ens relational operators

Negate Conditionals Mutator replaces conditionals by
their logical counterparts

Math Mutator replaces arithmetic operations by their math-
ematical counterparts

Increments Mutator replaces short cut increment opera-
tors with decrement and vice versa

Invert Negatives Mutator removes unary “-” operations

Return Values Mutator replaces method return values
with constants of the same type (null in case of non
primitives)

Void Method Call Mutator removes calls to methods of
void return type

And a mutation operator set containing all available Pitest
mutators, except for those which are labelled as experimen-
tal by Pitest’s developer:

Full set (all available mutators)
All of the above

Constructor Calls Mutator replaces constructor calls with
null

Inline Constant Mutator replaces constants, mostly by
either incrementing or inverting them

Non Void Method Calls Mutator replaces non-void method
calls with constants, mainly null or 0

Remove Conditionals Mutator replaces conditionals with
true and false

3.4 Test environment
All tests will be run on an Intel i5-2500k with 3.3 GHz

clock rate, 4 threads and 8 gigabytes of RAM. The used
operating system is Fedora Linux5 with Oracle Java ver-
sion 1.8.0 31. Unless explicitly specified, all settings, such
as RAM configuration for JVM, are system defaults. Pitest
version is 1.1.7 downloaded and integrated via Maven. Math46

and IO7 were obtained from the Apache git and Subversion
repositories.
5Kernel version 4.1.7-200.fc22.x86 64
6http://git-wip-us.apache.org/repos/asf/commons-
math.git at commit 8ed2209b1f8e2452d71ef8c3149f3ed3d89d4dfa
7http://svn.apache.org/repos/asf/commons/proper/io/trunk
at revision 1717147

4. TEST RESULTS

4.1 Runtime and mutation score

Table 2: Runtime and inverse mutation scores of
Apache Commons Math4 and IO

Library Mutators Runtime 1-Score Live mutants
Math4 default 03:09:43 20% 8297
Math4 full 09:08:46 23% 23862

IO default 00:19:08 18% 575
IO full 01:02:21 21% 2119

Table 2 shows a comparison of runtimes, living mutants
and mutation scores for the tested libraries and mutation
operator sets. For Math4 the runtime and number of living
mutants scales almost linearly, however that means that for
the full mutation operator set, compared to the default set,
a 181% increase in runtime has led to a 14% decrease of the
mutation score. That means that increasing the mutation
operator set does neither significantly decrease or increase
the mutation score but requires linearly more computation
time. For IO scaling was slightly better, as 3 times higher
computation time caused a 3.69 times higher amount of liv-
ing mutants, although the mutation score did, again, not
differ significantly. The assumption that the main amount
of time will be consumed by running the test while generat-
ing the mutants will have a negligible time consumption has
been validated: The longest mutation building phase took 5
seconds for the Math4 full test. The same holds for cover-
age and dependency analysis, which took 3 minutes and 51
seconds for this test and remained constant for the default
mutation operator set.

Testing the IO library was almost as efficient as testing
Math4. It is not clear whether the 2 percent points increase
in mutation score was caused by a better test set of the
IO library, by the structural differences discussed in Sec-
tion 3.2 or if this is coincidental. Noteably, the 2 percent
point difference was maintained for both mutation operator
sets. Nevertheless, due to the diminutiveness of the differ-
ence, mutation testing seems to be an as valid tool for less
mathematical programs as for mathematical libraries.

The runtime seems to linearly scale not only with the num-
ber of mutation operators but also with the number of tests
and NCLOC. Increasing the number of threads improved the
runtime significantly. Using 2 threads decreased the runtime
of the full math4 test to 5 hours, 8 minutes and 18 seconds.
Adding an additional thread decreases the runtime even fur-
ther to 4 hours, 25 minutes and 51 seconds. The most proba-
ble cause for computation time not being linearly dependent
on the number of threads is either a bad load balancing be-
tween the threads or other system processes competing with
Pitest for resources.

4.2 Equivalent mutants
The number of equivalent mutants is generally very low,

contrasting the results of Grün et al. who used a competing
mutation framework, named Javalanche, to perform a muta-
tion test on the several open source libraries and discovered
that 40% of live mutants were equivalents [14]. A possible
cause for this could be differences in the source code of the
tested programs, with the libraries tested by Grün et al.
being more likely to cause equivalent mutations. The exem-

Table 3: Number of equivalent mutants per class
and operator set

Library Class Mutators Req

Math4 TransformerMap default 1 in 5 (20%)
Math4 VectorFormat default 0 in 8 (0%)
Math4 ArrayFieldVector default 0 in 144 (0%)
Math4 total default 1 in 157 (0.7%)
Math4 TransformerMap full 1 in 36 (2.8%)
Math4 VectorFormat full 0 in 16 (0%)
Math4 ArrayFieldVector full 0 in 269 (0%)
Math4 total full 1 in 321 (0.3%)

IO LockableFileWriter default 0 in 18 (0%)
IO XMLStreamReader default 1 in 12 (8.3%)
IO FileSystemUtils default 0 in 23 (0%)
IO total default 1 in 53 (1.9%)
IO LockableFileWriter full 0 in 53 (0%)
IO XMLStreamReader full 1 in 119 (0.8%)
IO FileSystemUtils full 0 in 100 (0%)
IO total full 1 in 272 (0.4%)

plary listing referenced in their paper contains at least one
conditional which can be removed since it always evaluates
to false, indicating that dead code will increase the number
of equivalents.

Equivalents in Math4 and IO were caused either by hash
functions where adding or subtracting did not make a differ-
ence or by weakening conditional boundaries such as x > 0
to x >= 0, where executing the guarded code block with
x = 0 did not make any difference apart from a minor per-
formance regression undetected by the test set and Pitest’s
timeout.

4.3 Improving the mutation operator set
As discussed above, the inverse mutation score could not

be significantly increased by simply adding more mutation
operators. To determine a more efficient mutation operator
set in the sense of having a greater inverse mutation score,
the inverse mutation scores were analyzed per mutation op-
erator in Table 4. The bold lines indicate which operators
were above the average inverse mutation score and which
were below. The biggest increase of the inverse mutation
score could be achieved if testing would just include the
conditionals boundary mutator. However this decreases the
total number of live mutations significantly as only 2098 out
of 23862 (9%) live mutants in the Math4 test were caused
by this mutator.

Interestingly, for both libraries, which are developed in-
dependently, the same mutators led to roughly the same
ordering if ordered by inverse mutation score. This suggests
that some mistakes are more commonly tested against than
others, although the test data set might be too small to com-
pletely proof this. In case this would be true, generating an
optimized test set, that is optimal for any program, would be
possible. The meaning of optimal depends on project spe-
cific criteria. If a project requires thoroughly tested code,
for instance because it is life critical, optimal most probably
means that all mutation operators should be applied to get
as many live mutants as possible. Other possible operator
sets could include maximum efficiency, in the sense of finding
a mutation operator set such that adding any additional op-
erator would cause a runtime increase being percental bigger

than the percental increase in live mutants. However run-
time per operator depends on the actual project (Table 2)
and thus, any time dependent optimal mutation operator
set depends on the project it is applied to.

Table 4: Inverse mutation scores per mutation op-
erator

Mutator Math4 IO
Conditionals Boundary Mutator 42% 34%

Void Method Call Mutator 33% 39%
Inline Constant Mutator 31% 27%

Remove Conditionals Mutator 24% 22%
Constructor Call Mutator 23% 24%

NonVoid Method Call Mutator 21% 24%
Invert Negatives Mutator 18% -
Return Values Mutator 18% 14%

Math Mutator 16% 15%
Negate Conditionals Mutator 12% 9%

Increments Mutator 10% 2%
Remove Increments Mutator 10% 2%

4.4 Applicability to real world software
Mutation testing seems to be generally viable, given the

above test results. A low number of equal mutants allows
to mostly ignore the equivalent mutant problem since find-
ing an equal mutation becomes an edge case as long as the
tested project is unlikely to cause a lot of equivalents be-
cause of dead code. However Pitest’s very long runtimes
as unit test sets become larger is a huge problem. Math4
has around 850 tests, depending on the exact configuration.
Apache Solr[3], a widely used full text search server, has
about 10500 unit tests and about 225000 NCLOC. If the
runtime of Pitest scales linearly with the number of tests and
NCLOC as the above experiments indicate, running Pitest
on Solr would take around 60 times longer than the Math4
full test, which would be around 540 hours when run on a
single thread, assuming it would have a 90% test coverage.
Actually Solr’s test coverage is lower[4], leading to another
problem of mutation testing, as decreased line coverage also
decreases the efficiency of mutation testing. If the line cov-
erage of a project is far from 100% it is easier to increase
it by testing the uncovered lines than it is to run mutation
testing and try to increase the number of killed mutants.
Additionally, the choice of mutation operator sets largely
influences the runtime, requiring a prioritization of runtime,
maximum amount of live mutants and efficiency on a per
project basis.

4.5 Bugs in Pitest
The experiments showed several problems within Pitest.

For some classes, for instance math4’s HermiteRuleFactory,
running the default set led to all mutants being killed, while
for the full set no mutant was killed, including those mu-
tants present in both tests. This is most probably a bug
within the mutant injection, since mutants should not influ-
ence each other and thus the same mutants should be killed
in both sets, disregarding which additional mutants are gen-
erated. A similar behavior has been reported previously [6]
and Pitest’s developer suggests to reduce the size of muta-
tion units to one. That causes every mutation to be run in a
seperate process and slows down the testing but solved the

problem for this particular class.
Another problem lies within the mutator application. For

no apparent reason the Invert Negatives mutator did not
appear in the results of the IO-full test. Another iteration
of mutation testing with verbose logging enabled did not
show any reason for this behavior.

Testing the IO library also showed that it is important to
make sure all dummy data gets erased between mutations.
The test set of IO contains a test attempting to maliciously
create a file via a library method. If this test passes, the file
was not created, because the library successfully detected
the misconfiguration. One mutation removed this check and
the file got created. Because this file was not erased after the
test run completed, all test reruns failed. This problem can
be resolved by writing the unit tests in a way that they clean
up dummy data after each test. It is not always sufficient to
delete dummy data after the whole mutation test completed
since the same unit test may be run multiple times during
a mutation test.

5. CONCLUSIONS
Mutation testing seems to be generally useful in real world

projects, as suggested by the conducted analysis. The num-
ber of equivalents appears to be low enough to be ignored,
given a low amount of dead code, and the process is fast
enough for small to medium sized projects such as utility li-
braries. Problems exist with bigger projects, such as Solr, as
the runtime becomes too long. Also unit test sets with low
line coverage need to be improved prior to mutation testing
in order to increase efficiency of the latter.

However, it is likely that unit test coverage will improve
in the future [12]. Meanwhile the efficiency of different mu-
tation operators could be investigated further to determine
optimized mutation operator sets, while the remaining issues
with the implementations of frameworks such as Pitest could
be resolved, allowing to generate more consistent test results
and further improving performance. The performance anal-
ysis also suggested that increasing the number of threads
is beneficial. With cloud computing consistently becoming
cheaper, mutation testing on multiple nodes might lower the
time consumption further by highly parallelizing work.

6. REFERENCES
[1] Apache Commons IO.

https://commons.apache.org/proper/commons-io/.
Retrieved December 2, 2015.

[2] Apache Commons Math4. https:
//commons.apache.org/proper/commons-math/.
Retrieved December 2, 2015.

[3] Apache Solr. http://lucene.apache.org/solr/.
Retrieved December 2, 2015.

[4] Clover report: Apache Lucene/Solr 6.0.0-413.
https://builds.apache.org/job/Lucene-Solr-

Clover-trunk/413/clover-report/dashboard.html.
Retrieved December 2, 2015.

[5] Instrumentation (Java Platform SE 7 b99).
https://docs.oracle.com/javase/7/docs/api/

java/lang/instrument/Instrumentation.html.
Retrieved November 30, 2015.

[6] Mutation survives when it should actually get killed.
https://github.com/hcoles/pitest/issues/181.
Retrieved November 30, 2015.

[7] M. Brockschmidt, T. Ströder, C. Otto, and J. Giesl.
Automated detection of non-termination and
nullpointerexceptions for java bytecode. In Formal
Verification of Object-Oriented Software, pages
123–141. Springer, 2012.

[8] H. Coles. Mutation testing systems for Java compared.
http:

//pitest.org/java_mutation_testing_systems/.
Retrieved November 20, 2015.

[9] H. Coles. Pitest: Basic Concepts.
http://pitest.org/quickstart/basic_concepts/.
Retrieved November 20, 2015.

[10] H. Coles. Pitest: Maven Quick Start.
http://pitest.org/quickstart/maven/. Retrieved
November 20, 2015.

[11] H. Coles. Pitest: Mutation operators.
http://pitest.org/quickstart/mutators/.
Retrieved November 20, 2015.

[12] E. Daka and G. Fraser. A survey on unit testing
practices and problems. In Software Reliability
Engineering (ISSRE), 2014 IEEE 25th International
Symposium on, pages 201–211, Nov 2014.

[13] B. Godlin and O. Strichman. Regression verification:
proving the equivalence of similar programs. Software
Testing, Verification and Reliability, 23(3):241–258,
2013.

[14] B. J. Grün, D. Schuler, and A. Zeller. The impact of
equivalent mutants. In Software Testing, Verification
and Validation Workshops, 2009. ICSTW’09.
International Conference on, pages 192–199. IEEE.

[15] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. Software
Engineering, IEEE Transactions on, 37(5):649–678,
2011.

[16] K. N. King and A. J. Offutt. A fortran language
system for mutation-based software testing. Software:
Practice and Experience, 21(7):685–718, 1991.

[17] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley.
The Java R© Virtual Machine Specification.
http://docs.oracle.com/javase/specs/jvms/se8/

html/jvms-6.html#jvms-6.5.iinc. Retrieved
November 30, 2015.

[18] Y.-S. Ma and A. J. Offutt. Description of
Method-level Mutation Operators for Java. https:
//cs.gmu.edu/~offutt/mujava/mutopsMethod.pdf,
2005. Retrieved November 20, 2015.

[19] A. Offutt. The coupling effect: Fact or fiction.
SIGSOFT Softw. Eng. Notes, 14(8):131–140, Nov.
1989.

[20] A. J. Offutt and R. H. Untch. Mutation 2000: Uniting
the orthogonal. In Mutation testing for the new
century, pages 34–44. Springer, 2001.

[21] K. Shashidhar, M. Bruynooghe, F. Catthoor, and
G. Janssens. Verification of source code
transformations by program equivalence checking. In
Compiler Construction, pages 221–236. Springer, 2005.

[22] A. M. Turing. On computable numbers, with an
application to the entscheidungsproblem. J. of Math,
58(345-363):5, 1936.

[23] E. J. Weyuker. On testing non-testable programs. The
Computer Journal, 25(4):465–470, 1982.

https://commons.apache.org/proper/commons-io/
https://commons.apache.org/proper/commons-math/
https://commons.apache.org/proper/commons-math/
http://lucene.apache.org/solr/
 https://builds.apache.org/job/Lucene-Solr-Clover-trunk/413/clover-report/dashboa rd.html
 https://builds.apache.org/job/Lucene-Solr-Clover-trunk/413/clover-report/dashboa rd.html
 https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.h tml
 https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.h tml
https://github.com/hcoles/pitest/issues/181
http://pitest.org/java_mutation_testing_systems/
http://pitest.org/java_mutation_testing_systems/
http://pitest.org/quickstart/basic_concepts/
http://pitest.org/quickstart/maven/
http://pitest.org/quickstart/mutators/
 http://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html#jvms-6.5.iinc
 http://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html#jvms-6.5.iinc
https://cs.gmu.edu/~offutt/mujava/mutopsMethod.pdf
https://cs.gmu.edu/~offutt/mujava/mutopsMethod.pdf

Supportive Role of Big Data Technologies in Enterprise
Architecture Management

Simon Hacks
RWTH Aachen University

hacks@swc.rwth-aachen.de

Mahdi Saber
RWTH Aachen University

mahdi.saber@rwth-aachen.de

ABSTRACT
By the advent of more complex enterprise systems consist-
ing of different types of processes, applications and infor-
mation which are linked to each other, the growth of scal-
able supportive technologies becomes an inevitable necessity.
Additionally, expanding these systems over heterogeneous
machines and making sophisticated interdependencies be-
tween them cause their management to become a complex
task which needs to monitor divergent types of data with
no holistic schema. Based on these assumptions, Big Data
technologies seem to be good candidates to maximize the
value of grasped insight.
This article describes some state of the art approaches with
regards to the usage of Big Data technologies in Enterprise
Architecture Management (EAM). In addition, it will be
discussed how these approaches can be fitted into related
EAM patterns to tackle the complexity of EA structures
during its lifecycle.

Keywords
Enterprise Architecture Management, Big Data, Hadoop,
MapReduce, Spark, Storm, EAM Pattern Catalog, Business
Analytics, Management, EAM

1. INTRODUCTION
Regardless of your inclination towards the technology, due
to its daily advancement, hearing about the new magical
world, Big Data is inevitable. Due to the emergence of var-
ious data-related advancements, it is now regarded as one
of the hottest topics in media. Last year, Edward Snow-
den, the American whistle-blower, has revealed how NSA
is able to store and analyze huge amounts of data collected
from different sources all around the globe [11]. This new
phenomenon is not limited to political area, it also affects
different aspects of our lives and revolutionizes how we live,
work and think from economy to health care, from art to
politics [13, 14].
From an economic point of view, we are now living in a
more complex world. Integrating technology into our ev-
eryday lives provides enterprises with the opportunity to
deal with and grasp new markets. As a result, if a com-
pany wants to increase its share of market, it inevitably
needs to empower itself with managing different scenarios;
in other words, empowerment means running sophisticated
processes and handling more data. In recent years, because
of having too much data at hand resulted from increasing
useage of electronic devices with various operating systems,

applications and usage scenarios, new advent of analytical
techniques for getting more insight into these sources is nec-
essary. Consequently, the complexity of new era reflects its
nature not only on the data, but also on internal structure
of a company dealing with these sources.
The general structure of an enterprise is reflected in its
EA (Enterprise Architecture) which consists of both IT and
business aspects. Although the concept of ”architecture”was
accepted for enterprise management in the early 80s, there
was no significant cases to support it till 90s [21]. Since then,
some popular management approaches have been appeared
to mitigate this deficiency. Among those, after an early con-
cise discussion, we stick to the pattern-based trend [4]. The
main purpose of this approach is to improve the interaction
of business and IT aspects. Therefore, similar to its root
being originated in software engineering, this method tries
to identify recurring problems in EAM (Enterprise Archi-
tecture Management) and suggest some abstract solutions
as building blocks of an architectural blueprint1.
Additionally, due to data explosion in our society, a whole
new range of advanced techniques has been come out as
an emergency relief. Among these, we can name some of
the well-known ones such as data mining, graph mining and
predictive modelling. However, developing and using such
techniques for every scenario from the scratch seems to be
too complex and costly. As a result, some of Big Data plat-
forms currently used in renowned enterprises like Google,
Yahoo and Amazon yield simpler tools and techniques for
dealing with such situations [15].
All in all, the main focus of this article is to identify some
appropriate enterprise architecture patterns which benefit
from the usage of renowned Big Data tools and platforms.
To achieve this goal, after specifying the related works, we
use EAM pattern catalog [12] to determine some patterns.
Then, after clarifying our definition of Big Data, we move
on to enrich these patterns by some suggested state-of-the-
art platforms and tools in this area. Finally after a brief
discussion on their differences, we try to pick the best one
for a concrete scenario, analyzing technology homogeneity,
with respect to its requirements.

1.1 Related Works
By the advent of complex enterprises during the last two
decades, Enterprise Architecture (EA) management has be-
come more sophisticated. Although one of most renowned
approaches, the Zachman framework [20], did not grasp too

1https://wwwmatthes.in.tum.de/pages/3b4t6l34g936/EAM-
Pattern-Catalog-Wiki, Accessed: 2015-12-1.

much attention in its first beginnings, it gradually becomes
more popular for managing this complexity. The essence of
this approach is developing an ontology of Enterprise Ar-
chitecture in a structured manner. The main focus of this
approach is to find abstract answers for these kinds of ques-
tions: Why, How, What, Who, Where, When. However, it
does not suggest any specific methodology for collecting and
managing the information [22].
On the other hand, The Open Group Architecture Frame-
work (TOGAF) [16] tends to modularize the enterprise ar-
chitecture and tries to optimize the interaction of these com-
ponents. In order to achieve this aim, it not only recom-
mends some formal standards, but also uses of successful
technologies and products. In the core part of this well-
documented framework, the Architecture Development Meth-
od (ADM) has a key role. Although ADM is based on a
stepwise cyclic approach, this iteration should not last in-
definitely. It is recommended to be used during the project
coarse with specific times for completion [18].
All in all, in this article we stick to the third one which
is the EAM pattern-based approach. It was firstly intro-
duced by [1] and tried to find a solution for implementation
difficulties of previous approaches. According to the per-
ception of its supporters [12], EAM frameworks are too ab-
stract or extensive to be implemented in a productive man-
ner. Too abstraction causes executives to miss the initiation
of their tasks. By lacking the beginning point, companies
tend to gather information from all potential stakeholders.
This all embracing demand gathering puts a lot of effort for
collecting and neglecting of unnecessary information EAM
frameworks and EAM pattern-based approaches are not con-
tradictory, so the patterns can be used as complements of
frameworks.
Additionally, Big Data frameworks need this initiation to be
deployed. Therefore, they come into the context by provid-
ing more implementation-centric analyses and suggestions.
As a result, we believe that sticking to a multilateral ap-
proach with less abstraction will be more reasonable.

2. RELATED EAM PATTERNS
During the research phase, we have noticed that EAM pat-
tern catalog [12] has a significant role in EAM pattern-based
approach. It is based on experimental surveys among some
renowned enterprises. According to the definitions given in
the catalog, all patterns can be characterized as the follow-
ing:

• Methodology pattern (M-Pattern): clarifies the steps
in order to satisfy some concrete concerns with respect to
the intended usage context. These kind of procedures can
cover different activities such as visualizations, group dis-
cussions and metrics calculations. One of the benefits of
these patterns is their ability for integrating with EAM
frameworks, e.g. TOGAF ADM.

• Viewpoint pattern (V-Pattern): Since industrial users
generally clarify their viewpoints by examples, this kind of
patterns propose a visual way to present data. These pat-
terns can be used by M-patterns; they can be supported
with some minor textual explanations.

• Information Model Pattern (I-Pattern): contains
the definitions and explanations of the used objects in one
or several V-patterns. These descriptions are presented as
an information model.

EA Visioning

Business Visioning

EA Roadmapping

EA Documentation

IT Visioning

Process Support

Target Landscape
Definition

Process Support Map

M

M M

M

V I

M

M

provides
input

provides
input

provides
input

provides
input

provides
input

provides
input

uses

uses

Figure 1: Related EAM Patterns Map [2]

Upon the above definitions, all the related patterns to this
article are depicted in Figure 1. By looking closer into the
suggested patterns we have noticed that most of them are
about currently established structures. To invite Big Data
technologies into the picture, we need some future-oriented
patterns. Fortunately, we found our desired patterns as the
following:

1) Business Visioning: a M-pattern selected from the
EAM Pattern Catalog V22 which discusses the devel-
opment of a business vision in a stepwise documented
manner. This pattern is mainly used for arranging the
business strategy of the enterprise [2].

2) IT Visioning: a M-pattern selected from the EAM Pat-
tern Catalog V22 which tries to give some insights into
the development and maintenance of a vision about fu-
ture usage of information technologies in the governed
enterprise [2].

These two patterns are part of a larger pattern language
and therefore presenting the relations between all patterns
of this bundle are an integral part of our research. These
relations are also shown in Figure 1, and you can find some
brief explanations in the following:

1) EA Documentation: a M-pattern which takes the re-
sponsibility of documenting the including elements of
current enterprise architecture. Some of these elements
are current business applications and business processes [2].

2) EA Roadmapping: a M-pattern which is responsible
for creation and maintenance of our planned roadmap
strategies towards the future development of the enter-
prise architecture [2].

3) Process Support Map: a V-pattern which depicts the
supportive roles of BusinessApplications with respect to
their BusinessProcesses in each OrganizationalUnits [2].

4) Process Support: an I-pattern which describes the
concepts and information model behind the Process Sup-
port Map pattern [2].

5) EA Visioning: a composite M-pattern which describes
the process of gaining a holistic enterprise vision by con-
sidering the results coming from the Business Visioning,

2https://wwwmatthes.in.tum.de/pages/ugsyi19wmmvl/,
Accessed: 2015-12-1.

Business Visioning IT Visioning
Target Landscape

Definition
EA Roadmapping

MM

M
EA Documentation

MM

M

Figure 2: EA Visioning Process [2]

IT Visioning and EA Documentation. The development
of an EA vision is depicted in Figure 2.

6) Target Landscape Definition: a M-pattern describes
the process of defining a target landscape derived from
the business and IT vision of the enterprise. The current
documentation of the EA is also used as an input for
the development process. Thereby, the target landscape
defines the vision of future business processes and the
support provided by the IT [2].

Big Data technologies, as the name suggests, seem to be re-
lated with IT visioning pattern. By doing a literature review
however, we have seen that the topic grasps a lot of attention
in business area. Considering Figure 2, we can immediately
notice the initiator patterns, namely Business Visioning, IT
visioning and EA Documentation. These patterns are fed to
Target Landscape Definition pattern and consequently EA
Visioning pattern.
Since this article is not based on a real project, there is no
EA Documentation. In other words, one of the essential ini-
tiators is missing. Hence, it is not possible to talk about
Target Landscape Definition, EA Visioning and other sub-
sequent patterns.
In a real project, the results coming from applying Business
Visioning pattern affect our decisions in IT Visioning phase.
However, in this article, we are going to talk about them in
an independent way. The main abstract focus of this article
is how Big Data technologies can support us in both phases.

3. BIG DATA CHARACTERISTICS
This chapter is the starting point of our survey on Big Data
concepts and technologies. In the following chapters after
counting important properties of Big Data and their associ-
ated problems, we will introduce some related technologies,
i.e. Big Data frameworks and tools. Big Data frameworks
presented in chapter 5 can be used to support both Business
Visioning and IT Visioning patterns. The topic of chapter
6, Self-service Business Intelligent tools, is mainly related to
Business Visioning pattern. In chapter 8, Technology Ho-
mogeneity, we target only the IT Visioning pattern.
Large amount of data is somehow a raw definition of Big
Data. We need a more formal way to detect them. The
following characteristics can help us to get more insights:

Volume: Data is never ceasing to increase in huge amounts.
Petabytes of data, which are now considered as the yard-
stick of Big Data, would be possibly overshadowed by the
Zettabytes era of data in near future. This exponential
growth of data could be explained by many cases. For
example, thousands of Terabytes are now generated daily
merely due to users’ interactions on social networking web-
sites [10].

Variety: One of the things that make Big Data larger
than ever is the variety of data and its sources. New vari-
ous data types came with technology progress in different
forms and brought new challenges to data analysis. The
Big Data spectrum encloses an eclectic mix of data types
that can be mainly categorized into structured, unstruc-
tured and semi-structured types. Structured data refers to
data that has a predefined length and format, and is usually
contained in relational databases and spreadsheets. These
are easy to be stored and analyzed and, for instance, could
be managed by e-commerce websites. Semi-structured data
are structured data in essence that does not conform to the
relational database model and have rapid-changing struc-
tures, like HTML, XML and RSS feeds that are mostly
contained in web server logs. Unstructured data covers all
rest of data types that does not follow specified a format
or model. Those are still the most challenging type of data
for analysis, since it is difficult to derive some structures
from them using traditional analytic tools. Such data can
be represented by social interactions, images, video, audio,
etc [8, 3].

Velocity: Time is always a big factor and plays a signifi-
cant role in some branches such as financial markets where
data analysis should respond promptly to market changes.
Data is increasing not only in volume and variety dimen-
sions, but also in terms of data processing time. Hence
velocity in Big Data reflects the speed at which nowadays
data is being transmitted and processed. The generated
data sources vary usually from batch to streaming data, of
which the latter is the most challenging in terms of analy-
sis. Streaming data, due to its high velocity and the urgent
need of reaction, are more difficult to process. Clickstream
data are, for instance, consistently collected and analyzed
by Google AdWords in order to generate suitable purchase
recommendations to its visitors. Geologists are empowered
from analyzing incoming streams of data from underground
sound sensors. They should listen to earth layers move-
ments, and therefore able to make predictions on earth-
quake occurrences earlier. Those predictive analytics often
play a far-reaching role in mitigating risks [6].

Besides the 3Vs Model mentioned above, there are other
properties that may clear up other ambiguities about the
definition of Big Data:

Veracity: Nowadays, it is even harder to prove the verac-
ity of incoming data due to their diverse formats and dif-
ferent sources. Cleaning data of any impurities is a critical
necessity for firms acting instantly on changing markets, if
they want to get the right business insights and resonable
decisions. This hence requires some mechanisms dealing
with imprecise and inaccurate data [3].

Value: The most important character of Big Data ana-
lytics after all is the abstracted value of the collected data.
Most businesses are interested in this issue to increase their
opportunities. However, now it is more challenging task
because of all other data exploitation problems. From the
emergence of new data sources to real time processing of
unstructured contents, new analytic workloads have to be
set by IT professionals to design robust systems which are
able to deliver an effective and efficient analysis on large
amounts of data [3].

The last two mentioned properties not only confirm the com-
plexity and its related issues, but also extend the 3Vs-Model
of Big Data to the 5Vs. The following section focuses on the
exploitation problems related to the characteristics of Big
Data.

4. BIG DATA PROBLEMS
As stated before, Big Data is voluminous, comes from dif-
ferent sources with various formats, and arrives mostly at
a very high rate, which reflects the increasing velocity of
incoming data. Institutions from different background and
companies are now more interested in all the concealed in-
formation behind Big Data. Thus, due to complexity, ex-
tracting knowledge and insights from large sets of data, in
order to adjust business processes to prompt market changes
or support decision making, is no longer a straightforward
task. Data value retrieval is hence one of the key challenges
of Big Data especially in the case of unstructured data. The
portion of unstructured data on the Internet has surprisingly
increased over the last few years through users’ interaction
on social media. The unstructured data cannot be uniformly
analyzed and are more difficult to process than structured
data. Therefore, getting an effective expression of these un-
structured data is definitely one of the key exploitation prob-
lems of Big Data. Besides the variety problem of incoming
data, processing large amounts of them takes a long time.
These days, data spans rapidly in many dimensions and ex-
ceeds the present processing and storage capacities. At the
moment, the available computing resources have already
been far behind the exponential growth of data. Hence,
processing and storage liabilities affect the core competitive
capacities of enterprises and constitute another exploitation
issue in this area, notably the stream processing. This occurs
because analyses of data have to take place before the data is
stored. Considering the velocity at which data is generated,
human analysis is mostly unfeasible. Evolutionary analytic
workloads and mechanisms are required to handle stream
data, and help automate the decision-making process in or-
der to get instantaneous responses and keep the business
optimized and up to date. The efficient processing of Big
Data has become a core problem. Given the openness and
richness of the digital universe, data is very diversified and
can originate from heterogeneous sources. The aggregated
data may contain large amounts of uncertain, incomplete,
incorrect and repeated data. This makes it even harder to
distinguish appropriate data or to ensure the authenticity
of data. The quality of the acquired data far surpasses the
quantity of data, bringing to the light relevance of 80-20 rule.
Thus the reliability of Big Data has become a serious issue
to extract valuable data. Therefore moving forward, these
are the main challenging questions around the exploitation
of data [10]:

• Does all the data need to be stored or analyzed?

• How do we find out which data is most relevant?

• Does the extracted data add value?

• Is the stored data accurate enough for decision making?

In order to deliver high quality data, incoming data has
to be preprocessed to prepare them for future analysis and
storage. Unfortunately this topic is beyond the scope of this
article, but interested readers can refer to [7].

5. BIG DATA FRAMEWORKS
More abstract and low-level type of tools formed by parallel
computing are frameworks, which allow for a general in-
volvement of different procedures, since they are commonly
not explicitly bound to a certain functionality. Some ana-
lytic approaches exploit underlying frameworks for an effi-
cient distributed processing, without particularly concerning
about parallel computing issues such as synchronization or
file management. One of the most prominent frameworks
in this context is Hadoop, which provides a simple usage of
the MapReduce model based on a scalable and robust par-
allel system. Starting with Hadoop and its associated tools,
some of the state-of-the-art frameworks for processing and
analyzing Big Data will be introduced and summarized as
the following.

5.1 Hadoop [17]
Hadoop is an open-source framework from Apache based
on the MapReduce parallel programming model, which was
originally introduced by Google in 2004 and is used for dis-
tributed computing on large data sets. It was designed to
solve the common problems of distributed computation, like
synchronization, scalability, and load-balancing. Therefore,
MapReduce is a modular structured model, with the focus
on two core methods, namely map and reduce. They form
the actual interface between the programmer and frame-
work, while the mentioned tasks remain hidden in the back-
ground. Basically, huge amounts of data, either stored in
a single source or multiple sources, are read in parallel and
automatically distributed to different nodes in a comput-
ing cluster. Managed by a single ”master-node” called Job-
Tracker, any node within the cluster then initializes so called
mappers. Mappers are classes including the map method im-
plemented by the programmer. While each mapper object
is responsible for a set of records, obtained from the input
files, each including map-task processes exactly one record.
Due to this, every node is able to apply a common func-
tion to chunks of the original data set in parallel, without
having to worry about synchronization. Results produced
by mappers are afterwards emitted as key-value pairs and
shuffled to the reducers, where each of them collects all pairs
having the same key. This step is also the only communica-
tion taking place between nodes during the whole procedure.
The reducer class represents the merge part of the popular
Divide&Conquer-paradigm. Since the data set was split up
and processed individually, reducers need to combine the in-
dividual results. How this is exactly done as defined in the
reduce method or in optional intermediate shuffle and com-
biner methods, which can be customized by the programmer.
In the last step the final results are automatically written to
the output source in parallel. For a better understanding, a
scheme of this process is illustrated in Figure 3.
Besides the implementation of MapReduce paradigm, Hado-
op also provides an underlying distributed file system called
HDFS (Hadoop Distributed File System), to store and han-
dle large amounts of data even up to hundreds of petabytes.
It was designed to operate on common hardware by consid-
ering arising problems in distributed and high-performance
data processing. Some of those problems are high through-
put of data, high accessibility regarding failure occurrence
and efficient partitioning. Therefore, HDFS uses a block-
wise and redundant storage architecture, where every node
in the cluster stores predefined sized blocks of data. In gen-

Node 1

Node 1

Node 2 Node 3

Node 3Node 2

Mapper Mapper Mapper

Input

Mapping Phase

Shuffling Phase

Reducing Phase

Output Phase

Mapper Mapper Mapper

Figure 3: MapReduce Phases

eral, these blocks are chosen to be proportionally small such
that they allow for a higher degree of parallelization. Fur-
thermore, the blocks are stored redundantly among different
nodes to prevent transfer bottlenecks and data losses.
Hadoop’s biggest advantage is the abstraction of the actual
application scenario, while automatically dealing with the
tasks arising with parallel programming. However, Hadoop
is just recommended for batch processing, in other words,
streams of incremental or real-time data cannot be analyzed
efficiently. In addition, the exploitation of the framework
to parallelize existing approaches is not always trivial due
to the static MapReduce model. Nonetheless, Hadoop has
become a de facto standard for parallel batch-processing of
large amounts of data used by Yahoo and Facebook.

5.2 Storm [19]
Although Hadoop is widely used for a distributed batch-
processing of data sets, it has the mentioned drawback of
lacking a solution for real-time application scenarios. For
this reason, a subsequently introduced solution named Storm
was developed as a distributed real-time computation sys-
tem, to compute on continuous streams of data. Now it be-
comes an essential part of many enterprises such as Spotify,
Twitter, and Yahoo.
Derived from Hadoop, Storm follows the master-slave model
to handle topologies (the counterpart of jobs in Hadoop).
Equivalent to the JobTracker, a ”master-node” called Nim-
bus organizes the distribution of the code, assigns tasks, and
monitors failures. Additionally, all other slave nodes them-
selves are organized by supervisor daemons and connected to
the nimbus node via Zookeper, which is a centralized service
for managing distributed computations. The actual process-
ing of data is done via two main components, i.e. Spouts
and Bolts.
Spouts are sources of one or more streams, whereas Bolts
can be regarded as processing units receiving streams from
Spouts, apply some functionality and optionally hand over
their output to further Bolts. Both of these component types
also form a topology similar to directed graphs, where the
edges between Spouts and Bolts define the process flow. In
particular, each Spout reads tuples from an external source
and creates streams of tuples that are sent over to Bolts.
This can either be done either reliably or unreliably, such
that a Spout temporarily saves the emitted information in
case of further processing fails. To handle all sorts of streams

it is possible to define serializer objects for each type within
a tuple. After receiving a stream from one or more Spouts,
Bolts perform stream transformations, which can be filter-
ing, accumulating or other forms of operations.

5.3 Spark [23]
Spark is a framework for large-scale data processing, which
is developed by Apache. Besides general features of MapRe-
duce-based processing, it allows for efficient in-memory com-
putation. Due to the excessive usage of persistent storage in
most iterative implementations of Hadoop, it was invented
to serve low-latency applications.
The main distinguishing aspect of Spark is its fault-tolerance
and Resilient Distributed Datasets (RDDs) [24]. RDDs al-
low programmers to explicitly persist data in main mem-
ory in combination with associated operators for in-memory
computations. In contrast to Hadoop, where for each job
iteration data is read and write in secondary storages, the
same operations can be performed using main memory up
to 100 times faster.
To manage data within the main-memory, Spark uses RDDs
as distributed memory abstractions. In addition to accessi-
bility features, they allow persistent data storage and re-
covery via some Spark programming interfaces. In case the
initially transferred data exceeds the available memory, the
programmer can define alternative behaviors, for example
supplementary data can still be processed from distributed
secondary storages. For this reason, Spark is able to interact
with existing file systems like HDFS and other types of data
sources (HBase, Cassandra, etc.).
Apache has also developed a whole set of distributed data
processing tools and libraries, similar to Hadoop’s third-
party tools presented before. In addition to interaction with
existing tools like Hive, Spark also provides its own opti-
mized query engine. Furthermore, a stream engine has been
provided in this suite to be used by continuous data analyt-
ics in real-time.
In summary, Spark sounds like an all-in-one solution that
is able to perform all kind of tasks efficiently. However,
it only shows its superior power, if it is used in iterative
jobs. In typical scenarios more stable and mature solutions
are preferable, since it might be costly to create a shared-
memory cluster with huge capacity.

6. SELF-SERVICE BI TOOLS
In contrast to remaining challenges of Big Data, the effec-
tive decision-making processes are the keys of the companies’
success in this highly competitive business environment to-
day. Therefore, companies use Business Intelligence (BI)
systems to assist decision makers. In fact, BI systems pro-
vide enterprises with timely and accurate information, which
allows them to make suitable decisions. As they can react
more quickly on customer needs and market changes, they
will gain more profit.
BI tools actually complement Big Data analytics to unlock
business value from enterprise information. Companies that
augment BI through Big Data techniques gain more holis-
tic views of business and more realistic insights. These can
help them addressing customer needs, taking more respon-
sive decisions on incoming risks, and identifying performance
opportunities.
In order to ease the usage of BI systems for end-users such
as executives, managers and operational staffs, a new kind

of BI tools has been emerged recently. They are called Self-
service BI tools and enable business users to become more
self-reliant and less dependent on the technical issues [9].
Self-service BI tools can also be called Do-It-Yourself BI
(DIY-BI) tools, which apparently shows their aims for re-
ducing IT dependency and favoring end-users involvement.
Furthermore, this kind of tools has four key essential char-
acteristics with respect to their underlying frameworks [9]:

• Make easier to access source data

• Make easier to use

• Make easier to consume and enhance the results

• Maker easier to deploy and manage

The evaluation of different Self-service BI tools according to
the Forrester 2015 report [5] uncovered a market in which:

• IBM, Microsoft, SAP, SAS, Tibco Software, and Micros-
trategy lead the market: These vendors demonstrate sig-
nificant capabilities and a good balance of self-service BI
features across many requirements.

• Other vendors that compete with the leading vendors to
get stronger position in the market: Information Builders,
Tableau Software, Actuate, Oracle, QlikTech, and Panor-
ama Software are strong performers as Self- service BI
platforms.

7. DISCUSSION ON FRAMEWORKS
In the previous chapters, multiple frameworks and high-level
tools for Big Data analytics were presented. Depending on
the actual scenario, each of those tools has its own benefits
or drawbacks. In this section we briefly review some remarks
of them in order to make an evaluation.
Starting from the introduced frameworks, the major dis-
tinction is determined by the way of processing data. While
batch-wise processing tools like Hadoop perform certain com-
putations in parallel on large fixed sets of data, stream pro-
cessing tools like Storm works on continuous data.
This difference consequently reflects its nature on analytic
techniques. For example, real-time classification algorith-
ms [7] should be built upon stream processing tools, whereas
computations on static complex data sets requiring precise
results should generally be done via batch-wise solutions.
Another important criteria to be considered is the avail-
able computation time. Hadoop has the advantage of ETL-
processing (Extract, Transform, Load), since it was designed
for efficient interactions with parallel databases and thus
cares for load-balancing and preprocessing. Although it can
be used for initialization of greater jobs, however the as-
signed tasks can rarely be done under some minutes. As a
consequence, it should be utilized for complex operations on
data sets of tera and petabytes, which makes it an inappro-
priate choice in many real-time query scenarios.
Furthermore, Even though utilities such as Hive can speed
up ad-hoc queries, intermediate phases of the MapReduce
model, specially shuffle phase, result in a slowdown. As a
result, it is generally a disadvantage compared to stream
processing tools.
The rigidity of the MapReduce model also affects perfor-
mance of the system depending on the input data. If data

cannot easily be processed as key-value pairs or split up us-
ing the Divide&Conquer paradigm, other variants may be
more beneficial.
Hopefully over these advantages and disadvantages, more
generic frameworks like Spark are on the rise, where both
concepts are combined in a common framework. This in
turn also allows for a mixed usage of both techniques, where
real-time queries can be combined with more complex com-
putations on huge data sets.
All in all, choosing one framework over the others depends
on actual scenarios. Each framework has its own advantages
and disadvantage. As a result, in next chapter we are going
to compare these frameworks for a concrete scenario, i.e.
technology homogeneity.

8. TECHNOLOGY HOMOGENEITY
According to the survey of technical university of Muni-
ch [12], one of the most important interests among renowned
enterprises is technology homogeneity. By technology homo-
geneity in this context, we mean which methodologies would
be helpful for analyzing and controlling the conformity of
used technologies in application landscape. Consequently,
the main concerns of the topic are [12]:

• How is an architectural blueprint or architectural solution
created?

• In which parts of the enterprise are architectural blueprints
or architectural standards used? Where are those stan-
dards breached?

• How can we improve conformance to architectural stan-
dards?

• Which applications or technologies can be used to achieve
more conformity?

The relation between an architectural solution and an archi-
tectural blueprint is similar to the relation between a con-
crete class and its direct abstract parent class in program-
ming paradigm. The desired technologies are suggested by
an architectural blueprint in an abstract way. Hence, an ar-
chitectural solution is a concretization of the architectural
blueprint created by selecting specific technologies. For ex-
ample, existence of a MySQL database in an architectural
solution leads to the existence of a relational database in the
corresponding architectural blueprint.
A Big Data framework in its essence resides on a large cluster
of nodes. To access all the data in the enterprise, the frame-
work needs to establish an underlying distributed file system
to cover all the nodes. In other words, any data stored in
the distributed file system can be questioned by the frame-
work. These stored data can be ranged from single values
in different file types to all tables in different databases and
even data warehouses. Additionally, the framework provides
some facilities to interact with external data stored outside
its file system.
In this respect, Big Data technologies can be helpful in two
different manners:

1) Increasing flexibility: Since a framework supports dif-
ferent kinds of technologies, it can be used to facilitate
the interaction between them. For example, data stored
in a relational database can be transformed and inserted
in another non-relational database. Similarly, from an
optimistic viewpoint, a single query can be forwarded to

all files and databases to gather all the results from dif-
ferent sources. Therefore, Big Data frameworks can be
used to increase technology homogeneity of an enterprise.

2) Analyzing the complexity: Big Data frameworks shou-
ld rely on programming languages for creating distributed
file systems. These distributed file systems support dif-
ferent programming languages for their computations.
Similar to Java, these programming languages generally
have an ability to ask about constituent elements of the
framework. In other words, Big Data frameworks have an
ability to do self-questioning. The result of this inquiry
can reflect the architectures and technologies used in the
deployed framework. Therefore, the frameworks can be
used to analyze the technology homogeneity. To be more
precise, two methodology patterns (M-2 and M-4) and six
viewpoint patterns (V-5, V-6, V-23, V-39, V-66, V-67) of
EAM Pattern Catalog [12] can be supported in this way.
All these patterns are interested to grasp holistic visions
of the used technologies and their relations.

By comparing the Big Data frameworks noted in this arti-
cle, we have noticed that Hadoop is a better choice in both
ways. Architectures and technologies used in enterprises are
not too dynamic. Most of their components are also stored
in the file system with long lifetime. As a result, in an an-
alyzing approach, it is better to do a more comprehensive
investigation which could take some hours to some days.
Storm is not practical in this approach since it is generally
used for analyzing too dynamic data on the fly. The main
focus of this framework is real-time analytics. Analyzing
data with short lifetimes like stock exchange rates is a more
appropriate use case for this framework. In addition, it is not
supported by large sets of marginal technologies to interact
with other components in the enterprise architecture.
Spark does not seem a better alternative to Hadoop in this
scenario. Although this framework is capable of doing a
comprehensive analysis, it is not appropriate in two ways:
cost and time. High speed memories are much more expen-
sive than storage devices. Compared with Hadoop, compre-
hensive analysis takes more time, if the data is not present
in nodes’ memories (RDDs). Keeping architectural data in
memory is not a reasonable approach, since we do not need
them time to time. Additionally, this framework is newer
than Hadoop; it does not have as many marginal technolo-
gies as Hadoop.
Therefore, Hadoop is a more suitable choice in this use case.
It is more affordable than the others, since it can be deployed
on cheap commodity hardware. Hadoop is also more scal-
able than Spark and Storm. Additionally, its own storage
layer, HDFS, can be used by others. This feature enables
enterprises to complement their needs with other computa-
tional frameworks such as Spark and Storm. Hence, it can
be integrated seamlessly with both.
Traditionally in enterprises, more valuable data are stored
on higher level of data sources such as relational databases,
data warehouses, and non-relational databases. Such data
sources keep data in a more structured way. Hadoop has a de
facto standard technology, called Sqoop, to work with legacy
RDBMS. It also has its own set of technologies to support
data warehousing (Hive), data mining (Mahout) and meta-
data sharing (HCatalog) in a distributed manner. There are
also some renowned technologies to store and query data in
a non-relational form such as HBase (non-relational DBMS)

and Pig (SQL-like query language).
Hadoop is an open-source framework maintained by Apache
foundation, but there are also some third party distribu-
tions. These distributions also have their set of technologies
to enrich the framework in different use cases. All these
huge set of technologies can provide a solid foundation for
enterprises to increase their technology homogeneity, either
by getting more flexibility or better analysis.
Finally, providing lossless interactions between different Big
Data technologies is still in progress. Practically speaking,
Big Data frameworks and technologies are not a complete
alternation for our legacy systems. For example, most enter-
prises still need RDBMS to handle relational data. However,
the existence of such a database can be detected by using
Big Data technologies. Even more if we use them to analyze
the RDBMS log files, we can grasp some probable hidden
information. As are result, we think it is more confident to
stick the second approach, i.e. analyzing the complexity of
the enterprise application landscape.

9. CONCLUSION
Big Data is that magical word spreading its usage to all
aspects of our modern society. However, most of the times,
we do not use these facilities in a greenfield approach. There
are lots of enterprises with established structures interested
in integrating Big Data technologies. Since we found the
pattern-based approach as an appropriate solution for EAM,
we decided to identify some patterns helping us with this
integration.
Then, after clarifying our definition of Big Data and its
difficulties, we moved on to identify renowned frameworks.
Hadoop, Spark and Storm were distinguished as the three
dominant open-source frameworks. Since their internal struc-
tures were opened, we have compared them regarding their
natures.
Additionally, we have briefly looked at some tools to abstract
the details of these frameworks. Considering, the impor-
tance of the extracted data value, deploying Self-Service BI
applications seems to be a promising approach. Recently,
this kind of tool gained increasing reputations within the
spectrum of users with less IT-understanding.
Finally, after comparing our designated frameworks in an
abstract way, we have restricted our use case to do a con-
crete comparison. The use case was about technology ho-
mogeneity. We identified two different approaches in this
context. Then, we explained our reasons to prefer Hadoop
rather than the others.

10. FUTURE WORKS
According to the experiment done by technical university
of Munich, most management experts of enterprise archi-
tectures tend to express their ideas with examples. These
examples are usually depicted as diagrams. That is why
they provide viewpoint patterns in the EAM pattern cata-
log. The main focus of these patterns is to show statistical
issues in a clear manner.
In Big Data context, there are also a huge sets of visual-
ization tools which can help us to present statistical issues.
These tools are getting more attention during the last years.
That is why Big Data experts tend to divide the whole de-
ployed solution in three different layers: storage, computa-
tion and visualization. Since the first two layers were briefly

discussed in this article, we think investigating the third
layer will be a good candidate to pursue this article.

11. REFERENCES
[1] S. Buckl, A. M. Ernst, J. Lankes, K. Schneider, and

C. M. Schweda. A pattern based approach for
constructing enterprise architecture management
information models. Wirtschaftinformatik Proceedings
2007, page 65, 2007.

[2] S. Buckl, A. M. Ernst, F. Matthes, and C. M.
Schweda. Enterprise architecture management
patterns for enterprise architecture visioning. In
EuroPLoP, 2009.

[3] P. Chandarana and M. Vijayalakshmi. Big data
analytics frameworks. In Circuits, Systems,
Communication and Information Technology
Applications (CSCITA), 2014 International
Conference on, pages 430–434. IEEE, 2014.

[4] A. M. Ernst. A pattern-based approach to enterprise
architecture management. PhD thesis, Citeseer, 2010.

[5] B. Evelson. The forrester wave: Agile business
intelligence platforms, q3 2015, 2015.

[6] M. Ferguson. Architecting a big data platform for
analytics. A Whitepaper Prepared for IBM, 2012.

[7] J. Han, M. Kamber, and J. Pei. Data mining: concepts
and techniques: concepts and techniques. Elsevier,
2011.

[8] J. Hurwitz, A. Nugent, F. Halper, and M. Kaufman.
Big data for dummies. John Wiley & Sons, 2013.

[9] C. Imhoff and C. White. Self-service business
intelligence-empowering users to generate insights.
TDWI best practices report. On the TDWI site: www.
tdwi. org, 2011.

[10] A. Katal, M. Wazid, and R. Goudar. Big data: Issues,
challenges, tools and good practices. In Contemporary
Computing (IC3), 2013 Sixth International Conference
on, pages 404–409. IEEE, 2013.

[11] D. Lyon. Surveillance, snowden, and big data:
capacities, consequences, critique. Big Data & Society,
1(2), 2014.

[12] F. Matthes. Enterprise architecture management
pattern catalog. Technische Universität München,
München, 2008.

[13] V. Mayer-Schönberger and K. Cukier. Big data: A
revolution that will transform how we live, work, and
think. Houghton Mifflin Harcourt, 2013.

[14] M. Mestyán, T. Yasseri, and J. Kertész. Early
prediction of movie box office success based on
wikipedia activity big data. PloS one, 8(8):e71226,
2013.

[15] R. P. Padhy. Big data processing with
hadoop-mapreduce in cloud systems. International
Journal of Cloud Computing and Services Science
(IJ-CLOSER), 2(1):16–27, 2012.

[16] T. Version. 9, the open group architecture framework
(togaf). The Open Group, 1, 2009.

[17] T. White. Hadoop: The Definitive Guide, 4th Edition.
O’Reilly Media, Inc., 2015.

[18] K. Winter, S. Buckl, F. Matthes, and C. M. Schweda.
Investigating the state-of-the-art in enterprise
architecture management methods in literature and

practice. MCIS, 90, 2010.

[19] W. Yang, X. Liu, L. Zhang, and L. T. Yang. Big data
real-time processing based on storm. In Trust, Security
and Privacy in Computing and Communications
(TrustCom), 2013 12th IEEE International
Conference on, pages 1784–1787. IEEE, 2013.

[20] J. Zachman et al. A framework for information
systems architecture. IBM systems journal,
26(3):276–292, 1987.

[21] J. A. Zachman. Concepts of the framework for
enterprise architecture. Los Angels, CA, 1996.

[22] J. A. Zachman. John zachman’s concise definition of
the zachman framework. Zachman International, 2008.

[23] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. Mccauley, M. Franklin, S. Shenker, and I. Stoica.
Fast and interactive analytics over hadoop data with
spark. USENIX; login, 37(4):45–51, 2012.

[24] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and
Implementation, pages 2–2. USENIX Association,
2012.

How Much Does Testing Cost?

Alexandra Keus
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

alexandra.keus@rwth-aachen.de

Andrej Dyck
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
andrej.dyck@swc.rwth-aachen.de

ABSTRACT
Testing is often seen as a mainly time and money consuming
activity within the software engineering process. For this
reason, many companies choose not to automate tests or
even eliminate tests completely in order to save expenses.
However, the costs of running automated, manual, or even
no tests at all differ immensely and are not always obvious
at first glance.

There exist metrics that determine the costs of automated
testing. Though, cost metrics for manual and not running
tests are not studied. This paper presents a promising metric
for automated tests and proposes two metrics for the two
other cases. An example illustrates the use of the metrics.
Having those metrics at hand, it is possible to make a proper
comparison between the three test approaches and argue
how much testing costs and whether it makes sense not to
test.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.8 [Software
Engineering]: Metrics—process metrics

Keywords
automated testing, manual testing, test costs, cost estima-
tion, metrics

1. INTRODUCTION
According to Boris Beizer, an American software engineer,

30 to 90 percent of the labor during the software develop-
ment process are spent testing [5]. For this reason, many
companies try to reduce their software engineering costs by
reducing the test costs. There exist several different ap-
proaches to do so. They range from simply testing less “in
less important areas” [16] to save time, to the use of pro-
grams or tools which shall decrease the expenses of the de-
velopment process [1].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2015/16 RWTH Aachen University, Germany.

Cost savings, by not spending developers’ time on the im-
plementation of tests or manual testing, are obvious if no
errors are found while testing. Since “program testing can
be used to show the presence of bugs, but never to show
their absence” [6], testing cannot guarantee a faultless soft-
ware. This can lead to the assumption that testing does
not make sense. But not testing is not necessarily cheaper
than actually executing an automated or manual test. To
determine the costs of testing, software metrics are needed.

Software metrics present a way to evaluate, thus compare
and review, software. They provide the opportunity to make
predictions of future software performance and current code
quality [7]. Software testing metrics especially refer to the
evaluation of software tests. An example for such a metric is
the estimation of a tests efficiency, by comparing the errors
found while applying this test with the overall number of
errors found [9].

There exist metrics which compute the costs of automated
tests, however metrics for manual tests and not testing are
not present. To resolve this lack of information, this paper
presents metrics to determine the costs of manual testing
and leaving tests out. Those are based on an existing au-
tomated test metric, to simplify a later comparison of the
results. Comparing the three test approaches in matters of
their costs helps to reason for or against the development
and execution of a test.

Section 2 gives an overview about the costs of manual test-
ing, automated testing as well as not testing. To this end,
a metric which computes either the costs of running a test
or leaving it out is presented. Section 3 gives an example of
use for these metrics. In the 4th section, a discussion about
testing is held: whether or when it should be done, what
the limits are, and what testing eventually costs. Finally,
section 5 concludes this paper.

2. TEST COSTS
Test costs describe what the expenses of a test, from the

requirement determination until its final completion, are. In
this paper, the term test costs does not include the costs of
economic damages, which are caused by not testing or test-
ing too less. Of course, the possible damages caused by us-
ing certain testing approaches need to be considered. How-
ever, it is difficult to estimate the costs of possible economic
damages. Therefore, this paper only focuses on parameters
which have a direct influence on the costs of testings. The
aim is to finally get a metric which is as simple as possible
and as detailed as necessary. Thus, not every possible factor
which could influence the overall test costs is included in the

metrics presented in this paper.
Test costs can be calculated, though they vary depend-

ing on the kind of test used. To compute them, suitable
metrics are needed. In the following sections three different
metrics are presented, determining the costs for executing
automated and manual tests as well as the costs for not
testing. These metrics can be used in order to compare the
three testing strategies and their costs.

2.1 Automated Tests
“Automated software testing uses automated tools to run

tests based on algorithms to compare the developing pro-
gram’s expected outcomes with the actual outcomes. If the
outcomes are aligned, your program is running properly and
you are most likely bug free. If the two don’t align, you have
to take another look at your code and alter it and continue
to run tests until the outcomes align.” [4]

To compute the costs of running an automated test, Mi-
crosoft developed a suitable metric [11]. With the help of
this metric they try to reduce their test costs, using historic
data to determine tests which should not be executed. The
data they refer to contains information about former test
executions, particularly whether a test actually found an er-
ror and whether this error was a false alarm or not. A false
alarm in this case means that a bug is reported although the
code is correct.

To determine when a test should be skipped, Microsoft
developed a program which takes this decision. Though this
program skips certain tests, those will not simply be left out,
but instead run at a later date or on another code branch.
At the latest when the code change gets integrated in the
program code all tests need to be run at least once. How to
decide when to execute a test and when to skip it, however,
will not be part of this paper. Instead, the paper now pro-
vides a closer look at the metric which determines, according
to Microsoft, the costs of running an automated test.

The concrete cost metric, which Microsoft developed,
to determine the costs of executing an automated test
(Cost′autom) consists of different factors, since test automa-
tion includes the determination of the requirements as well
as the automation and the inspection of the result of the
actual test [18]. The machine costs (Cost′machine), which
describe the infrastructure costs per minute, are part of the
automated testing costs. The inspection costs (Costinspect)
are influenced by the probability having to inspect an error
which is a false alarm, whereat no actual bug is found by the
test. The probability of having a false alarm, thus a false
positive result, is thereby described as:

PFP =
#falseAlarms

#executions

The number of false alarms and the number of executions
both depend on one test executed on one environment.
Changing the environment on which the test is executed
can also influence the corresponding probability of having a
false alarm. The costs of having to inspect a false positive
test result are described as:

Cost′errorFP = PFP ∗ Costinspect

According to Microsoft, the execution costs for an auto-
mated test then are [11]:

Cost′autom = Cost′machine + Cost′errorFP (1)

The metric presented by Microsoft needs to be further
enhanced, because it is influenced by factors which are not
necessarily known. This means that, for example, the in-
spection costs of a test might not be known. However, it
is possible to deconstruct these factors into ones which are
probably known. The following formulas all consist of these
simple parameters. First of all, time as a central factor of the
error cost computation, is included in the new metric. Since
the costs for automated testing also include the costs for
implementing the actual test (Costimpl), this factor needs
to be included in the enhanced metric. These costs depend
on the hourly rate of the developer (Costpay) and the time
timpl needed to implement the test, as well as define the
requirements and the machine costs of the working station
(CwS):

Costimpl = (Costpay + CwS) ∗ timpl

Furthermore, the machine costs of the server depend on the
duration of the test execution since they are usually specified
in dependency of time:

Costmachine = Cost′machine ∗ texec

The inspection costs, and therefore the costs of having a
false alarm, can be further broken down into the payment
of the developer and time needed to take a look at the error
as well as the machine costs of the working station:

CosterrorFP = PFP ∗ (Costpay + CwS) ∗ terror

Finally, this results in

Costautom = Costimpl + Costmachine + CosterrorFP (2)

as the extended metric which calculates the costs of the first
execution of an automated test. Thus, all parts of the met-
ric now consist of the machine time, hourly rate of the de-
veloper, time of the test execution or duration of the test
development and the probability of having a false alarm.

2.2 Manual Tests
“Manual Software Testing is the process of going in and

running each individual program or series of tasks and com-
paring the results to the expectations, in order to find the
defects in the program. Essentially, manual testing is using
the program as the user would under all possible scenarios,
and making sure all of the features act appropriately.” [4]

Based on the enhanced metric of section 2.1, this paper
now presents a corresponding metric determining the costs
of a manual test. Since preferably not only the developer
should test his program, because he will not be able to test
his own product unbiased, the requirements of it have to be
settled before testing manually [18]. The manual test costs
(Costman) consist of the testers payment according to the
time the tester needs to accomplish the given task. Addi-
tionally, the machine costs of the working station (CostwS)
need to be taken account of. With Costpay as the the hourly
rate of the tester and ttest as the testing duration and time
needed to define the requirements of the tested program,
this results in

Costman = (CostwS + Costpay) ∗ ttest (3)

as a metric which computes the costs of a manual test.

2.3 Not Testing

To determine the concrete costs of not testing, a suitable
metric is presented. It seems that not testing software can
easily result in fewer expenses during the software engineer-
ing process. The costs described by equations 2 and 3 could
simply be saved if testing would not be performed. Thus,
not testing seems to be a good idea, especially if the proba-
bility of having a false alarm is high.

Since there is no testing, there is also no need to develop
a test. Thus, the implementation costs, as well as the costs
for determining the requirements, are saved. While not ex-
ecuting a test results in savings when the test would find
no bug or even produce a false alarm, there are still times
when a test would have detected an error. The costs of an
escaped error (Costescaped) depend on the machine costs of
the working station (CostswS) as well as the salary of the
developer (Costpay) in dependency of the required time to
fix the detected bug (tfix):

Costescaped = (CostwS + Costpay) ∗ tfix

The overall costs of the escaped errors furthermore depend
on the number of bugs which have not been found, due to
not testing. Thus this results in

CostnoTest = Costescaped ∗ #bugs (4)

as the metric determining the costs of not testing.

3. APPLIANCE
Whether testing automatically, manually or not at all -

all testing approaches have advantages as well as disadvan-
tages. Thus, not every kind of testing makes sense in every
situation.

A big benefit of automated testing is that the costs will re-
duce when repeatedly applying a test, because it is not nec-
essary to implement the test more than once. At first, the
implementation has to be paid for, but later on the expenses
will only include the machine and inspection costs. Nonethe-
less, the final inspection of the test results still has to be
done manually [18]. Inserting large amounts of data into a
database or testing the performance of the program, while
many users simultaneously access data, are things which def-
initely should be automated. It’s not efficient to test such
things manually, since the tester would only repeat similar
actions over and over again or too many people would be
needed to test sufficiently [12].

Manual testing, though, makes sense if the test needs to be
changed frequently or is only applied once, so that the costs
for the implementation of the test would exceed the costs
of testing manually. Another example for the use of manual
tests is checking display outputs or sensor interaction [13].
Both cases either demand a variety of human interaction or
an aesthetic comprehension, which is easier tested manually
than automatically.

There are several different types of errors that can occur
during software engineering. They range from minor, aes-
thetic errors to expensive or even perilous errors. Examples
for serious errors are the failed start of the Ariane 5 and
a bug in the Therac-25 radiation therapy machine, which
caused injuries or even the death of at least six people [3]
[14]. Not testing can be problematic in case an error causes
something life-threatening or a high damage, like in the ex-
amples given above. Depending on the extend of the error,
the costs of not testing will vary.

Table 1: Fictive Historic Test Data
Machine Costs (Server) 0.03$/min

Machine Time 00:08
Implementation Time 01:20

Salary 0.39$/min
False Error Probability 4%

Inspection Time 00:36
Machine Costs (Working Station) 0.01$/min

Duration of Manual Testing 00:45
Escaped Bug Fixing Time 00:53

Number of Bugs 14

The metrics presented in section 2 can be especially inter-
esting for people who want to compare the costs of testing by
some means or other. It can also help to reason why testing
should be done from the financial point of view, since test-
ing does not only cause costs, but also reduces the costs of
future bug fixes.

3.1 Example
The presented metrics give a brief overview about the pos-

sible costs of testing, however, to compare the test cost it
is easier to compute concrete values with help of an exam-
ple. A simplified chart of fictive historic data concerning
salary, time needed to test etc. can be found in table 3.1 [2]
[11]. With help of this information the costs of testing are
determined.

First of all, the costs of executing an automated test are
computed:

Costautom = Costmachine + CosterrorFP + Costimpl

= 0.03 ∗ 8 + 0.04 ∗ (0.01 + 0.39) ∗ 36 + (0.01 + 0.39) ∗ 80

= 0.24 + 0.58 + 32

= 32.82

(5)

For the cost and time values given in table 3.1 this results
in overall costs of 32.82$ for a test execution. Next follows
the computation of the costs of a manual test:

Costman = (CostwS + Costpay) ∗ ttest
= (0.01 + 0.39) ∗ 45

= 0.40 ∗ 45

= 18.00

(6)

Thus, 18.00$ need to be spent per execution. Finally the
costs of leaving tests out are calculated:

CostnoTest = Costescaped ∗ #bugs

= (0.01 + 0.39) ∗ 53 ∗ 14

= 296.80

(7)

Computing the costs of not testing, according to our metric,
results in 296.80$. Per bug this are average costs of 21.20$.

The costs of the three testing methods are very differ-
ent. With the given values of table 3.1 the outcome is that
manual testing results in fewest costs, next followed by au-
tomated testing. Not testing is the most expensive testing
approach. However, when taking a look at the costs of only
one bug, the costs of not testing lie in between the costs of
automated and manual testing. Nevertheless, manual test-
ing only costs fewest if the costs of the first execution of an

Table 2: Data Used for Test Cost Charts
Automated
Test Costs

Manual
Test Costs

Costs of
Not

Testing

Number
of Bugs

32 18.00 296.80 14
0.82 18.00 0.00 0
0.82 18.00 84.80 4
0.82 18.00 21.20 1
0.82 18.00 212.00 10
0.82 18.00 169.60 8
0.82 18.00 254.40 12
0.82 18.00 63.60 3
0.82 18.00 0.00 0
0.8 18.00 42.40 2

automated test are determined and compared to those of a
manual test.

The average costs of an automated test decrease with each
test execution. The automated testing metric includes the
factor of the implementation of a test which only has to
be done once for each test. When repeatedly executing the
same test, or only changing it slightly, those costs will nearly
disappear. Without having to pay for the implementation,
only 0.82$ would have to be spent for the test execution,
including machine and inspection costs. The more often a
test is executed, the cheaper it gets on an average. After
two executions the average test costs for each of them would
be 16.82$ and after three test executions the average costs
would even drop down to 11.49$. When running the same
test 100 times, the average costs are already lowered to only
1.14$ per execution. In this example, the average costs of
an automated test after two test execution are already lower
than the average costs of testing manually.

Manual test costs depend on the time needed for the ex-
ecution of the test. This time can be very high but also
very low and is different for every test. Therefore, executing
a manual test can sometimes be cheaper than executing an
automated test. The costs of not testing increase, the higher
the number of bugs and the required fixing time is. Even
with a low number of bugs and a low time needed to fix the
bugs, the resulting costs of not testing can be very high.

3.2 Visualization
The charts in figures 1-4 show how the test costs change

for each test execution, respectively, how high the costs of
not testing can be. The values determined in section 3.1
show the costs of executing one test once on one feature.
In the following section the values of the metrics are now
related to the number of releases of this feature, supposing
that the same test is executed, or not executed, once for each
release. For the visualization is also assumed that there is no
fluctuation in the test data so that, for example, test times
do not vary. The concrete values used for the test cost charts
can be found in table 3.2.

Figure 1 shows that, when executing an automated test
for the first time, the costs are very high. This value is
the one computed by equation 5. Though, from the second
execution on the costs begin to lower. The implementation
of the test is completed and the costs now only consist of
the machine costs and the costs of having to inspect a false

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

te
st

 c
o

st
s

number of releases

automated test costs average automated test cost

Figure 1: Automated Test Costs

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10
te

st
co

st
s

number of releases

manual test costs average manual test costs

Figure 2: Manual Test Costs

positive error:

CostmachErr = Costmachine + CosterrorFP

Per execution this would result in 0.82$ which have to be
spent after the initial implementation is done. Because of
this, the average costs per test lower constantly with each
test execution - as displayed in the corresponding chart.

Manual test costs always depend on the time needed to
complete the current test task. When repeatedly applying
the same test on the same feature, this time will remain
constant. Accordingly, the costs of executing a manual test
and the average costs of a manual test stay constant for each
release as well (see figure 2).

The costs of not testing can be very different. These costs
depend on the number of bugs which need to be fixed after
each release, as well as the time needed to accomplish this.
Since, according to experience, almost every code has bugs
before testing, those costs are rather high than low. Figure
3 shows how the number of bugs, found in one release, influ-
ences the overall costs. The average costs of not testing vary
considerably depending on the detected quantity of those.

Figure 4 shows a cost comparison of the average costs
of all test approaches. It is obvious that automated tests
and manual tests generally result in fewer costs than leaving
tests out. Depending on the number of executions of a test
and time needed for the implementation of an automated
test, either automated or manual testing is the best way
to keep software testing costs low - especially when having
similar data like given in table 3.1. Not testing has far higher

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

te
st

 c
o

st
s

number of releases

costs of not testing average costs of not testing

Figure 3: Costs of Not Testing

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

te
st

 c
o

st
s

number of releases

average manual test costs

average automated test

cost

average costs of not

testing

Figure 4: Cost Comparison

average costs, always depending on how many bugs need to
be fixed after each release due to not testing and how much
time is needed for this.

4. DISCUSSION
This discussion approaches general issues which occur in

matters of testing, provides further details about Microsoft’s
testing approach and compares the three presented test met-
rics with each other. After presenting those metrics, the
question is which method has the lowest costs and whether,
respectively when, testing makes sense.

The metrics presented in this paper all use some kind of
historic test data. Not all information about former test
executions are actually stored for future use. Since this is
the case, either popular data needs to be used in the required
software testing metric or the corresponding data needs to
be gathered or estimated before a proper use of the metric
is possible. Gathering this information takes some time -
the this period is, the better will the estimation of average
values be. This also results in more reliable results given by
the metrics.

Microsoft’s approach for testing and test cost reduction
works by skipping some tests and instead running them at a
later time. This idea is based on the consideration that the
skipped test will not find an error when being executed, but
will instead only lead to higher software testing costs. Their
idea of test cost reduction is only applied to automated tests
and use historic data to do so.

If the program developed by Microsoft decides to skip a

certain test, there is still the chance that the program makes
a wrong decision. The metrics used by the program can only
estimate how high the probability is that a test will not find
an error. The program then, based on this result, decides
whether it is cheaper to execute or skip a test. Because of the
possibility of making a wrong decision, Microsoft determines
that every test needs to be run at least once for each code
change. This might delay the execution of a test, but never
skips it completely. Hence, Microsoft does not support a
general not testing approach.

By delaying the test execution, multiple executions of a
test on a code change can be prevented. The longer the
execution is delayed, the more changed code can be tested.
Using their kind of test selection can result in fewer expenses
but does not necessarily has to. When applying their new
testing method on their products, Microsoft got very good
results with Windows, but when applying it on Office the
cost savings were much lower [12].

The reason for these lower savings depend on the effort it
takes to fix errors which have not been detected right away,
because the corresponding test has been skipped. The earlier
an error is found, the smaller is the influence of it on other
code parts and the least effort has to be made to locate and
fix it. If an error is not found while testing and the code
change is submitted into the code trunk, this error can also
have an influence on future code changes of other developers.
The more people are influenced by an escaped error and
the more advanced the software development process is, the
more expensive will the corresponding error be [18]. The
worst case is that the error is not found until the product
has already been delivered. This cannot only result in high
costs to eliminate the error, but also in bad publicity for the
company.

Automated testing should be used if a certain test has to
be executed many times or if the insertion of large amounts
of data into a program is necessary. It is also not practicable
to test the performance of a program, for example testing
the behavior of it while thousands of users access it at the
same time, without the help of automated tests [12]. As seen
in section 3, the implementation costs have the largest im-
pact on the overall automated test costs. Correspondingly,
tests, or at least parts of existing code, should be reused as
much as possible while working with automated tests. Using
automated tests is the cheapest way of testing if repeatedly
applying the same test. But the use of automated tests does
not always make sense [12]. The implementation of auto-
mated tests is effort and time consuming. In some cases the
effort to develop an automated test is higher than the actual
savings that could be made by using it, which is especially
the case for smaller projects.

If a test needs to be changed a lot and the costs for the
implementation of a test would be higher than its benefits,
manual testing can be a good idea. Also, when testing ap-
pliances which require much user interaction, doing manual
tests can make more sense than testing otherwise. Examples
for such interactions are, among other things, the testing of
displays and sensors [13]. There are also simply tests which
cannot be automated, like testing the comprehensibility of
a program [15]. Still, the costs of manual testing can be un-
reasonable high if the decision to automate a, yet manual,
test is not made sufficiently early [8].

Not testing is a good idea if the developed program has a
very low probability of an error occurrence. When, on the

other hand, having a high error probability or a high number
of bugs, not testing is very expensive. Also, when choosing
not to test, it is important to make sure that having an error
will not lead to any life-threatening effects inflicted by the
program.

While testing also keep in mind that there are errors from
different extends. When a deadline is reached, there should
have been at least as much testing that errors with a high
severity are eliminated. Thus, it can make sense to sort the
tests in this regard or prioritize the inspection and correction
of the errors. To prioritize the tests, software testing metrics
can be used [17]. Especially when selecting tests is necessary
because of strict deadlines, it should be kept in mind that
a cheap test is not necessarily the one which needs to be
executed first.

5. CONCLUSION AND FUTURE WORK
Generally it cannot be said that one of the test approaches

is better than another. If the probability is very high that
a test will fail, running it can just raise the test costs and
not do any good. On the other hand leaving out a test
that will probably find an error will not do any good either,
except for saving the costs for just now. Therefore, it is
very difficult to generalize whether testing should be done.
It always depends on the actual appliance.

Thus, in most cases not testing is rather a disadvantage
than an advantage. When choosing how to test, the indirect
impact a testing method can have on the overall test costs
should not be disregarded. Escaped errors in an already
released product, can lead to high economical damages as
well as high fixing costs. Too many errors can even harm
the reputation of a company.

Nevertheless, there are people who think that too much
testing can rather lead to worse than better software [10].
The idea behind this is as follows: the more testing is done,
the less effort is put by the developer into improving and
checking his own code. Thus, even simple errors are only
detected while testing and the focus of testing is shifted to
the elimination of small and easy detectable errors - the ones
improved testing would not have been necessary for.

The concrete costs of a test highly depend on the given
data and have to be computed individually. To do so, the
metrics presented in this paper can be used. Even if the
metrics do not consider all possible impacts on test costs,
they nevertheless provide a good overview about those.

An idea for future work is to take account of the severity of
an error when computing the test cost. Lower severity errors
might cost nearly nothing, while errors with a high severity
can result in high costs, regardless of the development stage
the error was found in. Furthermore, a comparison of actual
test costs provided by a company and the corresponding
costs computed by the metrics presented in this paper would
be great to check the metrics’ validity.

6. REFERENCES
[1] Better software in less time. http:

//www.savignano.net/de/products/savvytest/.
Retrieved January 11, 2016.

[2] Software Developer Salary (United States).
http://www.payscale.com/research/US/Job=

Software_Developer/Salary. Retrieved January 11,
2016.

[3] Ariane 5. http://www.esa.int/Our_Activities/
Launchers/Launch_vehicles/Ariane_5, 2015.
Retrieved November 27, 2015.

[4] R. Arsenault. When You Should Choose Manual vs.
Automated Testing.
https://www.utest.com/articles/when-you-

should-choose-manual-vs-automated-testing,
2014. Retrieved January 11, 2016.

[5] B. Beizer. Software Testing Techniques (2nd Ed.). Van
Nostrand Reinhold Co., New York, NY, USA, 1990.

[6] P. D. E. W. Dijkstra. Notes on Structured
Programming. http://www.cs.utexas.edu/users/
EWD/ewd02xx/EWD249.PDF, 1970. Retrieved December
13, 2015.

[7] T. Garrett. Implementing Automated Software
Testing - Continously Track Progress and Adjust
Accordingly. http://www.methodsandtools.com/
archive/archive.php?id=94, 2009. Retrieved
October 22, 2015.

[8] J. Grenning. Manual Test is Unsustainable. http://
www.renaissancesoftware.net/blog/archives/206,
2012. Retrieved January 20, 2016.

[9] L. Gulechha. Software Testing Metrics.
http://artemisa.unicauca.edu.co/~cardila/CS_

_Software_Testing_Metrics.pdf. Retrieved October
22, 2015.

[10] E. Hendrickson. Better Testing - Worse Quality?
http://testobsessed.com/wp-

content/uploads/2011/04/btwq.pdf, 2000. Retrieved
January 11, 2016.

[11] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy.
The art of testing less without sacrificing quality. In
Proceedings of the 37th International Conference on
Software Engineering - Volume 1, ICSE ’15, pages
483–493, Piscataway, NJ, USA, 2015. IEEE Press.

[12] D. Hoffman. Cost benefits analysis of test automation.
1999.

[13] S.-J. Jang, H.-G. Kim, and Y.-K. Chung. Manual
specific testing and quality evaluation for embedded
software. In Computer and Information Science, 2008.
ICIS 08. Seventh IEEE/ACIS International
Conference on, pages 502–507, May 2008.

[14] N. Leveson and C. Turner. An investigation of the
therac-25 accidents. Computer, 26(7):18–41, July 1993.

[15] P. Liggesmeyer. Software-Qualität. Spektrum
Akademischer Verlag, 2009.

[16] H. Schaefer. Risk Based Testing, Strategies for
Prioritizing Tests against Deadlines. http://www.
methodsandtools.com/archive/archive.php?id=31,
2005. Retrieved January 11, 2016.

[17] M. Walia. Realizing Efficiency & Effectiveness in
Software Testing through a Comprehensive Metrics
Model. https://www.infosys.com/engineering-
services/white-papers/Documents/comprehensive-

metrics-model.pdf, 2012. Retrieved October 22,
2015.

[18] F. Witte. Testmanagement und Softwaretest. Springer
Fachmedien Wiesbaden, 2016.

http://www.savignano.net/de/products/savvytest/
http://www.savignano.net/de/products/savvytest/
http://www.payscale.com/research/US/Job=Software_Developer/Salary
http://www.payscale.com/research/US/Job=Software_Developer/Salary
http://www.esa.int/Our_Activities/Launchers/Launch_vehicles/Ariane_5
http://www.esa.int/Our_Activities/Launchers/Launch_vehicles/Ariane_5
https://www.utest.com/articles/when-you-should-choose-manual-vs-automated-testing
https://www.utest.com/articles/when-you-should-choose-manual-vs-automated-testing
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://www.methodsandtools.com/archive/archive.php?id=94
http://www.methodsandtools.com/archive/archive.php?id=94
http://www.renaissancesoftware.net/blog/archives/206
http://www.renaissancesoftware.net/blog/archives/206
http://artemisa.unicauca.edu.co/~cardila/CS__Software_Testing_Metrics.pdf
http://artemisa.unicauca.edu.co/~cardila/CS__Software_Testing_Metrics.pdf
http://testobsessed.com/wp-content/uploads/2011/04/btwq.pdf
http://testobsessed.com/wp-content/uploads/2011/04/btwq.pdf
http://www.methodsandtools.com/archive/archive.php?id=31
http://www.methodsandtools.com/archive/archive.php?id=31
https://www.infosys.com/engineering-services/white-papers/Documents/comprehensive-metrics-model.pdf
https://www.infosys.com/engineering-services/white-papers/Documents/comprehensive-metrics-model.pdf
https://www.infosys.com/engineering-services/white-papers/Documents/comprehensive-metrics-model.pdf

Technical Debt Calculation And Its Uncertainties

Waqas Ahmed
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

waqas.ahmed@rwth-aachen.de

Firdaus Harun
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
firdaus.harun@swc.rwth-aachen.de

ABSTRACT
We don’t know how much we owe (i.e., Technical Debt)
unless a calculation is made. A lot of TD measurements
have been proposed and they seem promising. There are
mainly two different major approaches to calculate TD, one
is estimation of TD with interest and the other is estima-
tion without interest. However both of these approaches are
not useful unless we understand and consider different un-
certainties during calculation of these approaches. In this
study, we will investigate (1) what kind of uncertainties are
reported in literature related to Technical Debt and (2)why
they are important to consider.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—productivity, programming teams,
software configuration management

Keywords
Technical Debt, Principle, Interest, Interest Probability, Un-
certainty, TD measurements

1. INTRODUCTION
The term Technical Debt (TD) was used for the first time

by Ward Cunningham in 1992. It is a metaphor indicating
technical compromises that produces short-term benefit but
it hurts the long-term health of a software system [10]. Talk-
ing in the context of source code technical debt is a poorly
written code, requiring extra effort to correct and modify it
in future. There are three terms related to technical debt
including principal, interest amount and probability.

Principal: Principal of technical debt is defined as the
cost of re-factoring to clean code.

Interest: Whereas, interest is defined as the extra costs
and effort required by developers to work with messy code
/ functionality during maintenance or new features addition.

Interest Probability: Interest Probability is defined as
the probability of technical debt leading to future problems
and costs, if not it is not paid on time.

Based on different issues and causes of technical debt
Flower in [6] classified technical debt into different groups
as presented in figure 1 above.

Figure 1: Types of Technical Debt, [6]

In literature and software industry different terms and
properties are attributed to technical debt, Brown et al. dis-
cussed some of the properties and major issues of technical
debt [2] in detail to provide a vision to better understand
technical debt which are are as follows:

• Visibility: Due to lack of technical debt visibility, se-
rious management and maintenance issues are caused.
Sometimes maintenance task is handled by a third
party organization, in this situation maintenance ven-
dors are unaware of any unforeseen technical debt which
was introduced by the development team. Moreover
maintenance vendor do not get the idea how badly the
code is written until maintenance is started. In case of
identifying technical debt, it is hard for these mainte-
nance vendors to analyze,that what were the causes of
technical debt.

• Value: Technical debt is not a negative thing, if it is
managed wisely it can add value to software system.
Just like, in real life mortgages besides its downsides
help people to buy homes.

• Present Value: Present value, cost and impact of
the technical debt for the same project vary from time

to time. Therefore it is necessary to analyze its im-
pact probability and uncertainties during cost benefit
analysis.

• Debt Accretion: Managing technical debt is critical
as too much debt leads to bad impact on the system.
If technical debt is not paid on time, it become difficult
to maintain and modify the system according to new
requirement .

• Environment: Technical debt is highly dependent to
its developing environment and context. For exam-
ple sometimes an organization deliberately introduces
some technical debt to meet a short deadline or to over-
come lack of cost and resources. Similarly, sometimes
technical debt is incurred unintentionally due to lack
of expertise of development team.

• Origin of Debt: Technical debt can be classified
into two broad categories based on its origin including
strategic and unintentional debt. The former increases
system value if it is managed wisely while the latter is
highly discouraged as it badly impacts project value
and management.

• Impact of Debt: Both in case of strategic or acci-
dental debt, the impact of debt is different varying in
scope from local to global to overall software project.

• Uncertainty: Estimating technical debt precisely is
difficult, as it is dependent on different number of fac-
tors, some of them has been discussed above. These
factors vary from project to project. Additionally these
factors also vary within a project over different time
frames.

If TD is incurred wisely it helps to bring business value.
However,this TD must be managed otherwise it causes se-
rious issues in system maintenance and evolution [10]. In
order to effectively manage TD, identification of TD items
and TD measurement is necessary before prioritizing them
in order to select which TD item should be paid first. For
this purpose different TD estimation models have been pro-
posed. However precision and accuracy of these measure-
ment models varies and is effected by underlying uncertain-
ties. These uncertainties are characterized due to lack of
sufficient knowledge of different factors as discussed above,
consequences and level of impact of these factors on system
health in future.

As uncertainty in measurements is inevitable in software
engineering processes [1]. Its critical to consider different
uncertainties and errors related to technical debt. The fo-
cus of this research work is to provide an overview of these
uncertainties. Paper organization is as follows: in section
2, two of the known models for technical debt are discussed
followed by different uncertainty factors in detail and errors
in section 3 and finally concluding the paper in section 4.

2. TECHNICAL DEBT CALCULATION MOD-
ELS

In literature different methods have been proposed to cal-
culate this technical debt. Following is the overview of some
of these methods.

Figure 2: Chronological Order in SQALE, [9]

2.1 SQALE
Software Quality Assessment Based on Life cycle Expec-

tations is a technique applied on source code for its quality
evaluations. Version 1.0 of this method provide support for
calculating technical debt in an organization. First of all,
organization identifies the requirements related to projects,
serving as the basis for right code. In SQALE it is called
’Quality model’. Any violation / non-compliance of this
quality model creates the code debt. These requirements
vary in nature from non-functional requirements to code pre-
sentation, naming or design and architectural once. Against
each requirement its remediation functions is also listed.
These remediation functions provide the basis for calculat-
ing remediation cost caused by non-compliance/violation of
each requirement. Then, analysis tool is run to calculate the
technical debt which is actually sum of all remediation cost
incurred by the violation of above set rules.

The SQALE method provides the requirement to be grouped
under eight quality characteristics including testability, re-
liability, changeability, efficiency, security, maintainability,
portability and usability in a chronological order. This chron-
ically is important and should not be changed as it badly ef-
fects and increase the technical debt if it is changed. Figure
2 provide overview chronologically ordered eight characteris-
tics using by SQALE. If a requirement is related to multiple
characteristics it must be associated with the lowest one in
chronological order.

Against each of these eight characteristic SQALE provides
an indicator index to built a pyramid view and correspond-
ing debt related to each characteristic debt. If the chronol-
ogy order in the pyramid is not followed it leads to loss of
resource and time, thus introducing overhead costs. For ex-
ample testability should be done before targeting reliability.
This pyramid provide the technical perspective of the debt.

As paying whole technical debt is not feasible most of the
times. In this case, one need to prioritize within techni-
cal debt available time. For this solution SQALE provides
another method and different indicators and indexes. Just
like remediation function non remediation function is also
associated with each requirement. This the non remedia-
tion function actualy estimates the penalty that the Product
Owner (or someone who represents the Business) may claim
as compensation for accepting violations [9] . For ease of use
each requirement is classified into different classes of conse-
quence such as ”blocking”, ”critical”, ”major” ”high” ”low”
and a symbolic cost is assigned to each category. As it is
difficult to find out exact consequence of each violation so
we broadly classify and associate a symbolic cost with it.

SQALE then defines index for summing up all of the non
remediation costs which is called SBII (SQALE Business
Impact Index). This SBII provides the business perspective
related to technical debt. So instead of just relying on the
technical aspect SQALE takes into account business per-
spective to better utilize and payoff it within limited time
and cost constraint. Remediation priority (Non-remediation
cost / remediation cost) is displayed in the form of Debt
Map Graph which priorities giving with high return can be
selected.

2.2 CAST: Curtis Estimate Models
Curtis et al. [3] presented three different estimate mod-

els for calculating technical principle debt. This article was
focused on calculating the technical debt as principal only.
With the availability of limited resource and time, it is not
possible to reduce all of the technical debt. Therefore com-
panies need to prioritize to reduce technical debt based on
their available budget. Authors provided the overview for
calculating principle technical debt based on following three
parameters:

1. No. of should fix violations

2. Hours required to fix all violations

3. Cost of labor

Where hours required to fix all violations can be obtained
from historical data of similar projects while cost of la-
bor can be set as the average labor cost in an organiza-
tion. These parameters can be used under different situa-
tions varying from organization to organization such in ac-
cordance with the severity of violation such as high, medium
and low severity. Based on these three parameters authors
defined three estimate methods to calculate the technical
debt as shown in Figure 3.

For estimate method 1, constant hours were set to fix dif-
ferent percentages of violations, authors marked it as too
conservative approach. For estimate model 2, variant per-
centage of violations were set to be completed in different
time-span. While estimate model 3, considered different
hours distribution to fix high level violations. To find the
effectiveness of each estimated model, authors tested them
using data from Appmarq benchmark repository maintained
by CAST Software for 700 different applications containing
at least 10 KLOC per application. These applications were

Figure 3: Parameter Values For Three Estimates,
[9]

analyzed using CAST’s Application Intelligence Platform
(AIP). AIP is supported with databases of 1200+ violation
rules for 28 different languages belonging to architectural
and coding.

AIP analyzes and parses source code based on meta-data
parsing. Violation score is defined by the probability for a
rule being triggered and number of times it is violated based
on severity. Then different reports are generated to guide the
developers to location where each volitional is done. AIP
combines violation scores in under following five categories,
robustness, performance efficiency, security, transferability
and changeability. Authors presented data for above dis-
cussed model by diving and categorizing on the basis of lan-
guage and then in the perspective of quality measure. Based
on the analysis authors presented benchmark stats based on
the historical information of 700 applications to define dif-
ferent violation rules specific to each category.

3. UNCERTAINTY IN TECHNICAL DEBT
MODELS

There are a large number of TD measurement approaches,
models and tools available. Li et al grouped and classified
49 different such studies on TD measurement along with en-
listing 8 different tools from research literature [10]. Some
of these tools are mentioned as follows: CLIO tool [14] is
used for for detecting modular violations, RBML checker is
used [12] for calculating deviation between design pattern
and actual implementation of that pattern. For detecting
code smells, as defined by famous author Fowler[5] there is
a tool called CodeVizard [15].

If we calculate technical debt multiple times with differ-
ent tools, it is obvious to get different results. Because, each
tools have different parameters, dependent / independent
variables and algorithms to calculate technical debt. As

each tool operates on different TD calculation model and
there must be some uncertainties associated to each under-
lying model. Curtis, Sappidi and Szynkarski [3] stated that
”there is no exact measure of Technical Debt, since its cal-
culation must be based only on the structural flaws that the
organization intends to fix,” as different organizations have
different goals so they measure and allocate resources to find
and fix technical debt differently to with scopes.

With the availability of such large number of TD mea-
surement approaches and tools, an organization often need
to make decision for choosing an effective approach / tool.
Thus, selecting an appropriate approach / tool without know-
ing its precision and related uncertainty is a daunting choice.

Uncertainties are inevitable in SE processes and measure-
ment models [1]. Abran et al classified uncertainties of mea-
surement into Experimental standard deviation, Error (of
measurement) Deviation, Relative error, Random error, Sys-
tematic error, Correction, and Correction factor [1]. While
reporting measurement method / models, sufficient informa-
tion must also be provided regarding its uncertainties.

Reports on technical debt mention such uncertainties for
example , Letouzey and Ilkiewicz [9] in the SQALE method-
ology mentioned it. The SIG (Software Improvement Group)
software quality assessment method [7] based on ISO/IEC
9126, also tells that technical debt measurements are not
free of uncertainties. So in technical debt measurements it
is very important to take into account of these uncertainties
and accommodate them in expressing technical debt.

In order to accommodate these uncertainties in technical
debt calculation, its vital to understand their causes and
origins. However, in literature related to TD, not much in-
formation is available while discussing different TD mea-
surements approaches and models. Izurieta et al adapted
different general uncertainties principles from physics and
mapped them to TD models [8]. We will make an attempt
to discuss these provided models and elaborate them in more
details.

measuredvalueofTDprincipal = (TDprincipal)best ± ∂TD

(1)
equation (1) defines the general matrix for TD measurement.
This matrix in addition to considering technical debt prin-
cipal also take into account margin (denoted by ∂TD) of er-
ror or uncertainties of technical debt calculations. In above
equation TDprincipal)best indicates the best results reported
by subjected tool / model. The uncertainty term ∂TD in
above example catering both random and systematic errors.

3.1 Comparing Measures
Results containing single measure are not that useful, sci-

entists usually compare two or more measurements to check
relationships between values. Technical debt literature is
fairly new and it has limitation that there is no standard
accepted values for technical debt calculation like other sci-
entific fields. Consider a scenario where an organization C
purchases software from organization A and assign organiza-
tion B for its maintenance immediately. Organization C has
requested to both the organization to report TD estimates
when the purchase and maintenance made. Now both or-

ganizations have calculated and reported TD. Lets say two
companies A and B have reported their Technical debt prin-
cipal as follows

(A TDprincipal)best± ∂ATD (2)

(B TDprincipal)best± ∂BTD (3)

then for computing highest probable value for the estimate
we can use this equation.

(A TDprincipal)best−(B TDprincipal)best+(∂A TD+∂B TD)
(4)

and for computing lowest probable value for the estimates
equation is

(A TDprincipal)best−(B TDprincipal)best−(∂A TD+∂B TD)
(5)

If we say both companies have described their uncertainty
with measurements using equal number of figures then in-
consistency in uncertainty should also be enlisted using same
number of figures. If one company is reporting uncertainty
with different granularity than the other then the final re-
ports must take that into account and use common measure-
ments in results.

3.2 Propagation of Errors
When calculating complete technical debt calculations, we

must take care of how value of uncertainties of technical
debt interest and probability propagate. If we calculate the
value of technical debt principal, we still need to take care
of uncertainties present in average labor hours to fix low
quality code which have architecture violations and other
issues, the cost of per hour, and average cost in time to fix
one violation. Again by using Taylor’s [13] rules to estimate
the propagation of technical debt uncertainty [8] discussed
following equations proposed by Nugroho et al. [11].

3.2.1 Sum And Differences
If several quantities like x1, x2, x2 .. xn are measured with

uncertainty then the overall uncertainty of their additions,
differences or combinations of both operations are:

uncertainity = ∂x1 + .. + ∂xn (6)

3.2.2 Product And Quotients
The propagation of uncertainty in measured quantities in

context of products or quotients can be calculated by us-
ing fractional uncertainty notation. Calculation of technical
debt as defined in terms of equation 1 then we can define
fractional uncertainty in technical debt principal as follows:

fractionalUncertainityTDprincipal =
∂TD

|TDprincipalbest|
(7)

Nugroho et al. [11] calculated technical debt principal by
also considering the Repair Effort (RE) which is required to
achieve ideal level software quality. RE can be calculated as

RE = RF ×RV

here RF is Rework Fraction and RV is Rebuild Value. The
RV can be calculated for a system by multiplying System
Size (SS) again Technology Factor (TF). Number of man-
months per statement is TF and System Size (SS) can be
calculated either by using lines of code (LOC) or function
points. Also uncertainty will be there in above calculations

too like function point calculation will have higher degree
of uncertainty than using LOC. So Rework Fraction can be
calculated like this

measuredvalueRF = RFbest ± ∂RF (8)

measuredvalueRV = RVbest ± ∂RV (9)

then uncertainty for the measure value of Repair Effort (RE)
is given by

∂RE

|REbest|
=

∂RF

|RFbest|
+

∂RV

|RVbest|
(10)

if several quantities x1 âĂ ↪e xn with their corresponding
uncertainties then total uncertainty of their products, quo-
tients or both can be calculated like following

Uncertainity

|measurebest|
=

∂x1

|x1best|
+

∂xn

|xnbest|
(11)

3.2.3 Power Uncertainty
Nugroho et al. [11] presented technical debt interest amount

calculation as the difference between ideal level of Mainte-
nance Effort (ME) needed for a software module and current
level of maintenance effort. For calculating Maintenance Ef-
fort formula is

ME =
MF ×RV

QF
(12)

Here QF = 2((qualityLevel−3)/2) where quality level can
have values from 1 to 5, so QF values can 0.5, 0.7, 1.0, 1.4
and 2.0. Maintenance Fraction (MF) is the number of lines
that will be subjected to change in a year and Rebuild Value
(RV) can be calculated as

RV = SS × (1 + r)t × TF (13)

so in above equation for time t and growth rate r, the RV of
a system will increase over time itâĂŹs not taken care of sys-
tematically. If the rate r changes as time increases then this
equation should take that into account too or uncertainty
of the measurement. How it can account for uncertainty
we can only focus on (1 + r)t factor of the Rebuild Value
(RV) calculation. The uncertainty in multiplication of Sys-
tem Size (SS) and Technology Factor (TF) is carried out
using propagation techniques for production and quotients
as described before. If r is measured considering uncertainty
then the overall uncertainty of Rebuild Value (RV) can be
calculated as follows

∂RV

|RVbest|
=

∂SS

|RVbest|
+ t× ∂r

r

∂TF

|TFbest|
(14)

3.2.4 Technical Debt Interest Probability
Because probability of interest will vary with respect to

time so a time element is necessary to consider in calcula-
tions moreover values assigned to interest probability usually
classified in ordinal scale based historical values. There is
no systematic formula to calculate interest probability cal-
culations, if probabilities are table based and ordinal then
further exploration is needed to come up with a formula for
calculations.

3.3 Multivariate Uncertainty
Formulas that use quadrature where appropriate are de-

scribed by Taylor [13] but these need validation in technical

debt domain. For ignoring negligible effect of some unlikely
error propagation possibilities we can use quadrature, which
will help us in having realistic error range when calculation
error in multivariate expression. When measurements come
from Normal or Gaussian distributions we can use quadra-
ture equations nicely but those distributions also should be
independent.

3.4 Technical Debt Interest Uncertainty
Carlous et al. in [4] presented a cost analysis model for

estimating technical debt using binary trees. Carlous et al.
considered two important parameters which are interest un-
certainty and time frames. Interest uncertainty is defined as
the probability that no extra cost is derived from technical
debt [4]. Technical debt vary from time to time for the same
project under maintenance depending on different number
of factors. These factors differ in nature from internal such
as low code complexity to external such as difference in use
of software for varying time length depending upon business
activities.

Using maintenance cost as the measuring unit for tech-
nical debt during system maintenance and evolution, if a
software is not modified over a time period than no interest
amount should be paid for this period. Taking in account
interest uncertainty factor helps to better estimate cost and
benefits of technical debts.

4. CONCLUSION
Technical debt is a popular term used to define technical

compromises undertaken during the software development.
If managed properly technical debt minimization can bring
great value to the product. In order to manage and or-
ganize technical debt different calculation models and ap-
proaches are used. However precision of these approaches
vary greatly due to large number of uncertainties. In order
to get the most precise calculations these uncertainties must
be taken into account during TD calculations. In this paper
we have highlighted the importance and different classes of
uncertainties that being used in the literature during TD
calculations.

5. REFERENCES
[1] A. Abran, A. Sellami, and W. Suryn. Metrology,

measurement and metrics in software engineering. In
Software Metrics Symposium, 2003. Proceedings.
Ninth International, pages 2–11. IEEE, 2003.

[2] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim,
P. Kruchten, E. Lim, A. MacCormack, R. Nord,
I. Ozkaya, et al. Managing technical debt in
software-reliant systems. In Proceedings of the
FSE/SDP workshop on Future of software engineering
research, pages 47–52. ACM, 2010.

[3] B. Curtis, J. Sappidi, and A. Szynkarski. Estimating
the principal of an application’s technical debt. IEEE
software, (6):34–42, 2012.

[4] C. Fernández Sánchez, J. Dı́az Fernández,
J. Garbajosa Sopeña, and J. Pérez Bened́ı. A
cost-benefit analysis model for technical debt
management considering uncertainty and time. 2013.

[5] M. Fowler. Refactoring: improving the design of
existing code. Pearson Education India, 1999.

[6] M. Fowler. Technical debt quadrant. Bliki [Blog].
Available from: http://www. martinfowler.
com/bliki/TechnicalDebtQuadrant. html, 2009.

[7] I. Heitlager, T. Kuipers, and J. Visser. A practical
model for measuring maintainability. In Quality of
Information and Communications Technology, 2007.
QUATIC 2007. 6th International Conference on the,
pages 30–39. IEEE, 2007.

[8] C. Izurieta, I. Griffith, D. Reimanis, and R. Luhr. On
the uncertainty of technical debt measurements. In
Information Science and Applications (ICISA), 2013
International Conference on, pages 1–4. IEEE, 2013.

[9] J.-L. Letouzey and M. Ilkiewicz. Managing technical
debt with the sqale method. IEEE software, (6):44–51,
2012.

[10] Z. Li, P. Avgeriou, and P. Liang. A systematic
mapping study on technical debt and its management.
Journal of Systems and Software, 101:193–220, 2015.

[11] A. Nugroho, J. Visser, and T. Kuipers. An empirical
model of technical debt and interest. In Proceedings of
the 2nd Workshop on Managing Technical Debt, pages
1–8. ACM, 2011.

[12] S. Strasser, C. Frederickson, K. Fenger, and
C. Izurieta. An automated software tool for validating
design patterns. In ISCA 24th International
Conference on Computer Applications in Industry and
Engineering. CAINE, volume 11, 2011.

[13] J. R. Taylor. An introduction to error analysis: The
study of uncertainties in physical measurements, 327
pp. Univ. Sci. Books, Mill Valley, Calif, 1982.

[14] S. Wong, Y. Cai, M. Kim, and M. Dalton. Detecting
software modularity violations. In Proceedings of the
33rd International Conference on Software
Engineering, pages 411–420. ACM, 2011.

[15] N. Zazworka and C. Ackermann. Codevizard: a tool to
aid the analysis of software evolution. In Proceedings
of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement,
page 63. ACM, 2010.

Categorization of application layer viewpoints in the EAM

Sinan Durmaz
sinan.durmaz@rwth-aachen.de

Simon Hacks
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
simon.hacks@swc.rwth-aachen.de

ABSTRACT
Since the last century companies are getting bigger and big-
ger. Thus they have a more complicated structure and are
difficult to manage. Enterprise architecture models help to
provide better transparency and a clear view for all involved
parties. These IT-based systems are good for visualizing
business processes of a company. For the representation are
among others methods of the software cartography used. In
the software cartography there are many different models,
which have their own advantages and disadvantages. This
paper will focus on the categorization of these different soft-
ware mapping techniques. It also introduces views from TO-
GAF. The main goal is to match software maps to TOGAF
views, such that these views can be illustrated. This shall
be done in order to offer an overview for which use cases
a map is patricularly efficient or if there is an other better
fitting model available.

1. INTRODUCTION
Nowadays the number of companies are increasing really

fast, so does their intern complexity. The complexity is re-
flected by the high number of information systems and dif-
ferent available technologies. Even in todays medium-sized
companies there is much information to be administrated.
Enterprise Architecture Management (EAM) is getting more
important to handle all the business processes and company-
intern structures. Especially from bigger companies it is
demanded to provide parts of these information outwards,
because investors or other stakeholders want transparency.
Therefore all the information has not only to be stored and
administrated, but it also has to be visualized. The reason
for that is that they, as onlookers can only understand the
system from a clear overview. For the visualization of appli-
cation layers usually software maps are used. There already
exist many types of these software maps and each of them
has its own features. It depends on the use case and the ac-
tual structure of the company, to say which software map is
useful. In this paper the different types of software maps will

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2015/16 RWTH Aachen University, Germany.

be presented and their advantages as well as disadvanages
will be discussed. As an example for an EAM framework
the popular TOGAF will be presented. There will also be
a categorization for these maps in order to give an overview
of which software maps can be matched to which view of
TOGAF.

The paper has the following structure: The next section
will deal with the related work. The third section is devoted
to the software cartography. After the software cartography
section, software map types will be discussed. Then the TO-
GAF and the terms views, viewpoints and stakeholders will
be introduced. In the sixth section core views of TOGAF
will be presented and they will be matched with specific
software map types. At the end, results and possible future
work will be broached to round up this paper.

2. RELATED WORK
There are already many papers and theses which thema-

tize software cartography, but they all have a different view
on this topic. The ones I used to get information from, are
more about the software cartography itself and focused on
the aspect of how to represent information on a software
map.

Buckl writes in her paper about how to generate visual-
izations of Enterprise Architectures with the help of model
transformations. Thereby she mentions software cartogra-
phy and techniques to visualize enterprise information con-
tent with it.[1] Lankes wrote two papers about software
cartography, the first one adressing the visualization of ap-
plication envirohnments, and the other one with the title
“architecture description of application environments”. [5]
[4] Matthes has a short paper about software cartography
in general, whereas Wittenburg has a much more in depth
going PhD thesis about this topic. [6] In his PhD thesis
Wittenburg goes more into detail by explaining in extensive
chapters the theoretical background information and man-
agement of application environments.[12]

Therefore I picked the TOGAF as one popular example to
examine particular steps of visualizing parts of the EAM.
The TOGAF has an excellent documentation, where some
key parts of the framework are explained. So, I picked most
of the information about TOGAF from the documentation
website of The Open Group. [10]

3. SOFTWARE CARTOGRAPHY
Many aspects of the software cartography are adapted

from the original principles of cartography. According to
the Wikipedia definition cartography is ”Combining science,
aesthetics, and technique, cartography builds on the premise
that reality can be modeled in ways that communicate spa-
tial information effectively.” By applying the software car-
tography in conjunction with EAMs, it deals as a bridge to
represent the abstract information about structure and pro-
cesses of a company into a clear graphical view.

The software cartography is not only associated to cartogra-
phy, but it has its roots also in the computer science and the
economic science. Computer Science and economic science
have in common, that both heavily work on project man-
agement, which is a central part of software cartography. In
computer science, especially software systems engineering
with its models for respresenting structures and informa-
tion in form of diagrams (like UML), are important. Also
the process management from economic science is relevant
for software cartography. Finally cartography completes the

Figure 1: Software Cartography as an Intersection
of three Sciences [6]

triple with its methods to create structured maps by utiliz-
ing colours, forms etc. Figure 1 shows that the software
cartography indeed fits in as an intersection of all of these
three different sciences. [6]

Figure 2: Pyramid of Software Cartography [5]

Each software map has the purpose to give an insight into
one part of business processes or parts of the application en-
vironment. This shall be achieved by connecting the three
important viewing planes of the application environment in
order to provide a good representation. These three viewing
planes are shown in the pyramid of figure 2. First there is the
ground layer, with information systems, protocols and inter-
faces, which all contain important information about how
things work in a company. According to this, the ground
layer is built all around the question ”How things are done in
the company?”. The layer in the center deals with the busi-
ness processes and company data models. From an abstract
point of view these represent the core actions of a company.
Therefore the fitting question to this layer is ”What does the
company do?” Last but not least the spire of the pyramid
features company goals, strategies, laws as well as business
rules. Basically this contains the goals and also reasons for
the actions of a company. The content of the spire can be
summarized under the question ”Why does the company do
something?”. A good designed software map has to have an
intuitive representation and it should also connect all of the
three shown aspects with each other. [5] [6] [4]

4. SOFTWARE MAP TYPES
In computer science there already exist different models

to represent data structures and information systems. These
are amoung other: the UML diagrams and the Entity Rela-
tionship model. It is possible to use these types of software
maps also to model parts of an EAM. Nevertheless most
of the time the power of these visualization models is not
enough to represent the whole EAM or bigger parts of it.
But as it will be discussed later, these known models can
be used as an addition to the other existing software map
types. In the rest of this section, some of the relevant UML
diagrams and the four basic software map types will be in-
troduced. For some of these map types there will also be an
example shown.

In general it is hard to fit a whole application environment
onto a map. Software cartography makes use of techniques
from the cartography itself to visualize information. This
is not always as easy as in the cartography due to the fact
that methods of cartography are originally designed for ge-
ographical maps. Especially the limitation of space is one
of the biggest challenges for a software map. In comparison
to georgrapahical maps, software maps are not built on a
topographical basis, which makes it much more difficult to
visualize information. Each software map type has its own
way to handle this challenge. One important characteris-
tic to distinguish software map types is, if they have a base
map for positioning or not. Having a base base map for po-
sitioning means, that the position of certain objects on the
map has a semantical meaning, e.g. if two objects nearby
belong together or are associated in a way. [12] In figure 3
on the next page the classification is shown. With the ex-
ception of Graph Layout maps, all other maps are based on
the principle of base map positioning.

4.1 UML Diagrams
The Unified Modeling Language (UML) is collection of

diagram types, which allow to visualize software archictec-
tures or software structures. Each of these diagram types
visualizes a different aspect of the software. There are three

Figure 3: Software Map Types [12]

UML diagram types, I will shortly introduce in this section,
since the main focus is on the other software map types.[2]

4.1.1 Activity Diagrams
An activity diagram graphically describes a set of activi-

ties for a software. They are considered as state diagrams,
therefore they begin with an initial state and end on a final
state. There are also states in between. Every state has a
name that describes the state in which the software can be.
The states are connected together by arrows, which are the
transitions. These transitions represent the sequential order
of performed activities. Within an activity diagram there
can also be decisions, where it has to be decided in which
direction the control flow shall continue. In short, the ac-
tivity diagrams represent for a set of actions, every possible
state that the software can be in. They also show if a se-
quence of activities leads to the intended result. This makes
them suitable in visualizing the data flow in a system. [11]

4.1.2 Sequence Diagrams
Sequence diagrams are usually created for one chosen sce-

nario. In sequence diagrams each involved object has a class,
to which it is assigned to. Every object has its own lifeline
belonging to it. These objects perform actions, which can
involve one or more objects. An action can be communicat-
ing with one or more other objects. But it can also be the
case that an object does something on its own. The action
in a sequence diagram follows sequentially one control flow.
Therefore there are no parallel actions allowed in Sequence
diagrams. All in all a sequence diagram has the task to
represent in a graphical way, how the objects communicate
with each other, such that the data flow between software
components can be comprehended. [3]

4.1.3 Use Case Diagrams
This UML diagram type focuses more on the user inter-

action with the system. It shows what possibilities a user
has, to interact with the system. Herefore the users are cat-
egorized, e.g. administrators, customers, etc. All of them
can perform different actions. Every action the user can
perform, is called a use case. Hereby the technical imple-
mentation of the actions does not play a role, because it
is not relevant for the user interaction. Figure 4 shows an
exemplary use case diagram. [8]

4.2 Cluster map
Cluster maps have the property that objects can be grouped

together. On a Cluster map, a number of objects of the orga-
nization can be placed nearby, such that together they form
a logical unit. Most of the time these logical units are also
in a frame. Cluster maps make use of it to represent func-

Figure 4: Use Case Diagram [12]

tional units, organization units or even geographical units
like e.g. different locations, regions and cities. To hightlight
the unity, most of the time the frames are coloured and logi-
cal units also have a capture. If one object has to occur more
than once within a software map, belonging to two different
logical units, then it appears two times on the map, once in
each logical unit. An example for a Cluster map can be seen
below in figure 5. [1] [6] [12]

Figure 5: Example of a Cluster map [12]

4.3 Cartesian map
A Cartesian map is simply defined by a sofware map that

has a base map with an x- and y-axis. The Cartesian map
is abstract and only descirbes the layout principle of a map.
How the actual map looks like and further attributes are de-
fined by the one of the two following map types. The most
popular representatives of Cartesian maps are the Process
Supporting map and the Time Interval map. Both are de-
scribed in the coming two sections. [1] [6] [12]

4.3.1 Process Supporting map
A Process Supporting map focuses on visualizing linear

business processes. It is particularly effective to use a Pro-
cess Supporting map, when the workload of one business
process is distributed onto several organization units. Pro-
cess Supporting maps have like every Cartesian map an x-
and an y-axis. On the x-axis there are different processes
stringed together, whereas on the y-axis the organization or
executive units are. Because there could be many differ-
ent business processes in a company, the primary process,
respectively the one requiring the most organization units
decides about the postion of the units. The y-axis can also

just contain locations of the company or even different prod-
ucts the company has to produce. This makes the Process
Supporting map very versatile. [1] [4] [6] [12]

Figure 6: Example of a Process Supporting map [12]

4.3.2 Time Interval map
Time Interval maps are very similar to the Process Sup-

porting maps. Like in Process Supporting maps the y-axis
serves for displaying organizations or executive units of the
company. But while on the x-axis of Process Supporting
maps the business processes or particular steps of processes
are depicted, a Time Interval map uses time for scaling. [6]
[12]

Figure 7: Example of a Time Interval map [12]

4.4 Graph Layout map
In each of the previous presented map types the position

of an object on the software map had a semantical mean-
ing. Cluster maps use the space as a resource to express
that certain organizations or parts of the company belong
together. Cartesian maps, like the Process Supporting map
and Time Interval maps are also based on positioning, since
they operate on a coordinate system. In Graph Layout maps
this is not the case. The position of an object does not have
a semantical meaning. This is a great freedom for the ar-
chitects who are designing a Graph Layout map. With the
freedom of positioning they can create a much clearer map,
which is more understandable for the viewers. The only dis-
advantage of this is, that all the freedom is bought by giving
up expressing power for having free positioning on the map.
Generally a Graph Layout map utilizes nodes and edges to
convey information. So, togehter belonging objects have to
be connected via association lines. Appropriate examples
for a Graph Layout map are e.g. UML diagrams or Entity-
Relationship models. [12] [6]

5. VIEWS, VIEWPOINTS AND STAKEHOLD-
ERS IN TOGAF

The The Open Group Architecture Framework (TOGAF)
is a free popular architecture framework. With the help of
this framework it is possible to efficiently build an IT enter-
prise architecture for an organization. The architecture is
developed by the core of the framework - The Architecture
Development Method (ADM). The ADM itself is an itera-
tive method to create the whole architecture. Step by step
the architecture can be defined, whereby for each step the
area which should be covered has to be chosen. Also the
breadth of coverage as well as the level of detail have to be
chosen. Below, you can find an image which is showing the
inherent Architecture Development cycle.

Figure 8: Architecture Development Method
(ADM)[7]

Since todays companies have a complex structure, where
many people and organizations are involved in one company,
such frameworks are definetly a must. Within a company
there are different business processes, associations and or-
ganizations. Accordingly the whole architecture of a com-
pany cannot be represented in just one software map. The
entire architecture of a company is not interesting for ev-
ery person which is involved, because different persons or
groups within the company have different working environ-
ments and so each of them has also a different interest. The
different parties in the company are named stakeholders.

Stakeholder 1. Simply expressed, a stakeholder is a per-
son or an organization that is interested in the things an-
other person or organization does.

Most of the time a stakeholder is affected by the direction
a company goes or even able to direct parts of the company
himself. This can be people working in the company from
“simple workers” up to the managers of a company. But

stakeholders can also be extern people, who have interest
in success of the company, like e.g. investors on the capital
market.

Views 1. A view is the representation of a context, e.g.
a part of the organizations architecture, which can be in a
form of a software map.

Viewpoints 1. Viewpoints are always refering to a stake-
holder. Viewpoints are the point of view of a stakeholder
who sees the company from his perspective, including only
the aspects of the company which are relevant for his active
working environment.

Stakeholders can also be grouped together if they have sim-
ilar or same interests, so that they all have a common view-
point. To clarify these three important terms views, view-
points and stakeholders, the following example should help:
An air traffic controller and a pilot work at the same air-
port. These two are the stakeholders in our example. Both
of them have a view of the system, but neither of them has a
view of the whole system, since not every part of the system
is relevant for both. In this example the viewpoints are the
persepective of which the pilot sees the system and the per-
spective of the air controller on the system. All in all it can
be seen that both stakeholders have a subset view of the
whole system and that both views differ from each other.
The pilot has a air flight view of the system, whereas the
air controller has a air space view of the system. The con-
text between those three definitions and the software maps
is the following: Stakeholders have a viewpoint from which
they see the part of the system which is relevant for them -
the view. And these views have to be depicted visually, so
software maps are used to translate the relevant information
for the stakeholder into a clear graphic. The next section is
about examples for different stakeholders acccording to the
TOGAF in a company and which of the software maps can
be used to visualize them. [7]

6. SOFTWARE MAPS FOR CORE TOGAF
VIEWS

In the TOGAF core there are already standard views
available. This section will deal with those views and it will
provide suggestions on which kind of software maps could
be useful to visualize these views.

6.1 Business Architecture View
At first, there is the Business Architecture View, which

focuses at most on the user experience. Also part of the
Business Architecture View is the production planning. The
biggest issue is a change in the production process, so there
have to be different scenarios for the prodution planning.
To sum up, the Business Architecture View should be able
to represent the production planning and the functionality
respectively the usability of the product. In order to archieve
this, at least three types of software maps will be needed:
First a Cartesian map (Process Supporting or Time Interval)
to model the production process scenarios. The remaining
software map types have the task to demonstrate features
of the product. To show the coarse functional features the
Use Case diagram is a good UML diagram type for it, since
it is easy to understand for the user. In addition, Activity
Diagrams are a clear way to display all possible outcomes
by using or operating the product.

6.2 Enterprise Security View
The Enterprise Security View is developed for security en-

gineers, who have to ensure that valuable information cannot
get in the hands of unauthorized persons or organizations.
So they have to be aware of the data exchange and the con-
nected system units within the product or company. It is
very common that distributed systems are used within com-
panies or are even part of a product. Since these systems
have different locations Cluster maps are very good to de-
pict them. The monitoring of data exchange and the data
flow within the application are ideally modeled by UML di-
agrams. Activity Diagrams are able to show all possible
states in a outcomes, which cases can occur. This is im-
portant to know for the security engineers, since they have
to be informed about all possible system states. The data
exchange between several system units can be modeled by
sequence diagrams.

6.3 Software Engineering View
For software engineers it is important to have an overview

about the data flow and structure. Therefore this infor-
mation has to be visualized in a way for them. Software
engineers can make use of almost any presented UML type,
since UML diagrams were originally designed for software
engineers. It often depends on the task of the software en-
gineer, but in general every presented UML diagram type
is useful for software engineering. Since most of the time
software functionality is complex to represent and the posi-
tioning is not that important, Graph Layout maps are fitting
for this view.

6.4 System Engineering and Communications
Engineering View

System engineers and communication engineers do not
have exact same tasks, but if we want to assign maps to
these views, it turns out that we can assign almost the
same software maps. System engineers are busy with op-
timizing software and hardware interaction as well as de-
signing computing models for a distributed computation en-
vironment. From the communication engineer’s point of
view, it is important to understand how the communica-
tion within the application is handled and how the system
communicates with foreign systems. Therefore an overview
of the distributed systems in the network and the commu-
nication models itself (e.g. OSI Reference Model or similar)
is mandatatory for both views. An exemplary communica-
tion model can be seen below in figure 9 on the next page.
For these models, Cluster maps are a good choice, since they
are strong at representing content where the positioning and
linking between units are relevant. The communication be-
tween system entities can be modeled by the UML sequence
diagrams.

6.5 Data Flow View
Controlling and monitoring the whole lifecycle of data

witihin the system is the task of a database engineer. This
includes data storage, data retrieval, data processing, data
archiving and also data security. So for this view it is needed
to have an overview about the data structures as well as how
the data is managed in the system. The ER model provides
an optimal model to depict the database structure. The se-
curity and communication of data can be monitored from
sequence diagrams like mentioned in previous views. As far

Figure 9: Exemplary Communication Model [9]

as the data processing within the system units goes, Activity
diagrams are good to see how actions influence the system
state and how the data is affected by this.

6.6 Enterprise Manageability View
Unlike most of the previous views, the Enterprise Man-

ageability View is not related to engineers. Stakeholders of
this view are the operations, administration and manage-
ment personnel of the system. These personnel has to have
the ability to oversee the structure the management within
the company, as well as planning on future investments in
projects by regarding the available budget. Basically most
of the high level decisions are made by these personnel. The
general structure of the management, executive organiza-
tions and also the different locations of the company are
important for this personnel. For modeling the connection
between the different organizations of a company, one should
make use of Cluster maps. It makes sense to use them here,
because the positioning and grouping of certain elements is
really important. Business processes can brilliantly be de-
picted in a Cartesian map for the same reasons as mentioned
in the Business Architecture View above.

To sum up, we can say that in general the management
based views utilize more the Cartesian maps and the tech-
nical views which deal with the implementation of the prod-
uct or system, more rely on UML and Graph Layout maps.
What both of these view categories have often in common
is, that both make use of the Cluster map. [10]

7. CONCLUSION
The paper began with the goal to first present general

information about software cartography and the TOGAF.
This has been done by first explaining the software cartogra-
phy and introducing the different software map types. After
that the TOGAF has been suggested as one popular repre-
sentative of the EAM frameworks. With the framework also
viewpoints, views and stakeholders have been described. Fi-
nally some of the core views of TOGAF and the most im-
portant software map types were matched together. This

matching showed for which views, which software map type
can help to constitute the needed information efficiently. As
for the future work this procedure can be done in a similar
way for more views or for other frameworks.

8. REFERENCES
[1] S. Buckl, Alexander, and M. Ernst. Generating

visualizations of enterprise architectures using model
transformations. 2007.

[2] T. Horn. Uml unified modeling language.
http://www.torsten-horn.de/techdocs/uml.htm.

[3] IBM. Uml basics: The sequence diagram.
http://www.ibm.com/developerworks/rational/

library/3101.html.

[4] J. Lankes. Architekturbeschreibung von
anwendungslandschaften: Softwarekartographie und
ieee std 1471-2000. 2005.

[5] J. Lankes. Softwarekartographie: Systematische
darstellung von anwendungslandschaften. 2005.

[6] F. Matthes. Softwarekarten zur visualisie rung von
anwendungslandschafte n und ihr en asp ekten eine
bestandsaufnahme. 2004.

[7] M. Schaefer. Enterprise architecture

bebauungsplanung fÃijr informationssysteme.
http://st.inf.tu-

dresden.de/files/teaching/ws11/ring/20111123_

Capgemini_Vorlesung_TUDresden.pdf, 2011.

[8] B. Schaling. Das use-case-diagramm. http:
//www.highscore.de/uml/usecasediagramm.htmll.

[9] Studytonight. Communication model figure.
http://www.studytonight.com/computer-

networks/images/Figure25.png.

[10] TOGAF. Developing architecture views.
http://pubs.opengroup.org/architecture/togaf8-

doc/arch/chap31.html, 2006.

[11] uml diagrams.org. Activity diagrams. http:
//www.uml-diagrams.org/activity-diagrams.html.

[12] A. Wittenburg. Softwarekartographie Modelle und
Methoden zur systematischen Visualisierung von
Anwendungslandschaften. PhD thesis, July 2007.

http://www.torsten-horn.de/techdocs/uml.htm
http://www.ibm.com/developerworks/rational/library/3101.html
http://www.ibm.com/developerworks/rational/library/3101.html
http://st.inf.tu-dresden.de/files/teaching/ws11/ring/20111123_Capgemini_Vorlesung_TUDresden.pdf
http://st.inf.tu-dresden.de/files/teaching/ws11/ring/20111123_Capgemini_Vorlesung_TUDresden.pdf
http://st.inf.tu-dresden.de/files/teaching/ws11/ring/20111123_Capgemini_Vorlesung_TUDresden.pdf
http://www.highscore.de/uml/usecasediagramm.htmll
http://www.highscore.de/uml/usecasediagramm.htmll
http://www.studytonight.com/computer-networks/images/Figure25.png
http://www.studytonight.com/computer-networks/images/Figure25.png
http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap31.html
http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap31.html
http://www.uml-diagrams.org/activity-diagrams.html
http://www.uml-diagrams.org/activity-diagrams.html

A Study of Tools for Behavior-Driven Development

Anton Okolnychyi
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

anton.okolnychyi@rwth-aachen.de

Konrad Fögen
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
konrad.foegen@swc.rwth-aachen.de

ABSTRACT
Behavior-Driven Development (BDD) has obtained a lot of
attention in recent years from both research and practice
points of view. As a new Agile development approach, it
is aimed to increase the likelihood of success of a software
project by adopting best practices and concepts from Test-
Driven Development and Acceptance Test-Driven Develop-
ment and correcting their drawbacks. There are a lot of tools
that were developed in the last few years to assist software
developers in BDD. While this study describes underlying
concepts and BDD itself, the main goal of the research is
to develop criteria for identifying relevant tools which can
be applied in BDD, evaluate and compare them and provide
guidelines on which toolkit to choose in order to achieve
success in a project. The research approach employed in
this study is composed of reviewing relevant literature and
analyzing current BDD toolkits for JVM-based languages.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—productivity, programming teams,
software configuration management

Keywords
Behavior-Driven Development, Test-Driven Development, Au-
tomated Acceptance Testing

1. INTRODUCTION
Behavior-Driven Development (BDD) was introduced re-

cently as one of the methods in Agile software develop-
ment. BDD differs from other approaches in its family by
describing a behavior of the system from the perspective
of its stakeholders, at all levels of granularity [21]. BDD
assures that focusing on such description of the behavior
of the system gives better communication and produces a
bigger asset for stakeholders when compared to other Ag-
ile development methods. It was originally developed and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Full-scale Software Engineering Seminar 2015/16 RWTH Aachen Univer-
sity, Germany.

described by D. North in his post [28] as a response to the
issues in Test-Driven Development (TDD). BDD is based on
Test-Driven Development and Acceptance Test-Driven De-
velopment [27]. D. Astels in [19] declared that even those
people who apply TDD a lot do not make use of all benefits
from TDD and important aspects of TDD are overlooked
and simply ignored. He suggested that a big part of de-
velopers are focused on writing verification tests instead of
thinking in terms of behavior specifications. Taking into
account behavior specifications allows software engineers to
think more clearly about each behavior, relying less on test-
ing by a class or by a method, and having better executable
documentation.

The paper is structured as follows. Section 2 describes
the concepts of BDD and other inherited approaches which
are needed to understand the requirements for BDD tools.
Section 3 gives an overview of the research approach which
was used to identify relevant tools for this study. In ad-
dition, Section 3 defines diverse dimensions for comparing
BDD tools, describes each analyzed toolkit in terms of those
dimensions and provides the overall summary of comparison.
The last section gives the conclusions.

2. UNDERLYING CONCEPTS OF BDD
BDD is generally regarded as the evolution of TDD and

ATDD. This section will briefly describe relevant aspects of
TDD and ATDD in terms of BDD.

2.1 Test-Driven Development
Test-Driven Development is a development practice that

involves writing tests before writing the code being tested.
One should begin by writing a very small test for code
that does not yet exist [21]. TDD is an evolutionary ap-
proach that relies on very short development cycles and
the agile practices of writing automated tests before writ-
ing functional code, refactoring, and continuous integration
[24]. Each development cycle consists of three steps: the
creation of unit test, implementation, refactoring [23]. The
aforementioned approach is named TDD since tests, writ-
ten during the first steps of each iteration, drive the design
and implementation. As a code base increases in size, more
attention is consumed by the refactoring step. The design
is constantly evolving and under constant review though it
is not predetermined. This is emergent design at a granu-
lar level and is one of the most significant by-products of
Test-Driven Development [21].

The evaluation [26] by R. Jeffries and G. Melnik claims
that the overall quality of a system in terms of the density

of defects improves, although the required effort often in-
creases. A study described in [25] suggests that developers
are able to produce a better design of a system with well-
focused units with a help of TDD.

2.2 Acceptance Test-Driven Development
Acceptance Test-Driven Development (ATDD) is one type

of TDD where the development process is driven by accep-
tance tests that are used to represent stakeholders’ require-
ments [29]. M. Wynne and A. Hellesoy in [30] justify the
name of acceptance tests as such tests express what the
software needs to do in order for the stakeholder to find
it acceptable. In the same book they state that in ATDD
instead of a business stakeholder providing requirements to
the developers without any discussion, the developer and
stakeholder work together to write automated tests to sat-
isfy the stakeholder.

ATDD assists developers in the creation of test cases based
on initial requirements of a system. There is a set of tests
or acceptance criteria that correspond to one specific re-
quirement. One can say that a requirement is satisfied if all
its associated tests or acceptance criteria are satisfied. In
ATDD acceptance tests can be automated. ATDD empha-
sizes automation of acceptance tests and the specification
of customer-readable requirements through concrete exam-
ples, which is also referred to as specification by example
[18]. Automated acceptance tests encourage all people in-
volved into the process to be focused on the aims of the
software projects. Automated acceptance tests help your
team to focus, ensuring the work you do each iteration is
the most valuable thing you could possibly be doing [30].

TDD and ATDD are adopted widely by the industry be-
cause they improve software quality and productivity [19]
[25].

2.3 Behavior-Driven Development
The main goal of BDD is to get executable specifications of

a system [28] [19]. Dan North stated that the main reason for
introducing Behavior-Driven Development was the fact that
Test-Driven Development was often perceived as a testing
technique. He replaced the word ”test” in the name of TDD
with ”behavior” in order to emphasize that TDD is about
design, not testing.

BDD has adopted the concept of a ubiquitous language
from Domain-Driven Design [21]. A successful software project
requires good communication, which in turn relies on a shared
language. Domain experts think and reason in terms of their
domain language. Developers do the same, using concepts
from the domain of software development. Analysts and de-
velopers translate between these domains, mapping domain
concepts to design. However, information can be lost in this
translation, which causes different people to have different
interpretations of concepts [27]. As Eric Evans describes in
his book [22], many software projects suffer from low-quality
communication between the domain experts and program-
mers on the team. Tests written with a help of tools for BDD
are usually defined using a language that business stakehold-
ers can understand.

One of the key concepts of the BDD is involvement of
all stakeholders which is possible via ubiquitous language.
Business analysts write down behavioral requirements in
the way that will also be understood by developers who
later transform these requirements into executable tests. By

working together to write these tests, team members decide
what behavior they need to implement next. They learn
how to describe that behavior in a common language that
everyone understands [30].

Currently, the understanding of BDD is far from clear and
unanimous. There is no one well-accepted definition of BDD
[29].

3. COMPARATIVE STUDY OF BEHAVIOR-
DRIVEN DEVELOPMENT TOOLS

This section is aimed to compare BDD tools as well as to
describe a research approach that was used to select certain
frameworks from a huge number of tools that are present
now. The final comparison can be found in table 1. The full
support of a specific feature is marked by ”+”. By ”+/-” or
”+/- -” is marked partial support depending on the extent.

3.1 Approach for Identifying Relevant Tools
The need to involve all stakeholders in the development

process spawned a number of new tools which are aimed to
assist all types of stakeholders in applying BDD. Particu-
larly, new tools were needed to help non-technical people
to read and understand acceptance tests, although the old
tools could still be used and many still continue to do so.

The goal of this research is to create an approach to iden-
tify the tools and frameworks which are relevant and can
be applied successfully in BDD. BDD is just a technique
which can be used without any tools and frameworks. This
means that developers can try to utilize not only BDD spe-
cific frameworks but also most of the tools for TDD. How-
ever, TDD tools tend to be quite free-format and it will take
a different amount of time and effort to benefit from those
TDD tools in BDD context.

Support to some extent of ubiquitous language is the main
criterion and BDD characteristic that was used to distin-
guish relevant tools for BDD in this study.

A lot of tools from different languages were analyzed dur-
ing the research. Due to the aforementioned selection ap-
proach, the following frameworks were considered as those
that cannot be used standalone as BDD frameworks: strictly
unit-testing tools for all languages (JUnit [9], etc.), tools for
mocking (EasyMock [6], Mockito [10], etc.), most UI-testing
tools (Selenium [13]), frameworks for testing Web Services
and databases. On the other hand, they are often combined
with real BDD tools.

This study focuses on BDD tools for JVM-based program-
ming languages (Java, Groovy, Scala) with a strong support
of ubiquitous language. To determine the relevant BDD
frameworks to compare, the Wikipedia list [1] was used as
the initial source. The most frequently mentioned tools were
selected with a help of a search by tags on stackoverflow.com.
The last step was to filter the frameworks for JVM-based
languages since they can be directly and fairly compared.
As a result the following tools were included in the analysis:
Concordion [3], Spock [15], Cucumber [4], JBehave [8] and
easyb [5]. In addition, Serenity (previously known as Thucy-
dides)[14] framework was considered but not included in the
comparison. It is less popular with the small community
and the main benefit of it is reporting. Selected frameworks
satisfy all main BDD requirements and match specific needs
of the study. Therefore, these frameworks were further com-
pared.

3.2 Dimensions for Comparison
Different dimension for comparing BDD frameworks were

found during the study. BDD is a technique which is per-
fectly applicable at various levels. For instance, it can be ap-
plied at the code/unit level and at the acceptance/integration
level as well. Moreover, these usages are not exclusive and
can be combined.

3.2.1 Comparison Based on a Primary Target Group
One dimension for comparison was inspired by J. Band

who differentiates the following flavors of BDD tools based
on their origins and target groups in [20]:

1. Tools with a business readable output

2. Tools with a business readable input

Frameworks from the first category are usually focused on
the developers. All artifacts involved are owned by the de-
velopers and are typically code. This does not make such
frameworks useless since responsible and committed devel-
opers are often the main stakeholders in successful software
projects. Other stakeholders get only reports which they can
understand [20]. Such kind of frameworks is usually seen as
a replacement/extension for TDD at a unit-testing level.

Tools from the second category (business readable input)
try to widen the focus of the BDD process by enabling
the bigger involvement of all other stakeholders: customers,
business analysts, testers maybe even operations. This in-
volvement is possible upfront, meaning before the develop-
ers have done their work [20]. Such kind of tools is usually
aimed at ATDD.

3.2.2 Comparison Based on Support of Characteris-
tics of BDD

Another dimension for comparing tools comes from char-
acteristics of BDD. The following main characteristics were
identified during the study:

3. Ubiquitous language

This concept is an integral part of BDD. Therefore, sup-
port of this characteristic was used as a selection criterion for
tools that were compared in the study. Creating the ubiqui-
tous language needs to involve anyone (domain experts and
developers) who will use the language.

The important point at this moment is to distinguish the
ability of tools for creating a ubiquitous language based on
the business domain and ability to use a predefined version
of such language which is domain independent. BDD itself
also includes a predefined simple ubiquitous language for the
analysis process [29].

4. Automated Acceptance Testing

All scenarios must be run automatically. This requires
automatic import and analysis of acceptance criteria. The
code responsible for the execution usually has to read the
plain text specifications and process them in a corresponding
way. Such approach lets stakeholders have executable plain
text scenarios. In this case, there also should be a standard
mechanism of mapping scenarios to test code which executes
them. However, scenarios can be simply defined directly in
code.

5. Templates for plain text description of user stories and
scenarios

Descriptions of features, user stories and scenarios cannot
be done in an arbitrary form in BDD. All of them should
follow the existing templates and guidelines.

Each user story describes an activity done by a user, clar-
ifies a role of the user and which feature of a system allows
the user to perform this activity. Moreover, each user story
outlines the benefit which the user acquires after perform-
ing the activity. Such template contributes to a clear way
of representing features the system should support and why
they should be supported by the system. In addition, such
approach helps to understand what features are more im-
portant by comparing the benefits which they provide. De-
velopers may use this information to adjust their strategy,
priorities, and deadlines.

A scenario describes how the system that implements a
feature should behave when it is in a specific state and an
event happens. The outcome of the scenario is an action
that changes the state of the system or produces a system
output [29].

3.2.3 Comparison Based on Specific Features of Se-
lected Tools

The last but not least dimension to compare BDD tools is
based on specific additional features that each tool provides.
It is a good idea to combine other useful features with BDD
ones since such kind of tools can be used standalone to cover
more cases without any need to integrate other frameworks.

The following specific features of analyzed frameworks
were considered important:

6. Unit-testing facilities.

There are some TDD techniques that may be helpful in
BDD as well. For instance, mocking. It is not a good idea
to make use of mocks in acceptance tests on a regular basis.
Such tests are supposed to cover the whole system and to
test each aspect of it.

By mocking some parts of the system, you exclude them
from coverage. However, there are certain cases when mock-
ing is really appropriate: for instance, a module or compo-
nent of a system can communicate with a 3rd party system.
In this case, the scenario depends on the 3rd party system
which is out of the control. Therefore, running such scenar-
ios may be difficult and not stable, and the best option here
is to mock or simulate that 3rd party system so that your
application or product can still be tested.

Another useful application of mocking is to follow ”test as
soon as possible” technique. Developers can mock unimple-
mented parts with predefined behavior and test small parts
really early in the development cycle. This approach helps
to spot all potential bugs during initial implementation. At
this point of time, it is required less amount of time to inves-
tigate and fix the issue than when you have a full complex
and comprehensive module.

7. Facilities for testing Web applications.

Web applications are extremely popular nowadays. Most
of the new applications are developed for usage in Web.
Moreover, there is an emerging strategy for application soft-
ware companies is to provide web access to software pre-
viously distributed as local applications. Depending on the

Table 1: Comparison of BDD Tools
Support of Features Cucumber Concordion Spock JBehave easyb

Business readable input + + - + -
Business readable output + + + + +

Creation of a ubiquitous language - + - - -
Support of a predefined ubiquitous language + - + + +/-

Automated acceptance tests + + + + +
Plain text description of user stories and scenarios + + +/- + -

Unit-testing facilities - - + +/- - +/-
Facilities for testing Web applications + + + + +

type of application, it may require the development of an en-
tirely different browser-based interface, or merely adapting
an existing application to use different presentation tech-
nology [17]. Therefore, it is important for BDD tools to
cover Web development and provide corresponding facilities
to make this process easier.

There are a lot of high-level frameworks that allow the
definition of acceptance tests in natural language. But when
it comes to the technical implementation of the test cases,
developers often have to use the rather low-level WebDriver
API directly. Thus, it is important to consider to which
extent modern BDD tools can be used for developing Web
applications and how much effort it might require.

Functional web stories are a powerful mechanism to verify
the proper behavior of web applications from a user’s stand-
point. Combining a framework that supports stories and
scenarios with other tools for UI tests yields an easy way to
deliver software more quickly and collaboratively.

3.3 Comparison of Selected Tools
The following section describes each of analyzed frame-

works independently in terms of developed criteria in the
previous section.

3.3.1 Cucumber
Cucumber is definitely a framework with a business read-

able input since it supports writing plain text user stories
and scenarios which can be later utilized as a basis for cre-
ating automated acceptance tests. Analysis of BDD-related
questions on stackoverflow.com during this study confirms
that Cucumber is one of the most popular and widely used
frameworks of this type.

Cucumber supports various readable report formats. The
basic output prints the whole content of the feature which
is not always necessary. Luckily, you can easily customize
the output to match your needs. Cucumber has a set of
built-in formatters. They allow you to visualize the output
from your test run in different ways. There are formatters
that produce HTML reports, formatters that produce JUnit
XML for continuous integration servers like Jenkins, and
many more. Moreover, there are a lot of custom formatters
which are developed by a huge community of developers who
use this framework.

Cucumber does not allow you to create your own domain
dependent ubiquitous language. However, it supports a pre-
defined version of a ubiquitous language called Gherkin. It
is plain text with a little extra structure. Gherkin is de-
signed to be easy to learn by non-programmers, yet struc-
tured enough to allow the concise description of examples
to illustrate business rules in most real-world domains. A

Gherkin file is given its structure and meaning using a set
of special keywords. There is an equivalent set of these key-
words in each of the supported spoken languages [30]. This
means that developers can write specifications not only in
English but also in more than 60 other spoken languages
and allows to widen the target group.

Cucumber supports automated acceptance tests. In ad-
dition, it is flexible in defining scenarios and it gives you
an opportunity to write scenario outlines, share short setup
steps or assertions. You can even call step definitions from
other step definitions.

Cucumber easily allows to transform plain-text specifica-
tions into the code out of the box. However, it does have
much to offer in terms of unit-testing due to its main aim
and origins.

Cucumber doesn’t know how to talk to databases, web
apps, or any external system. People install other libraries
and use them in their step definitions and support code to
connect to those external systems [30]. For instance, you can
integrate Selenium or Capybara [2]. The latter framework
poses special interest in combination with Cucumber since
both of them are written in Ruby. This language fits BDD
since it is natural to read. There is no specifically suited
framework for UI testing.

Serenity has also a separate module for integration with
Cucumber. It is an easy way to get incredible reports that
are automatically generated for the BDD tests.

3.3.2 Concordion
Concordion is also a tool with a business readable output.

Despite the fact that Concordion requires basics of HTML, it
is still a framework from the second category since it allows
to write specifications in a highly custom way.

Concordion also provides readable output from tests which
can be understood and used by all stakeholders. If all tests
are executed then framework produces a complete set of col-
ored output HTML files, which developers or their managers
can publish on a web-server. There is also a possibility to
use custom CSS or JavaScript, or include images or other
resources, in the Concordion output by means of simple ex-
tensions. Moreover, there are some existing extensions. For
instance, one of them adds screenshots to Concordion out-
put to diagnose problems or improve the documentation.

Rather than forcing product owners to use a specially
structured language for specification by example, Concor-
dion lets you write the specifications in a normal language
using paragraphs, tables, and proper punctuation. This
makes them much more natural to read and write and helps
everyone understand and agree about what a feature is sup-
posed to do [3]. However, Concordian requires basic knowl-

edge of HTML which can be a significant drawback. This
framework also does not support predefined ubiquitous lan-
guages such as Gherkin.

Concordion allows to write automated acceptance tests. It
also provides a big level of flexibility in doing it as Cucumber.
Moreover, Concordion allows to have and edit plain text
descriptions of stories and scenarios.

Concordion does not offer a lot in terms of unit-testing. It
as well as Cucumber does not have any specific framework
for UI testing that suits particularly well only for it. How-
ever, Concordion can be used to test Web applications since
it is commonly used with Selenium.

3.3.3 Spock
Spock is a good example of tools with a strictly business

readable output. It is not only as powerful as strictly unit-
testing frameworks in terms of applicability at code/unit
level, but it also supports writing specifications. Spock can
not only fully replace JUnit but also provide the extended
set of features with mocking and stubbing mechanisms.

Spock does not support the creation of a ubiquitous lan-
guage. Moreover, it out of the box supports the concept of a
ubiquitous language with some significant restrictions. For
instance, developers have to mix the story descriptions and
code. There is an extension called Pease that creates Spock
tests from Gherkin specifications. With Pease, you are able
to separate your requirements and your test code and still
access the full power of the Spock framework [11].

Spock allows you to write automated acceptance tests.
Spock can be used as a replacement or extension for standard
unit-testing frameworks, such as JUnit. Moreover, Spock
has the widest range of features in terms of unit-testing.
It is a complete testing framework with mocking, stubbing,
and other helpful techniques.

Spock provides simple integration and takes advantage of
Geb framework. Geb is a browser automation framework
written in Groovy based on Selenium WebDriver. It is aimed
to make all code for modeling behavior of a user on UI pages
concise and clear. Spock has also a great support for testing
RESTful APIs.

3.3.4 JBehave
JBehave is similar to Concordion and Cucumber since it

is a tool with business readable input. It lets execute text-
based user stories with a help of Gherkin or its own syntax.
JBehave provides different output formats. For instance, it
can print a text-based console output, produce a text-based
output file, an HTML file or an XML file.

JBehave does not provide an ability to define a ubiquitous
language, but it supports the aforementioned Gherkin. In
addition, you can make use of its own syntax to describe
scenarios.

JBehave can be used to implement automated acceptance
tests. It also lets transform plain-text specifications into the
code out of the box.

JBehave has limited unit-testing facilities. For instance,
this tool bundles a mocking framework known as a Mini-
mock. JBehave has an extension called JBehave Web which
provides support for web-related access or functionality. JBe-
have integration with Selenium and WebDriver APIs aims
to facilitate common tasks. Amongst these, one of the most
common is the management of the lifecycle, e.g. starting
and stopping the browser [8].

JBehave works well with Serenity since there is a sepa-
rate module in Serenity for combining with JBehave. Seren-
ity uses simple conventions to make it easier to get started
writing and implementing Serenity stories and reports on
both JBehave and Serenity steps, which can be seamlessly
combined in the same class, or placed in separate classes,
depending on your preferences.

3.3.5 Easyb
Easyb is one more example of tools with an only business

readable output. It is similar to Spock in this respect.
Easyb does not allow to create a ubiquitous language.

This framework provides the worst support of the concept
of ubiquitous language since the code and specification are
mixed together and there was no plugin or extension to sup-
port, for instance, Gherkin or any predefined language at the
moment of study. However, the code with given/when/then
sections helps all stakeholders to get insight about the tested
scenario easily enough.

Easyb provides functionality for automated acceptance
tests, but there is no way to support plain text descriptions.

Easyb has fewer features at the unit-testing level than
Spock, but more than other analyzed frameworks. It also
can be used together with Selenium [13], Selenide [12] and
Tellurium [16]. Moreover, easyb can be combined with FEST
[7] framework to enable testing of Swing-based applications.
Tellurium is built on UI module concept, which makes it pos-
sible to write reusable and easy to maintain tests against the
dynamic RIA based web applications. Selenide is simple and
powerful in use wrapper-library over Selenium intended to
short the lines of code to make the whole tests more readable
and understandable. There is a special plug-in for working
with databases.

3.3.6 Summary of Comparison
All analyzed tools are suitable for BDD but they are aimed

at different levels. Spock and easyb are focused on the unit-
testing level, while JBehave, Concordion, and Cucumber are
more suitable for acceptance/integration testing.

Only Concordion supports to some extent creation of a
specific ubiquitous language for a project. JBehave, Cucum-
ber support predefined ubiquitous languages, while Spock
and easyb have some significant restrictions in this regard.
For instance, developers mix the story description and corre-
sponding code using these tools. Even despite the fact that
you can use a plain text to define all method names, story
and code are very tightly coupled and reside in one file.

All analyzed frameworks support automated acceptance
tests. However, Concordion, JBehave, and Cucumber have
more ways to define the scenarios. These tools also provide
a clear separation between the code and scenarios allowing
to define user stories and scenarios in plain text. Hence,
these tools are more flexible and powerful for this particular
task. Spock has the aforementioned Pease extension which
provides the ability to define scenarios in Gherkin, but there
is no such solution for easyb.

Both Spock and easyb have much more to offer than Cu-
cumber, Concordion, and JBehave from the unit-testing point
of view. However, there are a lot of standalone specific tools
such as Mockito, EasyMock which can be integrated into all
analyzed frameworks to add needed functionality.

Other toolkits that can be easily combined with analyzed
frameworks were mentioned per each framework. Those

tools were selected by review of the literature, tutorials, and
documentation.

4. CONCLUSIONS
BDD inherits main concepts from TDD and automated

acceptance testing augmenting them with other ones such
as ubiquitous language. This combination is aimed to make
use of all benefits provided by each inherited approach and
address their drawbacks. BDD can be adapted and applied
at various levels of development. It puts the strong focus on
behavior instead of structure at each level. BDD changes the
way all stakeholders think about testing. Its main goal to
verify what a tested object does and not what the internal
structure of the object is. This difference makes a huge
impact on the overall development process since behavior is
much more significant than the internal structure.

The main intends of the study were to provide all under-
lying concepts of BDD, develop the research approach for
identifying relevant tools for applying BDD and to compare
the selected tools for JVM-based languages from different
perspectives. One of the most important features of BDD is
involvement of all stakeholders in the development process.
Therefore, the special attention was paid to the concept of
the ubiquitous language. Support to some extent of a pre-
defined ubiquitous language or creation of a new domain
specific one was chosen as the criterion to select relevant
tools for comparison. The study defines three dimensions
for comparing BDD frameworks: based on a target group,
on the support of characteristics of BDD and based on spe-
cific features of selected tools.

The results of the performed comparison indicate that
there is a strong support of main BDD concepts by analyzed
tools which makes BDD possible with JVM-based languages.
However, the study also shows that tools with better sup-
port of unit-testing facilities usually require some tuning to
pose an interest for all stakeholders. All analyzed tools have
a nice integration with a vast variety of other tools. This
is crucial since it enables applying BDD for different kinds
of applications. For instance, there is a set of frameworks
for each analyzed tool that makes possible BDD for Web
applications.

5. REFERENCES
[1] Behavior-driven development.

https://en.wikipedia.org/wiki/Behavior-

driven_development. Retrieved November 20, 2015.

[2] Capybara. https://rubygems.org/gems/capybara.
Retrieved December 2, 2015.

[3] Concordion. http://concordion.org/. Retrieved
November 23, 2015.

[4] Cucumber. https://cucumber.io/. Retrieved
December 9, 2015.

[5] Easyb. http://easyb.org/. Retrieved December 9,
2015.

[6] Easymock. http://easymock.org/. Retrieved
December 9, 2015.

[7] Fest. https://code.google.com/p/fest/. Retrieved
December 2, 2015.

[8] Jbehave. http://jbehave.org/. Retrieved December
2, 2015.

[9] Junit. http://junit.org/. Retrieved December 9,
2015.

[10] Mockito. http://mockito.org/. Retrieved December
9, 2015.

[11] Pease. http://pease.github.io/. Retrieved
December 1, 2015.

[12] Selenide. http://selenide.org/. Retrieved December
2, 2015.

[13] Selenium. http://www.seleniumhq.org/. Retrieved
December 2, 2015.

[14] Serenity bdd. http://www.thucydides.info/.
Retrieved December 9, 2015.

[15] Spock. https://code.google.com/p/spock/.
Retrieved December 2, 2015.

[16] Tellurium. https://code.google.com/p/aost/.
Retrieved December 2, 2015.

[17] Web application.
https://en.wikipedia.org/wiki/Web_applicationt.
Retrieved December 2, 2015.

[18] G. Adzic. Specification by Example: How Successful
Teams Deliver the Right Software. Manning
Publications, 2011.

[19] D. Astels. A new look at test-driven development.
Technical report, 2005.

[20] J. Bandi. Classifying bdd tools.
http://blog.jonasbandi.net/2010/03/

classifying-bdd-tools-unit-test-driven.html,
2010.

[21] D. Chelimsky, D. Astel, B. Helmkamp, D. North,
Z. Dennis, and A. Hellesoy. The RSpec Book:
Behaviour Driven Development with RSpec,
Cucumber, and Friends. Pragmatic Bookshelf, 2010.

[22] E. Evans and M. Fowler. Domain-Driven Design.
Addison-Wesley Publishing Company, 2004.

[23] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design of
Existing Code. Addison-Wesley Publishing Company,
1999.

[24] D. Janzen and D. H. Saiedian. Test-driven
development: concepts, taxonomy, and future
directions. Computer, 38(9):43–50, September 2005.

[25] D. Janzen and D. H. Saiedian. Does test-driven
development really improve software design quality?
Software, IEEE, 25(2):77–84, March-April 2008.

[26] R. Jeffries and G. Melnik. Guest editors introduction:
Tdd - the art of fearless programming. Software,
IEEE, 24(3):24–30, May-June 2007.

[27] J. H. Lopes. Evaluation of behavior-driven
development. Master’s thesis, Faculty EEMCS, Delft
University of Technology, 2012.

[28] D. North. Introducing bdd.
http://dannorth.net/introducing-bdd/, 2006.
Retrieved November 1, 2015.

[29] C. Solis and X. Wang. A study of the characteristics
of behaviour driven development. In Proceedings of the
7th EUROMICRO Conference on Software
Engineering and Advanced Applications, pages
383–387, 2011.

[30] M. Wynne and A. Hellesoy. The Cucumber Book:
Behaviour-Driven Development for Testers and
Developers (Pragmatic Programmers). The Pragmatic
Bookshelf, 2012.

https://en.wikipedia.org/wiki/Behavior-driven_development
https://en.wikipedia.org/wiki/Behavior-driven_development
https://rubygems.org/gems/capybara
http://concordion.org/
https://cucumber.io/
http://easyb.org/
http://easymock.org/
https://code.google.com/p/fest/
http://jbehave.org/
http://junit.org/
http://mockito.org/
http://pease.github.io/
http://selenide.org/
http://www.seleniumhq.org/
http://www.thucydides.info/
https://code.google.com/p/spock/
https://code.google.com/p/aost/
https://en.wikipedia.org/wiki/Web_applicationt
http://blog.jonasbandi.net/2010/03/classifying-bdd-tools-unit-test-driven.html
http://blog.jonasbandi.net/2010/03/classifying-bdd-tools-unit-test-driven.html
http://dannorth.net/introducing-bdd/

1

1

„We need this in production in 30 days!“

2

Prioritizing Technical Debt

Muhammad Firdaus Harun

firdaus.harun@swc.rwth-aachen.de

Peter Sommerhoff

peter.sommerhoff@rwth-aachen.de

What is Technical Debt (TD)?

• Metaphor

• New Perspective

4

What is a TD item?

5

What is a TD item?

5

import junit.framework.TestCase

public class SampleTest : TestCase() {

// TODO
fun testSampleMethod() {

fail()
}

}

Missing tests.

What is a TD item?

5

public class MyAPI {

// ...

public fun apiMethod() {
// ...

}
}

Missing tests. Missing docs.

What is a TD item?

5

public class Person {

String name;
public int age;

}

Missing tests. Missing docs. No encapsulation.

Why Prioritize?

• Thousands of TD items

• Refactor with impact

• IT follows business

6

Related Work (1 of 2).

Portfolio approach.

7

Related Work (2 of 2).
SQALE approach.

8

Related Work (2 of 2).
SQALE approach.

8

Related Work (2 of 2).
SQALE approach.

8

Related Work (2 of 2).
SQALE approach.

8

Three Main Results.

1. Modularity metrics

2. Our prioritization approach

3. Complementary use with SQALE

9

10

1) Modularity Metrics.

10

Architecture level

1) Modularity Metrics.

10

Architecture level

Design level

1) Modularity Metrics.

10

Architecture level

Design level

Code level

1) Modularity Metrics.

10

Architecture level

Design level

Code level

Proper distribution of functionality

1) Modularity Metrics.

10

Architecture level

Design level

Code level

Proper distribution of functionality

Tight class cohesion (TCC)

1) Modularity Metrics.

10

Architecture level

Design level

Code level

Proper distribution of functionality

Tight class cohesion (TCC)

WMC

1) Modularity Metrics.

10

Architecture level

Design level

Code level

Proper distribution of functionality

Tight class cohesion (TCC)

WMC LOC

1) Modularity Metrics.

10

Architecture level

Design level

Code level

Proper distribution of functionality

Tight class cohesion (TCC)

WMC LOC LCOM

1) Modularity Metrics.

10

Architecture level

Design level

Code level

Proper distribution of functionality

Tight class cohesion (TCC)

WMC LOC LCOM

Proper reuse of
functionality

1) Modularity Metrics.

10

Architecture level

Design level

Code level

Proper distribution of functionality

Tight class cohesion (TCC)

WMC LOC LCOM

Proper reuse of
functionality

Lines of duplicated
code

1) Modularity Metrics.

2) Our Approach.

• Focus on modularity

• Cost-benefit

• Complementary to SQALE

11

Measuring cost & benefit.

12

Measuring cost & benefit.

• Time needed to fix

12

Measuring cost & benefit.

• Time needed to fix • Probability of paying interest

12

Measuring cost & benefit.

• Time needed to fix • Probability of paying interest

• Interest amount

12

Measuring cost & benefit.

13

Measuring cost & benefit.

13

Measuring cost & benefit.

13

Measuring cost & benefit.

13

Measuring cost & benefit.

13

Measuring cost & benefit.

13

Measuring cost & benefit.

13

Ranking.

• Highest P(I) first

• Benefit divided by cost

14

3) Complementary to SQALE.

• Metric + threshold = code requirement

• SonarQube can measure code-level metrics

15

Conclusion.

• Repay your debt
• Keeps you agile and productive

• Close the gap between business and IT

• Prioritize your debt
• Cost vs. benefit

16

Let‘s talk about technical debt.

Business pressures. The SQALE approach.

Modularity. Our approach.
17

Do it like him.

18

A Study of Tools for Behavior-Driven Development
Anton Okolnychyi

Motivation

2

Test-Driven Development

3

Short development cycles:

• Create unit tests
• Implement functionality
• Refactor

Acceptance Test-Driven Development

4

• Communication between stakeholders
• Tests represent stakeholders’ requirements
• “What software needs to do to be accepted?”

TDD vs ATDD

5

Behavior-Driven Development

6

• Based on the TDD and ATDD
• Focuses on a behavior of a system
• Involves all stakeholders

Behavior-Driven Development

7

• Sample description of the behavior

Behavior-Driven Development

8

• Sample way of mapping the description to the code

Behavior-Driven Development

9

• Sample way of mapping the description to the code

Behavior-Driven Development

10

• Sample way of mapping the description to the code

Comparative Study of Behavior-Driven
Development Tools

11

An Approach for Identifying Relevant Tools

12

• BDD is just a technique
• Support of a ubiquitous language
• Selected frameworks:

Dimensions to Compare Tools

13

Based on:

• Target Group
• Characteristics of BDD
• Features of Tools

Comparison Based on a Primary Target Group

14

• Tools with a business readable output
(For developers)

• Tools with a business readable input
(For all stakeholders)

Comparison Based on Support of Characteristics of BDD

15

• Ubiquitous language
• Automated acceptance testing

(Automatic import and analysis of acceptance criteria)

• Plain text scenarios

Comparison Based on Specific Features of Selected Tools

16

• Unit-testing facilities
(e.g. mocking)

• Facilities for testing Web applications
(e.g. UI testing, API testing)

Comparison of Selected Tools

17

Comparison of Selected Tools

18

Comparison of Selected Tools

19

Comparison of Selected Tools

20

Comparison of Selected Tools

21

Comparison of Selected Tools

22

Comparison of Selected Tools

23

Comparison of Selected Tools

24

Conclusion

25

• Main concepts of BDD
• Benefits that BDD provides
• How to identify relevant tools
• Which tool to select

One more thing…

26

Examples

27

• https://github.com/aokolnychyi/unit-testing-tutorial (Spock)
• https://github.com/aokolnychyi/cucumber-tutorial (Cucumber)

Test Smells

Delin Mathew,
delin.mathew@rwth-aachen.de

Background

2

eXtreme
Programming

Test Driven
Development

Unit Testing

Agile Methodologies

Test Code Smells

• Symptoms of poorly designed test cases

• Non-compliance to Test Design Criteria

• Categories

 Code smells

 Behavior smells

 Project smells

• We focus on

 General Fixture

 Eager Test

 Obscure Test

3

General Fixture

• Broad functionality

• Different tests only access parts of the fixture

• Types of fixtures

 Large fixture

 Broad fixture

4

General Fixture

Maintenance Causality Solution

Refactoring

5

Detecting General Fixture

General
Fixture

setupFlds

usedSetupFlds

Large Fixture

NFOB
Number of

Fixture Objects

NOBU
Number of

OBject Uses in
Setup

Broad Fixture

NFPT
Number of

Fixture
Production Types

NPTU
Number of

Production Types
Uses

6

Interpretation

Ratio of setupFlds
to usedSetupFlds

> 70%

High NOBU
value

High NFOB
value

High NFPT
value

General
Fixture

7

Eager Test

One test tries to
check several

methods of the object
to be tested

8

Eager Test

Maintenance Causality Solution

9

Detecting Eager Test

• PTMI- Production Type Method Invocations

• High value of PTMI is a sign of Eager Test

10

Obscure Test

11

Difficult to
understand

!

Obscure Test

Maintenance Causality Solution

Helper methods

12

Detecting Obscure Test

• Using the indicator LocalVars

• Number of LocalVars > 10 per method

13

Meta Model

• Entity relationship model

• Characterized by causes and

detection techniques

14

Test
Smells

Smells

Causes Characterizing
metrics

Metrics,
Indicators

Consists of

Has Detected by

Which are

Conceptual Model

15

Eager
Test

Characterizing
Metrics

Causes
Complex method body
Single Test Command

High PTMI value

PTMI
PTU
NSI
NPI

Detected by

Which are

Has

Constructed
based on

Meta Model

Dependencies

Obscure
Test

General
Fixture

Eager Test

16

Dependencies

17

NPTU PTMIUsed for computing

General
Fixture
Metric

EagerTest
Metric

NPTU is computed
for every Test

Command

Summary

18

Metrics Indicators

Conceptual Model

19

Automated Test Data Generation
Concepts + Tool Support

Lekane Nimpa,
Junior

2

Test Case vs Test Data

 System Under
Test

M1 M2 M3 M4

Test Data IS Data

Expected Data

Comparator

Test Result

● Legend: Mi := Message i

3

Black-box Generator -1

Generator 01000011100101...

“randomString”

345.45

● Random Generator

● Randoop

● Targets OO systems
● Available as CLI and Eclipse-plugin
● Demo: Eclipse

4

Black-box Generator -2

● abnfgen
● ABNF = Augmented Backus-Naur Form

● Available as CLI for Unix-like environment

● Demo: CLI

● Grammar-/Syntax-based Generator

Generator.*@.*
lekane@gmail.com

Blablablabla....

White-box Generator- 1

5

Program
AnalyzerSUT

CFG

Path
Selector

Generator

Test Path

Test Data

Path Info

White-box Generator - 2

● Search-based: Evolutionary Algorithms

6

● EvoSuite
● Available as CLI, IntelliJ-,Eclipse-, Maven-plugin

● Demo :CLI

Caveat

• Verification vs Validation

• Oracle Problem
● SUT != Oracle
● Some tools violate this constraint

7

Improving perfect sets of unit tests.
An Analysis of Current Mutation Testing Techniques Applied to Real World Examples

Daniel Klischies
daniel.klischies@rwth-aachen.de

Why condition coverage is not enough

function greaterOne(int x) {
return (x >= 1);

}

100% condition coverage, still flawed.

2

Input Expected

output

0 false

5 true

3

What is mutation testing?

1. Modify program
(Mutant generation)

2. Run tests on mutants
(Mutation analysis)

3. Improve tests to kill
live mutants

Mutant generation: Operators

Example:

4

function greaterOne(int x) {

return (x >= 1);

}

function greaterOne(int x) {

return (x >= 0);

}

function greaterOne(int x) {

return (x > 1);

}

Killed

Live

Input Expected

output

0 false

5 true

Metrics: (Inverse) Mutation Score

Mutation score:

5

#𝑘𝑖𝑙𝑙𝑒𝑑𝑀𝑢𝑡𝑎𝑛𝑡𝑠

#𝑡𝑜𝑡𝑎𝑙𝑀𝑢𝑡𝑎𝑛𝑡𝑠

If this is 100% → All mutants killed → Cannot improve
tests further with the current set of mutation operators

Idea: This judges the quality of a test set. Use inverse to judge
quality of mutation operators.

Pitest
Production ready unit testing?

6

Testing Pitest: Goals

Find out…

• … how many mutants are equivalents

• … about time consumption

• … if wisely choosing mutation operators matters

 Split into groups: Default set Full set

Test subjects:

• Apache Commons Math4 (around 50.000 NCLOC)

• Apache Commons IO (around 5.000 NCLOC)

7

⊂

Results: Number of equivalents

For four classes per library equivalents were counted

• 0-1 equivalents per class found

• That’s < 0,5% of live mutants

• Contrasts Grün et al. (around 40%) and Javalanche

Indicates equivalent ratio depends on mutated program

• Possibly depends on amount of dead code

8

9

00:00:00

01:12:00

02:24:00

03:36:00

04:48:00

06:00:00

07:12:00

08:24:00

09:36:00

10:48:00

Math4 IO

O
ve

ra
ll

ti
m

e
co

n
su

m
p

ti
o

n
[h

o
u

rs
]

Test subject

Results: Time consumption

"default" Mutation operator set "full" Mutation operator set

10

0

20.000

40.000

60.000

80.000

100.000

120.000

Math4 IO

A
m

o
u

n
t

o
f

m
u

ta
n

ts

Test subject

Results: Generated mutants

"default" Mutation operator set "full" Mutation operator set

11

0%

5%

10%

15%

20%

25%

Math4 IO

In
ve

rs
e

m
u

ta
ti

o
n

sc
o

re

Test subject

Results: Inverse mutation scores

"default" Mutation operator set "full" Mutation operator set

Implications on real world projects

12

Number of equivalents

• When looking at the mutation score

 Number of equivalents may be ignored

• When building tests

 Attempting to kill an equivalent will cost time

Dependence on tested program still to be investigated

13

Time consumption

• Generating mutants is fast

• Running unit tests is slow

• Running tests may be parallelized

• Full mutator set on Math4 took 9 hours

• Running this on Apache Solr would take around 540 hours

14

Bugs in Pitest

• Adding mutation operators suddenly led to some
mutations, which were killed before, staying live.

• Some mutation operators refused to run at all, depending
on the project they were expected to modify.

Pitest seems to have too many bugs for production use

15

Conclusions

• Mutation testing improves test sets when coverage can‘t

• Mutation operator sets have to be choosen wisely

• Pitest still a little too bug prone

• Time consumption is the biggest issue

Thank you for your attention

16

Additional slide: Why Pitest is this fast

• Program is not recompiled for every mutation

• Byte code is being mutated

• Java Injection API → enable one mutation

• Very fast, but more complicated

17

Additional slide: Bug - Mutations staying live

• The default set created a mutant

• This got killed by the tests

• The full set created the same mutant

• This time it did not get killed

• Probably a bug in at least one of:

 Pitest’s usage of the Java Injection API

 or the byte code modifier

18

Sebastian Rabenhorst

sebastian.rabenhorst@rw
th-aachen.de

The Impact of Context on
Continuous Delivery

29.01.16

Environments

2

Development

Integration

Testing

Production

Continuous
Integration

Continuous
Deployment

Continuous
Delivery

Research Questions

3

Which properties of the production environment
and the software have influence on Continuous
Delivery?

How is this reflected in the implementation of
Continuous Delivery?

Case Studies

4

Mobile Application: Etsy

Desktop: Hewlett-Packard

Embedded: Box

Etsy

5

Result

6

§ Simulator Quality -> Farm of real
devices for testing

§ Fragmentation (lack of control) ->
Use app usage data for test
device selection

§ App approval (lack of control) ->
Tests on employees devices

<

waiting...

Box

7

§ Continuous Deployment for the desktop software „Box Sync“

§ Box Sync is nearly fully automated build, tested and deployed

§ Only UI and backward compatibility testing need manual interaction

Result

8

§ UI-Complexity -> manual testing of UI components

§ Backward compatibility (lack of control) -> manually
upgrading from several different versions

9

HP

Result

10

§ Nearly full coverage of the production environment by simulators
(hard- and software)

§ Very low UI complexity

§ Full control over production environment

Conclusion

11

UI Complexity:

Quality of Simulators:

Lack of Control:

vs.

=
?

Control

12

The Costs of Testing Software

Alexandra Keus

alexandra.keus@rwth-aachen.de

Introduction2

30 – 90% labor is testing.

Introduction3

$$

Introduction4

Find out!

What Does Testing Cost?
Calculate the Costs of a Test.

Test Cost Metrics5

Automated Testing

Manual Testing

Not Testing

Test Cost Metrics - Data6

Simple.

Automated Testing.

Metric – Automated Testing7

= + +

Automated Testing.

Metric – Automated Testing8

= + +

*+()

Automated Testing.

Metric – Automated Testing9

= + +

*

Automated Testing.

Metric – Automated Testing10

= + +

* * *()+

Automated Testing.

Metric – Automated Testing11

= + +
*+() * * *()+

Manual Testing.

Metric – Manual Testing12

= + *()

Not Testing.

Metric – Not Testing13

= + *() *

Example.

Example – Automated Testing14

= + +
*+() * * *()+

0.39$/min 80min0.01$/min+(*)

0.03$/min 8min*

4% 0.39$/min 36min0.01$/min()** +

Example.

Example – Automated Testing15

= + +
*+() * * *()+

0.24$ 0.58$+ +32$

32.82$

Example.
Test Cost Comparison.

Example - Results16

Not Testing
(costs per bug)

Automated
Testing

Manual
Testing

Test Cost Chart.
Automated Testing.

Example – Test Cost Comparison17

1 2 3 4 5 6 7 8 9 10

te
st

co
st

s

number of releases

Test Cost Chart.
Manual Testing.

Example – Test Cost Comparison18

1 2 3 4 5 6 7 8 9 10

te
st

co
st

s

number of releases

Test Cost Chart.
Not Testing.

Example – Test Cost Comparison19

1 2 3 4 5 6 7 8 9 10

te
st

co
st

s

number of releases

Test Cost Chart.
Not Testing.

Example – Test Cost Comparison20

1 2 3 4 5 6 7 8 9 10

te
st

 c
o

st
s

number of releases

1 bug

In Comparison.

Example – Test Cost Comparison21

1 2 3 4 5 6 7 8 9 10

te
s
t
c
o

s
ts

number of releases

Testing makes sense w. r. t. costs.
Find the best method for your use.

Summary22

 Developers‘ costs.

 Test costs.

 3 metrics.

 Examples.

??

!!

Find out!

Testing makes sense w. r. t. costs.
Find the best method for your use.

Summary23

 Developers‘ costs.

 Test costs.

 3 metrics.

 Examples.

??

!!

Categorization of Application Layer Viewpoints
in the EAM

Sinan Durmaz

Structure and Motivation

2

Structure

• Software Cartography and Software Map Types

• TOGAF Views, Viewpoints and Stakeholders

• Assigning Software Maps to TOGAF Views

3

Motivation

4

Motivation

5

Software Cartography and Software Map Types

6

Software Cartography

• Software Cartography is the intersection of three

sciences

7

Software Map Types – Activity Diagrams (UML)

• Activity diagrams are state diagrams

• Represents every possible state that the system can

be in

8

Software Map Types – Sequence Diagrams (UML)

• Created for one scenario

• Visualizes data flow between multiple entities

9

Software Map Types – Use Case Diagrams (UML)

• Focus on user system interaction

• Optimal for demonstrating functionalities of a system

10

Software Map Types

11

• Software Maps can be divided in two major

categories

Software Map Types – Graph Layout Maps

• Positioning of objects on the map does not have a

semantical meaning

• Freedom of positioning is important to design a clear

map

• Loss of expressiveness

12

Software Map Types – Cluster Maps

• Nearby placed objects are considered as belonging

together

• Logical units can be formed

• Optimal for representing different locations or

organizations of a company

13

Software Map Types – Cluster Maps

14

Software Map Types – Process Supporting Map

• Has like all Cartesian maps x- and y-axis

• Different types of users can perform different actions

15

Software Map Types – Time Interval Map

• Similar to Process Supporting map

• Ideal to depict distributed tasks

16

TOGAF Views, Viewpoints and Stakeholders

17

TOGAF Views, Viewpoints and Stakeholders

• TOGAF is a popular enterprise architecture

framework

• Developed by the Open Group

• First version published in 1995 for the United States

Department of Defense

18

TOGAF Views, Viewpoints and Stakeholders

19

Assigning Software Maps to TOGAF Views

20

Assigning Software Maps to the Business Architecture View

• Focus on user experience and production planning

• This should be visualized:

 Production processes

 Functionalities of the product

• Fitting software maps:

 Cartesian map

 Use Case and Activity diagrams

21

Assigning Software Maps to Enterprise Security View

• Stakeholders are security engineers

• This should be visualized:

 Date exchange between system entities

• Fitting software maps:

 Cluster maps

 Activity diagrams and sequence diagrams

22

Assigning Software Maps to Enterprise Manageability View

• Stakeholders are operations, administration and
management personnel

• This should be visualized:

 Structure of company or management

 Business processes for high level decisions

• Fitting software maps:

 Cartesian maps

 Cluster maps

23

Important literature

• A. Wittenburg. Softwarekartographie Modelle und

Methoden zur systematischen Visualisierung von

Anwendungslandschaften. PhD thesis, July 2007.

• TOGAF. Developing architecture views.

http://pubs.opengroup.org/architecture/togaf8-

doc/arch/chap31.html, 2006

• J. Lankes. Softwarekartographie: Systematische

Darstellung von Anwendungslandschaften. 2005

24

Image links

• Slide 4: http://www.gsmarena.com

• Slide 5: http://technopathz.com

• Slide 8: http://static2.creately.com

• Slide 9: http://www.wikipedia.org

• Slide 19 (stakeholder): https://programsuccess.files.wordpress.com

• Slide 19 (viewpoint): http://tophdimgs.com/

• Slide 19 (view): http://www.mikesblender.com

• Slide 26: http://www.summersidechamber.com

25

http://technopathz.com/
http://www.wikipedia.org/
https://programsuccess.files.wordpress.com/
http://tophdimgs.com/

Discussion

26

Questions?

Migrating to the
Software-as-a-Service Model

Horst Lichter
RWTH Aachen University
lichter@swc.rwth-aachen.de

Johannes Schäfer
RWTH Aachen University
johannes.schaefer2@rwth-aachen.de

Comparison of SaaP and SaaS

Comparison of SaaP and SaaS

Software-as-a-Product

Installed on the client’s
infrastructure
One installation per client

Software-as-a-Service

Deployed on the vendor’s
cloud environment
Multi-tenancy

Installation and Instances

Comparison of SaaP and SaaS

Software-as-a-Product

Accessible directly or through
VPNs
Traditional software interfaces

Software-as-a-Service

Accessible via Internet (web-
based)
Often browser-supported
applications

Accessibility and Interfaces

Comparison of SaaP and SaaS

Software-as-a-Product

Pay once
Software-as-a-Service

Pay-per-use

Pricing and licensing

Comparison of SaaP and SaaS

Software-as-a-Product

Updates, no upgrades
Software-as-a-Service

Always latest version

Upgrade policy

Software Engineering with SaaS

Software design

• Service-oriented architecture (SOA)
• Database-orientation
• Middleware-orientation
• PaaS-based

New non-functional requirements

• Multi-tenancy, User Concurrency
• Configurability
• Scalability
• Availability, Performance, Efficiency
• Compatibility, Interoperability

Requirements Engineering with SaaS

Requirements engineering

Software-as-a-Product

Overseeable number
Software-as-a-Service

Many different stakeholders

Stakeholders

Requirements engineering

Software-as-a-Product

On scheduled basis
Software-as-a-Service

Almost immediately

Bug fixes

Requirements engineering

Software-as-a-Product

Not without upgrades
Software-as-a-Service

Continuous rollout

Feature enhancements

Requirements engineering

Software-as-a-Product

High impact with retraining
required

Software-as-a-Service

Less disruptive, small changes

Upgrade impact

Requirements engineering

Software-as-a-Product

Per-version basis
Software-as-a-Service

Long-term oriented

Customer relationship

Requirements engineering

Software-as-a-Product

e.g. special surveys
Software-as-a-Service

Usage monitoring
Motivation for users to give
feedback

User feedback

Requirements engineering

Software-as-a-Product

Difficult and unpredictable
Software-as-a-Service

Easy to e.g. compare different
groups

Acceptance testing

Systematic Transformation

SaaP Step 1: Establish
paradigm change

Step 2: Iterative and
incremental SE process

Step 3: Identify and
prioritize stakeholders

Step 4: Invite and involve
customers into RE process

Step 5: Implement
instruments for
user feedback

Step 6: Develop seamless
update mechanisms

Step 7: Support software
variations per user group SaaS

To cut a long story short…

• SaaS more than distribution policy

•Requirements engineering is different

• Systematic approach helpful

Mahdi Saber

Simon Hacks

Big Data usage in EAM

1

Have you ever heard of …

2

This is a story about …

3

Growing Complexity

 Enterprise Architecture
Management (EAM)

Three years before…

4

 Zachman

 TOGAF

 EAM Patterns

Integrating Big Data

 EAM Patterns

 M-Pattern

 V-Pattern

 I-Pattern

5

Integrating Big Data

 EA Visioning Pattern

 Business Visioning

 IT Visioning

Visioning Lifecycles

6

Business Visioning IT Visioning
Target Landscape

Definition
EA Roadmapping

MM

M
EA Documentation

MM

M

Let’s think about the future …

7

 Big Data

o Characteristics

o Problems

Characteristics

8

 Veracity

 Value

Problems

9

 Veracity

 Value

Which framework?

10

Hadoop

Storm

Spark

Features

Hadoop

 Batch Processing

 Spark

 In-memory Processing

 Storm

 Stream Processing

11

Requirements?

12

Hadoop
 Increasing Flexibility?

Architecture Analyzing?

Analyzing Technology Homogeneity

13

Desired architectural standards?

 How are they created? (V-23, V-66)

Used Technologies?

 Check comformity (V-5, V-6)

Analyzing Technology Homogeneity

14

Analyzing Technology Homogeneity

15

Analyzing Technology Homogeneity

16

 Large sets of technologies

Analyzing stored structures

 Not too dynamic

 Prefer comprehensibility

 Not time critical

Winner?

17

Hadoop

Large sets of technologies

Analyzing stored structures

Not too dynamic

Prefer comprehensibility

Not time critical

Loser?

18

Spark

Large sets of technologies

Analyzing stored structures

Not too dynamic

Prefer comprehensibility

Not time critical

Loser?

19

Storm

Large sets of technologies

Analyzing stored structures

Not too dynamic

Prefer comprehensibility

Not time critical

Winner

20

Hadoop

Hadoop

 Scalable and Affordable

 Different distributions

 Work with Spark and Storm

 Integration Patterns

 Business Visioning

 IT Visioning

 Self-service BI Tools

 Technology homogeneity

Conclusion

 Big Data

 Characteristics and Problems

 Big Data Frameworks

 Hadoop

 Spark

 Storm

21

Backup Slides!

22

 Slide 8, 9:

 Left: blog.fazackerley.com

 Right: inspiremartech.com

 Slide 11:

 hortonworks.com

 Slide 14, 15:

 EAM Pattern Catalog

 Slide 24:

 trustradius.com

All comic images:

 Originally designed by
Freepik

 Edited by Mahdi Saber

 Slide 1:

 Obama:
https://imgflip.com/i/1wmgh

 Television:
Photo by Eric Ogan, CC 2.0

References!

23

https://fazackerley.files.wordpress.com/2013/04/bigdata-word-cloud-small1.jpg
http://inspiremartech.com/blog/wp-content/uploads/2012/05/Slide1.jpg
http://hortonworks.com/wp-content/uploads/2014/06/HDPSpark.png
https://wwwmatthes.in.tum.de/file/16knkokcwzfwj/EAM-Pattern-Catalog/EAMPatternCatalogV1.0.pdf
http://2.bp.blogspot.com/-NBOMQfHdceE/U4VLapgmCuI/AAAAAAAAAjA/-CVXMA7PXhs/s1600/BI+Overview.png
http://www.freepik.com/
https://imgflip.com/i/1wmgh

SELF-SERVICE

Business Intelligence TOOLS

Access source data

Usability

Consume and enhance the results

 Easier deploy and manage

24

Technical Debt Calculation
and Uncertainties
Waqas Ahmed

Technical Debt?

What is Technical Debt?

● Technical debt is earned when technical compromises are made to gain

short term benefits.

● These technical compromises vary in nature from architecture, design,

coding to testing.

● Requires extra effort to correct and modify the code in future.

Types of Technical Debt

[1]

Three Terms For Technical Debt

1. Principle

2. Interest

3. Interest Probability

Principle

Cost of re-factoring required to fix messy code.

Interest

Extra costs and effort required by developers to work with messy code and

functionality during maintenance or new features addition.

Interest

Interest Probability

The chances of technical debt leading to future problems and costs, if it is not
paid on time.

Technical Debt Calculation Models

● SQALE

● Curtis Estimate Models

SQALE

● Used for Code Debt Calculation & Prioritization

● SonarQube - Tool support available

● Calculation is made in terms of

● Remediation Function (Principle) - Cost associated for remediation of a
requirement

● Non Remediation Function (Interest) - penalty for violations

[2]

Curtis Estimate Models1.

Model for technical debt principle calculation, using following 3 rules

1. No. of must fix violations

2. Hours required to fix all violations (Obtained from historical data of similar
projects)

3. Cost of labor

[2]

TD Model Correctness?

● Accuracy - How close your calculations are to actual values?

● Precision - How much results are repeatable?

● Uncertainty - Acceptable variation between measurements.

Accuracy & Precision

Uncertainty

● Inevitable in any SE measurement models [3]

● Uncertainties are characterized by lack of complete knowledge /

information

● As it is hard to capture all knowledge of real world scenarios in abstract

model / measurements

● Thus, affects Accuracy and Precision

TD Model Correctness

● High Accuracy

● High Precision

● Take uncertainties into account in measurement models

Uncertainty in Technical Debt Models

● Different tools have different focus.

● Different parameters, dependent, independent variables.

● Different focus of organizations. So different results for different

organizations.

● When reporting measurement methods, sufficient information must be

provided regarding associated uncertainties

General Uncertainty Principles

There are different principles to report and calculate Uncertainties:

1. Comparing Measures.

2. Propagation Of Errors.

3. Multivariate Uncertainty.

4. Technical Debt Interest Uncertainty.

Technical Debt Interest Uncertainty

● Variation in interest due to different factors.

● No modification means no interest.

● Code complexity also affects interest.

[4]

Conclusion

● Beware of earning Technical Debts.

● Pay your Technical Debts.

● Don’t forget about Uncertainties in measurements.

References

[1] M. Fowler. Technical debt quadrant. Bliki [Blog]. Available from: http://www.
martinfowler.com/bliki/TechnicalDebtQuadrant. html, 2009.

[2] J.-L. Letouzey and M. Ilkiewicz. Managing technical debt with the sqale method.
IEEE software, (6):44–51, 2012.

[3] A. Abran, A. Sellami, and W. Suryn. Metrology, measurement and metrics in
software engineering. In Software Metrics Symposium, 2003. Proceedings.Ninth
International, pages 2–11. IEEE, 2003.

[4] C. Fernandez Sanchez, J. Diaz Fernandez, J.GarbajosaSopena, and J.PerezBened. A
cost-benefit analysis model for technical debt management considering uncertainty
and time. 2013.

Propagation of Errors

Power Uncertainty

Comparing Measures

Propagation of Errors

Sum And Differences

Propagation of Errors

Product And Quotients

Propagation of Errors

Technical Debt Interest Probability

Multivariate Uncertainty

	SWC_2016_paper_1
	Introduction
	Background
	Software as a Service
	Changed Requirements

	Related Work
	Requirements Engineering Process for SaaS
	Differences Between Processes
	Systematic Transformation

	Discussion and Best Practices
	Limitations
	Conclusion and Future Work
	References

	SWC_2016_paper_3
	Introduction
	Motivation
	Configuration Management
	Tools for dynamic configuration management
	ZooKeeper
	Etcd
	Consul
	Netflix's Eureka
	Serf
	SkyDNS

	Configuration Management in Practice
	Pinterest with ZooKeeper
	Hootsuite with Consul
	Nirmata with Eureka

	Conclusion

	SWC_2016_paper_4
	Introduction
	Background
	Existing TD Prioritization Approaches
	Finance-based Approach
	Design Quality Prioritization Approach
	Metrics-based Approach

	Analysis of Existing Approaches
	Commonalities
	Differences
	Limitations

	Modularity Metrics
	Existing Modularity Metrics
	A Catalog of Modularity Metrics
	Rationale
	Low Coupling Between Modules
	Proper Distribution of Functionality
	Information-Hiding Interfaces

	Modularity-Based TD Prioritization Approach
	Overview
	Cost-Benefit Formula
	Procedure
	Applying the Approach

	Conclusion & Future Work
	References

	SWC_2016_paper_5
	Introduction
	Term Definitions
	Case studies
	Mobile Application: Etsy
	Desktop Application: Box
	Embedded System: HP Printer Firmware

	Evaluation
	Conclusion & Future Work
	References

	SWC_2016_paper_6
	Introduction
	Concepts
	Definitions
	Black-box Test Data Generator
	Random Generators
	Syntax-based Generators
	Other black-box generator types

	White-box Test Data Generator
	Real Execution
	Constraint-Based Approach
	Search-based Test Data Generation

	Limitations of Test Data Generators

	A Black Box Generation Method
	Mutation Analysis
	Web Services
	Contract-Based Mutation for Web Services
	Fault-Model
	Mutation Operators
	Data Generation
	Experimental Results

	Tool Support
	Conclusion
	References

	SWC_2016_paper_7
	Introduction
	Test Code Smells
	Test Smells and Detection Techniques
	General Fixture
	General Description
	Impact on Maintenance
	Causality
	Detecting General Fixture

	Eager Test
	General Description
	Impact on Maintenance
	Causality
	Detecting Eager Test

	Obscure Test
	General Description
	Impact on Maintenance
	Causality
	Detecting Obscure Test

	Conceptual Model
	Conclusion and Future Work
	References

	SWC_2016_paper_8
	Introduction
	Pitest's implementation of common mutation testing aspects
	Mutation operators
	Mutation level
	Computability theory based problems

	Study design
	Metrics
	Test subjects
	Mutation operator sets
	Test environment

	Test results
	Runtime and mutation score
	Equivalent mutants
	Improving the mutation operator set
	Applicability to real world software
	Bugs in Pitest

	Conclusions
	References

	SWC_2016_paper_10
	SWC_2016_paper_11
	Introduction
	Test costs
	Automated Tests
	Manual Tests
	Not Testing

	Appliance
	Example
	Visualization

	Discussion
	Conclusion and Future Work
	References

	SWC_2016_paper_12
	Introduction
	Technical Debt Calculation Models
	SQALE
	CAST: Curtis Estimate Models

	Uncertainty in Technical Debt Models
	Comparing Measures
	Propagation of Errors
	Sum And Differences
	Product And Quotients
	Power Uncertainty
	Technical Debt Interest Probability

	Multivariate Uncertainty
	Technical Debt Interest Uncertainty

	Conclusion
	References

	SWC_2016_paper_13
	Introduction
	Related Work
	Software Cartography
	Software Map Types
	UML Diagrams
	Activity Diagrams
	Sequence Diagrams
	Use Case Diagrams

	Cluster map
	Cartesian map
	Process Supporting map
	Time Interval map

	Graph Layout map

	Views, Viewpoints and Stakeholders in TOGAF
	Software Maps for core TOGAF Views
	Business Architecture View
	Enterprise Security View
	Software Engineering View
	System Engineering and Communications Engineering View
	Data Flow View
	Enterprise Manageability View

	Conclusion
	References

	SWC_2016_paper_15
	Introduction
	Underlying Concepts of BDD
	Test-Driven Development
	Acceptance Test-Driven Development
	Behavior-Driven Development

	Comparative Study of Behavior-Driven Development Tools
	Approach for Identifying Relevant Tools
	Dimensions for Comparison
	Comparison Based on a Primary Target Group
	Comparison Based on Support of Characteristics of BDD
	Comparison Based on Specific Features of Selected Tools

	Comparison of Selected Tools
	Cucumber
	Concordion
	Spock
	JBehave
	Easyb
	Summary of Comparison

	Conclusions
	References

	SWC_2016_paper_16
	SWC_2016_paper_17
	SWC_2016_paper_18
	SWC_2016_paper_19
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

	SWC_2016_paper_20
	SWC_2016_paper_21
	SWC_2016_paper_22
	SWC_2016_paper_23
	SWC_2016_paper_24
	SWC_2016_paper_25
	SWC_2016_paper_26

