
Proceedings
of Seminar

Full –Scale Software Engineering

2017
Editors: Horst Lichter

Andreas Steffens
Firdaus Harun
Konrad Fögen
Andrej Dyck
Simon Hacks
Ana Dragomir

Continuous Architecting: Just another buzzword?

Benedikt Holmes
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

benedikt.holmes@rwth-aachen.de

Ana Nicolaescu
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
adragomir@swc.rwth-aachen.de

ABSTRACT
Software architecting is always a core component in software
development process. In the last few years a new buzzword
’continuous architecting’ came up in the software develop-
ment community, describing practices avoiding common pit-
falls in architecting. While some practices optimize the ar-
chitecting process, others strive for solving the problem of
architecture erosion, whether the actual development pro-
cess being agile or not. Since most interpretations differ in
their understanding of continuous architecting, there is need
for a clear definition. This paper gathers definitions of con-
tinuous architecting concepts and discusses the novelty of
this concept.

Keywords
Continuous Architecting, Agile Architecting, Software De-
velopment

1. INTRODUCTION
Software companies aim to optimize their software devel-

opment process. Agile practices like Continuous Delivery
had a huge impact on software developers in the last years,
improving their release cycles and responsiveness [5]. These
modern development practices also have an impact on archi-
tecting practices [4]. Since architecting is a significant ele-
ment of the development process, which has not yet been op-
timized successfully [5], it implies the need for practices ad-
dressing architectural challenges. Modern approaches that
cope with architecting issues have been presented under the
name of continuous architecting in the last 2 years.
Architecture describes the ”fundamental concepts or proper-
ties of a [software] system” [1], while Architecture Descrip-
tion is everything used to express the architecture in any
desired form, commonly in form of documents [1]. The Ar-
chitect is considered to be the person or a group, which are
also responsible for producing the Architecture Description
[2]. Architecting therefore refers to the activities of the ar-
chitect [2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2016/17 RWTH Aachen University, Germany.

The ability to respond to changing requirements with a suit-
able change in architecture design is one exemplary under-
standing of continuous architecting: The classic waterfall
model begins with system analysis, which outputs system
requirements. These requirements are the main input for
architecting practices, which then output an architecture de-
scription. Nowadays modern development makes it possible
for requirements to change freely with agile development
practices. But can architecting cope with this agility and
how are changes in requirements regarding the architecture
handled? Can architecting practices aid in further optimiza-
tion of agile development concepts?
While continuous architecting can be related to agile devel-
opment concepts like Continuous Delivery, other interpre-
tations, even in non-agile contexts, are possible, due to the
scope of architectural problems. There is no clear definition
for continuous architecting yet and therefore this paper re-
views four continuous architecting perceptions to answer the
following research questions:

1. What exactly is continuous architecting?

2. Is continuous architecting just a new buzzword?

Section 3 will go into detail on selected problems that occur
with standard architecting practices. After that, in section
4, different methods to handle these problems are drawn
together. These are all presented under the name of contin-
uous architecting. Concurrently the differences and similari-
ties between these methods are discussed to finally extract a
definition for continuous architecting and discuss the novelty
of this concept in the conclusion.

2. METHODOLOGY
In this section I briefly present the literature search ap-

proaches which I used for this paper. I started to search for
literature containing the keywords continuous architecting
and continuous architecture with the online research tools
arXiv, CiteSeerX, and IEEEXplore. The keywords only ap-
peared in papers from 2015 to 2016 as it is a new trend.
Since I only found two papers I extended my search to other
materials as book or even online blogs, as these are a com-
mon medium for trending topics. I also extended my search
by evaluating the found papers for useful references on other
research papers and new keywords. The new keywords were
agile architecting and agile architecture. In total I found
seven suitable sources of which only four explicitly mention
continuous architecting.
In section 4 these four main perceptions of continuous archi-
tecting are presented and analyzed with two aims in mind:

Firstly, a definition of continuous architecting is extracted
from each perception. Secondly, similarities and differences
between the perceptions and other existing concepts are
gathered. At this point it therefore should be announced
that the summary of each concept is limited to satisfy the
research questions. So only the aspects relevant to the anal-
ysis of each of the four perceptions are mentioned. Further
detail can be found in the referenced literature.

3. CHALLENGES WITH ARCHITECTING
As already mentioned a different set of problems can be

addressed by each continuous architecting concept, due to
the scope of the topic. The presented problems are a brief
summary of the most common ones, for that solutions are
proposed in the next section.
Classic architecting involves a group of architects planning
the structure of a software system and letting developers
write the code. Eventually some factors cause the finished
products architecture to differ from the original architecture
description. Main factors are changing requirements, bad or
non-existing communication between architects and devel-
opers, as well as developers changing parts of architectural
decisions on their own [7]. These architectures are defined
as eroded architectures. This may still be a significant prob-
lem in both agile and non-agile development processes. The
amount of refactoring work grows with the delta between
architecture description and the real architecture. Having
no or an inaccurate view of the current state of architecture
makes finding and fixing errors even more difficult. This
causes architectural technical debt to accumulate, and in-
creases fixing time.
Another problem is to deliver value in short- and long-term.
Short-term value delivery is ensured by agile development
and thus fast release cycles. Long-term value in contrast
must be provided by a reliable architecture. Every archi-
tecture is defined by its non-functional requirements. Long-
term quality therefore corresponds to non-functional require-
ments and how changes in non-functional requirements are
handled.
The possibility to make changes to the architecture depends
on how tightly the software components are coupled. There-
fore a monolith design, meaning the whole software system
being one coherent entity, definitely causes problems with
agility. Also, architects without deep knowledge in both the
business and the technology have low response to trending
architectural and/or development practices. This may lead
to yet another conflict between architects and developers.

It becomes obvious that an architecture needs to be more
than just a pre-development blueprint. Architecting now
starts to become a process, of continuously managing and
monitoring the current state of the architecture. Also, there
is no main problem, but rather a range of problems:

• lack of communication

• architecture erosion (causing architectural technical debt)

• response to changes in (non-functional) requirements

• monolith designs

• an architects lack of knowledge of both the business
and the technology

4. PERCEPTIONS OF CONTINUOUS
ARCHITECTING

Here, different methods that are labeled as continuous ar-
chitecting approaches shall be introduced to discuss the nov-
elty of the continuous architecting concept and find a suiting
definition. Since every method focuses on different problems
and development contexts, depending on what they aim to
accomplish, the definitions and practices vary. Perception
I introduces a technical software framework to aid design-
ing and refactoring big data architectures presented under
the name of ”Continuous Architecting of Stream Based Sys-
tems” [3]. Perception II is based on a research paper, which
conducts a multiple case study on continuous architecting,
mostly in large agile companies [7]. It presents an organiza-
tional framework to undertake gaps in architecting practices,
like communication issues, and architecture management to
tackle architecture erosion and ensure short- and long-term
responsiveness. Perception III, also labeled as a continuous
architecting approach, introduces guidelines for an architec-
tural style that supports modern delivery methods and is
suitable for both agile and non-agile development. Percep-
tion IV is some kind of special case of the method presented
in perception III dealing with a special architecture design
namely micro-services.

4.1 Perception I
The first perception of continuous architecting derives from

the big-data domain and focusses on aiding architects in de-
signing and maintaining architectures processing big-data.
The vast amount of software components in big-data ar-
chitectures makes it difficult to tackle architecture erosion
and refactor initial architecture designs. However, accord-
ing to the authors of the research, the main complexity lies
in maintaining the effectiveness of big-data architectures.
Effectiveness is defined as such: ”Effectiveness, in big-data
terms, means that the architecture as well as the architect-
ing process [...] are able to support design, deployment,
[...] refactoring [...] of architectures continuously and consis-
tently with runtime restrictions imposed by big data devel-
opment frameworks.” [3] Maintaining and quickly evaluating
the effectiveness of a big data architecture is accomplished
by using a continuous architecting approach. In the context
of big-data the understanding of continuous architecting is
the ”[support of] continuous improvement of big data archi-
tectural designs” [3].
Automated support to aid in continuous architecting is given
by the technical analysis framework OSTIA [3]. OSTIA
focusses on the development framework Apache Storm [3].
The framework provides help by finding design anti-patterns
in the analyzed architectures, checking if the architecture
is consistent with runtime restrictions of the development
framework and finally visualizing big data architectures in
an understandable way. Anti-patterns are defined as design
patterns that possibly decrease performance or deployabil-
ity.
Since the framework specifies on one development frame-
work, details on the anti-patterns and architecture analysis
method shall not be presented. Although the way the frame-
work works shall be broadly summarized: Through logical
code analysis and runtime monitoring of the running archi-
tecture information regarding the architecture is gathered in
a repository to be easily used by algorithms, that e.g. ana-

lyze anti-patterns.
So concluding, OSTIA helps to apply a continuous archi-
tecting method to maintain architecture effectiveness and
therefore makes refactoring of big data architectures easier.

Sadly the definition of continuous architecting is not fur-
ther detailed in this paper, and rather vaguely described
as continuous improvement of bgi-data architecture designs.
This may be due to this perception being tightly restricted to
the big-data domain and to the Storm development frame-
work. Because the papers focuses on this domain and this
special framework, it can be assumed that this method is
new.
Although one finding concerning ’domain-less’ continuous
architecting is shortly mentioned. It is advised to create a
running architecture as soon as possible, which then can be
refactored during development, instead of trying to optimize
the architecture in design time. Another problem solved by
this method is architecture erosion, since the current archi-
tecture is constantly visualized and refactored.

Regarding the research questions it can be said that the
given definition of continuous architecting is the continuous
improvement of big-data architecture designs. Since no sim-
ilar approach could be found, the detailed method presented
in this perception is assumed to be new.

4.2 Perception II
The next perception of continuous architecting derives

from a research study involving large agile software devel-
opment companies that apply a component based software
architecture. The research aims to find gaps in architecture
practices and links these to faults in companies organiza-
tional structure.
The proposed organizational restructure resulted in over-
all improvement in risk management, decision management,
and communication among architects and developers. De-
tailed consequences are reduction of architecture erosion and
improvement in short- and long-term responsiveness, hence
also reduction of architectural technical debt.
The organizational restructure is specified by the conceptual
CAFFEA framework [7]. It defines new roles for architects
and teams, as well as processes for communication flow be-
tween these parties, to close the gaps in architecting prac-
tices. A brief summary of the framework shall be given here:
On top sits the Chief Architect who ”takes high-level deci-
sions” [7]. The Governance Architects coordinate develop-
ment teams and monitor architecture erosion. One Team
Architect is part of each development team and therefore
responsible for the architecture implementation in his team.
Good communication is assured through regularly meetings
of Team Architects with their superior Governance Archi-
tect and Governance Architects with the Chief Architect.
Development teams are split into feature-teams and runway-
teams. Developing new features in context of short respon-
siveness is the main purpose for feature teams. Alongside
the feature-teams there are several runway-teams, who are
utilized to handle the often low prioritized architecture refac-
toring tasks, hence ensure long-term responsiveness and lower
the architectural technical debt.
The hierarchy of architecture roles closes feedback loops be-
tween the development teams and the different architect

roles, giving developers a better understanding of the archi-
tecture and architects a better visualization of the current
state of the architecture.

This research paper does also not specify what the au-
thors definition of continuous architecting really is. Nev-
ertheless long-term benefits are due to a reliable architec-
ture. Therefore continuous architecting can also be only
roughly described as the following: the support for continu-
ous development and management of software architecture
in large software companies, especially developing embed-
ded software; continuity in this case being provided through
regularly meetings as mentioned above. The architecture
management is improved by applying the said organizational
framework. Also, without further introduction the terms
continuous architecting and Agile Architecting are used in-
terchangeably. So this yields the question if this approach
is actually a new approach.
To prepare a continuous architecting vs Agile Architecting
comparison, a definition of Agile Architecture from 2015 by
Waterman et al. shall be briefly mentioned: ”We define ag-
ile architecture as an architecture that satisfies the definition
of agility by being able to be easily modified in response to
changing requirements, is tolerant of change, and is incre-
mentally and iteratively designed - the product of an agile
development process” [8]. The understanding of continu-
ous architecting and Agile Architecting so far share some
similarities. Firstly, both strive for a dynamic and respon-
sive architecture improvement approach regarding changes
in requirements and being based on agile software develop-
ment. Though the technicalities of the approach may differ
between the two concepts. Secondly, both produce similar
results, in reducing architecture erosion, hence reducing ar-
chitectural technical debt. So the detailed approach behind
this continuous architecting perception might be new, but
the general idea is not.
This understanding does not differ so greatly from percep-
tion I and also some similar problems are solved, e.g. archi-
tecture erosion. Both see the faults in architecting practices
being caused by bad architecture management and both ap-
ply an approach to make architecting more dynamic and
close feedback loops. In detail the perceptions’ approaches
do differ a lot, since perception I introduces a technical
framework, whereas the second perception presents a con-
ceptual framework. Also, perception I is mostly restricted
to aid refactoring only for big data architectures, while this
study is actually a study conducted with companies mostly
doing embedded software development. The evaluation of
the CAFFEA framework also only took place in these com-
panies. But still the idea behind the CAFFEA framework,
due to the frameworks conceptual nature, is easier applica-
ble to other software development domains than the meth-
ods from perception I.

Back to the research questions: continuous architecting
is defined as continuous architecture development and man-
agement to augment long-term value delivery, which is over-
seen by most agile software development practices. Also,
this definition has a strong similarity to Agile Architecting
as understood by Waterman et al. [8].

4.3 Perception III
There is a need for an architectural approach that sup-

ports modern rapid delivery methods. The software devel-
opment cycle refers to a process description of software de-
velopment. The development cycle specifies distinct phases
in development, e.g. development - build - integration - test-
ing - deployment - maintenance. Often, the last steps in the
software development life cycle, e.g. QA-Testing and De-
ployment, are still error-prone and time consuming, because
agile development practices mainly focus on optimizing early
steps in the life cycle [6]. These would be build and integra-
tion steps.
Murat Erder and Pierre Pureur present an architecting con-
cept defined as continuous architecting, which deals with
this lack [6].
Their concept does not mainly provide an aiding framework
or a process description, but rather an architecting style de-
fined by six principles. A large set of tools is also presented
in this book, but they aid to apply the principles. The spe-
cific implementation of the practices depends on the context
of the company and its product and therefore the tools will
not be presented in this paper.

The six architecture principles are the following [6]:

1. Architect products not projects

2. Focus on Quality Attributes

3. Delay design decisions

4. Architect for change

5. Architect for build, test and deploy

6. Model the organization after the architecture design

Principle 1 suggests that cost and effort for architecting
should be used more efficiently. Instead of architecting for
small projects, a product-centric focus should be applied to
architecting, making use of architectural reusability. For
similar products, regarding the requirements, one architec-
ture design can support multiple products. Principle 2 em-
phasizes that architecting decisions should only base on non-
functional requirements, since these are the requirements
that explain how the system works and restrict the architec-
tural design choices. For this to work, more effort must be
spend on specifying non-functional requirements sufficiently.
Principle 3 recommends to only make architecting decisions
based on clearly defined requirements. Making design de-
cisions in advance for unknown or insufficient detailed re-
quirements, is an unnecessary loss of time and effort. This
principle suggests to develop a minimum viable architecture
(MVA), an architecture that restricts itself to the known re-
quirements and is extended only when needed. With this
approach the architecture is developed incrementally over
time, and saves time designing for unknown requirements.
Principle 4 explains how to architect for changing and future
requirements. At the start of development, only a few non-
functional requirements may be known good enough to influ-
ence architectural design decisions, as principle 3 proposes
to ignore unclear requirements. Through a loose coupling
of software components, making them independent of each
other, the design stays simple and allows substitution or ad-
dition of software components. With applying this principle,

as the authors says, one leverages the power of the small [6].
This means that many loosely coupled software components
are more powerful in comparison to one monolith-like archi-
tecture regarding changes in requirements. An example for
a loosely coupled architecture is the micro-service architec-
ture, which will be discussed in more detail in concept IV.
Though not all software systems are easy to be modeled as a
set of loosely coupled components. However, loose coupling
may still be a mechanism to add future software components
to a mainly monolithic-like architecture design. Principle 5
is the first principle that relies on agile techniques being ap-
plied to the development process. The first four principles
can also be applied to non-agile development and delivery
processes. In agile development although parts of the soft-
ware development life cycle are still time consuming. The
architecture must be optimized for these steps, which are
testing and deployment processes. This results in a higher
prioritization of specific non-functional requirements, which
must be taken into account when architecting. Practices
may be to introduce APIs for testing and/or make use of
principle 4 and test loosely coupled components indepen-
dently. Principle 6 suggests an organizational structure ori-
entated by capabilities/user stories, rather than by layers of
the architecture. Organizing the development teams in such
a way, enhances the feeling of responsibility for a function-
ality and ensures independence between development teams.

In this research continuous architecting is defined as a
set of architecting rules and supporting tools to efficiently
support both incremental and agile delivery methods, like
Continuous Delivery, from an architectural perspective [6].
It is neither a process description nor a methodology [6].
This makes this perception independent from any domain
as long as an incremental or agile delivery method is ap-
plied. One aspect shared by perception I and III is the idea
of delivering a minimum viable architecture. Perception II
and III both aid agile (or in some cases incremental) develop-
ment/delivery practices, but differ in their goals: Perception
II focusses on long-term responsiveness, whereas this one fo-
cusses on improving software delivery. Although not defined
as continuous architecting approaches, two researches with
similar approaches from 2015 promote the idea behind this
perception of continuous architecting. Let’s see if it is actu-
ally a new approach and what we can additionally learn from
similar approaches. The first research is by Lianping Chen
[4] and deals with the challenge to integrate existing prod-
ucts and projects to Continuous Delivery process and the
new challenges Continuous Delivery has given architecting
practices. The main research question is what architecting
for Continuous Delivery implies; more details on the con-
cept can be found in the referenced paper [4]. Outcome of
this research are a set of architecturally significant require-
ments (ASR). These are non-functional requirements that
must be met by architectures to successfully integrate the
product into the Continuous Delivery process. Modifiabil-
ity, Deployability and Testability are part of the mentioned
ASRs, which are related to the above mentioned principles
2, 4 and 5 by Erder and Pureur [6]. These ASRs promote
the acceleration of product delivery, since they ensure that
the architecture is optimized for the different stages of the
development life cycle.
The second research by Michael Waterman et al. [8] deals
with the issues of how much architecting should be done up-

front of agile software development. They present a guide-
line to handle this issue as result of a grounded theory of
agile architecting. This guideline consist of five architecture
strategies. These strategies can be applied depending on
the architecture team’s context, which consists by six forces
(e.g. Experience or Team Culture) [8]. More details on the
concept can be found in the related paper [8]. Important
is what we can learn from this approach: Early delivery in
context of Continuous Delivery can only be achieved by re-
ducing upfront effort and neglecting some future-features [8].
This includes neglecting architectural practices, and there-
fore means to delay design decisions (related to principle 2
[8]). Design decisions which are not made upfront cause less
architecturally technical debt. Instead of a full architecture
and analog to a minimum viable product [6], a minimum vi-
able architecture should be developed. ASRs are also men-
tioned in this paper as a cause for architecture complexity.
Therefore these requirements are high prioritized.
So parts of perception III approach have already been pro-
posed under the name of agile architecting. This yields the
same discussion need as in the last subsection. But since
continuous architecting here is not defined as a process or a
methodology, where for example Waterman et al. [8] rather
give a preset of when to apply which strategy.
Therefore it can be assumed that this perception’s method is
also new although the similarity to Agile Architecting can-
not be overseen. Also, this perception exceeds the two pro-
moting researches, since more principles are introduced.

Concluding it can be said that continuous architecting was
defined as a set of rules of an architecting style that aids in
speeding up software delivery and is similar to two Agile
Architecting approaches. Also, rough similarities are shared
with the preceding perceptions.

4.4 Perception IV
The micro-service architecture was shortly mentioned in

the last subsection and is a discussed topic in an continuous
architecting online blog [9], wherefore this becomes a per-
ception of its own. Micro-services are definitely not a new
architecture model, as they were introduced in agile devel-
opment around the early 2000 and the fundamental idea is
even older. The micro-service architecture derives from the
unix philosophy: The architecture consists of many small
components, which are loosely coupled, run independently
and only implement one task, for which they are specialized.
The micro-service architecture is a special version of percep-
tion III because it is conform with the six principles men-
tioned. It specializes in principle 4, due to all components
being loosely coupled. Also, the architecture is fit for build,
test and deployment steps, since components are indepen-
dent from each other and have their own runtime environ-
ment.
Regarding all so far presented approaches, this approach is
rather static. Where all others present continuous archi-
tecting as something dynamic that produces an architecture
description over time, micro-services seem like an out-of-the-
box solution. The architecture design is already given and
does not have to be reinvented. One interesting question is
if the micro-service architecture can solve all problems that
are presented in perception III sufficiently, as it is more a
predevelopment blueprint, which originally was a core prob-

lem.
Micro-services are well suited for an agile development and
delivery process. Every service is mostly independent of the
rest of the system, which is why new services are easily in-
troduced into a running system. They can be implemented
in different languages, as long as the meet certain fixed in-
terface requirements. Parallel work on features is possible.
Each service can be tested individually. A micro-service ar-
chitecture is defined as robust, because failure in one service
does not force the whole system to fail.
Therefore, this architecture style is not suitable for domains
that are forced to implement heavy coupled components,
for whatever reason. Also, due to the fixed architecture
design, maybe some non-functional requirements are deter-
mined and/or trade-offs between them might be restricted.
For example, security is a well known problem with micro-
services. The attack surface is enlarged by communica-
tions growth, hence this implies a growth of interfaces, ex-
posing software functionality. Security for micro-services
can hardly be assured without a trade-off for other non-
functional requirements. This hinders the responsiveness
concerning change in quality requirements.
So in perspective of perception III the micro-service archi-
tecture is a good solution for delivery acceleration, only if
the architecture suits the products quality requirements.

But micro-services can also support other continuous ar-
chitecting perceptions. Eberhard Wolff presents two under-
standings of continuous architecting in his online blog [9]:

1. The phrase continuous architecting derives from the
phrase Continuous Delivery and describes improvement
in deployment processes

2. Architecture is no document but rather a process and
the architecture must be adjusted continuously accord-
ing to new experiences gained by developers and by
architects and changing requirements.

Both definitions are familiar.
As micro-services where already discussed in context of Wolff’s
first definition, they shall now be discussed regarding the sec-
ond, which resembles perception II. To recall, this deals with
communication issues in companies hindering long-term value
delivery. With the micro-service architecture applied com-
munication need shrinks within the group working on a prod-
uct [9]. This is due to every service being runtime-independent
from the others. Freedom in decision-making in develop-
ment teams includes details as choosing a framework or a
programming language. Different development teams do not
need to know the implementation of other services as long
as they have knowledge of their interfaces. What is new
about this statement is, that the services are completely
runtime independent software components and not for ex-
ample classes in the same executable. This implies a new
context for architecting practices [9]. The architect only
needs to design the communication protocols and assign the
functionalities to be implemented by a service [9]. The ar-
chitect does not dictate how developers have to implement
the said functionality for a service anymore. So communi-
cations issues as mentioned in perception II are resolved by
this architecture. Long-term responsiveness is also assured,
due to a sound architecture design.

The micro-service architecture as a static concept also
brings a solution to the other continuous architecting percep-
tions. Back to the research questions: Eberhard Wolff’s def-
initions of continuous architecting are already known from
perceptions II and III , i.e. no new definitions are intro-
duced here. But new methods to resembling definitions of
perception II and III. The micro-service architecture, if it
suits the products quality requirements, is a good solution
to architecting challenges but must be handled with care
considering significant changes in quality requirements.

5. DEFINITION OF CONTINUOUS
ARCHITECTING

To formulate a final answer to the first research question
the found definitions are reviewed. Although there were
only four definitions for continuous architecting, some are
mostly similar. Due to the small amount of found defini-
tions, there is no definition that forms the majority. With-
out further detail the definition of continuous architecting
remains twofold:

1. Continuous architecting is the continuous improvement
of an architecture by including new experiences, gained
by developers and architects throughout development,
and responding to changes in requirements via apply-
ing dynamic architecture development and manage-
ment practices with the aid to support agile software
development practices.

2. Continuous architecting is the elimination of bottle-
necks in the software development life cycle by improv-
ing delivery processes in incremental or agile delivery
methods via adopting an architectural style that opti-
mizes the architecture for test and deployment scenar-
ios.

Continuous architecting remains a generic term for software
architecture improving practices, due to these ambiguous
definitions.

Now an answer for the second research question shall be
given. Both of the above definitions are similar to different
approaches that are already defined as Agile Architecting.
Therefore it can be said that continuous architecting shares
the same aims as Agile Architecting, although Continuos Ar-
chitecting brings forward some new practices in comparison
to the Agile Architecting papers and researches presented
here.

6. CONCLUSION
The perception’s approaches turn out to be a technical

framework aiding big-data architecture design, a conceptual
framework that restructures organizations to improve long-
term value delivery, a set of rules or guidelines that describe
an architecture style, which speeds up the software delivery
process, and finally a special architecture model, the micro-
service architecture. The need for solving only a small subset
of a large set of architectural problems, results in very dif-
ferent kinds of approaches, depending on the problems that
are solved. As mentioned in the previous section, there are
only vague definitions for a subset of approaches that are

labeled as continuous architecting.

Without further effort of giving a concrete definition, con-
tinuous architecting and Agile Architecting, as terms, may
be used interchangeably, meaning that continuous architect-
ing is just another buzzword.

7. FUTURE WORK
Since this research is only based on so little amount of

papers, future work could include evaluating future percep-
tions or researches on continuous architecting to expand this
research. On the other hand the authors of the presented
papers could specify their understanding of continuous ar-
chitecting by giving a more precise definition themselves.

8. REFERENCES
[1] ISO/IEC/IEEE 42010 A Conceptual Model of

Architecture Description.
http://www.iso-architecture.org/ieee-1471/cm/.
Accessed: 2016-12-10.

[2] ISO/IEC/IEEE 42010 Thoughts on an Architecting
Process. http://www.iso-architecture.org/ieee-
1471/applying-the-standard.html. Accessed:
2016-12-10.

[3] M. M. Bersani, F. Marconi, D. A. Tamburri,
P. Jamshidi, and A. Nodari. Continuous Architecting of
Stream-Based Systems. 2016 13th Working IEEE/IFIP
Conference on Software Architecture (WICSA), pages
146–151, 2016.

[4] L. Chen. Towards Architecting for Continuous
Delivery. Proceedings - 12th Working IEEE/IFIP
Conference on Software Architecture, WICSA 2015,
pages 131–134, 2015.

[5] T. Dyb̊a and T. Dingsøyr. Empirical studies of agile
software development: A systematic review.
Information and Software Technology,
50(9-10):833–859, 2008.

[6] M. Erder and P. Pureur. Continuous Architecture:
Sustainable Architecture in an Agile and
Cloud-Centric-World. 2016.

[7] A. Martini and J. Bosch. A multiple case study of
continuous architecting in large agile companies:
current gaps and the CAFFEA framework. Proceedings
- 2016 13th Working IEEE/IFIP Conference on
Software Architecture, WICSA 2016, pages 1–10, 2016.

[8] M. Waterman, J. Noble, and G. Allan. How much
up-front? A grounded theory of agile architecture.
Proceedings - International Conference on Software
Engineering, 1:347–357, 2015.

[9] E. Wolff. Continuous Architecting Blog.
https://www.heise.de/developer/Continuous-

Architecture-2687847.html. Accessed: 2016-12-11.

http://www.iso-architecture.org/ieee-1471/cm/
http://www.iso-architecture.org/ieee-1471/applying-the-standard.html
http://www.iso-architecture.org/ieee-1471/applying-the-standard.html
https://www.heise.de/developer/Continuous-Architecture-2687847.html
https://www.heise.de/developer/Continuous-Architecture-2687847.html

A Look at the Evolution of Software Architecture Evolution
since 2010

Joël Pepper
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

joel.pepper@rwth-aachen.de

Ana Nicolaescu
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
ana.nicolaescu@swc.rwth-aachen.de

ABSTRACT
As Software systems have become increasingly more com-
plex and longer-lived, the focus of Software Development has
started to shift towards not only architecting software well,
but keeping it well-architected throughout its life span. This
continuous adaptation of software architecture over years of
changing needs and goals is called software architecture evo-
lution (SAE). Understanding the ramifications of SAE will
become only more important as the trends toward even more
complex and even longer-lived software systems continues.
In 2012, Breivold et al. published a comprehensive system-
atic review of the existing research into SAE [7]. The review
categorizes and analyses the research available in major elec-
tronic databases with publishing dates before end of August
2010. This paper provides a look at how the research field it-
self evolved since then. To assess the direction SAE research
has taken since 2010, we analysed the impact each of the 82
studies identified in Breivold’s review has had now that 6
years have passed. Further we compared the studies current
impact with their citation ranking that Breivold identified
in 2010, showing which studies gained traction in the SAE
research community and which were disregarded. Finally,
we partially replicated Breivold’s review for the time span
of 2010–2016. We employed Breivold’s methodology to iden-
tify 5 of the most influential papers published between 2010
and November 2016. We then used these studies as rep-
resentatives to gauge which research trends were the most
common during this time span. By comparing the impact of
these newer papers with the most influential papers Breivold
identified in 2010 we established their overall relevance in the
field. Based on the results of the impact-analysis, we then
formulated multiple plausible hypotheses to explain trends
visible in the data. We also discussed possible ways of fal-
sification for each hypothesis as basis for deeper analysis in
further research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2016/17 RWTH Aachen University, Germany.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.11 [Software
Engineering]: Software Architectures

Keywords
software architecture evolution, software architecture, sys-
tematic review, literature review

1. INTRODUCTION
The research into Software architecture has made great

strides toward enabling software engineers to create com-
plex software systems in an increasingly more reliable and
well understood fashion. However, now that these software
systems underpin almost every facet of our lives, the more
important systems have gained a lot of inertia. This re-
quires them to stay in place and cope with an ever changing
environment as ”legacy systems”, due to the infeasibility of
outright replacement. Modern software systems often have
lifespans in the range of 10–30 years [20, 6]. No matter how
well the software architecture fulfils all requirements and
enables maintainability, it will need to evolve to satisfy new
goals, concerns and opportunities, sometimes in significant
ways. Understanding these pressures on software architec-
ture, which go beyond the concept of maintainability, forms
the basis of Software Architecture Evolution (SAE) research.

Because longer-lived software systems have only become
widespread in the last few decades, the field of Software Ar-
chitecture Evolution is relatively young. Most research has
been conducted in the last 15 to 20 years. In an important
step into understanding the extent of the field, Breivold et
al. [7] have conducted a systematic review of the field, iden-
tifying 5 main categories of Software Architecture Evolution
research. Breivold’s review looked at all studies published
before the third quarter of 2010. While this review has been
very thorough and helpful in comprehending the existing re-
search on Software Architecture Evolution, almost 6 years
have passed since the data was gathered and analysed by
Breivold et al. For such a young subject of research 6 years
can represent a very long time in which major shifts and
breakthroughs can happen.

We believe that updating the review is necessary to once
again gain a complete picture of the field. While we are
not able to completely re-do Breivold’s review using the
full set of all matching studies published to date, we will
re-examine the original set of relevant studies identified by
Breivold et al. as well as identify 5 high-impact studies

published between 2010 and 2016. These studies will serve
as representatives of the direction SAE has evolved since
Breivold’s review. By comparing relative impact of this new
dataset as well as changes in Breivold’s set of 82 studies to
Breivold’s original impact analysis, we can formulate plausi-
ble hypotheses about the reason why these particular stud-
ies were favoured by the research community. This in turn
could allow us to discern the current influences on and di-
rections of SAE research. Such hypotheses can then serve
as research question to evaluate the current State of Soft-
ware Architecture Evolution in depth in follow up studies.
As such we view this paper akin to a pre-study that enables
us to formulate targeted, potent research questions for in-
depth study of the complete set of all studies.

The remainder of this document is structured as follows:
Section 2 outlines the methodology we employed and how we
developed it, divided into the areas of impact analysis, data
extraction from Breivold’s results and data collection with
regards to finding recent influential studies. In Section 3 we
describe the results of our data extraction ordered by cita-
tion count, comparing previous citation rankings recorded
by Breivold [7, Table 5] with our current ranking. We also
present the results of our data collection and put the rel-
ative impact of the current papers in perspective with the
extracted studies from [7]. In Section 4 we analyse the trends
that emerged in the data and put forth multiple plausible
hypotheses as to why these trends can be observed. Finally,
Section 5 collects our considerations, conclusions as well as
starting points for future research.

2. METHODOLOGY
Because our study was created as an extension of Breivold

et al.’s systematic review, which in itself is based on the
guidelines outlined in by Kitchenham et al.[15], we took
specific care in constructing our research protocol to pre-
serve comparability with Breivold’s review. We worked with
two main datasets: The 82 studies originally identified by
Breivold (which we will refer to as Breivold82 in the rest
of the paper) and a small set of representative high-impact
studies published since 2010. Both sets of studies were col-
lected in the citation tool Mendeley1 to facilitate collabora-
tion and review of the dataset as well as simplify organiza-
tion of the studies.

2.1 Impact Analysis
We decided on aggregate number of citations of all pub-

lished versions as a measure of impact for a given study. The
reasoning for this was twofold: First citation count is a gen-
erally good, although not perfect indicator of impact as long
as a comprehensive list of sources is used to find citations.
Second citation count based rankings provide comparability
to the results of [7, Table 5], which analysed citation counts
as of 2010. The aggregate citation counts were taken from
Google Scholar 2 as of November 30th 2016.

2.2 Breivold82
The full dataset Breivold et al. identified as relevant to

the field of Software Architecture Evolution is listed as ref-
erences in the appendix of their paper [7]. The data is rep-

1https://www.mendeley.com
2http://scholar.google.com

resented as a list of human readable references. The refer-
ences are formatted in a consistent style, which starts with a
comma-delimited List of Authors, followed by the Title, the
containing publication, the year of publication and a page
reference where applicable. The format employed does not
conform to any of the popular ”MLA”, ”APA”, ”Chicago”,
”Harvard” or ”Vancouver” citation styles. Furthermore, the
same character (a comma) is used to delimit the fields of
the reference as well as the entries of the Author list. This
uncommon format made it impossible to parse the reference
string automatically with common freely available reference
extraction tools. Writing a parser for the custom format
employed would have been possible, however we opted for
human extraction via manual searches on Google Scholar,
as this allowed us to also retrieve the desired aggregate cita-
tion counts for all versions of each paper at the same time.
Having extracted the data set and connected every item to a
Google-Scholar backed citation count allowed ordering of the
set and comparison to Breivold’s most cited studies ranking
from 2010 [7, Table 5]).

2.3 Recent High-Impact Studies
In order to replicate Breivold’s review for papers published

since 2010, we queried the seven electronic study databases
listed in [7, Section 2.2] using the search terms outlined in
[7, Section 2.3] for initial discovery3. However, we were not
able to search the ”Compendex”4 database, due to insuffi-
cient access privileges. To compensate for this, we included
a search on Google Scholar with the same query, as Google
Scholar is able to index the missing database and should
therefore be able to discover all relevant studies contained
in the ”Compendex”. The results were filtered to exclude
studies published before 2010 using each database’s internal
filter mechanism. Because we were only interested in iden-
tifying a few representative studies with high impact, we
did explicitly not test every single item for its adherence to
the inclusion and exclusion criteria outlined in [7, Table 1].
This approach would have been infeasible, given the scope of
this pre-study, as most of criteria cannot be evaluated auto-
matically. Instead, we used the database’s internal citation
counts to order the results in descending order. From ev-
ery database, we obtained the two most cited studies, which
fulfilled the inclusion and exclusion criteria based on Title
and Abstract of the paper. This process mirrors steps (i)
to (iii) of the multi-step process used by Breivold et al. for
study selection. These studies formed the initial discovery
set, from which we selected the 5 most influential studies
according to our criteria for (see Impact Analysis) for the
final comparison against the most cited studies among the
Breivold82 (as identified by Breivold in 2010 [7, Table 5]).

3. RESULTS
We first collected and sorted our results for each data set

separately. Then we merged the 5 most influential recent
high-impact studies and surveyed the combined data set af-
ter ordering anew.

3SpringerLink articles which were marked ”preview-only”
and therefore unpublished as of November, 30th 2016 were
not included in the dataset, because they are not technically
published yet at the time of writing
4http://www.engineeringvillage.com

https://www.mendeley.com
http://scholar.google.com
http://www.engineeringvillage.com

Rank Citations Change Title

01 7081 0 L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, Addison-Wesley
Professional,2010

02 2493 0 L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos, Non- functional Requirements in Soft-
ware Engineering, Springer, 2000.

03 1943 0 J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a
Product-line Approach, Addison-Wesley Professional, 2000.

04 1266 0 P. Clements, R. Kazman, M. Klein, Evaluating Software Architectures: Methods and
Case Studies, Addison- Wesley, 2006.

05 989 0 C. Hofmeister, R. Nord, D. Soni, Applied Software Architecture: A Practical Guide
for Software Designers, Addison-Wesley Professional, 2000.

06 664 +2 M.M. Lehman, J.F. Ramil, P.D. Wernick, D.E. Perry, W.M. Turski, Metrics and
laws of software evolution – the nineties view, in: 4th International Symposium on
Software Metrics, 1997

07 640 -1 R. Kazman, L. Bass, G. Abowd, M. Webb, SAAM: a method for analyzing the prop-
erties of software architectures, in: International Conference on Software Engineering,
1994, pp. 81–90.

08 612 -1 R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J. Carriere, The archi-
tecture tradeoff analysis method, in: IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS), 1998, pp. 68–78.

09 334 +2 P. Bengtsson, N. Lassing, J. Bosch, H. van Vliet, Architecture-level modifiability
analysis (ALMA), Journal of Systems and Software 69 (2004) 129–147.

10 330 0 K.J. Sullivan, W.G. Griswold, Y. Cai, B. Hallen, The structure and value of modu-
larity in software design, in: European Software Engineering Conference held jointly
with 9th ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, 2001, pp. 99–108.

11 329 -2 M. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbacci, H. Lipson, Attribute-based
architecture styles, in: Working IEEE/IFIP Conference on Software Architecture
(WICSA), 1999.

12 261 * E. Fricke, A.P. Schulz, Design for changeability (DfC): principles to enable changes
in systems throughout their entire lifecycle, Journal of Systems Engineering 8 (2005).

13 204 -1 R. Kazman, J. Asundi, M. Klein, Quantifying the costs and benefits of architectural
decisions, in: Interna- tional Conference on Software Engineering, 2001.

14 160 * A. Tang, M. Ali Babar, I. Gorton, J. Han, A survey of architecture design rationale,
Journal of Systems and Software 79 (2006) 1792–1804.

15 143 * A. Tang, P. Avgeriou, A. Jansen, R. Capilla, M. Ali-Babar, A comparative study of
architecture knowledge management tools, Journal of Systems and Software 83 (2009)
352–370.

16 139 * M. Ali Babar, I. Gorton, A tool for managing software architecture knowledge, in:
International Conference on Software Engineering Workshop on Sharing and Reusing
architectural Knowledge-Architecture, Rationale, and Design Intent, 2007.

17 137 -4 P. Bengtsson, J. Bosch, Architecture level prediction of software maintenance, in:
European Conference on Software Maintenance and Reengineering (CSMR), 1999,
pp. 139–147.

18 134 -1 A. Jansen, J. Van der Ven, P. Avgeriou, D.K. Hammer, Tool support for architectural
decisions, in: Working IEEE/IFIP Conference on Software Architecture (WICSA),
2007.

19 130 -4 W.M.N. Wan-Kadir, P. Loucopoulos, Relating evolving business rules to software
design, Journal of Systems Architecture 50 (2004) 367–382.

...

26 84 -10 N. Lassing, P. Bengtsson, H. van Vliet, J. Bosch, Experiences with ALMA:
architecture-level modifiability analysis, Journal of Systems and Software 61 (2002)
47–57.

...

58 23 -44 P. Bengtsson, J. Bosch, Scenario-based software architecture reengineering, in: Inter-
national Conference on Software Reuse, 1998, pp. 308–317.

Table 1: Excerpt of the 82 Software Architecture Evolution studies identified by Breivold’s review [7] ordered
by number of citations obtained from Google Scholar as of November 30th, 2016. The second column identifies
the shift in position compared to Breivold’s original ranking [7, Table 5] according to number of citations
obtained from Google Scholar as of 4th of September, 2010. An asterisk (*) indicates that the study had
no former rank in Breivold’s original Top-17 ranking. Studies which have increased in relative impact are
coloured green, while those which decreased are coloured red. Studies without previous rank, i.e. studies
which were below rank 17 in 2010, are highlighted in beige. Unchanged entries are coloured in grey.

Database Matches

ACM Digital Library 2355

Compendex -

IEEE Xplore 5243

ScienceDirect - Elsevier 2020

SpringerLink 1440

Wiley InterScience 629

ISI Web of Science 247

Google Scholar N/A

Table 2: The number of matching studies found
in each electronic database using the binary search
string outlined in Recent High-Impact Studies as
of November 30th, 2016. No results for Com-
pendex could be retrieved, due to insufficient ac-
cess privileges. SpringerLink articles which were
marked ”preview-only” and therefore unpublished
as of November 30th 2016 were not included in the
dataset, because they are not technically published
yet at the time of writing. Google Scholar’s esti-
mated number of result varies strongly between re-
peated queries and is known to be unreliable and
was therefore omitted.

3.1 Breivold82
Table 1 shows the Breivold82 ordered by number of ci-

tations obtained from Google Scholar as of November 30th,
2016, including changes in ranking for the 17 studies which
were listed in [7, Table 5], by Breivold et al. as the 17 most-
cited studies amongst their dataset. Unfortunately, Breivold
et al. did not provide a ranking past the Top-17, as such we
do not know what relative impact these other studies had
at the time the data was gathered. It should be noted, that
the Top 5 studies have not changed in ranking since 2010
and that the 11 most cited studies have remained the same,
except for reordering among the ranks 6–11. The first ”new”
study, that is a study that was not among the 17 most-cited
Software Architecture Evolution studies in 2010, and there-
fore had not been captured in Breivold’s table of most-cited
studies, now appears on Rank 12 within the Breivold82. Po-
sition 13 is held by former Rank 12 and Rank 14–16 are filled
with three studies which also did not appear in Breivold’s
2010 ranking. Rank 17–19 are taken by studies which have
been displaced by the newcomers. There are only two stud-
ies which are not close to their former rank. The first is
[18], which has dropped 10 places and now occupies rank
26. Biggest ”Loser” is [3] which has been overtaken by 44
other studies and now resides on rank 58.

3.2 Recent High-Impact Studies
Table 2 shows the number of matching papers identified in

each queried database using Breivold’s search String. In the
pre-selection phase, 14 Papers were identified, two from each
individual database, according to the database’s internal ci-
tation counts for each study. As noted in the Methodology
section, we replaced the query to the Compendex with a
Google Scholar query, because Google Scholar can index the

Compendium and therefore this query will yield two papers
that are at least as influential as the two most influential
papers available in the Compendex. Table 3 shows the 14
papers broken down by publishing year.

3.3 Comparison to Breivold’s Results
Table 4 lists the five most influential studies taken from

among the initial discovery set of 14 listed in Table 3 which
were found by applying Breivold’s [7] search criteria to the
time span of 2010–2016. After adding these five to the initial
Breivold82 set, we resorted the studies by citation count to
generate a comparative ranking. The first column of Table 4
lists the position of each study in this expanded ranking, as
recorded by Google Scholar as of November 30th 2016.

4. DISCUSSION

4.1 Breivold82
When we look at the changes within the Breivold82 set

from 2010 to 2016, we immediately noticed the block of 5
studies near the top, which have kept their place as most
cited SAE studies of all time and whose citation counts set
them far apart from the rest of the dataset. The single most
cited study ([2]) alone has been cited more often than any
study outside of the Top 5 combined (7081 citations vs. 6624
combined citations). A striking commonality between these
Top 5 is that all of them are standalone published books
rather than singular studies published in technical journals.
Because such books are far more comprehensive than reports
and papers which tend to be focused on much more narrow
scopes, and often include definitions for basic terms and con-
cepts it is expected that these books would aggregate a large
number of citations. It is, however, undeniable that these
have had a strong impact on SAE research and understand-
ing the concepts, which are discussed in the Top 5 Books is
likely essential to understanding the current state of SAE re-
search. Next in the ranking is a cluster of three studies with
similar citation counts of 664, 640 and 612. The compari-
son to Breivold’s data indicates that the paper by Lehman
[19] has overtaken the two papers by Kazman [13] [14] but
only by a small margin. Because this three-study cluster has
kept its position in terms of relative impact and there does
not seem to have been a major upheaval within it, we think
that Breivold’s initial analysis of the three studies should
still apply as well as it did in 2010. Next on the ranks 9–
11, we find another cluster of three studies by Bengtsson[5],
Sullivan[21], and Klein[16], with even more closely grouped
citation counts: 329, 330 and 334. With such little differ-
ence in citation count, relative ordering within the cluster
can be easily dismissed as irrelevant. The cluster itself has
remained in the same position compared to Breivold’s orig-
inal results, therefore we again defer to Breivold’s original
analysis of the studies as it still applies. On rank 12 lies
the first of the ”new” studies, that is a study whose rela-
tive impact had placed it at rank 18 or lower in 2010 and
was therefore not captured by Breivold’s most cited studies
[7, Table 5]. The paper by Fricke et al.[9] outlines princi-
ples focused on bolstering the aspects of flexibility, agility,
robustness and adaptability in systems architecture design
to enable changeability. The gain in impact for this study
since 2010 points to an increase in importance and interest
for what Breivold identifies as the category of ”Influencing
factor focused quality considerations during software archi-

B. Williams, J. Carver, Characterizing software architecture changes: A systematic review

E. Jackson, E. Kang, Components, platforms and possibilities

H. Tajalli, J. Garcia, PLASMA: a plan-based layered architecture for software model-driven adaptation

R. Lagerström, P. Johnson, Architecture analysis of enterprise systems modifiability — Models, analysis, and validation

Q. Zhu, Y. Yang, Optimizing the Software Architecture for Extensibility in Hard Real-Time Distributed Systems

S. Bode, M. Riebisch, Impact Evaluation for Quality-Oriented Architectural Decisions regarding Evolvability

T. Bellizio, G. De Tommasi, The Software Architecture of the New Vertical-Stabilization System for the JET Tokamak

2010

M. Greiler, H. Gross, Understanding Plug-in Test Suites from an Extensibility Perspective

D. Budgen, A. Burn, Empirical evidence about the UML: a systematic literature review
2011

G. Reggio, E. Astesiano, A Problem Frame-Based Approach to Evolvability: The Case of the Multi-translation

2012

H. Mannaert, J. Verelst, Towards evolvable software architectures based on systems theoretic stability

J. Conejero, E. Figueiredo On the relationship of concern metrics and requirements maintainability

M. Mirakhorli, Y. Shin, A tactic-centric approach for automating traceability of quality concerns

2014 On the Need for Evolvability Assessment in Value Management

Table 3: Breakdown of publishing years of the 14 studies identified in the initial discovery set for influential
SAE studies published in 2010–2016. The 5 most influential studies from Table 4 are colored in beige

Rank Citations Title

24 91 B. Williams, J. Carver, Characterizing software architecture changes: A systematic review

28 78 D. Budgen, A. Burn, Empirical evidence about the UML: a systematic literature review

39 53 E. Jackson, E. Kang, Components, platforms and possibilities

40 52 H. Tajalli, J. Garcia, PLASMA: a plan-based layered architecture for software model-driven adaptation

43 46 R. Lagerström, P. Johnson, Architecture analysis of enterprise systems modifiability - Models, analysis,
and validation

Table 4: The 5 most influential studies from the initial Discovery Set of 14 the found by applying Breivold’s
[7] search criteria to the time span of 2010–2016. The first column lists the position of each study if the 5
were to be added to the Breivold82 set.

tecture design”. Rank 13 ([12]), rank 17 ([4]), rank 18 ([11])
and rank 19 ([25]) are taken by studies from the 2010 Top
17 which have been slightly displaced by the arrival of new-
comers to the top of the ranking, however the loss in relative
impact is rather small and these studies still hold similar im-
portance to that of 2010, as such we again defer to Breivold’s
initial analysis. More interesting, however, is the cluster of
three studies [24],[23] and [1] on ranks 14–16, all of which
are new to the Top 17 and share a common Author: M. Ali
Babar and which focus on the topic of architecture knowl-
edge management, which Breivold previously identified as
one of the 5 main categories of Software Architecture Evo-
lution. This is a very strong indicator that the category of
architecture knowledge management has gained importance
in the SAE research community in recent years.

4.2 Recent High-Impact Studies
The publishing year breakdown of the 14 studies taken

from the electronic databases for the time period of 2010–
2016 presented in Table 3, shows the discovery set skewing
towards older studies. This trend is further exemplified if
we look at the age of the five most influential studies in

the set. Of the five, four were published in 2010, the ear-
liest year captured by the search and only one study was
published not in 2010 but 2011. No studies published after
2014 had garnered enough impact as of November 2016 to
be even captured in the discovery set. This strong correla-
tion between citation count and age calls into question the
validity of discovering recently published influential papers
by citation count alone. However the fact that the discov-
ered studies have gained enough citations to be ranked at
the top of the second quartile if ranked together with the
much older studies in the Breivold82 set, clearly indicates
that these Top 5 are influential studies, which are likely to
rise even further in influence, given similar time frames to
the studies in Breivold82. As such we are convinced, that
they can serve as representatives of newly developed and
developing trends in the field of Software Architecture Evo-
lution.

The first and most influential, of the current studies is a
systematic review conducted by Williams et al. [26], which
aims to characterize and categorize the changes that can be
made to software architecture. A robust categorization as-
sists in assessing the impact any given change to a software

architecture has. Understanding these impacts, especially
in the long term, is very helpful in understanding and steer-
ing the evolution of a software architecture and is therefore
of obvious interest to SAE research. The emergence and
popularity of such a categorization in recent years suggests
that the tools and methods to quantify changes in software
architecture were lacking, which would have had a negative
effect on the progress of SAE research. A review, focused
specifically on efforts to categorize and quantify changes in
software architecture, could validate or falsify this postula-
tion.

The second paper, another literature review, by Budgen et
al. [8] focusses on the topic empirical research about the ef-
fectiveness of the Unified Modelling Language (UML). UML
has become the de-facto standard object-oriented modelling
language in many areas of software development. The popu-
larity of this study serves as an indicator for the importance
of UML to the topic of SAE and software architecture in
general, giving software architects and developers a com-
monly accepted tool to model software. This claim could be
further substantiated by analysing the role that UML has
played in major case studies of SAE.

Both the third [10] and fourth [22] most influential re-
cent studies are concerned with the topic of Model-Driven
Architecture (MDA), specifically in how these architectures
adapt to changing requirements. [10] describes a framework
for the automation of MDA, where deliberate changes to the
architecture by designers and architects is concerned, while
[22] outlines a plan-based layered architecture that harnesses
MDA to enable self-adaptation in software systems. The
prominence of these two papers suggests, that MDA has
been an active topic of SAE research in recent years, which
could be verified by an analysis focused on papers about the
topic of MDA.

The last of the representative papers, by Lagerström et
al.[17], deals with modelling complete Enterprise Architec-
tures (EA) as opposed to only focussing on architectures of
specific software systems. The paper analyses the use of
Probabilistic Relational Models (PRMs) in a formalized EA
analysis approach. A big focus is given to the modifiability
aspect of the model. As such, we can group it with the previ-
ous two papers which also deal with modelling architecture
change although on a slightly smaller scale. This leads us
to believe, that the category that Breivold et al.[7] describe
as ”Modelling techniques” is of special import in the current
climate of SAE research. A way of verifying this hypoth-
esis would be a review of the literature with keywords like
”Model-driven architecture” or ”enterprise architecture anal-
ysis” as well as tracing the impact of the papers Breivold et
al. sorted into the category of ”modelling techniques”

5. CONSIDERATIONS, CONCLUSIONS AND
FUTURE RESEARCH

We were only able to survey the body of work in the field
of Software Architecture Evolution since 2010 in a somewhat
superficial manner, choosing representative papers to gauge
trends and interests in the whole field. Although citations
recorded by Google Scholar were used to record the final ci-
tation data for each paper, the pre-selection of representative
papers used the databases’ internal citation counts to find
influential papers. This was necessary, because we did not
have the resources to process the complete dataset of 10638

results manually. Making use of the sorting functionality
built into the interface of each individual database, provided
a more objective and reproducible method of pre-selection.
For future, more in-depth examination of the post-2010 pe-
riod, we would like to repeat the data collection phase by
writing a parser application. Such a parser would be able
to join the result sets from all databases and connect each
item via means of DOI to the correct Google Scholar ci-
tation data. The assembled data set could then be sorted
and filtered without the possibility of being over-shadowed
or disregarded due to the less complete citation information
available to the separate database sorting functions. This
method would also negate the possibility of the dataset be-
ing influenced by potential quirks, bugs and oddities in the
sorting functions employed by each individual database. Us-
ing only a single consistent data source would make any of
these problems systemic and easier to spot and therefore to
negate or mitigate their effect. Furthermore, while access to
these databases was kindly provided by the RWTH Aachen
Universitätsbibliothek, due to time and resource constraints
we were not able to obtain and evaluate the full text of each
paper. Negotiating and/or buying access to the full text of
all representative papers could and should occur as part of
the falsification process for the hypotheses we proposed in
the Discussion section in follow up studies.

6. REFERENCES
[1] M. A. Babar and I. Gorton. A Tool for Managing

Software Architecture Knowledge. In Second
Workshop on Sharing and Reusing Architectural
Knowledge - Architecture, Rationale, and Design
Intent (SHARK/ADI’07: ICSE Workshops 2007),
pages 11–11. IEEE, may 2007.

[2] L. Bass, P. Clements, R. Kazman, and A. Wesley.
Software Architecture in Practice, Second Edition.
2003.

[3] P. Bengtsson and J. Bosch. Scenario-based software
architecture reengineering. In Proceedings. Fifth
International Conference on Software Reuse (Cat.
No.98TB100203), pages 308–317. IEEE Comput. Soc,
1998.

[4] P. Bengtsson and J. Bosch. Architecture level
prediction of software maintenance. In Proceedings of
the Third European Conference on Software
Maintenance and Reengineering (Cat. No. PR00090),
pages 139–147. IEEE Comput. Soc, 1999.

[5] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet.
Architecture-level modifiability analysis (ALMA).
Journal of Systems and Software, 69(1-2):129–147, jan
2004.

[6] H. P. Breivold, I. Crnkovic, and P. J. Eriksson.
Analyzing software evolvability. Proceedings -
International Computer Software and Applications
Conference, pages 327–330, 2008.

[7] H. P. Breivold, I. Crnkovic, and M. Larsson. A
systematic review of software architecture evolution
research. Information and Software Technology,
54(1):16–40, 2012.

[8] D. Budgen, A. J. Burn, O. P. Brereton, B. A.
Kitchenham, and R. Pretorius. Empirical evidence
about the UML: a systematic literature review.
Software: Practice and Experience, 41(4):363–392, apr
2011.

[9] E. Fricke and A. P. Schulz. Design for changeability
(DfC): Principles to enable changes in systems
throughout their entire lifecycle. Systems Engineering,
8(4), 2005.

[10] E. K. Jackson, E. Kang, M. Dahlweid, D. Seifert, and
T. Santen. Components, platforms and possibilities. In
Proceedings of the tenth ACM international conference
on Embedded software - EMSOFT ’10, page 39, New
York, New York, USA, 2010. ACM Press.

[11] A. Jansen, J. Van Der Ven, P. Avgeriou, and D. K.
Hammer. Tool support for Architectural Decisions.
2007.

[12] R. Kazman, J. Asundi, and M. Klein. Quantifying the
costs and benefits of architectural decisions. In
Proceedings of the 23rd international conference on
Software engineering, pages 297–306. IEEE Computer
Society, 2001.

[13] R. Kazman, L. Bass, G. Abowd, and M. Webb.
SAAM: A Method for Analyzing the Properties of
Software Architectures. 1994.

[14] R. Kazman and M. Klein. The architecture tradeoff
analysis method. Fourth IEEE International
Conference on Engineering of Complex Computer
Systems, (July):68 – 78, 1998.

[15] B. Kitchenham. Procedures for Performing Systematic

Reviews. 2004.

[16] M. Klein and R. Kazman. Attribute-Based
Architectural Styles. 1999.

[17] R. Lagerström, P. Johnson, and D. Höök. Architecture

analysis of enterprise systems modifiability âĂŞ
Models, analysis, and validation. Journal of Systems
and Software, 83(8):1387–1403, 2010.

[18] N. Lassing, P. Bengtsson, H. van Vliet, and J. Bosch.
Experiences with ALMA: Architecture-Level
Modifiability Analysis. Journal of Systems and
Software, 61(1):47–57, mar 2002.

[19] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E.
Perry, and W. M. Turski. Metrics and Laws of
Software Evolution -The Nineties View. 1997.

[20] C. D. Rosso and A. Maccari. Assessing the
architectonics of large, software-intensive systems
using a knowledge-based approach. 2007.

[21] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen.
The Structure and Value of Modularity in Software
Design. 2001.

[22] H. Tajalli, J. Garcia, G. Edwards, and N. Medvidovic.
PLASMA. In Proceedings of the IEEE/ACM
international conference on Automated software
engineering - ASE ’10, page 467, New York, New
York, USA, 2010. ACM Press.

[23] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and
M. Ali Babar. A comparative study of architecture
knowledge management tools. Journal of Systems and
Software, 83(3):352–370, mar 2009.

[24] A. Tang, M. A. Babar, I. Gorton, and J. Han. A
survey of architecture design rationale. Journal of
Systems and Software, 79(12):1792–1804, dec 2006.

[25] W. Wan-Kadir and P. Loucopoulos. Relating evolving
business rules to software design. Journal of Systems
Architecture, 50(7):367–382, jul 2004.

[26] B. J. Williams and J. C. Carver. Characterizing
software architecture changes: A systematic review.
Information and Software Technology, 52(1):31–51,
2010.

From EA models to UML

A guideline on how to generate UML diagrams from ArchiMate

Maximilian Peiffer
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

maximilian.peiffer@rwth-aachen.de

Simon Hacks
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
simon.hacks@swc.rwth-aachen.de

ABSTRACT
Because enterprise architects prefer to model their organiza-
tion as a whole using EA (Enterprise Architecture) models
and not UML (Unified Modeling Language), software devel-
opers do not get diagrams in UML format which are widely
used in the field of software engineering and to which they
are used to. Formerly they had to either think about the
software solutions already modeled in an EA model and cre-
ate UML diagrams more or less from scratch or they had to
replicate it completely, which is time consuming.
This paper describes an approach in which UML class and
sequence diagrams are derived from existing EA models. Be-
cause the diagrams are constructed based on already exist-
ing and elaborated models, this way is more time-saving
and fail-safe than creating entirely new diagrams. With
the transformation guideline developed in this paper the
software engineers can create UML diagrams from existing
structures in EA. Therefore, this paper shows the transfor-
mation of sample modules of the application layer of Archi-
Mate, an open EA-language, to UML class and sequence di-
agrams. There may be a lack of information, because UML
is able to model deeper information than ArchiMate offers.
Hence, sources are named from which these additional in-
formation can be extracted.

Keywords
Enterprise Architecture, Unified Modeling Language, Archi-
Mate, Model Transformation

1. INTRODUCTION
Modeling an organization has become very important. To

run a successful business, it is eminently important to have a
certain strategy or plan[2, p. 179]. To improve this strategy
and present it to others a good model is needed. Because
of the severity of such a model, many organizations want to
model their structure best possible and in one single place.
Moreover, they bind everything together and model the or-
ganization as a whole. One way to do so is using EA (Enter-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2016/17 RWTH Aachen University, Germany.

prise Architecture) models. Every relevant process, resource
and relation can be modeled within one model which outlines
the ”organization of an organization”[1] as well as the design
concepts which are dominant[8]. The model can be used as
an overview but one can also go into detail if needed. It is
possible to pass it to different departments and roles without
the need to modify the model. Because the business is pre-
sented as well as the technologies and applications used in
the organization, stakeholders can be identified. This can be
done for example by looking at who is affected by a certain
change, who then implement it or who will have to make a
decision about it[9]. Thus, in the best case, each stakeholder
can extract his specific information.
A problem of this modeling is that enterprise architects usu-
ally do not use the same techniques of visualizing as software
engineers. Software engineers normally use UML (Unified
Modeling Language) diagrams to model their software and
pass them to programmers who will implement the software.
This is done because these diagrams contain all relevant in-
formation needed for the implementation, are easy to read
and can be used as a standard. Moreover, an automated
code generation from well elaborated diagrams is possible
and can save a lot of time. Thus, a transformation from an
EA model to UML is needed in order to work with familiar
types of diagrams.
In general, there are two main reasons to create a guide-
line as described in this paper: First, a predefined guideline
makes it more easy and fail-safe to transform EA models
into UML. Second, there is a lack of research (as described
later in section 2) if and how EA models can be transformed
to UML diagrams. Only one source[12] can be found that
addresses this topic, but it does not go into detail and does
not take everything into account EA offers.
One way to model EA diagrams is using ArchiMate, an open
EA language. This paper makes use of ArchiMate in ver-
sion 2.1. ArchiMate structures the organization into the
three layers application, technology and business. The busi-
ness layer contains all business processes performed by busi-
ness actors which offer products and services to external
customers. The application layer defines how these business
processes are supported by software applications and the
technology layer describes the infrastructure which is used
to do so[10]. This leads to the advantage of an easy overview
over complex structures.
In this paper the transformation of elements of the appli-
cation layer is discussed and some shortcomings in a one-
to-one transformation are mentioned. Because EA has its
focus not on details of software but on the functionality and

embedding of it, some elements needed for the construction
of complete UML diagrams are missing and have to be pro-
vided from different sources. Three of these sources and
how they can be used to obtain the missing information are
named.
The structure of this paper is as follows. In section 2 re-
lated work is described. Section 3 is about the transforma-
tion of selected elements of the application layer to UML
diagrams and how the transformation was derived. First, in
section 3.1 the composition of a class diagram is described.
Second, the transformation to a sequence diagram is de-
picted in section 3.2. In section 4 the process of generat-
ing a class diagram and a sequence diagram from an Archi-
Mate model is shown using a concrete example. Section 5
is about shortcomings of the described transformations and
additional sources that can be used. After section 6, in
which conclusions are drawn, the future work on this topic
is discussed in section 7.

2. RELATED WORK
At the moment, there are no sources discussing the topic

of transforming complete EA models to UML diagrams in
detail. Except of Wiering[12], who roughly outlines a map-
ping from ArchiMate to several types of diagrams in UML
2.0 and The Open Group[11] which gives a vague overview
on how a collaboration between ArchiMate and UML can be
realized, there is no research in this field. Wiering describes
a mapping for each single element of the ArchiMate language
and how it can be generally transformed to UML diagrams.
He inserts CRUD-operations (create, read, update delete) to
each Data Object and Application Component, regardless of
if they are actually used. In distinction from this paper, he
adds stereotypes like <<Role>> or <<Collaboration>> to
the class diagram in order to represent the original function
in the ArchiMate model.
There are many application fields for the topic of model
transformation. One well explored field is generating source
code from UML diagrams, for example transforming XMI-
based UML diagrams to source code using finite state ma-
chines as described by Rincon-Nigro et al.[4]. If the rules
for the transformations are realized in the finite state ma-
chines, they create a reproducible and structured output for
a certain input. This approach is very likely to the approach
used in this paper, because certain elements from one model
are picked and unambiguously mapped to an element of an-
other model. Some of the problems described for the code
generation address a lack of information in UML diagrams.
For example, sometimes the expected code differs from the
generated because there is no way in UML to express certain
code fragments[6]. This problem of missing information at
the input side also occur while generating UML diagrams
from ArchiMate (as described in the next chapter). Because
of the similarity of the problem in both transformations,
the solutions from the well explored code generation can be
adapted.

3. TRANSFORMATION
In this chapter, the transformation of elements of the ap-

plication layer is discussed. This layer is chosen, because it
addresses software applications and thus is best suitable to
generate UML diagrams from it. The application layer of
ArchiMate contains multiple elements and their relations to
each other. Only the most important available concepts are

treated here: the constructs application collaboration, appli-
cation interaction and application service are not regarded
in this paper, because they concentrate of the interaction of
many components. In this paper, the transformation pro-
cess is described only for one application component without
relations to others.
It is important to mention that there is not only one correct
solution to model a certain application in UML[5]. There
are several details (e.g. interfaces, access relations and data
types as described in the following) that can be modeled one
way or the other. To develop a universally valid guideline for
the transformation of certain components, the diagrams that
result from these transformations are generalized. There
may exist a version of these diagrams that reflect a particu-
lar situation better but in most cases it is nearly impossible
to generate a perfect solution from the ArchiMate model
with a single (and simple) guideline. This is due to the
fact that ArchiMate was not designed to be transformed to
UML and thus does not contain all relevant data. In class
diagrams, for example, properties, access privileges and data
types are named. These (normally) cannot be found in an
ArchiMate model. Sequence diagrams model the temporal
and causal sequence of method calls. These sequences are
not part of ArchiMate either.

3.1 Class Diagram
In this subsection, the transformation process to generate

a UML-class diagram is described. Usually, there are infor-
mation inside the ArchiMate model that can be used in a
class diagram. Hence, the components of such a model and
their part in the class diagram is described in the following
and can be seen in table 1.
Application component
The definition of an application component in ArchiMate
is that it is modular, replaceable and encapsulates its be-
havior and data[10]. This matches the definition of a class
in a class diagram, where the encapsulation of attributes
and methods is one of the main criteria for an independent
class[5]. Thus, an application component can be mapped to
a class in a class diagram.
Application interface
There are two possibilities how the application interface can
be modeled in a class diagram. First, as a ”normal” inter-
face as used in object oriented languages and second as an
implementation of the observer pattern. Which way is most
qualified and fits the given purpose best cannot be deter-
mined automatically and therefore has to be chosen by the
person who initiates the transformation process.
The modeling as an interface is straight forward since in-
terfaces, the ”point of access where an application service is
made available to a user or another application”[10] are also
present in UML[5]. Thus, the application interface can be
added to the diagram as an interface and the correspond-
ing relation to the application component has to be drawn.
There is nothing that has to be added inside the class or the
interface.
The second approach, the observer pattern, models some in-
teraction between application component and interface and
also some functionality within the interface. Therefore, two
methods and one property is added in order to represent
the functionality: The property interfaces, holding all inter-
faces that can be addressed, in the class of the application
component which uses the interface, the method notify() in
the application component class which can notify the inter-

Table 1: Transformation guideline
ArchiMate UML class diagram UML sequence diagram

Application Component (AC) Class Object

Application Interface (AI)

Interface or
Observer Pattern (OP):

Add property interfaces,
register(), unregister(), notify()
to AC, update() to AI

Object
Add user as new object, add activation call from

user to AC to AI
If OP: Add notify()-, update()-calls at the end

Data Object (DA) Class Object

Application Function (AF)
Add function to AC class
Add property to DA if one is used

If DA used, add calls from AC and returns from DA:
AF with reading access: add getProperty()-call
AF with writing access: add setProperty()-call

Composition, aggregation,
association, specialization
relation

Same in UML (extraneous)

Used-by relation
Directed association
If towards DA: add setter to DA
If from DA: add getter to DA

(extraneous)

Triggering, flow relation (extraneous) Arrange calls in triggering/flow order

face to perform its work after certain changes happened and
the method update() in the interface which stands for the
execution of functionality inside the interface. These may
be replaced, if there are additional information about the
interaction and functioning of application component and
interface available. Methods for registration and unregis-
tration of an interface could be modeled as register() and
unregister() methods in the application component class.
Data object
A data object can be used to store certain data. Thus, re-
garding to the characteristics of a class in UML[5], it can
also be mapped to a class. At the beginning, there are no
properties and methods available, because the data object
in ArchiMate on its own does not tell anything about its
functionality.
Application function
An application function describes the internal behavior of
an application component[10]. Therefore, the function has
to be assigned to the application component as a method
or function. Because ArchiMate does not offer data types,
return and parameter types are left blank. There is also
no information about access privileges so these are also not
mentioned in the class diagram.
If an application function makes use of a data object, it
is likely that it stores or accesses some data in it. Thus,
to express some basic functionality in the class diagram, a
property is added to the data object. The name of the prop-
erty should be the name of the application function to avoid
confusion. If the function name consists of a verb and a
noun, only the noun is used as property name. If two or
more application functions have the same name, numbers
have to be added in order to distinguish the sources.
Relations
There are several possible ways how elements in ArchiMate
can be connected and related. The composition, aggrega-
tion, association, and specialization are taken from UML
2.0[10] and can therefore be mapped one to one.
The association relationship, which is used for a relation
that cannot be described by a more specialized relation, is
undirected in ArchiMate. In UML, associations are nor-
mally directed[5]. Because there is no way to identify the
direction, an undirected association has to be used in the

resulting class diagram as well. This is also the case for the
assignment relation.
The used-by and access relation can be mapped as a directed
association to the class diagram. In ArchiMate, the direc-
tion of the access relation says if an element has reading or
writing access. If the access relation goes from the appli-
cation function to the data object, the application function
has writing access. Thus, to the data object a setter for
the property is added. If the relation goes the other way,
the application function has reading access and a getter is
added. If there is a bilateral access relation between applica-
tion function and data object, the application function has
read and write access and therefore both getter and setter
are added. Moreover, if an application component has read-
ing access to a data object, getters for each property are
added. Analogous, if an application component has writing
access to a data object, setters are added for each property.

3.2 Sequence Diagram
Because ArchiMate does not model many information about

the causal or temporal context, deriving a sequence diagram
from ArchiMate often has to rely on common concepts in-
stead of modeled relations in EA. The only relation that ex-
press temporal or causal dependency is the trigger relation.
Thus, if no trigger relation (or flow relation, as described in
the following) is available, a sequence diagram cannot be de-
rived just from the information given through the ArchiMate
model. This leads to four possibilities: First, all functions
of the application component could be displayed one after
another as if there was a temporal (one after another) re-
lation between them. This would display the functionality,
but is not correct in manner of semantics of the resulting
sequence diagram. Second, additional sources (as described
in section 5) have to be consulted. Third, the creation of
a sequence diagram cannot be accomplished because of the
lack of information. The following guideline for transforming
ArchiMate elements to an UML sequence diagram is based
the fourth possibility: using existing temporal and/or causal
structures in the ArchiMate model. Because a sequence dia-
gram models only a certain snapshot of an application there
are in most cases many different sequence diagrams possi-
ble. This guideline tries to transform the ArchiMate model

into one general diagram which displays most of the mod-
eled functionality. An overview can be found in table 1.
Application component
The application component gets its own object and lifeline,
because it matches the criteria of a class as mentioned in the
previous chapter and can therefore be modeled as such. All
functions which are somehow ordered by time in ArchiMate
are executed on its activity box in the given order.
Application interface
The application interface is represented as a new object
since interfaces are also available in sequence diagrams. As
described in the previous chapter, the functions notify()
and update can be added. After the application component
called the interface via notify(), it calls its update()-method
in order to perform its functionality. If there is no temporal
context available in the ArchiMate model, this is done at the
very end of the activity box of the application component
in order to keep things simple. To put it at the end seems
reasonable because at the end all altered information which
can potentially be used are available. If the way of treating
the interface as ”normal” interface is chosen, there are no
possible actions which can be mapped in the sequence dia-
gram due to a lack of information in the ArchiMate model.
If the application component makes use of an interface (re-
gardless which way of representing it was chosen), it is most
likely that functions are triggered via the offered interface.
Thus, the interface is activated at the beginning of the di-
agram and creates an activity box in the application com-
ponent. Because there has to be some interaction with the
interface, a user is added who triggers the interface in the
first place. Because the exact interaction between user, in-
terface and application component is not known, the calls
and returns do not get any naming.
Data object
Because the data object can be treated as class, it also gets
its own object and lifeline. Each element which has reading
access to the data object can initiate a getProperty()-call
(where Property is replaced by the corresponding property
name). Elements with writing access can call setProperty()
and elements with bidirectional access can do both.
Often the reading of a property cannot be modeled easily be-
cause the ArchiMate model does not illustrate when a prop-
erty is read. However, setting a property can be mapped for
example when a function is called which has writing access
to the data object. It can be assumed that it can change the
value of its property whenever the corresponding function is
called.
Application function
The functionality of an application function is executed within
the activity box of the corresponding application compo-
nent. The label of the call is the name of the function. If
the function makes use of a data object, the stored informa-
tion is accessed within the activity box of the function and
labeled with either get or set followed by the name of the
property corresponding to the function.
Relations
There are two relationships used in ArchiMate which are
important for the sequence diagram: triggering and flow.
The triggering relationship implies a temporal relationship
where one action is executed after another which can be
used in a sequence diagram. If, for example, two applica-
tion functions are connected by a trigger relationship, they
are executed on the same activation box after another.
The flow relationship does not imply a temporal relation-

ship[10]. However, to make the transformation easier, it is
treated as a triggering relationship, because if there is a flow
expressed, it is likely to say that there also is a temporal or-
der in it.
The access relationship is implemented as a call of the cor-
responding object. If, for example, an application function
makes use of a data object, the call of the data object and its
answer is executed in the activation box of the application
function (as described above). If an application component
uses a data object, the assumptions seems obvious that there
has to be a application function that uses the data object as
well. Thus, the relation between application component and
data object is modeled only via the application function.

4. EXAMPLE
This example is about an electronic sewing machine. It

has a display on which the current settings are shown. It is
possible to change the form of the stitch (e.g. zigzag stitch
to straight stitch). If done so, the user has to enter the stitch
width and stitch length for the new stitch. These settings
are stored in a data object.
First, the modeling in ArchiMate is described as shown in
figure 1. Obviously, the sewing machine is the application
component and consists of an application interface (the dis-
play). The functionality of the sewing machine is modeled
in a parent function called change Stitchproperties. Inside
this function the stitch form can be changed, which trig-
gers a change of the stitch length and stitch width. All
these functions can have writing access a data object called
Stitch which holds the properties about the currently chosen
stitch. The data stored in the data object can be read by
the SewingMachine. This example is designed in a way so
that a class diagram and a sequence diagram can be derived
from it. For example, the triggering relationships imply a
temporal order which can be used in the sequence diagram.

Figure 1: Sewing machine example as ArchiMate
model

This model is now transformed into a UML class diagram
as described in section 3.1. The first class to be created is
SewingMachine. The interface can be taken as in ArchiMate.
Because in this example the observer pattern is presented,
the two functions notify() and update() have to be inserted
in SewingMachine because the interface has to be notified
about changes and then updates itself. Furthermore, the
sewing machine has to save which interfaces are registered.
Thus, there has to be a variable interfaces, which can also be
inserted automatically as well as a register() and unregister()

method which can be used to manage the interfaces. Next,
the assignment relation is followed. Because the function
at the end of it is just a parent function, all its sub func-
tions are to be modeled next. Therefore, the three meth-
ods changeStitchform, changeStitchlength and changeStitch-
width are added to SewingMachine. The last component
of the model is the Data object Stitch. This adds a third
class to the class diagram. Unlike described by Rumpe[5],
no association direction is inserted because of the fact that
the direction is not identifiable in ArchiMate. Because the
data object can be accessed from Change stitchproperties, it
can be assumed that all of its sub functions can store infor-
mation in it. Thus, three properties are added and named
after their corresponding application function. To give a rea-
sonable name, the verb is removed. Because the direction of
the access relation goes from the application functions to the
data object, the application functions have writing access to
it and setters are added to all three properties. Getters are
added as well because SewingMachine has reading access to
the data object. The result is shown in figure 2.

Figure 2: Sewing machine example as UML class
diagram

Next, the model is transformed into a sequence diagram us-
ing the steps described in section 3.2. The resulting sequence
diagram is shown in figure 3. Three classes were created in
the class diagram and analogously three objects are created
in the sequence diagram: the application component Sewing-
Machine, the data object Stitch and the interface Display.
Because an interface is offered, a user has to be added who
triggers the interface which then creates a new activity box
in SewingMachine. No concrete objects are expresses so the
class name is used with a preceded colon. In this example
three application functions are modeled which are triggered
one after another. Thus, one single sequence diagram is cre-
ated. The first action to take place is a change of the stitch
form. because changeStitchform can access the data object,
a call to Stitch where the new value of the changed stitch
form is saved, is sketched. After the change of the stitch
form is executed, the change of the stitch length and width
are triggered. In the sequence diagram this is expresses by
adding the two actions just behind changeStitchform at the
same activity box of SewingMachine. Both can access Stitch
so both update the corresponding property in the data ob-
ject using the offered setter. At last, the interface Display
is notified and updates itself. Adding the notification of the
interface at the end of this sequence is done intuitively but
cannot be derived from ArchiMate. In the ArchiMate model
there exists no order of actions (except from the trigger rela-
tion which cannot be applied here) such that the order has to
be scheduled within the transformation process (as described
above). At this point, the reading access of SewingMachine
to the data object Stitch cannot be modeled because there

is no information available on which point SewingMachine
is accessing Stitch. Thus, this access relation is left out in
the sequence diagram.

Figure 3: Sewing machine example as UML se-
quence diagram

5. DISCUSSION
Because there sometimes is a lack of information in the

ArchiMate model, the diagrams cannot be created com-
pletely. For example, the temporal and causal context some-
times cannot be displayed adequate or data types (for ex-
ample for returns of functions/methods, for parameters of
functions or for properties and variables) as well as access
privileges are not available. But developers usually want the
ArchiMate model to be as complete as possible. Thus, they
may think about using additional ways to store this data
in order to create a more detailed model suitable for every
user[11]. In the following, three notations to do so are to be
mentioned: CMDB, ER-diagrams and UML. Because they
are used to store additional information besides the model
they can also be used to gain the lacking information which
are needed for a more precise class and/or sequence diagram.
CMDB
The configuration management database is one source for
additional information. It consists of configuration items
which can be any entity of an IT component, their attributes,
and their relations to each other[3]. Hence, this type of
database can provide additional information about how the
components are connected. It may give a causal context
which is important for a valuable UML diagram. There
may also be some information about the data used in the
application and where they are stored. This can for exam-
ple be helpful in the sequence diagram, where calls to data
objects can be refined, or to identify data types for the class
diagram.
ER-diagrams
An Entity-Relationship diagram can give insights into cer-

tain data of for example an existing database. This type of
diagram models entities, relationships, and properties. Enti-
ties are the primary things, e.g. humans, things, or concepts,
about which data should be collected. Relationships express
the relation between entities and attributes model the prop-
erties of entities or relationships[7]. Because it models data
together with relations and further information, it can be
used to describe an ArchiMate model more detailed. For ex-
ample, the properties of a data object can be described and
how they are connected to other elements of the diagram.
This information can be used to generate more appropriate
UML diagrams.
UML
As described by The Open Group[11], which develops Archi-
Mate, UML can be used to convey deeper understanding
of the modeled application. The combination of both lan-
guages allows to generate an extensive model of the busi-
ness including detailed information of used applications and
technology. It is described that specific nodes can be linked
using UML deployment, component or activity diagrams.
The type of diagram depends on the information that are to
be displayed additionally.
If, for example, an activity diagram is available, the sequence
diagram can be refined, because the activity diagram out-
lines the flow of an application including causal and tem-
poral dependencies. These dependencies can be adopted in
the sequence diagram. Hence, the combination of an Archi-
Mate model and a corresponding activity diagram can ease
the process of generating a sequence diagram for this part
of the application.

6. CONCLUSIONS
As shown in the previous sections, it is, with restrictions

possible to transform ArchiMate models into UML class dia-
grams and UML sequence diagrams. Some components can
be transformed directly while others need further processing.
Because of the lack of information, especially when creating
a sequence diagram or a distinct class diagram, additional
information may be required, if a correct and complete di-
agram is needed. The three sources mentioned above may
fill this gap. But because the semantics of these sources is
not consistent, it is not possible to create a certain scheme
at this point. It highly depends on the realization of these
models if and how they can be used to refine the diagrams
generated from ArchiMate. To construct a guideline where-
with it is possible to universally take these additional sources
into account, has to be done in future.
This leads to two possible options if an organization wants to
use a guideline like the one described in this paper: First, if
there are more than one possibilities to transform an Archi-
Mate model to a UML diagram, the user has to decide man-
ually which one is to be used. Furthermore, if there are
information missing to model the diagram, the user has to
manually insert this information. Second, the organization
strictly uses a database with a predefined structure and al-
ters the guideline in a way that it always looks up missing
fragments at a certain point in this database.

7. FUTURE WORK
There also is a need for future research for the two layers

which were not regarded in this paper: the business (beyond
what Wiering[12] already described) and the technical layer.
It is to be checked whether these layers contain information

which can be used in an UML diagram of the application
layer and thus can be used as additional source additionally
to the sources mentioned in section 5. Moreover, an ap-
proach for an automatic realization of the transformations
described in this paper could to be developed. It may be
possible to use already existing logical structures for code
generation from UML diagrams and adjust them, for exam-
ple adapting finite state machines as described in section 2.
Another possibility is not to see the generated UML dia-
grams as a standalone template for software engineers but
as an extension to the existing ArchiMate diagrams, as The
Open Group[11] already described. Thus, the generated di-
agrams can be used as basis for further development and
serve as reference work if someone is interested in deeper
understanding of ongoing processes. Hence, the diagrams
need not to be complete, because they are only used as sec-
ond source after the ArchiMate model.
Another field of future work is the synchronization between
the ArchiMate model and the generated UML model. For
example, if software engineers change the UML diagrams,
these changes have to be put back into ArchiMate.

8. REFERENCES
[1] C. Braun and R. Winter. Integration of it service

management into enterprise architecture. In
Proceedings of the 2007 ACM Symposium on Applied
Computing, pages 1215–1219, New York, 2007. ACM.

[2] H.-E. Eriksson and M. Penker. Business modeling with
UML: Business patterns at work. John Wiley & Sons,
New York, 2000.

[3] H. Madduri, S. S. B. Shi, R. Baker, N. Ayachitula,
L. Shwartz, M. Surendra, C. Corley, M. Benantar, and
S. Patel. A configuration management database
architecture in support of ibm service management.
IBM Systems Journal, 46(3):441–457, 2007.

[4] M. Rincon-Nigro, J. Aguilar, and F. Hidrobo.
Generación automática de código a partir de máquinas
de estado finito. Computacion y Sistemas,
14(4):405–421, June 2011.

[5] B. Rumpe. Modellierung mit UML: Sprache, Konzepte
und Methodik. Xpert.press. Springer-Verlag Berlin
Heidelberg, Berlin, Heidelberg, 2011.

[6] J. Sejans and O. Nikiforova. Problems and
perspectives of code generation from uml class
diagram. Scientific Journal of Riga Technical
University. Computer Sciences, 44(1), 2011.

[7] I.-Y. Song and K. Froehlich. Entity-relationship
modeling. IEEE Potentials, 13(5):29–34, 1995.

[8] The Open Group. Welcome to togafTM: The open
group architecture framework: Version 8.1.1, 2006.

[9] The Open Group. TOGAF Version 9.1. TOGAF
series. Van Haren Publishing, Zaltbommel, 1st edition,
2011.

[10] The Open Group. Archimater 2.0: A pocket guide,
2012.

[11] The Open Group. Using archimater language with
umlr, 2013.

[12] M. J. Wiering, M. M. Bonsangue, R. van Buuren,
L. Groenewegen, H. Jonkers, and M. M. Lankhorst.
Investigating the mapping of an enterprise description
language into uml 2.0. Electronic Notes in Theoretical
Computer Science, 101:155–179, 2004.

Current state of best practices for developing automated
software tests

Joel Hermanns
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

joel.hermanns@rwth-aachen.de

Horst Lichter
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
horst.lichter@swc.rwth-aachen.de

ABSTRACT
In large and complex software projects testing can quickly
become cumbersome and painful. Therefore automated test-
ing is needed. In the beginning of a project this approach
requires more effort but this will - if done correctly - pay off
later on by helping to keep the quality high.

Automated tests are either implemented using a domain
specific language and a corresponding test framework or us-
ing a general purpose language, such as Java or C++. In the
latter case the development of the tests is a software project
itself and as such most of the best practices for developing
software also apply here. For example, we want the code of
the tests to be easily understandable and maintainable.

While there is plenty of literature about designing, devel-
oping and refactoring software this is not the case for auto-
mated tests. This paper aims to discuss existing literature
about design patterns and best practices for developing and
refactoring automated tests as well as missing one.

To group the literature according to the tests we will de-
velop so-called influencing factors which are properties of
the tests or the system under test and influence which best
practices apply in this case. The existing and missing best
practices will then be discussed broken down into these in-
fluencing factors.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—productivity, programming teams,
software configuration management

Keywords
automated testing, continuous integration, continuous deliv-
ery, software testing, software quality

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2016/17 RWTH Aachen University, Germany.

1. INTRODUCTION
Software is playing an important role in many domains

nowadays. To guarantee the software is working correctly
testing is mandatory. When the software project reaches a
decent size manually testing all possible scenarios can be-
come really cumbersome and time consuming. In this case
automated testing might be a good option if not the only
option. Automated testing means the test execution is fully
automated, i.e. all required steps can be done by a com-
puter, in difference to manual testing where most steps are
performed by a human (for a more detailed definition of
automated software tests see [20]). This makes it way eas-
ier and cheaper to repeatedly test the software, e.g. on a
daily or weekly basis. Supporters of continuous integration
go as far as suggesting all developers should integrate their
changes early and often and tests should be run for every
single change [16].

However, since automated tests are meant to be executed
by a computer they need to be implemented in a form the
computer understands. At first glance one might say that
the cost for automated testing is higher than that of man-
ual testing, given the implementation cost of the former.
But since automated tests can help to avoid regressions and
reintroduction of bugs later on, the quality of the software
project can be kept high and therefore the effort for imple-
menting these tests pays off if done correctly [26, 21].

There is plenty of literature about the successful imple-
mentation of automated testing [23, 18, 24, 25]. However,
as Kaner and Berner point out the implementation can also
easily go wrong consuming more time than it is meant to
save [22, 12].

To avoid making the implementation a failure we are in-
terested in implementing good tests, i.e. tests with certain
properties. Properties of a good test include but are not
limited to [26]:

• Validity - Obviously the most important property. A
test should always be valid so in case it fails this is a
sign that something is wrong with the system under
test.

• Determinism and repeatability - If nothing has
changed the result of a test is always the same. This
is important if we want to debug why a test fails.

• Independence - This means a test should not lead to
different results if run in parallel with other tests. So
it should not interact with the other tests in any way.

The Cambridge Dictionary defines best practice as“a work-
ing method or set of working methods that is officially ac-
cepted as being the best to use in a particular business or
industry, usually described formally and in detail” [3]. So
in case of implementing automated test best practices are
methods or ways to help us reach the properties described
above and avoid common mistakes and problems that may
arise when using automated tests.

Since automated tests need to be implemented in code
there are basically two options how this can be done, either
by using a DSL and a corresponding test framework or a
general purpose language, such as Java or C++. In the
former case a language is used that is focused on writing tests
and therefore typically does not allow to do much more. In
this case the best practices are directly coded into the test
framework and the implementation of the language itself.
In the latter case, the use of a general purpose language,
the implementation of automated tests becomes a regular
software project itself and as such we are also interested
in maintainability, complexity, efficiency and realiability as
well as robustness and extensibility of the tests itself.

The remainder of this paper is structured as follows. In
chapter 2 we will introduce so-called influecing factors of
automated tests. These are properties of the test or the
system under test we extracted which influence which best
practices are applicable. Broken down into these different
factors chapter 3 aims to describe and discuss existing lit-
erature about best practices for automated software tests.
Followed by chapter 4 in which we point out the missing
best practices and discuss what we have seen and what we
can learn from it. The paper will be finalized with a conclu-
sion and ideas for future work.

2. INFLUENCING FACTORS OF
AUTOMATED TESTS

In this section we will introduce influencing factors of au-
tomated tests. So we need to clarify what an automated
test is. In this paper, we call a test automated if all steps
required to run the test are automated. It should be as sim-
ple as pressing a button to run the test. The computer will
execute all required steps and emit the result which is either
the test passed or it failed.

However, this does not include the setup of the environ-
ment, which is a completely different aspect. Generally, we
assume the environment meets the requirements to run the
test when the test is started. Nevertheless, if the execution
of the tests requires further steps to be done manually every
time we want to run the test it is not fully automated and
therefore cannot be called an automated test.

When implementing such automated test there are several
aspects one needs to care about. So we are interested in the
best practices for doing so. This section comprises impor-
tant influencing factors with regard to best practices. The
grouping was done by analysing how different properties of
the test, the system under test or maybe the environment
influence the design, development, setup and refactoring of
automated tests, especially in terms of best practices.

The first three groups we will talk about describe factors
that come with distinct manifestations we can differentiate.
Whereas the last group is just a listing of additional proper-
ties that influence the best practices but for which we do not
need to distinguish between different manifestations because

they are not of interest.

2.1 Level of testing
The first group of factors we want to introduce is the level

of testing. In case of automated testing it is sufficient to
distinguish between two levels of testing as we will see later.

• The first level is what we will refer to as unit level.
This level includes all kinds of tests that examine just
small parts of the whole software. As the name sug-
gests this includes of course unit test, which are tests
for just a single function or a class. Additionally, it
includes module and/or component test. Generally,
these are tests that focus on a large part of the software
than unit tests, e.g. a module, component or package
[21]. And finally the third kind of tests included in this
level are integration or contract tests, which are meant
to test if several components or modules integrate with
each other. An important property of these kinds of
tests we can observes is that they do not require the
software to run as a whole. Usually, every other unit
or dependecy except for the unit under test is mocked
away [26].

• The second level we want to discuss here is what we call
the systems level. This level covers all kinds of test
that have a higher level view on the software than the
tests in the unit level. Basically, this means the system
is tested as a whole which is why it is called systems
level. Usually, this includes acceptance or customer
testing as well as other forms of systems testing, such
as end-to-end testing [14, 21]

2.2 Types of tests
The second group we want to discuss here are the types

of tests. We split this group into the following two manifes-
tations:

• Functional tests focus purely on business logic. The
test will either test a whole feature or just parts of
the implementation depending on the level. As said
earlier an automated test can always either pass or
fail. In case of funcational tests this is very simple
to achieve as testing certain scenarios always have a
precise correct result. So checking if this was the result
we got and failing accordingly is pretty simple.

• Non-functional on the other hand are tests for non-
functional requirements such as performance or secu-
rity concerns. In contrast to functional tests these of-
ten require specialized tooling to make automation fea-
sible [12]. For example, tooling to simulate a large load
to examine how the system performs under heavy load
or tooling to simplify penetration testing of software
by making use of existing tests (c.f. metasploit [6]).

2.3 Environment
The third influencing factor we want to discuss here is the

environment the tests are run in.
In the case of automated tests it is sufficient to distinguish

between the following two environments:

• Development machine: The computer on which the
development is done.

• Specialized test environments, e.g. a test setup, or
a deployment pipeline as part of a continuous delivery
implementation.

It is important that the environment the tests are run in
fullfills certain requirements, e.g. running a certain database.

2.4 Technology
This group of factors comprises various kinds of properties

of the software system under test and its domain. We will
not identify discrete, distinct manifestations here but rather
introduce aspects that are worth thinking about when im-
plementing the automated tests and influence the relevant
best practices as we will see in the next chapter.

• The first aspects are language, framework, libraries
and tools used for writing the tests as well as for writ-
ing the actual software system. Obviously, the lan-
guage and framework used for writing the tests makes
a difference for which best practices are relevant. How-
ever, this does also apply for the software that is tested
itself. We will discuss examples in more detail in the
next chapter.

• Access to the system the software is meant to run on
eventually is the second aspect. For example, we need
to employ a different strategy for testing a software
that is targeted to be running on the developer ma-
chine than we need to employ for a software running on
microcontroller which is typically cross-compiled and
flashed on the target system.

• The final aspect we discuss here is the software ar-
chitecture of the system under test. For example,
one can easily imagine that the best practices for a
testing strategy for standalone monolithic application,
like a browser running on a desktop computer is dif-
ferent from the one for a distributed system, like a
highly-scalable database of servers.

2.5 Summary
In the preceding sections we gave a brief overview of the

important influencing factors we developed. Different groups
and their manifestations were discussed and their influence
on the relevant best practices was briefly mentioned. In the
next section these factors will be address by reviewing ex-
isting literature.

3. EXISTING BEST PRACTICES
In the following we are going to introduce existing liter-

ature on best practices for developing automated software
tests. The discussion will be based on the grouping of influ-
encing factors introduced in the previous section. For bet-
ter understanding we will introduce an example application.
For this example application we will go through different
test scenarios, explain what the test scenario means in con-
text of the example application and analyze the existing best
practices.

3.1 The sample system under test
As an example application we will consider a fictonal web-

based shop system. For this paper we assume the system is
written in Java. The shop allows different users to log in.
Users with the role of an admin or an owner can modify the

product catalog, i.e. add, remove and update products and
their details, e.g. pricing. Other users can add products to
their cart and perform a checkout.

Other details are not relevant here as the example is just
for illustration purposes.

3.2 Functional testing on unit level
The first test scenario we are looking at is testing on unit

level. In case of our example application this refers to test-
ing single classes or functions. Since our web-shop is written
in Java the language for writing the tests will also be Java
as the test code uses mostly internal private APIs.

We care about best practices that apply on code level
meaning best practices on how to structure, design and
refactor the code used for the automated tests.

Meszaros gives a comprehensive reference of useful design
patterns that help when refactoring test code [26]. He ex-
plains various patterns in greater detail and refers to them
as“xUnit test patterns”. The list was developer over a larger
period of time by collecting patterns he found useful himself
when implementing tests or others described as useful ones.

Not all patterns are as relevant for testing on unit level as
others. One example pattern that is particulary interesting
for unit testing is the mock object pattern. “A Mock object
is an object that replaces a real component on which the
[system under test] depends so that the test can verify its
indirect outputs” [26]. On unit testing level we want to
isolate the unit we test as far as possible so we can focus
the testing on just the unit and can dictate the conditions.

Clifton and Truyers describe additional patterns [15, 30].
For example, Truyers shows how to decouple the constructor
of a domain from the actual construction in the tests of this
domain class using the builder pattern. So if the construc-
tor is changed only the builder implementation needs to be
changed which vastly reduces the maintainence overhead.

The mentioned resources discuss test design patterns in
general. If we consider our example application we probably
want to use a web framework to simplify the implementa-
tion. Usually this comes with its own set of best practices
specifically for the framework. For example, if we use the
Spring Framework [8] we can find a guide specifically for
unit and integration testing in applications using the frame-
work [9]. The same goes for popular frameworks in other
languages, such as Ruby on Rails or Python’s Django [5, 10].

One limitation of the best practices discussed so far is that
they only apply when using object oriented languages, as we
do in the case of our example application. However, we are
also interested in best practices when using languages which
follow other paradigms. For some of the patterns we can
find equivalent ones in other languages. For example, if we
reconsider the mock object example from above we can find
an equivalent implementation based on the cmocka frame-
work for C code as explained by Schneider et. al. [2, 29].
Similarly there are patterns for newer languages that are not
object oriented, such as Go [4]. Hashimoto describes a set
of advanced testing techniques for Go [19]. One commonly
used pattern in automated tests for Go code is the so-called
table driven test. The basic idea of this pattern is quite sim-
ilar to the pattern “Template” introduced by Rybalov [27].
The idea behind the template pattern is to move common
test logic into an abstract super class such that the actual

test cases only need to implement certain hooks in a sub-
class. The following shows a possible implementation of the
super class:

1 public abstract class ShoppingCartTemplate
extends TestCase {

2 public ShoppingCartTemplate (S t r ing
pName) { super (pName) ; }

3 protected void setUp () {
4 l o g i n () ;
5 searchForItem1 () ;
6 cartAct ion1 () ; // <−−− t e s t hook 1
7 searchForItem2 () ;
8 cartAct ion2 () ; //<−−−− t e s t hook 2
9 logout () ;

10 }
11 // S u b c l a s s e s are supposed to implement

t h e s e t e s t hooks anyway they l i k e .
12 abstract protected void cartAct ion1 () ;
13 abstract protected void cartAct ion2 () ;
14 // t e s t t o o l s p e c i f i c implementat ions o f

methods
15 // (e . g . l o g i n () , searchForItem1 () , e t c

.)
16 }

The setUp function in lines 5 to 12 contains the common
test logic. It first performs common setup logic, such as
search and login. Afterwards it calls two abstract functions
cartAction1 and cartAction2 in line 7 and 10. These ab-
stract functions can easily be overwritten in subclasses and
as such allow to reduce the effort to implement new tests
using the same basic test logic.

In Go one typically makes use of anonymous structs. The
following code shows a possible implementation:

1 import ” t e s t i n g ”
2
3 func TestShoppingCart (t ∗ t e s t i n g .T) {
4
5 te s tCase s := [] struct {
6 act i on1 func ()
7 ac t i on2 func ()
8 }{
9 {

10 // 1 s t t e s t c a s e
11 ac t i on1 : func ()

{ . . . } ,
12 ac t i on2 : func ()

{ . . . } ,
13 } ,
14 {
15 // 2nd t e s t c a s e
16 ac t i on1 : func ()

{ . . . } ,
17 ac t i on2 : func ()

{ . . . } ,
18 } ,
19 // a d d i t i o n a l t e s t c a s e s go

here . . .
20 }
21
22 for , t e s tCase := range t e s tCase s

{
23 l o g i n ()

24 searchForItem1 ()
25 tes tCase . ac t i on1 ()
26 searchForItem2 ()
27 tes tCase . ac t i on2 ()
28 logout ()
29 }
30 }

The struct defined in lines 5 to 8 contains two functions
implementing the cart actions that were abstract members
of the class in the Java example. The common test logic
can be found in lines 29 to 34. It is called for every testcase
by iterating through the array of structs and calling the
corresponding functions in line 31 and 33.

So we can see that the same idea can be expressed using
very different constructs in two very different languages.

In general, we can say that every kind of framework or
language which has reached a decent maturity proposes its
own set of best practices for writing tests on unit level.

Because on unit level the system is tested in small por-
tions, the tests are in general independent of the environ-
ment as an influencing factor. The only expection we can
find here is in case the system under test and the tests get
cross-compiled and do not run on the development machine,
e.g. in development for embedded devices. In this case the
compilation result needs to be brought to the target device
before execution.

3.3 Non-functional testing on unit level
In the preceding section we talked about functional test-

ing on unit level. Now we want to analyse the case for
non-functional testing. With regard to our example appli-
cation we would, for instance, want to benchmark how a
method for calculating the total value of the shopping cart
performs. Benchmarking, i.e. applying performance testing,
on very small units such as functions is called micro bench-
marking. For writing such benchmarks it is recommended
to use specialized tooling. Jmh is such a tool for Java based
application [7] and would be a potential candidate for our
web-shop.

One aspect one needs to think about when adding such
tests to an automated test suite is how to evaluate the re-
sults of such tests. The results of benchmarks are heavily
influenced by the environment they are running in. There-
fore one needs to provide an environment independent, au-
tomated evaluation schema of the benchmark results. An
option is to leave the analysis of the result to a human but
this will require manual steps for every execution of the test.

3.4 Functional testing on systems level
In the following we look at another possible test scenario,

namely functional testing on systems level. When we look
at the fictional web-shop again possible tests include the
following user stories:

• Adding an item to the cart (customer test)

• Performing a checkout (customer test)

• Updating payment information (customer test)

• The complete flow from first visit, login to checkout
(end-to-end test)

Most of the best practices discussed in the previous test
scenario also apply here except that there is a shift of the
importance of the design patterns to be used. For example,
the mock object pattern is not interesting for testing on sys-
tems level as the system should be tested as a whole without
parts being mocked. Rybalov explicitly describes test design
patterns for customer testing specifically [27]. For example,
he describes the “Template” pattern we have discussed in
the previous section already. This is especially interesting
for systems level testing as tests in this case often require
more complex initialization and teardown procedures which
will repeat for every test case.

In addition, the influence of the environment as a factor
becomes more critical. Now that the whole application needs
to be run we have more requirements for the environment.
Depending on the technology used and the architecture of
the software the requirements for the environment and the
setup are more complex. For example, the fictional web
shop should be setup on its own isolated from the tests. It
will probably require a database server and the tests will
communicate with the web-shop via a network connection.
So when developing the automated tests this will influence
how the tests are implemented, especially with regard to
setting up and configuring the application.

Finally, we can also find a difference in applicable best
practices with regard to architecture of a system under test.
One example are microservice based systems. In a microser-
vice architecture the whole system is composed of a larger
set of services each implementing a small part, i.e. func-
tionality, of the overall system. Due to the sheer number of
different services it is often not feasible to set up the whole
system when running system tests. This is where the testing
strategy changes. A new version is usually tested by deploy-
ing it and exposing it to a small part of the whole user traffic
[13, 28].

3.5 Non-functional testing on systems level
The final scenario we want to discuss is non-functional

testing on systems level. Exemplary test scenarios for the
example online shop are

• Make load tests, i.e. check how many concurrent users
the system supports

• Measure performance of database queries

• Make penetration testing to find security problems

As Berner et. al. state these forms of testing heavily rely
on proper automation and tool support [12]. Typically the
tests do not require much variance regarding the test logic
but rather variance in the data that is used as input for the
system. Therefore non-funcational testing often follows the
data driven tests pattern where the input data is read from a
file [26]. This allows to quickly reach great coverage without
needing to write a lot of test logic.

As such specific tools and frameworks are used usually
to implement non-funcational testing on systems level. For
instance, Gavrila et. al. describe a framework for automated
performance testing of HbbTV streaming solutions which
uses XML based data input for the tests [17].

3.6 Summary
In the preceding section we have looked into existing best

practices for implementing automated software tests. To do

so we discussed four test scenarios for an example system
under test based on the influencing factors introduced in 2

4. MISSING BEST PRACTICES
In the following we want to look into cases where no best

practices exist for in literature. Therefore we want to discuss
two examples from our own experience that involve testing
on embedded devices:

• The first example is the development of a LED control-
ling software running on a microcontroller. The mi-
crocontroller allows communcation over a serial com-
muncation interface, such as SPI or I2C, using a cus-
tom protocol. During development the software is
cross-compiled on the development machine and then
flashed on the device. To test the protocol and the
controller implementation test commands need to be
sent over the serial interface and the response needs to
be verified.

• The second example involves the development of an
operating system for an embedded device. Similar to
the first example the development is done on a differ-
ent machine where an image is built from which the
embedded device can boot. When making changes to
the implementation we need to make sure the changes
have the desired effect and we did not introduce a re-
gression. So for instance, we check if the system still
boots correctly, if all parts of the system are configured
correctly as well as if there are no security problems.

What both cases have in common is a limited access to the
system, we cannot easily run tests on the same system and
we are not able to run the code itself on the development
machine. Furthermore, the software runs on a completely
different hardware from the machine the software is devel-
oped on. In general, this is also true for the development of
mobile applications for devices like the iPhone or Android
smartphones. In both cases it is technically possible to write
automated tests. While we cannot find literature describing
best practices for writing automated tests for the former one,
support for writing tests is already included in the respec-
tive platform in the latter case [11, 1]. So to summarize the
embedded ecosystem still lacks detailed best practices and
tools to implement automated test suites.

5. CONCLUSION AND FUTURE WORK
In this paper we have analyzed literature about best prac-

tices for implementing automated testing. To do so we have
introduced several influencing factors of tests. Based on the
extracted factors we have looked into existing literature as
well as pointed out missing literature. We have discussed
potential test scenarios for a fictional web-base online shop
and analyzed which best practices are applicable and might
help implementing an automated testing strategy. This was
done on unit level as well as system level both for functional
and non-functional tests.

We have briefly discussed design patterns that simplify
implementation and maintenance of tests and pointed out
the existing literature that describes these patterns in more
detail.

In section 4 we analyzed two examples for which we could
not find existing best practices and explained the problems.

In the end we have seen that the tooling and framework
support is crucial. For applications similar to our ficional
web-shop we can find plenty of tools that help to write au-
tomated tests and propose their set of best practices. The
result is that the developer can focus on writing the actual
test logic and does not have to worry about other details
such as test execution and discovery.

While there are many best practices that help to imple-
ment the test logic and are applicable to all different kinds
of technology the missing best practices described in section
4 are all related to tooling support.

As such possible future work can focus especially on the
investigation of missing tooling and framework support for
embedded devices as well as an improvement for mobile de-
vices.

6. REFERENCES
[1] Android studio testing. https:

//developer.android.com/studio/test/index.html.
Accessed: 2016-11-02.

[2] cmocka. https://cmocka.org/. Accessed: 2016-11-02.

[3] Definition best practice. http://dictionary.
cambridge.org/dictionary/english/best-practice.
Accessed: 2016-11-02.

[4] Go website. https://golang.org/. Accessed:
2016-11-02.

[5] A guide to testing rails applications.
http://guides.rubyonrails.org/testing.html.
Accessed: 2016-11-02.

[6] Metasploit website. https://www.metasploit.com/.
Accessed: 2016-11-02.

[7] Openjdk - code tools: jmh. http:
//openjdk.java.net/projects/code-tools/jmh/.
Accessed: 2016-11-02.

[8] Spring framework. https://spring.io. Accessed:
2016-11-02.

[9] Spring framework testing.
https://docs.spring.io/spring/docs/current/

spring-framework-reference/html/testing.html.
Accessed: 2016-11-02.

[10] Testing in django. https://docs.djangoproject.
com/en/1.10/topics/testing/. Accessed: 2016-11-02.

[11] Testing with xcode. https://developer.apple.com/
library/content/documentation/DeveloperTools/

Conceptual/testing_with_xcode/chapters/04-

writing_tests.html. Accessed: 2016-11-02.

[12] S. Berner, R. Weber, and R. K. Keller. Observations
and lessons learned from automated testing. In
Proceedings of the 27th international conference on
Software engineering, pages 571–579. ACM, 2005.

[13] S. Bruckner. Microservices at gutefrage.net - part 2 -
continuous integration and deployment.
https://medium.com/gutefrage-net-

engineering/microservices-at-gutefrage-net-

part-2-continuous-integration-and-deployment-

6c5b97f40245#.2wgidufil. Accessed: 2016-11-02.

[14] T. Clemson. Testing strategies in a microservice
architecture.
http://martinfowler.com/articles/microservice-

testing/, 2014. Accessed: 2016-11-02.

[15] M. Clifton. Advanced unit test, part v - unit test
patterns.

https://www.codeproject.com/articles/5772/

advanced-unit-test-part-v-unit-test-patterns,
2004. Accessed: 2016-11-02.

[16] P. M. Duvall. Continuous Integration. Pearson
Education India, 2007.

[17] C. Gavrilă and C.-Z. Kertész. Automated performance
testing of end-to-end streaming solutions over hbbtv
architecture.

[18] J. Gmeiner, R. Ramler, and J. Haslinger. Automated
testing in the continuous delivery pipeline: A case
study of an online company. In Software Testing,
Verification and Validation Workshops (ICSTW),
2015 IEEE Eighth International Conference on, pages
1–6. IEEE, 2015.

[19] M. Hashimoto. Advanced testing with go.
https://speakerdeck.com/mitchellh/advanced-

testing-with-go, 2016. Accessed: 2016-11-02.

[20] D. Hoffman. Test automation architectures: planning
for test automation. In Quality Week, pages 37–45,
1999.

[21] J. Humble and D. Farley. Continuous delivery: reliable
software releases through build, test, and deployment
automation. Pearson Education, 2010.

[22] C. Kaner. Architectures of test automation. STAR
West, pages 1–17, 2000.

[23] Z. Liu and P. Mei. Automated testing for large-scale
critical software systems. In Software Engineering and
Service Science (ICSESS), 2014 5th IEEE
International Conference on, pages 200–203. IEEE,
2014.

[24] J. Lu, Z. Yang, and J. Qian. Implementation of
continuous integration and automated testing in
software development of smart grid scheduling support
system. In Power System Technology (POWERCON),
2014 International Conference on, pages 2441–2446.
IEEE, 2014.

[25] X. Ma, N. Wang, P. Xie, J. Zhou, X. Zhang, and
C. Fang. An automated testing platform for mobile
applications. In Software Quality, Reliability and
Security Companion (QRS-C), 2016 IEEE
International Conference on, pages 159–162. IEEE,
2016.

[26] G. Meszaros. xUnit test patterns: Refactoring test
code. Pearson Education, 2007.

[27] M. Rybalov. Design patterns for customer testing.
Automated Testing Guy. Dispońıvel em
http://www.autotestguy.com, 2004.

[28] B. Schmaus. Deploying the netflix api.
http://techblog.netflix.com/2013/08/deploying-

netflix-api.html. Accessed: 2016-11-02.

[29] A. Schneider and J. Hrozek. Unit testing with mock
objects in c. https://lwn.net/Articles/558106/.
Accessed: 2016-11-02.

[30] K. Truyers. Flexible and expressive unit tests with the
builder pattern. https://www.kenneth-truyers.net/
2013/07/15/flexible-and-expressive-unit-tests-

with-the-builder-pattern/, 2013. Accessed:
2016-11-02.

https://developer.android.com/studio/test/index.html
https://developer.android.com/studio/test/index.html
https://cmocka.org/
http://dictionary.cambridge.org/dictionary/english/best-practice
http://dictionary.cambridge.org/dictionary/english/best-practice
https://golang.org/
http://guides.rubyonrails.org/testing.html
https://www.metasploit.com/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
https://spring.io
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/testing.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/testing.html
https://docs.djangoproject.com/en/1.10/topics/testing/
https://docs.djangoproject.com/en/1.10/topics/testing/
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/04-writing_tests.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/04-writing_tests.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/04-writing_tests.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/04-writing_tests.html
https://medium.com/gutefrage-net-engineering/microservices-at-gutefrage-net-part-2-continuous-integration-and-deployment-6c5b97f40245#.2wgidufil
https://medium.com/gutefrage-net-engineering/microservices-at-gutefrage-net-part-2-continuous-integration-and-deployment-6c5b97f40245#.2wgidufil
https://medium.com/gutefrage-net-engineering/microservices-at-gutefrage-net-part-2-continuous-integration-and-deployment-6c5b97f40245#.2wgidufil
https://medium.com/gutefrage-net-engineering/microservices-at-gutefrage-net-part-2-continuous-integration-and-deployment-6c5b97f40245#.2wgidufil
http://martinfowler.com/articles/microservice-testing/
http://martinfowler.com/articles/microservice-testing/
https://www.codeproject.com/articles/5772/advanced-unit-test-part-v-unit-test-patterns
https://www.codeproject.com/articles/5772/advanced-unit-test-part-v-unit-test-patterns
https://speakerdeck.com/mitchellh/advanced-testing-with-go
https://speakerdeck.com/mitchellh/advanced-testing-with-go
http://techblog.netflix.com/2013/08/deploying-netflix-api.html
http://techblog.netflix.com/2013/08/deploying-netflix-api.html
https://lwn.net/Articles/558106/
https://www.kenneth-truyers.net/2013/07/15/flexible-and-expressive-unit-tests-with-the-builder-pattern/
https://www.kenneth-truyers.net/2013/07/15/flexible-and-expressive-unit-tests-with-the-builder-pattern/
https://www.kenneth-truyers.net/2013/07/15/flexible-and-expressive-unit-tests-with-the-builder-pattern/

Modelling Architectural Complexity: An Overview

David Duong
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

david.duong@rwth-aachen.de

Horst Lichter
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
horst.lichter@swc.rwth-aachen.de

ABSTRACT
Software architecture is defined as the organizational struc-
ture of a software system. It contains all design decisions
during the development process. As one of its properties,
architectural complexity has a strong correlation to many
non-functional qualities i.e. maintainability and extendabil-
ity. To this day, there is no commonly agreed upon defi-
nition of architectural complexity. The correlation between
cohesion, coupling and the complexity is, however, widely
accepted. Therefore, many structure-based metrics were in-
troduced over the last years, especially cohesion and cou-
pling metrics.

This paper aims to present an overview about architec-
tural complexity. We first present the definitions available
in the literature. Since, architectural complexity can be ac-
cessed by structure-based metrics sets, we then focus on the
classification of structure-based metrics according to the ap-
proach types, measured artefacts as well as measured soft-
ware attributes. The classification, however, is not com-
plete, we will discuss about the limitations of the current
state. Furthermore, we present a formal model of architec-
tural complexity SACM based on the cognitive science. At
the end, we conclude that there is a need of research on new
metrics.

Keywords
Software Architecture, Architectural Understanding, Archi-
tectural Metric, Complexity Model

1. INTRODUCTION
Software architecture depicts different high level views on

the developing software system. Thus, the participants of
a given project have the same ”big picture” of the product,
i.e. higher level organizational components in place of fine-
grained implementation artefacts. The key role as well as the
quality of software architecture is generally recognized, since
”architectures allow or preclude nearly all of the system’s
quality attributes”[8].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2016/17 RWTH Aachen University, Germany.

Complexity has always been one of the most important
topics in software engineering. Talking about complexity
in the architecture domain, cohesion and coupling between
and within the components always come to mind. Since
cohesion and coupling are widely accepted attributes of a
software architecture, there are only few studies about ”ar-
chitectural complexity”. Therefore, the scientific definition
of architectural complexity hasn’t established yet. There
could be other factors related to architectural complexity
than coupling and cohesion, which have not been identified
yet.

In the last decades, numerous attempts have been made
to provide some measure of software architecture, especially
coupling and cohesion. However, an overall quality of the
architecture can not be achieved. Besides, there is also re-
search on evaluation methods to evaluate the quality of a
software architecture. Together with architecture metrics, a
model for architectural quality can be defined[7].

In this paper, we will first introduce the definitions of ar-
chitectural complexity available in the literature in section 2.
From Stevanetic et al.’s assessment of structured-based met-
rics, we will present their classification on metrics measuring
architectural understandability in section 3 and discuss the
limitations. A formal complexity model based on cognitive
science will be presented in section 4. Finally, section 5 con-
cludes this paper.

2. DEFINITION
The definitions of ”architecture” and ”complexity” have

been standardized in ”IEEE Vocabulary for Software Engi-
neering”[1]. In 1990s, the term ”software architecture” be-
came popular. It was defined in several works, such as in
[4, 20]. The first formal standard for software architecture
was introduced in year 2000 and in 2011. The term ”archi-
tecture” is defined as: ”the fundamental organization of a
system embodied in its components, their relationships to
each other, and to the environment”[1]. By definition, the
software architecture contains information about all func-
tional and non-functional requirements of the system. In
practice, such enormous information is divided with the aid
of views and their corresponding models. Furthermore, a
software architecture contains also ”the principles guiding
its design and evolution”[1]. All design decisions and princi-
ples effect the architecture, especially its complexity, either
positively or negatively[12].

The proper definition of the term ”complexity” depends
on the domain. In algorithm complexity theory, the algo-
rithms are analyzed according to their efficiency in form

of O-notation(space and time complexity). The cyclomatic
complexity defines the number of linearly independent paths
within a source code. The number indicates the difficulty to
test the given source code. In the software architecture do-
main, there are different opinions on the definition of com-
plexity based on the size of the system, how complicated the
system is or how decomposable a system is.

In ”IEEE Standard Glossary of Software Engineering Ter-
minology”, the term ”complexity” is defined as ”the degree to
which a system’s design or code is difficult to understand be-
cause of numerous components or relationships among com-
ponents”[1]. It means that the complexity of a system con-
sists of the complexity of the system’s design and implemen-
tation, which are found in different views and source code.
According to this definition, the software complexity implies
the architectural complexity, since the architecture is design
part of the software. In addition, the architectural complex-
ity is related to the number of components and relationships
among them. Similarly, Yingxu Wang defines that ”the ar-
chitectural complexity[...] is determined by the number of
data objects at system and component levels”[25]. More-
over, in Wang’s opinion, the architectural complexity is also
a part of the overall cognitive complexity of a software sys-
tem next to other complexities, such as symbolic, relational,
operational and functional complexities.

IEEE also defines that the architectural complexity can be
accessed using any set of structure-based metrics[1]. Aside
from the numerous components or relationships among them,
the degrees of cohesion and coupling within and between
the components are widely accepted as factors affecting the
architectural complexity. For instance, those factors were
considered by Sangwan et al. during the complexity analy-
sis of a software system[21]. They stated that the coupling
between architectural units should be as low as possible to
limit the change and error propagation. The software ar-
chitecture can be presented as a dependency graph, which
should be free of cycle. About cohesion, Sangwan et al.
stated that the more cohesive a component is, the less com-
plex it is; consequently, the less complex is the architecture
considered to be.

Another approach on defining ”architectural complexity”
introduced by Lilienthal is based on a general approach that
the complexity of a software system is divided into the com-
plexity of a problem and the complexity of a solution[10].
Lilienthal then defines the architectural complexity as fol-
low:

”the architectural complexity is the structural part of
complexity of a solution, which is a result of design
decisions of architectural elements and relationships
among them”[18].

The complexity of a solution emerges during the develop-
ment process, while the architect is trying to design a func-
tional solution for a problem domain. Moreover, architec-
tural complexity can be found in implemented architecture
and the mapping between designed architecture together
with architectural style and the source code. The imple-
mented architecture is more complex than the designed one,
and it depends on the decision made by the architect on de-
sign and architecture style[18]. In addition, developers need
to map the designed architecture to the implemented one
of software system to verify their work. This is considered
very complex task and it might become more difficult, if

a drift between the designed and implemented architecture
occurs. The architectural drift indicates the inconsistency
of the designed architecture[12].

In summary, ”architectural complexity” is a part of the
overall complexity. It is the degree to which a system’s de-
sign is difficult to understand. According to the definition
in [1], the architectural complexity is related to different
attributes, such as cohesion, coupling, and the numbers of
components and relationship among them. Furthermore, the
complexity can be assess by structure-based metrics.

3. ARCHITECTURAL METRICS
Measuring the complexity within a software system can

be done in different ways. At the code level, the Halstead’s
difficulty and cyclomatic complexity by McCabe represent
the common and quantitative metrics. At the design level,
the description of a software architecture comprises multiple
views, which offer lots of possibility on measuring architec-
tural attributes of the system. Stevanetic et al. presented
a systematic mapping study of software metrics[23]. Those
metrics measure the attributes of a system at architecture
level and according to the definition of IEEE, they also ac-
cess its complexity. Stevanetic et al. only took the structure-
based metrics measuring from the deployment view into ac-
count. This view captures mostly information on major
functionalities of components and interaction between them.
This section presents the classification of structured metrics
introduced by Stevanetic et al. and its limitations.

3.1 Metric Classification
Stevanetic et al. classify the metrics according to their

approach types, as well as the measured artefacts and at-
tributes. There are three different approach types, i.e. inter-
nal structure based metrics, graph based metrics and specific
model based metrics[23]. From our view, there are only two
distinct approaches, i.e. direct and indirect metrics. The
internal structure based metrics measures the understand-
ability directly on the architecture of a given software. This
approach type corresponds to the direct metrics. For in-
stance, the metrics introduced by Hupta et al. measure cou-
pling and cohesion of packages directly from the architecture
without any transformation[13, 14]. The indirect metrics,
however, need additional representation of a given architec-
ture for the measurement. The simplest representation of a
software architecture is the graph model. The metrics mea-
sure from graph models are classified as graph based metrics.
For instance, Allen introduced his approaches based on in-
formation theory in [2], and also the later paper [3]. The
relation between Allen’s metric set and the architectural
understanding was proved by Stevanetic et al.[22]. There
are also specific representations of a software architecture,
such as layered architecture models, composite architecture
models. Metrics measuring from those representations are
classified as specific model based metrics. Additional effort
is needed for using those metrics, since the transformation
to the specific representation is required.

According to the measured artefacts, Stevanetic et al.
identified metrics measuring at high level structure as well
as metrics related to single artefacts[23]. The measured soft-
ware artefacts are architecture, component, module, pack-
age, component-to-component and graph node. As an arte-
fact, the architecture takes into account every part of the
system on different levels of the hierarchy. The high level

artefacts are components and modules. However, those arte-
facts need a context to be defined properly. On the one hand,
they might be on the highest level of the hierarchy. On the
other hand, they might on lower level and contain lowest
level artefacts, such as source code. Either way, component
and package have well-defined functionality[23]. The low
level artefacts are packages containing source code or other
packages. Those packages builds a hierarchy on the low-
est level of the architecture. Besides, the relations between
component are classified as component-to-component arte-
facts. Since a graph model is the simplest representation of
the software architecture and the architectural parts can be
represented as graph nodes or edges, the graph node is the
simples artefact.

According to the measured software attributes, the met-
rics are classified into different categories. The size metrics
are quantitative metrics related to the number of elements
inside the corresponding artefact, in part or the whole sys-
tem. The coupling and cohesion metrics are well-known,
widely accepted in the architecture community and already
introduced in previous section. So far, those metrics measure
basic software attributes, meaning they don’t consider other
metrics for computation. Other category of metrics is com-
plexity metrics measuring the degree of connectivity between
the units of a software system. The complexity metrics are,
however, not basic metrics and consider the cohesion and
coupling metrics. Similar to the complexity metrics, stabil-
ity metrics take coupling metrics into account and measure
the effort to take change on a artefact. In addition, there
are quality metrics measuring from a specific representation
of the software system. Those metrics needs the composite
based software architecture for measurement and is based
on the Multi-Attribute Utility Technique (MUAT)[23].

3.2 Limitations
By now, the classification of structured-based metrics is

not complete, since only metrics measuring from the deploy-
ment view are taken into account. Stevanetic et al. men-
tioned an additional approach measuring on the meta-level
of the architecture, such as OCL and UML[23]. One ap-
proach measuring UML was introduced by Lankford [17],
which is not covered in the assessment by Stevanetic et
al.. Another approach was introduced by Kazman et al.[16],
which focuses on the reorganization of patterns implemented
in a given software architecture.

For their work, Stevanetic et al. defined a maturity level
assessment for the structure-based metrics. This assessment
can be applied on the future research of structure-based met-
rics. It focus on different parameters, i.e. definition, map-
ping quality of the metrics to the external quality character-
istics, level of validation, comparative analysis, usability, ap-
plicability and tool support. As a result, 80% of the metrics
have a medium usability level; meaning, they require some
effort in order to understand and compute the metrics. 72%
of them require further improvements or more reasonable
evaluation criteria in order to be applied in real projects[23].
The results show the potential deployment of those metrics
in the development process. Besides, Stevanetic et al. iden-
tified the common problems reflecting ”through ambiguities
in metrics definitions, lack of empirical validation and lack of
information [...] and missing comparative analysis [...]”[23].
In brief, further validations and works on those metrics are
needed before the metrics can be applied into the develop-

ment process.

4. ARCHITECTURAL COMPLEXITY MOD-
ELS

The number of architectural complexity models stands in
contrast to the numbers of metrics. In the literatures, there
are only few models for architectural complexity. For in-
stance, Darcy et al.[9] created a structural complexity model
of software based on Wood’s task complexity model (see
more in [26]) in order to prove their hypothesis. They con-
sidered software functionalities as tasks and those can be
analyzed by Wood’s model. With the aid of an adaption of
Wood’s model for the software domain, they defined cohe-
sion and coupling concepts theoretically, validated the re-
lation between them and structural complexity. Those con-
cepts affect structural complexity in terms of software under-
standing and effort to perform maintenance tasks[9]. They
claimed that the adaption of Wood’s model can be applied
on larger systems. The concept of cohesion and coupling
can be applied throughout the whole software life for a bet-
ter cost-benefit ratio.

In our research, we found another formal model for archi-
tectural complexity firstly introduced by Lilienthal[18] (com-
plexity model of Lilienthal - CML). Similarly to the soft-
ware quality model, the factor-criteria-metric-model (FCM-
model) is used as framwork to design CML[19]. The CML is
underlaid by cognitive science theory and general software
engineering principles. However, there are limitations on
CML, such as the focus of cognitive science theory only on a
specific level of understanding, and the lack of validation on
programming language[7]. Bouwers et al. introduced a new
model based upon CML and inspired by system attributes
of Bouwers et al.[6], the Software Architecture Complexity
Model(SACM)[7]. However, this model was created in order
to prove Darcy et al.’ hypothesis and does not focus on ac-
cessing architectural understandability of a software system.
Therefore, we won’t take a closer look on this model.

In SACM shown in figure 1, the overall goal, the architec-
tural complexity, is divided into five different factors speci-
fied in two categories, i.e. personal and environmental. The
factors and criteria of the original CML cover most of the
personal categories and are marked in gray color. The ex-
tension from CML to SACM is denoted in white color. In
the next layer, there are criteria substantiating those factors,
hence they are still abstract. The metrics for measurement
are in the lowest level of the model.

4.1 Personal Factors
This category of factors focuses on the understanding of

a single developer. During the development process, the
developer must handle an enormous amount of information
contained in a given software system and its architecture.
Such information includes the components and relationships
among them. Furthermore, as mentioned in section 2, the
mapping rules between designed and implemented architec-
ture is an essential and complex task of software developers.
To answer the questions ”How does a developer solve such
a complex task”, Lilienthal turned towards the field of cog-
nitive science[18]. Within cognitive psychology, Lilienthal
focuses on three mental strategies to deal with enormous in-
formation and complex mapping, i.e. chunking, formation
of hierarchies and schema.

Figure 1: Software Architecture Cognitive Model(SACM)[7]

Chunking is a strategy focused on recoding small infor-
mation units into a new larger one called a ”chunk”. By
applying this strategy, human short-term memory is used in
a more efficient way. Those chunks need to be a product of
meaningful and cohesive information. This strategy can be
found in the general design principles, such as modulariza-
tion and abstraction through interfaces.

Another strategy is the formation of hierarchy, which is
mostly used in combination with chunking. The informa-
tion units are structured on different levels. As a result, the
hierarchical structure allows developers to understand and
process information in an easier way. In software construc-
tion, hierarchies are proven structures to reduce complexity.
The design principles applied in this strategy are avoiding
cyclic structures and layering, etc.

Schema comprise information units from the abstract and
the real world. The abstract information units are the typ-
ical aspects and domain of derived instances of the real
worlds. By applying in this strategy, design patterns are
the result of using the excellent human ability to recognize
and match pattern.

Based on these strategies in cognitive science and design
principles in software engineering, Lilienthal defines the fol-
lowing three main factors in CML[18], which are classified
as personal factors in SACM and have additional criteria[7].

• Modularity – checks the implemented architecture
for decomposition. The components should be cohe-
sive, encapsulate their behavior, and offer a cohesive
interface.

• Ordering – checks the implemented architecture with
regards to the directed, acyclic graph, which is build
from the relationship between elements.

• Pattern conformity – looks for architecture drift us-
ing pattern matching and checks whether the mapping
rules from the designed to implemented architecture
are applied correctly.

4.2 Environmental Factors
Nowadays software systems, especially large-scale systems,

evolve overtime. The amount of information contained in
the architecture might become larger and exceed the capa-
bilities of a single developer. In addition, the business re-
quirements will also change, which leads to the adaption of
the implemented architecture. Depending on the available
time for the adaption, developers need to work together in
some form of distributed cognition. To handle the situation,
one strategy is to lower the amount of information needed
to understand the implemented architecture. However, the
degree of difficulty to understand the information depends
on the developer processing them.

All in all, the context for this information should be avail-
able, especially the implemented architecture. In addition,
it needs to be kept to a minimum. Furthermore, the repre-
sentation of the information might allow a better way to un-
derstand the architecture. Bouwers et al.[7] observed those
needs of information and define the following environmental
factors:

• Information Extent – checks the amount of infor-
mation needed to understand the implemented archi-
tecture.

• Information Availability – assess the availability of
information about the architecture

4.3 Properties of SACM
SACM is an extension of CML, which has a structure

corresponding to the setup of the general FCM-model. Fur-
thermore, SACM has been validated in Lilienthal’s disser-
tation and has new additional criteria and factors based on
cognitive theory from Hutchins[15] and system attributes of
Bouwers et al.[6]. Hence, SACM is a formal model based on
both theory and practice. Bouwers et al. also made a claim
about the potential deployment of SACM as a model inside
Software Risk Assessment process of the Software Improve-
ment Group[7]. This Software Risk Assessment takes two

facts into account. The primary facts are obtained through
automatically analyzing the source code of a system and sec-
ondary facts from people working with or on the system, and
available documentation[24]. Most of those facts can be re-
trieved using SACM. Only the secondary facts have to be re-
trieved manually by interviewing the stakeholders[24]. Since
the full potential of SACM can be accessed from both de-
signed and implemented architecture, SACM can also be de-
ployed as ”formal backup for the Light-weight Sanity Check
for Implemented Architectures”[5], which has been already
suggested in [7]. However, only the factors ”Modularity”
and ”Ordering” of SACM are accessible in case of not ex-
isting implemented architecture. We can not exploit the
fully potential of SACM at the early stage of development.
In oder to provide a balanced assessment of SACM criteria,
there is a need of new metrics together with theirs thresholds
depending on the threshold approaches[7].

Beside the positive properties, there are several limita-
tions of SACM[6]. One limitation is that designed and im-
plemented architecture are necessary for the evaluation and
especially the implemented architecture. Otherwise, the fac-
tor ”pattern conformity” won’t be fully accessed. Another
limitation is the lack of a formal proof on the completeness
of SACM. There might be factors and criteria, which have
not captured in SACM yet. However, the ”understanding”
in cognitive science, in which SACM is based on, hasn’t been
proven on its completeness neither[6]. Hence, it is not a real
limitation[7].

5. CONCLUSIONS
In this paper, we introduced the definition of software

complexity by IEEE and two definitions of architectural
complexity introduced by Wang and Lilienthal. Since the
architectural complexity is a part of the overall software
complexity and its definition can be implied by the def-
inition of software complexity, that might be the reason,
why the definition of architectural complexity has not estab-
lished yet. However, the definitions introduced by IEEE[1]
and Wang[25] does not cover all the criteria of the archi-
tectural complexity introduced in Lilienthal’s dissertation.
Thus, those definitions do not define architectural complex-
ity properly. Lilienthal’definition is, however, based on an a
more general approach of software complexity comparing to
the definition of IEEE and Wang.

The architecture community agrees with relation between
cohesion, coupling and architectural complexity. The clas-
sification by Stevanetic et al. and the formal model of ar-
chitectural complexity SACM reflect that relation. Besides
coupling and cohesion, there are other factors determining
the architectural complexity presented in SACM. Since the
implemented architecture is required in order to access those
factors, only cohesion and coupling are available for assess-
ing architectural complexity in the early development phase,
which has been already suggested in [11]. All in all, cou-
pling and cohesion are attributes of architectural complex-
ity, which can be measured during the entire development
process.

As the first assessment of structure-based metrics, Ste-
vanetic et al. focused on metrics measuring architectural
understanding from the deployment view. Most of the met-
rics are applicable in real projects. Stevanetic et al. iden-
tified the need for further verification and improvement of
those metrics. Although the Stevanetic et al.’s work is lim-

ited to the metrics measuring from the deployment view,
their classification might be the first step towards defining
the taxonomy of structure-based metrics measuring under-
standability.

During the research, we found two approaches on model-
ing architectural complexity. One approach is the adaption
of Wood’s task complexity model for the software domain
introduced by Darcy et al.. Another approach is the Soft-
ware Architecture Complexity Model(SACM) introduced by
Bouwers et al.. SACM is a formal model based in both the-
ory and practice. All in all, the structure-based metrics
and SACM have a good potential for deployment in a real
project. Nevertheless, there is a need of research on new
metrics as well as the validation of current structured-based
metrics.

6. REFERENCES
[1] IEEE Standard Glossary of Software Engineering

Terminology. 2011.

[2] E. B. Allen. Measuring graph abstractions of software:
An information-theory approach. Eighth IEEE
Symposium on Software Metrics, June 2002.

[3] E. B. Allen, S. Gottipati, and R. Govindarajan.
Measuring size, complexity, and coupling of
hypergraph abstractions of software: An
information-theory approach. Software Quality
Control, 15(2):179–212, March 2007.

[4] L. Bass, P. C. Clements, and R. Kazman. Software
Architecture in Practice, Third Edition.
Addison-Wesley Professional, 2012.

[5] E. Bouwers and A. v. Deursen. A lightweight sanity
check for implemented architectures. IEEE Software,
27(4):44–50, 2010.

[6] E. Bouwers, J. Visser, and A. v. Deursen. Criteria for
the evaluation of implemented architectures. 25th
International Conference on Software Maintenance,
pages 73–83, 2009.

[7] E. Bouwers, J. Visser, C. Lilienthal, and A. v.
Deursen. A cognitive model for software architecture
complexity. 18th IEEE International Conference on
Program Comprehension, July 2010.

[8] P. Clements, R. Kazman, and M. Klein. Evaluating
Software Architectures: Methods and Case Studies.
Addison-Wesley, 2005.

[9] D. P. Darcy, C. F. Kemerer, S. A. Slaughter, and J. E.
Tomayko. The structural complexity of software: An
experimental test. IEEE Transactions on Software
Engineering, 31(11):982–994, November 2005.

[10] C. Ebert. Complexity traces - an instrument for
software project management. International Thomson
Computer Press, pages 166–176, 1995.

[11] M. Galster, A. Eberlein, and M. Moussavi. Early
assessment of software architecture qualities. Second
International Conference on Research Challenges in
Information Science, pages 81–86, 2008.

[12] A. Ghazarian. A theory of software complexity. 4th
SEMAT Workshop on a General Theory of Software
Engineering, 2015.

[13] V. Gupta and J. K. Chhabra. Package coupling
measurement in object-oriented software. Journal of
Computer Science and Technology, 2009.

[14] V. Gupta and J. K. Chhabra. Package level cohesion
measurement in object-oriented software. Journal of
the Brazilian Computer Society, 2012.

[15] E. Hutchins. Cognition in the wild. MIT press, 1996.

[16] R. Karzman and M. Burth. Assessing architectural
complexity. 2nd Euromicro Working Conference on
Software Maintenance And Reengineering, 1998.

[17] J. Lankford. Measuring system and software
architecture complexity. in Proc. 2003 IEEE
Aerospace Conference, March 2003.

[18] C. Lilienthal. Komplexität von Softwarearchitekturen –
Stile und Strategien. PhD thesis, University Hamburg,
2008.

[19] P. K. McCall, J. A. abd Richards and G. F. Walters.
Factors in software quality. US Rome Air Development
Center, 1977.

[20] M. Nagl. Softwaretechnik: Methodisches
Programmieren im Großen. Springer, 1990.

[21] R. S. Sangwan, L.-P. Lin, and C. J. Neill. Structural
complexity in architecture-centric software evolution.
Computer, 41(10):96–99, October 2008.

[22] S. Stevanetic and U. Zdun. Exploring the relationships
between the understandability of architectural
components and graph-based component level metrics.
14th International Conference on Quality Software,
2010.

[23] S. Stevanetic and U. Zdun. Software metrics for
measuring the understandability of architectural
structures – a systematic mapping study. 19th
International Conference on Evaluation and
Assessment in Software Engineering, April 2015.

[24] A. van Deursen and T. Kuipers. Source-based software
risk assessment. ICSM 2003: Proceedings of the
International Conference on Software Maintenance,
2003.

[25] Y. Wang. Cognitive complexity of software and its
measurement. 5th IEEE Int. Conf. on Cognitive
Informatics, 2006.

[26] R. Wood. Task complexity: Definition of the
construct. Organizational Behavior and Human
Decision Processes, 37:60–82, 1986.

A Survey on Multi-objective Regression Test Optimization

Karl Ricken
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

karl.ricken@rwth-aachen.de

Andrej Dyck
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
andrej.dyck@swc.rwth-aachen.de

ABSTRACT
Testing is a crucial part of software engineering in which
regression testing verifies that functionality did not break
with changes. Automating the execution of those checks
reduces manual workload. However, in large software appli-
cations, the execution of all test cases can still be time con-
suming and is often unnecessary considering that a change
affects only a part of the application. Thus, researchers and
practitioners proposed approaches that optimize the execu-
tion of automated regression tests; primarily, the reduction
of the execution time. It is only in recent years that approa-
ches consider more than one objective in their optimization.
These approaches are called multi-objective regression test
optimization (MORTO).

MORTO approaches seem promising. Not all of them, ho-
wever, are clearly labeled as MORTO or even as regression
test optimization. This paper reviews recent publications
and presents a selection of state-of-the-art MORTO appro-
aches. Furthermore, it discusses two promising techniques
and gives a perspective for future research.

Keywords
genetic algorithm, linear programming, morto, multi ob-
jective regression testing, regression test, regression test op-
timization, search-based testing, test prioritization, test se-
lection, testing

1. INTRODUCTION
While developing large software systems, software testing

is one of the very important tasks to ensure quality. Regres-
sion testing verifies the functionality after code changes. It
can be automated with the help of testing frameworks, for
example, JUnit for the software language Java.

With an increasing number of automated test cases for a
software, the execution of these test cases takes more time
and resources. Regression test optimization (RTO) techni-
ques optimize the execution to reduce time and resources of
regression testing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2016/17 RWTH Aachen University, Germany.

Two groups of techniques, regression test selection (RTS)
and regression test prioritization (RTP), currently have high
academic relevance for RTO [25]. RTS techniques pick test
cases that are relevant for the change and ensure full fault
detection. RTP techniques sort test cases in order to detect
faults as fast as possible [25].

Many RTO techniques pursue a single objective. Often,
RTS techniques minimize the execution time, while RTP
techniques order test cases according to coverage or critical-
first [25].

In recent years, new techniques considered more than one
objective for a better optimization, e.g., reducing costs for
database access and maximizing code coverage [8]. RTO
techniques that optimize for two or more objectives are cal-
led multi-objective regression test optimization (MORTO)
[8]. Multi-cost optimization and multi-value optimization
are also part of MORTO [8].

Techniques that optimize multiple objectives are not al-
ways labeled as MORTO. For example, Maia [16] describes a
technique that meets the definition of MORTO, but named
it RTS and does not mention the term of MORTO. There-
fore, this paper surveys the state-of-the-art of MORTO ap-
proaches and presents the most promising techniques. Two
of these techniques will then be discussed with respect to
their relevance for RTO.

The paper is divided into seven sections: After this intro-
duction section 2 describes the methodology used for this
survey. Section 3 presents first RTO techniques that consi-
der more than one objective. Section 4 shows the state-of-
the-art of RTO techniques that can be labeled as MORTO
and the most promising approaches that optimize multiple
objectives. In section 5, this paper discusses two promi-
sing MORTO techniques and emphasizes why two objectives
that have rarely been used until now need more attention.
Section 6 describes the threats to validity and section 7 ends
this paper with a conclusion.

2. METHODOLOGY
This section presents the tools, keywords and approaches

that were used to create this survey. We limited our rese-
arch to academic papers published between 2009 and 2016
in order to provide a literature review on latest MORTO
techniques. Other material like books or magazines was not
taken into account.

We started to search for literature in several online re-
search tools and databases, including Google Scholar, Ci-
teSeerX, IEEEXplore, and Mendeley. Search terms inclu-
ded the keywords genetic algorithm, linear programming,

morto, multi objective regression testing, regression test, re-
gression test optimization, search-based testing, test priori-
tization, test selection, and testing. To narrow down the
search results, we also combined keywords in various ways,
for example:

• genetic algorithm regression test optimization,

• search-based testing regression optimization,

• linear programming regression test optimization,

• multi objective regression testing.

Out of several million search results, we identified 19 aca-
demic papers as relevant for the topic at hand.

In a next research round, we used a snowball technique
and identified further relevant papers by analyzing the re-
ferences of the 19 initial papers. In addition, we used the
Google Scholar function cited by (recursively) to find further
academic papers that cited the initial papers.

3. BASIC TECHNIQUES
For a better understanding of the concepts in the following

sections, this paper presents a brief explanation of basic ob-
jectives and techniques in RTO.

Harman [8] subdivides types of objectives into two cate-
gories: value- and cost-based objectives.

In RTO, cost-based objectives are aimed to be minimized
[8]. Examples for RTO-associated costs include, but are not
limited to setup, execution, and simulation. Setup costs
appear for instance when a test case requires devices, files,
or services, before the actual test can be executed. Other
costs may appear because developing a simulation of a real
system takes a lot of time and money [8].

On the contrary, value-based objectives, also known as
benefits, are aimed to be maximized in RTO [8]. Selected
examples for RTO-associated benefits are code-based co-
verage (e.g. branch coverage, mutation coverage, statement
coverage) and business sensitivity. Both of these are related
to target-market acquisition or revenue generation. Anot-
her value-based objective is fault model sensitivity. By its
nature, a reasonable RTO-technique should be sensitive to
fault models. If it is known that certain faults are likely to
occur, then these should be incorporated into the RTO. The
tests can then reveal categories of faults that are more likely
to be selected or prioritized [8].

Maximizing values/benefits and minimizing costs can be
considered as objectives in itself. Because of the limited
scope of this paper, however, the authors focus on value-
and cost-based objectives.

In a first empirical study on MORTO by Elbaum et al.
[3], execution time and cost were combined into a single ob-
jective [8]; the technique that was used in this study defines
and maximizes a fitness function. A fitness function is a
type of objective functions that maps an element out of a
set to a real number [13]. The fitness function in the first
empirical MORTO study is a ratio of value

cost
[3] under certain

constraints. The idea of using a fitness function under cer-
tain constraints is known as a linear programming problem
(LP-Problem) [2]. In a LP-problem the objectives should
be minimized or maximized under certain constraints. Usu-
ally, a LP-Problem has more than one solution that is called

pareto optimal [5, 2]. A solution is pareto optimal if no ob-
jective can be optimized without making other objectives
worse[5].

Another essential method in software testing is pairwise
testing. To avoid testing all possible combinations of para-
meter assignments, pairwise testing deletes duplicates from
each paired combination of a parameter assignment [28].

Another approach to optimize multiple objectives is a
weighted objective function

WO(x) = w1 · f1(x) + · · ·+ wn · fn(x)

which puts n objectives {f1, . . . , fn} into a single weigh-
ted objective for weights {w1, . . . , wn}[7]. Note that each
function fi(x) can be a fitness function, too. This technique
was used by Wang et al. in 2013 [30]. They defined a function
with three objectives: test minimization percentage (measu-
ring the reduction of the number of test cases), feature pai-
rwise coverage (measuring the degree of pairwise coverage
that can be achieved by a chosen solution) and fault de-
tection capability (measuring the fault detection capability
of a selected test solution for a product)[30]. Their fitness
function is based on w1 = 1

3
, w2 = 1

3
, w3 = 1

3
. These values

were defined in cooperation with test engineers of Cisco.
Wang et al. extended this technique for Cisco in 2014. They
defined a fitness function for a single cost objective (for ex-
ample overall execution cost) and several effectiveness mea-
sures (Wang et al. [31] used prioritized extent within a given
test resource, feature pairwise coverage, and fault detection
capability). Also, each objective got the same weight.

Determining the optimal weights for the objectives, ho-
wever, is not always possible. A pareto optimal approach
is generally better than the weighted objective function be-
cause it manages the relation between value- and cost-based
objectives [6].

4. CONCRETE TECHNIQUES
Most of the techniques that can be labeled as MORTO are

RTS and RTP techniques that pursue multiple objectives.
This section presents promising techniques in RTS and RTP,
as well as hybrid approaches that are a combination of both,
RTS and RTP. Moreover, it describes further techniques that
optimize for multiple objectives and are based on natural
observations: Ant Colony Optimization (ACO).

4.1 MORTO in regression test selection
In their empirical study on software testing, Maia et al.

[16] minimize the execution time, minimize the risk of test
cases, and maximize importance of the requirements cove-
red. For example, the authors declared lack of experience
with new tools or technologies as a risk of test cases. They
found valid and optimal solutions by the use of a heuris-
tic algorithm that is based on a NSGA-II algorithm [16].
In the future, Maia et al. intend to validate this approach
with more tests. Their next step is to validate the technique
with a major quantity of data and with other multi-objective
meta-heuristics [16].

Another approach is a generic test selection strategy cal-
led THEO [9]. It ensures that all tests will be executed on
all code changes at least once before releasing the software
product. The purpose of this technique is to find all code de-
fects. Moreover, it increases the productivity and minimizes
the overall testing time [9]. According to the authors, the
product quality will not be sacrificed. However, THEO may

delay defect detection to later development phases because
it skips test cases for which the expected cost of running
them exceeds the cost of not running them [9].

At Microsoft, a large industrial software company, many
product teams are convinced of the success of THEO [9].
Because of the attention from large industrial companies, it
seems likely that this technique will be developed further.

Parsa and Khalilan [20] present another approach:
A greedy algorithm that maximizes the fault detection ca-
pability and minimizes the number of test cases. These two
objectives are used for test suite minimization, but can also
be classified as RTS. First, a test case-requirement matrix
will be defined where the elements are either 1 if the test case
satisfies the requirement or 0 if not. Through mathematical
operations the technique indicates and selects optimal test
cases. Optimal test cases satisfy the maximum number of
unmarked requirements and have the minimum overlap in
requirement coverage. For the future, Parsa and Khalilan
intend to conduct experiments on available real C programs
as well as java benchmarks [20].

Tyagi and Malhotra [29] present a further approach that
prioritizes test cases in three steps. At first, redundant test
cases are removed. In the second step, a multi-objective
algorithm called multi objective particle swarm optimization
(MOPSO) selects a minimal set of test cases that pursues
the target to cover all faults in minimum execution time.
In the last step, the approach calculates the ratio of fault
coverage to the execution time of test cases. The higher the
ratio, the higher the priority. Finally, the approach orders
the test cases by priority [29].

4.2 MORTO in regression test prioritization
Ashraf et al. [1] introduced a new algorithm, called value-

based particle swarm optimization. The algorithm pursues
six objectives: changes in requirement, implementation com-
plexity, requirement traceability, execution time, customer
priority, and fault impact of requirement. The authors tes-
ted the algorithm and compared the results with the results
of a random prioritization. This random prioritization acts
as a base-line for comparison [1]. Ashraf et al. tested this
approach only on a limited data set. In the future, they
intend to validate the swarm optimization by using larger
sized projects with a larger number of test cases. Further-
more, the authors intend to investigate their approach with
evolutionary techniques in order to show the advantages, for
example, the early rate of fault detection [1].

Another approach in RTP that is based on a genetic al-
gorithm was developed by Kaur and Goyal [14]. Genetic
algorithm are programs that solve complex problems based
on the idea of natural selection [10]. Kaur and Goyal’s [14]
technique expands RTP by faults covered in minimum exe-
cution time and total code coverage. The authors used the
Average Percentage of Condition Coverage (APCC) appro-
ach to analyze code coverage. In the near future, this algo-
rithm will be implemented in an automation tool for solving
large numbers of test cases [14].

Huang et al. [12] used historical records for a
cost-conscious RTP approach. The objectives of this appro-
ach are to minimize test costs and to create a strictly forma-
lized approach that can easily be adopted by future work.
Huang et al.’s technique orders the test cases by their vari-
ous test costs and fault severities [12]. Most RTP techniques
analyze the source code, but Huang et al. take a different

approach. Their technique does not rely on the availability
of the source code and can thus be used in projects in which
the tester does not have access to the source code. To verify
their technique Huang et al. gave an outlook on adding more
issues to solve, for example, combining their history-based
technique with coverage-based techniques [12].

Marijan et al. [18] developed another RTP approach Pri-
oritization for Continuous Regression Testing (ROCKET).
With given set of test cases, execution time for each test
case, failure status for each test case based on last executi-
ons, and total time of testing, ROCKET determines a pri-
ority for each test case by using specific heuristics. Those
heuristics depend on specific industrial settings [18]. The
main objectives are minimizing the execution time and ha-
ving higher regression fault detection. Furthermore, the aut-
hors present an industrial test case study of their approach
and demonstrate the resulting effectiveness based on com-
parison with other techniques. In the future, Marijan et al.
intend to extend their approach for more criteria, for exam-
ple, the cost of switching test cases in execution that require
manual intervention or the cost to fix the failure [18].

Marijan [17] developed a further RTP approach that in-
tegrates three objectives as criteria for prioritizing the test
cases. These objectives include: business perspective, per-
formance perspective, and technical perspective. The author
developed his technique by testing industrial mobile device
systems that were developed in continuous integration. His
approach maximizes the number of executed test cases with
high failure frequency, failure impact, and cross-functional
coverage [17]. In the future, Marijan intends to extend the
approach by considering more prioritization factors. His ap-
proach seems promising because it is developed and tested
for industrial projects [17].

Strandberg et al. [27] introduced a new approach based
on Marijan’s [17] technique in cooperation with Westermo
Research and Development AB [27]. This technique is called
SuiteBuilder and orders test cases by the weighted average of
the following prioritization methods (called Prioritizer [27]):

1. TestPrioritizer : experiences from developers are noted
in configuration files that are rarely modified.

2. TagPrioritizer : each test case is allocated to a test
case group. Developers grade those groups.

3. FailPrioritizer : if a test case failed in the past, it gets
a higher rating than those test cases without a fault.

4. RecentPrioritizer : untested test cases are preferred.

5. SourcePrioritizer : analysis of detailed logs created by
the devices on which the software is running. This
analysis can locate code areas that have recent changes
[27].

This approach is intended for industry use at Westermo Re-
search and Development AB. It shows the effectiveness of
prioritization by considering multiple objectives. Strand-
berg et al. do not mention plans of expanding their appro-
ach, but they expect extension from other companies in the
future [27].

Raju and Uma [22] present a further approach that uses
a genetic algorithm to weigh seven prioritization factors:
customer assigned priority of requirements, implementation
complexity, changes in requirements, fault impact of requi-
rements, completeness, traceability and execution time.

The authors evaluate the effectiveness of their technique by
using the average-percentage-of-faults-detected (APFD) me-
tric. The motivation of this approach is to reveal more severe
faults at an earlier stage and to improve customer-perceived
software quality [22].

4.3 Hybrid approaches
In this subsection some approaches that are based on

both, RTS and RTP, will be presented. The techniques des-
cribed before were clearly labeled as RTS or RTP by the
corresponding authors. The following techniques are not
explicitly labeled as one of the two. They are based on a
combination of RTS and RTP techniques or other optimiza-
tion strategies that are called hybrid techniques [23].

Mirarab et al. [19] introduced an approach that is based on
different optimization strategies. The authors formalized the
problem (optimize multiple objectives) to a LP. The target
function is to achieve the given objectives. The constraints
are the limit of the test cases that can be tested and the
maximal time for testing all test cases. This LP will be
solved by approximate algorithmic methods, for example,
neighborhood searching. The idea is to first concentrate
on one objective; afterwards the technique integrates other
objectives step by step [19]. The authors do not mention
explicit goals. This technique is helpful for using limited
resources more effectively by making small sacrifices to one
criterion, enabling noticeable improvements in other criteria
[19]. Furthermore, the approach is flexible for new criteria
and can be adapted for different objectives. The approach,
however, is kept general. That is the reason why Mirab et
al. suggest to study it in more depth themselves [19].

Sampath et al. [23] defined a further technique that consi-
ders multiple criteria as a hybrid, called hybrid criteria [23].
The goal is to apply multi-objective algorithms (e.g. Multi-
Objective Genetic Algorithm) that solve the problem: select
a pareto optimal subset of the test suite, based on multiple
test criteria. Sampath et al. suggest revisiting many techni-
ques that pursue a single objective. In their opinion, many
techniques can pursue multiple objectives [23].

4.4 Ant Colony Optimization approaches
Not all techniques are based on well-known algorithms.

For example, Ant Colony Optimization (ACO) is a strategy
based on observations of ants [11] and is an example for
the diverse sources that ideas for RTO (and software tes-
ting in general) can come from. The strategy transferred a
phenomenon from nature to programming by imitating how
ants find the best way to the nearest food source. In na-
ture, all ants spread out to find the closest food source. As
soon as one ant finds a source all ants will start to use this
source until it is exhausted. Nature thus optimizes for one
objective: proximity. Some RTO techniques follow this idea
and have been analyzed for industrial projects [1, 15, 24, 26,
29].

ACO is employed in the approach of Singh et al. [24]. The
objectives of this approach are the minimization of execution
time with minimal effort required and the maximization of
fault coverage. Sing et al. also suggest using their technique
for larger software projects. The more test cases the closer
is the technique to the optimum [24]. The authors plan
to implement the technique for automation and apply it to
complex and large software. Also, Singh et al. intend to
compare their approach with other techniques, for example,

genetic based prioritization techniques [24].
Kumar [15] presents an approach to optimize multiple ob-

jectives through ACO. The goal of Kumar’s technique, ho-
wever, is to optimize for two objectives. Metaphorically, he
modified the system in a way that a few ants will continue
to look for a better food source that is not necessarily the
closest source. In reality, Kumar’s technique enhances the
fault-detection rate and minimizes the execution time [15].

Solanki et al. [26] examined the Modified Ant Colony Op-
timization (m-ACO). M-ACO means that ants select the
shortest distance to food but also check the food quality by
calculating the food source fitness. The authors implemen-
ted and tested such a technique and used it to order test
cases in a test suite [26]. This technique is comparable to
the technique of Kumar described before.

5. DISCUSSION
In this part, the paper will take a critical look at the

existing MORTO techniques. While RTS and RTP approa-
ches have already been examined in more detail in academic
papers, ACO and hybrid approaches still lack further aca-
demic attention. ACO and hybrid approaches as they were
presented in this paper do thus not allow for a substantiated
discussion. Moreover, the limitations of this paper do not
allow for a full discussion of all techniques that were pre-
sented earlier. Because of this, the RTS approach of Parsa
and Khalilan [20] and the RTP approach of Strandberg et
al. [27] were selected as exemplary techniques for discussion.
In addition, setup costs and fault sensitivity will be discus-
sed as exemplary new main objectives in MORTO. These
objectives have rather been neglected in the past, but seem
promising and should thus get more academic attention in
the future.

5.1 Critical review of RTS and RTP approach
Both approaches, by Parsa and Khalilan [20] and by

Strandberg et al. [27], seem promising for the future, but
currently do not contain criteria that are relevant enough
for the future. This subsection provides a critical review of
both techniques.

Parsa and Khalilan [20] present a RTS technique that used
a greedy algorithm to handle three objectives: maximizing
fault detection capability, which also maximizes the number
of testing requirements, and minimizing the number of test
cases. The authors defined a matrix in which the entries re-
present test cases and test requirements. In comparably few
steps this technique removes test cases that can be neglected
if other test cases can cover their requirements [20].

This idea focuses on a minimal set of test cases that sa-
tisfies all test requirements, but it does not pay attention to
execution time. Indeed, there is a correlation between the
number of test cases and the total time for testing. Yet,
when the technique has to select one of two test cases that
check the same requirements, it does not necessarily select
the test case with the shortest execution time. In case of
industrial application, however, testers have only a limited
time for testing large software. Still, the basic technique is
promising because it can be adapted by changing the input
objectives of the matrix. The mathematical way for solving
problems with matrix operations allows the tester to create
two-tuples for all objectives.

Strandberg et al. [27] use historical assessments of test
cases. By analyzing historical data the technique can learn

and calculate better priorities for each test case [27]. Ne-
vertheless, the tester needs to invest a lot of time to provide
detailed information for test cases. Because of that, this
technique cannot run independently of human testers.

Both techniques take fault coverage into account and in
the end both techniques try to minimize the number of test
cases. Furthermore, both techniques are neither able to
take other objectives than the referred objectives (maximi-
zing fault detection, minimizing the number of test cases,
and minimizing time for cost reduction) into account, nor
can they handle more than two objectives at once. A good
technique, however, has to be flexible for changing objecti-
ves. We think an extension of both techniques could solve
this problem: In Strandberg et al.’s [27] technique, for ex-
ample, we recommend to implement a further Prioritizer[27]
(see Section 4.2). This new Prioritizer could consider the
priority of a new objective such as setup costs. Moreover,
an extended version of Parsa and Khalilan’s [20] technique
could solve two-tuples for all objectives. Each tuple contains
a test case and an objective. Mathematical operations could
then combine the newly created matrices.

5.2 Significance of two neglected objectives
Because of the relevance and effectiveness of RTO [32]

and the diversity of RTO tasks in big projects, more and
better approaches are needed. Currently, time reduction
and code coverage are the two main objectives in MORTO.
Two other objectives, however, should also be given more
research attention: setup costs and fault model sensitivity.

Services (e.g. a web service, where two electronic devices
communicate with each other), files and devices are needed
just as much for test cases as user inputs [8]. Test cases
for web applications often use interaction with files from the
user. Therefore, it is essential to take care of services, files
and devices, for example, upload and download files. There
is no single technique that considers these setup costs. Mo-
reover, it is also necessary to take fault model sensitivity into
account. Many faults are similar. It is useful to select test
cases that reveal categories that are more likely to include
faults. Place test cases at the beginning where costs are
zero. For example, test cases that test an empty database.

The combination of minimizing setup costs, maximizing
fault model sensitivity, and ordering the test cases with a
high risk of faults at the beginning bears another benefit:
Most known faults can be detected at the beginning of the
regression test. This leads to lower testing time. Also, setup
costs are affected: Finding faults at the beginning saves the
setup costs of useless and dependent test cases.

6. THREATS TO VALIDITY
In this section, we describe the potential threats to vali-

dity of the survey. As outlined in Section 2 we used only
the addressed online tools. There are also many other sour-
ces, tools and material (books, magazines, etc.) that might
contain more techniques and relevant information.

Furthermore, the selection of academic papers that this
survey is based on represents another threat to validity. Be-
cause of the high number of search results in the initial se-
arch round, only a certain number of those papers could
be analyzed in detail. For example, the search term tes-
ting gives 5.130.000 results. Hence, we used combinations
of the keywords that were described in Section 2. For every
keyword and/or combination, we limited ourselves to quick-

read only about 200 papers. Out of these 200 papers we
then selected the 1 to 3 most relevant papers for every ke-
yword. By skimming through the papers, techniques that
are not clearly labeled as MORTO could have been missed.
To limit the effect of this threat, we used several keywords
and combinations of keywords that are related to and com-
monly used in context with MORTO. However, compared to
the high number of search results, only a very small number
of academic papers was finally used as a basis for this sur-
vey. It is likely that there is further relevant information on
MORTO, e.g., further MORTO techniques, that have not
been included in this survey.

Moreover, not all techniques might be generalized and
used for e.g., industrial problems. The MORTO techniques
presented in this survey stem from academic settings and
cannot unconditionally be transferred to e.g., industrial set-
tings. This threat might be reduced if industrial practiti-
oners adapt the presented techniques for their specific ob-
jectives and test larger software with more test cases.

7. CONCLUSIONS
At the moment, some companies already use MORTO

techniques, for example, Cisco Systems [21] and Microsoft
[9]. Because of the high industrial relevance of the topic,
the number of academic articles published on MORTO is
soaring. This shows that the importance and acceptance of
MORTO is increasing, especially because it combines esta-
blished techniques like RTS and RTP. So far, however, the
MORTO techniques are mainly used in bigger software pro-
jects. Future research could concentrate on techniques that
could help software developers with verifying also
smaller software projects.

This paper presents a selection of approaches that can be
classified as MORTO. As the discussion shows, more and
better approaches are useful to optimize other kinds of soft-
ware projects than those that MORTO is currently used for.
MORTO is not only an idea of RTO techniques, but also a
crucial part for minimizing the cost and maximizing the be-
nefit of RTO at the same time. Because of the observance
of multiple and different objectives, MORTO is likely to be-
come an integral part in software testing.

There are also other techniques in software testing that are
not part of RTO. Gueorguiev et al., for example, introduced
a search based approach to software project robustness [4].
Their goals were to minimize the completion time, which
ensures the early time to market, and to build software ro-
bustness simultaneously. This shows that the relevance of
the idea of MORTO (optimize regression testing for two or
more objectives) [8] is used in many parts of software tes-
ting.

8. REFERENCES
[1] E. Ashraf, a. Rauf, and K. Mahmood. Value based

Regression Test Case Prioritization. Proceedings of the
World Congress on Engineering and Computer
Science, I, 2012.

[2] H. Baller, S. Lity, M. Lochau, and I. Schaefer.
Multi-objective test suite optimization for incremental
product family testing. Proceedings - IEEE 7th
International Conference on Software Testing,
Verification and Validation, ICST 2014, pages
303–312, 2014.

[3] S. Elbaum, A. Malishevsky, and G. Rothermel.
Incorporating varying test costs and fault severities
into test case prioritization. Proceedings of the 23rd
International Conference on Software Engineering.
ICSE 2001, pages 329–338, 2001.

[4] S. Gueorguiev, M. Harman, and G. Antoniol. Software
Project Planning For Robustness And Completion
Time In the Prescence Of Uncertainty Using Multi
Objective Search Based Software Engineering. 11th
Annual Conference on Genetic and Evolutionary
Computation, GECCO 2009., pages 1673–1680, 2009.

[5] I. Halevy, Z. Kava, and T. Seeman. Normalization and
Other Topics in Multi Objective Optimization.
Proceedings of the Fields-MITACS Industrial Problems
Work shop, 2:89–101, 2006.

[6] M. Harman. The current state and future of search
based software engineering. FoSE 2007: Future of
Software Engineering, pages 342–357, 2007.

[7] M. Harman. Why Source Code Analysis and
Manipulation Will Always Be Important. 10th IEEE
International Working Conference on Source Code
Analysis and Manipulation, pages 7–19, 2010.

[8] M. Harman. Making the case for MORTO: Multi
objective regression test optimization. In Proceedings -
4th IEEE International Conference on Software
Testing, Verification, and Validation Workshops,
ICSTW 2011, pages 111–114, 2011.

[9] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy.
The art of testing less without sacrificing quality.
Proceedings - International Conference on Software
Engineering, 1:483–493, 2015.

[10] J. H. Holland. Genetic Algorithms - Computer
programs that ”evolve” in ways that resemble natural
selection can solve complex problems even their
creators do not fully understand, 1992.

[11] A. E. Howe, A. von Mayrhauser, and R. T. Mraz. Test
Case Generation as an AI Planning Problem.
Automated Software Engineering, 4:77–106, 1997.

[12] Y. C. Huang, K. L. Peng, and C. Y. Huang. A
history-based cost-cognizant test case prioritization
technique in regression testing. Journal of Systems
and Software, 85(3):626–637, 2012.

[13] T. Jansen. Analyzing Evolutionary Algorithms: The
Computer Science Perspectiv. Springer Science &
Business Media, 2013.

[14] A. Kaur and S. Goyal. a Genetic Algorithm for
Regression Test Case Prioritization Using Code.
International Journal of Advanced Trends in
Computer Science and Engineering, 3(5):1839–1847,
2011.

[15] S. Kumar. Modified ACO to maintain diversity in
Regression Test Optimization. 3rd International
Conference on Recent Advances in Information
Technology (RAIT), 2016.

[16] C. L. B. Maia, R. A. F. Do Carmo, F. G. De Freitas,
G. A. L. De Campos, and J. T. De Souza. A
Multi-Objective Approach For The Regression Test
Case Selection Problem. XLI Brazilian Symposium of
Operational Research, XLI SBPO 2009., pages
1824–1835, 2009.

[17] D. Marijan. Multi-perspective Regression Test
Prioritization for Time-Constrained Environments.

Proceedings - 2015 IEEE International Conference on
Software Quality, Reliability and Security, QRS 2015,
pages 157–162, 2015.

[18] D. Marijan, A. Gotlieb, and S. Sen. Test case
prioritization for continuous regression testing: An
industrial case study. IEEE International Conference
on Software Maintenance, ICSM, pages 540–543, 2013.

[19] S. Mirarab, S. Akhlaghi, and L. Tahvildari.
Size-constrained regression test case selection using
multicriteria optimization. IEEE Transactions on
Software Engineering, 38(4):936–956, 2012.

[20] S. Parsa and A. Khalilian. On the Optimization
Approach towards Test Suite Minimization.
International Journal of Software Engineering and Its
Applications, 4(1):15–28, 2010.

[21] D. Pradhan. Test Optimization using Weight Based
Search Algorithms in a Maritime Application. Institutt
for informatikk, University of Oslo, 2015.

[22] S. b. Raju and G. Uma. Factors oriented test case
prioritization technique in regression testing using
genetic algorithm. European Journal of Scientific
Research, 74(3):389–402, 2012.

[23] S. Sampath, R. Bryce, and A. M. Memon. A uniform
representation of hybrid criteria for regression testing.
IEEE Transactions on Software Engineering,
39(10):1326–1344, 2013.

[24] Y. Singh, A. Kaur, and B. Suri. Test case
prioritization using ant colony optimization. ACM
SIGSOFT Software Engineering Notes, 35(4):1, 2010.

[25] Y. Singh, A. Kaur, B. Suri, and S. Singhal. Systematic
literature review on regression test prioritization
techniques. Informatica (Slovenia), 36(4):379–408,
2012.

[26] K. Solanki, Y. V. Singh, and S. Dalal. Experimental
analysis of m-ACO technique for regression testing.
Indian Journal of Science and Technology, 9(30), 2016.

[27] P. E. Strandberg, D. Sundmark, W. Afzal, T. Ostrand,
and E. Weyuker. Experience Report: Automated
System Level Regression Test Prioritization Using
Multiple Factors. 27th International Symposium on
Software Reliability Engineering, 2016.

[28] K. C. Tai and Y. Lei. A test generation strategy for
pairwise testing. IEEE Transactions on Software
Engineering, 28(1):109–111, 2002.

[29] M. Tyagi and S. Malhotra. Test case prioritization
using multi objective particle swarm optimizer. 2014
International Conference on Signal Propagation and
Computer Technology, ICSPCT 2014, pages 390–395,
2014.

[30] S. Wang, S. Ali, and A. Gotlieb. Minimizing test
suites in software product lines using weight-based
genetic algorithms. 2013 15th Genetic and
Evolutionary Computation Conference, GECCO 2013,
pages 1493–1500, 2013.

[31] S. Wang, D. Buchmann, S. Ali, A. Gotlieb,
D. Pradhan, and M. Liaaen. Multi-objective test
prioritization in software product line testing.
Proceedings of the 18th International Software Product
Line Conference on - SPLC ’14, pages 32–41, 2014.

[32] S. Yoo, R. Nilsson, and M. Harman. Faster Fault
Finding at Google Using Multi Objective Regression
Test Optimisation. Fse, 2011.

Current State of Testing Infrastructure as Code

Jens Böttcher
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

jens.boettcher@rwth-aachen.de

Andreas Steffens
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
andreas.steffens@swc.rwth-aachen.de

ABSTRACT
Infrastructure as Code (IaC) is a widely-used approach for
defining software environments and infrastructure, but test-
ing IaC is not well researched yet. In this paper, we show
current tools and proposed approaches for testing IaC. We
do this by first giving a definition of Infrastructure as Code
and also a short overview of software engineering testing
techniques, which could be applied to IaC. Thereafter, cur-
rent approaches for testing Infrastructure as Code are dis-
cussed. Then, we show promising proposed approaches on
testing IaC. In the end we conclude that software engineering
testing techniques can be applied to IaC, but we identified
gaps and propose ideas how to fill these.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication; D.2.9 [Software Engineering]: Management—
Software configuration management

Keywords
Infrastructure as Code, configuration management, testing,
test generation

1. INTRODUCTION

”[When utilizing Infrastructure as Code,] we can
start to think about our infrastructure as rede-
ployable from a code base, in which we are using
the same kinds of software development method-
ologies that have developed over the last 20 years
as the business of writing and delivering software
has matured.” [13]

Nowadays, many software products relay on remote ser-
vices like databases and file servers. These services are also
part of the software products and are called the infrastruc-
ture of the project; without these services, the product it-
self can not function correctly. Hence, the infrastructure of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2016/17 RWTH Aachen University, Germany.

IaC tool

Configuration code

System

reads

changes

Figure 1: Overview of interactions between an IaC
tool, the configuration and the system.

a software product is an important part of the project as
well. Developers and system adminstrators tend to manage
infrastructure manually, but this can lead to an unknown
state of the infrastructure, sudden outages or a snowflake
server (i.e. servers, which no ones dares to touch because
of the fear to break something). [12] Infrastructure as Code
(IaC) is a practice from DevOps to define software infras-
tructures as code to make them reliable, deterministic and
reproducible. [6] During the life of a project, the infrastruc-
ture of the application may change (e.g. switching database
versions or servers).

With IaC, the configuration of the infrastructure of the
software product is defined in human-readable code. This
code can be managed via version control systems to keep it
consistent but also to make it accessible to everyone work-
ing on the product. But not only does IaC keep the infras-
tructure consistent, it also helps reducing costs (due to less
downtime), speeds up development (due to clear definitions
of the infrastructure to develop for) and lower risk of errors
and security violations. [19]

Figure 1 shows an overview of the interactions between the
components of IaC. The IaC tool reads to configuration code
and changes the system in order to fit it to the configuration.

IaC tools evolved from scripts written by system admins to
manage their own systems to now full featured frameworks.
These tools provide methods for managing a system, like in-
stalling packages and configuration changing of the system
and applications. They run on different OS but provide the
same methods for every OS they run on. For example, using
a method install to install nginx will install this applica-
tion on the system, independent of how this application is
named in the OS’s package manager. IaC tools use either
common data notation languages (e.g. JSON, YAML), com-
mon programming languages or their own domain-specific
language for configuration definition. Popular IaC tools in-

clude Chef [4], Puppet [14] and Ansible [2], which we will
focus on in this paper. Chef configuration is written in Ruby,
Puppet uses a custom DSL which is based on Ruby and An-
sible configuration is written in YAML.

Infrastructure as Code also includes orchestration of mul-
tiple systems simultaneously. For example, controlling a
container cluster is possible with tools like Kubernetes [9]
or Docker Swarm [17]. In this paper, we will focus on IaC
tools for single system provisioning. We argue that most of
the discussed testing techniques can also be applied to other
IaC fields.

Motivation
One of the most important fields in software development is
testing. [11] Software can be tested in different complexity
(e.g. units, whole application) and various aspects (e.g. se-
curity, features). In his master thesis ”Evaluating the testing
quality of software defined infrastructures” [16], Ben Siebert
analysed which software quality aspects should also be ap-
plied to IaC. He did this by trying to apply a quality model
for traditional software to IaC software. Also, he interviewed
practitioners of IaC to get their insight on quality models of
IaC. Siebert came to the conclusion, that testing is most
important quality to seek in IaC software, even more impor-
tant than automation and best practices.

There already exists a wide range of testing tools for IaC,
some of which will we present briefly in this paper. Later
we show current research on automated generation of test
cases for IaC. Therefore, we aim to analyse the current state
of testing for Infrastructure as Code in this paper.

In the next section, we will give some general definitions
needed for the rest of the paper as well as some definitions on
software testing in section 2.1. In section 3 we will present
current and proposed approaches on testing IaC. Section 3.1
will focus on frameworks which are already widely used, sec-
tion 3.2 will present proposed approaches for generating test
cases from configurations. Then, in section 4 we will discuss
testing techniques which are currently not covered. In sec-
tion 5, we will conclude this paper.

2. DEFINITIONS
Before proceeding further, we need to make some defini-

tions which are needed for understanding the remainder of
this paper.

A system consists of many parts: installed packages, present
users and files. A resource defines what state a specific part
of the system should reach. By applying a resource on a
system, the state of this part of the system changes such
that the resource is satisfied. Each resource is declarative:
it only defines what state should be reached but not how
to get there. How the state is reached depends on the un-
derlying operation system and is done by the IaC tool. For
instance, a resource named file might be used to create,
change or delete a file within the file system.

Listing 1 is an example for a file resource written in
YAML for Ansible. Directory /opt/some_directory will
be created on the system if it is not already present. It is
also possible to define dependencies between resources (e.g.
resource unzip might depend on resource download to down-
load an archive before unzipping it). A configuration is a set
of resources to be applied on a system. Such a configuration

C r e a t e a d i r e c t o r y if doesn ’t exist

− name: C r e a t e d i r e c t o r y
f i l e :

path : / o p t / s o m e d i r e c t o r y
s t a t e : d i r e c t o r y

Listing 1: Example of Ansible’s file resource, which
will create a directory of not present.

is executed by the corresponding IaC tool.

When applying a resource on it’s desired state and returns
the same state (i.e. the state is unchanged), the resource is
said to be idempotent. In other words, applying an idempo-
tent resource successively on a state will change the state at
most once.

Furthermore, when applying a set of resources, in any or-
der, successively on a system and the system’s final state
after each run changes at most once, the system converged
into this state. It follows that a convergent configuration is
also idempotent. [5]

State transition graphs (STGs) are special graphs where
the nodes represent states and the edges are directed and
represent actions to transition from one state to another.
STGs can be used to represent the state of a machine (nodes)
and the applied resources of a configuration (edges). In this
paper, only connected acyclic graphs are considered.

2.1 Software testing
Testing software is an important and big field in software

engineering. Tests can be divided in the complexity of the
tested code (i.e. from testing only small units like func-
tions up to testing the whole application), which aspects are
covered (e.g. verification of met requirements, met security
standards) and either testing static or dynamic (source code
versus running/compiled application). [11]

Complexity of code which can be tested, defined by the
Software Engineering Body of Knowledge [1]:

Unit testing Small units; single functions or classes are
tested

Module testing Coupled elements which form a module,
or package, are tested

Integration testing Tests if components of project coop-
erate correctly

System testing Test if system meets its requirements

Apart from the complexity of a test, tests can also be
differentiated by software engineering aspects they cover.
For keeping it short, we are only listing those we think are
applicable to IaC:

Functional testing.
Verify that all specifications of the software are met. [11]

For IaC, this would mean to test if the configuration holds
the specifications previously defined.

Conformance testing.

Test if compliance, security and policy requirements are
met by the system. [11] For IaC, meeting security require-
ments is critical because most target systems of IaC are sys-
tem accessible over the internet.

Destructive testing.
Causing the system to fail with destructive actions (e.g.

disable network access, delete files). [3] These kind of tests
would verify that the target system would still reach it’s
desired state even if something went wrong during conver-
gence.

Idempotence testing.
A function should return the same result for the same

input on every sequential execution. [7] This is important for
IaC because it would verify that a system, which is already
in it’s desired state, does not change.

State-based testing.
Models behaviour of the system as state machine and sim-

ulate system within this machine. [18] Because resources de-
scribe system states, such testing is suitable for IaC.

A/B testing.
A/B testing [8] could be used for testing different input

systems. While mostly used as tool for optimizing marketing
with such testing, it could be determined if a configuration
is dependent on a specific input system state.

Compatibility testing.
Similiar to A/B, compatibility testing [20] would test if

the configuration works on multiple different operation sys-
tems.

It can also be differentiated between dynamic and static
testing: running tests against a compiled or running appli-
cation is dynamic testing, whereas static testing is testing
of the source code (e.g. linting). [10]

In the context of Infrastructure as Code, dynamic testing
can also be called post-convergence testing because a con-
figured system is tested. Consequently, static testing can
be called pre-convergence. In the following, we will use the
terms pre-convergence and post-convergence.

3. TESTING INFRASTRUCTURE AS CODE

”Systems should be in place to ensure that one’s
code produces the environment needed and that
any changes have not caused side effects that al-
ter other aspects of the infrastructure.” [13]

In this section we discuss different approaches for testing
IaC. As stated in section 2.1, software testing is a critical
task in software development. Usually, the project’s ap-
plication is tested but the project’s infrastructure code is
not, which can lead to problems (e.g. sudden outages due
to missing stress tests). Also because IaC reduces costs,
speeds up development and lowers risk of errors and secu-
rity violations, keeping the infrastructure and its code tested
is essential. [19]

In the remainder of this section, we will first give an
overview of currently used testing framework for IaC. Then,
in section 3.2, we discuss theoretical approaches, which are
still in the prototype phase.

3.1 Current frameworks
Because pre-convergence testing analysis the code and

each tools uses a different language to define configurations,
tools for pre-convergence need to be suited for the specific
IaC tool at hand. Hence, for each of the popular IaC tools
there are multiple pre-convergence testing tools. We will list
some for each of the three IaC tools.

Then we give examples for post-convergence tools which
are suitable for all IaC tools, sometimes with few modifica-
tions.

Pre-Convergence
Here we list tools for making pre-convergence testing on con-
figuration, divided by target IaC tool. These tools employ
conformance testing since they check the code against ex-
ternal policy requirements (linting rules) for the code.

Chef.
RuboCop1 is a linting tool for Ruby, which help pre-

venting well-known pitfalls during programming based on
a community-driven Ruby style guide.2

Foodcritic3 is a linting tool specifically written for Chef,
using their own set of rules for preventing common problems.

Puppet.
Linting for Puppet configurations can be done with Puppet-

lint4, which tests against the Puppet’s official style guide.5

Ansible.
yamllint6 can be used to lint the YAML files syntax error

as well as Ansible-lint7 for testing against Ansible’s best
practice guide.8

Post-Convergence
Because post-convergence describes the stage in which the
configuration is applied to the system, testing in this stage
can be done independently on the used IaC tool.

Serverspec9 is a Ruby framework for running tests against
running system. Hence, it can be used for post-convergence
testing, either on a real system or a test system. It enables
functional testing.

Test Kitchen10 utilizes containerization and cloud providers
for running configurations against test systems running spec-
ified OS’s. Despite it being aimed at Chef configurations,
there also exist plugins to enable use with Puppet and An-

1https://github.com/bbatsov/rubocop
2https://github.com/bbatsov/ruby-style-guide
3https://github.com/acrmp/foodcritic
4https://github.com/rodjek/puppet-lint
5https://docs.puppet.com/puppet/latest/style_
guide.html
6https://github.com/adrienverge/yamllint
7https://github.com/willthames/ansible-lint
8https://docs.ansible.com/ansible/playbooks_best_
practices.html
9http://serverspec.org

10http://kitchen.ci

https://github.com/bbatsov/rubocop
https://github.com/bbatsov/ruby-style-guide
https://github.com/acrmp/foodcritic
https://github.com/rodjek/puppet-lint
https://docs.puppet.com/puppet/latest/style_guide.html
https://docs.puppet.com/puppet/latest/style_guide.html
https://github.com/adrienverge/yamllint
https://github.com/willthames/ansible-lint
https://docs.ansible.com/ansible/playbooks_best_practices.html
https://docs.ansible.com/ansible/playbooks_best_practices.html
http://serverspec.org
http://kitchen.ci

sible. Like Serverspec, Test Kitchen can be used to execute
functional testing.

InSpec11 was created as a plugin for Serverspec but was
later developed into a standalone application. In contrast to
Serverspec, InSpec is more aimed at conformance testing.

To our knowledge, there are currently no tool for testing
the idempotence of a configuration, which is covered by the
approaches presented in the next subsection.

3.2 Theoretical frameworks
In this section, we discuss two approaches for testing IaC

which are currently in prototype phase: section 3.2.1 presents
a post-convergence approach, whereas Section 3.2.2 focuses
on a pre-convergence approach. Both of these approaches fo-
cus on generation of test cases and testing the idempotence
of the configuration.

3.2.1 Post-Convergence
Hummer et al. [5] proposed a technique for dynamically

testing idempotence and convergence of partially ordered
configurations, using state transition graphs (STGs).

Partially ordered configurations are configurations with
partially defined order, where the IaC uses an arbitrary or-
der to execute, in regard to the defined dependencies across
the resources. Their approach converts a given configura-
tion into an STG and then leverage from the properties of
an STG to generate test cases.

From the dependencies across the resources of the con-
figuration, for each resource r sets of ancestors, successors
and non-related resources are defined. Ancestors are all re-
sources r depends on, successors are all resources which de-
pend on r and non-related resources are the remaining re-
sources. Possible execution orders are defined from ancestors
and successors of each resources. All ancestors of r must be
executed before r, and r before its successors. The authors
state that ”the problem space of possible execution orders
can be huge” but argue that ”there are efficient polynomial
time approximation algorithms” for this problem.

Resource b preserves resource a iff applying b after a will
still hold the desired state of a (i.e. applying a again after
b will not change the state). It follows, that a configuration
with idempotent resources and preservation of their respec-
tive ancestor and non-related resources, is convergent. Also,
any successful execution of such a configuration will reach
a state which will satisfy every resource of the configuration.

Using the possible execution orders of a configuration, an
partitioned STG is generated. In this partitioned STG, each
resource r is represented by an edge and every node is the
set of resources from the previous node joined with r. The
initial state of the system is denoted as an empty set, which
is assumed to be a freshly setup test system.

Let’s say we have three resources: user creation (u), cre-
ation of files in the new user’s home directory (f) and in-
stallation of an application package (i) which will later be
run by the new user; all three are idempotent, preserve each
other and f and i depend on u. Figure 2 shows the resulting
partitioned STG. Note that the system will eventually reach
state u, i because of the relation u and i have to another.
Every possible path in the STG represents a test case. Mul-
tiple approaches for path finding are possible, listed are path

11http://inspec.io

∅ u

u, f

u, f, i

u, i

u

f

i

i

f

Figure 2: Partitioned STG of a configuration with
three resources.

coverage and edge coverage.

A prototype implementation of this approach is available
on GitHub12, which is a Ruby application primarily focused
on testing Puppet configurations. The authors state, that it
would be possible to modify their implementation in order
to work with Chef or Puppet.

For verification of correctness of the current state in re-
gards to the executed resource, the file system is watched
and after execution of each resource the changes of to the
file system are compared to the expected changes, generated
by the testing framework. It is, however, unclear how these
expected changes are generated.

For evaluation, the authors have selected real world 101
Puppet configurations and additionally 11 configurations with
known bugs, which then were automatically tested in isola-
tion inside Docker containers. Overall, 250.805 test cases
were generated with a net execution time of 9.15 days. Test
results of currently 151 configurations are available.13

Most problems arose when resource were depending on
another: ”If two or more resources manage the same aspect
of the system, conflicts occur if the fail to coordinate them-
selves and do not agree on a shared desired state.” Also,
resources depending on other resources without the declara-
tion of this dependency yield different outcomes if the exe-
cution order is changed.

3.2.2 Pre-Convergence
Shambaugh et al. [15] presented a static verification tool,

named Rehearsal, with test case generation for Puppet code.
Similar to [5], the authors generate a directed acyclic graph

from the given configuration. In contrast, here resources are
represented by nodes and edges represent dependencies be-
tween resources. Hence, it might not be connected. This
graph is called resource graph. Figure 3 shows an example
for three resources u, i and f : i and f are independent from
one another but both depend on u, which does not depend
on any other resource in this configuration.

The authors define a language called FS. ”The FS lan-
guage [...] is a simple imperative language of programs that
manipulate the file system.”FS operates on a virtual file sys-
tem (σ) which maps paths (p) to their file contents; a path
can either be a file’s content or a directory. Resources are
denoted as expressions in FS, which take a file system and
yield either a new file system (i.e. the state reached after

12https://github.com/citac/citac
13https://citac.github.io/eval

http://inspec.io
https://github.com/citac/citac
https://citac.github.io/eval

u

i

f

Figure 3: Resource graph with three resources, with
two resources depending on the third.

running the expression) or an error. Multiple expressions
are defined with FS: for instance, mkdir(p) and creat(p)

for creation of directories and files respectively. rm(p) for
deleting files and cp(p1, p2) for copying files. Also, se-
quencing and conditionals are defined and behave the usual
way. Furthermore, predicates for checking the presence of a
file/directory are defined as well as simple boolean operation
(disjunction, conjunction and negation).

A compilation function C maps resources to FS expres-
sions. This function is not further defined but examples for
how C maps resources to FS expressions are given for files,
SSH keys and package installation. For instance, for pack-
age resources, depending on the OS the package manager is
invoke to download the corresponding package. Then from
this package, a FS program is generated which creates the
file hierarchy that the package would create on the system.
The authors also mention, that several other resources are
modelled like those for users, groups and services. It is also
noted that C can be extended to map more resources to FS
expressions if needed.

Now that all resources can be mapped to an FS expres-
sion and with the information from the resource graph, test
for determinism of the configuration can be done. For this,
all resources are mapped to FS expressions which are then
executed in all possible sequences, in respect to the vertices
between the corresponding resources.

In the end, FS programs are encoded as logical formulas,
which are then solved with an SMT solver in order to deter-
mine the determinism of the configuration. In this paper,
determinism of a configuration is defined as follows: when
executing all possible sequences on the same σ and all of
these executions yield the same end file system or error,
then this configuration is deterministic.

Discussing this procedure would exceed the scope of this
paper, but in short their approach has three major steps:

1. The number of FS programs are reduced by analysing
if path p accessed by resource r is also by another re-
source. If there is no such resource then r is irrelevant
for determinism-check and hence will not be checked.

2. With a commutativity check for resources is done to
further reduce the number of FS programs: if the re-
sources r1 and r2 yield the same file system in any
order they are executed, then they are commutativity
and an arbitrary execution order is chosen.

3. The final step is then to encode the remaining FS pro-
grams into decidable logical formulas which are then
solved by an SMT solver to determine determinism of
the configuration.

With this approach, idempotence (as well as convergence)
can be tested by running a resource or the whole configu-
ration successively. Since no running system was changed
during the testing, this is testing during pre-convergence.

Their evaluation of Rehearsal includes the benchmark of
13 publicly available Puppet configurations (including con-
figurations for installing and setup of nginx and an IRC
server) as well as a synthetic benchmark.

During the test of the public configuration, Puppet tested
their determinism within a few seconds each. As a result, the
found a few non-deterministic configurations among these
configurations as well as other bugs like missing dependency
declarations.

For the synthetic benchmark, they defined multiple re-
sources accessing the same file (which bypasses the commu-
tativity check). This resulted in higher execution time since
Rehearsal has more path so solve. The authors argue that
this problem is irrelevant since Puppet would not allow such
configurations.

4. DISCUSSION
While many types of testing are already covered for Infras-

tructure as Code, to our knowledge, some important testing
techniques (see section 2.1) from software engineering are
yet to be researched.

We now want to discuss testing techniques which, to our
knowledge, are currently not covered in testing Infrastruc-
ture as Code.

Destructive testing. Running such destructive testing dur-
ing the application of the configuration could test if the IaC
tool is able to recover from this faulty state into the desired
state.

This type of testing could be archive by running the con-
figuration within a virtual environment and alter the envi-
ronment during runtime to get into a faulty state.

A/B testing. It is important that a configuration does not
assume a specific initial state of the system because this
would contradict with the important feature of IaC being
portability.

This type of testing could also be archive by running the
configuration within a virtual environment. For A/B test-
ing, the configuration would run multiple times, each time
with a different initial state (e.g. different pre-installed pack-
ages or users).

Compatibility testing. Some resources are not indepen-
dent of the underlying operation system but using compat-
ibility testing would enforce avoid such resources and make
the configuration more portable, even to other operation
systems.

Compatibility testing would be very similar to A/B test-
ing, with the difference that the initial states of the different
runs are different operating systems (i.e. different Linux
distributions).

5. CONCLUSION
In this paper we gave an overview of current approaches

for testing Infrastructure as Code, both in practice as well as
in current research. We showed testing techniques which are
suitable for IaC and showed currently used tools which ap-
ply some of these techniques. Furthermore, current research
shows that the field of testing IaC is not yet exhausted, as
we also mentioned in our discussion. We then showed which
testing techniques could potentially be used and gave exam-
ples on how to archive these.

Further work is needed in order to analyse these tech-
niques in context of testing Infrastructure as Code.

6. REFERENCES
[1] A. Abran, J. Moore, P. Bourque, R. Dupuis, and

L. Tripp. Software engineering body of knowledge.
IEEE Computer Society, Angela Burgess, 2004.

[2] Ansible. ansible.com. https://www.ansible.com/,
2016. Retrieved December 19, 2016.

[3] L. C. Briand, Y. Labiche, and M. Shousha. Stress
testing real-time systems with genetic algorithms. In
Proceedings of the 7th annual conference on Genetic
and evolutionary computation, pages 1021–1028.
ACM, 2005.

[4] Chef. chef.io. https://www.chef.io/, 2016. Retrieved
December 03, 2016.

[5] O. Hanappi, W. Hummer, and S. Dustdar. Asserting
reliable convergence for configuration management
scripts. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
OOPSLA 2016, pages 328–343, New York, NY, USA,
2016. ACM.

[6] M. Httermann. DevOps for developers. Apress, 2012.

[7] W. Hummer, F. Rosenberg, F. Oliveira, and T. Eilam.
Testing Idempotence for Infrastructure as Code, pages
368–388. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

[8] R. Kohavi and R. Longbotham. Online controlled
experiments and a/b tests. Encyclopedia of machine
learning and data mining, pages 1–11, 2015.

[9] Kubernetes. kubernetes.io. https://kubernetes.io/,
2017. Retrieved January 03, 2017.

[10] P. Louridas. Static code analysis. IEEE Software,
23(4):58–61, July 2006.

[11] J. Ludewig and H. Lichter. Software Engineering:
Grundlagen, Menschen, Prozesse, Techniken. dpunkt.
verlag, 2013.

[12] K. Morris. Infrastructure as Code. O’Reilly Media,
Inc, Sebastopol, CA, 2016.

[13] S. Nelson-Smith. Test-Driven Infrastructure with Chef.
O’Reilly Media, Inc, Sebastopol, CA, 2014.

[14] Puppet. puppet.com. https://puppet.com/, 2016.
Retrieved December 19, 2016.

[15] R. Shambaugh, A. Weiss, and A. Guha. Rehearsal: A
configuration verification tool for puppet. SIGPLAN
Not., 51(6):416–430, June 2016.

[16] B. Siebert, M. van Eekelen, and J. Visser. Evaluating
the testing quality of software defined infrastructures.
PhD thesis, Thesis, Radboud University Nijmegen,
2014.

[17] D. Swarm. docker.com/products/docker-swarm.
https://www.docker.com/products/docker-swarm,
2017. Retrieved January 03, 2017.

[18] C. D. Turner and D. J. Robson. The state-based
testing of object-oriented programs. In 1993
Conference on Software Maintenance, pages 302–310,
Sep 1993.

[19] S. Wastie. The real cost of downtime, the real
potential of devops.
https://blog.appdynamics.com/engineering/idc-

devops-cost-downtime, 2015. Retrieved January 03,
2017.

[20] I.-C. Yoon, A. Sussman, A. Memon, and A. Porter.
Effective and scalable software compatibility testing.
In Proceedings of the 2008 International Symposium
on Software Testing and Analysis, ISSTA ’08, pages
63–74, New York, NY, USA, 2008. ACM.

https://www.ansible.com/
https://www.chef.io/
https://kubernetes.io/
https://puppet.com/
https://www.docker.com/products/docker-swarm
https://blog.appdynamics.com/engineering/idc-devops-cost-downtime
https://blog.appdynamics.com/engineering/idc-devops-cost-downtime

A Study of Cost-Benefit Analysis of Technical Debt

Radu Coanda
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

radu.coanda@rwth-aachen.de

Muhammad Firdaus Harun
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
firdaus.harun@swc.rwth-aachen.de

ABSTRACT
Since Ward Cunningham introduced the term of techni-
cal debt in his report at the OOPSLA’92 conference, the
metaphor has spread across the community, helping trans-
late technical decisions into financial ones. In such, busi-
ness models for managing technical decisions have risen with
it. This research work overviews a number of papers that
present, as a decision model, the cost-benefit analysis, and
discusses possible parameters for such a model, as well as
the benefits their results would bring to the decision-making
process.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—cost-benefit analysis, techni-
cal debt prioritisation, decision-making

Keywords
cost benefit analysis, technical debt prioritization, decision-
making

1. INTRODUCTION
The term technical debt(TD) was first used by Ward Cun-

ningham in 1992. The TD metaphor describes a situation in
which developers accept compromises which produce short-
term benefits in exchange for the long-term health of the
software. In practical terms, one could compromise in one
dimension (e.g. maintainability) to meet an urgent demand
in another dimension (e.g. delivering a release on time) [2].
This metaphor is related to immature, incomplete or inade-
quate artefacts in the software development cycle that cause
higher costs and lower quality.

The usage of TD, increased in the software development
community to help with the management of software projects
as well as to help communicate return on investment (ROI)
to non-technical stakeholders for better decision-making [2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2016/17 RWTH Aachen University, Germany.

In literature and software industry different terms and
properties are attributed to TD, including TD item, princi-
pal, interest amount and probability:

• TD item - The TD associated with a system is com-
posed of TD items, where each item represents a tech-
nical problem the system has and can be attributed a
principal and an interest amount.

• Principal - Principal refers to the cost one has to pay
for fixing the TD and can be defined as the cost of re-
pairing quality issues in software systems to achieve an
ideal quality level. In practical terms, an ideal quality
level represents the highest achievable level of qual-
ity defined in a software quality model adopted by an
organization [7].

• Interest - Interest refers to the cost one will have to
pay for not fixing the TD item. For example, the lack
of proper documentation might lead to high mainte-
nance effort later on.

• Interest probability - The obvious distinction be-
tween interest and principal is that the former is not
certain, but has probability attached to its occurrence,
which changes over time.

In a perfect world TD would be something unheard of,
as engineers like to build perfect software. Though, if we
take into account the fact that most of the software that is
written lies under resource constraints, time-to-market, tar-
get audience, etc., TD emerges as the trade-off the software
engineers do to deliver the software while meeting all these
constraints. Thus, for a team not to be overwhelmed by the
amount of debt they have to pay and for the project not to
go ”bankrupt”, management for paying TD is required.

The task of managing TD consists of two sub-activities:
first, identifying the different types of TD and second, deter-
mining the economical value and impact for removing TD
items or not the. Tools, methods and different approaches
regarding the identification of TD have already been the-
matized in a large body of literature [14]. Prioritizing TD,
though, is a less charted topic, yet there is already research
being pursued in this area. By countinuing the economical
metaphor, models from the financial sector, like Portfolio
Approach, as well as the Options Approach, have found their
way in the software development community[11].

For the purpose of this paper, we will take on the decision-
making perspective as filtered through the cost-benefit anal-
ysis.

1.1 The Cost-Benefit Model
In economical literature a cost-benefit analysis provides

an economic framework to evaluate the viability of a pro-
posed or operating project. It can be defined as the sys-
tematic gathering of technical and financial data about a
given business situation or function. Information gathered
and analysed through this method assists decision-making
about resource allocation and selecting the appropriate al-
ternative, by comparing the ”with” and ”without” situations
[3].

A cost-benefit model in the TD management context, thus
approximates the interest as well as the principal as an aid
to the decision-making process. In a formal sense the cost-
benefit analysis is a systematic approach to estimate the
strengths and weaknesses of the alternatives; it is used to
determine options that provide the best approach to achieve
benefits while preserving savings.

Several papers on the topic of prioritizing TD have been
produced. In section 2 we will proceed by looking at the
challenges that arise from translating technical debt into
economical consequences, followed by section 3 where we are
going to look over two subjectively chosen research works,
the model by Zazworka et al. and the SIG model of the
Software Improvement Group (SIG) Amsterdam presented
by Nugroho et al. The models have been chosen based on
the completeness of the model, as well as the object of their
study. At the end of each overview a discussion will take
place to review all the challenges being tackled by the model.
Two alternative estimation models will be presented as fol-
lowup, at the end of section 3 [7][16]. Finally we will discuss
two additional directions of possible future research work
and draw the conclusion.

2. CHALLENGES
For the purpose of this paper we will first look at the

major difficulties one might expect when trying to manage
and prioritize TD items. We will take on the perspective
proposed by Falessi et al. in their paper regarding a TD
managing tool, in order to loook at the challenges one prac-
titioner might incur [4]. The study was done at a CMMI
Maturity level 5 company. Capability Maturity Model Inte-
gration (CMMI), is a process level improvement training and
appraisal program, developed at Carnegie Mellon University.
A maturity level is a well-defined evolutionary plateau to-
ward achieving a mature software process. A company with
a level 5, the highest level, focuses on continually improving
process performance through both incremental and innova-
tive technological improvements.

2.1 Principal
Since a software product is written by the human hand, a

considerable amount of effort is required for each necessary
fix, and so the first challenge arises.

C1: Inadequacy of single values.
As effort is specific to each individual, assigning one value
(cost) to one’s programming activity for fixing a problem is
subjective.

Furthermore, in their overview of the practitioners at one
CMMI maturity level 5 firm, Falessi et al. understood that
developers tend to think in ranges, rather than in single val-

ues, e.g. best-case, worst-case. Yet still the approximation
error resulted on average of an 80% over- or underapproxi-
mation of the correct value [4].

2.2 Interest
The interest amount is dependant on the TD probabil-

ity of occuring [4]. Under this consideration Falessi et al.
reasons the following challenges:

C2: Distance from the economic domain.
TD relates to a problem in the technical domain which can
be very far away from the economical domain. For instance,
despite the reasonable expectation that little documentation
leads to high maintenance effort, it is very hard to estimate
the cost (interest) of not documenting a design in UML, a
defect in JIRA or commenting a JAVA class [4].

C3: Interaction effect.
The cost of a TD item may increase in the presence of other
TD items. For example ”bad documentation” and ”uncom-
mented code” increase the interest when both TD items are
present at the same time [4].

C4: Non-linearity and limits.
TD can change over time, in such it can happen that the
interest might increase exponentially instead of linearly[4].

C5: Multiple interest.
One TD can negatively impact several software quality as-
pects at the same time. For instance, an ”uncommented
code” has a negative impact on both maintainability and re-
liability, whereas each aspect can have its own amount of
interest and probability[4].

C6: Unavailability of historical data.
Historical data is required for estimating the amount of in-
terest for a specific organization. For instance, by adopting
a configuration management system and analysing source
code repositories data we can see the extent to which a com-
ponent with high coupling and cohesion is less maintainable
than other components [4].

C7: Interest probability of occurrence as probability of
events.
The probability of the interest occurring in the future de-
pends on the existence of future ”events” [4].

Having comprised a subjective list of requirements for a
TD management model, we are further going to look at how
these requirements are being met by the following models.

3. COST-BENEFIT MODELING
For the TD metaphor to be useful, its constructs must be

measurable or at least estimable from measurable elements
of software. This is especially important for a functional
framework, used for decision-making, to work.

The models used in this research work, tackle the afore-
mentioned challenges in different ways.

3.1 Cost/Benefits of single TD items
In his 2011 research work, Zazworka et al. introduce a

decision model for estimating the cost and impact for refac-

toring a single type of TD item in a software project, in
particular the code smell called ”God Class” [13].

3.1.1 God Class and Cost
The god class code smell characterizes classes that over-

centralize functionality and have multiple responsibilities in
a system. These classes are more concerned with the data
of other classes than their own.

God classes can be identified using Marinescu’s detection
strategy that uses three software metrics, namely Weighted
Method Count (WMC), Tight Class Cohesion (TCC) and
Access to Foreign Data (ATFD)[8]. Passing a certain thresh-
old on each of these metrics, results in the class being chosen
as a candidate for a ”god class”.

A ranking of the resulting classes is being done afterwards,
based on the distance of each class from the threshold for
each individual metric. The overall ranking of the classes
results from all three metrics summed up, as seen in figure
1.

Figure 1: Refactoring effort ranking based on detec-
tion strategy metrics.

3.1.2 Benefits
If the first dimension of the approximation method mea-

sures how costly it would be to refactor the class, then the
second dimension of the approximation method determines
the impact the class has on a set of quality characteristics.
The two characteristics considered in the example are [16]:

• Correctness, represented by the defect likelihood and

• Maintainability, represented by change likelihood of a
god class.

Correctness of a class can be estimated by the defect like-
lihood measure, similar to the one defined by Schumacher et
al. [10]. For a god class one can compute how many defect
fixes affected this god class by mining the code repository
and issue tracker. More specifically, one will account for the
time the class was a god class (e.g. from May to September),

then count the number of defects that lead to fixes in the
god class in this time period, and divide by the number of
all defects that were fixed in this time period. The higher
the resulting value, the more likely a defect will manifest
in the god class, e.g. a likelihood of 0.5 would indicate that
every second defect fix leads to changes in this god class [16].

Maintainability can be estimated by investigating how of-
ten a class is changed. For this the change likelihood, as
defined in[10], indicates how likely a class is to be modi-
fied when a change to the software is made. For example, a
change likelihood value of 0.1 shows that the class was, on
average, modified with every 10th change (i.e. revision) to
the software [16].

Figure 2: Software quality characteristic ranking
based on change and defect likelihood.

Both metrics, change and defect likelihood, can be cal-
culated for each of the god classes and the results can be
ranked using an approach similar to that described in the
previous section. Ranking can be seen for our example in
figure 2.

3.1.3 Model
In the model of Zazworka et al. the findings are then plot-

ted in a cost-benefit matrix, like in figure 3. The two axes
correspond to the two ranking dimensions: refactoring effort
and quality impact.

Looking at the matrix one can make following observa-
tions: classes that fall on the diagonal, tend to have balanced
effort/impact ranking characteristics. Classes above the di-
agonal are the most promising to refactor, since the impact
is ranked higher than the effort. For example GodClass7 and
GodClass8 are potentially inexpensive to refactor and have
a relatively high negative impact on software quality. On
the contrary, classes below the diagonal tend to have little
impact and high refactoring cost. This debt is likely to have
low interest (i.e. low impact on quality) and high value. For

Figure 3: Design Debt Cost Benefit Matrix for god
classes.

example, GodClass1 is likely to be one of the more expen-
sive ones to fix, but does show only little negative impact.
Fixing this debt can be deferred to a later point in time [16].

Zazworka et al. analysis was made based on god classes.
Such an analysis isn’t restricted to only this code smell. In
the same way, by picking for the effort dimension relevant
metrics for finding the TD items and relevant quality char-
acteristics for the second dimension, one can construct the
same cost-benefit matrix to decide on other types of TD.

With this strategy the following challenges are being ad-
dressed: C1, although there hasn’t been given an absolute
value for a TD item, the ranking that was done for all god
classes, resulted in a relative value being assigned to each
class. C2, by taking into account the distance from an opti-
mal quality level, based on characteristics such as correctness
and maintainability, a non-technical stakeholder is able to
take decisions based on this analysis. C5, using multiple
software quality characteristics, one can choose which type
of interest is relevant to him.

3.2 System-wide decision-making
TD represents the cost of improving the quality of software

to the level that is deemed ideal. Based on this observation,
Nugroho et al. have developed at the Software Improvement
Group Amsterdam (SIG) a model for estimating the cost as
well as the benefits of raising the overall quality of a software
product. In the following we will look at the general model
for their approximation, but also understand the resulting
data after having used this model in an example [7].

3.2.1 SIG Quality Level
To improve a systems overall quality level, an ”ideal” level

of quality has to be first determined. To this aim, SIGs’s
software quality assessment method is used.

This method is developed as a layered model for measur-
ing and rating the technical quality of a software system in
terms of the quality characteristics of ISO/IEC 9126 [1].

In the first layer, source code analysis is performed to
collect measurement data about the software system. The
analysis involves well-known metrics such as LOC (LOC),
code duplication, McCabe’s cyclomatic complexity, param-
eter counts, and dependency counts. These metrics are
collected at the low level system elements such as lines,
units (e.g., methods or functions), and modules (e.g., files
or classes)[7]. For more details on how the metrics are mea-
sured please refer to [5].

Subsequently, these metrics are mapped onto ratings for
properties at the level of the entire software product, such
as volume, duplication, and unit complexity. These ratings
take values in the interval between 0.5 and 5.5, which can
be rounded to an entire number of stars between one and
five. This constitutes a unit-less ordinal scale that facilitates
communication and comparison of quality results at the level
of entire software products[7].

3.2.2 Cost
As in the previous model, the first dimension is the esti-

mated cost for fixing the system, or in other words the prin-
cipal of the TD. When estimating the cost of repair, what
is being estimated is actually the repair effort (RE) spent
to perform the repair work. If repair work is performed to
increase quality to the ideal level, then RE will represent the
amount of technical debt. Nugroho et al. define RE as the
product of rework fraction(RF) and rebuild value(RV) [7]:

RE = RF ×RV

Rework Fraction
In their model Nugroho et al. estimate the RF based on
SIG’s software maintainability rating. The estimations for
all ratings can be seen in figure 4. The figures represent the
percentage of LOC that will need to be changed in order to
raise the quality by one level. For example, to improve a
system from 2-star to 3-star rating would require changes as
much as 40% of the code. For further detail please refer to
[7].

Figure 4: Estimated Rework Fraction.

Rebuild Value
RV is an estimation of effort (in man-months) that needs to
be spent to rebuild a system using a particular technology.
This is determined by the following formula:

RV = SS × TF

where:

• System size(SS) - represents the total size of a system
measured in LOC. Alternatively, SS can be measured
using functional size (i.e. Function Points).

• Technology factor(TF) - represents language produc-
tivity factor. This factor provides a conversion from
source code statement to effort (i.e. man-months per
source statement) through ’backfiring’. Please refer to
[6],[9] for further discussion on the subject.

3.2.3 SIG Quality Model Benefits
For the second dimension of the model we continue with

Nugroho et al. 5-star rating approach. Thus, we reason
that the interest is the difference between maintenance ef-
fort spent at the 5-star level and any of the lower quality
levels [7]. With this observation in mind the Nugroho et al.
concluded the following formula for estimating the mainte-
nance effort (ME) at various levels:

ME = MF×RV
QF

The ME is thus a function of the Maintenance Fraction
(MF), Rebuild Value (RV), and Quality Factor (QF). The
three variables are described as follows:

• QF - is the factor used to describe the level of quality.
The higher the level of quality, the less effort spent on
maintenance. For examples motivating these findings
see [7]. QF is determined using the following formula:

QF = 2
QualityLevel−3

2

The formula gives the following factors for quality level
from 1-star to 5-star respectively: 0.5, 0.7, 1.0, 1.4, 2.0.

• MF - represents the amount of maintenance effort spent
on a system in a yearly basis, measured as a percentage
of LOC that is estimated to change (added, modified,
or deleted) yearly, due to maintenance. It is based on
historical acquaintance data. The authors made the
assumption based on their data, that yearly changes in
code takesapproximately 15% of the developer’s time.

• RV - the rebuild value is calculated as described in
Section 3.2.2 Cost.

A real-world example for this formula is then calculated
by the authors, on a 2 star system under supervision.

ME2∗ = 15%×186.7
0.7

= 40

ME5∗ = 15%×186.7
2

= 14

Reviewing the results of the above calculation, Nugroho
et al. concluded that for this project with a 193 man-months
worth of debt, 26 man-months (40-14) of extra effort would
be spent on maintenance on a yearly basis. This would
translate in economical terms into a TD worth $1,608,333
and an interest of $216,666, under the assumption that the
yearly cost of a maintenance staff is set at $100,000 [7].

3.2.4 Model
For the overall assertion of the model, a case study was

undertaken. The case study is a system that was recently
assessed by SIG. Its main functionality is designing trans-
portation infrastructure. When the assessment was done the
system was 18 years old. The system was developed using
various technologies including Java, C, C#, C++, PHP. The
size of the whole system is 760,000 LOC [7].

The result of the quality assessment revealed that system
has a 3-star quality level. Figure 5 provides the results of
TD calculation of SIG case study system for the following
10 years. The table provides two scenarios: 1) keeping the
quality at 3-star level; 2) improving the quality level to 4-
star. In the last row of the table, financial projections of
ROI for investing in quality improvement to the 4-star level
are provided.

Table 5 shows that the required RE to improve system
quality to 4-star is 48 man-months ($400,000). The table
also shows the debt and interest need to be paid over 10
years. It is shown that the amount of debt and interest over
time at the 4-star level is nearly half that of 3-star. By
calculating the saving on interest as a result of moving to
4-star, and also taking into account the repair effort, the
return on investment (ROI) can be determined. Table 5
shows that the repair effort invested to improve the quality
level to 4-star will pay back in terms of positive ROI of 15%
in seven years.

Although Nugroho et al. estimation model focuses on
whole systems, the analysis could be constrained to tackle
particular TD items as well.

By benefiting from the code repositories under their su-
pervision, Nugroho et al. developed estimations by mining
their historical data, which in turn leads to the assumption
of having historical data as an asset. The same argument
leads, though, to the conclusion that the challenges C1, C2,
C3, C5, C7 are being indirectly, but nonetheless tackled by
this estimation model.

Given that the model is based entirely on estimations re-
lated to historical data analysis, the results could be not at
all relevant to the current system.

3.3 Alternative models
Having overviewed the aforementioned cost-benefit mod-

els, one can make the following observation: cost-benefit
analysis is divided into two dimensions. In the case of TD
management a cost-benefit analysis assumes the principal
for the dimension of the cost and the interest for the dimen-
sion of the benefits. We can reason, that it is then possible
to interchange different estimation strategies for one dimen-
sion, while still obtaining a worthwhile result.

We will thus look over one alternative for each of the di-
mensions of a cost-benefit model. We will start by going
over an alternative for the principal estimation, by using
the CAST estimation model and then overview one other
models for the interest estimation.

3.3.1 CAST Model
In their exploration of TD management at CAST Soft-

ware, Curtis et al. introduced a new approach to TD prin-
cipal estimation and TD prioritisation, by focusing only on
the should-fix violation. Curtis et al. characterize these as
violations of good architectural or coding practice (hereafter

Figure 5: Technical debt of SIG case study system on a 10-years horizon

referred to simply as ”violations”) known to have an unac-
ceptable probability of contributing to severe operational
problems (outages, security breaches, data corruption, and
so on) or of contributing to high costs of ownership, such as
excessive effort to implement changes.

As software is a product of the mind, that is being hand-
crafted, the main resource going into the software is man-
power or more clearly effort. The measure of effort should
take into account the the employee’s hourly salary, as well as
providing him with the necessary tools to perform his trade
optimally.

Thus, we reason the following parameters of importance:
number of TD items in an application, the hours to fix each
TD item, and the cost of labor at an hourly rate. Using
these three variables Curtis et al. came up with the following
equation for estimating the TD-principal [15]:

TD-principal =
((Σ high-severity violations) × (percentage to be fixed) ×

(average hours needed to fix) × (US$ per hour)) +
((Σ medium severity violations)×(percentage to be fixed)×

(average hours needed to fix) × (US$ per hour)) +
((Σ low-severity violations) × (percentage to be fixed) ×

(average hours needed to fix) × (US$ per hour))

3.3.2 Maintenance Behaviour
Although such models provide the means to estimate debt,

it may be difficult to justify reducing TD without detailed
information about the impact of the debt on developer’s day-
to-day maintenance activities. Under the assumption, that
most developer effort during software maintenance is spent
on program comprehension activities, such as reading and
navigating code, Singh et al. reason, that understanding
the impact of structural-quality-related debt on code com-
prehension is of critical importance[12].

By using a plug-in, called Blaze, for Visual Studio(VS)
the authors were able to monitor and record the behaviour
of developers during maintenance cycles, e.g. code naviga-
tion actions as well as edit actions, in a log. By analysing
the log, Singh et al. understood the class relationships and
quantified the effort spent by a developer to comprehend in-
dividual porgram elements while completing a change task.
In combination with the code maintainability measurements
presented by Nugroho [7], the comprehension effort data,
can provide evidence of how TD impacts developer-code-
comprehension effort and thus update the interest continu-
ously[12].

With the method Singh et al. developed, one could update

the interest of a TD item in real-time, therefore help actively
prioritize TD and thus possibly avoid situations in which the
debt reaches a point at which it has a substantial impact
on the progress or the cost. Such an aid would address
specifically challenge C4 by having the TD under continuous
supervision.

4. CONCLUSION
TD is an overwhelming concept and managing TD re-

quires dealing with heterogeneous stakeholders, conflicting
needs, and a considerable level of uncertainty, factors that
are hard to account for[4]. The presented models try to re-
solve at least the technical challenges and guide, even the
less tech-centered stakeholders, in the the decision-making
process for a software project.

Two considerations for further studying of cost-benefit
models have come up during the research for this paper:

• Overhead cost - a new dimension one could take into
their calculation could be the cost one might incur by
actively tracking the debt in the project. Overcompli-
cated tools tend to be more of an inconvenience than
an aid.

• Time - another dimension to consider could be the
time and how the debt progresses in this dimension.
Not only in the past but also how paying up the debt
might behave in the future. This has been lightly
touched upon in SIG’s model, by extending the pre-
diction to a 10-years horizon. This might allow devel-
opers to pay up a certain amount of the debt for one
TD item and then switch to another one.

The cost-benefit model (and in particular the models pre-
sented in this research work) is not a silver bullet approach,
as we still have not addressed all the challenges with any of
the models. TD management is an area in which the knowl-
edge and experience of developers is still required for the
decision-making process. The models are as mentioned in
the introduction only an aid for them.

Further research is needed, though, the work already done,
as presented in section 3, proves that a solid base is already
being build. There still has to come an approach to solve
more of the challenges expressed in section 2.

5. REFERENCES
[1] I. 9126. Software engineeringâĂŤ product quality.

IntâĂŹl Org. for Standardization, 2001.

[2] W. Cunningham. The wycash portfolio management
system. Addendum to Proc. Object-Oriented
Programming Systems, Languages, and Applications,
ACM, pages 29–30, 1992.

[3] R. David, P. Ngulube, and A. Dube. A cost-benefit
analysis of document management strategies used at a
financial institution in zimbabwe: A case study. SA
Journal of Information Management 15(2), 2013.

[4] D. Falessi, M. A. Shaw, K. Mullen, and M. Stein.
Practical considerations, challenges, and requirements
of tool-support for managing technical debt. Managing
Technical Debt (MTD), 2013 4th International
Workshop on, pages 16–19, May 2013.

[5] I. Heitlager, T. Kuipers, and J. Visser. A practical
model for measuring maintainability. In 6th
International Conference on the Quality of
Information and Communications Technology
(QUATIC 2007), pages 30–39, Sept 2007.

[6] C. Jones. Backfiring: converting lines of code to
function points. Computer Volume: 28, Issue: 11,
pages 87 – 88, August 2002.

[7] A. Nugroho, J. Visser, and T. Kuipers. An empirical
model of technical debt and interest. MTD ’11
Proceedings of the 2nd Workshop on Managing
Technical Debt, pages 1–8, May 2011.

[8] M. R. Detection strategies: Metrics-based rules for
detecting design flaws. In Proceedings of the 20th
IEEE international Conference on Software
Maintenance. ICSM. IEEE Computer Society,
Washington, DC, pages 350–359, September 2004.

[9] S. P. Research. Llc. spr programming languages table.
Ver. PLT2007c, December 2007.

[10] J. Schumacher, N. Zazworka, F. Shull, C. Seaman, and
M. Shaw. Building empirical support for automated
code smell detection. In Proceedings of the 2010
ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM ’10).
ACM, New York, NY, USA, 2010.

[11] C. Seaman, Y. Guo, C. Izurieta, Y. Cai, N. Zazworka,

F. Shull, and A. VetrÃš. Using technical debt data in
decision making: Potential decision approaches. MTD
’12 Proceedings of the Third International Workshop
on Managing Technical Debt, pages 45–48, June 2012.

[12] V. Singh, W. Snipes, and N. A. Kraft. A framework
for estimating interest on technical debt by monitoring
developer activity related to code comprehension.
2014 6th IEEE International Workshop on Managing
Technical Debt, pages 27–30, 2014.

[13] W. Snipes, B. Robinson, Y. Guo, and C. Seaman.
Defining the decision factors for managing defects: a
technical debt perspective. MTD ’12 Proceedings of
the Third International Workshop on Managing
Technical Debt, pages 54–60, June 2012.

[14] C. Sterling. Managing Software Debt: Building for
Inevitable Change. Addison-Wesley Publishing
Company, Reading, Massachusetts, 2010.

[15] A. Szynkarski, J. Sappidi, and B. Curtis. Estimating
the principal of an application’s technical debt. IEEE
Software, vol. 29, no., pages 34–42, November 2012.

[16] N. Zazworka, C. Seaman, and F. Shull. Prioritizing
design debt investment opportunities. MTD ’11
Proceedings of the 2nd Workshop on Managing
Technical Debt, pages 39–42, May 2011.

Facing Synthetic Workload Generation as part of
Performance Testing – a tools approach

Marco Moscher
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

marco.moscher@rwth-aachen.de

Konrad Fögen
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
foegen@swc.rwth-aachen.de

ABSTRACT
Nowadays performance engineering does not only face basic
KPI analysis nor only responsibility testing during a given
workload. Since the System Under Test (SUT) does get
more data complex, a performance engineer is committed
to take simple data generation into account. While creating
small and valuable amount of test data is easily achievable
by hand, it is impossible for large test cases, e.g. 100 units
or above. Though, without good tooling, this process could
evolve as a very time consuming task during a representative
test.

To elaborate existing opportunities and methods to ad-
dress workload generation, this paper compares the follow-
ing performance testing approaches focusing data generation
possibilities. The techniques Capture and Replay (CR) and
Model-Based Testing (MBT) are explained by a realization
of each. On the one hand Microsoft Visual Studio [13] is
mentioned to point out CR approach opportunities. On the
other hand PLeTsPerf [16] is chosen as representative ap-
proach to MBT.

It becomes apparent that both approaches preclude the
process of data generation, which indicates that an addi-
tional (approach independent) possibility is required to com-
pile good, realistic test data. For that reason this paper
moreover focuses the creation of synthetic workload using
a tools-based approach for a small, fictional System-Under-
Test and a test scenario.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—productivity, programming teams,
software configuration management

Keywords
performance testing, performance engineering, model-based
testing, capture and replay testing, data generation, syn-
thetic workload

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2016/17 RWTH Aachen University, Germany.

1. INTRODUCTION
Performance testing itself appertains to the testing phase

during software development, one of the most important and
time consuming phases. Beside well established Unit, Inte-
gration, System and Acceptance testing phases, performance
testing is often neglected since it is a highly specialized
task [7]. This accrues through much required knowledge re-
garding the System-Under-Test (SUT), e.g. its usage profile
and infrastructure where it will operate on [16], and lacking
expertise on performance testing tools [7]. Nevertheless, it
is a crucial task, because high response times can have a
negative impact on customer satisfaction [1].

The basic idea of performance testing is to validate the
SUT among a synthetic workload – also known as load- or
stress- test [16]. During this test various KPI’s like respon-
siveness, stability and resource utilization are monitored and
evaluated in a controlled environment. A synthetic workload
is applied to simulate the expected load under operational
use as closely as possible [1]. Therefore, a good method
on synthetic workload generation is essential to conclude
reliable results from the test results. Through many and
smart possibility of data collections (Internet of Things, Big
Data), software system get more data intensive, whereby au-
tomatic workload generation for performance testing needs
to be considered strongly to provide enough and plausible
data.

In this paper we will present and compare established ap-
proaches towards performance testing. We will outline the
aspects of data generation while realizing the data deriva-
tion task of a test scenario for a fictive SUT theoretically.
The main contribution of this work is to clarify possibilities
and the different proceedings on synthetic workload gener-
ation when adopting a particular approach. Therefore, we
answer the following research question (RQ) in general, by
examining two key questions (KQ) on each approach.

RQ Is the retainment of synthetic workload considered as
part (subtask) of performance testing, i.e. no addi-
tional effort on other field of software testing needed,
or does a performance engineer faces additional tasks?

KQ-1 Is the approach itself capable of generating test data?

KQ-2 How to obtain synthetic workload according to the
utilized approach?

The paper is structured as follows: In Section 2 we give
overview on the related work, followed by a short introduc-
tion to performance testing approaches in Section 3. In the

principal part, Section 4, the fictive SUT and its scenario are
presented to set the basic context. Thereupon we character-
ize both of the previously introduced approaches regarding
data generation while answering the previous presented key
questions. Finally, in Section 5 and 6, we discuss and present
our outcomes.

2. RELATED WORK
Even though much literature and tool-approaches on the

topic of performance testing exists, elaborations focusing one
crucial part1 - namely synthetic workload generation - are
rare. One will recognize, that the main focus in the cur-
rent field of performance engineering is set on automatic and
reusable generation of test artifacts like scripts and models.

M. Bernardino et al. [4, 17] present two different empirical
studies in the field of performance testing. The first one pub-
lished in September 2014, Evaluating Capture and Replay
and Model-based Performance Testing Tools: An Empirical
Comparisons [17], focuses available tools distinguished by
their used approach (CR-based or MBT-based). Different
tools, applying one of the mentioned technique, were evalu-
ated and compared based on effort (time spent) to create test
artifacts. Their results indicates that the advantage using
MBT grows significantly when the test complexity increases.
The newer one published in April 2016, Performance Testing
Modeling: an empirical evaluation of DSL and UML-based
approaches [4], was motivated by the lack of a (known) stan-
dard to represent performance testing information. Though
the effort and suitability – as well as in the previous study
– for modeling performance testing with UML- and DSL-
models was evaluated. Their results indicate that applying
DSL is less effort than using UML.

As our best research yield, yet no studies nor empirical
evaluations exists, which investigate the (un-)existing corre-
lations between data generation and approach-based perfor-
mance testing in place.

3. BACKGROUND
In the last decades two distinct approaches in the field

of performance testing come into being. A variety of tools
have been developed, which take advantage of these tech-
niques [5], for what reason CR and MBT -techniques repre-
sent the current-state-of-art in this field. It is necessary to
distinguish between both when focusing on central aspects
like data generation during performance testing.

3.1 Approaches
Common approaches for performance testing are defined

methods and proceedings for test scripts, test scenarios and
workload creation to perform the actual test. Thus a ap-
proach towards performance testing does not focus the test
(execution) itself, even if it might be possible with the uti-
lized tool implementing the desired approach.

3.1.1 Capture and Replay Testing
Applying a Capture and Replay (CR) technique, the test

engineer has to perform the tests manually once on the SUT
(capture) while using an appropriate testing tool (load gen-
erator) in record mode [17]. Thereby all inputs or interac-

1Executing performance test against a SUT without any ap-
propriate synthetic workload and/or runtime data is, obvi-
ously, senseless.

tions on SUT and additionally the resulting output of the
performed action are recorded. Later the load generator can
rerun all captured tests when a new release of the SUT is
deployed (replay) and report which ones succeeds or fails.

CR-based approaches are widely spread as a result of their
simplicity and low adaption effort. The most common tools
supporting a CR-mode are Apache JMeter [8], Microsoft
Visual Studio [13], HP LoadRunner [12] and IBM Perfor-
mance Tester [9]. As the process for data generation in a
CR-approach is similar overall tools, we will exemplary in-
troduce Visual Studio as a representative tool.

Microsoft Visual Studio is an Integrated Development
Environment (IDE) developed and distributed by Microsoft.
Primarily it is used as rich editor for several .NET-Framework
based languages like C# or VisualBasic (VB). The software
itself is available in different, feature-rich, versions as En-
terprise, Professional, Test Professional and such like. The
latter one includes support for automated test, such as per-
formance testing on a CR-based approach. In Visual Stu-
dio the tester manually interacts with the SUT, mostly a
Web-based Application, and captures the test scenario as
described before. Moreover, the engineer has the possibility
to deploy her performance test (load test) into a cloud en-
vironment (Azure, provided by Microsoft as well), to easily
run test in parallel, whereby an even large load could easily
be created.

3.1.2 Model-Based Testing
In contrast to a CR-based approach the model-based test-

ing one is a more abstract one and requires the tester to
define model representation for each test of the SUT. There-
fore, one could make use of existing Unified Model Language
(UML) Diagrams, Use Case (UC) Diagrams or Customer
Behavior Modeling Graph (CBMG). Each test-model re-
quires the definition of additional performance information,
wherefore the chosen notation (UML, UC, CBMG) needs to
provide meta models to instantiate the models. Next, the
generation of scripts and scenarios is accomplished by utiliz-
ing appropriate tools. Research resulted that existing tools
for this are rare. The most mentioned tools are MBPeT [1],
TestOptimal [18], PLeTsPerf [16] and Canpous [5]. The two
latter ones will be introduced shortly.

PLeTsPerf is a model-based performance testing tool
to support the automatic generation of scenarios and scripts
from application models. It was developed by M. Bernardino
et al. [16] in collaboration with an IT company in 2015.
PLeTsPerf is based on the attempt to describe the SUT with
aid of two broadly used UML diagrams: UC and Activity
Diagram (AC). Thereby each actor within a test scenario
is represented as part of an UC Diagram and test cases are
derived from AC Diagrams [16].

Canopus represents a Domain-Specific Language (DSL)
for performance testing rather than a complete toolset. Hence,
using Canopus the whole performance test is represented in
a particular language and afterwards transformed into third-
party scripts (e.g. for usage with VisualStudio or LoadRun-
ner) or a Canopus-XML File [5].

4. DATA GENERATION
Although many tools and different approaches on per-

formance engineering exists, test engineers still face issues
when replacing or adopting these processes [17], e.g. missing
knowledge on appropriated tools or methods for (synthetic)

workload generation. This is enhanced due to the fact, that
it is hard to find literature, thematising the test data reten-
tion regarding each approach (cf. Section 2) exist. Though
we will outline the challenge of data generation in the fol-
lowing, separated to approach dependent and independent
challenges.

4.1 Assumptions and Test Scenario
To concentrate on the retainment of synthetic workload

exclusively, i.e. not discussing and explaining detailed steps
towards the essential task, we set the following precondi-
tions.

Pre-1 Test artifacts, such as model or record, exists.

Pre-2 For the SUT no base- nor runtime- data yet exists.

As both presumption are independent of the data gener-
ation process itself and vice versa, it is permissible to as-
sume those. Based on this foundation we deduce an answer
to the previous introduced key questions KQ-1 and KQ-2
(cf. Section 1) for each approach. To answer these more
practically and to explain the process of synthetic workload
generation we use a simple, theoretical SUT Bidder.

Bidder - SUT and Test Scenario.
Bidder is a small e-commerce platform where customers

can register, offer products, and bid on those offered by
others. It is necessary that Bidder scales well over time,
whereas it should be tested with a considerable and realis-
tic (synthetic) workload in the early stages of development.
The testing scenario should be like follows: During a load of
100.000 unique registered and logged-in users, 60% (selected
at random) should bid on 20% of all available products (dis-
tributed at random). To represent a standard quantity of
products, each registered user should provide 5 distinct ones.
All remaining users, those who are not involved into a bid-
ding process, should either watch running auctions (20% of
all) or visit other products (20% of all as well). This sums up
to an additional ‘default’ load for the test. To conclude, the
whole scenario is based on three different (user-type-based)
sub-scenarios: bidder, watcher and visitor.

Beside the outlined test scenario (load distribution), no
base- or runtime- data is provided beforehand as stated in
Pre-2. Thus a performance engineer has to ensure that this
data is provided, for which the appropriated UML Class
Diagram is depicted in Figure 1.

4.2 Approach Dependent Opportunities

CR-based approach.
Given Pre-1 we assume that all required scenarios, three

in total, are recorded as a Web Performance Test (cf. ‘Walk-
through: Recording and Running a Web Performance Test‘ [14])
and combined into a single Load Test (cf. ‘Walkthrough:
Creating and Running a Load Test Containing Web Per-
formance Tests‘ [14]). Within this Load Test each Web
Performance Test could be weighted to accomplish the chal-
lenged scenario distribution (bidder :60%, watcher :20%, visi-
tor :20%). Although this (basic) test is sufficient to perform a
performance test against Bidder using 100.000 users, which
are simulated through single instances (100.000 in paral-
lel), the unique user requirement of each (simulated) is not
yet fulfilled, as the current data is not synthetic enough.
To amend this data to be more synthetic, i.e. as realistic

Figure 1: Class diagram illustrating all relevant
Classes for Bidder and the relation between each.

as possible e.g. unique users, all recorded data entered (i.e.
form data) or clicked (i.e. link clicking) during test, needs to
be extracted and getting alterable trough Extraction Rules
(cf. ‘Using Validation and Extraction Rules in Web Per-
formance Tests‘ [14]). Hereafter Visual Studio expects an
external data source to map required test data to the per-
formance test, e.g. a CSV, XML or Database (Microsoft
Access, SQL, etc.) (cf. ‘Add a data source to a web per-
formance test‘ [14]). Thereby the performance test could be
equipped with a set of unique user information to fulfill the
mentioned test requirements of 100.000 unique users. It is
to emphasize that the CR-based approach relies on an ex-
ternal data source to perform a test with synthetic workload
– this answers KQ-2.

Demanded on Pre-2 the SUT Bidder does not yet hold
any runtime data in storage. More precisely no User Ac-
counts nor Products exists, whereas it is not possible to
create/record the claimed Web Performance Test as stated
above. This follows a contradiction between both presump-
tions (Pre-1, Pre-2) when utilizing the CR-based approach
only. Thus the first key question (KQ-1) is to be negated,
since this approach is not capable of providing or generating
test data itself. More precisely it is dependent to and only
applicable if (at least runtime) data exists.

MBT-based approach.
”Model-Based Testing is the Automation of Test Design

of Black-box Tests”, defined by M. Utting et al. [19] im-
plies that this approach does not face the generation of test
data. Furthermore, M. Bernardino et al. [16] state that
model-based testing “is a technique that takes advantage
of the application model to generate testing models suitable
for the generation of test artifacts”, where test artifacts are
appreciated to be test scenarios and scripts nor test data.
Consequently, even if Pre-1 holds, a test engineer is not
able to derive synthetic workload with the aid of MBT only.
This statement is enhanced by the depicted application of
PLeTsPerf (cf. Figure 1 ’Model-Based Performance Testing
Process’ in [16]) and Canopus (cf. Figure 3 ’Model-based
performance testing process using Canopus’ in [5]), where
the utilized data during test is marked as external resource
each time. Thus for the MBT-based approach the KQ-1 is
to be negated.

Nevertheless, tools/IDEs like TestOptimal [18] exists, which

Figure 2: Illustration of chosen categories as well as
the subset-relation between Plain, Relational and
Complex Data Category

unite (test) data generation with the MBT-approach, a test
engineer herself has to define data-columns or patterns to
be used. Moreover, this data is only used as runtime data
and does not solve the problem of missing base data, as re-
quired by Pre-2. Similar to the CR-based approach (cf.
Section 4.2) this one itself is not capable of providing/com-
pile workload nor test data as well. Thus to execute a perfor-
mance testing, an external data source needs to be provided
beforehand (answering KQ-2).

For an interim conclusion related to the research question,
one can say that the retainment of test data / synthetic
workload is not (yet) a part of one of the mentioned ap-
proaches. More precisely the data source is mostly treated
as already available, external, resource, whereas its required
to focus this remit more closely.

4.3 Approach Independent Opportunities
To provide an external data resource, required to adopt

the previous mentioned approaches, we introduce various
tools which accomplish this and moreover reveal possible,
partial, solutions to the given test scenario (cf. Section 4.1).

In the field of (test) data generation many tools exists,
for what reason it is suitable to decrease the extent of all
tools. Since most tools are similar in a given manner, it
is sufficient to group those in suitable equivalence classes
and explain only one representative of each in detail. To
achieve this, three different equivalence classes (hereafter
‘categories’) Plain, Rational and Complex Data (cf. Fig-
ure 2) facing the variations regarding resulting data com-
plexity (cf. Section 4.3.1) are used. Based on this cate-
gorization representative tools are presented and exemplary
used to generate data for Bidder.

4.3.1 Test Data Classification
Figure 2 depicts the three chosen categories. It illus-

trates that a subset relation PlainData ⊂ RationalData ⊂
ComplexData between the categories exists. This correla-
tion is applicable since every tool which can generate com-
plex data is indeed capable of generating plain data as well.

The most inner category Plain Data represents all tools
which are able to generate non-related and unordered data,
e.g. single users-entries composed of name, surname and
birthday. More comprehensive data generators which are
able to create relational data fulfilling database constraints,
e.g. foreign-keys, satisfying a relation between user entities
and products (cf. Figure 1), are represented by the cate-
gory Rational Data. Since a relation between different data
entries can be omitted, this category is a superset of Plain
Data as depicted in Figure 2. Finally, the category Complex

Data enfolds all tools capable of generating complex data,
i.e. data satisfying different application level constrains like
ordered relations. E.g. for Bidder this is required, such that
a sequence of bid’s b1, b2, ..bn with different prices p(bi) could
be generated. To obtain synthetic data all bid’s need to be
ordered as follows: p(bi) < p(bi+1). Similar to the previous
category these additional characteristics could be omitted
as well, whereas Complex Data tools are likewise able to
generate Rational Data and furthermore Plain Data. Thus
the subset relation between the chosen equivalence classes,
PlainData ⊂ RationalData ⊂ ComplexData, holds.

4.3.2 Tools approach
Continuing on the data categorization, representative tools

for each category are presented and exemplary adopted to
the test-scenario. As it is apparent that the Complex Data
category is best suitable for the given test-scenario, it will
be presented in most detail.

Plain Data.
Generating plain data is nowadays a very simple task.

Many tools, offline or online, exists to fulfill this task, e.g.
faker.js [2], mockaroo.com [15] or generatedata.com [10]. Due
to a (mostly) very intuitive user interface or good API/Frame-
work (cf. Listing 1) it is simple to generate plain data, e.g.
a set of user data. Thus generating a set of 100.000 unique
users, include email and password, is very straightforward.
var f ake r = r equ i r e (’ f ake r ’) ;
var use r s = [] ;
for (var i =0; i <100000; i++) {

var user = {
id : f ake r . random . uuid () ,
name : f ake r . i n t e r n e t . emai l () ,
password : f ake r . i n t e r n e t . password ()

} ;
u s e r s . push (user) ;

}

Listing 1: Generating a set of 100.000 unique user,
using faker.js

Relational Data.
Similar to Plain Data, the generation of relational data is

very straightforward as well. Most tools analysis the meta-
data from an existing database (or alike) model and gener-
ate abstract entities based on this, likewise benerator (open-
source) [3] and redgate sql [11]. Both tools use an existing
sql-schema to deduce data models for generation. Beside
this, when using benerator, one can describe the data using
a lucid XML file. Listing 2 present a partial XML definition
for benerator to generate relational data. Each generation
of type user generates five related entities of type product
holding the id of the user.
<generate type=”user ” count=”100000”>

<va r i ab l e name=”person ” generator=”PersonGenerator”/>
<id name=”id ” s t r a t egy=”increment ” />
<a t t r i bu t e name=”email ” s c r i p t=”person . email ” />
<a t t r i bu t e name=”password ” type=”s t r i n g ”

pattern =”[a−zA−Z0−9,.−]{8 ,12}” />
<generate type=”product ” count=”5”>

<a t t r i bu t e name=”u s e r i d ” s c r i p t =”{user . id }” />
<a t t r i bu t e name=”name” type=”s t r i n g ”

pattern =”[A−Z] [A−Z]{5 ,12}” />
</generate>

</generate>

Listing 2: Partial XML exposing the generation of
products related to a unique user using benerator.

It is obvious that the test data generation providing differ-
ent products related to a generated user is achievable with
benerator.

Complex Data.
The field of generating a huge set of complex data, e.g. or-

dered data, remains the most elaborating part. For example,
and as required in the introduced test-scenario, a product
can have arbitrary many Bids, which are sorted by means of
price and date. Furthermore, to obtain plausible synthetic
data, every bid has to be higher in price as the previous one
(strict order). Consequently a appropriate tool has to allow
rule or constraints definition, e.g. state-based generation,
since the previous generated bid serves as basis for the next
one.

For example DataGenerator by Finra is one tool which
allows data generation by the usage of SCXML [6], defined
by the Apache Common Foundation. Using DataGenera-
tor the required data could be generator by a self-repeating
state, guarded by a counter condition. Additionally, a cus-
tom DataTransformer is required to satisfy the constraints
between different bids, i.e. each next bid has to have a higher
price as the previous.

Beside DataGenerator the previous introduced benerator
is likewise capable of generating state-based data by offer-
ing nested generation, which was already applied in for the
Relational Data (cf. Listing 2) example. To provide a valid
sequence of bids, varying in price, a StepSequence can be
used, which generate a sequence using a fixed increment
delta. But, even if the bids are distributed at random over
all available user (excluding the owner, as shown in Listing 3,
by variable product), the generated prices would only differ
in a constant factor (defined by increment delta), which is
not that realistic. For obtaining even more synthetic data
the RandomWalkSequence is applied. It supports a min and
max value (range) to vary the addition on each generation in-
dividually. But, it should be considered that this generated
data, if applied multiple times to different systems, is not de-
terministic and thus could cause untraceable failures during
test on the one hand. On the other its prevents developers
from focusing/optimizing on concrete test data. Neverthe-
less, to provide synthetic data, the RandomWalkSequence is
applied for the given test scenario, as exposed in Listing 3.

<generate type=”bid ” consumer=”database”>

<va r i ab l e name=”product ” type=”product ”
source=”database ” d i s t r i b u t i o n=”random” />

<generate type=”b id l oop ” count=”25”>
<va r i ab l e name=”user ” type=”user ” source=”database ”

d i s t r i b u t i o n=”random” />

<va r i ba l e name=”p r i c e i t e ” type=”f l o a t ”
unique=”true ” d i s t r i b u t i o n=”randomWalk”
minStep=”0.5” maxStep=”10” i n i t a l =”1” />

<a t t r i bu t e name=”u s e r i d ” s c r i p t =”{user . id }” />
<a t t r i bu t e name=”product id ” s c r i p t =”{product . id }” />
<a t t r i bu t e name=”pr i c e ” type=”f l o a t ”

nu l l ab l e=”f a l s e ” source=”p r i c e i t e ” />
</generate>

</generate>

Listing 3: Partial XML exposing the generation of
25 ordered bids for each product using benerator.

To conclude the synthetic data derivation for the introduced
test scenario one can say that various tools with different
characteristics and features exists.

5. DISCUSSION
According to the previous findings, data generation and

especially obtaining synthetic data is quite a difficult task,
although various tools for different data complexity cate-
gories exists. We assume that this is due to missing knowl-
edge and awareness of these tasks. Furthermore, these tasks
are not covered as part of different approaches on perfor-
mance testing as deducted with usage of KQ-1 and KQ-2
and summarized in Table 1.

KQ-1 KQ-2

CR-based No requires external data resource

MBT-based No requires external data resource

Table 1: Compacted results regarding the key-
questions for each approach

Both performance testing techniques are not capable of
data deduction (KQ-1) and moreover treat synthetic work-
load as a given (external) resource which required during
or afterwards the test artifact generations (KQ-2). This
implies, that if these resources are not available prior to
performance testing, additional work on artifact generation
(test-data) is required.

To finally answer the motivated research questions (RQ),
it is to say that data generation is not yet handled as part
of performance testing. This is supported by the (currently)
existing work and evaluations on this topic, as presented in
Section 2. Thus a performance engineer is committed to take
external or separated workload generation into account.

To support these results, i.e. excluding resource (test
data) generation, one could argue that the fundamental def-
inition of performance testing is (only) to evaluated and an-
alyze a SUT under a certain load. Because these test are
mostly done after a first roll-out, not in the early stages
of development, enough data (runtime data), which only
needs to be anonymized, exists and is not needed to gen-
erate nor to address as particular task. Thus the aspect
of easy (automatic) load generation (scenarios and scripts)
come to the fore and slights the aspects of data derivation.
A possible minor improvement would be to compose work-
load generation tools and performance test asset deduction
into a software-suite. Thus the tasks on synthetic workload
generation and performance testing are kept separated, as
argued by M. Utting et al. [19].

However, through the increasing development pace of ap-
plications, it gets more interesting to perform such test in
early stages as well. As a consequence synthetic workload
generation gains more priority, because no (runtime data)
yet exists. On that account it would be a great advance-
ment if both approaches (CR-based, MBT-based) would ad-
dress and integrate the preparation of synthetic workload.
Extending the CR-based approach towards thees enhance-
ments is unfortunately inapplicable. This results, since the
approach primarily relay on manual user (tester) input and
does not hold any further information about the SUT, i.e.
data model, which – in our means – prevents a (tool sup-
ported) synthetic data derivation. In opposition to that,
the MBT-based approach could be extended to this means,
since the test-scenario itself is available in a certain mod-
eling language. A possible attempt could be to develop an
intermediate language (DSL or similar) to combine existing

tools and approach, e.g. benerator and PLeTsPerf. For in-
stance a meta-model could be added to PLeTsPerf models to
describe required data for a specific scenario. Based on this
a compiler/translator, which is to develop, could be used to
derive the require data model in a benerator convenient for-
mat. Consequently, a full performance test (single scenario)
could be derived with the usage of one, specific, model only.

6. CONCLUSION
In this paper we have discussed tow different approaches,

CR-based and MBT-based (cf. Section 3), towards perfor-
mance testing and outlined in detail, utilizing KQ-1 and
KQ-2 (cf. Section 1), to which extend these are capable
of synthetic workload generation. We have deducted, with
assistance of the two presumption Pre-1 and Pre-2 (cf.
Section 4.2), that both approaches are not (yet) capable of
data generation itself and show same results regarding the
exploitation of test-data.

To provide these missing (synthetic workload) resources
for performance testing we have introduced various tools –
categorized by data complexity (cf. Figure 2) – to accom-
plish this (cf. Section 4.3). It was shown that, depending
on the required workload complexity, the generation of this
resource gets more complex itself (cf. Section 4.3). Exem-
plary we have introduced and utilized benerator to generate
synthetic workload for the theoretically SUT Bidder.

Summarizing it is to say, that the current state-of-the-art
regarding synthetic data generation and performance testing
is not yet very contiguous. Even if the latter one is addicted
to synthetic workload, both are mostly treated as different,
disjoint disciplines. As a result the adaption of performance
testing, without possessing test data prior, gets even more
difficult. To decrease the amount of additional workload
for a performance test in early stages of development, we
have outlined and discussed two possible solutions. First
the creation of more extensive test suits and second of all
the development of an intermediate language to connect the
different techniques, e.g. benerator and PLeTsPerf.

It is to outline that contemporary the research focus is
set to easier and fast generation of test artifacts (cf. Test
Generation). Prospectively the (automated) generation of
test data, simultaneously with test -scripts and -scenarios,
yields a proper research field and would result in very com-
prehensive tool-support during (performance-) testing. An
already identifiable and likely possible solution towards these
enhancements is, to create or extend existing model-based
approaches with additional meta-models describing the re-
quired data for the specific scenario-based. This would allow
an automatically deduction of test data (cf. Section 5).

7. REFERENCES
[1] F. Abbors, T. Ahmad, D. Truscan, and I. Porres.

Model-based performance testing in the cloud using
the mbpet tool. In Proceedings of the 4th ACM/SPEC
International Conference on Performance
Engineering, pages 423–424. ACM, 2013.

[2] M. Bergman and M. Squires. faker.js - generate
massive amounts of fake data in the browser and
node.js. https://github.com/Marak/faker.js, 2016.
[Online; accessed 2016-12-14].

[3] V. Bergmann. Databene Benerator.
http://databene.org/databene-benerator, 2012.
[Online; accessed 2016-11-02].

[4] M. Bernardino, E. M. Rodrigues, and A. F. Zorzo.
Performance testing modeling: an empirical evaluation
of dsl and uml-based approaches. In Proceedings of the
31st Annual ACM Symposium on Applied Computing,
pages 1660–1665. ACM, 2016.

[5] M. Bernardino, A. F. Zorzo, and E. M. Rodrigues.
Canopus: A domain-specific language for modeling
performance testing.

[6] A. Commons. SCXML - Commons SCXML. https:
//commons.apache.org/proper/commons-scxml/,
2015. [Online; accessed 2016-12-14].

[7] L. T. Costa, R. M. Czekster, F. M. de Oliveira,
E. d. M. Rodrigues, M. B. da Silveira, and A. F.
Zorzo. Generating performance test scripts and
scenarios based on abstract intermediate models. In
SEKE, pages 112–117, 2012.

[8] A. S. Foundation. Apache JMeter.
http://jmeter.apache.org/, 1999. [Online; accessed
2016-11-02].

[9] IBM. Rational Performance Tester. https://www-
03.ibm.com/software/products/en/performance,
2016. [Online; accessed 2016-11-02].

[10] B. Keen. generatedata.com.
https://github.com/benkeen/generatedata, 2016.
[Online; accessed 2016-12-14].

[11] B. Keen. SQL Data Generator - Generate realistic test
data fast. https://www.red-gate.com/products/sql-
development/sql-data-generator/, 2016. [Online;
accessed 2016-12-14].

[12] H. P. E. D. LP. Load Testing Software: Application
Testing Tools. http://www8.hp.com/us/en/software-
solutions/loadrunner-load-testing/index.html,
2016. [Online; accessed 2016-11-02].

[13] Microsoft. Visual Studio IDE.

[14] Microsoft. Microsoft API and reference catalog -
Chapter: Testing Performance and Stress Using Visual
Studio Web Performance and Load Tests.
https://msdn.microsoft.com/en-

us/library/ms123401.aspx, 2016. [Online; accessed
2016-12-14].

[15] L. Mockaroo. mockaroo - Random Data Generator.
https://www.mockaroo.com/, 2016. [Online; accessed
2016-12-14].

[16] E. Rodrigues, M. Bernardino, L. Costa, A. Zorzo, and
F. Oliveira. Pletsperf - a model-based performance
testing tool. In 2015 IEEE 8th International
Conference on Software Testing, Verification and
Validation (ICST), pages 1–8, April 2015.

[17] E. M. Rodrigues, R. S. Saad, F. M. Oliveira, L. T.
Costa, M. Bernardino, and A. F. Zorzo. Evaluating
capture and replay and model-based performance
testing tools: an empirical comparison. In Proceedings
of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement,
page 9. ACM, 2014.

[18] L. TestOptimal. TestOptimal - Model-Based Test
Automation. http:
//testoptimal.com/TestOptimalFeatures.html,
2015. [Online; accessed 2016-11-26].

[19] M. Utting and B. Legeard. Practical model-based
testing: a tools approach. Morgan Kaufmann, 2010.

https://github.com/Marak/faker.js
http://databene.org/databene-benerator
https://commons.apache.org/proper/commons-scxml/
https://commons.apache.org/proper/commons-scxml/
http://jmeter.apache.org/
https://www-03.ibm.com/software/products/en/performance
https://www-03.ibm.com/software/products/en/performance
https://github.com/benkeen/generatedata
https://www.red-gate.com/products/sql-development/sql-data-generator/
https://www.red-gate.com/products/sql-development/sql-data-generator/
http://www8.hp.com/us/en/software-solutions/loadrunner-load-testing/index.html
http://www8.hp.com/us/en/software-solutions/loadrunner-load-testing/index.html
https://msdn.microsoft.com/en-us/library/ms123401.aspx
https://msdn.microsoft.com/en-us/library/ms123401.aspx
https://www.mockaroo.com/
http://testoptimal.com/TestOptimalFeatures.html
http://testoptimal.com/TestOptimalFeatures.html

Black-Box Testing in the Presence of Database Inputs

Patrick Barakat
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

patrick.barakat@rwth-aachen.de

Konrad Foegen
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
konrad.foegen@swc.rwth-aachen.de

ABSTRACT
This paper introduces a combinatorial black-box testing ap-
proach for database driven applications. State-of-the-art ap-
proaches in combinatorial test design frequently focus on
the applications input parameters or the database configu-
ration. But they consider in general not the dependency of
both. This paper describes how existing approaches could
be used to describe a combinatorial method to generate a
set of test cases out of a manual specified set of application,
database input values and queries. Regarding the database
state this leads to a better understanding of the behavior
of the system under test (SuT) during the execution of test
cases.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—productivity, programming teams,
software configuration management

Keywords
combinatorial test design, test case reduction, black box
testing, test heuristic, test case generation, data-intensive
applications

1. INTRODUCTION
There exist large data-intensive applications today with

hundreds of input possibilities and database tables. In this
paper, we lay the focus on black-box tests of database-driven
applications.

The test reduction is an important issue in software test-
ing. Non-trivial software applications have an extremely
large number of black-box tests [5]. One difficulty is to avoid
the usage of the whole test set but still retain the fault de-
tection capability [9].

In this approach, we distinguish between the application
input values or short input values and database input val-
ues. Valid combinations (in refer to the database schema

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2016/17 RWTH Aachen University, Germany.

definition) of the database values are used for database op-
erations such as insert, delete and update. The idea of using
database inputs is especially then interesting, when there oc-
curs database columns that could be not contained in the
input values, e.g. this could be internal data such as an
order paid flag for an online shop. In this case, there is
an additional benefit through the database entry specifica-
tion. The other way around there is an additional benefit
when the manually specified input data contains parameter-
s/values that are not contained in the database table. In
example the application could perform a computation with
some input value and store only the result in the database.

The next section gives an overview over several combi-
natorial black-box testing techniques. In section 3 an in-
troducing example is provided. This example is based on
the scenario of an order process to demonstrate the idea be-
hind the afore mentioned heuristic. The feasibility of the
approach is explained in chapter 4. The first part of the sec-
tion 4.2 explains the general proceeding or idea behind our
approach, whereas one possible realization of the approach
is described theoretically in the rest of the section. The real-
ization is based on the existing approaches of [1], [4] and[9].
Possible problems are mentioned in section 5. The paper
ends with a conclusion in section 6.

2. COMBINATORIAL BLACK-BOX TEST-
ING TECHNIQUES

In exhaustive test generation, there may occur test cases
with combinations of input values that do not make sense or
are even not allowed as input, like the combination of the day
31 and the month June. Therefore, reduction of test cases
is an important issue in black-box testing. The techniques
are often based on the source code of the application under
test, the requirement speciation or large automation [4]. The
reduction of test cases may be also done manually by the
tester [7]. In practice the testers are not well supported in
the search for ”important” input combinations to test [9].

On the one hand, there exist theoretical approaches like
t-way testing and especially pairwise testing [10] with a pre-
defined interaction strength t = 2 between the input param-
eters. On the other hand, there are practical applications of
this approach. Among these are [9] and [11].

Although pairwise testing is widely used it is in general
not recommended [2]. But there exist many approaches that
enhance this strategy by using additional heuristics like [1]
and [9].

These approaches have the objective to reduce the tests
by additional information on the interaction between input

and output [9] or the (t-way) testing as in example described
in [1].

Alsewari et al. describes an approach is to reduce the
test cases in presence of constraints [1]. The constraints are
defined in this approach as a combination of input values
that is not allowed to occur. The method uses the Late
Acceptance Hill Climbing based Strategy (LAHC), i.e. it is
an adaption of the LAHC algorithm.

The LAHC algorithm is a heuristic optimization algo-
rithm. LAHC starts with an arbitrary solution for a problem
and tries with local search in every iteration to find a bet-
ter solution by changing just one element of the solution [3].
The algorithm terminates when no better solution can be
found.

Alsewari et. al. [1] adapts the algorithm by using an
optimization function to maximize weight of the covered in-
teractions. The actual LAHC-based algorithm starts with
an initialization. After that the test cases are computed iter-
avely by using a diversification and an intensification strat-
egy. The algorithm ends when all interactions are covered.
During the diversification, a solution, or more precise in this
case an uncovered pair of user specified sample values is
picked. In the same iteration, the intensification is done by
using a probabilistic perturbation function to find an opti-
mal (local) solution. This function uses a heuristic to exploit
the search space by local or global search. The perturbation
function decides by probabilities whether the solution should
be modified and which direction (in the neighbourhood) for
the search should be choosen. The found solution will be
added to the test suite if there is no constraint violated.

There are several other strategies that are based on reduc-
tion of test cases with help of an interaction relationship, for
example [11] and [6]. But according to Alsewari et al. the
LAHC algorithm seems to be the first algorithm that uses
the LAHC method to reduce test cases [1].

Schroeder and Korel introduced an approach to reduce
the number of possible black-box tests by automated input-
output analysis [9]. The aim is to identify relationships be-
tween program inputs and outputs to reduce the number of
combinatorial tests. The idea behind that is to omit test
cases with input values that don’t have influence on the ap-
plications’ output. This leads to a reduction of combinato-
rial test cases without losing the fault detection capability.
It is also not necessary to have multiple test cases that leads
to the same program output. Thus, the idea is to choose a
minimal set of combinations of input values, such that every
output is covered once.

For the selection of input data, black-box test data selec-
tion criteria (such as equivalence-class partitioning, bound-
ary value analysis, etc.) can be applied [9]. The relationship
between the program input and output could be determined
manually, e. g. by analyzing the program documentation.
Schroeder and Korel suggests also techniques, like the struc-
tural analysis of source code. However, we determine the
input-output relationship also automatically but in a differ-
ent way than proposed by [9]. This is explained in more
detail in section 4.

3. MOTIVATING EXAMPLE
In this section, we show an introducing example of the

proposed heuristic. The SuT will be a fictive online shop
application with a SQL database schema. In this example,
we will just consider an excerpt of the system, namely an

Table 1: Table client
Client
no.

Shipping
address (ad-
dress)

Payment
method (pay-
ment)

Reminder
procedure

1 Angle alley 7 Paypal No
2 Downing

street 100
Payment in
advance

Yes

3 NULL NULL No

Table 2: Table order
Order no. Order value Client id

5 500 1
10 105 2

input mask for submitting the order and the corresponding
database tables. One part of the input of the algorithm is
the structure of two database tables: the table order and the
table client. All database tables are supposed to be already
available in the SuT. Furthermore, the tester should provide
a set of input parameters with possible input values. The in-
put parameters consist of application input parameters and
database input parameters. In this paper we distinguish be-
tween input parameters, which refer to the type of variable
or a specific database table column such as a client no. and
the input values that describe the different characteristics
of a parameter (e. g. the client no. 1, 2, . . . , n). The in-
put parameters, as well as the input values are manually
defined by the user. Beside that the tester may also specify
constraints which restricts the occurrence of specific input
combinations. Suitable inputs for the database tables and
the input masks are then provided by the algorithm. This
is explained in more detail in section 4. The structure of
the tables 2 and 1 is from the SuT, whereas the data in the
table is generated by the algorithm. To achieve a determin-
istic test results, we suppose to have a predefined database
state before inserting data sets. In this example, we assume
that we have no productivity data in the database.

Orders can be stored in table 2. They are simplified given
by an order no., an order value and a corresponding client
no. Table 3 shows some manually defined client data (a
client number, a shipping address, and a flag, whether the
client is in a payment method procedure). The user or re-
spectively tester might get these sample values by methods
like boundary-value analysis or equivalence class partition-
ing.

In the following we provide a set of predifined database
queries. These should be formulated in way that they all
may lead to successful running test cases. Thus they should
not select invalid combinations of data.

1. Client that is registered

2. Client that has a payment method

3. Client that has no reminder procedure

4. Clients with shipping address and payment method
that are not new and not empty

To 1: Only registered clients should have the opportunity
to order.

To 2: A valid payment method is necessary for the order.

Table 3: Input and configuration data
Client
no.

Shipping ad-
dress

Payment
method

Query

1 Angle alley 7 Paypal Client has
a payment
method

2 King’s Road 1 Payment in
advance

Client with no
reminder pro-
cedure

3 Downing
street 100

Debit Shipping ad-
dress and pay-
ment method
are not new

4 NULL NULL Client is regis-
tered

Table 4: Database configurations
Query Input data

dependence
Allowed input values Disallowed in-

put values
1 {client no.} {1, 2, 3} {4}
2 {client no.,

payment}
{1, 2} {3, 4}

3 {client no.} {1, 3} {2, 4}
4 {client no.,

address,
payment}

{(1, Angle alley 7,
Paypal), (2,
Downing street 100,
Payment in advance)}

{t| t=(x,y,z),
x=1,..,3, t not
in query 4}

Table 5: Generated test cases with pairwise testing
Test
no.

Client no. Shipping address Payment method

1. 1 Angle alley 7 Paypal
2. 1 King’s Road 1 Payment in advance
3. 1 Downing street 100 Debit
4. 1 NULL NULL
5. 2 Angle alley 7 NULL
6. 2 King’s Road 1 Paypal
7. 2 Downing street 100 Payment in advance
8. 2 NULL Debit
9. 3 Angle alley 7 Debit
10. 3 King’s Road 1 NULL
11. 3 Downing street 100 Paypal
12. 3 NULL Payment in advance
13. 4 Angle alley 7 Payment in advance
14. 4 King’s Road 1 Debit
15. 4 Downing street 100 NULL
16. 4 NULL Paypal

Table 6: Generated test cases with database heuris-
tic

Test
no.

Client no. Shipping address Payment method

1. 1 Angle alley 7 Paypal
2. 1 King’s Road 1 Payment in advance
3. 4 King’s Road 1 Debit

To 3: It is not possible to order when there is a reminder
procedure for the client.

To 4: Should increase the safety level for the client. The
payment method should be verified if the address changes
and there should be also a verification after the payment
method changes.

Table 4 shows the input data dependencies from the sam-
ple values in table 3 for every query. The idea behind that
table is to clearify the dependency to the valid and invalid
input values projected on the corresponding query informa-
tion.

Table 6 provides the selected test cases by the combina-
torial algorithm. This selection is one possible solution and
depends on the concrete implementation of the algorithm
mentioned in 4.2. The goal here is to generate a minimal set
of test cases for allowed input values such that every query
is considered. For possible test cases that don’t belong to
set mentioned before, e.g. they have valid input values that
should lead to a failure, we can act analogously. Another
idea might be to select the test cases by the expected be-
haviour, e.g. the expected output values. In this case, it
might be more reasonable to select the test cases such that
the sets are most disjoint.

Here test no. 1 is selected because of the 4th query. He
covers with client 1 every other defined query. Test no. 2 is
selected because of the disallowed values for query 4, whereas
test no. 3 is selected because of the disallowed values for
queries 1 - 3. We suppose that it is not possible to place an
order with the values specified by the test cases 2. and 3. All
in all the selection should (simplified) be done by selecting
input data dependencies such that every query is covered.
This will be explained in more detail in section 4.2.

4. COMBINATORIAL TESTING IN PRES-
ENCE OF DATABASE INPUTS

In the following subsection 4.1 a coverring array (CA) and
of a mixed covering array (MCA) structure is explained.
They could be used in order to quantify or describe how
well a set of test cases covers all combinations of the corre-
sponding sample values. In addition, we explain an exten-
sion which considers the CA and MCA together with con-
straints. The idea of the combinatorial testing in presence
of database inputs is explained in detail in subsection 4.2.

4.1 Specification of input data
We assume to have an empty database. This has the ad-

vantage that no faults could be misdiagnosed due to in-
consistend data entries. The database is given by a set
of tables D = {T1, . . . , Tn} with n ∈ N. Where the ta-
ble Ti with xi columns, yi rows and the set of data entries
{diab|1 ≤ a ≤ yi and 1 ≤ b ≤ xi} is given by

Ti = {(di11, . . . , di1xi), . . . , (diyi1, . . . , diyixi)}, for all 1 ≤ i ≤ n

We formalize a result of a query as a projection π on a
specific index set I ⊆ {1, . . . , xi1 + · · ·+xik} of the tuple set

Ti1 × . . .× Tik , i1, . . . , ik ∈ {1, ..., n}, k ≤ n

The queries should be projected only to columns that cor-
responds to the set of database input parameters. Other
parameters are not relevant for the algorithm presented in
4.2. Thus, they can be omitted.

We define a test case as a tuple (t1, . . . , tl), where l is the
number of input parameters according to the test case. Each
input parameter has a space of possible values ti ∈ Pi ⊆ Σ∗,
where Σ is an arbitrary machine readable alphabet. Without
loss of generality we can assume that Pi is a finite set. In
the case that

|P1| = . . . = |Pl|

the test coverage can be described by a Coverring Array
CA(N, t, vp) (CA) structure. It is a N × p matrix or re-
spectively array, where all t-way interactions are included,
each row describes a test and every column a parameter [8].
Every possible t-tuple is supposed to be contained at least
once in every N × t subarray. The parameters p, v, and
t in the coverring array structure describe the number of
parameters, values (or levels) and the interaction strength
[10].

The idea behind the interaction strength is to to detect
faults that are caused by interactions between any t param-
eters. Thus, the interaction strength t can be considered as
the maximum number of parameters that is assumed to in-
teract with each other. In example in pairwise testing there
is an interaction strength of 2. The t-way testing could be
considered as generalization of the pairwise testing, where
arbitrary interaction strengths t are possible. An exhausi-
tive test could be considered as a t-way test, where t equals
the number of parameters.

Let us consider the covering array CA(6, 7, 22) as an exam-
ple. This CA has 6x7 arrays with an interaction strength of
2, whereas the exhaustive test would lead to CA(128, 7, 27)
or in other words 122 test cases more than the pairwise test.

The CA can only be used to describe the number of test
cases with an interaction strength for paramaters that all
have the same number of possible values, as mentioned above.
To specify the test coverage for multiple paramaters with dif-
ferent characteristics a mixed covering array MCA(N, t, C)
could be used [10]. The parameter C is defined by vp11 vp22 · · · vpnn
indicating that there are p1 parameters with v1 values, p2
parameters with v2 values and so on.

Furthermore we define the constraints covering array (CCA)
or mixed-constraints covering array (MCCA) as defined in
[1], where a new set F of forbidden interactions is introduced
(i.e., (CA(N, t, vp, F) or MCCA(N, t, C, F)). According to
[1] the set F contains tuples with elements of the format Fi,j

where i indicates the i-th parameter p or respectively pi and
j indicates the j -th value or respectively vj of the parame-
ter pi. In example the set F = {(Fi,j , Fk,l)} expresses that
the j -th value of the i-th parameter is not allowed to occur
together with the l-th value of the k -th parameter.

4.2 Feasibility of the approach
As mentioned in section 1 we have a set of queries Q, a set

of constraints C and a table consisting of possible values for
the application input parameters, as well as for the database
input parameters that are used as input of the algorithm.

The definition of the sample values for the application input
data and the queries of the algorithm input could look like
in table 3. We have assumed to have an (initial) empty set
of constraints in the example in section 3. For comprehen-
sibility we started with a possible resulting database tables
(compare table 2 and 1). The constraints could be in the
form of a MCCA that prohibits different combinations. This
idea could be expanded to the whole input of database and
application values. However, it is more useful to consider
the database parameters and input parameters separately
instead of the whole input. In this case, it might be possible
to define different interaction strengths. Nevertheless, we
supposed to have additionally a set of constraints CAD be-
tween both input parameter types. In example this is useful
when the application input parameter and database param-
eter are related in the sense that an input in the application
could lead to change, e. g. an insert or update of the cor-
responding value of the database parameter. Assume that
we have the sets TA and TD that satisfies the corresponding
constraints. The goal is to generate a combinatorial set of
test cases that are reduced by considering the interaction
between the database and application input values. One re-
duction can be achieved with the help of the queries and
constraints. This can theoretically be done by first consid-
ering the set of constraints CAD between TA and TD. Then
we have a (maximal) set TAD ⊆ TA × TD of possible test
cases that satisfies the constraints, i. e. it is not possible
to add another combination without violating a constraint.
This set could be further reduced by incorporating the query
information Q. It is possible to compute a relation between
input parameters and database parameters M or in other
words which query has an influence on application input
values or vice versa. This leads to the idea to select test
cases T of TAD such that every query is tested and further
reduction would result in queries that are not covered. From
another perspective adding more test cases should result in
redundant tests.

With the specified input, we can reach our goal in three
different steps:

1. Derivation of combinations between the sample val-
ues of the application and the sample values of the
database, under the condition that the result contains
only valid combinations in refer to the constraints.

2. Generate database content.

3. Specify dependencies between input values and queries
and select test cases such that all queries are covered
by the relation at least once.

There are several ways to realize the reduction of test cases
in presence of database constraints. To achieve a compara-
ble result to the algorithm we use different algorithms that
were already mentioned in section 2 like the LAHC based al-
gorithm of [1] and an adaption of the input-output analysis
method from [9]. Furthermore, we use an algorithm or more
precise a method that has similarities to the application of
the approach of Chays et al. [4].

As already mentioned the tester describes sample values
of certain attributes/parameters for the application input
(IA) and for the database tables (ID). The goal is to cre-
ate test cases from the set IA and input data sets from ID.
As explained in 2 there exist many approaches to generate
black-box test cases from input values. The generation of

database content from sample values is more involving be-
cause the content has to fit to the database schema. In
example, foreign key and not null constraints has to be sat-
isfied.

For each query, it is possible to define dependencies to the
application input values. In example an address field of a
database table and the corresponding address field on the
input mask of the application. These dependencies could in
general not be resolved automatically due to the different or
ambiguous naming of table attributes and input parameters.
When we consider the sets IA and ID with different name
spaces, the introduction of an optional alias for every pa-
rameter could solve the problem. In this case, it is possible
to compute the dependencies automatically by naming the
alias of a parameter p that is used in IA just as the alias of
a corresponding parameter p′ from ID.

With this dependency information it is possible to com-
pute the input data dependency as shown in table 4 and
then retrieve the possible input values that were specified
manually by solving/executing the corresponding query. It
is sufficient to get the values that fit to the query by solving
the query conditions. Each result is stored in a relation M
between the power set of the database parameters and the
set of the application input values. Thus according to the
example in section 3 it holds ({client no.}, {1, 2, 3}) ∈M .

That followed a set of constraints can be computed from
the information in M . For each (D,P) ∈M and every pair
of elements in D or respectively P it is possible to compute
constraints for combinations which are not allowed in refer
to the application input values. These constraints are added
to the input set of constraints CA. The idea is to define this
relationship by using the queries. Let Q1, . . . , Qk be the
result sets for each query q1, . . . , qk. With this information,
it is possible to derive constraints. For (d1, d2, . . . , dim) ∈ Qi

we deduce a constraint set F such that the input elements
have to map on the corresponding elements of the database.
More precisely for some dj we take the disallowed values in
refer to the corresponding input parameter j as constraints.

Beside the definition of constraints for the application
input values it is useful to define also constraints for the
database values and attributes manually. Thereby it is pos-
sible to avoid invalid input combinations.

The generated set of test cases may furthermore be re-
duced by an input-output analysis as described in [9]. As
mentioned earlier the queries should be specified in a way
that all of their executions lead either to a valid or an in-
valid result. The idea is now to use the input-output analysis
method to reduce the merged test cases. The goal of this
step is to reduce the test cases to a minimal set in the sense
that every test case covers at least one query and a reduc-
tion of one test case would break that condition. This can
be achieved by storing an additional flag that contains the
corresponding queries to the disallowed inputs 4.

The mentioned approach has the disadvantage that it is
not comfortable to handle foreign key constraints. All the
database columns have to be specified and with that it is
possible to set up which combinations are not allowed. These
might be a large set of constraints for every key / foreign key
combination, namely all values that don’t equal each other.

Another way to achieve the goals mentioned in the be-
ginning of this section is the use of a similar application as
AGENDA [4].

AGENDA provides components to fill a database with

data and to generate inputs to the application under test
[4]. Furthermore, it is possible to specify values that should
be treated differently by the SuT in so called data groups.

The set of database constraints CD is partitioned into the
sets C̃D and C̄D. The difference between C̄D and C̃D is that
the set C̄D defines constraints between different database
attributes (e. g. foreign key constraints) and has also as
a subset the relation between different values of a certain
attribute. These values define the before mentioned data
groups and are expected to be threatened differently by the
application. The set C̃D describes combinations that are not
allowed as input, in example a shipping date that is before
the date of the order. The idea behind the data grouping
is similar to the data grouping of the AGENDA algorithm
[4]. The grouping is supposed to define a relation between
different sample values of a specific attribute. A group can
be defined when the database sample values are treated dif-
ferently by the SuT.

Listing 1: Algorithm in pseudocode
1 Input: Query set Q , database schema D ,
2 I ⊆ IA × ID ,

3 optional set of constraints C = CA

·
∪ CD

·
∪ CAD

4 Output: Set of test cases T and database queries D̃I

5 M ← computeDependencies(Q,CA, CD);
6 C̄A ← computeConstraints(M);
7 CA ← C̄A ∪ CA;
8 TA ← LAHC(IA, CA);
9 TD ← LAHC(ID, C̃D);

10 D̃I ← generateQueries(TD, Q, C̄D);
11 T ′ ← LAHC(TA × TD, CAD);
12 T ← IOA(T ′,M);

As mentioned earlier the decision criteria to select the test
cases as in [9] focus on the input combinations that affects
the programs output. But here we need just to consider the
relation M in a way such that all queries are covered by the
input data dependencies (compare table 4).

An algorithm in pseudocode is shown in 1. As already
mentioned the algorithm has the input Q, D and a (manu-
ally) defined set of sample values I. The method computeDe-
pendencies assigns the dependencies to M. The idea behind
that is indicated in table 4 of the example in section 3. With
the dependency relation it is possible to state the set of con-
straints C̄A which is added to the input set of constraints
CA. After that possible test cases for the application are
generated by the LAHC-method with the IA and the ex-
panded set of constraints. Analogously possible combina-
tions of database values that satisfies the constraints CD

are generated by the LAHC-method. The purpose of D̃I is
to generate the SQL commands for the test cases, e. g. to
fill the database with data. The method generateQueries is
supposed to generate a query for every combination of data
groups. In line 11 the generated application and database
inputs are combined with each other by the help of the con-
straints in CAD. This could be considered as a merging
step. Because the input of the set CAD is optional, there
may occur combinations of application and database input
values that cannot exist in practice. Therefore, an input-
output analysis is performed by the IOA-method at the end
to achieve a further reduction of test cases according to the
relation M. The result of this method and the set D̃I are the
output of the algorithm.

5. PROBLEMS
As mentioned in section 4.1 it is requested to specify input

values as well as database values and queries for the input
of the algorithm. In industrial applications, it is not uncom-
mon that they consist of large table sets. The table sets may
also have dozens of columns. It could be a tedious work to
specify all constraints manually. The manual specification
of the queries could be also a hard work. It makes sense
to gather them from the application, e. g. an application
tracing might provide the executed sql commands.

The algorithm considers only the database structure, i.e.
it does not consider the current database state. This may
make it hard to combine the tests with non-combinatorial
tests. The algorithm could be slightly modified such that the
table data is at first not generated by the LAHC -method
or that also predefined database entries are considered by
the combinatoric. Furthermore, it could lead to problems
to apply the approach of [1] directly to compute database
combinations because input combinations are in general not
denied for all queries.

The realization of the approach let some important things
about the usage out: the question is in which order the input
values and the database values should be inserted. There are
use cases for both opportunities: As described in the exam-
ple it may be useful to have “predefined” database entries.
The other case is that the database entries are considered
as a result of the corresponding input.

AGENDA generates queries for both cases. Let us con-
sider an example similar to the Unit Replay Model in [8]: in
addition to the described input values there may also occur
buttons like “order now” and “save order”. One can assume
that the corresponding buttons lead to different datasets
of the order table, e.g. they have a different order status.
Then the expected behavior of the application depends on
which button was pressed and therefore also the test cases
that could be applied. In example, it should not be possible
to click “save order” for placed order because it should be
already saved.

6. CONCLUSIONS
In this paper, we have shown an approach that uses be-

side the usual application input values also database inputs
and queries in order to reduce the set of combinatorial test
cases. The consideration of the database configuration leads
to the advantage that data-intensive applications could be
tested more efficiently and also more effectively than with-
out knowing information about the database state.

The idea behind the approach of [9] seems to be easy. Nev-
ertheless, the realization of such an approach could be for
data-intensive applications a tedious work. This has the rea-
son that in general not all input/output relationships could
be analyzed automatically. Additionally, the preconditions
for the input variables cannot be retrieved automatically in
general. But in this approach these disadvantages play no
role because the information could be gathered automati-
cally from the input.

In this approach, we also introduced an algorithm that
uses the LAHC-method. On the one hand this approach is
quite new and practical experience is missing. On the other
hand, the authors claim to have promising results and are
still working on an improvement of the method [1].

7. REFERENCES
[1] A. A. Alsewari, K. Z. Zamli, and B. AL-Kazemi.

Generating t-way test suite in the presence of
constraints. Journal of Engineering and Technology
(JET), 6(2):52–66, 2015.

[2] J. Bach and P. J. Schroeder. Pairwise testing: A best
practice that isn’t. In Proceedings of 22nd Pacific
Northwest Software Quality Conference, pages
180–196, 2004.

[3] E. K. Burke and Y. Bykov. The late acceptance
hill-climbing heuristic. University of Stirling, Tech.
Rep, 2012.

[4] D. Chays, J. Shahid, and P. G. Frankl. Query-based
test generation for database applications. In
L. Giakoumakis, editor, Proceedings of the 1st
international workshop on Testing database systems,
page 1, New York, NY, 2008. ACM.

[5] C. Cheng, A. Dumitrescu, and P. Schroeder.
Generating small combinatorial test suites to cover
input-output relationships. In H. Lin, editor,
Proceedings / Third International Conference on
Quality Software, QSIC 2003, pages 76–82, Los
Alamitos, Calif., 2003. IEEE Computer Society.

[6] G. Demiroz. Cost-aware combinatorial interaction
testing (doctoral symposium). In M. Young and
T. Xie, editors, 2015 International Symposium on
Software Testing and Analysis (ISSTA), pages
440–443, New York, 2015. ACM.

[7] M. Grindal, B. Lindström, J. Offutt, and S. F. Andler.
An evaluation of combination strategies for test case
selection. Empirical Software Engineering,
11(4):583–611, 2006.

[8] D. R. Kuhn, R. N. Kacker, and Y. Lei. Introduction to
combinatorial testing. Chapman & Hall / CRC
innovations in software engineering and software
development. CRC Press, Boca Raton, FL, 2013.

[9] P. J. Schroeder and B. Korel. Black-box test reduction
using input-output analysis. In D. J. Richardson,
editor, Proceedings of the 2000 ACM SIGSOFT
international symposium on Software testing and
analysis, pages 173–177, New York, NY, 2000. ACM.

[10] K. Z. Zamli, A. A. Alsewari, and M. I. Younis. T-way
testing strategies. In I. Ghani, W. M. N. W. Kadir,
and M. N. Mohammad, editors, Handbook of research
on emerging advancements and technologies in
software engineering, Advances in systems analysis,
software engineering, and high performance computing
(ASASEHPC) book series, pages 421–433. Engineering
Science Reference/IGI Global, Hershey, Pa., 2014.

[11] W. Ziyuan, N. Changhai, and X. Baowen. Generating
combinatorial test suite for interaction relationship. In
M. Pezzè, editor, Fourth international workshop on
Software quality assurance in conjunction with the 6th
ESECFSE joint meeting, page 55, New York, NY,
2007. ACM.

Continuous Delivery for Enterprise Architecture
Maintenance

Peter Hansen
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

peter.hansen@rwth-aachen.de

Simon Hacks
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
simon.hacks@swc.rwth-aachen.de

ABSTRACT
Currently enterprise architecture management is mostly a
manual activity that requires ongoing maintenance. In re-
cent years, techniques to automatically collect data for the
enterprise architecture evolved. However, there are chal-
lenges with those: There might be conflicting changes and
when data is collected from different sources, they might
not share the same semantics. In this paper, we will exam-
ine how practices from continuous delivery, which is typically
used in the context of software engineering, can help to cope
with those problems.

Categories and Subject Descriptors
K.6.1 [Management of computing and information
systems]: Project and People Management—Strategic in-
formation systems planning

Keywords
enterprise architecture (EA) management, continuous deliv-
ery, automated EA documentation

1. INTRODUCTION
Enterprise architecture currently is mostly modeled man-

ually and changes require huge manual efforts. This is espe-
cially true when complex organizational structures need to
be covered and the organization is constantly changing. The
pace of changing structures and complexity is expected to
increase and this makes it even more challenging [19]. In re-
cent years, the field of enterprise architecture management
already adopted techniques to reduce model maintenance
effort. However, there are still challenges in regards to con-
flicting changes, different semantics and responsibilities [5].

In the field of software engineering, changing requirements
are also very common. Software engineering deals with this
by becoming as agile as possible and uses various social and
technical techniques to improve towards this direction [15].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2016/17 RWTH Aachen University, Germany.

Examples for social techniques are the ongoing adoption of
agile process models like scrum or kanban and even tech-
niques directly related to the development itself like pair
programming. Technical examples are the rise of continu-
ous integration and delivery. All of these techniques lead to
the same shared goal: Shorten feedback loops [11]. Tech-
niques used for software engineering are also being adopted
for other parts of organizations: With the DevOps move-
ment, which emphasis on the collaboration of development
and operations, infrastructure is being covered using tech-
niques typically used in the context of software engineering
and processes are also adopted [3].

In this paper, we introduce the important aspects of en-
terprise architecture management and continuous delivery.
Then, we compare the relation between those concepts and
highlight shared goals. Based on those, we create an example
pipeline for enterprise architecture maintenance and discuss
how the enterprise architecture goals are reflected within
this pipeline. Later, we discuss the advantages and disad-
vantages of this example pipeline and conclude to which ex-
tend the challenges regarding enterprise architecture can be
solved by the application of continuous delivery.

2. EA TERMINOLOGY
According to Bernard, enterprise architecture (EA) is ”the

analysis and documentation of an enterprise in its current
and future states from an integrated strategy, business, and
technology perspective” [1]. Commonly, this information is
represented within a model and reports are generated from
the model to provide decision support to various kinds of
stakeholders.

Thus, enterprise architecture management (EAM) describes
the processes around developing and maintaining the EA.
This involves information gathering from various sources in-
cluding manual collection as well as structured information
from external systems. The enterprise architecture does also
reflect future states, thus a part of EAM deals with devel-
oping those and supports the transitions [8]. In summary,
EAM deals with the following tasks:

• document the current state

• develop a target state

• support the transition from current state to target
state

It is hard to fulfill this as enterprises are constantly chang-
ing to meet the current and future needs of their customers

to stay competitive. These changes also affect business pro-
cesses as well as supporting information systems. Enter-
prise architecture management is a central discipline in this
changing world as it should provide information and support
the changes. As the information is only relevant when the
model is up-to-date, the maintenance is an essential part of
EAM.

2.1 Data Quality
As EAM has a huge effect on organizations, the data qual-

ity of the EA model is of particular interest. Farwick et
al. used a survey to research on what are the most impor-
tant data quality attributes. The results of this survey were
(ranked by importance, most important first) [5]:

Correct Granularity (EA01)
Data has a meaningful level of abstraction.

Consistency (EA02)
Data should not contain errors or contradictions.

Actuality (EA03)
Data should be up-to-date.

Completeness (EA04)
Data covers all elements of relevance.

As the participants of the survey were also allowed to pro-
pose own attributes, the survey also yield two additional
attributes without qualitative ranking on importance:

Ownership (EA05) Who is responsible for the data

Traceability (EA06) What is the origin of the data

As - at least for the last two attributes - we did not find
any other survey that evaluates the importance of those at-
tributes. We have also seen that further work of Farwick
et al. focuses on data actuality [7], granularity [6] and a
combination of consistency and actuality [4]. We see this as
indication that all of these properties are relevant.

2.2 Federated EAM
EA is used in large organizations and information that is

used within the EA is often owned by different departments.
This makes it hard for a central enterprise architecture team
to gather all information and keep them up-to-date. Fischer
et al. proposed a federated approach for the maintenance of
EA models [8]. The main idea is that the data is kept within
specialized architectures and linked to a central EA reposi-
tory. Because this is an organizational as well as technical
challenge, the authors propose a maintenance process that
involves different roles. We refer to this federated property
of EA as EA07. All process activities and all involved roles
with their responsibilities are shown in Figure 1. We will
briefly describe the activities and roles that are used within
this process and start with the roles:

EA coordinator Business oriented role; manages the main-
tenance process and focus on specification of interfaces
and reports.

EA repository manager Technical oriented role; is respon-
sible for technical operations of the EA repository.

EA stakeholder the contact persons in the units that are
using the EA and providing input.

Data owner Owners of specialized architectures.

The chief enterprise architect is not directly involved in
the process but is informed on updates.

From the activity perspective, the process starts with an
initiation activity (1) where either a data owner or the EA
coordinator starts the process. The next activity, delivery
specialized architectures (2), requests all data owners to pro-
vide their model data. After that, a consistency check (3) is
performed where the provided model data is checked. The
revision of inconsistencies (4) is only required if the con-
sistency check (3) failed for a certain specialized architec-
ture. In the change report and notification activity (5), a
report is created that compares current data of the EA with
the new data set. This report is distributed among the EA
stakeholders asking them for feedback on the changes. The
stakeholders then check if the changes are intended (6). In
case of problems, there is an activity to resolve conflicts (7).
If there are no problems or the conflicts are resolved, the
repository update is authorized by the EA coordinator (8).
Then, the update is executed (9) and everyone involved is
notified about the update (10).

Figure 1: Activities and responsibilities of the EA
maintenance process [8]

2.3 Automated EA
We have seen that the enterprise architecture maintenance

is a process that contains individual activities. Towards au-
tomation the first question that arises is when to start the
process. Fischer et al. proposed that the maintenance activ-
ity should be executed in regular intervals but it might also
be required to execute it manually when things change [8].
Farwick et al. identified that there are change events that
could be used to trigger the EA maintenance process [7].
The paper presented several event sources that could be used
to generate those events. We reference to the existence of
such change events as EA08.

One source that was used as an example by Farwick is us-
ing the enterprise service bus (ESB) to gather information.
An ESB is a message bus that is used throughout an orga-

nization to integrate distinct applications. This technique
was later used by Buschle et al. [2]. Another approach was
the usage of network scanners to identify services and in-
frastructure [12]. Despite that, many other systems could
be used as event source and trigger model maintenance.

Regarding automatic data collection and model mainte-
nance, Hauder et al. have researched on challenges in this
context [10]. As a result, the main concern is the ”abstrac-
tion gap to EA model”. This means that the data from auto-
matic collection does not fit to the EA model. We have seen
an analogous result in the survey mentioned in Section 2.1,
which states that correct granularity is important.

3. CONTINUOUS DELIVERY
Continuous delivery (CD) is a relatively new topic in the

field of software engineering and was firstly coined by Hum-
ble et al. in 2006 [14]. It describes the practice to automate
the build, test and deployment process leading to shortened
release cycles. Continuous delivery is formulated using a
deployment pipeline which describes the flow of an artifact
through different build and test stages. In difference to the
practice of continuous delivery, continuous deployment ex-
tends this concept by deploying every change that passed the
pipeline automatically to the production environment [9]. In
the following, we will highlight the main properties of con-
tinuous delivery (as described in [13, 14]).

3.1 Automation
Without automation, continuous delivery would not be

possible: Build, testing and deployment tasks have to be
repeated over and over again on each code change. But
the automation has more implications than to reduce man-
ual effort. In the past, deployment was typically a manual,
complex and error prone task. The error proneness is not
necessarily only due to human mistakes. One reason is that
the way the software has to be deployed might change dur-
ing development and the deployment documentation does
not co-evolve. Another typical reason is that the infrastruc-
ture changes due to updates and does not correspond to
the deployment documentation anymore. In a CD setup,
the automation around the deployment is put under version
control and is executed on a regular basis (on each code
change). Thus, it is ensured that the deployment is always
working and corresponds to the current software version and
the current infrastructure (referenced as CD01). The docu-
mentation problem is also solved because a separate docu-
mentation of the deployment process is no longer necessary.

In current approaches, the deployment aspect has gained
more attention and is more comprehensive: The aspect of
the infrastructure is also described as code (”infrastructure
as code” [17]) and thus behaves similar to regular application
code in some aspects. When putting application develop-
ment and system operations together, this is usually called
DevOps [3].

3.2 Traceability
When building a project that depends on another library,

the library and the project itself should not be build sepa-
rately. Instead, a source code change in one of the reposito-
ries (library or project) should lead to a full rebuild of the
project. Otherwise, source code changes in the library that
change test results for the main project are hard to identify.
We reference traceability as CD02.

3.3 Same artifacts for all environments
Artifacts that are created during the CD process should be

independent of the target environment. Thus, there should
be only one artifact and not one for the production environ-
ment and one for the testing environment. If configuration
needs to be changed for different environments, a separate
configuration repository should be specified and used during
deployment.

When having this ”one artifact for all environments”prop-
erty (CD03), it is always ensured that the version on pro-
duction is exactly the same as the one that was tested before.

3.4 Pipeline
In continuous delivery, the deployment pipeline models

the process from check-in to release. We reference this for-
mal process description as CD04. The process consists of
activities that are grouped in stages and also includes qual-
ity gates (referenced as CD05). Examples for those quality
gates could be passing unit tests, a threshold of a metric
that is checked or even the result of a manual test activity.

An example pipeline is shown in Figure 2. During devel-
opment, changes are made in the source and configuration
repository. After this, the software is compiled and unit tests
are executed based on the source code repository. If this
stage passes, the resulting artifact is uploaded to the pack-
age repository. The next stage, functional testing, takes the
artifact from the previous stage (unit test) and loads configu-
ration information from the configuration repository. Other
test stages (QA, Performance, UAT) might work in the same
way as functional tests but may require configuration infor-
mation of a different environment. After all test stages are
executed, the artifact from the package repository could be
deployed to the production environment using a production
configuration from the configuration repository. The use of
the package repository ensures that exactly the same build
of the artifact is used throughout the whole process. The
tagging arrows shown in the figure are referring to version
tagging in the version control system.

Figure 2: Continuous delivery pipeline [14]

4. IDENTIFYING SHARED GOALS
When looking into enterprise architecture and continuous

delivery, we have identified a bunch of commonalities on
their goals. We will look into the individual properties of

continuous delivery and discuss how they relate to the goals
of enterprise architecture.

4.1 Low risk releases
A key concept of continuous delivery is that it facilitates

low risk releases. This is achieved by the following continu-
ous delivery concepts:

• automated deployment of the software

• reproducible build that can be used across all environ-
ments

• defined pipeline that will be used for all builds

This usually leads to a more frequent release cycle. Which
in turn leads to earlier feedback if things are broken or do
not correspond to the requirements.

Putting these in the context of enterprise architecture, it
is obvious that it does perfectly fit:

• The central enterprise architecture model, which is
used for reports that support strategic business deci-
sions or change projects, is comparable to a production
environment and changes should be evaluated carefully
before they are put into this model. However, when
evaluating changes to the model in a different ”envi-
ronment”, the change to the production ”environment”
reflecting the central model should be exactly the same
as the one that was reviewed (reproducible build, de-
fined deployment).

• The pipeline idea is also applicable: There are multi-
ple steps that might be necessary to deliver a model:
Merge the data, check consistency, check if quality
gates are passed, manual review stages and finally trig-
ger report generation. If this process would not be
automated, it would be hard to ensure that each step
is actually executed and no shortcuts are used by the
people involved.

• The short release cycles are also a good fit as we have
seen that it is crucial to have up to date reports to
decide upon.

4.2 Lower costs
Continuous delivery reduces the manual effort to release a

build in each environment. This goal also fits to enterprise
architecture as cost efficiency is important for its acceptance
in the organization.

4.3 Better products
Continuous delivery uses short release cycles to get user

feedback earlier. When using this feedback, it leads to hap-
pier customers. As this is true for software, this is also true
for enterprise architecture. The customers are the stake-
holders of the enterprise architecture that depend upon re-
ports. For the enterprise architecture managers, it is also
good to receive early feedback as it might discover errors
earlier and thus safe money.

5. EXAMPLE PIPELINE
In this section, we propose an example continuous delivery

deployment pipeline for enterprise architecture that is based
on the maintenance process by Fischer et al. [8] which we
described in Section 2.2. In our approach, we use the term
”data source” instead of specialized architecture to show that

the input does not necessarily represent architectural data
but could also be in the form of configuration databases
(CMDB), license management tools or other databases. The
roles are the same as used by Fischer et al., however, we
combined activities to a shared stage and added automation
proposals.

Commit stage is triggered by a change event (EA08, see
Section 2.3) of a data source in the federation (EA07).
The data is fetched from the data source and com-
mitted to the version control system. The data owner
EA05 needs to be identified in this step: If the data
source delivers such information, the commit is exe-
cuted in charge of the person who have changed the
underlying data. If the data source does not support to
deliver such information, the owner of the data source
is assumed as the responsible person for the change.
If the data source does not support to provide change
events, we need to poll the data sources regularly. This
means that it might be a problem to track a change
down to one person. In this case, the best possible
solution is to use the data owner for all changes. Be-
cause of polling or unfiltered change events, the fol-
lowing changes are only executed if data in the version
control system is actually changed.

Lint check checks if the input data matches the expected
format (e.g. valid xml, syntax check). This stage starts
multiple jobs in parallel: For each input source one job
is started. The stage passes if all jobs were successful.
If any job fails, the whole stage fails and the pipeline
execution is stopped immediately.

Normalization The data is normalized to a certain file for-
mat. This is also a stage containing parallel jobs for
each data source. If any normalization fails, the stage
will fail. A failed normalization might uncover seman-
tical errors in the input data.

Integration The result of this stage is one integrated model
that is derived from the input data. This stage will
execute the model modifications in a defined order and
abort if any modification fails. The imported data is
annotated with the source of the data EA06. Possible
reasons for failed modifications are conflicting data or
missing integration points.

Consistency stage carries out a statical analysis of the
model, e.g. by checking if relationships could be re-
solved EA02. If inconsistencies are found, the stage
fails.

Acceptance Based on the created model, all reports are
generated in exactly the same way as they are gener-
ated by the production system. If report generation
fails, the stage fails. Otherwise, the reports could be
reviewed. If the changes are correctly reflected within
the reports, the stage completion is manually acknowl-
edged by the reviewer.

Deployment Optionally, the model could be deployed to
the production environment. As in the acceptance
phase, all reports are generated.

When comparing this pipeline with the process shown in
Section 2.2, we see that there is a mapping of the activities
to the stages of the pipeline. Activities 1 and 2 map to the
commit phase. 3 and 4 map to linting, normalization and

integration while no. 5-8 are represented by consistency and
acceptance. The final activities 9 and 10 are covered by the
deployment stage.

As an addition to the process of Fischer et al., our pro-
posal is extended by a stage for automated acceptance
testing that is executed between consistency and manual
acceptance test. We have seen that enterprise architecture
is not only about capturing the current state, but also about
change management. When information about the current
state is collected automatically, it would also be good to
check if changes are in accordance to the planned changes.
An advantage of continuous delivery in this scenario is that
it states to have full builds on each change. In EA this
would mean if any underlying information source changes,
the build would be triggered. Thus, deviations from the
planned changes would be detected early by the enterprise
architecture team.

An example scenario for this is the following: A company
plans to introduce a new software system on all desktops.
This software has defined hardware requirements but some
of the existing desktops are too old to run the new sys-
tem and thus should be replaced with newer hardware. The
hardware specifications are automatically collected from a
central inventory system. When change events are detected
on the inventory system, the delivery pipeline is executed.
A comparison of the old and new model shows that a new
desktop was found. As the system was identified as new and
the necessary specifications are defined, an automated test
is able to check for compliance with the planned state.

6. DISCUSSION
In the previous section, we presented our pipeline pro-

posal. In this section, we discuss how the pipeline relates to
the properties for continuous delivery and enterprise archi-
tecture that we have identified in the beginning. Addition-
ally, we discuss the advantages and disadvantages of using
the proposed pipeline for real world enterprise architecture
maintenance.

The properties of continuous delivery are reflected by the
pipeline as follows:

Co-evolution of pipeline and software (CD01) is con-
tained in the pipeline, because the release consists of a
set of reports which is created in exactly the same way
for the acceptance test environment as for the produc-
tion environment. Thus, if the model should derive
other reports in production, it must also do so in ac-
ceptance test stage. A further observation is that addi-
tional data sources could only be integrated in the pro-
cess by changing the pipeline. Thus the co-evolution
is designed in the pipeline approach.

Traceability (CD02) is realized using change events that
are processed individually for each data source. One
commit and thus one build therefore contains only
changes from one source. Even if polling is used, there
is still only one data source contained in the commit.

Same artifact for all environments (CD03)
The merged model that is used to create the reports
in the acceptance test phase is the same that will be
released as production model. Continuous delivery re-
quires the reports generated from the model for the
acceptance test stage to be the same as the ones that
are delivered for production changes.

Formal process (CD04) The process is described using
activities that are grouped in stages. We have also
defined what happens if things break and what should
be executed in parallel. This information allows formal
description of the process.

Quality gates (CD05) are build in: All lint, consistency,
merge and report operations may fail due to invalid
data. The acceptance test stage contains a manual
approval gate.

Now we discuss the enterprise architecture properties:

Correct granularity (EA01) As the data is derived from
external systems and we do not have filters imple-
mented, the process does not ensure anything about
granularity. We see two possibilities to overcome this
issue: 1. The step that merges the model of a cer-
tain data source into the global model could imple-
ment data source specific filters. 2. As this seems to
be a general problem with EA, it would be sensible to
implement a filter in the tools that work on the model.

Consistency (EA02) The process contains a consistency
check phase. However, semantical conflicts may not
be discovered in this step. Example: If the inventory
system contains a server with name ”database” which
is the same as ”db” from a license management soft-
ware, it is hard to map the properties of this server to
the same model elements. We argue that the manual
acceptance test should discover such defects and re-
cover from it by introducing a common naming across
all connected systems.

Actuality (EA03) is guaranteed by either using the change
events or poll on the data sources. As the whole pro-
cess runs on each change, the actuality of the produc-
tion reports basically is limited in the ability to do
manual acceptance testing on the reports.

Completeness (EA04) The reports and models are as com-
plete as the data sources and the model allow. If parts
of the organization are e.g. not covered by inventory
systems, the information could not be (automatically)
added to the model and finally this leads to an incom-
plete model. Nevertheless this is not a drawback of
our pipeline but an organizational challenge of EA.

Ownership (EA05) We propose committers to be change
owners and thus be responsible for the last version of
the data. We introduced a fall back mechanism to
ensure everything has an owner.

Traceability (EA06) is ensured by having small changes
only from individual data sources. Additionally, the
merging step adds the origin of the data to the model
if possible.

Federation (EA07) The EA is federated as different data
sources could be connected.

Existence of change events (EA08) The change events
are used to trigger the process.

For practical implementation, we expect two problems:

• Small changes have high overhead when using events:
Even small inventory changes trigger a whole build and
require manual acceptance. In the prior-CD process,
small changes would be aggregated due to common
sense.

• We proposed to do commits per data source. If one
piece of information is stored in multiple systems (e.g.
the server in the license management and inventory),
the changes are committed individually. As in the
physical world the creation of a new server in several
system is a kind of atomic change, this should also be
reflected in the process.

Basically, these problems lead us to a scheduling problem:
When should the pipeline be executed to aggregate a sensible
amount of data, but keep the changes still small enough to
be able to review the changes manually. Our opinion on this
is, that a right balance between those can only be found by
using the process and may differ across organizations.

7. CONCLUSION
In this paper, we provided an example continuous deliv-

ery pipeline proposal for enterprise architecture maintenance
that is based on an existing maintenance process found in
literature. As the continuous delivery approach allows to in-
troduce new stages, we introduced the concept of automated
acceptance testing for enterprise architecture changes. To
the best of our knowledge, there is currently no research on
this type of test. One evidence that we found is the work of
Schneider et al. that derives entropy information from en-
terprise architectures [18]. However, this would not include
any directional information towards the enterprise architec-
ture target state. From our current understanding, this type
of test does have practical relevance and could be a driver
for automated enterprise architecture documentation.

Then, we discussed how this pipeline fits to the enterprise
architecture domain as well as to the continuous delivery
approach based on properties we found in literature. We
discussed the drawbacks of the process.

As future work, the proposed pipeline needs to be imple-
mented in a real world scenario and the actual impact on
the enterprise should be evaluated, especially with focus on
test description and execution. The work of Khosroshahi
et al. already suggests that there are various organizational
challenges when a decentralized EA model is introduced [16].

8. REFERENCES
[1] S. Bernard. An Introduction to Enterprise

Architecture: Third Edition. AuthorHouse, 2012.

[2] M. Buschle, M. Ekstedt, S. Grunow, M. Hauder,
F. Matthes, and S. Roth. Automating enterprise
architecture documentation using an enterprise service
bus. 2012.

[3] P. Debois. Agile infrastructure and operations: how
infra-gile are you? Agile, 2008. AGILE ’08.
Conference, pages 202–207, 2009.

[4] M. Farwick, B. Agreiter, R. Breu, S. Ryll, K. Voges,
and I. Hanschke. Automation processes for enterprise
architecture management. In 2011 IEEE 15th
International Enterprise Distributed Object Computing
Conference Workshops, pages 340–349, Aug 2011.

[5] M. Farwick, B. Agreiter, R. Breu, S. Ryll, K. Voges,
and I. Hanschke. Requirements for automated
enterprise architecture model maintenance - a
requirements analysis based on a literature review and
an exploratory survey. In R. Zhang, J. Cordeiro, X. Li,
Z. Zhang, and J. Zhang, editors, ICEIS (4), pages
325–337. SciTePress, 2011.

[6] M. Farwick, W. Pasquazzo, R. Breu, C. M. Schweda,
K. Voges, and I. Hanschke. A meta-model for
automated enterprise architecture model maintenance.
In Enterprise Distributed Object Computing
Conference (EDOC), 2012 IEEE 16th International,
pages 1–10. IEEE, 2012.

[7] M. Farwick, C. M. Schweda, R. Breu, K. Voges, and
I. Hanschke. On enterprise architecture change events.
In Trends in Enterprise Architecture Research and
Practice-Driven Research on Enterprise
Transformation, pages 129–145. Springer, 2012.

[8] R. Fischer, S. Aier, and R. Winter. A federated
approach to enterprise architecture model
maintenance. Enterprise Modelling and Information
Systems Architectures, 2(2):14–22, 2007.

[9] M. Fowler. Continuous delivery.
http://martinfowler.com/bliki/ContinuousDelivery.html,
05 2013. Accessed on 2016-12-18.

[10] M. Hauder, F. Matthes, and S. Roth. Challenges for
automated enterprise architecture documentation. In
Trends in Enterprise Architecture Research and
Practice-Driven Research on Enterprise
Transformation, pages 21–39. Springer, 2012.

[11] J. Highsmith and A. Cockburn. Agile software
development: The business of innovation. Computer,
34(9):120–127, 2001.

[12] H. Holm, M. Buschle, R. Lagerström, and M. Ekstedt.
Automatic data collection for enterprise architecture
models. Software & Systems Modeling, 13(2):825–841,
2014.

[13] J. Humble and D. Farley. Continuous Delivery:
Reliable Software Releases through Build, Test, and
Deployment Automation. Addison-Wesley Signature
Series (Fowler). Pearson Education, 2010.

[14] J. Humble, C. Read, and D. North. The deployment
production line. In Proceedings of the Conference on
AGILE 2006, AGILE ’06, pages 113–118, Washington,
DC, USA, 2006. IEEE Computer Society.

[15] J. Jeremiah. Survey: Is agile the new norm?
https://techbeacon.com/survey-agile-new-norm, 2015.
Accessed on 2016-12-18.

[16] P. A. Khosroshahi, S. Aier, M. Hauder, S. Roth,
F. Matthes, and R. Winter. Success factors for
federated enterprise architecture model management.
In Advanced Information Systems Engineering
Workshops - CAiSE 2015 International Workshops,
Stockholm, Sweden, June 8-9, 2015, Proceedings,
pages 413–425, 2015.

[17] K. Morris. Infrastructure as Code. O’Reilly Media,
second early release (2015-11-02) edition, 2015.

[18] A. W. Schneider, T. Reschenhofer, A. Schütz, and
F. Matthes. Empirical results for application
landscape complexity. In System Sciences (HICSS),
2015 48th Hawaii International Conference on, pages
4079–4088. IEEE, 2015.

[19] S. M. F. Winter, Katharina; Buckl and C. M. Schweda.
Investigating the state-of-the-art in enterprise
architecture management methods in literature and
practice. In MCIS 2010 Proceedings. 90., 2010.

Continuous	Delivery	for	Enterprise	Architecture	Maintenance
“If	it	hurts,	do	it	more	often!”

Peter	Hansen,	peter.hansen@rwth-aachen.de

2

Business	IT	Alignment

Business	IT	Alignment3

IT

Business

DrivesEnables

Enterprise	Architecture	Concerns

Enterprise	Architecture Concerns4

Business

Data

Application

Technology

Business processes and activities use...

Data that must	be collected,	
organized,	and distributed using....

Applications that run on...

Technology such	as computer
system and networks.

Niles E	Hewlett,	2006

EA	Model

Enterprise	Architecture	Model

Enterprise	Architecture Model5

as-is
Model

Current
state

to-be
Model

Vision

Reality

Reports

Enterprise	Architecture	Abstraction

Enterprise	Architecture Abstraction6

Federal	Enterprise	Architecture Program Management	Office,	2008

Enterprise	Architecture	Federation

Enterprise	Architecture Federation7

Stephan	Aier,	2007

Enterprise	Architecture	Challenges

Enterprise	Architecture Challenges8

•Keep	as-is	model	up	to	date
-Automatic	data	collection	(CMDB,	Inventory,	…)

•Ensure	the	EA	vision	is	applied

•Consistency

to-be
Model

Vision

Reality

One Release9

1 1

2

1

2

3

4

1

2

3

Value

Release
Time

Luca	Minudel,	2014

„If it hurts,	do	it more often!“

Multiple	Releases10

1 2 3 4

1

1

2

1

2

3

Luca	Minudel,	2014

Continuous Delivery Cycle11

Electric Cloud,	2016

Continuous Delivery Pipeline12

Carl	Caum,	Puppetlabs,	2013

Continuous	Delivery

Continuous Delivery13

•Risk	reduction

• Pipeline

•Quality	gates

1 2 3 4

1

1

2

1

2

3

Federated EA	Process14

Stephan	Aier,	2007

CD	Pipeline15

Commit

Lint

Normalization

Integration

Consistency

Acceptance

Deployment

Extension:	Directed	Acceptance

Directed Acceptance16

• EA	has	as-is	and	to-be	state
• Check	if	as-is	is	moving	towards	
to-be.

• Insert	before	manual	
acceptance

Enterprise	Architecture	Solutions

Enterprise	Architecture Solutions17

•Keep	as-is	model	up	to	date
-Central	repository
•Ensure	the	EA	vision	is	applied
-Directed	Acceptance
•Consistency
-Consistency	check

Future	work

Future	work18

•Real	world	implementation
•Understand	social	and	technical	impact
•How	to	define	automated	acceptance	tests?

Conclusion

Conclusion19

• Process	is	needed	for	continuous	delivery	implementation
• Automation	uncovers	new	aspects
- Directed	acceptance	testing
•Manual	effort	could	be	reduced

1 2 3 4

1

1

2

1

2

3

EA	Model
as-is
Model

Current state

to-be
Model

Vision

Reality

Reports

From EA models to UML

A guideline

Maximilian Peiffer

Maximilian.Peiffer@rwth-aachen.de

Everything is about plans

Business Plans

Plans for Shareholders

Plans for Business

Enterprise
Architecture

UML

The problem:

Only EA models

The solution:

Create UML models

From EA Models to UML | Maximilian Peiffer

Transformation

The new problem:

How to transform?

The solution:

A guideline

From EA Models to UML | Maximilian Peiffer

A Guideline

Example: ArchiMate

Example: Class Diagram

SewingMachine

Example: Class Diagram

SewingMachine

<<interface>>

Display

SewingMachine

<<interface>>

Display

-update()

SewingMachine

-interfaces

+notify()
+register()
+unregister()

Example: Class Diagram

SewingMachine

-interfaces

+notify()
+register()
+unregister()

Stitch

<<interface>>

Display

-update()

SewingMachine

<<interface>>

Display

SewingMachine

<<interface>>

Display

-update()

SewingMachine

-interfaces

+notify()
+register()
+unregister()

Example: Class Diagram

SewingMachine

-interfaces

+notify()
+register()
+unregister()

Stitch

<<interface>>

Display

-update()

SewingMachine

-interfaces

+notify()
+register()
+unregister()
+changeStitchform()
+changeStitchlength()
+changeStitchwidth()

Stitch

-stitchform
-stitchlength
-stitchwidth

+getStitchform()
+setStitchform()
+getStitchlength()
+setStitchlength()
+getStitchwidth()
+setStitchwidth()

<<interface>>

Display

-update()

Example: Class Diagram

Example: Sequene Diagram

Example: Sequene Diagram

:SewingMachine

Example: Sequene Diagram

:Display :SewingMachine

update()

notify()

Example: Sequene Diagram

:Display :SewingMachine

update()

notify()

:Stitch

Example: Sequene Diagram

:Display :SewingMachine

update()

notify()

:Stitch:Stitch:Display

update()

notify()

:SewingMachine

setStitchform()

changeStitchform()

setStitchlength()

changeStitchlength()

setStitchwidth()

changeStitchwidth()

:Display :SewingMachine

update()

notify()

:Stitch

SewingMachine

-interfaces

+notify()
+register()
+unregister()
+changeStitchform()
+changeStitchlength()
+changeStitchwidth()

Stitch

-stitchform
-stitchlength
-stitchwidth

+getStitchform()
+setStitchform()
+getStitchlength()
+setStitchlength()
+getStitchwidth()
+setStitchwidth()

<<interface>>

Display

-update()

:Stitch:Display

update()

notify()

:SewingMachine

setStitchform()

changeStitchform()

setStitchlength()

changeStitchlength()

setStitchwidth()

changeStitchwidth()

The new problem:

Lack of information

The solution:

Additional Sources

From EA Models to UML | Maximilian Peiffer

Additional Sources

CMDB

ER

Entity
n

Rel.
m

Entity

Property

UML

Start End

Action 1.a

Action 1.b

Action 2

Decision a

Decision b

User 1

User 2

Action 1

Action 2

Action 1.1

Action 2.2

<<include>>

<<extend>>

From EA Models to UML | Maximilian Peiffer

Current	state	of	best	practices	for	developing	automated	tests

Joel	Hermanns,	
joel.hermanns@rwth-aachen.de

Outline

• Introduction
• Influencing	Factors
• Existing	Best	Practices	
• Missing	Best	Practices
• Summary

2

Introduction	- Definitions

• Properties	of	an	automated	test
• Validity
• Determinism	and	Repeatability
• Independence

3

Introduction	- Definitions

• Best	Practice
“a	working	method	or	set	of	working	methods	
that	is	officially	accepted	as	being	the	best	to	
use	in	a	particular	business	or	industry,	usually	

described	formally	and	in	detail”	[3]	

4

Influencing	Factors

• The	level of	testing	
• Unit	level
• Systems	level

• The	type of	testing	
• functional
• non-functional

• Environment	(e.g.	deployment	pipeline,	development	machine)
• Technology
• Programming	Language,	Libraries,	Frameworks,	Tools
• Architecture
• Access	to	the	system

5

Existing	Best	Practices	- Overview

6

Unit	Level Functional Functional

Non-
Functional

Non-
Functional

Systems	Level

Existing	Best	Practices	- Overview

• Technology-wise:	Most	best	practices	can	
be	found	in	the	Web	domain

• Programming	language:	Focus	on	rather	
high	level,	esp.	Object	Oriented	
languages

• Access	to	the	system:	Very	little	literature	
where	access	is	rather	complicated

7

Existing	Best	Practices	– Unit	Level	

• Various	resources for	Test	Design	Patterns	in	General
• Very	interesting	on	Unit	Level:	MockObject Pattern

• Framework/Libraries	usually	provide	individual	best	practices:
• E.g.	Web	frameworks:	Ruby	on	Rails,	Spring	Framework

8

Existing	Best	Practices	– Systems	Level

• Template	Pattern:

9

Existing	Best	Practices	– Systems	Level

• Similar	idea	in	Go:
• Anonymous	structs contain	

test	hooks
• Array	of	structs as	test	suite
• For	loop	through	test	cases

• Helps	to	focus	on	the	actual	
test	logic

• Common	setup	functionality	
shared

10

Missing	Best	Practices	

• Mostly	embedded	systems	area,	i.e.	systems	where	the	access	is	limited
• Introduction	of	automated	testing	is	more	complex

• People	tend	to	build	specialized	test	frameworks	for	more	complex	Non-
functional	tests	(performance,	security)

11

Results

• Lots	of	resources	for	implementing	
tests	code-wise

• Rich	ecosystem	for	writing	tests	in	the	
domain	of	Web-based	systems

• Best	practices	are	missing	where	
foundation	is	missing
• i.e.	tool	that	support	setup,	execution	

of	tests

12

Summary

13

Why bother testing
Infrastructure?

1

2

3

− name: Create directory
 file:
 path: /opt/some_directory
 state: directory

4

5

“Treat the configuration of systems the same way
that software source code is treated.”

Kief Morris
(author of “Infrastructure as Code”)

6

Functional testing

Conformance testing

Idempotence testing

State-based testing
7

8

User creation

Install application

Finish

File creation

9

10

Facing Synthetic Workload Generation
as part of Performance Testing – a tools approach
Seminar - The Art of Software Testing

2017, Feb 09, Marco Moscher

marco.moscher@rwth-aachen.de

Supervisor - Konrad Fögen, foegen@rwth-Aachen.de

Performance Testing

33 Performance Testing

Performance Testing (recap)

• Highly specialized task

• Practice during software testing

• Clinches directly the customer satisfaction

• Evaluate responsiveness, stability & resource utilization under load

Study

5 Challenge

State of the Art

• Research on Performance Testing conducts ..

• .. simplification of test definition

• .. generalization of definitions (DSLs)

• .. automation of artifact generation

• .. adaptability of various approaches

• But .. what’s about Runtime Data?

7 Challenge

Challenge / Research

• Performance Tests without possessing any (runtime-) data

• Research Question ..

… is synthetic workload deduction considered

• Presumption: no base- nor runtime data yet exists

88 Challenge

Bidder SUT (case study)

• e-commerce platform yet in development

• Early considerable performance testing ...

• .. simulate 100k unique users

• .. test three different user roles

Existing Approaches

10 Existing Approaches

Existing Approaches

• two approaches widely used

• Capture and Replay (CR)

• Model-Based-Testing (MBT)

• Generating test-scripts, test-artifacts and workload

• Focusing workload generation (RQ + Presumption)

11 Existing Approaches

• Example: Microsoft Visual Studio

• Step Prepare requires external data source (contradiction to presumption)

Capture & Replay

Record Prepare Replay

12 Existing Approaches

Model-Based-Testing

• Example: Canopus

• Step Model requires external data source (contradiction to presumption)

Model Generate Execute

13 Existing Approaches

Approaches Insufficient

• Data generation not addressed

• Problem: workload does not mean runtime data

• Performance Tests mostly after first deployment

• not during development

14 Compile Synthetic Workload

How to solve this Problem?

• Focus external data generation

• Obtain synthetic workload which meets ..

• .. uniqueness?

• .. causal relations?

Obtain Synthetic Workload

16 Obtain Synthetic Workload

Obtain Synthetic Workload

• Many tools exists

• Combine tools regarding data complexity ..

• .. use equivalence classes

• .. Plain Data ≤ Rational Data ≤ Complex Data

• Evaluate if required data can be derivated within these classes

17 Obtain Synthetic Workload

Plain Data

• Single, unrelated data entities

• Example - User Accounts (Name, Address, Email etc.)

• Tools - faker.js

1818 Obtain Synthetic Workload

Rational Data

• Related data, i.e. database constraints

• Example - 5 Products for each Users

• Tools - redgate sql, benerator

1919 Obtain Synthetic Workload

Complex Data

• Ordered data

• 𝑃 𝑏𝑖 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑏𝑖𝑑

• 𝑃 𝑏𝑖 < 𝑃(𝑏𝑖+1)

• Example - 5 bids on one product of different users

• Tools - redgate sql, benerator

2020 Obtain Synthetic Workload

Summary

• Classes sufficient enough (w.r.t Bidder)

• Tool support on every complexity-level exists

• External Data sources creatable using existing tools

Conclusion

22 Conclusion

Synthetic Workload Generation

No Hot Research
Topic

Present Approaches
Insufficient

Tool Combination
Needed

23

Outlook

• Extend MBT Approach with additional data-related meta-models

• Introduce Interconnection ..

• .. DSL

• .. easier Import / Export

24 Conclusion

Results

• Time consuming when dealing with missing test data

• Synthetic workload generation is a complicated task

• Tools are not yet connectable

25

Credits / Resource Links
• Slide 2 „Performance Testing“

• Notebook Icon - https://testinsane.com/performance-testing-services.html

• Slide 5 „State of Art“, Slide 24 „Synthetic Workload Generation“
• Robot Icon - https://testinsane.com/automation-testing-services.html

• Slide 6 „Gateway not found“
• Cat Image - https://http.cat/

• Slide 8 „Bidder SUT“
• System Under Test Icon - https://testinsane.com/services.html

• Slide 10 „Existing Approaches“
• Notebook Icon - https://testinsane.com/functional-testing-services.html

• Slide 16 „Data Derivation“, Slide 24 „Synthetic Workload Generation“
• Working Human - https://testinsane.com/work-culture.html

• Slide 21 „Results“
• Check Icon - https://testinsane.com/compliance-testing-services.html

• Slide 23 „Outlook“, Slide 24 „Synthetic Workload Generation“
• Person Icon - https://testinsane.com/ui-ux-testing-services.html

• Overall Fonts
• Headline – Google, Astigmatic, Lukiest Guy - https://fonts.google.com/specimen/Luckiest+Guy
• Text, Highlights – Google, Vernon Adams, Oxygen - https://fonts.google.com/specimen/Oxygen

https://testinsane.com/performance-testing-services.html
https://http.cat/
https://testinsane.com/services.html
https://testinsane.com/work-culture.html
https://testinsane.com/compliance-testing-services.html
https://testinsane.com/ui-ux-testing-services.html
https://fonts.google.com/specimen/Luckiest+Guy

Continuous Architecting
Just another buzzword?

Benedikt Holmes,
benedikt.holmes@rwth-aachen.de

The Buzzword 2

??

Continuous
+

Architecting

??

Continuous
Architecting

!!

The Buzzword 2

Research
Research
Research...

Continuous
Architecting

!!

Perception A 3

Perception A

Solved Problems:

•  Architecture erosion

•  Big-data domain
•  Aid architecture design and

maintaince
•  Technical analysis framework

(OSTIA)

Perception B 3

Perception B

Solved Problems:

•  Architecture erosion

•  Communication issues / Lack of communication

•  Mostly embedded software
domain

•  Architecture refactoring tasks
are often low prioritized

•  Organisational framework
(CAFFEA)

Perception C 3

Perception C

Solved Problems:

•  Architecture erosion

•  Slow response to changing requirements

•  Bottleneck in software
development life cycle

•  Architecture style to support
agile delivery methods

Perception D 3

Perception D

Solved Problems:

•  Architecture erosion

•  Communication issues

•  Micro-service architecture

Recap 4

Support refactoring tasks for
big data?

Restructure organistation to
improve communication?

Support agile delivery
methods?

Apply the microservice
architecture?

5

!
Be alert

The Definition 6

Perception A
Support for big-data

architecture refactoring tasks

Perception B
Support architecture

refactoring in generall and
improve communiation

Perception C
Support agile delivery methods

Perception D
Get rid of architecture

erosion and support delivery
acceleration

The Definition 6

Perception A
Support for big-data

architecture refactoring tasks

Perception B
Support architecture

refactoring in generall and
improve communiation

Perception C
Support agile delivery methods

Perception D
Get rid of architecture

erosion and support delivery
acceleration

The Definition 6

Perception A
Support for big-data

architecture refactoring tasks

Perception B
Support architecture

refactoring in generall and
improve communiation

Perception C
Support agile delivery methods

Perception D
Get rid of architecture

erosion and support delivery
acceleration

The Novelty 7

1.  There is no history of this concept

2. Some parts already exist

Conclusion 8

should I Pay
or
should I Go?

Manage Technical Debt with Cost/Benefit Analysis.

-Radu Coanda-

1. Identify appropriate metrics

2. Choose quality
characteristics

3. Put everything together in a

model

choosing a debt item to pay

choosing a debt item to pay

WMC TCC ATFD

and

choose appropriate metrics

>46 >0.33 >5

choosing appropriate quality characteristics

Blob name Overall Rank

V
alu

e

R
an

k

Blob 1 17 6

Blob 2 22 7

Blob 3 24 9

Blob 4 22 7

Blob 5 11 3

Blob 6 13 4

Blob 7 3 1

Blob 8 5 2

Blob 9 13 4

Blob Name Overall Rank

V
alu

e

R
an

k

Blob 1 2 1

Blob 2 9 4

Blob 3 14 9

Blob 4 13 7

Blob 5 4 3

Blob 6 11 5

Blob 7 12 6

Blob 8 13 7

Blob 9 3 2

put everything together

BenefitsCost

put everything together

Don‘t be a Dodo!

The Story of the Dodo

?

Software Architecture Evolution (SAE)

Dodo’s in Software Engineering

What is it?

20 years in 20 minutes

How to get on top of 2 decades worth of research?

Breivold et al.’s Systematic Review

Breivold et al.’s Systematic Review

Updating Breivold for 2016

Results

Rick Kazman Muhammad Ali

Babar

Who and What to watch out for

Architectural

Knowledge

Management

Model-Driven

Architecture

Some Considerations

Conclusions and Final Thoughts

• Breivold’s Review:

• New and old Trends:

• But:

Black-Box Testing in the Presence of Database Inputs

Patrick Barakat,

patrick.Barakat@rwth-aachen.de

SWC 2017 – The Art of Software Testing

Order process example

SWC 2017 | Black-Box Testing in the Presence of Database Inputs2

Order process example – Input data

SWC 2017 | Black-Box Testing in the Presence of Database Inputs3

Delivery time: 09:00 – 18:00

18:00 – 20:00

08:00 – 18:00

Delivery day: {1}, {2},

{ 3,…,30}, {30, 31,…}

Shipping address: German address,

Foreign address

Billing address: German address,

Foreign address

Payment method: Paypal,

Debit,

Payment in advance,

not specified

Order process example – Input data

SWC 2017 | Black-Box Testing in the Presence of Database Inputs4

Delivery time: 09:00 – 18:00

18:00 – 20:00

08:00 – 18:00

Delivery day: {1}, {2},

{ 3,…,30}, {30, 31,…}

Shipping address: German address,

Foreign address

Billing address: German address,

Foreign address

Payment method: Paypal,

Debit,

Payment in advance,

not specified

Test data inputs

Configuration data

Ways of using combinatorial testing

SWC 2017 | Black-Box Testing in the Presence of Database Inputs5

Test data inputs

Order process example – Sample values (1)

SWC 2017 | Black-Box Testing in the Presence of Database Inputs6

Configuration data

Operating System

Configuration

Database

Configuration

Browser

Configuration

Win XP Oracle IE 8

Win 7 32 bit DB2 IE 9

Win 7 64 bit MySql FF 16.0

Win 8 32 bit MSSQL Server Chrome

Win 8 64 bit Sybase

Order process example – Sample values (2)

SWC 2017 | Black-Box Testing in the Presence of Database Inputs7

Input data

Client

no.

Shipping

address

Payment

method

1 Angle alley 7 Paypal

2 King's Road 1 Payment in

advance

3 Downing street

100

Debit

4 NULL NULL

Test data inputs

Configuration data

Definition of sample values

SWC 2017 | Black-Box Testing in the Presence of Database Inputs8

Selecting values in example by

• Boundary-value analysis

• Equivalence class partitioning

Combinatorial testing

SWC 2017 | Black-Box Testing in the Presence of Database Inputs9

• Generate combinations to be tested.

• State-of-the-art approaches focus usually only on one area.

Here we focus on the

database state

and input data

Motivation

SWC 2017 | Black-Box Testing in the Presence of Database Inputs10

• Generate combinations to be tested.

• State-of-the-art approaches focus usually only on one area.

Consider interactions between the database and the input values

Use database queries and sample values for test case reduction

Input specification

SWC 2017 | Black-Box Testing in the Presence of Database Inputs11

Queries

• Client that is registered

• Client that has a payment method

• Client that has no reminder

procedure

• Client with shipping address and

payment method that are not new

and not empty

Input data

Client no. Shipping

address

Payment

method

1 Angle alley 7 Paypal

2 King's Road 1 Payment in

advance

3 Downing street

100

Debit

4 NULL NULL

Input specification (2)

SWC 2017 | Black-Box Testing in the Presence of Database Inputs12

Client

no.

Shipping

address

(address)

Payment

method

(payment)

Reminder

procedure

1 Angle alley 7 Paypal No

2 Downing

street 100

Payment in

advance

Yes

3 NULL NULL No

Order no. Order

value

Client id

5 500 1

10 105 2

• Assume table client and a table order are already filled:

Depedency relation

SWC 2017 | Black-Box Testing in the Presence of Database Inputs13

Query Input data

dependence

Allowed inputs Disallowed inputs

Client that is registered {client no.} {1,2,3} {4}

Client that has a payment method {client no.,

payment}

{1,2} {3,4}

Client that has no reminder

procedure

{client no.} {1,3} {2,4}

Client with shipping address and

payment method that are not new

and not empty

{client no.,

address,

payment}

{(1, Angle alley 7,

Paypal), (2, Downing street

100, Payment in advance)}

{t| t=(x,y,z), x=1,..,3, t not

in query 4}

Depedency relation

SWC 2017 | Black-Box Testing in the Presence of Database Inputs14

Query Input data

dependence

Allowed inputs Disallowed inputs

Client that is registered {client no.} {1,2,3} {4}

Client that has a payment method {client no.,

payment}

{1,2} {3,4}

Client that has no reminder

procedure

{client no.} {1,3} {2,4}

Client with shipping address and

payment method that are not new

and not empty

{client no.,

address,

payment}

{(1, Angle alley 7,

Paypal), (2, Downing street

100, Payment in advance)}

{t| t=(x,y,z), x=1,..,3, t not

in query 4}

Depedency relation

SWC 2017 | Black-Box Testing in the Presence of Database Inputs15

Query Input data

dependence

Allowed inputs Disallowed inputs

Client that is registered {client no.} {1,2,3} {4}

Client that has a payment method {client no.,

payment}

{1,2} {3,4}

Client that has no reminder

procedure

{client no.} {1,3} {2,4}

Client with shipping address and

payment method that are not new

and not empty

{client no.,

address,

payment}

{(1, Angle alley 7,

Paypal), (2, Downing street

100, Payment in advance)}

{t| t=(x,y,z), x=1,..,3, t not

in query 4}

Depedency relation

SWC 2017 | Black-Box Testing in the Presence of Database Inputs16

Query Input data

dependence

Allowed inputs Disallowed inputs

Client that is registered {client no.} {1,2,3} {4}

Client that has a payment method {client no.,

payment}

{1,2} {3,4}

Client that has no reminder

procedure

{client no.} {1,3} {2,4}

Client with shipping address and

payment method that are not new

and not empty

{client no.,

address,

payment}

{(1, Angle alley 7,

Paypal), (2, Downing street

100, Payment in advance)}

{t| t=(x,y,z), x=1,..,3, t not

in query 4}

Reduction of test cases

SWC 2017 | Black-Box Testing in the Presence of Database Inputs17

Query Allowed inputs

1 {1,2,3}

2 {1,2}

3 {1,3}

4 {(1, Angle alley 7,Paypal),

(2,Downing street 100, Payment in advance)}

Test Client Shipping

address

Payment

method

1. 1 Angle alley 7 Paypal

Reduction of test cases (2)

SWC 2017 | Black-Box Testing in the Presence of Database Inputs18

Query Disallowed inputs

1 {4}

2 {3,4}

3 {2,4}

4 {t| t=(x,y,z),x=1,..,3, t not in query 4}

Test

no.

Client

no.

Shipping

address

Payment

method

1. 1 Angle alley 7 Paypal

2. 1 King's Road 1 Payment in

advance

3. 4 King's Road 1 Debit

The idea of the approach

SWC 2017 | Black-Box Testing in the Presence of Database Inputs19

• Generate combinations between the sample values.

• Generate database content/queries.

• Compute dependencies between input values and queries.

All queries should be covered at least once

(Adapted) Late Acceptance Hill-Climbing algorithm

SWC 2017 | Black-Box Testing in the Presence of Database Inputs20

• Optimisation metaheuristic

• First LAHC-based method for combinatorial testing

• Computes a set of test cases

• Maximize the set of covered interactions

• Incorporate constraints of parameter values

Input-Output-Analysis

SWC 2017 | Black-Box Testing in the Presence of Database Inputs21

• Cover all combinations in the individual output test sets

• Reduce test cases by input/query relation

A={1, 2} B={1,3,4} C={2,4}

Q1 Q2

Algorithm in pseudo-code

SWC 2017 | Black-Box Testing in the Presence of Database Inputs22

Input:

• A set of queries,

• a database schema,

• sample values,

• and constraints.

Output:

• A set of test cases

• and queries

Summary

SWC 2017 | Black-Box Testing in the Presence of Database Inputs23

Prioritize Test Cases the Smart Way

Karl Ricken,

karl.ricken@rwth-aachen.de

favourite

If there is not
enough time…

ordering: the best first

Testing Takes Time..

• Automated test to run test cases without developer

• Big software -> many test cases

• Test all test cases after code change

Prioritize test cases the smart way 5

Prioritization

• Test as much as possible

• Get feedback as fast as possible

Prioritize test cases the smart way 6

0

20

40

60

80

100

120

0 180 360 540

#
 t

e
s
t

c
a
s
e
s

time in minutes

standard

order by time

Deadline

Order Test Cases

• Critical

• Code change relevant

• Overall time

Prioritize test cases the smart way 7

Objectives

Prioritize test cases the smart way 8

test critical test cases

number of test cases

maximize minimize
benefits costs

overall time

code change relevant test cases

How to Combine?

Prioritize test cases the smart way 9

maximize
benefit

cost

Different Power for Test Case

• Relevance not always the same

• Weights between 0 and 1

Prioritize test cases the smart way 10

b

c

𝑤1

𝑤2
maximize

Combining More…

Prioritize test cases the smart way 11

 𝑤𝑖𝑏𝑖

 𝑤𝑗𝑐𝑗

maximize

Consider More Objectives: Fault Model Sensitivity

• Execution time & critical test cases

• Learn about error in history

• Group test cases

• Prioritize new test case in group with high error rate

Prioritize test cases the smart way 12

Consider More Objectives: Setup Costs

• More objectives not related to execution

• Setup test environment

Prioritize test cases the smart way 13

Conclusion

• State-of-the-art in the paper

• Future research for more objectives

• Combining more objectives

Prioritize test cases the smart way 14

One more thing.

Prioritize test cases the smart way 15

just kidding!
Good luck for the exams!

Prioritize test cases the smart way 16

Modelling Architectural Complexity
An Overview

David Duong

david.duong@rwth-aachen.de

Definition2

Architecture Complexity

Architectural Complexity

Definition3

IEEE - Systems and software engineering - Vocabulary

1) the degree to which a system's design or

code is difficult to understand because of

numerous components or relationships

among components

2) pertaining to any of a set of structure-

based metrics that measure the attribute in

(1)

Complexity

Metric Classification4

Measured Attributes
 Size

 Coupling

 Cohesion

 Complexity

 Stability

 Quality

By Srdjan Stevanetic and Uwe Zdun

Factor-Criteria-Metric-Model (FCM)5

Goal

Factor

Criteria

Metric

Modeling Architectural Complexity – 1. Attempt6

Architectural Complexity

RelationshipSize

Complexity

Stability

Coupling

Cohesion

Definition7

Architecural Complexity

is the structural part of complexity of a

solution, which is a result of design decisions

of architectural elements and relationships

among them

Lilienthal

Cognitive Science8

Cognitive Science

Chunking

Formation of

Hierarchy

Schema

Cognitive Science9

Factors

Chunking

Formation of

Hierarchy

Schema

Ordering

Modularity

Pattern

Conformity

Lilienthal

Software Architecture Complexity Model(SACM)10

Architectural Complexity

Ordering

Modularity

Pattern

Conformity

Information

Extent

Information

Availability

Personal Factors Enviromental Factors

Eric Bouwers et al.

Conclusion11

Summary
 definition of architectural complexity

 modeling architecural complexity

 SACM as theoretical model based on

cognitive science

 lack of metrics

Thank you!

	SWC_2017_paper_1
	Introduction
	Methodology
	Challenges with architecting
	Perceptions of Continuous Architecting
	Perception I
	Perception II
	Perception III
	Perception IV

	Definition of Continuous Architecting
	Conclusion
	Future work
	References

	SWC_2017_paper_2
	Introduction
	Methodology
	Impact Analysis
	Breivold82
	Recent High-Impact Studies

	Results
	Breivold82
	Recent High-Impact Studies
	Comparison to Breivold's Results

	Discussion
	Breivold82
	Recent High-Impact Studies

	Considerations, Conclusions and Future Research
	References

	SWC_2017_paper_3
	Introduction
	Related Work
	Transformation
	Class Diagram
	Sequence Diagram

	Example
	Discussion
	Conclusions
	Future Work
	References

	SWC_2017_paper_4
	Introduction
	Influencing factors of automated tests
	Level of testing
	Types of tests
	Environment
	Technology
	Summary

	Existing best practices
	The sample system under test
	Functional testing on unit level
	Non-functional testing on unit level
	Functional testing on systems level
	Non-functional testing on systems level
	Summary

	Missing best practices
	Conclusion and Future Work
	References

	SWC_2017_paper_6
	Introduction
	Definition
	Architectural Metrics
	Metric Classification
	Limitations

	Architectural Complexity Models
	Personal Factors
	Environmental Factors
	Properties of SACM

	Conclusions
	References

	SWC_2017_paper_7
	Introduction
	Methodology
	Basic Techniques
	Concrete Techniques
	MORTO in regression test selection
	MORTO in regression test prioritization
	Hybrid approaches
	Ant Colony Optimization approaches

	Discussion
	Critical review of RTS and RTP approach
	Significance of two neglected objectives

	Threats to Validity
	Conclusions
	References

	SWC_2017_paper_8
	Introduction
	Definitions
	Software testing

	Testing Infrastructure as Code
	Current frameworks
	Theoretical frameworks
	Post-Convergence
	Pre-Convergence

	Discussion
	Conclusion
	References

	SWC_2017_paper_9
	Introduction
	The Cost-Benefit Model

	Challenges
	Principal
	Interest

	Cost-Benefit Modeling
	Cost/Benefits of single TD items
	God Class and Cost
	Benefits
	Model

	System-wide decision-making
	SIG Quality Level
	Cost
	SIG Quality Model Benefits
	Model

	Alternative models
	CAST Model
	Maintenance Behaviour

	Conclusion
	References

	SWC_2017_paper_10
	Introduction
	Related Work
	Background
	Approaches
	Capture and Replay Testing
	Model-Based Testing

	Data Generation
	Assumptions and Test Scenario
	Approach Dependent Opportunities
	Approach Independent Opportunities
	Test Data Classification
	Tools approach

	Discussion
	Conclusion
	References

	SWC_2017_paper_11
	Introduction
	Combinatorial Black-Box Testing Techniques
	Motivating Example
	Combinatorial testing in presence of database inputs
	Specification of input data
	Feasibility of the approach

	Problems
	Conclusions
	References

	SWC_2017_paper_12
	Introduction
	EA terminology
	Data Quality
	Federated EAM
	Automated EA

	Continuous delivery
	Automation
	Traceability
	Same artifacts for all environments
	Pipeline

	Identifying shared goals
	Low risk releases
	Lower costs
	Better products

	Example pipeline
	Discussion
	Conclusion
	References

	SWC_2017_paper_13
	SWC_2017_paper_14
	SWC_2017_paper_15
	SWC_2017_paper_16
	SWC_2017_paper_17
	SWC_2017_paper_18
	SWC_2017_paper_19
	SWC_2017_paper_20
	SWC_2017_paper_21
	SWC_2017_paper_22
	SWC_2017_paper_23

