
Proceedings
of Seminar

Full –Scale Software Engineering

2018
Editors: Horst Lichter

Andreas Steffens
Firdaus Harun
Konrad Fögen
Christian Plewnia
Simon Hacks
Ana Nicolaescu

Features of Combinatorial Testing Tools: A Literature
Review

Joshua Bonn
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

joshua.bonn@rwth-aachen.de

Konrad Fögen
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
konrad.foegen@swc.rwth-aachen.de

ABSTRACT
Combinatorial Testing (CT) can be used to cover a very
large number of parameter combinations for a System Under
Test (SUT) with a comparatively small number of test cases.
For this purpose, several tools and algorithms have been
developed to minimize the number of test cases that have to
be executed to achieve a specified coverage. In addition to
the minimization of the test suit, these tools offer many other
features, for example, for modelling parameters or defining
constraints.

While many papers have been written to introduce new
algorithms or give an overview of CT research in general,
previous work mostly failed to compare the features of these
tools to each other. Furthermore, no overview of the distri-
bution of said features over the different programs is avail-
able.

Therefore, we review and compare 32 tools in terms of
their abilities in different feature areas concerning the mod-
elling of input parameters. These areas are parameters, con-
straints, seed tests, and testing strength. In each area, the
distribution of tools using certain feature implementations
is given, and in the end, the tools are compared across all
areas.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.4 [Software
Engineering]: Software/Program Verifiction; D.2.5 [Software
Engineering]: Testing and Debugging—Testing tools, Com-
binatorial Testing

Keywords
Combinatorial Testing, Tools, Software Testing

1. INTRODUCTION
In studies from 2002 and 2004 Kuhn et al. showed that

the interactions between 2 parameters or the specific setting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2017/18 RWTH Aachen University, Germany.

of one parameter caused 50-95% of the examined software
failures. The highest number of parameters that caused a
software failure in a specific combination was 6 [12, 13, 16].
These findings have an impact on software quality assurance,
as testers can now assume that they find nearly all failures
by testing all possible combinations of 6 or fewer parameters.
While this may still be a large number of tests, more would
be necessary for exhaustive testing which tests all possible
combinations of values.

Although most papers focus on efficient ways to gener-
ate test suites which cover all combinations of t parameters,
another important area in Combinatorial Testing (CT) re-
search is defining the Input Parameter Model (IPM). If we
expect the algorithms to generate test suites tailored specif-
ically to a software system, modelling this system precisely
is important. As over 45 tools for CT exist, different ap-
proaches to model software systems can be found. Until
now, no one has compared these tools in their abilities in
different areas of modelling. Furthermore, to our knowl-
edge, no paper exists which discusses the distribution of the
different approaches over the tools. To close this gap in re-
search, we look at 32 tools and classify them according to
their features in the different areas.

In the next chapter, we will first examine the background
of CT (section 2). After this, we will present the identified
features and their implementation approaches in the tools
in section 3, and the differences will be further discussed
(section 4). At the end, we will summarise our findings in a
conclusion (section 5).

2. BACKGROUND
In this section, we will first introduce the basics of CT.

Next, we will discuss papers which relate to our research and
explain our research process to discern the tools’ features.

2.1 Combinatorial Testing
Combinatorial Testing was first introduced in 1985 by

Mandl to test the Ada compiler [14]. In the first step for CT,
the tester has to find parameters which describe a System
Under Test (SUT). These parameters can be user inputs,
environment descriptions, and other factors which influence
the execution of the software [16]. For example, if we test
a website for finding bus routes, parameters could be the
browser which displays the site, the start station, and the
end station. Each of these parameters can then have differ-
ent numbers of values. For the browser parameter, Chrome
and Firefox could be acceptable values.

The basic idea of CT is now to find test cases which
cover all combinations between t parameters for a given t
(1 ≤ t ≤ number of parameters). This is also called t-way
testing. The expectation is that testing all combinations
for a comparatively small t can identify nearly all errors
[13]. For example, if a system has 20 parameters, which can
each take 2 different values, exhaustive testing would require
220 = 1048576 test cases while 6-way testing with the ACTS
tool needs 375 test cases, since one test case covers multiple
6-way combinations.

2.2 Related Work
Some papers about the features of input parameter mod-

elling for CT have already been published. One paper is
”Pairwise Testing in Real World”, written by Jacek Czer-
wonka [7]. In his paper, Czerwonka lists different options
which combinatorial testing tools give to the user and anal-
yses their usability in real-world situations. While the paper
discusses many features, it focusses on PICT and does not
compare the capabilities of different programs.

”Interaction Testing of Highly Configurable Systems in
the Presence of Constraints”, by Cohen et al. concentrates
on constraints and compares the different handling of con-
straints in nine tools. The paper categorises the constraint
handling techniques into 4 categories ranging from ”none”,
for tools with no constraint support, through ”remodel”,
which encompasses tools where users have to split their
model into unconstrained models, to ”full”, for tools which
support all types of constraints [5].

In [9], Grindal et al. focussed on providing a method
with which testers can convert the SUT into an IPM. The
approach uses features such as invalid values, constraints,
and seed test cases to define complete models.

2.3 Research Process
This paper is the result of a literature review. Cronin et

al. defined a literature review as ”an objective, thorough
summary and critical analysis of the relevant available re-
search and non-research literature on the topic being stud-
ied” [6]. The first step of a literature review, after find-
ing a topic, is to search for literature discussing this topic.
In our case that meant finding the combinatorial testing
tools. While no complete list is available, research papers
often cite pairwise.org. Other tools were found with sim-
ple internet searches for papers on the topic of combinato-
rial testing and examining relevant internet forums. When
we had gathered the list of all tools, we tested them for
availability. Of the 47 we had found, 23 could be acquired
directly. These tools were then tested according to their fea-
tures, and the documentation has been examined. Further
9 tools had papers written about them, and we could iden-
tify the features by reviewing them. This leads to a total
of 32 tools: CATS [38], AETG [4], PairTest [39], TConfig
[43], AllPairs (Perl) [35], Pro-Test [26], Jenny [10], Test-
Cover [21], TestVectorGenerator [1], TESTONA [23], All-
Pairs (Python) [31], PICT [19], rdExpert [33], OATSGen
[11], ATD [22], ACTS [32], IPO-s [2], VPTAG [41], FOCUS
[37], Hexawise [28], PictMaster [30], NTestCaseBuilder [15],
Tcases [25], Pairwiser [29], NUnit [17], ecFeed [27], JCU-
nit [40], CITLAB [3], TOSCA [36], Pairwise (Ruby) [42],
Pairwise (RetailMeNot) [34], JCombinatorial [18].

In the second step of a literature review, the findings have
to be categorised, analysed, or otherwise evaluated. To do

Table 1: Running Example: Parameters and Values
Host OS Client OS Browser Connection Speed

Windows Windows Chrome LAN 1
Unix Unix Safari WLAN 10

Android Edge 100
IOS Firefox 500

1000

this, we identified similarities between the tools in the fea-
ture areas and placed related programs in the same cate-
gories. We present these categories in the first main chapter.

Lastly, we identified patterns in the distribution of fea-
tures, which we will present in the discussion (section 4).

3. IDENTIFIED FEATURES
In this main chapter of the paper, we will categorise the

features we found in the 32 tools. To make the process of
explaining each feature clearer, we will first introduce the
running example of a computer game we wish to test.

Following this, we will at first present the core features
which most of the tools offer, and in this section also ex-
plain the feature categories. Next, we delve into each of the
presented categories and introduce advanced features.

3.1 Running Example
Since the explanation of the features can be abstract, we

introduce a running example with which we will explain
them. Imagine we are at a software company, and want
to release a game which groups of users can play in a Local
Area Network (LAN). One of the player’s devices simulta-
neously hosts the current game. Users can play our game
on Windows, Unix, Android, or IOS in the Chrome, Sa-
fari, Edge, or Firefox browser. The host has to be either a
Windows or a Unix desktop machine. The client connects
to the host either via LAN-cable or WLAN, and we want
to test the game at 1, 10, 100, 500, and 1000Mbit

s
. We now

wish to test if the game works in different host OS, client
OS, browser, connection type, and connection speed combi-
nations. Exhaustive tests would require 42 ∗ 22 ∗ 5 = 320
test cases while testing all 2-way combinations reduces this
number to 20 (computed with the ACTS tool).

3.2 Core Features
As with many categories of software tools, there are some

core features which are present in almost every tool. Ad-
vanced tools can then expand these features with more so-
phisticated implementations. In this section, we will present
the core features we found in most of the CT tools.

3.2.1 Parameters
As said before the first step of defining an IPM for a CT

tool, is to define the parameters. In a typical CT tool, the
user will give each of these parameters a name and pass the
values as an enumeration of strings. This means that s/he
has to convert numbers or boolean values into their text
representation. For example, the user has to model the host
OS and connection speed parameters in the following way:
”hostOS”: ”Windows”, ”Unix”; ”connection speed”: ”1”, ”10”,
”100”, ”500”, ”1000”. As the parameters are modelled with
descriptive names, it is easy for testers to understand and
later change them, should the need arise. The tools which

http://www.pairwise.org/tools.asp

exclusively use enumerations can be found at [38, 39, 43, 35,
26, 21, 1, 23, 33, 11, 22, 2, 41, 37, 28, 25, 29, 36, 42, 34].

3.2.2 Constraints
When modelling a system with parameters and values, it

can often happen that illegal combinations are possible [7].
In our running example, we do not tell the tools that Sa-
fari is not available on Android, and no longer supported on
Windows. When creating a test suite to cover all pairs of val-
ues, there will be test cases which include (Safari, Windows)
or (Safari, Android). The tester cannot remove these test
cases since this would also discard all the other pairs tested
by these test cases. As a result, the tools have to know
the constraints on the parameters during the creation of the
test suite. The basic mechanism of allowing constraints is to
give the user the option of specifying illegal combinations.
This means that the tester has to provide all pairs, triples,
or n-tuples which should not appear in the final test suite.
In our example, we would simply give the pairs (Windows,
Safari) and (Android, Safari). [4, 26, 10, 11, 37, 28, 29] use
this method to define constraints.

3.2.3 Seed Tests
As an opposite to constraints, it can be beneficial to al-

low the tester to define combinations which s/he wants to
have in the final test suite in any case. Such situations could
arise if these combinations occur more often in practice, or
if certain value combinations often cause problems. In our
running example, it could be that we know that a Windows
host connected to an Android device over WLAN causes
software failures. If such a scenario is the case, we would
wish to test the combination explicitly. One solution to the
problem is to add a test case which includes this combina-
tion to the test suite generated by the CT tool, but this
would result in more test cases than strictly necessary since
the added combination includes some t-way combinations
which are also present in other test cases. This is no great
problem if the number of explicitly tested combinations is
small, but with many requirements, this could cause the test
suite to grow in length considerably. More test cases result
in longer execution time, so this is not a desirable outcome.
Some tools solve this problem by giving the user an option
to specify so-called ”seed tests”. The tools guarantee the test
cases to be in the final generated test suite and the t-way
combinations which are already covered are not considered
when generating the complementing test cases [44].

Furthermore, the tester can use seed tests if s/he expands
parameters with new values after s/he already tested some
combinations. The tools can receive these combinations as
seed tests, and the CT tools will then generate test cases for
the uncovered value combinations. The tools [38, 4, 39, 10,
23, 31, 19, 33, 32, 28, 30, 25, 29, 27, 3] allow the definition
of seeds.

3.2.4 Testing Strength
After the user has now provided the tool of his choice

with parameter, values, invalid combinations, and required
combinations, the next step would be the generation of the
actual test suite. For this stage, the tools need the desired
testing strength. A test suite is defined to have a testing
strength of t if it covers all t-way combinations [16].

All tools we examined allow the generation of test suites
with strength 2, often called pairwise testing. More than

Table 2: Number of Programs with Certain Types
for Values

None Enumeration Small Set Full Set
1 20 6 5

half of the tools then allow the user to use a testing strength
between 1 and 6, and 15 tools allow the generation of test
suites with arbitrary testing strength.

3.3 Parameters
In this first feature area, we will now present more ad-

vanced features for the definition of parameters. For this,
we will first examine type systems and then move on to in-
valid and important values.

3.3.1 Types
As we showed in section 3.2.1, most of the tools use enu-

merations to model the parameter’s values. While this may
be enough if text values are given, it is not optimal for mod-
elling numbers. Some tools recognized this and provide the
user with a greater type system. Providing more types the
user can choose from brings the resulting model of the SUT
closer to the real software system. This has the advantage
that the model is easier to understand and maintain.

When mentioning tools using more types to model pa-
rameters, it is also important to mention that one of the
tools, Jenny, does not use any type at all [10]. Instead, a
tester gives the number of values for each parameter and the
resulting test cases contain the indices of the values. This
means s/he would model the client OS parameter as ”4”
since it has four values (Windows, Unix, Android, IOS). If
the user then would receive the test case (1, 2, 4, 1, 3), s/he
would have to manually map this to (host OS: Windows,
client OS: Unix, browser: Firefox, connection type: WLAN,
connection speed: 100Mbit

s
).

We divided the tools into four categories regarding their
type system. The first is having no types at all (Jenny),
followed by the previously presented enumerations, small
type sets, and full type sets. Table 2 shows the number of
tools which are in each category.

Small Type Set.
In this category we find [4, 19, 32, 30, 27, 3]. These tools

offer more than enumerations, but there is some variance
in how many types are available. While PICT just adds
the numeric type to better model numbers, ACTS also of-
fers boolean values as an option [32]. The tester can use
the modelling of numbers in PICT to model the connection
speed in our running example [20]. The different types which
are available here will later be important in the options some
tools give to model constraints (section 3.4).

Complete Type Set.
Here we can find libraries which testers use for automatic

unit/integration tests in programming languages. One ex-
ample of such a library is JCUnit, which is under develop-
ment and extends the popular testing framework JUnit to
allow combinatorial testing in the Java programming lan-
guage [40]. It uses the factory pattern to create values for
each parameter of any given type from the Java language.
This allows for a modelling of the SUT that is nearer to the

Table 3: Number of Programs with Certain Impor-
tant Value Feature

Defaults Weights Arbitrary Values
1 4 2

real system than any other tool available. Of all the tools
we examined, [31, 15, 17, 40, 18] offered the complete type
set of a high-level programming language.

3.3.2 Negative Values
In some cases testing whether the allowed values do not

lead to a software failure is not enough. Sometimes, the
tester has to evaluate the system’s behaviour if s/he enters
unallowed values. While it can be an option to add these
illegal values to their respective parameters, this may lead
to untested behaviour, as the so-called masking effect can
occur. If one illegal value is present in a test case, all other
valid combinations which are in the test case may not be in
other test cases, which means the test suit loses coverage [7].

For avoiding this problem, some tools offer features to
mark specific values as illegal. In such a case, the algorithm
which creates the test suite then knows that it has to test
combinations in test cases with an illegal value again in a
normal test case. PICT implements this feature by allowing
the user to mark one value per parameter as illegal, while
ACTS allows multiple illegal values [7, 32]. [4, 19, 32, 30,
25] provide some form of illegal value handling.

3.3.3 Important Values
With the generation of combinatorial tests, minimizing

the number of test cases in the test suite is always the top-
most priority. In some cases, it can be good to specify sec-
ondary goals the tools should take into account. One such
secondary goal could be that the tester wants to test some
values more often than others [8]. In our running example,
it can be the case that the game studio expects the host
OS to be Windows in most cases. Therefore, it would make
sense to have a greater number of test cases which use the
value ”Windows” for the parameter ”host OS”. Seven of the
32 tested tools offer a support for this feature. In the imple-
mentations the programs offer, we can observe three differ-
ent approaches. Table 3 gives an overview of the number of
tools which implement each of them.

Defaults.
The ACTS tool offers users to mark certain values as the

”base choice” for a parameter. This effectively means that
every time the value the parameter can take is one of sev-
eral options, for example, since all t-way combinations with
this parameter are already covered, the algorithm picks this
specified value in the test case as a default value. The ACTS
tool is the only one which uses this approach to the problem
[32].

Weights.
While the ”default value” way to solve the problem of im-

portant values works if one value is more important than
the others, it does not scale if we have to consider multiple
important values. If for example, we would say that 50% of
all users will use Chrome, 35% Firefox, 10% Edge, and 5%
Safari as the browser for our game, we would like the distri-

bution of values in the test suite to match these percentages
if possible. For this requirement, [19, 33, 37, 30] introduce
the concept of weights. Every value has a default weight of
1, and higher weights specified by the user tell the tool to
use these values more often [20].

Arbitrary Values.
The third approach to the ”important parameter”problem

is the output of special characters in the test suite. For
example, AllPairs (Perl) prints a ”∼” every time the value
is not important to the test case. The user can then assign
values s/he would like to test more than others. AllPairs
(Perl) and OATSgen use this method [35, 11].

3.4 Constraints
In section 3.2.2, we already discussed the definition of in-

valid value combinations to define constraints in the IPM.
In this part of the paper, we will present three other ways
to model constraints: relations, logical expressions and pro-
gramming functions. Table 4 shows the number of tools in
each category.

3.4.1 Relations
In contrast to modelling constraints by giving all invalid

combinations, another method is to give some values for each
parameter which can validly be used in combination with
each other. The tester can exclude certain combinations by
providing multiple relations.

While these relations can model any constraint since there
is a finite amount of values and parameters, disadvantages
of using relations to model all constraints exists [4]. For
example, the number of required relations can be high even
if the tester defines few constraints. Secondly, relations are
not easily readable for humans, as testers have to observe all
relations to see if any valid combination of values is missing.
And if one combination is missing, the resulting test suite
may not cover all t parameter combinations. The tools which
mainly use relations to define the constraints are [38, 21].

3.4.2 Logical Expressions
One step up from defining either relations or invalid com-

binations are logical expressions. [19, 32, 41, 37, 30, 25, 27,
3] offer them. Logical expression allow the program’s user
to describe the restrictions with some predefined logical con-
nectives, and some base terms. The concrete implementa-
tions in the tools differ slightly.

Nearly all tools use a subset of the operators known from
propositional calculus to connect some base terms. These
base terms can always be of the form ”<parameter1> =
<value1>” or ”<parameter1> != <value1>”. In our exam-
ple system the tester can now express ”Android and Win-
dows cannot use Safari” as ”(browser = Safari) => !(clien-
tOS = Windows || clientOS = Android)” [32]. Tools with
more types than enumerations also allow for more complex
base terms. For example, ACTS can carry out calculations
between numeric parameters with elementary arithmetic ex-
pressions [32].

3.4.3 Programming functions
A small set of tools ([31, 15, 40]) uses real programming

functions as constraints. These tools all are libraries which
programmers can use to write unit, integration, or system
tests. Since the libraries use the whole type set of the un-

Table 4: Number of Programs with certain Constraint Type
None Relations Invalid Combinations Logical Expression Programming function

12 2 7 8 3

Table 5: Number of Programs Allowing Certain Val-
ues for t

t = 1 2 3 4 5 6 n exhaustive
21 32 20 18 18 18 15 21

derlying language, the tester can use complex types and
check them according to the required constraints for the test
cases. The functions can call any sub-function and can com-
pute complex mathematical expressions which makes this
the constraint type with the most expressiveness [40].

3.5 Partial Seed Tests
In section 3.2.3, we mentioned the example of a Win-

dows host which communicates with an Android device over
WLAN. In such a scenario, three of the five parameters are
set in the combination we want to cover explicitly. For tools
which require full test cases as seeds, the user would have
to choose the other two values arbitrarily, which may not
always lead to a minimal test suite. To counter this issue,
[4, 19, 28, 30, 3] allow partial test case definition, where
the tester does not assign values to all parameters, and the
program can then assign the other values in the generation
process to archive a smaller number of test cases.

PICT implements this by leaving out the value assign-
ments in the given seed tests, but CITLAB takes it one step
further and allows so-called ”test goals” definitions akin to
logical expression constraints. These test goals can, for ex-
ample, use the ”∨” operator to give the tool choices between
two values [8, 20].

3.6 Testing Strength
In this main chapter’s last section we will discuss the test-

ing strength definition. As mentioned in section 3.2.4, most
tools do not allow the tester to define a testing strength
of over 6. Usually, testing all 6-way combinations of val-
ues is more than enough, but in the case that users want
to test further combinations, some tools also allow an en-
tirely arbitrary testing strength definition or the generation
of all possible test cases. Table 5 shows the number of tools
which allow t-way testing for specific values of t. ”exhaus-
tive” stands for exhaustive testing, and n means the tool
allows arbitrary values for t.

3.6.1 Mixed Parameter Strengths
More important to the input parameter modelling than

defining the general testing strength can be setting it for
a specific parameter subset. Pairwiser, and Hexawise allow
the testing strength definition per parameter [29, 28]. As a
consequence, we can now say that we want a general testing
strength of two, but we want the final test suite to include
all 3-way combinations in which the parameter ”host OS”
appears.

Literature presents an important use case for using mixed
parameter strength testing. Testers can use the parameter
strength like weights for parameters to show which one is
more important. This means the tester can define that, for

example, the ”client OS”causes a high percentage of failures,
and should be tested in all three-way combinations [20].

3.6.2 Hierarchies
While mixed parameter strengths focusses on certain pa-

rameters, hierarchies target whole parameter groups. For
these groups, the testing strength can then be overwritten.
An example would be defining that the test suite should gen-
erally contain all pairwise combinations, but for the group
of browser, client OS, and connection type it should also
include all 3-way combinations. The difference to mixed
parameter strength is that the test suite has to test com-
binations inside the group to the given strength, not the
combination of one parameter with all other parameters. In
mixed parameter strength, there would also be test cases
with all 3-way combinations of host OS, client OS, and con-
nection speed.

PICT implements hierarchies by introducing sub-models.
These constructs are the combination of an arbitrary number
of parameters and a given testing strength. We would have
to translate our example to ”{ clientOS, browser, connection
} @ 3”. PICT’s sub-models add the benefit that the tool
creates fewer parameter combinations inside one sub-model
as it constructs them separately [20].

In contrast to the sub-model implementation, the maven
plugin Tcases allows arbitrarily deep hierarchies using so-
called VarSets. The tester defines the input parameters in an
XML document where the VarSet tag allows for arbitrarily
many nested tags. This enables the tester to logically model
on different hierarchical levels [24]. All in all, [4, 23, 19, 32,
30, 25] implement hierarchies.

4. DISCUSSION
In this section, we will discuss and evaluate our paper’s

findings.
The first feature group on which we focussed was the types

which parameters can take in the tools. What can be no-
ticed here is that a high percentage of the tools uses enumer-
ations to give the types certain values. While enumerations
can be enough to enter values and use them in constraint
types such as invalid combinations or relations, they restrict
the user to always explicitly listing all values which are in
these invalid combinations. Using types allows for a shorter
constraint definition in logical expressions due to compari-
son operators (<, >, <=, >=), and is easier for the user.
This may be the reason why nearly all tools which support
logical expressions have a good type system (e.g. PICT,
ACTS). Tcases tries to obviate this problem by introduc-
ing properties which the user can assign to multiple values
of one parameter and ease the constraint formulation, but
it introduces a certain overhead of defining these properties
each time.

Another observation we made, is that generally, the tools
with the most features are freeware. For example, the pro-
gram with the most features was PCIT. It offers a small
type system, weights, negative values, the use of logical ex-
pressions for constraints, full and partial seed tests, and ar-

bitrary strength testing with hierarchy definitions. Behind
PICT we find ecFeed and ACTS which are freely available,
too. Commercial products often have an average number of
features. On the other side, most of their features are in
the lowest category inside a specific feature area. For exam-
ple, none of the commercial programs which are available
right now allows for any type other than enumerations, and
logical expressions are also not supported.

The programs with the least features are programs which
researchers presented in papers as a proof of concept for a
new algorithm. They are not intended to be loaded with
features.

All in all, we can say that the feature distribution across
the tools is pretty uneven. While many programs support
up to five individual features, the number of programs di-
minished as the number of features rises.

Another important point which we can see in the data is
that twelve programs only offer up to 2-way testing. This
can be dangerous as the percentage of errors found with pair-
wise testing is 50-95% which may seem like a high number,
but it does not sound good to say ”This software has 5-50%
of all bugs left”. At the same time, pairwise testing can still
be better than testing combinations without any strategy.

5. CONCLUSION
Combinatorial Testing is an important strategy to find

errors in software systems with a relatively small amount
of test cases. Many tools are available to minimize the test
suite, but there are immense differences in modelling the
input parameter models for these programs. In this paper,
we analysed different approaches in four feature areas, the
parameters themselves, constraints, seed tests, and testing
strength.

As section 3 has shown, the differences in the areas are
immense, with the options of types for the parameters rang-
ing from none or enumerations to complete type sets found
in programming languages. We identified that in most cat-
egories the tools tend to stick to the more basic implemen-
tations with 19 tools using enumerations as a type option,
and only 5 offering partial test cases.

In section 4 we have found that the programs with the
most features are freeware, and commercial tools often lack
a good type and constraint system. Furthermore, we identi-
fied the risk of programs offering nothing more than 2-way
testing.

5.1 Outlook
Future work could expand the definition of hierarchies in

parameters. Until now, 6 tools support this feature, and in
most the user can define hierarchies of height one. It would
be interesting to see what is possible in this field.

Furthermore, based on this paper, we can identify some
future area of research for CT. For example, we did not
examine the exact implementation of each feature in the
tools and did not focus on usability. In this area, further
research could be required.

Furthermore, one could analyse the tools according to
their performance in the feature areas. While eight tools
offer logical expressions, no one has analysed how big the
performance deficit of evaluating them can be.

6. REFERENCES
[1] J. Arshem and P. J. Schroeder. Test vector generator.

https://sourceforge.net/projects/tvg/, 2004.
Retrieved October 19, 2017.

[2] A. Calvagna and A. Gargantini. Ipo-s: Incremental
generation of combinatorial interaction test data based
on symmetries of covering arrays. In Proceedings of the
IEEE International Conference on Software Testing,
Verification, and Validation Workshops, ICSTW ’09,
pages 10–18, Washington, DC, USA, 2009. IEEE
Computer Society.

[3] A. Calvagna, A. Gargantini, and P. Vavassori. ATD.
http://atyourside.pt/downloads/our_

downloadcenter.html. Retrieved November 2, 2017.

[4] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The aetg system: An approach to testing
based on combinatorial design. IEEE Trans. Softw.
Eng., 23(7):437–444, July 1997.

[5] M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction
testing of highly-configurable systems in the presence
of constraints. In Proceedings of the 2007 international
symposium on Software testing and analysis, pages
129–139. ACM, 2007.

[6] P. Cronin, F. Ryan, and M. Coughlan. Undertaking a
literature review: a step-by-step approach. British
journal of nursing, 17(1):38–43, 2008.

[7] J. Czerwonka. Pairwise testing in real world. In 24th
Pacific Northwest Software Quality Conference,
volume 200, 2006.

[8] A. Gargantini and P. Vavassori. Citlab: a laboratory
for combinatorial interaction testing. In Software
Testing, Verification and Validation (ICST), 2012
IEEE Fifth International Conference on, pages
559–568. IEEE, 2012.

[9] M. Grindal and J. Offutt. Input parameter modeling
for combination strategies. In Proceedings of the 25th
Conference on IASTED International
Multi-Conference: Software Engineering, SE’07, pages
255–260, Anaheim, CA, USA, 2007. ACTA Press.

[10] B. Jenkins. Jenny.
http://burtleburtle.net/bob/math/jenny.html,
2003. Retrieved October 15, 2017.

[11] R. Krishnan, S. M. Krishna, and P. S. Nandhan.
Combinatorial testing: Learnings from our experience.
SIGSOFT Softw. Eng. Notes, 32(3):1–8, May 2007.

[12] D. R. Kuhn and M. J. Reilly. An investigation of the
applicability of design of experiments to software
testing. In Software Engineering Workshop, 2002.
Proceedings. 27th Annual NASA Goddard/IEEE,
pages 91–95. IEEE, 2002.

[13] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, Jr.
Software fault interactions and implications for
software testing. IEEE Trans. Softw. Eng.,
30(6):418–421, June 2004.

[14] R. Mandl. Orthogonal latin squares: An application of
experiment design to compiler testing. Commun.
ACM, 28(10):1054–1058, Oct. 1985.

[15] G. Murphy. NTestCaseBuilder. https:
//github.com/sageserpent-open/NTestCaseBuilder,
2014.

[16] C. Nie and H. Leung. A survey of combinatorial
testing. ACM Comput. Surv., 43(2):11:1–11:29, Feb.

https://sourceforge.net/projects/tvg/
http://atyourside.pt/downloads/our_downloadcenter.html
http://atyourside.pt/downloads/our_downloadcenter.html
http://burtleburtle.net/bob/math/jenny.html
https://github.com/sageserpent-open/NTestCaseBuilder
https://github.com/sageserpent-open/NTestCaseBuilder

2011.

[17] C. Poole and R. Prouse. NUnit.
http://nunit.org/docs/2.6.4/pairwise.html, 2009.

[18] J. J. Reeder. JCombinatorial. https:
//github.com/jeremyjohnreeder/jcombinatorial,
2011. Retrieved November 5, 2017.

[19] Microsoft Corporation. PICT.
https://github.com/microsoft/pict, 2004.
Retrieved October 15, 2017.

[20] Microsoft Corporation. PICT Documentation.
https://github.com/Microsoft/pict/blob/master/

doc/pict.md, 2017. Retrieved October 15, 2017.

[21] L. TestCover.com. Testcover.
http://www.testcover.com/index.php, 2003.
Retrieved October 15, 2017.

[22] AtYourSide Consulting. ATD. http://atyourside.
pt/downloads/our_downloadcenter.html. Retrieved
November 4, 2017.

[23] Berner and Mattner Systemtechnik GmbH.
TESTONA. http://testona.net, 2017. Retrieved
October 26, 2017.

[24] Cornuntum Project. Tcases Documentation.
http://www.cornutum.org/tcases/docs/Tcases-

Guide.htm, 2016. Retrieved November 26, 2017.

[25] Cornutum Project. TCases.
https://github.com/cornutum/tcases, 2016.

[26] Digial Computations, Inc. Pro-Test.
http://www.sigmazone.com/protest.html, 2002.
Retrieved October 17, 2017.

[27] ecFeed AS. ecFeed. http://ecfeed.com/, 2017.
Retrieved October 16, 2017.

[28] Hexawise Inc. Hexawise. https://hexawise.com.

[29] Inductive AS. Pairwiser.
https://inductive.no/pairwiser/, 2017. Retrieved
October 15, 2017.

[30] IWATSU System & Software. PictMaster.
https://osdn.net/projects/pictmaster/, 2013.
Retrieved October 15, 2017.

[31] MetaCommunications. AllPairs.
https://github.com/bayandin/allpairs, 2009.
Retrieved October 15, 2017.

[32] NIST and University of Texas at Arlington. ACTS.
https://csrc.nist.gov/projects/automated-

combinatorial-testing-for-

software/downloadable-tools#acts, 2016. Retrieved
October 16, 2017.

[33] Phadke Associates, Inc. rdExpert Test Planning.
http://phadkeassociates.com/index_files/

rdexperttestplanning.htm. Retrieved October 19,
2017.

[34] RetailMeNot, Inc. Pairwise.
https://github.com/RetailMeNot/pairwise, 2014.
Retrieved November 4, 2017.

[35] Satisfice, Inc. ALLPAIRS.
http://www.satisfice.com/tools.shtml. Retrieved
October 15, 2017.

[36] Tricentis GmbH. Tosca.
https://www.tricentis.com/de/tricentis-tosca-

testsuite/, 2016. Retrieved November 7, 2017.

[37] I. Segall, R. Tzoref-Brill, and E. Farchi. Using binary
decision diagrams for combinatorial test design. In

Proceedings of the 2011 International Symposium on
Software Testing and Analysis, ISSTA ’11, pages
254–264, New York, NY, USA, 2011. ACM.

[38] G. Sherwood. Effective testing of factor combinations.
In Proc. of the Third Int. Conf. on Softw. Test.,
Anal., and Rev.(STAR94), Washington, DC, Software
Quality Eng, 1994.

[39] K. C. Tai and Y. Lie. A test generation strategy for
pairwise testing. IEEE Trans. Softw. Eng.,
28(1):109–111, Jan. 2002.

[40] H. Ukai and X. Qu. JCUnit.
https://github.com/dakusui/jcunit/, 2017.
Retrieved October 15, 2017.

[41] R. Vanderwall. VPTag.
https://sourceforge.net/projects/vptag/, 2010.
Retrieved October 15, 2017.

[42] J. Wilk. Pairwise.
https://github.com/josephwilk/pairwise, 2016.
Retrieved November 4, 2017.

[43] A. W. Williams. Determination of test configurations
for pair-wise interaction coverage. In Proceedings of
the IFIP TC6/WG6.1 13th International Conference
on Testing Communicating Systems: Tools and
Techniques, TestCom ’00, pages 59–74, Deventer, The
Netherlands, 2000. Kluwer, B.V.

[44] C. Yilmaz, S. Fouche, M. B. Cohen, A. Porter,
G. Demiroz, and U. Koc. Moving forward with
combinatorial interaction testing. Computer,
47(2):37–45, 2014.

http://nunit.org/docs/2.6.4/pairwise.html
https://github.com/jeremyjohnreeder/jcombinatorial
https://github.com/jeremyjohnreeder/jcombinatorial
https://github.com/microsoft/pict
https://github.com/Microsoft/pict/blob/master/doc/pict.md
https://github.com/Microsoft/pict/blob/master/doc/pict.md
http://www.testcover.com/index.php
http://atyourside.pt/downloads/our_downloadcenter.html
http://atyourside.pt/downloads/our_downloadcenter.html
http://testona.net
http://www.cornutum.org/tcases/docs/Tcases-Guide.htm
http://www.cornutum.org/tcases/docs/Tcases-Guide.htm
https://github.com/cornutum/tcases
http://www.sigmazone.com/protest.html
http://ecfeed.com/
https://hexawise.com
https://inductive.no/pairwiser/
https://osdn.net/projects/pictmaster/
https://github.com/bayandin/allpairs
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software/downloadable-tools#acts
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software/downloadable-tools#acts
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software/downloadable-tools#acts
http://phadkeassociates.com/index_files/rdexperttestplanning.htm
http://phadkeassociates.com/index_files/rdexperttestplanning.htm
https://github.com/RetailMeNot/pairwise
http://www.satisfice.com/tools.shtml
https://www.tricentis.com/de/tricentis-tosca-testsuite/
https://www.tricentis.com/de/tricentis-tosca-testsuite/
https://github.com/dakusui/jcunit/
https://sourceforge.net/projects/vptag/
https://github.com/josephwilk/pairwise

Metrics in Agile Projects - Does that matter?

Matthias Hansen
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

matthias.hansen@rwth-aachen.de

Horst Lichter
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
lichter@swc.rwth-aachen.de

ABSTRACT
Managing software development is a difficult problem and
the development process usually does not go as planned.
Since the goal of a software development project is the col-
laborative creation of a technical system, measuring relevant
attributes of both the development process and the emerg-
ing product can be expected to lead to better outcomes.
To this end several metrics and applications of metrics have
been proposed in the literature. Agile process models have
gained much traction in recent decades. They emphasize
short feedback cycles, incremental planning and continuous
improvement in relatively small teams. However, it is not
clear how metrics can and should be applied to teams using
these process models. This paper addresses this question by
formulating common goals of metric usage and proposing
methods to achieve these goals in agile projects.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management

Keywords
Software Engineering, Agile Methodologies, Metrics

1. INTRODUCTION
Agile process models have seen widespread adoption in re-

cent years. Their emphasis on short feedback cycles both for
the continuous self-improvement of development teams and
the direction of the software they develop has shown promis-
ing increases in successful project delivery[7]. In particular,
this is achieved by two practices. Firstly feedback from the
customer is continuously incorporated to ensure the software
meets their needs precisely. Secondly, the team continuously
reflects on their process and improves their methodology.

In the context of software development, a metric is a mea-
surement of some aspect of either the software that is devel-
oped or the process used to develop it. In the past, many

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2017/18 RWTH Aachen University, Germany.

metrics have been developed to this end. Agile process mod-
els have also been accompanied by a new set of metrics and
visualizations. However, it is unclear if this obsoletes or
recontextualizes previous work on metrics. The goal of this
paper is thus to give concrete recommendations on how met-
rics should be used in agile projects as opposed to non-agile
projects. To achieve this goal, we will compare some of the
practices commonly used in both approaches.

The rest of the paper is organized as follows: Section 2
gives an overview of the most widespread agile process mod-
els. Section 3 discusses the reasons why metrics might be
used. Section 4 introduces and defines several metrics re-
ferred to later. Sections 5 and 6 detail the use of metrics
with respect to work estimation and progress measurement
as well as continuous improvement. Finally, section 7 con-
cludes the paper.

2. AGILE PROCESS MODELS
Several agile process models have been developed and are

in use. Most widespread among them appear to be Scrum,
Kanban and Extreme Programming (XP) [7]. This chapter
will give a short overview of their core principles and their
stipulations with regard to the use of metrics as outlined in
their seminal texts[1, 8, 2].

Scrum understands itself as a partially fixed process that
should be adopted as-is and then modified in certain pre-
defined ways. It prescribes that software be developed in-
crementally in self-organized small teams. Each increment
should be developed in one iteration of at most one calendar
month–a “Sprint”–and each such iteration is preceded by a
planning meeting to define goals (Sprint Planning) and suc-
ceeded by a demonstration and feedback meeting with the
customer (Sprint Review) and a reflection meeting, in which
the team should try to improve on their process (Sprint
Retrospective). Additionally, the team should meet very
briefly every day to monitor its own progress (Daily Scrum).
Teams should be accompanied by one requirements special-
ist (Product Owner) and one process coach (Scrum Master).
The Product Owner should maintain an ordered list of re-
quirements (Product Backlog). It should be clearly defined
when a work item is considered to be completed (Definition
of Done) and developers should have no fixed specializations
within the team.

Specifically with regard to metrics, the Scrum Guide pre-
scribes that total work remaining both overall and towards
the end of the current iteration, should be measured reg-
ularly. The developers should use this to monitor their
progress towards the Sprint Goal. The product owner should

communicate this total work remaining quantity to the stake-
holders.

Extreme programming (XP) is a set of practices that en-
ables frequent adaptation to new customer requirements.
XP mandates that there is a customer on-site in the same
office as the development team who can be consulted about
the requirements of the software in construction. Software
is developed iteratively, taking into account the customer’s
wishes. In these respects, XP is very similar to Scrum, but
somewhat more vague. However, unlike Scrum, XP is a pro-
cess model that is specific to software development. Thus,
concrete prescriptions with respect to programming practice
are given: code should be tested very extensively, continu-
ously integrated and programmed in pairs of developers to
ensure correctness. With respect to design, there should not
be a comprehensive model of the software before it is built.
Instead the system’s design should grow with the require-
ments and be in a constant flow.

On metrics, XP mandates measuring of velocity, the num-
ber of requirements, formulated as user stories, that are de-
livered on in each iteration. This mostly corresponds to the
changes in the quantity of total work remaining that is mea-
sured in Scrum. Furthermore, acceptance test results should
be published to the team to give them a measure of their
progress from the customer’s point of view.

Kanban is less of a fixed process and more of a process
improvement toolset. Inspired by a production technique
which had been in use at Toyota Motor Corporation[1], it
was first applied specifically for knowledge work in the 2000s.
Like Scrum, it makes certain prescriptions, but these are
generally less concrete in comparison. For instance, while
Scrum sets very clear explicit rules with regard to e.g. reg-
ular meetings that should be held, Kanban only states that
rules should be made clear and explicit. Similarly, there is
a stipulation to visualize and control the flow of work and
to use metrics and models to inspire change from within the
organization, and some of them are noted as particularly
useful. However, no comprehensive list of metrics to use is
given.

Where particular metrics and models are recommended,
there is an emphasis on queueing theory and probabilistic
models. Usually, the object of measurement is understood as
an ongoing, stochastic process. Lead time, the duration for
which an item is in the process and throughput, the speed at
which items pass through the process should be measured.
Both are related to work in progress through Little’s law
(Lead Time = Work In Progress

Throughput
), a mathematical result from

queueing theory. With respect to reporting “we are less in-
terested in reporting on whether a project is ’on-time’ or
whether a specific plan is being followed. What’s important
is to show: that the Kanban system is predictable and is op-
erating as designed, that the organization exhibits business
agility, that there is a focus on flow and that there is clear
development of continuous improvement.” [1].

For example, a software development team might know
that its process currently consists of three stages: Design,
Development and Testing. They might decide to use a white-
board with columns for each stage, where each work item
wanders through the stages. This might then reveal that
lots of work items “queue up” behind the development col-
umn. This is an indication that items move through the pre-
vious stages faster than the Testing stage. The team could
then decide to limit how many work items can be in the De-

sign and Development stage simultaneously. Because work
in the limited stages cannot progress so long as the Testing
stage is overburdened, this forces the team to try to accel-
erate the Testing stage. They might then decide to devote
more resources to Testing or they might look into methods
to develop Software that can be can be tested more easily
or has fewer defects. By forcing developers to view the flow
of items through the process as a whole instead of just par-
ticular stages, bottlenecks can be alleviated and the flow of
items through the system accelerated.

3. GOALS OF METRICS USAGE
Use of metrics can only be evaluated against the goal that

is to be achieved. Generally, metrics are used for several
purposes:

One use of metrics is work estimation and progress mea-
surement. Knowing the amount of work necessary for the
completion of a project allows for calculating the cost of the
project, which is necessary to make the economic decision
whether it is worth it to continue work on a project or even
whether to start it in the first place. Knowing the amount of
work required also allows for making decisions on the num-
ber of engineers to assign. Ideally, one would like to always
be able forecast specifically at what date a project will be
completed for a given number of assigned engineers.

There are several factors inhibiting this ability: Engineer
availability, technical difficulty and even the desired outcome
of the project are not certain ahead of time. In addition,
these are generally planned by an employee who may not be
capable of doing so objectively, either because of or lack of
information or because they are subject to cognitive biases
[6] or simply because they are incentivised to be inaccurate,
for example in a price-to-win dilemma. Even with perfectly
aligned incentives, an estimating employee might still give
inaccurate predictions simply due to a bias such as loss aver-
sion.

Another use of metrics is for continuous self-improvement
of teams. As discussed before, most agile process models
explicitly endorse the use of metrics to this end. However,
it is not clear how to encourage a team to do this.

Some attempts are also being made to use metrics to quan-
tify employee performance to drive personnel decisions. This
has been widely established as ineffective as it is not possible
to capture the actual goals of a company (usually financial)
accurately in quantitative metrics. This can lead to perverse
incentives with potentially devastating effects.

In particular with respect to software engineering, it is
impossible to measure the effect of any programmer’s per-
formance on the financials of their company, because even
small oversights can lead to defects with unbounded costs
several years afterwards. Thus, any such metric that aims
to be informative can only be calculated accurately after it
has ceased to be of interest.

4. METRICS
In this section, we will define some relevant terminology

that will be used throughout the paper.
Agile process models generally slice development work

into small pieces. These are referred to by various terms:
work items, features, tasks, tickets, user stories, epics and
so forth. The reason why the terminology is varied here is
that these terms represent different points of view and are

defined differently by different teams. For instance the term
feature emphasizes that the content should be formulated
from a customer’s point of view. Using the term user story
is additionally associated with the format of “as a [...] I want
[...] in order to [...]”, but not every team follows this con-
vention. Teams might also use these terms in a hierarchical
relationship and define e.g. that a user story is composed
of multiple tasks. For the purpose of this paper, we will
only use the term work item. This will sometimes seem odd:
One would not negotiate with a customer which work items
a software system has to consist of, but this is the easiest
way to deal with inconsistent terminology. Furthermore, we
will assume that there is no hierarchical relationship between
work items.

The Scrum guide mandates tracking total work remaining.
This is simply the count of work items that are currently
formulated in some form or another and have neither been
completed nor definitively rejected.

Velocity is a metric that is commonly associated with XP.
It has two different definitions: One is

Velocity =
work items completed

Sprint

the other is

Velocity =
work items completed−# work items added

Sprint

Notably, the first definition only encompasses the team’s
speed at delivering items to initial satisfaction, whereas the
second definition also includes the customer’s and product
owner’s creativity with respect to new work items and the
amount of work items that are created as a result of e.g.
bugs or previously underspecified behavior. We will refer to
the first definition.

In Kanban, Throughput is often used instead of Velocity,
since Kanban does not have a concept of Sprints. Essentially,

Throughput =
work items completed

time unit

where the time unit can be chosen arbitrarily. In general,
we will denote the used time unit where relevant by writing
for example throughput/week

Lead time is a metric from the Kanban process model: The
lead time of a work item is the elapsed time from the moment
where the item enters the process to the moment where it
leaves the process. Typically these process boundaries are
the moment where the team commits to delivering the work
item and the moment where the work item is handed off
either to the customer or another team.

Cycle time is similar to lead time in that it measures a
time to completion. However, cycle time is the elapsed time
from actively starting work on an item to delivering it.

Work In Progress (WIP) is the number of work items that
are actively being worked on at any point in time. In general,
this metric is specific to Kanban and is there usually limited
by a policy set by the team.

In addition, we define a metric we call Rate of Change
(RoC). This metric refers to the rate at which new work
items are added and removed by the customer. It is com-
puted as

Rate Of Change =
work items added

time unit

where the time unit can be chosen arbitrarily. This metric

does not measure anything about the development process
itself. Instead, it measures a characteristic of the customer:
How uncertain are they about the scope of the project. If
they are very uncertain, they may add many new work items
regularly. A negative RoC means that the customer is un-
certain “in the other direction”, i.e. they initially assumed
the project to have a bigger scope than was necessary. For
example, an accounting firm might commission a software
that replaces an old solution that they have been using for
several decades. They initially assume that the new software
has to have the same exact functionality as the old solution.
During the project, it is discovered that large parts of the
functionality of the old solution were only there to satisfy
certain regulatory requirements. These requirements are not
in effect anymore, so they don’t have to be implemented in
the new software. Similarly, it might be discovered that cer-
tain features of the old solution were actually never used
and also don’t have to be implemented again. In this way,
the RoC of this project might become negative. We stress,
however, that this is not the usual case and that for most
projects the RoC will be positive.

5. WORK ESTIMATION AND PROGRESS
MEASUREMENT

Progress in projects is traditionally often measured in
terms of creating fixed milestones of functionality that should
be available at preset dates. This approach is incompatible
with the goals of agile methodologies:

If a team commits at the beginning of a project to deliver-
ing a certain milestone at a certain date then all of the asso-
ciated functionality can never be removed from the scope of
the project even if it turns out that the functionality is not
actually useful for the customer. Similarly, fixed milestones
make it difficult to add any functionality to the scope of
the project. After all, a development team that is evaluated
by whether they meet milestones is highly incentivised to
sacrifice all other functionality in favor of what is explicitly
mentioned in the milestone. One could, of course attempt
to solve this by adjusting the dates and scopes of the mile-
stones. However, then milestones cease to be a proper mea-
sure of progress. If one can remove and add functionality to
a milestone and adjust the date accordingly, then it is not
clear anymore whether the team is actually on schedule or
whether the milestones have just been adjusted to simulate
being on schedule.

To cope with this, agile process models have some associ-
ated metrics of their own for the purpose of progress mea-
surement as mentioned in previous sections. For instance,
the prescription of Scrum to continuously quantify total work
remaining makes it extremely simple to calculate Velocity
(in one of the above definitions) of the development team.
While not directly prescribed in the Scrum Guide, there is
a tendency to attach an estimate of required effort to each
work item to handle differently sized work items. Typically
this is given in some fictional unit such as Story Points or
Dings which is not meant to be compared to other teams
or any temporal quantity. Work items are then weighted by
their Story Points to calculate Velocity. The sequence num-
ber of the Sprint in which a project will be completed can
then be calculated as

current sprint +
Velocity− RoC/Sprint

story points of total work remaining

.
In Kanban, this deterministic model is replaced with a

probabilistic one[10], which in our case would take into ac-
count all empirical cycle times, WIP, RoC and the number
of remaining work items. The Monte Carlo method that is
used to achieve this then yields not a single estimated com-
pletion date, but a range of completion dates with attached
confidences. This requires measuring lead times on a per
work item basis, but leads to a more precise result. Algo-
rithm 1 shows how this method works, when assuming con-
stant WIP and constant RoC over the whole development
process. The output of the algorithm is an array that can
be interpreted as follows: For n = 200, res[180] is a date,
before which the project will be finished with a probability
of 180

200
= 0.9.

Data: int wip, int rocPerMonth, TimeDelta[]
empiricalLeadTimes, int remainingItems, int n

Result: Date[] res, a sorted array of possible
completion dates

Date[] currentItems = new Date[wip]
setAll(currentItems,today)
int runningMonth = today.month
for i← 0 to n do

while remainingItems > 0 do
ind := argmin(currentItems)
currentItems[ind] := currentItems[ind] +
drawUniform(empiricalLeadTimes)

remainingItems := remainingItems - 1
if currentMonth 6= max(currentItems).month
then

currentMonth :=
max(currentItems).month

remainingItems := remainingItems +
rocPerMonth

end

end
res[i] := max(remainingItems)

end
res := sort(res)

Algorithm 1: Monte Carlo Algorithm for Obtaining
Project Estimates

However, it is important to note that both of these ap-
proaches are only directly applicable to projects that are
already ongoing because empirical data for e.g. velocity, cy-
cle times and the number of remaining items is necessary.
This is by design. The Scrum Guide states: “In complex en-
vironments, what will happen is unknown. Only what has
already happened may be used for forward-looking decision-
making”[8]. Despite this, gaining even vague foreknowledge
of project durations before projects are started is immensely
valuable from a business point of view.

Traditional projects tend to solve this problem by trying
to elicit complete requirements from a customer and pre-
cisely estimate how long fulfilling these requirements will
take using a model such as function points[9] or Cocomo[4]
to map requirements to effort estimates. This is not dis-
similar to the way agile projects might use story points,
the main difference being that these models are more well-
defined. In fact, in e.g. Scrum it is not very problematic
to use function points instead of story points and calculate
velocity on that basis. However, the same problem as before

occurs in this case: One has to receive reasonably complete
requirements for the final product and empirical data on how
fast the team is at delivering this functionality. In addition,
these approaches such as function points and Cocomo usu-
ally do not take into account that the scope of the project
will change over its duration.

To deal with the problem of uncertain scope, one pos-
sible approach would be to start each project acknowledg-
ing that there is currently insufficient empirical evidence to
indicate how long the project will take. Instead, the fore-
case is built and adjusted once such evidence begins to ac-
cumulate. The business decision of whether to pursue the
project would then have to be made after the project has
started, which means that developer time may be wasted
on a project that turns out to be unprofitable. Working in
this way also requires not only an agile development team
but an agile decision making process which few companies
have. Specifically, decision makers would have to carefully
and continuously evaluate the expected cost and utility of
a project and, should it become unprofitable, be able to re-
allocate the team towards a different project on relatively
short notice. The advantage of doing it in this way is that
one can then reliably know that estimates have a concrete
basis and that the current projects that are being pursued
are the most profitable ones.

Another approach to solving this problem would be to
forecast agile projects by collecting a minimum viable set of
work items for the completion of the project with the prior
understanding that these can and will change in the future.
Then the duration of the project can be estimated using the
same methods used for ongoing projects as described above.
Parameters like Velocity and RoC would then have to be
estimated based on data from past projects.

For this to succeed, however, work items from past projects
must be comparable in size. To a certain extent a process
like Scrum guarantees this by prescribing that every work
item should be completable within a Sprint of at most one
month. However, ideally, work items should be much smaller
than that. Care must be taken to ensure that RoC esti-
mation reflects the initial well-definedness of the particular
project. Similarly, Velocity should be estimated with respect
to the ability and size of the team.

5.1 Example Calculation
Company A wants to decide whether to accept an offer

by company B to develop a software product for use in con-
junction with a car that company B plans to manufacture.
To estimate whether they can complete the project in time
for the delivery of the first batch of cars, both companies
have a planning session in which they prepare a set of 50
high-level work items corresponding to features that the fi-
nal product should have. They do this with the agreement
that this set of work items accurately represents the current
assumptions that company B has about which features the
product needs to be shippable. Company B will get an accu-
rate progress report about the current state of development
every three weeks. They can then decide which work items
will get worked on next. In doing so, they can also choose
work items that were not part of the initial set of work items
that was agreed upon.

How can company A decide with reasonable certainty whether
their agile development team can deliver a satisfactory re-
sult by the time company B delivers the first cars to their

customers?
First, company A needs to estimate a suitable RoC. To

this end they take into account:

• This is their second cooperation with company B. In
the previous project, with similarly sized work items, a
RoC of 4 work items every three weeks was measured.
That is, on average, the set of work items increased by
4 every week.

• Company B has never delivered a software product of
this kind to its customers before. They are likely very
uncertain about the desired qualities of the product.

Thus, a RoC of 8 work items can be estimated. Simi-
larly, by considering the size of its team and empirical data
for this team on projects with similarly sized work items, a
throughput of 13 work items per three-week-interval is esti-
mated. To estimate time-to-completion, one can now solve
the equation d(Throughput− RoC)x + 50e = 0. In this ex-
ample, the project will be completed to the satisfaction of
company B in 10 three-week-intervals. This calculation can
be repeated at any time during the execution of the project,
using empirical data for RoC, Throughput and the number
of outstanding work items to give up-to-date estimates.

5.2 Discussion
As the example has shown, allowing for changes to the

scope of the project can dramatically affect project duration
if the rate of changes is not close to zero. Therefore it is
important to include it in initial estimates.

In practice, there are many additional factors that have
to be taken into account: Company B has an incentive to
keep the initial set of work items small and the work items
themselves large. Thus company A has to initially push for
many, relatively small work items.

In addition, the velocity of a team will depend on factors
such as the skill of the programmers and their knowledge of
the domain as well as their ability to work productively as a
team. To work with data on both velocity and RoC from old
projects, work items need to have a comparable size across
projects. If necessary, detailed data from old projects can
be used to convert between them. However, one should keep
in mind that this will never work perfectly if the teams for
these projects were different, because velocity as a measure
of productivity does not scale linearly with the number of
programmers[5] as might be assumed.

We have omitted the Monte-Carlo Method above in this
example for brevity. Applying that method generally yields
a more detailed model but is more complicated to apply.

6. CONTINUOUS IMPROVEMENT
The Agile Manifesto explicitly prescribes the principle

that teams should regularly meet to reflect on their effec-
tiveness and make changes in their methodology accordingly.
With respect to metrics, this means that every single team
even in a large organization must be given the permission
and the means to apply metrics to their processes at their
own discretion and set process policies with regard to this.

For instance, a team might notice an increase in defects
and failure load and therefore create a policy mandating
full statement coverage for every module affected by a work
item, before the work item can ever be marked as completed.
However, this team should also be permitted to break even

company wide policies if they are deemed unhelpful by expe-
rience. For example, if company policy dictates that there is
an upper limit on the number of lines of code of any program,
but a team finds that this constraint leads to an overly com-
plex, poorly readable code style, then they should be able
to ignore the policy.

Note that this does not mean that teams can work however
they want. They are still monitored with regard to metrics
like velocity and they need to produce rational justification
and ideally empirical data in support of their policies. Fur-
thermore, in highly regulated industries, certain policies are
dictated by law. These have to be accepted as constraints
on the process.

The reasons why teams should be given this high degree of
autonomy over their use of metrics are that only they under-
stand their process well enough to choose relevant metrics to
track and make changes based on them. Furthermore every
project has its own profile of requirements. For instance,
in Kanban methodology, it is possible to mark certain work
items as“expedited”and prioritize them over all other items.
Depending on the other policies around the number of items
to be worked on, the simple act of allowing expedited items
significantly increases the variability of lead times for work
items, thereby making it harder to predict when each item
will be finished. However, in some projects, expediting work
items may be necessary to deliver the maximum amount of
business value. Thus, no policy with regard to this can ever
set organization-wide for any organization. It must be possi-
ble for each team to make informed policy decisions on their
own.

However, teams having the autonomy to make decisions
on their use of metrics is only a necessary precondition. How
does one concretely move a team into the direction of using
metrics without pushing them? Several approaches to this
problem have been suggested: The main approach is to pro-
vide every team with a coach who is knowledgeable about
metrics and can introduce them to the team. The team can
then slowly learn to implement and interpret metrics and
make their own informed decisions. In e.g. the context of
Scrum, this is one of the responsibilities of a scrum master.
A similar method is to give teams a “budget” that can be
spent on metrics. This could take the shape of a concrete
financial budget or a ruling such as “up to 1

10
of the work

items in each increment can be spent on improving and in-
terpreting metrics”. Note that this budget does not need to
be particularly large. The purpose of this is primarily to
communicate the permission to work on metrics indepen-
dently without direct orders and only secondarily that of
allocating resources.

Based on this, we can give the concrete recommendation
that organization-wide constraints on the usage of metrics
should be lifted wherever possible. It must be possible for
each team to use metrics as they see fit. This requires a
certain amount of trust in the teams’ ability to make rea-
sonable decisions. Furthermore, additional steps as outlined
above can be taken to encourage the practical use of metrics
by the development teams. These recommendations, espe-
cially the first one, are in line with the fifth principle from
the agile manifesto: “Build projects around motivated indi-
viduals. Give them the environment and support they need,
and trust them to get the job done.” [3]

7. CONCLUSIONS

We have seen the two main types of change that agile
process models encourage: Change of goals and change of
methodology. Our use of metrics should be able to cope
with both of them.

With respect to changes and uncertainty in goals, we have
seen that it is necessary to account for them when forecast-
ing and estimating. A project’s completion date is deter-
mined not only by the current perception of its scope, but
also by the change in this perception. Care has to be taken
to estimate properties of the project such as this change cor-
rectly from past data. Ultimately, all plans will have to be
adapted to a changing reality.

Similarly, change of methodology in agile projects is bottom-
up and constant. Thus, an organizational approach to met-
rics has to be used that ensures that teams can govern them-
selves. In accordance with the agile manifesto, it must be
possible for a team to set their own policies with regard to
their use of metrics.

8. REFERENCES
[1] D. J. Anderson. Kanban: Successful Evolutionary

Change for Your Technology Business. Blue Hole
Press, 2010.

[2] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley Professional, 2000.

[3] K. Beck and M. Beedle. Manifesto for agile software
development, 2001. <http://agilemanifesto.org> 2001.
Accessed on 22.12.2017.

[4] B. W. Boehm, R. Madachy, B. Steece, et al. Software
Cost Estimation with Cocomo II. Prentice Hall PTR,
2000.

[5] F. P. Brooks Jr. The Mythical Man-Month.
Addison-Wesley Longman Publishing Co., Inc., 1995.

[6] D. Kahneman. Thinking, fast and slow. Macmillan,
2011.

[7] A. Komus. Abschlussbericht: Status quo agile
2016/2017: 3. Studie über Erfolg und
Anwendungsformen von agilen Methoden, 2017.

[8] K. Schwaber and J. Sutherland. The Scrum Guide.
<http://www.scrum.org/resources/scrum-guide>,
Accessed on 21.11.2017.

[9] C. R. Symons. Function point analysis: Difficulties
and improvements. IEEE transactions on software
engineering, 14(1):2–11, 1988.

[10] D. S. Vacanti. Actionable Agile Metrics for
Predictability: An Introduction. Leanpub, 2015.

A Review on Automated Refactoring Tools

Jonas Hollm
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

jonas.hollm@rwth-aachen.de

Muhammad Firdaus Harun
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
harun@swc.rwth-aachen.de

ABSTRACT
Software systems decay in quality as they grow over time.
Refactoring denotes the task of improving the structure of
software without changing its functionality. Since refactor-
ing is often time consuming, it is insufficiently applied in
practice. Automated refactoring can ease the work of devel-
opers as well as save companies money.

Common techniques for automated refactoring are combi-
natorial optimization and genetic programming. The essence
of both techniques is to randomly restructure software, fol-
lowed by checks for improvements with the help of certain
software metrics.

It is hard to decide for an appropriate automated refac-
toring solution since, besides [8], there is not much research
on the comparison of such tools. This paper introduces and
compares five tools which are capable of refactoring software
automatically. The tools have been chosen because they are
one of the few automated refactoring tools with published
and comprehensive results.

The examination and comparison of the tools is conducted
regarding six attributes: Refactoring goal, refactoring tech-
nique, input/output, methodology, experimental design and
results.

Finally, this paper makes a recommendation on what tool
to use.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.3 [Software
Engineering]: Coding Tools and Techniques—automated
refactoring, code smell removal

Keywords
Automated Refactoring, Code Smell Removal, Combinato-
rial Optimization, Genetic Programming, Software Metrics

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2017/18 RWTH Aachen University, Germany.

When non-trivial software systems are developed, it is al-
most impossible to know all requirements up front. The
traditional waterfall model starts from the premise that this
is the case, but therefore it has been refined or replaced in
practice. Software evolves over time, meaning new features
are added and old ones are removed or adjusted. Mainte-
nance is crucial for software in order to stay operational.
Additionally, it is also very difficult to get a design right
even if all requirements were known. For that reason, soft-
ware has to be partly or fully restructured after its initial
release to improve maintainability. Often developers know
that a solution they implement has avoidable downsides, but
they postpone the task of rewriting their solution. Mostly
this is due to time constraints that have to be fulfilled and
developing a high-quality solution takes a lot of time. The
problem is that it becomes the more difficult to restructure
a solution the more time passes by.

The solution is to make use of automated refactoring tools.
In the process of refactoring the structure of software is al-
tered, but at the same time its functionality is preserved.
While a developer needs to have deep knowledge of a pro-
gram in order to refactor it, automated tools can work un-
supervised, which saves a lot of resources. Refactoring can
be applied immediately after a certain piece of software has
been developed to improve the initial design. Another use
case is to automatically refactor legacy systems so that they
become more maintainable.

There are many tools which detect code smells and anti-
patterns, but far fewer tools exist that can correct them
properly and even fewer that correct software fully auto-
mated. Most of the refactoring tools work on object-oriented
code. In this context, a frequent objective is to incorporate
appropriate design patterns. Also less sophisticated opera-
tions such as renaming methods is referred to as refactoring,
but this can usually not be done automatically.

Automatic refactoring is a hard task, because if something
is a flaw or not often depends on the context. However,
software should comply with concepts such as high cohesion
and low coupling, so refactoring tools can aim for these goals.
Also, an automated tool does not have the sense of elegance
developers might have. For example, a tool could refactor
software in a way that leads to less code duplication but at
the same time reduces the understandability of the source
code.

To help with the decision of what tool to use, this paper re-
views five automated refactoring tools: A-CMA, TrueRefac-
tor, Dearthóir, REMODEL and DPT. These tools have been
selected because most of the other papers that developed au-

tomated refactoring tools are not very concrete about their
results. However, the results are a crucial factor when com-
paring tools. All of these tools refactor Java programs, al-
though some of them could theoretically refactor programs
written in other programming languages if they would be
adapted accordingly.

2. TOOL ATTRIBUTES
In order to examine the tools in a structured way and to

facilitate the comparison, we introduce six attributes:

1. Refactoring Goal: The objective of the refactoring
process. Examples are the introduction of design pat-
terns or the maximization of a certain software metric.
This attribute is most important for a developer to de-
cide for a tool, because if it is unclear what the tool
actually does, it makes no sense to use it.

2. Refactoring Technique: The approach of the tool.
Examples are combinatorial optimization or genetic al-
gorithms. Different techniques imply different capabil-
ities regarding the refactoring process, such as large-
scale refactoring versus small-scale refactoring. This
can play a role when deciding for a tool.

3. Input/Output: What does the tool expect as input
and what does it produce as output. It is important
to know what the tools can be used for (e.g. Java pro-
grams) and what to expect as result (UML diagrams
etc).

4. Methodology: The refactoring technique in detail.
This attribute is useful to get a deeper insight into
how the tools work.

5. Experimental Design: What kind of test programs
have been used to evaluate the tool. This attribute
helps to assess to what extent the results can be trusted.

6. Result: The findings of the experiment. The result of
the experiments is one of the most essential attributes,
because it is an indicator for the effectiveness of the
tools.

3. TOOLS

3.1 A-CMA

3.1.1 Refactoring Goal
A-CMA [5] focuses on reducing technical debt. Technical

dept (TD) occurs when a reduced quality in software in ac-
cepted to achieve a short-term goal. Usually it is assumed
that the quality will be improved later on, but this will be
the more expensive the longer the developers wait.

3.1.2 Refactoring Technique
A-CMA treats refactoring as a combinatorial optimization

problem with different structures of the input software as
search space. It supports a set of refactorings that can be
applied in order to explore the search space. Two different
metaheuristics can be used to guide the search. Solutions
are assessed with different fitness functions. Each fitness
function is composed of a combination of weighted metrics.

3.1.3 Input/Output
A-CMA refactors Java programs and expects the bytecode

as input.

3.1.4 Methodology
Supported metaheuristics are hill climbing and simulated

annealing, but also a random search is supported. A hill
climbing heuristic selects a better solution based on the cur-
rent solution. The neighbor solutions in the search space are
considered and either the first solution which yields an im-
provement is taken (first ascent) or the solution which yields
the greatest improvement (steepest ascent). A neighbor so-
lution is a solution which can be reached by applying one
refactoring operation. Which kind of hill climbing heuristic
is used is also configurable.

Simulated annealing is similar to hill climbing. The dif-
ference is, that this heuristic starts with a so called temper-
ature that represents the probability that a worse solution
than the current one can be chosen. This temperature de-
creases during the search. When it reaches zero, simulated
annealing behaves exactly like hill climbing. The purpose of
the temperature is to overcome the problem of local optima.
A local optimum is a solution that is best in its local neigh-
borhood, meaning all its neighbor solutions are worse. Hill
climbing cannot leave such a solution and thus may misses
better solutions elsewhere in the search space.

A-CMA can choose from 20 different refactoring opera-
tions. These refactorings are grouped in operations that
work on fields, methods and classes. A field-level operation
is for example changing the security level, meaning it mod-
ifies the access specifier (private, protected, public). An-
other example is to move fields up to the superclass or down
to a subclass. Method-level operations can do the same as
field-level operations, but additionally the type of a method
can be changed (to static or final, for instance). Class-level
operations can add or remove keywords to classes, such as
abstract or final. Furthermore, factories can be introduced
the will be used instead of creating objects directly via con-
structors. Operations on all levels can also remove unused
fields, methods or empty classes. Refactorings are only ap-
plied when it makes sense. For instance, a method which is
already static will not be made static again.

The fitness function used by the heuristics can be specified
by assigning weights to the 24 supported metrics. Examples
for metrics are the number of fields per class, the number
of implemented interfaces, the level of nested classes, the
number of descendants per class and the number of elements
that depend on a class. The authors of A-CMA used four
fitness functions during their experiments: TD, abstraction,
coupling and inheritance. TD has already been described
above. Abstraction is a measure of how easy it is to extend a
software system. Coupling denotes how many dependencies
there are between classes. Inheritance refers to the amount
of subclasses and implemented interfaces.

3.1.5 Experimental Design
A-CMA has been tested with six Java programs. Overall,

they consist of 601 classes and 42, 000 lines of code.

3.1.6 Result
The results show that simulated annealing was superior

compared to random search and hill climbing. Figure 1
shows the overall mean quality gain for the four fitness func-

tions. A-CMA was able to improve 2 out of 4 metrics: cou-
pling and technical dept.

Figure 1: A-CMA - Results

3.2 TrueRefactor

3.2.1 Refactoring Goal
TrueRefactor [3] removes code smells.

3.2.2 Refactoring Technique
TrueRefactor utilizes genetic algorithms (GA) to deter-

mine the best sequence of refactorings for code smells it
found. The genetic algorithms are guided by software met-
rics.

3.2.3 Input/Output
TrueRefactor takes the codebase directory of Java pro-

grams as input. It provides a GUI the user can use to
parametrize the GA and to monitor the refactoring progress.
When no parameters are given, TrueRefactor will select de-
fault values based on the complexity of the input program.
The process stops when a certain quality has been reached
which is indicated by a low number of code smells.

The output of TrueRefactor is an UML diagram of the
control flow graph (CFG) that resulted from the best refac-
toring sequence. This helps programmers to get a better
understanding of the solution TrueRefactor found.

3.2.4 Methodology
The first step is to build a CFA of the entire program.

Based on this graph, code smells are detected. For each
individual smell, TrueRefactor generates a sequence of al-
gorithms that removes the particular smell. A GA searches
for the best sequence of refactorings, meaning the sequence
which removes the most code smells. Hence, the solution
space of the GA consists of sequences of refactorings.

To detect code smells, TrueRefactor uses detection algo-
rithms for five different code smells:

1. Temporary Field: A variable that is empty in most
control flows.

2. Shotgun Surgery: A large modification requires many
small changes at many different locations.

3. Large Class: A class that fulfills to many tasks.

4. Lazy Class: A class that fulfills not enough tasks.

5. Long Method: A too complex method.

For refactoring the code smells, 12 refactoring operations
are available. Like A-CMA, TrueRefactor differentiates be-
tween class-level refactorings, method-level refactorings and
field-level refactorings. Fields and methods can be moved
through the inheritance hierarchy or to different classes. Be-
yond that, class hierarchies can be modified by splitting a
class into a superclass and a subclass or by removing a class
from a hierarchy and moving its functionality to a superclass
or subclass. Also, methods can be split into multiple simpler
methods.

The GA performs iterations until its termination condi-
tion is met. In each iteration it tries to find better solutions.
The idea of genetic algorithms is to simulate the reproduc-
tion of living beings. The genes of the parents are recom-
bined and maybe mutated to create the genes of the child.
In the context of TrueRefactor, an individual is a sequence of
refactorings. The number of individuals depends on the pop-
ulation size. When new individuals are created, parts of ex-
isting refactoring sequences are copied and glued together to
form a new refactoring sequence. Then, mutation is applied
with a certain usually low probability, meaning refactoring
operations are exchanged, added or removed randomly.

Refactorings are evaluated by applying the refactoring se-
quence to the CFG. The modified CFG is checked for re-
maining code smells. Afterwards, a fitness function is used
to assess how good the individual performed. The fitness
function of the GA takes not only software metrics into ac-
count, but also reusability, understandability and maintain-
ability. A subset of the best individuals is chosen to remain
in the population, the rest is removed. This procedure is
inspired by natural evolution, where only the fittest individ-
uals survive. In the next iteration, the fittest individuals
from the previous generation are recombined with the hope
that this results in ever better refactoring sequences. The
parameters of the GA, such as population size, mutation
rate or maximum number of iterations can be adjusted via
the GUI.

3.2.5 Experimental Design
TrueRefactor has been tested with a small tool for navi-

gating a virtual vessel through a 2D environment.

3.2.6 Result
Figure 2 shows a comparison between code smell counts

before and after the genetic algorithm refactored the source
code. The abbreviations mean (from left to right): lazy
class, long method, long class, shotgun surgery, temporary
field. TrueRefactor was able to reduce the number of 3 out
of 5 types of code smells.

3.3 Dearthóir

3.3.1 Refactoring Goal
Dearthóir [7] has its focus on improving the quality of soft-

ware by optimizing multiple conflicting metrics. It defines
quality as the compliance with a given set of heuristics that
are built up from different metrics.

3.3.2 Refactoring Technique
Similar to A-CMA it uses combinatorial optimization and

simulated annealing to explore the search space which con-
sists of alternative designs. Dearthóir stochastically applies

Figure 2: TrueRefactor - Results

refactorings to a program and evaluates the result. Heuris-
tics steer the search into the right direction.

3.3.3 Input/Output
Dearthóir refactors object-oriented Java programs.

3.3.4 Methodology
The problem of many other refactoring approaches is that

they concentrate on improving software with respect to one
metric. That can lead to an overall poor design. For in-
stance, restructuring the inheritance hierarchy often results
in a reduction of cohesion. Object-oriented design often
deals with trade-offs like sharing responsibilties to reduce
the number of small classes. Unfortunately, this leads to
stronger coupling.

Defining suitable metrics for automated refactoring is chal-
lenging. Quality metrics such as error-proneness are too ab-
stract and are more useful for project management. For
refactoring software in a way that it becomes more exten-
sible and reusable, more detailed metrics are needed. An
example for a suitable metric is minimize accesses to at-
tributes that are not defined inside the corresponding class.
In other words, ensure high cohesion.

As already mentioned above, Dearthóir defines quality as
the compliance with a given set of heuristics. This set can
be adjusted to the needs of the user. To compare different
designs, a single quality value is calculated as the weighted
sum of multiple metrics. The link between heuristics and
metrics is that a heuristic is an intuition of what is good
design. One or more metrics are derived from that intuition,
while each metric is a formula that calculates a single value.

To explore the search space, simulated annealing has been
chosen because it has proven to be effective in research.
Refactorings are applied stochastically. In order to search
the search space without restrictions, it must be possible to
undo particular refactorings. For instance, pulling a method
up to a super class has to be reversible by pushing it down to
the subclass. Other supported refactorings are for example
moving classes in the inheritance hierarchy or extracting a
subclass from a superclass. The refactorings are limited to
those that change the position of a method in the inheritance
hierarchy.

There are several constraints when choosing a suitable
heuristic. First of all, the heuristic must relate to a mea-
surable property that has to be minimized or maximized.
Moreover, the metrics derived from that heuristic have to

have a precedence. Often metrics influence each other. For
example, maximizing one metric can result in minimizing an-
other metric. Therefore, it has to be defined which metrics
are more important. More important metrics are assigned a
heavier weight. The metric dependencies form a a directed
graph which has to be acyclic. If it has a cycle, the set of
metrics is not suitable for refactoring.

The heuristics used in Dearthóir are

• Same functionality in multiple classes is extracted and
moved to a common superclass

• All base classes should be abstract, except it results in
featureless subclasses

• The number of messages that can be sent to a class is
minimized

• Useless classes are removed

The derived metrics are

• RM: Minimize rejected methods (Methods that are
inherited but not used)

• UM: Minimize unused methods

• FC: Minimize featureless classes

• DM: Minimize duplicate methods

• AS: Maximize abstract classes

Figure 3 shows that duplicate methods and unused meth-
ods are most important and abstract classes are least im-
portant.

Figure 3: Dearthóir - Metric Precedence Graph

3.3.5 Experimental Design
Dearthóir has been tested with an artificial test Java pro-

gram consisting of 8 classes.

3.3.6 Result
Figure 4 shows that Dearthóir could improve 3 out of 5

metrics.

3.4 REMODEL

3.4.1 Refactoring Goal
REMODEL [4] introduces design patterns into object-

oriented software.

Figure 4: Dearthóir - Results

3.4.2 Refactoring Technique
REMODEL uses genetic programming with software met-

rics as fitness function.

3.4.3 Input/Output
The output of REMODEL is a strategy of how to change

the input software to a better design. This strategy can be
applied manually or automatically.

3.4.4 Methodology
REMODEL consists of three modules: supported design

patterns, the design change mechanism and metrics. This
modular approach is more flexible than a monolithic ap-
proach, because each module can be exchanged indepen-
dently.

Other refactoring approaches often make iterative changes
to a program. The problem is, that such kind of modi-
fications are not suitable for creating complex design pat-
terns. However, evolutionary changes as implemented with
genetic programming consider the interaction and compo-
sition of multiple design changes. Thus, the evolutionary
approach of REMODEL is able to generate more innovative
design patterns than iterative approaches. Design patterns
are desirable, because they improve the maintainability and
reusability of larger software systems.

In the context of REMODEL, an individual in the search
space of the genetic algorithm consists of a design graph and
a transformation tree. The design graph is comparable to
an UML class diagram, but it contains additional seman-
tic information such as function calls or class instantiations.
The transformation tree consists of nodes which represent so
called minitransformations. Minitransformations are simple
refactoring operations, but composed they can create com-
plex patterns. Examples for minitransformations are the
introduction of a wrapper or a delegation.

When a transformation tree is executed, it modifies the
design graph of the corresponding individual. Nodes are ex-
ecuted from the top to the bottom and from left to right.
Besides the transformation nodes, there are also information
nodes. They represents elements of the design graph such
as classes. Their purpose is to serve as input to the trans-
formation nodes. This is why information nodes have to be
the children of transformation nodes.

Supported genetic operations are point mutation and sub-
tree crossover. When point mutation is used, a single node is
altered, added or removed. When subtree crossover is used,
an entire subtree of the transformation tree is exchanged. It
has to be ensured that the resulting tree is still valid. For
instance, an information node must not be the parent of a
transformation node.

There are two possible optimizations. Firstly, instead
of single transformation nodes, REMODEL can work with
transformation node templates that are known to introduce
proper design patterns. Secondly, it has proven to be a more
effective to tweak the genetic algorithm in a way that it in-

troduces less transformation nodes.
The fitness function comprises a value calculated by the

QMOOD metric suite [1], a value that reflects the presence
of design patterns, a bonus for certain sequences of trans-
formation nodes and a penalty for too many transformation
nodes. The presence of design patterns can be detected with
the help of a Prolog program or SQL. Each value except the
QMOOD value has a coefficient, but it is an open questions
which coefficients are most suitable.

3.4.5 Experimental Design
REMODEL has been tested with a large, web-based soft-

ware system. This system is also known as ReMoDD, a
repository for model-driven development. It consists of 23
classes.

3.4.6 Result
Figure 5 shows the total number of generated design pat-

terns from five independent runs of REMODEL. On aver-
age, the best individual in each run had 4.5 transformation
nodes.

Figure 5: REMODEL - Results

3.5 DPT

3.5.1 Refactoring Goal
DPT [6] constructs automated transformations in order

to introduce design patterns into software.

3.5.2 Refactoring Technique
The programmer has to select the target design pattern.

DPT in turn selects from its internal library of transfor-
mations the transformations needed for applying the design
pattern to the input program. In a strict sense, DPT is not
an automated tool, but its technique can be used to cre-
ate fully automated tools. For instance, REMODEL builds
upon DPT.

3.5.3 Input/Output
DPT is written in Java and also works with Java programs

as input.

3.5.4 Methodology
The first step is to select a target design pattern for a

specific part of the program. Then, a starting point for the
transformation, a so called precurser, is chosen. A precursor
can be seen as an intent for a certain design. It is simple and
usually developed during the prototyping phase. Despite its
simplicity it should not be of poor design. The transforma-
tion is now decomposed into a minipattern sequence. For

example, the minipatterns of a factory method are abstrac-
tion, encapsulated construction and abstract access. The
same minipatterns can be found in different design patterns,
meaning they can be reused. Minipatterns are created with
the help of minitransformations. The target pattern is cre-
ated via the composition of minitransformations.

DPT supports seven design patterns: Bridge, Strategy,
Singleton, Prototype, Builder, Abstract Factory and Factory
Method. REMODEL is based on the minitransformations
of DPT.

3.5.5 Experimental Design
DPT has been tested with 23 design patterns from the

Gamma catalogue [2]. For each design pattern, it was tried
to find a suitable precursor and the corresponding minitrans-
formations.

3.5.6 Result
Figure 6 shows that the methodology works for almost

half of the design patterns.

Figure 6: DPT - Results

4. DISCUSSION
The tools use basically two different techniques: combi-

natorial optimization and genetic algorithms. Genetic algo-
rithms seem to be more useful regarding the introduction
of design patterns because it refactors software on a larger
scale which presumably leads to better solutions. Combi-
natorial optimization on the other hand just does iterative
small-scale changes.

The tools show a similar success rate: between 48 and 60
percent. However, there are big differences in the experi-
mental design. Some tools have been tested with real world
applications whereas other tools have been tested with a
small piece of software that has been written just for that
purpose. The results of such tools may be not representative
for their effectiveness.

The inputs of all refactoring tools are Java programs. The
output however is either a formal description of the refac-
torings or the refactorings are really applied. To output just
a description allows a developer to examine the refactoring
solution to get a better understanding of how the solution
actually modifies the input program. On the contrary, ap-
plying the changes fully automated saves developers much
more time which seems to be the more significant benefit.

REMODEL is the most interesting tool since it is the only
one that introduces large-scale changes fully automated. Fur-
thermore, it has been testes extensively. The only downside
is that it does not apply refactorings automatically.

A-CMA is a good choice: it refactors fully automated and
underwent a large-scale test. On the other side, it only refac-
tors on a small scale.

Dearthóir has similar characteristics compared to A-CMA,
but an additional problem is that it has only been tested
with a simple program.

TrueRefactor uses genetic algorithms but unfortunately
it does not make use of its potential to refactor on a large
scale. Other drawbacks of using this tool are that is has not
been tested with complex software and that it just outputs
an UML diagram of the refactored software.

DPT is only suitable for use as startpoint for fully auto-
mated solutions.

5. CONCLUSIONS
In this paper, we examined and compared five automated

refactoring tools and found that all of them show potential,
but not every tool is equally suitable for easing the life of a
developer. First of all, the tools are restricted to Java pro-
grams which leads to less people who can use those tools.
Moreover, not every tool actually modifies the input pro-
gram, meaning the developer still has a lot of work to do.

Regarding robustness, REMODEL and A-CMA are the
best choices. When deciding for a refactoring tool, the two
most important things to consider are the scale of refactoring
and if the changes are applied automatically. When large-
scale refactoring is more important than the automatic ap-
plication of the refactorings, REMODEL is the better choice.
Conversely, A-CMA is the better choice.

One should bear in mind that all refactoring tools work
with the help of metaheuristics, so there is no guarantee that
they will find a good solution or any solution at all.

6. REFERENCES
[1] J. Bansiya and C. Davis. A hierarchical model for

object-oriented design quality assessment. IEEE
Transactions on Software Engineering, 2002.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: Elements of reusable object-oriented
software. Addison-Wesley Professional Computing
Series, 1995.

[3] I. Griffith, S. Wahl, and C. Izurieta. Truerefactor: An
automated refactoring tool to improve legacy system
and application comprehensibility. Proceedings of the
ISCA 24rd International Conference on Computer
Applications in Industry and Engineering, 2011.

[4] A. C. Jensen and B. H. C. Cheng. On the use of genetic
programming for automated refactoring and the
introduction of design patterns. Proceedings of the 12th
annual conference on Genetic and evolutionary
computation, 2010.

[5] M. Mohan, D. Greer, and P. McMullan. Technical debt
reduction using search based automated refactoring.
Journal of Systems and Software, 2016.

[6] M. O’Cinnéide. Automated application of design
patterns: A refactoring approach. PhD thesis, 2001.

[7] M. OKeeffe and M. O’Cinnéide. Towards automated
design improvement through combinatorial
optimisation. Workshop on Directions in Software
Engineering Environments, 2004.

[8] J. Simmonds and T. Mens. A comparison of software
refactoring tools. Programming Technology Lab, 2002.

Enterprise Architecture Model Classification

A Taxonomy for Model Requirements

Niels von Stein
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

niels.von.stein@rwth-aachen.de

Simon Hacks
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
simon.hacks@swc.rwth-aachen.de

ABSTRACT
The discipline of Enterprise Architecture (EA) is still objec-
tive to very active research that continuously reveals new
insights. By employing case studies as evaluation method,
the divergence between business needs and research output
can be reduced significantly. However, there is a limited ac-
cessibility and reusability of real world EA models. In con-
sequence, researchers tend to fall back to using exemplary
models which might not adequately represent real world sce-
narios. This paper does a first step to overcome this by
analyzing existing literature and aspects of their investiga-
tion. We define a taxonomy to classify EA models according
to content and meta-model while also shedding light on the
requirements for EA models in the evaluation of recent re-
search.

Keywords
Enterprise Architecture, Model Database, Research Evalua-
tion, Model Classification

1. INTRODUCTION
The continuous establishment of Enterprise Architecture

(EA) techniques as a mean to model a holistic representation
of corporate structures, processes and Information Technol-
ogy (IT) infrastructure in practice still attracts many re-
searchers today [1, 15]. At the same time, the application
of in Information Science (IS) widely accepted systematic
research procedures like Design Science Research (DSR) or
adapted approaches ensure a certain level of quality. In DSR
the evaluation is a crucial step to actually develop a resilient
artifact which can contribute to research [22, 12]. While
many tools for evaluation are given, employing case stud-
ies effectively offer a unique way to either understand real
world phenomena or to observe interdependencies in a real
world environment [5]. In contrast to this naturalistic evalu-
ation approach there have also been observations of artificial

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2017/18 RWTH Aachen University, Germany.

evaluation approaches as Venable [20] describes. Here the
developed artifact undertakes an evaluation at non-realistic
conditions that produces results which do not hold in a re-
alistic setting [20]. In EA research the use of case studies as
evaluative method can be inhibited by companies concerns
as the EA modeling represents a powerful strategic tool [13].
Although, there is no empirical evidence to which degree EA
research faces this issue, many examples of a fallback to ar-
tificial evaluation by using exemplary data-sets can be given
[7, 17, 2, 24].

In order to support researchers in the evaluation of their
contributions, the vision of an Enterprise Architecture Model
Database Platform (EAMDP) is born to offer a collection of
real world EA models. While the dependency on artificial
evaluation due to limited accessibility to real world cases can
be circumvented, EAMDP could also serve as a publishing
platform for conducted case studies to continuously enhance
the pool of available models.

As a first step towards EAMDP this paper investigates
which EA model aspects are of interest for evaluating EA
research contributions. This breaks down into two parts
where in one step a taxonomy is derived in order to establish
a uniform measure to classify heterogeneous EA model data-
sets according to content and meta-model. In a second step
recent research in the discipline of enterprise modeling is
investigate to answer the research question:

• What are the requirements for evaluative EA model
data-sets? (RQ)

The next section gives insights about existing literature in
this direction. Section 3 elaborates in detail the approach to
answer the research question. The results are presented in
Section 4 while Section 4.2 also gives insights about schema
application. In closing, Section 5 discusses the result and
gives directions for further work.

2. RELATED WORK
In the past EA practitioners as well as EA researchers

have put a lot of effort in formalizing EA model representa-
tion by defining sophisticated frameworks and meta-models.
While today a large number of EA frameworks and corre-
sponding meta-models exist, certain general patterns can
be abstracted. In this context, Franke et al. [8] investi-
gated possibilities of classifying EA frameworks according
to shared concepts. The authors abstract entities and ar-

tifacts of EA frameworks to conceptual classes that form a
meta framework. This work sheds light on differing model-
ing scopes of EA frameworks by comparing their coverage of
the abstracted concepts in the meta framework. However,
this meta framework does not provide any macro perspec-
tive on EA models since it focuses on single entities instead
of larger model structures.

Furthermore, a layered representation of EA models has
become a fixture in the discipline of enterprise modeling.
While the top layer comprises strategic positioning and goals
of the organization (specifying the ”what”), subsequent lay-
ers derive required processes and IT architectures from it
(specifying the ”how”). A general differentiation between
5 layers among EA modeling frameworks can be observed
while the actual set of present layers depends on the frame-
work [23]. This encourages heterogeneity between EA mod-
els formulated by different frameworks and impedes a direct
comparison. Nevertheless, this approach provides a good
perspective on macro components of EA models why we
take this as a foundation of our model.

In consideration of EAMDP as a platform for EA model
data-sets, examples from other disciplines about the valu-
able contribution of data-set platforms can be given. In the
field of machine learning and particular in computer vision
ImageNet [4] has become the source for ground truth la-
beled general image data. The contribution of this database
to research appears as the annual ILSVCR image recogni-
tion challenge which enabled some very important findings
of the field [14].

3. RESEARCH DESIGN
This research follows the widely applied guidelines of DSR

[22] in IS by contributing a viable and verifiable artifact
which was developed by a structured procedure.

For the development of the model we performed a Sys-
tematic Literature Review (SLR) according to Kitchenham
et al. [9]. We further use the results of our review as a
single case study to the final schema with regards to our
RQ. The keyword design was intentionally very general as
we aimed for a wide coverage of publications in this field.
The term set encompassed the terms ”architecture”, ”archi-
tect”, ”enterprise”, ”enterprise architecture” and ”enterprise
modeling”. As a result of limited accessibility to an sufficient
number of journals due to commercial reasons, we decided
to focus on conference publications in the retrieval.

We used dblp1 to obtain well ordered collections of pro-
ceedings of prominent conferences2 related to research in
EA. Subsequently, we refined the result by applying the dis-
junction of all terms in the term set. Moreover, we limited
the time interval to conferences in the last 8 years as [15]
showed a strongly growing interest in EA by journal publi-
cations since 2009. Because we use a comparable term set,
we expect a similar feedback at conference publications.

1http://dblp.uni-trier.de
2X CIS, CAiSE, ICEIS, EDoc

In the initial search we identified 25 potentially relevant
publications by applying the following selection criteria:

• The research explicitly or implicitly follows a Design
Science approach according to [22, 12]

• The research conducts an evaluation or application of
a proposed method or model

• The research utilizes EA model case studies or exem-
plary EA model data-sets for their evaluation or ap-
plication

This set was refined by a more in-depth inspection with the
same schema to a total number of 14 relevant documents.
Furthermore we excluded 3 documents from the pool as they
propose an EA framework extension. Since a framework ex-
tension is meant to enhance the capabilities of a framework
for certain use cases, each exemplary EA model used in the
research demonstrates such a use case. The requirements
for the evaluative EA model therefore are very specific and
do not contribute to our analysis.

The demonstration of the taxonomy is performed by ap-
plying it to the results of the SLR as a single case study.
This shows it’s applicability while also giving insights to po-
tential improvements. Since we applied small modifications
to our initial model based on the feedback from the single
case study, the findings of our work are not sufficiently eval-
uated in a methodical perspective. However, the improved
taxonomy compensates for this and an evaluation will be
given in future work.

4. EA MODEL CLASSIFICATION

4.1 Schema
The review shows that an essential differentiation of model

artifacts is with regards to their general modeling intention.
In [18], many model components related to the layered archi-
tecture model are investigated. However, the authors also
look at governing model artifacts particularly about how
well an architecture model is maintained. Consequently, we
define the top level class Category that differentiates be-
tween architecture model and governance model. While the
architecture model comprises the actual EA representation,
the governance model captures artifacts of EA model man-
agement.

By further investigation on the architecture model we ob-
served that all 11 papers operate their evaluation on rather
specific components instead of looking at a whole model.
Even if the authors introduce a case study with a compre-
hensive EA model, the evaluation considered very specific
parts of it for example only the technical layer or process
layer [21, 16]. In [17] the authors used an EA model’s vi-
sions and goals hierarchy for their evaluation although the
exemplary data-set consists of much more information. In
this case the relevant components of the EA model were the
dependencies between visions and goals. In [24, 2, 11] even
larger components were used spreading along multiple layers
of the EA model. The demand with regards to content of
evaluative EA model data-sets represents a central criteria
for data-set selection. Therefore, we define the second class
Scope to capture this aspect. We adapted the layered ap-
proach and agree with Winter’s outline of essential EA layers

Table 1: Results of EA model classification

Category Scope Format

Architecture

Motivation u u u u m

Business u u m v v u u m

Process u s m s m u m

Application m v u m u m

Technology v v u m u m

Governance Maintenance m

[17][11][19][10][21] [7] [2] [3] [16][24][18]

Paper

u:ArchiMate s:BPMN v:Other m:Unspecified

[23] for this class. However, we noticed in certain cases this
outline was too detailed while at certain other cases infor-
mation was lost when applying the schema. With regards
to the architecture model this class consists of the following
scopes:

• Motivation - We separate the EA motivation from
the business model as a holistic perspective obscures
differentiated dependencies on either the business model
or the business motivation which is the case in [17, 18].

• Business - This represents the fundamental corporate
structure as well as any relationships between actors
or processes of the business architecture [23].

• Process - This layer is fully adapted and represents
”the fundamental organization of service development,
service creation, and service distribution in the rele-
vant enterprise context” [23, p. 2].

• Application - Since there was no observation of re-
quirements for a deeper differentiation of business inte-
gration and software architecture, we merge the layer
”Integration Architecture”and ”Software Architecture”
representing an organization’s enterprise services, ap-
plication clusters and software services [23].

• Technology - This layer is fully adapted and repre-
sents the underlying IT infrastructure [23].

Subsequently, we apply this examination in a same way
to the governance model. Fischer et al. identifies EA model
maintenance as an important aspect of the governance model
[6]. This is also reflected by the results of the SLR and is
therefore includes as a scope for the governance model [18].
Although, there exists many more aspects of EA model gov-
ernance (e.g. implementation procedures, governance goals)

the SLR does not reflect any requirements for them in eval-
uative EA model data-sets. Therefore, it is left to mention
that the list of scopes may not be completed at this point.

In some papers the proposed method relies on certain
properties introduced by specific frameworks [24, 11]. Oth-
ers require EA models where the actual meta-model was of
less importance or they require models that follow either less
formalized or more general meta-models [16]. Researchers
therefore may require model data to follow a specific con-
ceptual format which is captured by the last class Format.
In this case, conceptual format serves as a generic term for
meta-model or framework. The definition of member in-
stances of this class is omitted as this can be easily derived
from naming prominent frameworks. One technical remark
about the scenario of EAMDP where researchers could even
contribute an EA model of any format by specifying the
corresponding meta-model directly in the database.

4.2 Application
Given the result of the proceeding step, the reviewed doc-

uments are classified according to their requirements on the
evaluative EA model data-set which is presented in Table 1.
This overview sheds light on the current situation according
to the RQ and offers insights into the focus of recently de-
veloped methods in the domain of EA. In the following, two
publications are discussed in more detail to further elabo-
rate the rationale behind the approach.

In [17], the authors investigate methods for risk mitiga-
tion according to quantitative and qualitative risk measures
of EA models. The evaluation of the method is performed
on the prominent exemplary ArchiSurance EA model. How-
ever, the proposed method only requires the model’s overall
motivation as input. Given that, we can determine Category

and Scope as it targets the business’ motivation. The data-
set is constructed with ArchiMate which sets our third class.

In [19], a method for an automated re-design of EA’s op-
erational level based on data mining techniques is proposed.
The authors employ a real case study to evaluate their find-
ings. The case comprises a comprehensive EA model spread-
ing over multiple layers. The evaluation does not require any
governance model components so that the Category is set
to architecture model. Within the architecture model, the
required component is manifold. The method looks at busi-
ness model, business motivation as well as process model.
Consequently, the Scope reaches through these 3 layers. In
Addition, the proposed method requires two differing con-
ceptual formats for business model/motivation and process
model. While the business part is expected to be formu-
lated with ArchiMate, process models must be defined with
BPMN. This renders the model requirements of this publi-
cation to a more complex variant.

5. CONCLUSION
In this study we derived a simple taxonomy based on ac-

cepted means in EA research that classifies models according
to content and meta-model. For this we adapted and re-
fined the idea of a layered model representation to a unified
mean to quantify a model’s components. Subsequently, we
conducted a systematic literature review and applied this
schema to EA model data-sets used in the evaluation of
findings in conference publications over the past 8 years.
Furthermore, we analyzed 11 papers to answer the question
about what requirements for evaluative EA model data-sets
exist.

The findings show that EA research and consequently it’s
evaluation requires very diverse EA model components in
terms of scope. Nevertheless, evaluation on all identified
components of an EA model rarely happened what gives
reason for a federated approach for providing evaluative EA
model data-sets via EAMDP. However, this requires further
investigation by enhancing the literature review as there ex-
ist some limitations. A little number of publications only
give implicit insights about the inputs of their evaluative
data-set. While this amount was comparable small and any
misinterpretation may not bias the results significantly, an
extended review would eliminate this. Another limitation
refers to the literature review as a single case study for the
taxonomy. Since all publications either require no specific
meta-model, rather unknown meta-model or the ArchiMate
framework we had no verification if our taxonomy conforms
with other prominent frameworks. However, we believe this
is the case since we adapt approaches which comprises in-
fluences from many meta-models and frameworks.

Looking at the big picture of EAMDP, our taxonomy
serves as a starting point of future development about the
internal organization of this platform. At the same time fur-
ther work is needed to investigate on technical aspects like
model anonymization or model portability to finally lower
the barriers of EA model sharing.

6. REFERENCES
[1] S. Aier, C. Riege, and R. Winter. Classification of

enterprise architecture scenarios-an exploratory
analysis. Enterprise Modelling and Information
Systems Architectures, 3(1):14–23, 2008.

[2] G. Antunes, J. Barateiro, A. Caetano, and J. L.
Borbinha. Analysis of federated enterprise architecture
models. In ECIS, 2015.

[3] D. Birkmeier and S. Overhage. A semi-automated
approach to support the architect during the
generation of component-based enterprise
architectures. In ECIS, page 218, 2012.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

[5] L. M. Dooley. Case study research and theory
building. Advances in developing human resources,
4(3):335–354, 2002.

[6] R. Fischer, S. Aier, and R. Winter. A federated
approach to enterprise architecture model
maintenance. Enterprise Modelling and Information
Systems Architectures, 2(2):14–22, 2015.

[7] U. Franke. Enterprise architecture analysis with
production functions. In Enterprise Distributed Object
Computing Conference (EDOC), 2014 IEEE 18th
International, pages 52–60. IEEE, 2014.

[8] U. Franke, D. Hook, J. Konig, R. Lagerstrom,
P. Narman, J. Ullberg, P. Gustafsson, and M. Ekstedt.
Eaf2-a framework for categorizing enterprise
architecture frameworks. In Software Engineering,
Artificial Intelligences, Networking and
Parallel/Distributed Computing, 2009. SNPD’09. 10th
ACIS International Conference on, pages 327–332.
IEEE, 2009.

[9] B. Kitchenham. Procedures for performing systematic
reviews. Keele, UK, Keele University, 33(2004):1–26,
2004.

[10] D. Őri. Pattern-based misalignment symptom
detection with xml validation: A case study. In
Workshop on Enterprise and Organizational Modeling
and Simulation, pages 151–158. Springer, 2017.

[11] S. Oussena and J. Essien. Validating enterprise
architecture using ontology-based approach: A case
study of student internship programme. In Proceedings
of the 15th International Conference on Enterprise
Information Systems - ICEIS, pages 302–309. IEEE,
2013.

[12] K. Peffers, T. Tuunanen, M. A. Rothenberger, and
S. Chatterjee. A design science research methodology
for information systems research. Journal of
management information systems, 24(3):45–77, 2007.

[13] K. Pessi, T. Magoulas, and M.-Å. Hugoson. Enterprise
architecture principles and their impact on the
management of it investments. Electronic Journal
Information Systems Evaluation, 14(1):53–62, 2011.

[14] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV),
115(3):211–252, 2015.

[15] P. Saint-Louis and J. Lapalme. Investigation of the

lack of common understanding in the discipline of
enterprise architecture : A systematic mapping study.
2016 IEEE 20th International Enterprise Distributed
Object Computing Workshop (EDOCW), pages 1–9,
2016.

[16] A. Santana, D. Simon, K. Fischbach, and
H. de Moura. Combining network measures and
expert knowledge to analyze enterprise architecture at
the component level. In Enterprise Distributed Object
Computing Conference (EDOC), 2016 IEEE 20th
International, pages 1–10. IEEE, 2016.

[17] S. Sousa, D. Marosin, K. Gaaloul, and N. Mayer.
Assessing risks and opportunities in enterprise
architecture using an extended adt approach. In
Enterprise Distributed Object Computing Conference
(EDOC), 2013 17th IEEE International, pages 81–90.
IEEE, 2013.

[18] F. Timm, S. Hacks, F. Thiede, and D. Hintzpeter.
Towards a quality framework for enterprise
architecture models. In Proceedings of the 5th
International Workshop on Quantitative Approaches
to Software Quality (QuASoQ 2017) co-located with

APSEC, volume 4, page 14âĂŞ21, Nanjing, China.

[19] T.-M. Truong, L.-S. Lê, and L.-P. Tôn. Re-engineering
enterprises using data warehouse as a driver and
requirements as an enabler. In Enterprise Distributed
Object Computing Conference (EDOC), 2017 IEEE
21st International, pages 67–72. IEEE, 2017.

[20] J. Venable. A framework for design science research
activities. In Emerging Trends and Challenges in
Information Technology Management: Proceedings of
the 2006 Information Resource Management
Association Conference, pages 184–187. Idea Group
Publishing, 2006.

[21] R. Veneberg, M.-E. Iacob, M. J. van Sinderen, and
L. Bodenstaff. Enterprise architecture intelligence:
combining enterprise architecture and operational
data. In Enterprise Distributed Object Computing
Conference (EDOC), 2014 IEEE 18th International,
pages 22–31. IEEE, 2014.

[22] R. H. Von Alan, S. T. March, J. Park, and S. Ram.
Design science in information systems research. MIS
quarterly, 28(1):75–105, 2004.

[23] R. Winter and R. Fischer. Essential layers, artifacts,
and dependencies of enterprise architecture. In
Enterprise Distributed Object Computing Conference
Workshops, 2006. EDOCW’06. 10th IEEE
International, pages 30–30. IEEE, 2006.

[24] A. Xavier, A. Vasconcelos, and P. Sousa. Rules for
validation of models of enterprise architecture - rules
of checking and correction of temporal inconsistencies
among elements of the enterprise architecture. In
Proceedings of the 19th International Conference on
Enterprise Information Systems - Volume 3: ICEIS,
pages 337–344. INSTICC, SciTePress, 2017.

Aspects of Software Complexity

Ali Ariff
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

ali.ariff@rwth-aachen.de

Andreas Steffens
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
steffens@swc.rwth-aachen.de

ABSTRACT
Software complexity is vague, hard to grasp and multifaceted
nature of complexity leads to no complete methods and tech-
niques to tackle complexity in software systems. It is due
to the lack of knowledge of which aspects are existing that
could affect complexity. The current existing research on
the field is mostly from the architecture and the code point
of view, although these two do not cover the whole of as-
pects. That is why research is needed to get to know and
discover which another aspect that could affect complexity
to be able to grasp the concept deeper. Moreover, by know-
ing the other hidden aspects of complexity, it will be easier
to calculate the whole complexity. New technique or method
such as Microservice and Domain Driven Design are claim-
ing to solve or reduce software complexity emerges in last
few years. Hence the question arises, in which aspect that
technique or method can solve or reduce software complex-
ity. This question will help to discover the aspect they tackle
and also they newly introduce.

In this paper, aspects that are affecting software complex-
ity will be identified. To accomplish this, various technique
or method that exists and used in the industry nowadays
claiming to reduce or removing software complexity and col-
lect those aspects will be assessed. Hence, an initial overview
of each technique or method will be provided, as well as their
claim to reduce software complexity in a particular aspect.
At the end of the paper, a set of aspects that are affecting
software complexity will be given, and the updated defini-
tion of complexity based on the research will be defined.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

Keywords
software complexity, microservice, domain driven design, soft-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2017/18 RWTH Aachen University, Germany.

ware architecture, devops

1. INTRODUCTION
In general, complexity is an interactions or connections

between components that are diverse from each other. In
the software context, ”complexity is the degree to which a
system or component has a design or implementation that
is difficult to understand and verify” [1].

The definition of software complexity comes from the num-
ber of things one should keep in mind when working on a
software [18]. This number of things is vague, and this as-
pect of overall of software complexity wanted to be analyzed
and discovered.

One definition of complexity is based on the lines of code
which a program is measured based on how big the file size
of the program as well how many of lines code the program
has [12]. It is stated that the more code of lines the program
has, the more complex the program is. However, nowadays,
the lines of code aspect is not an aspect anymore to measure
the complexity of a program. After all this time, codes (and
lines of code) and architecture have always been the aspects
of measuring the complexity. However, other unseen things
needed to be found to have the complete measurement of
complexity.

The other aspect of measuring complexity is the architec-
ture. Based on Lehman’s second law of software evolution, it
is stated that as an evolving program change, its structure
becomes more complicated. Extra resources must be de-
voted to preserving and simplifying the structure [13]. The
software architecture of a program or computing system is
the structure or structures of the system, which comprise
software elements, the externally visible properties of those
elements, and the relationships among them [14]. The ar-
chitecture of software is one of the most important things to
measure the complexity, for the possibility of future mainte-
nance. If the architecture of a program is well designed and
implemented, then it will be easier to maintain the program.

The complexity of software is an essential property, not an
accidental one. Hence descriptions of a software entity that
abstract away its complexity often abstract away its essence
[4]. Therefore, it is essential to understand and know more
software complexity aspects to be able to define overall soft-
ware complexity.

Software complexity correlates well with development ef-
fort [2].

In the last few years, many techniques and methods are
discovered and experimented whether to solve or to reduce
software complexity. Among those techniques and methods,
the two most renowned techniques and methods will be dis-
cussed. The techniques and methods are Microservice and
Domain Driven Design. These two are the well-known tech-
niques which are used in the current software engineering
industry. More about Microservice will be explained in the
section Microservice, and more about Domain Driven De-
sign will be explained in the Domain Driven Design section.

This paper’s goal is to comprise provision of initial overview
of Microservice and Domain Driven Design; analyzing the
techniques and methods to identify aspects of software com-
plexity, and defined a new definition of software complexity.

The paper is structured as follows: in section 2, Microser-
vice and its implication in the aspects of software complexity
will be explained. In section 3, Domain Driven Design and
its implication in the aspects of software complexity will be
elaborated. In section 4, the renewed and updated defini-
tion of complexity based on the research will be assembled
and defined. Moreover, finally, in section 5, conclusion and
future works will be explained.

2. MICROSERVICE
In short, a Microservice architectural style is an approach

to developing a single application as a suite of small ser-
vices, each running in its process and communicating with
lightweight mechanisms, often an HTTP resource API. These
services are built around business capabilities and indepen-
dently deployable by fully automated deployment machin-
ery. There is a bare minimum of centralized management of
these services, which may be written in different program-
ming languages and use different data storage technologies
[9].

A Microservice focus on a single business capability, com-
plete business capability mean that the process can com-
plete without depending on other Microservice. Microser-
vice should have its database and sharing database between
Microservice is prohibited, this is to avoid conflict of interest
since a Microservice should be able to solve single specific
business problem.

Communication in Microservice also need to be stateless,
so more copies of Microservice at will can be added. State-
less communication gives Microservice the ability to scale
effortlessly, each interaction with our Microservice can be
handled by a different instance. Without any state, the com-
munication between the team will be easier to achieve since
there is no defined state in the beginning.

Microservice should be able to continue even though an-
other Microservice fails. If the communication with an-
other Microservice cannot be made, the current Microser-
vice should be able to make due by using default value or
fail-over strategy.

Microservice can also be made based on the problem that
needed to be solved. The service can be created using the re-
lated programming language as well as using the right tech-
nology based on the problem that needed to be solved.

If we want to talk about the benefit of using Microservice,
it will be easier if it is compared to the traditional architec-
ture that creates large monolithic packages. Hence this can
be challenging to deploy. Moreover, for the scaling, it needs
to scale the whole software by adding more copies.

On the other hand, Microservice is flexible to deploy be-
cause of the independent nature of the service, and it can
be deployed at any time. For the scaling, Microservice can
be scaled horizontally in the specific services that are needed
resulting it to save the resources. Furthermore, Microservice
can also increase the resiliency because of the each designed
service in the isolation.

In Microservice, four aspects that are related to software
complexity are identified: architecture, operation, skill, and
security.

2.1 Architecture
Cohesion and coupling are the main issues in term of soft-

ware architecture. These two things are considered as the
factor that is affecting architecture complexity. A good soft-
ware architecture is when it has the high cohesion and the
loose coupling.

Microservice is loosely coupled service-oriented architec-
ture with bounded contexts [6]. When services are loosely
coupled, a change to one service should not require a change
to another. The whole point of a Microservice is being able
to make a change to one service and deploy it, without need-
ing to change any other part of the system [17].

Finding boundaries within problem domain help ensure
related behavior is in one place, and communicate with other
boundaries as loosely as possible [17]. Bounded context from
Domain Driven Design helps to separate the problem do-
main into specific service that has a clear boundary. This
makes Microservice have high cohesion because one only
needs to change one specific service to change the behav-
ior of the software. Therefore, high cohesion and loosely
coupled architecture reduce the complexity, making this as-
pect one have to think.

2.2 Operation
Operation or DevOps is the combination of cultural philoso-

phies, practices, and tools that increase an organization’s
ability to delivers applications and services at high veloc-
ity: evolving and improving products at a faster pace than
organizations using traditional software development and in-
frastructure management processes [3]. The delivering here
is including the process to test, deploy, and monitor the ap-
plication.

Unit testing in Microservice is more or less the same as in
the regular software, but if it is the talk about the integra-
tion testing, this will be another thing because Microservice

is a distributed software, the testing remote calls from one
Microservice to another Microservice is a hassle.

Microservice deployment usually uses containerization tech-
nology, when a Microservice is bundled in a single image
within all their library dependencies so it can efficiently dis-
tribute or deployed in the production. The management of
infrastructure or the cloud technology needs to be done to
manage the resources to do that. Automated deployment
using pipeline is also significant to make fast and reliable
deployment, it needs to be configured in such a way using
specific tools to make it possible.

In the production environment itself, there are many things
to configure, for example, the service discovery service to de-
tect Microservice which is active and ready to communicate.
Load balancing for each Microservice cluster to distribute
the request evenly. Fault tolerance is also needed to make
Microservice resilience, with a technique such as a circuit
breaker will fall back gracefully and stop the cascading fail-
ures. If the system using REST API it also need to have
API management system to handle thing such as authenti-
cation, rate limiting, caching, and others.

Monitoring is also crucial after the software lives into pro-
duction. The strategy which commonly used to monitor a
lot of Microservices is using central logging system. In the
system, there is a central service or software which receives
or listen to any log from every Microservice and then crunch-
ing those data and visualizes it to the user and also alerting
system use those data to decide whether something wrong
happens in the whole system. It can be using some thresh-
old value to start alerting people or event-based notifier.

2.3 Skill
Advocates of Microservices are quick to introduce the Con-

way’s Law, the notion that the structure of a software sys-
tem mirrors the communication structure of the organiza-
tion that built it [10]. Microservice is required to build the
team based on the service to reduce the inter-team commu-
nications. One service will be handled by one team, and to
accomplish that, various skills are needed in the team from
back-end engineer, front-end engineer, DBA, QA tester, UI
designer, UX researcher, DevOps engineer, and many more.
The team should be able to handle their service as a com-
plete product. Therefore, the team consisting people with
various skills are important.

Building and managing team with different skill-set is an-
other complexity to think of.

2.4 Security
Security is another important thing that is related to soft-

ware complexity. Microservice is normally communicating
through HTTP API [9]. In the security perspective, when
a system has many services and talking to each other, the
abstraction of the security is required and needed to be im-
plemented by each of the services.

That service will have different technology stack and dif-
ferent way to configure and hardening. It will also manage

the version of each technology stack also needed to make
sure the technology stack is kept up to date to the latest
version to avoid vulnerability, and on the other hand, it also
needs to make sure that the update they have does not have
breaking changes.

Complexity in the aspects of security is increasing as long
as the service increases because those services need to be
hardened and secured.

3. DOMAIN DRIVEN DESIGN
Domain Driven Design (DDD) is an approach to develop

software for complex needs by deeply connecting the imple-
mentation to an evolving model of the core business concepts
[8].

DDD is a technique to help to make architecture design
decision to reduce the complexity by separating it on the
different domain. It helps to choose how to separate domain
based on what one separates it. It will lead to the precise
boundaries that separate those domains. DDD is all about
solving the problems of an organization, and so the Domain
Model is all about understanding and interpreting the es-
sential aspects of a given problem.

Naming is hard; even it is usually wrong. In DDD, the
domain expert is used for people that have deep understand-
ing of its subject or topic can bridge term in business and
technical.

In DDD, four aspects that are related to software com-
plexity are identified: domain, process, organizational, and
code.

3.1 Domain
A domain is a sphere of knowledge, influence, or activity

[7]. The domain is the ideas, knowledge, and data of the
problem people are trying to solve. The Model of a Domain
Driven Designed project is the solution to the problem. The
Model usually represents an aspect of reality or something
of interest. The Model is also often a simplification of the
bigger picture, and so the important aspects of the solution
are concentrated on while everything else is ignored [5].

Modeling domain is the critical part of building software,
and it is not an easy task, there are many things to con-
sider. The Domain Model is the organized and structured
knowledge of the problem. The Domain Model should repre-
sent the vocabulary and fundamental concepts of the prob-
lem domain, and it should identify the relationships among
all of the entities within the scope of the domain. DDD is
coming with an offer to modeling domain based on business
process and put in in some context [5]. In here they called
it Bounded Context a concept when put a clear boundary
between context. This boundary is created so people can
have isolation and ability to do development without being
dependent.

3.2 Process
Building software based on DDD comes with some draw-

back. Process to create software will be more complex be-
cause, to help maintain the model as a pure and helpful lan-
guage construct, one must typically implement a great deal
of isolation and encapsulation within the domain model [16].

This process also requires some stakeholder (for example
domain expert, software developer) to collaboratively dis-
cuss together and come up with model that is fit.

3.3 Organizational
Communication inter-team is very important to deliver

fast good and correct software. Hassle in coordination can
be a bottleneck when creating software.

In any organization, limiting the factor on delivering faster
will be resulting bottleneck, and to make it productive, one
should fix the bottleneck [15]. DDD is coming with the
concept of bounded context solve this bottleneck by creat-
ing precise boundaries of each context. This clear boundary
makes the team member does not depend on each other.
Therefore each team is not going to be waiting for each
other to do their job because of some task blocked by an-
other team.

3.4 Code
The code structure is one of the most important aspects

related to the code’s complexity. The bigger the code base is,
the more matter that is existed to think, resulting the code
to be more difficult to understand for the team member, as
well as the coordination needed to maintain and create the
code [11].

The other drawbacks from having a big code base are bugs
and errors will be likely to happen. When there is only one
code base, the whole team have to take care of that only
one, making the communication and coordination more dif-
ficult and complicated since there are many things to take
care. That is why with DDD, the code base will be split
into smaller parts. By using this strategy, the parts will be
isolated, and the distribution to the team member will be
more straightforward, and since the code is split, the com-
plexity will be decreasing.

4. DEFINITION OF COMPLEXITY
In the previous section, aspects from Microservice and

DDD have been discussed. In Microservice, four aspects
are related to complexity which are architecture, operation,
skill, and security while the related aspects of DDD are the
domain, process, code and organizational.

High cohesion and loosely coupled architecture reduce the
complexity. The more operation existed, the higher the com-
plexity is. The skills from each member of team and also
how to manage the team is one aspect of complexity, while
in the aspects of security, it is increasing as long as the ser-
vice increases because those services need to be hardened
and secured.

Domain has to be split to reduce the complexity. The pro-
cess to create software will be more complicated because, to
help maintain the model as a helpful and straightforward
language construct, one must typically implement a great
deal of isolation and encapsulation within the domain model
[16]. With an extensive organization and team that is de-
pendent on another team, the complexity will be prominent,
and having one code base without splitting it into smaller
parts will increase the complexity of software.

Techniques and methods that were claiming to solve or
reducing software complexity is shifting the software com-
plexity to another aspect, and it helps us discovering more
and more aspects of the overall software complexity.

It is difficult to focus only on one aspect while neglecting
the other aspects during the development. Therefore, soft-
ware complexity is everything related to the development:
operation, architecture, skill, domain, security, process, or-
ganizational and code. The software complexity is not some-
thing that can be measured only using lines of code and
architecture in general. All of the aspects have to be con-
sidered to measure the complexity.

5. CONCLUSIONS AND FUTURE WORK
Complexity is not measured fixedly based on the few def-

inition that has been stated in the introduction. It is not
merely measured based on the number of lines of code where
the higher the number, the more complex it is; and although
architecture becomes one of the important aspects in com-
plexity, there are more hidden aspects behind it.

Among the existing techniques and methods, two of them
which are Microservice’s and DDD’s implementing effects
and drawbacks have been analyzed and discussed in the
previous sections since these two are the most well-known
techniques that have been used in the current software en-
gineering industry. This side effect help to discover more
aspects of overall software complexity that people might be
forgotten or put aside. This list of aspect might be increased
in the future when there is new technique or method that
is claiming can reduce or remove software complexity. After
doing the analysis, the list of aspects that affecting software
complexity are operation, architecture, skill, domain, pro-
cess, organizational, security, and code.

The overview of software complexity aspects shown in fig-
ure 1 that have been described and discussed in previous
chapters. Based on the observation between both of the
techniques, a new definition of complexity has been defined.
Software complexity is everything related to the develop-
ment which are but not limited to operation, architecture,
skill, domain, security, process, organizational and code.

We have introduced a new definition of complexity, which
captures several aspects not included in previous definitions.
The preceding chapters have shown that these aspects are
essential concerning the evaluation of approaches like DDD
and Microservice.

The list helps to have more understanding of overall soft-
ware complexity. In the future, this list can be used as

Figure 1: Software Complexity Aspects

a metric to measure software complexity when combining
with another method. The goal is to use this list and find
a formula to calculate each complexity aspect so we can get
the overall complexity of the software. It is also expected
to discover more hidden aspect of complexity that might be
existed yet haven’t been thought of.

6. REFERENCES
[1] Ieee standard glossary of software engineering

terminology. IEEE Std 610.12-1990, pages 1–84, Dec
1990.

[2] M. AlSharif, W. P. Bond, and T. Al-Otaiby. Assessing
the complexity of software architecture. In Proceedings
of the 42Nd Annual Southeast Regional Conference,
ACM-SE 42, pages 98–103, New York, NY, USA,
2004. ACM.

[3] Amazon. What is DevOps?
https://aws.amazon.com/devops/what-is-devops/.
Retrieved December 10, 2017.

[4] F. P. Brooks, Jr. No silver bullet essence and accidents
of software engineering. Computer, 20(4):10–19, Apr.
1987.

[5] P. Brown. What is the Domain Model in Domain
Driven Design?
http://culttt.com/2014/11/12/domain-model-

domain-driven-design/. Retrieved December 23,
2017.

[6] A. Cockcroft. Migrating to Microservices. https://
www.slideshare.net/adriancockcroft/goto-berlin,
2014. Retrieved December 10, 2017.

[7] E. Evans. Domain-Driven Design: Tacking Complexity
In the Heart of Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003.

[8] E. Evans. What is Domain-Driven Design? http:

//dddcommunity.org/learning-ddd/what_is_ddd/,
2007. Retrieved December 10, 2017.

[9] M. Fowler. Microservices: A definition of this new
architectural term. https:
//martinfowler.com/articles/microservices.html,
2014. Retrieved November 26, 2017.

[10] M. Fowler. Microservice Trade-Offs.
https://martinfowler.com/articles/

microservice-trade-offs.html, 2015. Retrieved
December 10, 2017.

[11] H. Graca. Domain-Driven Design.
https://herbertograca.com/2017/09/07/domain-

driven-design/. Retrieved December 23, 2017.

[12] W. Harrison, K. Magel, R. Kluczny, and A. DeKock.
Applying software complexity metrics to program
maintenance. Computer, 15(9):65–79, Sept 1982.

[13] M. M. Lehman and L. A. Belady, editors. Program
Evolution: Processes of Software Change. Academic
Press Professional, Inc., San Diego, CA, USA, 1985.

[14] B. Len, C. Paul, and K. Rick. Software architecture in
practice. Boston, Massachusetts Addison, 2003.

https://aws.amazon.com/devops/what-is-devops/
http://culttt.com/2014/11/12/domain-model-domain-driven-design/
http://culttt.com/2014/11/12/domain-model-domain-driven-design/
https://www.slideshare.net/adriancockcroft/goto-berlin
https://www.slideshare.net/adriancockcroft/goto-berlin
http://dddcommunity.org/learning-ddd/what_is_ddd/
http://dddcommunity.org/learning-ddd/what_is_ddd/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://herbertograca.com/2017/09/07/domain-driven-design/
https://herbertograca.com/2017/09/07/domain-driven-design/

[15] E. M. Goldratt and J. Cox. The Goal. The North
River Press, 3 edition, July 2004. The first issue was
published in 1984.

[16] Microsoft. Architectural Patterns and Styles.
https://msdn.microsoft.com/en-

us/library/ee658117.aspx. Retrieved December 17,
2017.

[17] S. Newman. Building Microservices. O’Reilly Media,
Inc., 1st edition, 2015.

[18] R. Strukhoff. Reducing Complexity of Software with
Domain-Driven Design and Microservices.
https://www.altoros.com/blog/reducing-

complexity-of-software-with-domain-driven-

design-and-microservices/. Retrieved December 21,
2017.

https://msdn.microsoft.com/en-us/library/ee658117.aspx
https://msdn.microsoft.com/en-us/library/ee658117.aspx
https://www.altoros.com/blog/reducing-complexity-of-software-with-domain-driven-design-and-microservices/
https://www.altoros.com/blog/reducing-complexity-of-software-with-domain-driven-design-and-microservices/
https://www.altoros.com/blog/reducing-complexity-of-software-with-domain-driven-design-and-microservices/

Technical Debt Prioritization Approaches for
Non-Technical Manager

Jan Uthoff

Full-scale Software Engineering

February 5, 2018

Uthoff Full-scale Software Engineering Technical Debt Prioritization Approaches for Non-Technical Manager 1

Motivation

Uthoff Full-scale Software Engineering Technical Debt Prioritization Approaches for Non-Technical Manager 2

Background

I metaphor origins in financial domain

I use decision-making procedures

I how to handle architectural debt?

Uthoff Full-scale Software Engineering Technical Debt Prioritization Approaches for Non-Technical Manager 3

Vocabulary

Principal:
I cost to complete the task

Interest:
I cost if task remains undone

Uthoff Full-scale Software Engineering Technical Debt Prioritization Approaches for Non-Technical Manager 4

Comparison Framework

Uthoff Full-scale Software Engineering Technical Debt Prioritization Approaches for Non-Technical Manager 5

Comparison Framework

Procedure

Challenges

Uthoff Full-scale Software Engineering Technical Debt Prioritization Approaches for Non-Technical Manager 6

Technical debt examples

Documenting code:
I principal: 1h
I interest: 3h

Adding new feature:
I principal: 2h
I interest: 1h

Uthoff Full-scale Software Engineering Technical Debt Prioritization Approaches for Non-Technical Manager 7

Approach: Cost-Benefit Analysis

Goal:

I sort alternatives

Input:

I estimated cost to complete the task

I estimated price if task remains undone

Uthoff Full-scale Software Engineering Technical Debt Prioritization Approaches for Non-Technical Manager 8

Approach: Cost-Benefit Analysis

Procedure:
I sort items by

principal-interest ratio

0 1 2 3
0

1

2

3 c1

c2

principal

interest

c1 Documenting code
c2 Adding a feature

Uthoff Full-scale Software Engineering Technical Debt Prioritization Approaches for Non-Technical Manager 9

Approach: Cost-Benefit Analysis

Challenge:
I estimate the input

Uthoff Full-scale Software Engineering Technical Debt Prioritization Approaches for Non-Technical Manager 10

Approach: Analytic Hierarchy Process

Goal:
I choose an alternative that

maximizes/minimizes an
objective function

Input:
I criteria
I weights for each criterion

f (x) = w1 ·c1(x)+w2 ·c2(x)+ . . .

Uthoff Full-scale Software Engineering Technical Debt Prioritization Approaches for Non-Technical Manager 11

Approach: Analytic Hierarchy Process

Procedure:
I pairwise comparison

Goal

evolve
0.45

customer feedback
0.55

refactoring
0.9

documenting
0.1

f (idoc) = 0.55 · c1(idoc) + 0.45 · c2(idoc) = 15
f (ifeat) = 0.5 · c1(ifeat) + 0.45 · c2(idoc) = 13

Uthoff Full-scale Software Engineering Technical Debt Prioritization Approaches for Non-Technical Manager 12

Approach: Analytic Hierarchy Process

Challenges:
I identify criteria and weights
I estimate the criteria function

c1(x) = ?
c2(x) = ?
. . .

Uthoff Full-scale Software Engineering Technical Debt Prioritization Approaches for Non-Technical Manager 13

Approach: Local Manager

Goal:
I satisfy recurrent customers

Input:
I location of the technical

debt
I plan of the upcoming

product requests

Uthoff Full-scale Software Engineering Technical Debt Prioritization Approaches for Non-Technical Manager 14

Approach: Local Manager

Procedure:
I dividing product into parts

two parts
I which product must be

completed next

Delivery Dates
I idoc : in 5 weeks
I ifeat : in 3 weeks

Program part
I idoc : core
I ifeat : feature

Uthoff Full-scale Software Engineering Technical Debt Prioritization Approaches for Non-Technical Manager 15

Approach: Local Manager

Challenge:
I the costs

Uthoff Full-scale Software Engineering Technical Debt Prioritization Approaches for Non-Technical Manager 16

Discussion

I precision
I performance
I cost-Effectiveness

Uthoff Full-scale Software Engineering Technical Debt Prioritization Approaches for Non-Technical Manager 17

Research

I researches required!!!

I case studies

I historical data

Uthoff Full-scale Software Engineering Technical Debt Prioritization Approaches for Non-Technical Manager 18

Summary

I why deal with technical debt

I introduced three approaches

I no concrete comparision possible

Uthoff Full-scale Software Engineering Technical Debt Prioritization Approaches for Non-Technical Manager 19

Slide overview

Tha
nk you

Uthoff Full-scale Software Engineering Technical Debt Prioritization Approaches for Non-Technical Manager 20

Towards a Quality Model for DevOps

Leon König
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

leon.koenig@rwth-aachen.de

Andreas Steffens
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
andreas.steffens@swc.rwth-aachen.de

ABSTRACT
Continuous Delivery is widely considered to be a critical
requirement in the context of software engineering. The
DevOps approach aims to bring together the opposing inter-
ests of software development and IT operations to improve
the efficiency of development as well as the deployment pro-
cess.

Whereas the goal of DevOps is defined pretty clearly, no
convincing quality model to state the maturity of a certain
approach in all its facets could be found. As DevOps is
considered to be a mindset and thus a very heterogeneous
environment, existing quality models usually focus on a sub-
set of aspects and stakeholders.

This paper intends to suggest a quality model covering
the DevOps process along with the technical aspects of the
pipeline model and the underlying pipeline system. There-
fore, a set of quality attributes along with adequate metrics
has been identified.

Keywords
DevOps, Continuous Delivery, Continuous Deployment, qual-
ity model

1. INTRODUCTION
DevOps is a term that was shaped over time. Therefore,

a clear definition of the parts included in DevOps does not
exist. In a historical context, the separation of development
and operations teams led to conflicts. A development team
is considered to be successful when it is able to develop and
deliver new features in a short period of time. Operation
teams on the contrary, have to keep their servers up and
thus do not want to change anything on a running system
to gain a certain stability [6].

DevOps is the result of an integration of movements like
lean manufacturing, agile transformation and continuous de-
livery. Derived from the manufacturing value stream of
Lean, a technology value stream which converts a feature
requests to value for the customer should be established.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2017/18 RWTH Aachen University, Germany.

Small teams implement these features independently from
each other. Automated testing and telemetry in code and
production environment foster fast feedback loops to detect
and fix problems as early as possible which also supports
a continual and genuine learning process. As deployments
are automated releases become predictable and reversible.
However, monitoring and measurement is an essential part
of DevOps and enables teams to treat ”product development
and process improvement as experiments” [9]. A collabora-
tive culture within and between teams is needed to achieve
the shared goals, allow a collective ownership and share the
resulting values [6].

DevOps originated from the conflicts between separated
teams, hence there is especially no distinct team responsi-
ble for the implementation of DevOps as Humble stated in
[5]. There could be a team supporting development teams
in this, but all in all the development team should develop
and own this process.

The State of DevOps Report 2017 by Puppet and DORA
mentioned DevOps to be a mindset many enterprises cur-
rently try to implement [13]. Whereas DevOps method-
ologies are widely discussed regarding DevOps culture and
available tools, no suitable quality model for DevOps ap-
proaches which is widely accepted can be found. During
research a bunch of papers addressing this gap had been
identified. As stated above DevOps is a very heterogeneous
environment hence most of the papers only address a part
of the DevOps approach. This paper aims to integrate and
supplement the existing concepts for quality models. The
resulting DevOps quality model focuses on non-technical
as well as technical aspects, which there are the DevOps
process and culture, the pipeline model and its underlying
pipelining system as these can be considered as the substan-
tials of a successful DevOps implementation.

Therefore, this paper firstly discusses the related work
in section 2. The following section 3 presents the DevOps
quality model. After that, section 4 critically discusses the
suggested quality model. The last section 5 summaries the
work and discusses future work to be done for defining an
entire DevOps quality model.

2. RELATED WORK
During literature based research, a number of related pub-

lications was found. Only a few of them describe a proper
quality model for DevOps. Other papers state core compo-
nents and capabilities of a successful implementation which

can also be seen as part of a quality model. However, many
quality models rather focus on continuous delivery than on
DevOps itself as this concept was described earlier. Never-
theless, as this is also seen as an essential part these are also
included.

Juner and Benlian’s work [8] based on information gained
from five case studies in different enterprises identified five
capability models. Like [14] they also identified fast feedback-
loops as an important feature to foster a continuous value
stream in the organization. Similarly, infrastructure as a
code leads to an deterministic configuration of software and
infrastructure which only then allows a continuous deploy-
ment when it is applied as the single source of truth and
no manual changes are applied. To achieve these automatic
deployments, the deployment pipeline has to enable these
builds, tests and deployments in an auditable and fast way.
A variety of QA arrangements, like staging environments,
unit and integration tests, or code analysis ensure product
quality and can also be seen as part of the feedback-loops
mentioned above. In the same way, metrics monitoring sys-
tems and software enable developers to gain faster feedback
on their doings.

Riley went further to define metrics measuring DevOps
quality for example by deployment / change frequency, change
lead time and failure rate or mean time to recover. These
metrics allow an evaluation of response times, development
tool efficiency, team capabilities and overall efficiency of the
process [16].

While [10] also defined metrics these concentrate on data
that can be retrieved from the continuous delivery and the
deployment pipeline, which are also a central parts of a De-
vOps implementation. The authors mentioned development,
deployment and activation time to be useful to state quality
of the process. Focusing on continuous deployment, they
also defined an oldest done feature metric to measure the
time a feature needs at most to be deployed. On the pipeline
level, metrics like features or releases per month and the
fastest possible lead time give suitable insights.

Mills developed a matrix to state maturity on the pipeline
level. He validated whether in his view important steps are
covered by the pipeline and derives thereby a simple ma-
turity for the examined continuous delivery pipeline. He
moved from continuous integration builds with unit tests
and static code and coverage analysis to an automated de-
ployment of the generated artifact to an infrastructure that
was provisioned automatically. On this system, he then sug-
gests to carry out various tests including functional, cross-
version, performance and security tests. As a last step, he
described some release management activities like release
tagging, production deployment but also roll-back abilities
of the pipeline [11].

Forester Consulting developed a maturity model for con-
tinuous delivery capabilities divided into five levels reaching
from an initial to an optimizing level. On the first initial
level, the delivery process relies on manual activities leading
to ad hock deployments. The managed level already requires
some automation in provisioning and acceptance testing, an
iterative development process and clear responsibilities to
enable an adaptive delivery process with planned releases.
Running continuous integration tests and considering work
only as done when it passes these, the next maturity level

is reached allowing regular releases. The upper two levels
focus on release on demand and deployment capabilities to
meet business needs by suitable deployment pipelines, cross-
functional teams, monitoring and an architecture which also
keeps continuous delivery approaches such as dark launching
in mind [3].

Trienekens on the other hand, based his research on the
three principles system thinking, amplifying feedback loops
and a culture of continuous experimentation and learning
also described by Kim et al. in [9]. The measurements he
suggests focus on current states of these three principles.
Furthermore, he evaluates the effect of process changes to
the overall performance of the process by comparing f.e. lead
times or number of incidents before and after this change.
When considering feedback loops he mainly focuses on feed-
back given by customers but also how well the process can
respond to it. For the last principle of learning and exper-
imentation the amount of time for knowledge storage and
retrieval and the teams reflection on their work and learn-
ing process are mentioned. Furthermore, he also measures
their ability to detect faults which may be introduced delib-
erately to foster their ability to react on real failures [18].

Since the Capability Maturity Model Integration (CMMI)
is a widely accepted model to determine the maturity of
a certain process or organization, Rong, Zhang and Shao
rested their research upon a combination of CMMI-DEV and
CMMI-SVC to appraise the maturity of a certain DevOps
implementation. In their case study, they performed inter-
views with one manager each from project, development,
testing / operation or process improvement and conducted
an appraisal based on this combination. They concluded
that a combination of CMMI-DEV and CMMI-SVC to eval-
uate a DevOps implementation is basically possible but also
leads to some difficulties when classifying observations as
high or low maturity, or when determining where to improve
a process [17].

Gupta with [4] and Rehn, Palmborg and Boström with
[15] both developed a continuous delivery maturity matrix
using the five levels of CMMI and segregate each of them
into certain areas.

Gupta separated into the six areas culture & organiza-
tion, build & deploy, release, data management, test & ver-
ification and information & reporting in detail. For each
level he suggested certain capabilities and practices. As
always, the initial stage does not assume any automation
while higher stages require continuous integration, scripted
or orchestrated deployments and provisioning, automated
acceptance tests or automatically applied changes to datas-
tores. His vision of a process reaching the optimizing level
consists of cross functional teams, deployments that do not
need any human intervention and a release process that is
always rolling forward to fix defects. The information gath-
ered during this process should be accessible to any member
across organizational boundaries [4].

In comparison, Rehn et al. left out the release and data
management areas to add an area called design & architec-
ture. This area contains database, library and API man-
agement on the lower levels moving on to configuration as
code, branching techniques, component based architecture
and infrastructure as code. Similar to Gupta they suggested
the removal of team boundaries moving to cross functional
teams responsible for the whole process. A continuous im-

provement motivated from Kaizen is also seen as part of a
continuous delivery culture [15].

Furthermore, Solinea developed a DevOps maturity model
which is described by Parks. The model also uses five ma-
turity levels derived from CMMI. The areas process, people,
technology and culture are considered to be the ”Four Pillars
of DevOps”. The items described for each level are similar to
the ones mentioned by Gupta or Rehn et al. for a continuous
delivery maturity model [12].

In his master thesis on the adoption of DevOps in soft-
ware product organizations, de Feijter developed a model to
evaluate the maturity of a certain development process re-
garding DevOps concepts. He suggested 16 focus areas for
which different capabilities to reach one of the eight matu-
rity levels are stated. In addition to the continuous delivery
maturity models described previously, he added continuous
deployment competences and also suggested recoverability
and resilience tests on production systems. As a interesting
point he proposed gated check-ins to version control systems
which merge changes with the mainline, carry out tests and
reject commits if they do not pass these tests to keep the
mainline buildable [2].

Unfortunately, the DevOps maturity model of Solinea is
only described briefly with no more information supplied for
the items claimed to gain a certain maturity. The maturity
model described by de Feijter is very complicated to read as
he describes two to five different capabilities for each focus
area on roughly 20 pages. Later on he then sorts all these
capabilities into one of the eight maturity levels. Most of
the other maturity or quality models mentioned above only
consider capabilities and changes that come along with con-
tinuous delivery. As DevOps aims to deliver value to the cus-
tomer as fast as possible, changes have also to be deployed
to production and not only to staging environments. Con-
sequently, a DevOps requires continuous deployment which
is going further than continuous delivery.

3. A DEVOPS QUALITY MODEL
The new DevOps quality models aims to integrate the

above quality models for DevOps and continuous delivery to
design a potential quality model. Furthermore, the quality
model should distinguish between the process and the tech-
nical implementation by a continuous deployment pipeline.

The quality model will be developed in an GQM-like (Goal-
Question-Metric) approach according to [1].

1. In GQM a goal should always include the entire goal,
the purpose of this goal and also a viewpoint from
which one will analyze this goal.

Therefore, two conceptual goals are described. As one
would state the quality of an existing process the in-
tention of all these goals is to analyze the given cir-
cumstances.

2. The questions purpose is to describe the goal and its
assessment in a more detailed way.

Hence, multiple questions are specified to emphasize
the two conceptual goals.

3. To answer the questions, one uses metrics to meassure
them in a quantitative way.

Consequently, the metrics which help to evaluate the
questions and goals are derived from the literature de-
scribed above.

Due to page restrictions and time limiations the resulting
quality model will not be verified by a case study as sug-
gested by GQM. Consequently, the first quality model can
also not be adapted to the results of such an evaluation.

3.1 Goals
The quality model developed in this paper intends to an-

alyze the DevOps process. Parts of the DevOps process are
the whole development and deployment process as well as
the way team members and teams work together to gener-
ate value to the customers. On the other hand, the develop-
ment and deployment pipeline is a central component and
the technical implementation of this process without which
one will never reach desired performance and flexibility. As
the success of a DevOps implementation is mainly depen-
dent on this component it should also be covered by this
quality model.

Consequently, the following two conceptual goals can be
identified:

1. Analyze the DevOps processes of an organization to
foster a continual and efficient flow of value to the cus-
tomer from the viewpoint of

a. the teams associated with the development and
deployment process (an interdisciplinary team or
development and operation teams)

2. Analyze the technical implementation of the DevOps
process to improve the flow of feedback from the view-
point of

a. the teams associated with the development and
deployment process (an interdisciplinary team or
development and operation teams)

Within a DevOps environment the teams are central. In
an ideal setting the teams develop and improve their way
of working in an continual way. Hence, both goals analyze
from the viewpoint of the teams associated with the whole
process.

3.2 Questions
Kim et al. described three ways of a successful DevOps

process [9].
The first way and the principles of flow originated from the

lean movement. Traditionally, the work flows from develop-
ment to operations until it generates value to the customer.
This flow of value should be accelerated by making work is
made visible, limit work in process, reducing the number of
handoffs and batch size, eliminate waste of any kind and
claim way of thinking on the whole system.

The principles of feedback are supposed to create a flow
of feedback from right to left. Thereby, one can detect prob-
lems earlier, fix them before they get catastrophic and react
faster to changing customer needs.

The last principles of continual learning and experimen-
tation depicts a culture of high-trust, where learning from
success and mistakes of each other and sharing of knowledge
globally is part of daily work. Going further, one can even
think of injecting failures to production systems to enforce
employees to validate and improve their capabilities to react.

As these three ways are widely accepted and seem appro-
priate, an existing DevOps process will be analyzed along
the principles of these ways and used as questions to specify
the first goal of analyzing the DevOps process.

The development and deployment pipeline is a product of
a seperate development process with the goal of allowing a
continuous way of building, testing, analyzing and deploying
software to different environments.

Consequently, the analysis of the technical implementa-
tion of DevOps including pipeline model and pipelining sys-
tem will mainly rely on a subset of the product quality char-
acteristics suggested by ISO 25010, the standardization of
software quality models for system and software quality re-
quirements and evaluation [7]. In particular, the analysis
will rely on the characteristics functional suitability, perfor-
mance efficiency, compatibility, usability, reliability, security
and maintainability.

3.3 Metrics
When defining metrics for DevOps, one needs to be very

careful considering a possible fallback. Especially inter- and
intra-team metrics should not be used as this may lead to
revealed teams and thus inhibit collaboration. Furthermore,
traditional metrics like mean time to failure are at least ques-
tionable if they are not considered in reference to other indi-
cators as deployment quantity, especially when a team just
starts to implement DevOps. In addition, vanity metrics as
lines of code are also only useful if one also considers vali-
dation and test coverage of this piece of code [14].

In the following, the tables containing metrics derived
from literature are described and examples on how these
have been developed are given.

Table 1 contains the questions and suitable metrics for the
first goal of analysing the DevOps process. Moreover, the
last column includes the sources of these metrics or the idea
behind these.

Riley described metrics like change lead times, change fail-
ure rates or mean times to recover in [16]. Considering they
are already described in a measurable way, they can simply
be added to the first section meassuring the flow of value to
the customer as changes should always deliver new features
to the customer or at least recover them after failures.

In [8], Juner and Benlian described five capability areas.
One of their suggested competences focused on metrics avail-
able in the process. For example, they brought up appropri-
ate logging, montoring and alerting capabilities. Since mon-
itoring and logging systems provide feedback to developers
on their implementations, this capability is mentioned by a
metric asking for the availability of such systems to specify
the question for flow of feedback. On the other hand, they
described a knowledge exchange by code reviews. This is
represented by the suitable metric in the continual learning
and experimentation section.

For the pipeline view, Table 2 contains the product charar-
cteristics of ISO 25010 instead of questions. The following
columns are structured the same way like in the previous
table.

The continuous delivery maturity matrix described by Gupta
in [4] contains many capabilities that can be implemented
by a continuous delivery pipeline. For example, artifact tag-

ging, static code metric generation or zero-downtime deploy-
ments can be seen as features of the pipeline and are thereby
considered when evaluation the functional suitability charac-
teristic of the pipeline. Moreover, equal and orchestrated de-
ployments to different environments can be seen as compat-
ibility features as they allow a certain flexibility on deploy-
ments. Numerous tests on build, integration or performance
level ensure the quality of deployments and thereby generate
reliability on the pipeline and its deployments. The classi-
fication of Infrastructure as Code (IaC) is not that clear.
On the one hand, IaC generates compatibility and flexibil-
ity when deploying to different systems. On the other, IaC
also supports maintainability as all systems are provisioned
in an equal way. Nevertheless, IaC here is only mentioned in
the reliability section as an equal provisioning allows other
pipeline steps to rely on this infrastructure and mentioning
IaC and other similar cases in every section would blow up
the table.

4. DISCUSSION
Table 1 brought up many metrics to cover the three ways

of DevOps. For the flow of value to the customer it is funda-
mental to deliver developed features to the customer as fast
as possible. Consequently, the metrics focus on the number
of features deliverd, the time a feature needs to be delivered
or the number of releases to deliver these features.

The flow of feedback mainly focuses on available metrics
and monitoring systems covering test and production envi-
ronments. Furthermore, the flow of feedback from customer
to development is mentioned.

For the last point of continual learning and experimenta-
tion the metrics assess the teams reflection, adaption and
reaction capabilites.

Observing Table 2 one notes a lack of metrics in the areas
usability and security.

First of all, the development and deployment pipeline is
normally a tool that is only used internal. Thus, it seems
that only few pay attention to usability characteristics of it.
At the moment the teams seem to pay most attention to
functional capabilities, reliability and performance issues to
even reach a continuous deployment environment. Hence,
usability is a point that should be observed in the future.

Secondly, the security of these pipeline systems is not men-
tioned that often. The write access to version control sys-
tems should normally be restricted to people involved in
the project and thereby cover integrity, accountability and
authenticity of changes. Commit hooks are thereby also re-
stricted. However, it is not said if the access to pipeline
systems and their capabilities to change production envi-
ronments is restricted.

A lack of metrics on the compatibility characteristic may
also be observed but as described earlier, this may be solved
by e.g. adding metrics considering Infrastructure as Code
to multiple characteristics in the table.

5. CONCLUSION
First of all, this paper analyzed existing literature on qual-

ity models covering DevOps, Continuous Delivery and Con-
tinuous Deployment based on different meta models. The
suggested quality model of this paper thereby resulted from
an aggregation of numerous existing quality models or at-

Table 1: DevOps process quality
Question Metrics Source

What is the current performance of the
development and deployment process
regarding flow of value to the customer?

What is the number of releases per month? [10]
How many features are released per month? [10]
What are the costs per release? [14]
What is the average lead time of a feature? [6]
What is the average cycle time of a feature? [18]
What is the average change lead time? [8, 16]
What is the fastest possible feature lead time? [10]
What is the current revenue per user story? [14]
How old is the oldest done feature which is already developed
and tested but not deployed to production yet?

[10]

What is the mean time to repair a detected failure? [16]
What is the current change failure rate? [16]
What is the average badge size? [6]
Are teams organized around products or KPIs? [12]

What is the current performance of the
development and deployment process
regarding flow of feedback?

What is the mean time to detect a failure? [6]
Does the development team have access to logs and stacktraces
of the production systems for debug purpose?

[8]

What is the number of incidents as a result of a feature release? [18]
Are metrics on system, availability and performance available? [8]
Does the monitoring system alert appropriate persons on fail-
ures?

[8]

Does every person in the organization have access to visualized
feedback and metrics of all systems?

[8, 4, 15]

What is the average and maximum time between customer touch
points?

[18]

What is the current performance of the
development and deployment process
regarding continual learning and
experimentation?

Are code reviews performed to gain a uniform understanding? [8]
How much time is spent on rework after a feature release? [18]
What amount of time is used to store new knowledge? [18]
What amount of time does it take to retrieve knowledge acquired
earlier?

[18]

How much time does the team spend on reflection of their work
after a project or sprint?

[18]

How much time does the team spend on reflection of their work-
ing process?

[18, 15]

Which percentage of deliberate introduced faults for experimen-
tation does the team discover?

[18]

Do people collaborate across team borders? [4, 15]

tributes of the three topics mentioned. In order to cover the
DevOps idea as good as possible the model considers the
process view as well as the technical implementation of De-
vOps processes. The process view mainly focuses on the way
developers work together to deliver value to the customer,
whereas the technical implementation considers the pipeline
model and tools in general. However, these two views are
not seperated as they affect each other.

As the metrics of this model are still very diverse, this
also shows the difficulties when clearly defining the DevOps
approach again.

As the model is not yet verified this is some point to focus
on in further work. To complete the GQM-approach one
will have to apply the quality model in a case environment,
collect data and interview material of involved stakehold-
ers. Afterwards the model may be adapted according to the
results of this case study.

6. REFERENCES
[1] V. R. Basili, G. Caldiera, and H. D. Rombach. The

Goal Question Metric Approach. 1994.

[2] R. de Feijter. Towards the adoption of DevOps in
software product organizations: A maturity model
approach. Master Thesis, Universiteit Utrecht,
Utrecht, 23.05.2017.

[3] Forester Consulting. Continuous Delivery: A Maturity
Assessment Model. 2012.

[4] A. Gupta. Continuous Integration, Delivery,
Deployment and Maturity Model, 2015. http:
//blog.arungupta.me/continuous-integration-

delivery-deployment-maturity-model/.

[5] J. Humble. There’s No Such Thing as a Devops Team,
2012.
https://continuousdelivery.com/2012/10/theres-

no-such-thing-as-a-devops-team/.

[6] M. Hüttermann. DevOps for developers. Books for
professionals by professionals. Apress, New York, NY,
2012.

[7] ISO/IEC. Systems and software engineering —

http://blog.arungupta.me/continuous-integration-delivery-deployment-maturity-model/
http://blog.arungupta.me/continuous-integration-delivery-deployment-maturity-model/
http://blog.arungupta.me/continuous-integration-delivery-deployment-maturity-model/
https://continuousdelivery.com/2012/10/theres-no-such-thing-as-a-devops-team/
https://continuousdelivery.com/2012/10/theres-no-such-thing-as-a-devops-team/

Table 2: Technical implementation quality
Characteristic Metrics Source

functional suitability To what degree does the pipeline support a fully automated deployment? [8]
Are artifacts tagged and managed appropriate? [11][4, 15]
Are static code metrics (CheckStyle, Sonar, FindBugs) generated? [8][11][4][15]
Does the pipeline allow deployment roll-backs? [11]
Does the architecture support zero-downtime deployments? [8][3][4][15]
Are deployments disconnected from releases? [4, 15, 6]
Does the pipeline support self-healing mechanisms on failures? [12]

performance efficiency What is the average lead time of a feature? [6]
What is the average cycle time of a feature? [18]
What is the fastest possible feature lead time? [10]
What is the mean time to repair a detected failure? [16]
How long does it take to deploy a new feature? [8]

compatibility Are artifacts deployed to any environment in an equal way? [4, 15]
Are deployments orchestrated? [4][15]

usability Are testresults and metrics illustrated in a graphical way? [8, 15]
reliability What is the current change failure rate? [16]

Are database changes automated and versioned in an auditable way? [3, 4]
Are automated tests performed on build level in a continuous way? [8]
Are integration tests run in a continuous way? [8, 4, 15]
Are performance tests run in a continuous way? [8, 4]
Are deployments scripted and automated? [8]
Are system tests performed after every deployment automatically? [8]
Is the infrastructure provisioned by versioned Infrastructure as Code? [8, 4]

security Are changes to sourcecode or Infrastructure as Code auditable? [8]
Are pipeline runs traceable and accountable? [8][4, 15]

maintainability Is the architecture component based or orchestrated? [4, 15]
Is an appropriate library and API management used? [15]

Systems and software Quality Requirements and
Evaluation (SQuaRE) — System and software quality
models, 01.03.2011.

[8] C. Juner and A. Benlian. Praxisbasierte
Capability-Modelle für DevOps-Einsätze in
Unternehmen. HMD Praxis der Wirtschaftsinformatik,
54(2):230–243, 2017.

[9] G. Kim, P. Debois, J. Willis, J. Humble, and
J. Allspaw. The DevOps handbook: How to create
world-class agility, reliability, and security in
technology organizations. IT Revolution Press,
Portland, OR, first edition edition, 2016.

[10] T. Lehtonen, S. Suonsyjä, T. Kilamo, and
T. Mikkonen. Defining Metrics for Continuous
Delivery and Deployment Pipeline. SPLST, 2015,
2015.

[11] R. Mills. A Maturity Matrix for Continuous Delivery
Pipelines, 2014.
https://www.coveros.com/a-maturity-matrix-for-

continuous-delivery-pipelines/.

[12] J. Parks. The Solinea DevOps Maturity Model, 2016.
https://solinea.com/blog/solinea-devops-

maturity-model.

[13] Puppet + DORA. State of Devops Report 2017. 2017.

[14] A. Ravichandran, K. Taylor, and P. Waterhouse.
DevOps for Digital Leaders. Apress, Berkeley, CA,
2016.

[15] A. Rehn, T. Palmborg, and P. Boström. The
Continuous Delivery Maturity Model, 2013.
https://www.infoq.com/articles/Continuous-

Delivery-Maturity-Model.

[16] C. Riley. Metrics for DevOps.
https://devops.com/metrics-devops/.

[17] G. Rong, H. Zhang, and D. Shao. CMMI Guided
Process Improvement for DevOps Projects: An
Exploratory Case Study. In D. E. Perry and D. Raffo,
editors, Proceedings of the International Workshop on
Software and Systems Process - ICSSP ’16, pages
76–85, New York, New York, USA, 2016. ACM Press.

[18] J. Trienekens. Towards a Metrics Model for DevOps:
Results of a Case Study in an Industiral Company. In
IARIA, editor, FASSI 2015, pages 1–6, 2015.

https://www.coveros.com/a-maturity-matrix-for-continuous-delivery-pipelines/
https://www.coveros.com/a-maturity-matrix-for-continuous-delivery-pipelines/
https://solinea.com/blog/solinea-devops-maturity-model
https://solinea.com/blog/solinea-devops-maturity-model
https://www.infoq.com/articles/Continuous-Delivery-Maturity-Model
https://www.infoq.com/articles/Continuous-Delivery-Maturity-Model
https://devops.com/metrics-devops/

Tool Support for Collaborative UML Modelling

Nina Rußkamp
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

nina.russkamp@rwth-aachen.de

Ana Nicolaescu
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
ana.nicolaescu@swc.rwth-aachen.de

ABSTRACT
For a couple of years, collaboration has been taking an in-
creasing part in software engineering. By time, a consider-
able number of digital tools, claiming to support collabora-
tive software engineering in a natural way, has been devel-
oped. However, it is questioned whether those tools take
into account the requirements and characteristics of collab-
orative work and facilitate software engineering effectively.
In this paper, contribution and benefits of collaborative soft-
ware tools are investigated, focusing on collaborative model
creation. Comparing collaborative UML modelling tools
with each other by means of the concepts of collaboration
and UML modelling, it turns out that they do not follow
a holisitic apporach, but only provide restricted support re-
garding collaboration types, levels of formality, model types
(and therefore stages of software desing) and input modali-
ties.

Categories and Subject Descriptors
D.2. [Software]: Software Engineering

Keywords
collaborative software engineering (CoSE), collaboration tools,
software design, UML

1. INTRODUCTION
By time, collaboration has established as an essential part

of software engineering [1]: It serves not only as means to
face the issue of increasing complexity of software systems
[4], but also provides validation for software solutions in
process [17]. To turn all benefits of collaboration to ac-
count, various software tools have been developed, claiming
to support collaborative software engineering in a natural
way. However, it is questioned whether those tools take into
account the requirements and characteristics of collaborative
work and facilitate software engineering effectively [21].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2017/18 RWTH Aachen University, Germany.

Therefore, the objective of this paper is to examine how
far existing collaborative UML modelling tools contribute
to software engineering. Although collaboration is applica-
ble to every stage of the software development lifecycle, we
concentrate on collaborative software design, especially on
collaborative modelling because modelling a software prob-
lem is at the core of finding an appropriate solution for it
[30]. Additionally, modelling in general and UML modelling
in specific have proved to contribute to both the productiv-
ity of software engineers and the quality of software solutions
[10], [23].

The paper is structured as follows: In the next section, we
will first define collaboration, clarify different types of collab-
orating and characterise the process of modelling. Ensuing,
OctoUML is presented as an example of existing collabo-
rative UML modelling tools and compared with alternative
tools on the basis of the presented collaboration and mod-
elling characteristics. Afterwards, the results are concluded.

2. COLLABORATIVE MODELLING
As the term collaborative modelling suggests, it consists

of collaboration and modelling. That is the reason why both
concepts are explained separately first and then brought to-
gether to give an understanding of collaborative modelling
in software engineering.

2.1 Collaboration
First, we define collaboration by explaining the etymology

of the term collaboration. Then the concept of collaboration
is considered in detail describing its characteristics and ap-
pearances.

2.1.1 Etymology
The term collaboration comes from the Latin expression

cum laborare which means to work along side one another
[20]. Nowadays, English dictionaries provide different mean-
ings of collaboration: The concept of collaboration is either
understood as a process or a product or a state. Collab-
oration as a process terms the action of working together,
whereas collaboration as a product denotes the outcome of
such an activity. Collaboration as a state refers to the mind
setting of people, e.g. their willingness to pursue a shared
goal [17].

2.1.2 3C Model
According to the 3C collaboration model [13], collabora-

tion is based on the concepts of communication, coordination
and cooperation: Communication serves the exchange of in-

Figure 1: Inter-relationship between the 3Cs [15]

formation whereby information are understood as contextu-
alised data [19]. Coordination is necessary to organise the
collaborative work by dividing tasks into subtasks, assign-
ing these subtasks to different workers, managing the time
schedule, and collecting results [27]. Cooperation describes
the phase of advancing the software solution via a shared
workspace [15].

The three concepts are interdependent which means that
there are both inter- and intra-relationships between them.
The intra-relationship describes for each C how all three Cs
are represented inside one C interacting within themselves,
for instance, in how far a communication unity of a collab-
oration system also supports coordination and cooperation.
The inter-relationship is depicted by the example of collab-
orative group work (see figure 1). To start working together
in a group, it is necessary that the group members get in con-
tact with each other (communication). During their conver-
sation the group members start a discussion how to organize
their task (coordination) resulting in joint activities (cooper-
ation), that require another communication event to elem-
inate uncertainties and so on. Thus, the inter-relationship
between communication, coordination and cooperation de-
scribes the cycle of their resultant sequences. Consequently,
collaboration is inherently iterative [15].

2.1.3 Definition of Collaboration
In addition to these etymological definitions, creating a

value as a group that could not be accomplished by an inid-
vidual person is emphasised to be the unique selling point of
collaboration [26], [20]. Therefore, we define collaboration as
an iterative process of organisational and productive work-
ing stages according to the 3C model at least two persons
are involved in to achieve a joint goal that a single person
is not able to reach due to immutable limitations (such as
time).

2.1.4 Classification of Collaboration Types
By reference to the main distinguishing characteristics,

different collaboration types can be identified. Maher et
al. [22] define three types of collaboration to specify how
many software designers are working at a time and if they
are contributing to the same or distinct subtasks. People
collaborate mutually if they are working on the same task
simultaneously. Working alone on different subtasks (except
the case one needs advice to continue) is called exclusive
collaboration. Dictator collaboration is applied whenever a
working group determines one person who takes over control
of the working process [20].

Hildenbrand et al. [17] found five factors influencing col-
laborative software engineering including geographical and
temporal distribution. Regarding the geographical distri-
bution, collaborative software engineering teams work ei-
ther distributed or co-located. The temporal distribution
describes whether the team members work simultaneously
(synchronous collaboration) or independently of time (asyn-
chronous collaboration) [17].

2.2 Modelling
Modelling is a complex process of adressing software prob-

lems and drawing near an appropriate software solution it-
eratively. Thus, creating models contributes to bring up a
solution approach that is refined step by step and therfore
bridges the gap between a problem statement and the fi-
nal software product [30]. Software models can be classified
on the basis of the stage of development, the abstraction
level and the level of formality: As modelling is used in dif-
ferent phases of the software engineering lifecycle, models
can be classified by the stage of development they are cre-
ated in [9]. To solve software problems, software designers
structure and divide their task, operating on different ab-
straction levels which leads to models of different levels of
detail [32], [16]. According to the stage of development and
the abstraction level, software designers apply informal or
formal notations. In the beginning, software designers of-
ten deal with a modelling task by free-hand sketching while
they use the UML standard [28] later on [11]. Consequently,
models need to be edited again and again during their cre-
ation process, whereby quite often many software designers
participate in modelling simultaneously [10].

2.3 Collaboration Connected with Modelling
Collaborative UML modelling is defined as an iterative

process including communication, coordination and cooper-
ation at least two persons are involved in to create a UML
model and pursue a joint goal.

3. COLLABORATIVE UML MODELLING
TOOLS

Referring to Briggs et al. [7], we define collaborative mod-
elling tools as artifacts that support a collaborative team in
the joint modelling process and contribute to the achieve-
ment of shared goals.

Existing collaboration tools in (model-driven) software en-
gineering have already been classified. To the best of our
knowledge, Whitehead [31] was the first who classified col-
laboration tools. He identified four categories, i.a. covering
model-based collaboration tools. Further studies followed in
the last ten years (see [21], [25], [12]).

Recently, Franzago et al. [14] have published an extensive
classification map of model-driven collaboration tools clas-
sifying those i.a. by means of collaboration characteristics.

In contrast to the preceded studies, we do not aim at giv-
ing a broad overview of collaboration tools but limit our
object of research to collaoborative tools that provide the
possibility to create UML models. Thereby we intruduce
the main features of the modelling tool OctoUML and com-
peting tools.

3.1 OctoUML
OctoUML claims to support collaborative UML modelling

during any phase of the software design process. To meet the
requirements of all modelling phases, OctoUML allows us-
ing both formal and informal notations to create diagrams.
Formal notations are computer-drawn diagram elements cor-
responding to the UML standard. Currently, creating mod-
els with the formal notation is limited to UML class and
sequence diagrams. Informal notations denote hand-drawn
sketches that are not subjected to any restrictions of the
UML modelling language. As OctoUML provides different
visual layers for each type of notation, the user can choose
whether formally and informally notated models are shown
simultaneously or separately. Furthermore, it is possible to
transform informal notations to formal diagrams (see fig-
ure 2). OctoUML can be run on different devices such
as desktop computers, touch screens and interactive white-
boards. To interact with the modelling environment, users
can use multiple input modes: mouse, keyboard, touch/multi-
touch using finger and styluses, sketching and voice com-
mands. The multi-touch input modality is a key factor for
in-situ modelling as it enables different users to work on the
same model simultaneously. It is also possible to work in dis-
tributed teams, using a session-based client-server paradigm.
Referring to the collaboration types defined in section 2.1.4,
OctoUML supports the following collaboration types: Con-
cerning the graphical distribution, OctoUML enables col-
laborative teams to work either co-located or distributed.
In each case, all team members are supposed to work syn-
chronously.

Figure 2: OctoUML: formal and informal notations
[30]

3.2 Alternatives to OctoUML
As alternatives to OctoUML not only tools that seem to be

similar to OctoUML were chosen, but also tools that highly
differ from OctoUML are contrasted to it. Table 2 gives an
overview of OctoUML and its alternatives. The distinctive
features of the alternative tools are named as well as assigned
to the collaboration types as defined in section 2.1.4.

Apart from OctoUML, at least one more collaborative
UML modelling tool using multi-touch as interaction modal-
ity has been presented recently [6]. This tool - called MT-
CollabUML - has a smaller range of functions than Oc-
toUML as it does not allow users to collaborate remotely,
viz. synchronous co-located collaboration is supported while
asynchronous and/or distributed collaboration is not.

COLLECT-UML [3] is an educational modelling tool for

Table 1: Graphical and Temporal Distribution
Tool Graphical Temporal

Distribution Distribution
(c, d) (s, a)

OctoUML (yes, yes) (yes, no)
MT-CollabUML (yes, no) (yes, no)

CAMEL (no, yes) (yes, no)
COLLECT-UML (no, yes) (yes, no)

Abbreviations: c: co-located collaboration, d:
distributed collaboration, s: synchronous collabo-
ration, a: asynchronous collaboration

UML class diagrams that first let students design a model
solution on their own before joining the collaborative mod-
elling workspace. In contrast to OctoUML and MT-CollabUML,
COLLECT-UML can only support distributed collaboration
to make sure that every student comes up with an own solu-
tion before starting the collaboration session. Collaborative
sessions follow the principal of dictator collaboration: At
one and the same time, there is only one user who has the
pen and is allowed to edit the model. As input modalities
mouse and keyboard are used. Furthermore, the tool sup-
ports communication and coordination: Users can commu-
nicate via chat. To organize the chat protocol, all messages
have to be assigned to a communication category before they
are sent. The coordination of the collaborative sessions is
is done by showing which users have already joined the ses-
sion and who owns the pen at the moment. The interface of
the tool is divided into three parts: a private workspace, a
shared workspace and a chat window [2].

Similar to COLLECT-UML is CAMEL [8]; CAMEL al-
lows distributed and dictator collaboration (except from the
whiteboard are where all users can sketch free-hand dia-
grams simultaneously), too. In contrast to COLLECT-UML,
CAMEL does not require that the users first solve mod-
elling tasks on their own. Instead, CAMEL uses the private
workspace as a local copy of the shared workspace to enable
the users to view any part of the model at any time. Both
formal notations (namely UML elements of class, sequence,
state machine, activity and use case diagrams) and informal
notations (free-form sketches) via mouse and keyboard are
accepted as input. In addition, CAMEL enables collabo-
ration teams to coordinate the modelling process; there is
a list of all session members. Furthermore, different colours
are assigned to the members to show which part of the model
has been changed by whom. The session members can com-
municate via chat during the modelling process as well as
record and playback the modelling process. The interface of
CAMEL is shown in figure 3. Table 1, table 3 and table 4
show which characteristics are covered by the different tools.
The inter- and intrarelationships between communication,
coordination and cooperation (as defined in section 2.1.2) of
the tools are depicted in figure 4.

4. DISCUSSION
In this section it is discussed how far the investigated

tools support the process of collaborative UML modelling.
Thereby we apply different criteria, similar to the collabo-
ration characteristics of Franzago et al. [14]. Most of the
criteria are derived from section 2.1.4 and section 2.2. Ad-

Figure 3: Interface of CAMEL [8]

Table 2: Collaborative Modelling Tools
Tool Year

OctoUML [30] 2017
MT-CollabUML [6] 2012

CAMEL [8] 2009
COLLECT-UML [3], [2] 2005, 2007

Table 3: Interaction Modality User - Tool
Tool Interaction Modality

OctoUML mouse, keyboard, single touch,
multi-touch, voice, sketch

MT-CollabUML mouse, keyboard, single touch,
multi-touch

COLLECT-UML keyboard, mouse
CAMEL keyboard, mouse, sketch

ditionally, we regard the interaction mode between user and
tool, meaning which input modalities the user can use to op-
erate the tool. This characteristic is chosen because multi-
touch has recently gained interest in the context of collab-
orative modelling tools. Looking at the temporal distribu-
tion, none of the investigated tools provide asynchronous
collaboration (except the pre-phase in which students work
on their own using COLLECT-UML or CAMEL). Applying
synchronous collaboration, the tools offer different options
regarding the geographical distribution. OctoUML is the
only tool that provides an environment for both distributed

and co-located collaboration whereas MT-CollabUML is re-
stricted to co-located collaboration. Altough it is possible
to overcome spatial distances, the qualification of OctoUML
for international software projects is restricted as time shifts
complicate the appointment for synchronous work of spa-
tially distributed teams.

Furthermore, the remote version of the tool to be used
by distributed teams is realized by a client-server-paradigm
operated with mouse and keyboard or single-touch whereas
co-located collaboration is done by using touch screen de-
vices or interactive whiteboards allowing multiple users to
sketch with their fingers or a stylus simultaneously on the
same canvas and use voice commands. To benefit from the
wide range of input modalities, it seems to be more likely to
use OctoUML for co-located collaboration.

In contrast, COLLECT-UML and CAMEL are only de-
signed for distributed collaboration. For these tools the
choice of distributed collaboration is reasonable as the learn-
ing concept intends students to first solve a modelling task
on their own (the co-location would be obstructive in this
case) and then use dictator collaboration which does not re-
quire co-location and maybe is even easier to be conducted
in geographically distributed teams as the system locks ev-
ery unauthorized intervention (which cannot be quaranteed
in natural interaction situations).

In addition, Basheri et al. [5] compared a PC-based ver-
sion with mouse and keyboard as input devices with the
multi-touch version of their tool. They found out that group
members participate more equally in modelling tasks when
using multi-touch screens instead of PCs.

Table 4: Concurrency
Tool Concurrency

(m, e, d)
OctoUML (yes, no, no)

MT-CollabUML (yes, no, no)
COLLECT-UML (no, no, yes)

CAMEL (no, no, yes)

Abbreviations: m: mutual col-
laboration, e: exclusive collabora-
tion, d: dictator collaboration

Regarding OctoUML and MT-CollabUML, it can be ob-
served that multi-touch input seems to co-occur more likely
with mutual collaboration than with exclusive or dictator
collaboration as team members do not need to exchange in-
put devices before working on a modelling task. Using key-
board and mouse, however, hinders mutual collaboration.
Instead, the members of collaborative teams use dictator col-
laboration to work with mouse and keyboard on modelling
tasks. Although dictator collaboration is more suitable to
PC-based modelling situations than mutual collaboration,
the combination of dictator collaboration and a PC-based
setting leads to a lower productivity during the collabora-
tion process than the combination of a multi-touch device
and mutual collaboration[5]. Contrary to this observation,
Rummel et al. [29] claim turn-taking (as called dictator
collaboration in this article) to be a characteristic of good
collaboration.

Relating to the classification of the tools based on the 3C
model, it becomes obvious that the collaborative UML mod-
elling tools differ in the weighting of communication, coor-
dination and cooperation. OctoUML and MT-CollabUML
are limited to cooperation as communication and coordi-
nation can be done by face-to-face interaction during the
synchronous and co-located collaboration. It is planned to
integrate new features for communication and coordination
to improve distributed collaboration using OctoUML [18].
CAMEL and COLLECT-UML also include coummunication
and coordination (see figure 4).

Olsen et al. [24] state that almost 60% of collaboration
time is spent on coordination. The study of Basheri et al. [6]
verifies this and, beyond that, provides study results proving
that in multi-touch collaboration sessions less time is spent
on discussing than in PC-based collaboration sessions. So
maybe face-to-face coordination is more effective than coor-
dination guided by the tool.

Looking at the process of modelling, only one tool (CAMEL)
supports all UML diagram types while the others only of-
fer the creation of class (and sequence) diagrams. As many
users claim the importance of informal sketching in addition
to UML standard notation [18], this feature is proposed by
more than one tool.

5. CONCLUSIONS AND FUTURE WORK
As the result of our discussion, we identify two different

types of tools providing a coherent set of collaboration types
and input modalities: The first type of tools supports co-
located users working synchronously and mutually together
on multi-touch devices. This type of tool does without
any additional communication or cooperation component

communication coordination

cooperation

OctoUML
MT-CollabUML

CAMEL
COLLECT-UML

Figure 4: Tool classification based on the 3C model

as users are supposed to organize their work in a natural
face-to-face meeting. The second type of tools is aimed at
distributed collaboration providing communication and co-
ordination structures to guide the users over the course of
their collaboration process. Due to its technical support of
dictator collaboration, this type of tool can be used for ed-
ucational purposes.

These two examples show that collaborative UML mod-
elling tools still do not follow a holisitic apporach, but only
provide restricted support regarding collaboration types, lev-
els of formality, model types (and therefore stages of software
desing) and input modalities. Nevertheless the two classes of
tools can be convenient for particular purposes, depending
on the application domain.

All in all, collaboration is a complex concept that has the
potential to improve both the process and the product of
model creation in software design. The process of collabora-
tive modelling underlies numerous varying factors. Design-
ing collaborative UML modelling tools, these characteristics
and their interdependencies have to be taken into account
to make the tool useful. In future research, the application
domain (e.g. industry and education) of the collaborative
UML modelling tools has to be considered as influencing
factor of collaboration characteristics.

6. REFERENCES
[1] N. Ahmadi, M. Jazayeri, F. Lelli, and S. Nesic. A

survey of social software engineering. In 2008 23rd
IEEE/ACM International Conference on Automated
Software Engineering, pages 1–12, Piscataway, NJ,
2008. IEEE.

[2] N. Baghaei. A collaborative constraint-based
intelligent system for learning object-oriented analysis
and design using UML. 2007.

[3] N. Baghaei and A. Mitrovic. COLLECT-UML:
Supporting individual and collaborative learning of
UML class diagrams in a constraint-based intelligent
tutoring system. In International Conference on
Knowledge-Based and Intelligent Information and
Engineering Systems, pages 458–464, 2005.

[4] C. Barlelt, G. Molter, and T. Schumann. A model
repository for collaborative modeling with the jazz

development platform. In System Sciences, 2009.
HICSS’09. 42nd Hawaii International Conference on,
pages 1–10, 2009.

[5] M. Basheri, L. Burd, and N. Baghaei. A multi-touch
interface for enhancing collaborative UML
diagramming. In Proceedings of the 24th Australian
Computer-Human Interaction Conference, pages
30–33, 2012.

[6] M. Basheri, L. Burd, and N. Baghaei. Collaborative
software design using multi-touch tables. In
Engineering Education (ICEED), 2012 4th
International Congress on, pages 1–5, 2012.

[7] R. O. Briggs, G. Kolfschoten, G.-J. d. Vreede,
C. Albrecht, D. R. Dean, and S. Lukosch. A
seven-layer model of collaboration: Separation of
concerns for designers of collaboration systems. ICIS
2009 Proceedings, page 26, 2009.

[8] M. Cataldo, C. Shelton, Y. Choi, Y.-Y. Huang,
V. Ramesh, D. Saini, and L.-Y. Wang. CAMEL: A
Tool for Collaborative Distributed Software Design. In
2009 Fourth IEEE International Conference on Global
Software Engineering, pages 83–92. IEEE, 2009.

[9] M. R. V. Chaudron, A. Fernandes-Saez, R. Hebig,
T. Ho-Quang, and R. Jolak. Diversity in UML
Modeling Explained: Observations, Classifications and
Theorizations. In International Conference on Current
Trends in Theory and Practice of Informatics, pages
47–66, 2018.

[10] M. R. V. Chaudron, W. Heijstek, and A. Nugroho.
How effective is UML modeling? Software & Systems
Modeling, 11(4):571–580, 2012.

[11] M. R. V. Chaudron and R. Jolak. A Vision on a New
Generation of Software Design Environments. In
HuFaMo@ MoDELS, pages 11–16, 2015.

[12] K. Dullemond, B. van Gameren, and R. van Solingen.
Collaboration Spaces for Virtual Software Teams.
IEEE Software, 31(6):47–53, 2014.

[13] C. A. Ellis, S. J. Gibbs, and G. Rein. Groupware:
Some issues and experiences. Communications of the
ACM, 34(1):39–58, 1991.

[14] M. Franzago, D. Di Ruscio, I. Malavolta, and
H. Muccini. Collaborative Model-Driven Software
Engineering: A Classification Framework and a
Research Map. IEEE Transactions on Software
Engineering, page 1, 2017.

[15] H. Fuks, A. Raposo, M. A. Gerosa, M. Pimentel,
D. Filippo, and C. Lucena. Inter-and
intra-relationships between communication
coordination and cooperation in the scope of the 3C
Collaboration Model. In Computer Supported
Cooperative Work in Design, 2008. CSCWD 2008.
12th International Conference on, pages 148–153,
2008.

[16] R. Guindon. Designing the design process: Exploiting
opportunistic thoughts. Human-Computer Interaction,
5(2):305–344, 1990.

[17] T. Hildenbrand, F. Rothlauf, and A. Heinzl. Ansätze
zur kollaborativen Softwareerstellung. 2006.

[18] R. Jolak, B. Vesin, M. Isaksson, and M. R. V.
Chaudron. Towards a New Generation of Software
Design Environments: Supporting the Use of Informal
and Formal Notations with OctoUML. In HuFaMo@

MoDELS, pages 3–10, 2016.

[19] T. Karle and A. Oberweis. Unterstützung von
Kollaboration im Rahmen der Softwareentwicklung
auf Basis Service-orientierter Architekturen. In
EMISA, pages 77–90, 2006.

[20] T. Kvan. Collaborative design: What is it?
Automation in Construction, 9(4):409–415, 2000.

[21] F. Lanubile, C. Ebert, R. Prikladnicki, and
A. Vizcaino. Collaboration Tools for Global Software
Engineering. IEEE Software, 27(2):52–55, 2010.

[22] M. L. Maher, A. Cicognani, and S. Simoff. An
experimental study of computer mediated
collaborative design. In Enabling Technologies:
Infrastructure for Collaborative Enterprises, 1996.
Proceedings of the 5th Workshop on, pages 268–273,
1996.

[23] A. Nugroho and M. R. V. Chaudron. A survey into
the rigor of UML use and its perceived impact on
quality and productivity. In Proceedings of the Second
ACM-IEEE international symposium on Empirical
software engineering and measurement, pages 90–99,
2008.

[24] G. M. Olson, J. S. Olson, M. R. Carter, and
M. Storrosten. Small group design meetings: An
analysis of collaboration. Human–Computer
Interaction, 7(4):347–374, 1992.

[25] J. Portillo-Rodŕıguez, A. Vizcáıno, M. Piattini, and
S. Beecham. Tools used in Global Software
Engineering: A systematic mapping review.
Information and Software Technology, 54(7):663–685,
2012.

[26] N. Randrup, D. Druckenmiller, and R. O. Briggs.
Philosophy of Collaboration. In System Sciences
(HICSS), 2016 49th Hawaii International Conference
on, pages 898–907, 2016.

[27] A. Rashid, A. Behm, M. Geisser, and T. Hildenbrand.
Kollaborative Softwareentwicklung–zum
Kollaborationsbegriff. 2006.

[28] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language reference manual ; [UML]. /The
Addison-Wesley object technology series].
Addison-Wesley, Boston, 2. ed. edition, 2005.

[29] N. Rummel and H. Spada. Learning to Collaborate:
An Instructional Approach to Promoting
Collaborative Problem Solving in Computer-Mediated
Settings. Journal of the Learning Sciences,
14(2):201–241, 2005.

[30] B. Vesin, R. Jolak, and M. R. V. Chaudron.
OctoUML: An environment for exploratory and
collaborative software design. In Proceedings of the
39th International Conference on Software
Engineering Companion, pages 7–10, 2017.

[31] J. Whitehead. Collaboration in Software Engineering:
A Roadmap. In 2007 Future of Software Engineering,
FOSE ’07, pages 214–225, Washington, DC, USA,
2007. IEEE Computer Society.

[32] C. Zannier, M. Chiasson, and F. Maurer. A model of
design decision making based on empirical results of
interviews with software designers. Information and
Software Technology, 49(6):637–653, 2007.

Does Agile Software Development need Architecture?

Lukas Schade
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

lukas.schade@rwth-aachen.de

Christian Plewnia
RWTH Aachen University

Research Group Software Construction
Ahornstr. 55

52074 Aachen, Germany
christian.plewnia@swc.rwth-aachen.de

ABSTRACT
The advent of agile software development has changed the
way we create software. Ideally, it helps to ship software
faster and makes it easier to react to changes in the require-
ments. However, it is often misunderstood how to apply
agility to software architecture. The lack of a common un-
derstanding of software architecture plays a role here. This
can lead to confusing and unmanageable architecture, which
reduces the advantages of agile software development.

This paper pursues the question, whether software archi-
tecture is a concern that needs to be considered when de-
veloping software in an agile way. Furthermore, we investi-
gated whether there are special characteristics of architec-
ture which are especially supportive in agile development.
In sum, the result of our research is that it does not need
a big planning phase upfront. Instead architecture is devel-
oped iteratively and emerges during development. For this,
the architecture has to fulfill some requirements.

Keywords
software architecture, agile software development

1. INTRODUCTION
In this paper we want to research the role of software

architecture in agile software development. The role of soft-
ware architecture in agile software development in not as
clear as it might seem to be at the first sight. There are
many different definitions for software architecture. Often
it seems to be related to big design upfront (BDUF). This
does not fit with the agile principles. As the agile manifesto
[5] says that working code is more important than compre-
hensive documentation, an upfront designed blueprint of the
software architecture is incompatible with agile software de-
velopment. But there are developers who say software ar-
chitecture is just as important in agile projects than in non-
agile projects [10]. How does this fit together?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2017/18 RWTH Aachen University, Germany.

In the first part we deal with the question if software ar-
chitecture plays a role in agile software development. We
want to find out what the problems are, that lead to the
assumption software architecture is BDUF and therefore in-
compatible with agile software development and if there are
solutions for them. For this we take a closer look at what is
understood by software architecture in general. We will see,
that there are many different understandings. This may be
one of these problem.

Assuming software architecture plays a role in agile soft-
ware development projects, we are interested in whether
there are architectural properties that support or impede
agile software development. By architectural properties we
mean specific characteristics or attributes of the architecture
that have an impact on the compatibility with agile software
development. This way, they affect how the architecture re-
duces or supports the advantages of agility. To find such
properties, we first study what to take care of and what is
important in agile software development with regard to soft-
ware architecture. We use the results to find characteristics
that are responsible for the compatibility with agile software
development.

The results in this paper are based on a literature re-
search. First, we collect information about the context of
the research question from various sources. Resources like
scientific papers, but also experience reports and tips from
developers regarding software architecture in agile software
development are interesting here. Then, the gathered ma-
terial is analyzed and discussed. In doing so, we connect
and compare different sources. We check if the opinions are
consistent or if there are maybe contrary positions.

Section 2 starts with a list of different definitions of soft-
ware architecture. We will see that there is no common
understanding what software architecture is and what it is
not. Out of these definitions, we formulate two different un-
derstandings. In the sections 2.1 and 2.2 we then study the
first research question, each section depending on one of the
two understanding of architecture.

In section 3 we assume software architecture plays a role in
agile software development. We investigate if there are any
properties of architecture that support agile development.
If there are any, we want to work these properties out.

Finally a conclusion is given. We critically discuss the
value of the results and give suggestions for further research.

2. SOFTWARE ARCHITECTURE VS.
AGILITY

Is software architecture compatible with agile software de-
velopment? That is the question we want to answer in this
section. The reason why this question has to be asked is that
software architecture can be brought in connection with big
design upfront. A big design phase upfront is generally un-
desired in agile software development.

Before we start trying to answer the question we have
to find out what developers understand by software archi-
tecture. Another point to research is if there is a different
understanding in agile and non-agile projects. There are
many different definitions:

– The International Organization for Standard-
ization (ISO) defines software architecture in
ISO/IEC/IEEE 42010 as “fundamental concepts or
properties of a system in its environment embodied
in its elements, relationships, and in the principles of
its design and evolution”. [1] Further, the ISO also
gives a definition of “architecting”: “process of conceiv-
ing, defining, expressing, documenting, communicat-
ing, certifying proper implementation of, maintaining
and improving an architecture throughout a system’s
life cycle” [1]. So in their definition this process it not
part of software architecture itself.

– According to the Microsoft Application Architec-
ture Guide software architecture also contains a pro-
cess. “Software application architecture is the process
of defining a structured solution that meets all of the
technical and operational requirements, while optimiz-
ing common quality attributes such as performance,
security, and manageability.” [16]

– Martin Fowler gave a quite general definition of soft-
ware architecture. He noticed that there are many
different definitions and noted that all have two com-
mon elements: “the highest-level breakdown of a sys-
tem into its parts” and “the decisions that are hard to
change” [9].

– Grady Booch et al. derived a quite comprehensive
definition of software architecture based on work from
Mary Shaw and David Garlan [12]:

Software architecture encompasses the sig-
nificant decisions about

- the organization of a software system,
- the selection of the structural elements

and their interfaces by which the system
is composed together with their behavior
as specified in the collaboration among
those elements,

- the composition of these elements into
progressively larger subsystems,

- the architectural style that guides this
organization, these elements and their
interfaces, their collaborations, and their
composition.

[14]

– The Software Engineering Institute of the
Carnegie Mellon University provides a wide-ranging
list of definitions resp. understandings of software ar-
chitecture, most of them submitted by people active

in fields related to software development. [19]. That
makes the list a good starting point to find out what
developers understand by software architecture. Some
definitions are described in detail, others are kept very
short, but overall each is similar to at least one of the
definitions given above. Additionally, some contribu-
tions already notice that there are many different def-
initions.

There are even more definitions, the provided list is of
course not conclusive, but it already shows that there are
many different understandings. Martin Fowler remarked
this problem already in 2002 by saying: “‘Architecture’ is a
term that lots of people try to define, with little agreement.”
[9] Even before Fowler, David Garlan reminded to avoid to
“dilute the term ‘architecture’ by applying it to everything
in sight” [11]. This mass of definitions makes communicating
about software architecture more difficult and complicates
the question if agile software development is compatible with
software architecture. It is also a reason why this question
needs further investigation. When it is not even clear how to
understand the term software architecture, it is impossible
to generally say whether software architecture plays a role
in agile software development. Another problem is, that in
some definitions software architecture seems be incompat-
ible with the agile principles. For example, in Microsoft’s
definition software architecture is a big process. But, as al-
ready noted, one big design process is generally undesirable
in agile software development.

P. Abrahamsson et al. and D. Falessi et al. name an-
other possible reason for the problem architecture vs. agility.
They say it results, at least partly, from a misunderstanding
of what software architecture means in agile software devel-
opment and that architecture in agile is as important than in
classical waterfall. [2] [8] What they say is that software ar-
chitecture has to be treated differently in agile projects than
in non-agile projects that, for example, follow the waterfall
model.

For our further research we focus on two understandings
of software architecture: First, “architecture as the im-
plicit structure of a software system”. That is basically
a slightly simplified version of the definition in ISO/IEC/IEEE
42010. This definition is discussed in section 2.1.

Second, “software architecture as the result of a de-
sign process”, for example a blueprint in form of UML
diagrams. How and when the process is fulfilled is not de-
fined. We will see that this has an influence on how the
research question is answered. This definition is subject of
section 2.2.

2.1 ARCHITECTURE AS STRUCTURE OF
SOFTWARE SYSTEMS

In this section we investigate the first research question
with the understanding that software architecture is the
structure of a software system. This does not include any
documentation or similar. It is just the structure that is
implicitly given by the current state of the software. First
we look up what literature says about architecture in agile
software development.

Grady Booch says architecture can be “accidental” [6].
He describes such an architecture as an architecture that
emerges from design decisions that are made during devel-
opment. In his eyes “having an accidental architecture is not
necessarily a bad thing”, as long as the design decisions are

communicated in some way and the important ones are made
visible and remain visible to the other developers. Michael
Waterman, James Noble and George Allan (later referred
as Waterman et al.) use this term mostly in a negative way
in their paper “How Much Up-Front? A Grounded The-
ory of Agile Architecture” [20]. An accidental architecture
is described as not being “carefully thought through”. Also
Christine Miyachi regards“accidental architecture”as rather
bad practice in her paper “Agile Software Architecture” [17].
She says that “a well thought out” architecture is usually
better.

Scott Ambler clearly says that there is always an architec-
ture. “Every system has an architecture. BUT [sic], it may
not necessarily have architectural models describing that ar-
chitecture.” [3] Architectural models are here understood as
some sort of documentation of the architecture. It is said,
this works because communication aspects have a high im-
portance in agile development. But the author also indi-
cates that in rather large teams it might not be possible
to get along without any documentation, because the over-
head of direct communication is too high. Myachi supports
the statement that every software has an architecture: “No
matter what a team does, an architecture is created.” [17]

Kent Beck emphasizes the importance of software archi-
tecture in projects using the Extreme Programming method-
ology: “architecture is just as important in XP projects as
it is in any software project” [4].

In the paper ”How Much Up-Front? A Grounded The-
ory of Agile Architecture” [20] by Michael Waterman, James
Noble and George Allan a requirement architectures needs
to fulfill to be more compatible with the agile principles is
mentioned. In summary, they say that software architecture
needs to be adaptable and in general open for changes. This
is achieved by delaying decisions. By this, developers can
gain more information on the requirements, which reduces
the probability that design decision are wrong and may un-
necessarily restrict the architecture.

In the next step we want to discuss these statements about
software architecture in agile software development. At the
first glance, the opinion of Grady Booch about ”acceidental
architecture” seems to be contradictory to the opinions of
Waterman et al. and Myachi. Booch says accidental ar-
chitecture is not necessarily bad, but Waterman et al. and
Myachi warn of accidental architecture. But what is under-
stood by the term accidental architecture differs. In Booch’s
paper an accidental architecture is an architecture, that is
not the result of a design phase upfront, but an architecture
that evolved during development. That does not mean that
it was developed without any plan, but it was developed it-
eratively in small steps. Waterman et al. also seem to be a
bit skeptical about Booch’s opinion about “accidental archi-
tecture”. Although they reference his paper and do not give
an own definition, they describe an “accidental architecture”
as not being “carefully thought through” [20] and say it “can
potentially lead to gradual failure of the project” [20]. Also
Myachi kind of ignores some parts of Booch’s description
of accidental architecture. She says an accidental architec-
ture “isn’t as good as a well thought out one” [17]. But in
Booch’s definition it is not necessarily an architecture that
has not been thought out well, it is just an architecture that
“emerges from the multitude of individual design decisions
that occur during development” [6]. He also states that it is

not a bad thing as long as these decisions are made manifest
and the important ones are “made visible as soon as they
are instituted” [6].

But in one point these opinions actually point in the same
direction. They all say that architecture should not be ig-
nored and that big design upfront does not fit into the agile
world. So, architecture always has to be kept in mind during
development because there is no big plan or similar to follow
until the software is finished. Architecture is not developed
on the basis of a big blueprint, but in many small steps and
continuously thinking about changes of the architecture.

From the paper ”How Much Up-Front? A Grounded The-
ory of Agile Architecture” [20] we learned that architecture
needs to fulfill some requirements to be agile. This means
architecture needs to be respected in agile software develop-
ment. Otherwise, there is a risk of creating an architecture
that does not compete well in an agile environment. For ex-
ample, the architecture may not be open for changes. This
possibly makes it harder to react to changes, which is an
important advantage of agile software development. So the
advantages of agile software development can be lessened by
the flaws of the architecture.

Given this we conclude that Kent Becks sentence “archi-
tecture is just as important in XP projects as it is in any
software project” [4] can be applied to agile methods in gen-
eral. Architecture is just as important in agile projects as it
is in any software project.

Another way to answer the research question is by just
looking at the definition of software architecture that is used
in this section. Then it becomes clear that the question is
more a rhetorical question. It even does not make sense here
to say software architecture in general does not or does fit
with the agile principles. Every software system has some
kind of structure and consists of parts that have dependen-
cies between each other, so every software has an architec-
ture. Myachi [17] and Ambler [3] also clearly state that every
software has an architecture.

Another result of this section is that the demands on ar-
chitecture in agile projects are different than in non-agile
projects. One reason for this is that there is no big planing
phase upfront that yields a blueprint of the architecture as
an artifact. Instead, it is a result of continuous planning
and development. So, software architecture emerges during
development. For this it has to fulfill some requirements.
For example, agility requires a higher flexibility in chang-
ing parts of the architecture during development without
requiring to rewrite the whole system.

To sum up, with the understanding that architecture is
the explicitly given structure of a system, the concept soft-
ware architecture is not something that could fit or not fit
with with agility. Instead, it is the way how architecture is
developed and how the specific architecture looks like that
can be contrary to the agile principles.

2.2 ARCHITECTURE AS RESULT OF A DE-
SIGN PROCESS

In this section we investigate the first research question
with respect to the understanding that software architec-
ture is the result of a design process. One example for such
a result are UML diagrams that serve as blueprint for the
subsequent software development. But it could also be some-
thing completely different. We are interested in whether it is
compatible with agile principles to design architecture arti-

facts. With this in mind we start with a literature research.
After that we discuss the results and give an answer to the
research question.

Scott Ambler says that there is not necessarily a docu-
mentation of the architecture: “Every system has an archi-
tecture. BUT [sic], it may not necessarily have architectural
models describing that architecture.” [3] Architectural mod-
els here are some kind of documentation or description of the
architecture. Having no architectural models can work, be-
cause direct communication plays an important role in agile
development. [3] The Agile Manifesto expresses the impor-
tance of communication by the principle: “Individuals and
interactions over processes and tools” [5]. Further Ambler
argues, that having little to no documentation is particu-
larly possible in small teams that work together in the same
room, but large teams might have to create architectural
models to overcome communication challenges.

The Agile Manifesto also says something about documen-
tation: “Working software over comprehensive documenta-
tion” [5]. This does not addresses software architecture di-
rectly, but related to architecture as result of a design pro-
cess this means that a comprehensive blueprint is undesir-
able.

Michael Waterman, James Noble, George Allan deal with
the question of how much should be done upfront in their
paper “How Much Up-front?: A Grounded Theory of Agile
Architecture” [20]. They derived a “theory that explains
how teams determine how much architecture to design up-
front” [20]. This theory consists of forces and strategies. The
forces are circumstances that make up the project’s context.
The strategies determine how much should be done upfront.
Which strategy to choose depends on the manifestation of
the forces.

One of these strategies is“Big Design Up-Front”. By using
this strategy a blueprint of the full architecture is designed
at the beginning of the project. But it is said that this is
generally undesirable in agile development, because it “will
compromise their ability to be agile” [20]. It should only be
used if the context of the project requires it.

In contrast to “Big Design Up-Front”, the strategy “Re-
spond to Change” says that only as much as needed should
be designed upfront. This means that there is no full blueprint
of the architecture. Instead, design decisions are delayed
“until sufficient information on the requirements is known”
[20]. By this, the probability that theses decisions need to
be changed in the future is decreased. All this increases the
project’s agility.

In the strategy ”Emergent Architecture” only a minimum
of architectural decisions are made upfront, e.g. the selection
of the technology stack”. This way, development starts with
an architecture that is kept as simple as possible. It is said
that this strategy is explicitly useful when a running software
is already needed at an early stage.

Alistair Cockburn presents a principle called“walking skele-
ton” [7] which heads into a similar direction as the strate-
gies “Respond to Change” and “Emergent Architecture”. A
walking skeleton is defined as “a tiny implementation of the
system that performs a small end-to-end function” [7]. It is
a skeleton, because it connects the main architectural com-
ponents. The most application functionality, here the flesh,
is missing. The skeleton is walking, because it is already
a running software. So the architecture can be tested at

an early stage in the project. The skeleton provides some
kind of outlook of what the final architecture will look like.
Architecture and functionality are developed in parallel. By
following this strategy the upfront effort is reduced to a min-
imum and design decisions that do not need to be made at
the beginning of the project are delayed.

The concept of architecture that is evolving during devel-
opment is backed by other papers. For example, Miyachi
says that software architecture has to be seen as iterative
process [17] and Fraser says that there have to be “ongoing
architecture evolution activities” [10] during development.
Grady Booch’s definition of “accidental architecture” [6] is
heading in a similar direction as well.

We can summarize that big design upfront is generally
undesirable in agile software development. When the com-
plete architecture is designed upfront, all design decisions are
made at the beginning of the project. The problem by this
is that it makes reacting to changes costly when parts of the
architecture need to be changed. The time in which these
parts of the architecture have been designed was wasted.
Additionally some design decisions might prevent changes
on the architecture, because they are too restrictive. [20]
All this reduces the project’s agility.

So what we can say with respect to architecture as result
of a design process is, that the architecture does not result
from only one big design process. Instead, it is defined by
rather small design decisions that are made during develop-
ment. As the strategy “Emergent Architecture” says, only
key architectural decision are made at the beginning. De-
laying decisions is also an important principle here. By this,
the probability that time is wasted by designing too much
upfront is reduced. Additionally architectures adaptabil-
ity is increased by not making decisions that might prevent
changes and keeping the architecture open for modifications.

Another result of the literature research is that architec-
ture as the result of a design process, is not necessarily a
description or plan of an architecture in form of a written
documentation. Instead, the resulting architecture of the
initial design phase can be represented by code, for example
in form of a “walking skeleton” [7]. This realizes the prin-
ciple of the Agile Manifesto “Working software over com-
prehensive documentation” [5]. The code itself represents
architectural decisions.

How much documentation of the architecture in form of
text or design documents is needed depends on the teams
size and structure. While small teams need little to no
documentation, larger teams, where developers may be dis-
tributed over several places, need documentation to over-
come communication challenges. [3]

3. ARCHITECTURAL PROPERTIES
This section focuses on properties an architecture in agile

projects needs to have. These properties are needed because
the architecture has to fulfill some requirements to be agile.
By architectural properties we mean specific characteristics
or attributes of the architecture. We are looking for archi-
tectural properties that have an impact on the compatibility
with agile software development. So they affect how the ar-
chitecture weakens or supports the advantages of agility.

It is hard to give concrete architectural properties, because
the impact of the project’s context, e.g. the chosen agile
method, on architecture is too high. The properties would

be to specific, so that they could be applied in only few
cases. Instead, we give more general characteristics that
help making the architecture to be compatible with agile
software development. These characteristics may then be
used in a project to derive concrete architectural properties
that fit in the project’s context.

First, we want to find out what these requirements are by
looking up advices on architecture in agile software develop-
ment in a literature research. Then we use the results to find
and formulate characteristics that help to make the archi-
tecture compatible with agile software development. With
this goal we start with the literature research.

We start with the previously referenced paper by Michael
Waterman, James Noble and George Allan “How Much Up-
Front? A Grounded Theory of Agile Architecture” [20]. It
gives some interesting aspects about software architecture
in an agile environment. Although the paper is more about
the question how much upfront effort is needed, the pre-
sented strategies help to understand what the requirements
to an architecture in agile environments are. The strategy
“Respond to Change” gives advices on how to increase the
architectures modifiability. In order to achieve this, the ar-
chitecture’s design needs to be kept simple. This means that
it is only designed what is needed at the moment and not
what might be needed in the future. By delaying design de-
cisions, developers gather more information on the require-
ments, which lowers the probability the decisions have to be
changed later. Another important aspect is, that decisions
that are made too early, have a high risk to be unnecessarily
constrained and thus, impede future development. [20]

Another strategy they present is called “Emergent Archi-
tecture”. In this strategy the upfront effort is reduced to a
minimum. Only key architectural decisions are made at the
beginning, e.g. the selection of the technology stack. This
helps to start with an architecture that is as simple as pos-
sible. It is said that this strategy is explicitly useful when a
running software is already needed at an early stage.

Bob Martin presents the “Dependency Rule” in his blog
article “The Clean Architecture” [15]. He says that source
code dependencies should only point inwards. This means
parts of the software only have dependencies on more general
parts and never on specific parts.

The paper“Architecture-aware Programming in Agile En-
vironments” [13] by Thorsten Keuler, Steffan Wagner and
Bernhard Winkler describes the experiences of a company
on how to handle architecture in agile software development.
These experiences where gathered while introducing agile
development methods. It is said that “architecture needs to
be explicit so that it is easy to follow but hard to break”
[13]. Another point mentioned is that “scalability of teams
heavily depends on the scalability of the software structures
that the systems are made of.” [13] Scalability of the software
structure here means the ability of the software structure to
grow and to get extended. This is brought in connection
with Conway’s Law: “Organizations which design systems
[...] are constrained to produce designs which are copies of
the communication structures of these organizations” [18].
By this they make the hypothesis that “overall productivity
scales with the ability to decouple code units from one an-
other” [13].

Given these advices and experiences on software architec-

ture in agile software development, we now want to derive
some characteristics of the architecture that are especially
helpful in an agile environment. In the previous sections
we argued that an architecture in agile software develop-
ment is not developed by a big blueprint, but it emerges in
rather small steps. The strategy “Respond to Change” by
Waterman et al. [20] defines characteristics of architectures
in agile software development that enable the architecture
to emerge. This is achieved by keeping the design simple
and delaying decisions. All this increases the architectures
adaptability. A high adaptability is important because it al-
lows making changes without requiring to rewrite the whole
system. So, it helps to develop an emerging architecture.

The strategy “Emergent Architecture” has a similar goal,
but gives advices on how to start. It says, the initial archi-
tecture should be kept as simple as possible. This creates an
architecture than can easily emerge during development, be-
cause it contains as less restrictive decisions as possible. The
architecture is kept open for changes. So, high adaptability
is also an desired characteristic here.

Thorsten Keuler et al. say that scalability of the software
system is important because it has an high impact on the
scalability of the team. Organizations, e.g. companies, gen-
erally want to get bigger, i.e. they want to scale. For this,
most times the teams also need to grow. So, according to
Keuler et al., scalability of the architecture is an important
aspect. To be scalable, an architecture needs to be adapt-
able and open for changes. So we do not see scalability as
an extra characteristic, as it follows by adaptability. Addi-
tionally, this aspect is always important, not only in agile
software development.

The “Dependency rule” helps to prevent confusing and
complicate dependencies that make it hard to interchange
parts. This also helps to increase the adaptability of the
architecture.

Overall, the most important aspect of software architec-
ture in agile software development is, that it needs to be
able to emerge. For this it needs to be adaptable and open
for changes. To reach this, we found some advices like, de-
laying decisions, keeping the design simple and preventing
constraining dependencies. All this advices lead to an adapt-
able architecture that is open for changes. So, we can say
that adaptability and being open for changes are the most
important characteristics of software architecture in agile
software development.

4. CONCLUSION
Software architecture can be understood in many differ-

ent ways. In some definitions, software architecture and
agile software engineering seems to work together with no
major problems. But in others, it seems to be incompatible
with the agile principles on the first sight. To be able to
answer the research questions we formulated two definitions
of software architecture. In the first, software architecture
is the implicitly given structure of a software system. In
the second, software architecture is the result of a design
process.

Overall, we found out agile software development needs
software architecture. It is not less important in agile projects
than in other projects. But the more interesting question
was why agile needs architecture. The difference is how ar-
chitecture is understood and handled. Architecture in agile
software development is developed in small iterative steps

and not by strictly following a plan or blueprint resulting
from a design phase at the beginning of the project. To
create an architecture that can emerge during development,
it needs to full some requirements. In general, it must be
adaptable and open for changes at any time. This way, it
is possible to extend and change the architecture at any
time. As reacting to changes fast is a big advantage of agile
software development, this is an important requirement for
software architecture.

Strategies like “Emerging Architecture” or concepts like
“Walking Skeleton” can be used to create an initial architec-
ture on which further development can be built on. They
reduce the upfront effort and make it possible to evaluate
the software at an early stage.

How much architectural activity a project needs, can not
be answered in general. It highly depends on the project’s
context. [2] The project’s context includes for example the
chosen programming language, the organization and the do-
main. This leads to the conclusion that the result presented
in this paper always have to be seen in the project’s context.

This is especially true for section 2.1. Some of the dis-
cussed characteristics might not be important in some projects,
but more important in other projects. Additionally, it was
totally left out how the named requirements that enable an
emerging architecture can be implemented. This would have
been too specific for this paper, because it highly depends
on the project’s context.

Another problem is that the architectural properties we
found are not proven to be right or even complete. The
actual impact to real projects has to be researched in future
work. This research could be done in connection with the
question how the needed requirements can be implemented
in practice. Both would probably be highly dependent on
aspects like the programming language or the agile method.

As the existence of various understandings of software ar-
chitecture is a problem in research about it, we now want
to close this paper with the appeal not to “dilute the term
“architecture” by applying it to everything in sight” [11].

5. REFERENCES
[1] Iso/iec/ieee systems and software engineering –

architecture description. ISO/IEC/IEEE
42010:2011(E) (Revision of ISO/IEC 42010:2007 and
IEEE Std 1471-2000), pages 1–46, Dec 2011.

[2] P. Abrahamsson, M. A. Babar, and P. Kruchten.
Agility and architecture: Can they coexist? IEEE
Software, 27(2):16–22, 2010.

[3] S. W. Ambler. Agile Architecture: Strategies for
Scaling Agile Development. http://www.
agilemodeling.com/essays/agileArchitecture.htm,
accessed: 19.01.2018.

[4] K. Beck. Extreme programming explained: embrace
change. addison-wesley professional, 2000.

[5] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning,
J. Highsmith, A. Hunt, R. Jeffries, et al. Manifesto for
agile software development. 2001.

[6] G. Booch. The accidental architecture. IEEE Softw.,
23(3):9–11, May 2006.

[7] A. Cockburn. Crystal clear: a human-powered
methodology for small teams. Pearson Education, 2004.

[8] D. Falessi, G. Cantone, S. A. Sarcia, G. Calavaro,

P. Subiaco, and C. D’Amore. Peaceful coexistence:
Agile developer perspectives on software architecture.
IEEE software, 27(2), 2010.

[9] M. Fowler. Patterns of enterprise application
architecture. Addison-Wesley Longman Publishing
Co., Inc., 2002.

[10] S. Fraser, E. Hadar, I. Hadar, D. Mancl, G. R. Miller,
and B. Opdyke. Architecture in an agile world. In
Proceedings of the 24th ACM SIGPLAN Conference
Companion on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’09, pages
841–844, New York, NY, USA, 2009. ACM.

[11] D. Garlan. First international workshop on
architectures for software systems workshop summary.
ACM SIGSOFT Software Engineering Notes,
20(3):84–89, 1995.

[12] D. Garlan and M. Shaw. An introduction to software
architecture. Advances in software engineering and
knowledge engineering, 1(3.4), 1993.

[13] T. Keuler, S. Wagner, and B. Winkler.
Architecture-aware programming in agile
environments. In Software Architecture (WICSA) and
European Conference on Software Architecture
(ECSA), 2012 Joint Working IEEE/IFIP Conference
on, pages 229–233. IEEE, 2012.

[14] P. Kruchten. Agility and architecture: an oxymoron?
Architecture, 2010.

[15] R. Martin. The Clean Architecture, 2012.
https://8thlight.com/blog/uncle-

bob/2012/08/13/the-clean-architecture.html,
accessed: 19.01.2018.

[16] J. Meier, D. Hill, A. Homer, T. Jason, P. Bansode,
L. Wall, R. Boucher Jr, and A. Bogawat. Microsoft
application architecture guide. Dostupné
https: // msdn. microsoft. com/ enus/ library/

ff650706. aspx , 2009.

[17] C. Miyachi. Agile software architecture. SIGSOFT
Softw. Eng. Notes, 36(2):1–3, Mar. 2011.

[18] N. Nagappan, B. Murphy, and V. Basili. The influence
of organizational structure on software quality: An
empirical case study. In Proceedings of the 30th
International Conference on Software Engineering,
ICSE ’08, pages 521–530, New York, NY, USA, 2008.
ACM.

[19] Software Engineering Institute. Community Software
Architecture Definitions. https://www.sei.cmu.edu/
architecture/start/glossary/community.cfm,
accessed: 19.01.2018.

[20] M. Waterman, J. Noble, and G. Allan. How much
up-front?: A grounded theory of agile architecture. In
Proceedings of the 37th International Conference on
Software Engineering - Volume 1, ICSE ’15, pages
347–357, Piscataway, NJ, USA, 2015. IEEE Press.

http://www.agilemodeling.com/essays/agileArchitecture.htm
http://www.agilemodeling.com/essays/agileArchitecture.htm
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
https://msdn.microsoft.com/enus/library/ff650706.aspx
https://msdn.microsoft.com/enus/library/ff650706.aspx
https://www.sei.cmu.edu/architecture/start/glossary/community.cfm
https://www.sei.cmu.edu/architecture/start/glossary/community.cfm

1

Applications of Combinatorial Testing - A Literature Review

Muhammad
Radman Sheikh

RWTH Aachen University
Ahornstr. 55

52074 Aachen, Germany

radman.sheikh@rwth-aachen.de

Konrad Foegen
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany

konrad.foegen@swc.rwth-aachen.de

ABSTRACT
More than 40 tools and different algorithms have been developed until

now to achieve combinatorial testing. The research and literature proves

through case studies that applying combinatorial testing on different

types of applications is not a farfetched thought. Despite of all the

research and experimentation the categorization of applications on

which combinatorial testing has been applied is missing.

 This paper gives a literature overview that to which applications

combinatorial testing has been applied and then it categorizes them and

shows what were the problems and results. Different sections of this

paper take different types of real world applications as example and

show how combinatorial testing is applied to them and then categorizes

them to different domains.

Keywords

Combinatorial testing, Applications of combinatorial

testing,

1. INTRODUCTION
 Combinatorial Testing is a failure detection method for several of

software systems who have hundreds even thousands of configurations.

For-example the recent version of Apache web server requires 1.8 ×

1055 [24]unique configurations which in modern computation world is

practically impossible. So in other words we can say that combinatorial

testing often known as pairwise or All-Pair Testing test a system under

a discrete set of input parameters containing all possible discrete

combinations of those input parameters[24].CT usually models the

system under test to as a set of factors (choice points or

parameters).Based on this model , it generates a specific criteria which

takes values from a particular domain. This sample is basically a set of

all the possible combinations which are required to test the system.

 Although this technique of CT is used in many domains and

applications and more than 40 tools have been developed now to

achieve this approach but there is a practical difficulty in applying this

approach to real world applications. Researchers and practitioners are

working to fill this gap. On contrary to that literature and case studies

give evidence that this approach of CT has been applied to many real

world applications and as far as results were concerned, some were

satisfactory and some were not.

 So, in this paper First we will identify that on which applications

combinatorial testing has been applied by reviewing the literature and

then will categorize them. The first section of this paper shows the

methodology that what methodology is adopted for the categorization.

How many applications are selected for the categorization, how much

literature is taken under consideration, what were the querying

factors?

 While doing the research and going through the literature to find out

on which applications combinatorial testing has been applied the main

focus was on Real world applications, those applications which are

being used by different commercial companies or are being used to

solves real life problems. The main focus was on to find those

applications which were commercially operational in different domains

and every possible effort was made to avoid those applications which

 were either in their experimentation phase or were a demo

application. Google scholar was frequently searched to find out

the literature to show the appliance of combinatorial testing

technique on different applications. Not only Google scholar

different reference material provided by big companies like

NASA, Intel and NIST was studied to find out our desired

applications.

 We adopted the methodology of literature review to backup

our research. A literature review is an exploration of the

published literature on a particular topic. By “literature” we

mean books, academic journal articles, book chapters, and other

sources. You summarize and analyze your result and put forward

a conclusion at the end[23].

 The second section of the paper shows a table in which the

categorization of the application has been done and discusses the

results of applying CT on some of the categories in the table. The

third section shows a detailed discussion about some of our

findings in the literature and the final section shows the

conclusions and future work.

 2. BACKGROUND
 Before any categorization, facts and applications of

combinatorial testing: let us first discuss that why we do a

literature review. A literature review is done for the following

purposes [33].

• To see what has and has not been investigated.

• To identify data sources that other researchers have

used.

• To learn how others have defined and measured key

concepts.

• To contribute to the field by moving research forward.

• To provide evidence that may be used to support your

own findings.

 Why we needed Literature Review?
 We needed literature review for the following purposes

1) We wanted to know that on how many applications

combinatorial testing has applied and how many of

them were documented by the researchers. What were

results? What worked and what did not?

2) We wanted to identify the data sources of our and

other researchers.

3) We wanted a scale of authenticity for our research.

4) We wanted authentic real life applications, so that we

can do categorization.

 3. RESULTS

 The table1 below shows the categorization of the

applications discovered while going through the literature.

mailto:akat@rwth-aachen.de
mailto:konrad.foegen@swc.rwth-aachen.de

2

 Table 1: Applications Categorization

No of

Applications

Name of

Application

Type of Application

/Domain

Type of

Testing

1 Traffic Collision Avoidance System [4] Traffic Systems Unknown

2 Rax Engine[8] Space Systems Automation Testing

3 Rax Interafce[8] Space Systems Automation Testing

4 Rax Convergence[8] Space Systems Automation Testing

5 Goddard Space Flight Center[16] Space Systems

Development and Integration

Testing

6 PICT[3] TestCase Generating Systems Automation Testing

7 ACTs[5] TestCase Generating Systems

Functionality and Robustness

Testing

8 MyIE[18,21] Browsers Applications Functional Testing

9 Mozilla Web Browser[15] Browsers Applications Manual Testing

10 Apache Server[15] Servers Systems Manual Testing

11 AT&T pmx/starmail[7] Server Systems Unknown

12 PIV smart card[5] Busniess Applications

Model Checking (A sort of

Automation Testing

13 Data Management and Analysis System (DMAS)[24] Business Applications Unit Testing

14 Bellcore inventory database systems[12]

Inventory/Database

Systems(ERPS) Automation (AEGT Tool used)

15 Bellcore's Integrated Services Control Point (ISCP)[12] Network systems Automation(AEGT Tool used)

16 MITATE

Mobile Network (Network

Systems Unknown

17 “Simured” network simulator[6] Network systems Automation Testing

18 ADA compiler [13] Compiler Systems Unknown

19 Book[1] Web Application Automation Testing

20 CPM[1] Web Application Automation Testing

21 Webgoat - version 5.4[17] Web Applications Security Testing

22 Mutillidae II - version 2.6.3.1 Web Applications Security Testing

23 Damn Vulnerable Web Application (DVWA) - version Web Applications Security Testing

24 Gruyere - version 201-07-15 Web Applications Security Testing

25 – BodgeIt - version 1.3 Web Applications Security Testing

26 I4Copter[26]

Software Product Line

(Automotive Systems Automation Testing

27 Smartify Android App[20] Mobile Applications Manual Testing

28 Hotwire [29] Mobile Applications Manual Testing(Functional Testing)

29 BookIt [30] Mobile Applications Manual Testing(Functional Testing)

30 Travelocity[31] Mobile Applications Manual Testing(Functional Testing)

31 AIX 4.1 [26] Operating Systems Automated Robustness Testing

32 Digital Unix 4.02[26] Operating Systems Automated Robustness Testing

33 FreeBSD 2.2.5 Operating Systems Automated Robustness Testing

34 HP-UX B.10.20 Operating Systems Automated Robustness Testing

35 Irix 6.2 Operating Systems Automated Robustness Testing

36 Linux 2.0.1 Operating Systems Automated Robustness Testing

37 LynxOS 2.4.0 Operating Systems Automated Robustness Testing

38 NetBSD 1.3 Operating Systems Automated Robustness Testing

39 QNX 4.2 Operating Systems Automated Robustness Testing

40 SunOS 5.5 Operating Systems Automated Robustness Testing

41 IBM® POWER7®[22] Industrial Systems System Testing

42 System z®[22] Industrial Systems System Testing

43 Loan Arranger System (LAS)[24] Business Systems Unit Testing

3

Hence, we wanted to do a proper categorization of applications, so in

order to do that you need ample sample space of applications and

literature backing it up. A total set of almost 43 applications from

different domains were selected as you can see that in Table1 on which

this technique of combinatorial testing has been applied and in order to

show the results and to backup our claim a total amount of 45 data

sources were consulted and a data source is mainly consisted of

research papers, books and official presentations of researchers.

 In the first part of the search the concentration was more on the

automation part that how this technique of generating combinations can

be automated and then can be applied to an application and during that

search almost 15 applications were discovered. The second part of

search was more concentrated on how the combinatorial testing can be

extended to different types to fulfill the different requirements of

different applications and during that search further 25 applications

were discovered.

 After doing the categorization an interesting discovery was made

that the operating systems and web applications is the dominant

category among the sample set of applications that were discovered.

The domination of a category among 43 applications is shown in

figure1

 Figure 1: Application Categories

 Now after doing the categorization, let’s have a discussion on some

of the categories that what was the reason behind creating each

category ,why it was created and what was the result of applying CT on

that category.

 SPACE APPLICATIONS: The reason for creating this category is:

majority of the applications in this category are NASA space

applications and are utilized for the NASA’s space projects. Now as far

as result of CT on this category is concerned the study of smith et al. [8]

gave us the result of pair wise testing of Remote agent planner(RAX) of

software Deep Space 1 mission. The RAX is an expert system that

generates plans to carry out spacecraft operations without human

intervention. The study showed that testing all pairs of input values

detected over 80 percent of the bugs classified as either “correctness” or

“convergence” flaws in onboard planning software[16].Four

components of different types of this system were tested and faults were

detected and number of ratio of faults for each component was also

different. Not only RAX another commercial NASA application naming

Goddard Space Flight Center was tested by this approach and a total of

329 error reports from development and integration testing were

analyzed[8].Different types of error from critical to cosmetics were

discovered.

 BUSINESS APPLICATIONS: The reason for creating this activity

is due to the fact that applications involved in this categories were

actually contributing towards the business cycle of the companies which

were using them, plus the researched literature[24] to some extend did

the same type of categorization or in other words classification. We

have Schroeder's study in which code of two applications (the Loan

Arranger System (LAS) and the Data Management and Analysis

System (DMAS)) was injected with faults, each application was then

tested with n-way test set of 2,3 and 4[9].Ten n-way test sets of each

type were generated using a greedy algorithm similar to that presented

by Cohn, et al. [24].The result of this activity is shown in table2

 Table 2: Error Report

Fault Type LAS DMAS

2 Way 30 29

3 Way 4 12

4 Way 7 1

> 4 way 7 3

Not Found 34 43

 WEB APPLICATION: The reasons for creating this

category were that the majority of the applications in this

category are web applications and are classified as the same in

the literature. The security testing of 5 web applications were

done and the technique of combinatorial testing was used in that

security testing [17]. A framework is provided in the study for

testing and detection of both reflected and stored cross-site

scripting (XSS) in web applications. Combinatorial Testing is

used to provide input to the penetrating tool used and its goal is

to cover standard XSS exploitation attempts by checking

whether certain parts of the SUT are vulnerable to potentially

malicious scripts.

 Two penetration tools BURP and ZAP were used and

(JSO,WS1,INT,WS2,EVH,WS3,PAY,WS4,PAS,WS5,JSE) was

an attacking vector which was used and the total number of test

runs on each tool were 58 and the result was measured in the

terms of security level set at the application, total number of

successful XSS vulnerabilities detected, total coverage provided

and the execution time.

 OPERATING SYSTEMS: The reason for this category

was that in the researched literature POSIX calls were made to

different operating systems. Robust testing of a mission critical

application using COTS approach is a difficult task as compared

to traditional desktop application. In the current study under

review, Ballista approach[26] performs fault injection at the API

level. Injection is performed by passing combinations of

acceptable and exceptional inputs as a parameter list to the

system under test via an ordinary function call. The Ballista

approach in the study shows robustness testing has been

implemented for a set of 233 POSIX calls, including real-time

extensions for C. All system calls are defined in the IEEE

1003.1b standard [25].

 This Ballista Robustness test suite has been applied to

ten different operating system as shown in figure 2 and a total of

233 POSIX calls were tested on each operating system. The

synopsis of the experiment is given in figure 2
 Figure 2: POSIX Calls

 WEB BROWSERS :In a study conducted by D. Richard

Kuhn and Michael J. Reilly they explored the bug reporting

database of an open source web browser naming Mozila web

browser. A total 194 bugs were reviewed in the database. Each bug

has been classified as fixed, verified and critical and there is a bug

trigger alongside a bug which helps you replicate the same bug

present in the database.

 Hence a description of each bug is given with instructions on

how to replicate the bug when available, the researcher reviewed a

total of 194 bug reports in the browser database and replicated the

interactions and applied an n-way approach of the combinatorial

testing. The findings of the experiment are shown in the figure 3

4

 Figure 3: Bug Report

 Apart from Mozilla another open source browser naming myIE was

tested using this approach[18].MyIE is a wrapper for the Internet

Explorer engine. It offers several special features, including support for

up to six IEs each in its own tab, user definable search engines, multiple

search engine support, favorites support, visual bookmarks, grouped

bookmarks, and online version check support. Two test suites were

taken , the first consisted of 243 test cases and were executed through

the help of Vermont HighTest Plus1 test tool and the second test suite

consisted of 50 test case and fuzz testing was done. Fuzz testing [27,

28] is a testing method used to detect security flaws in software. In fuzz

testing, random messages are sent to a program’s message queue.

 The main goal of the study is to manipulate all of the options

selected for each configuration space selected each time, it was

infeasible to use the entire set of options for the MyIE browser and to

investigate the changes to fault detection effectiveness and code

coverage across configurations.[21]

4. DISCUSSION
 In this section there will be a detailed discussion about some of the

literature that what were our main findings in the literature, will discuss

about the type of testing that was applied to the different applications

and will discuss the results in detail and finally will discuss some

categories that what was the effect of combinatorial testing on some of

the categories.

 The study of Sergiy Vilkomir and Brandi Amstutz[20] shows that in

the modern demanding age of mobile quality: combinatorial testing

plays a vital role towards the quality of mobile applications. The

literature under study also shows an experiment in which three mobile

applications Hotwire [29], Travelocity [30], and BookIt [31] were

chosen with two sets created with the 5 random devices as discussed in

the literature[20]. Testing was done remotely on real mobile devices

(i.e., not on simulators) using the Perfecto Mobile service [32]. The

detailed result of the testing can be found at researched literature[20]

but to summarize about the result is that it gives us 12 cases for

comparison of effectiveness: each EC set is compared with two random

sets for each of three applications. Literature[20] shows that in seven

cases (58.5%) the study’s approach is more effective than the random

selection of devices; in four cases (33.5%) they provided equal

effectiveness; and only in one case (8%) the random set was more

effective.

 Testing mobile application nowadays, is becoming difficult

because of the device specifics errors , with hundreds and even

thousands of devices its practically impossible to do it , the best option

is to select an optimal subset of options and test the systems on it . Here

combinatorial testing comes in handy. It allows you select an optimal

subset from the practical and theoretical points of view. In order to do

that you have to follow an approach consisting of three points

mentioned in the literature[20] and in our opinion it’s an optimal

approach because it delivers optimal results. The interesting thing to

mention is while investigating the result: literature [20] found out that

this approach of selecting a subset through combinatorial approach is

more effective than the random selection of devices.

 Now mobile applications are somewhat temporary systems: the

next question is that can combinatorial testing can be applied to a real

life system. A joint case study conducted by National Institute of

Standards and Technology and The University of Texas at Arlington to

show that can CT(Combinatorial Testing) be applied to real life

systems. In order to prove that they applied combinatorial testing

to a CIT tool naming ACTS. In short they tested ACTS using

ACTS and the results were very interesting .They generated a

total number of 1105 tests, and the execution of these tests

achieved about 88% statement coverage, and detected 15 bugs in

a rather mature system.

 Before going into details lets us explain a little bit about

ACTS. ACTS is a test case generating tools for t-way

combinatorial test set. Currently the set is up to only 6. The tool

is implemented in Java and provides both command line and

graphical user interfaces. You can find out more about ACTS in

the given literature[5].ACTS supports two test generation modes,

namely, scratch and extend. The former allows a test set to be

built from scratch, whereas the latter allows a test set to be built

by extending an existing test set. You can go through the

literature [5] to check what parameters were set? What

constraints were introduced? What were the relationships

between constraints? But the important thing to mention is that

what their t-way strength was. They started with 2-way testing

but later extended to 3-way for greater code coverage and

efficiency.

 While going through the literature it has been concluded

that if you are combinatorial testing a real life systems these steps

should be followed: 1) Construct an abstract model 2) Define

parameters for it 3) Define relations4) Define constraints on

parameters 5) Using the model develop the test cases and test the

system .You can go through the literature [5] to find out which

abstract model was constructed, what were its constraints,

relations and test cases? Which components of the system were

test and what were the results but the important to mention is

while combinatorially testing a real world application input space

modeling is a very important task and it should be done carefully,

the purpose of the study was to determine that having different

combinations of parameters, constraints and relations sometimes

yield to such factors which does not have any type of relation

with your SUT. Plus the result of this study clearly shows that if

input space modeling is done properly higher code coverage and

efficiency can be achieved. Plus through this approach you can

functionally test the SUT by giving the valid parameter and can

check the robustness of the system by giving in valid parameter

 Not only on mobile and real life systems you can also

apply combinatorial testing on commercial applications as well.

In the literature under study the researcher presented a

comprehensive analysis of the use of Combinatorial Test Design

(CTD) to design system level test cases for two real world IDM’s

commercial applications naming IBM POWER7 and IBM

System z. This study of the researcher involves the unexplored

aspect of combinatorial testing of how to apply CTD on system

level of two real life complex industrial applications. The

literature under study explains on system level that how you can

do test space definition, evaluation and changing the test plan

according to the resources and requirements available. The

research also proves through practical results that an unexpected

improvement in the quality of the features of system under test

has been seen which clearly shows the flexibility of CTD

technique. While applying CTD in practice the researcher also

found out that applying CTD early on design level based on

requirement documents will actually improve the efficiency and

issues will be caught as early as possible at development life

cycle. Before making further conclusions lets have a brief

introduction of our systems under test

 CHARM: IBM® Power® Server Concurrent

Maintenance: CHARM is basically IBM’s server maintenance

software which do dynamic updating and troubleshooting without

disturbing the service provided by the servers to different users.

You can read further more about CHARM in the

literature[22]that what were features under study? How many

models where tested? How many Parameters were involved? But

the most important thing to mention here is that this maintenance

feature is a sub component of IBM® POWER7® and there is a

continuous comparison of itself to its previous version POWER

6.

5

 EDM: System z Enhanced Driver Maintenance:

Enterprise customers demand and expect 24×7 availability from System

z servers. Meeting that demand requires concurrency of maintenance

including software, firmware and hardware. A major part of that

equation is concurrent update of firmware fixes and delivery of new

functions. The main purpose of this EDM is to concurrently update the

firmware stack called the driver from one version to another version.

 You can go through the literature [22] to find out what feature of

the systems were tested? What parameters were involved? How many

model versions were included? How many nodes were considered? But

the important thing to mention here is that if you are dividing the test

space of a complex enterprise system then you have to divide it from

two perspectives, functional and system level. On functional level

individual feature is tested and on system level a group of features are

tested to check the stress of the system. While identifying parameters

the researchers ask some questions to reduce the input space. Each is

explained in detail in the literature[5].

 In order to build a test space same procedure is followed as was in

the case of real life systems but there is slight change : first indentify

the parameters then assigned values to them after that identify the bad

or negatives flows and consider them as well for more coverage and

finally define some constraints on the input values. After the

construction of the test plan, a refinement process is done and the

constructed combinatorial model is evaluated. After the evaluation of

the model testing is done. The same procedure is followed in literature

and the evaluated test results can be found at [5].

 In order to determine quality, well known test case effectiveness

matrix was used which they refer to as the defects per trial ratio. You

can study more about this matrix and result in the literature[5] but

important thing to mention here is that two types of improvements were

seen while power 7 was compared with its previous version power 6 on

which CTD approach was not applied . Those improvements were

Improvement in quality and Early detection of bugs

 Overall the collusion can be made that if you want to apply CTD

to complex industrial applications while doing system level testing,

keep these factors in mind.

• Closing coverage gaps.

• Affordability.

• Importance of bad path.

• Broader view of the test space.

• Importance of root cause analysis.

 Now as far mobile, commercial and real life applications are

concerned Combinatorial testing can be applied to them but what about

a dynamic field like networking and the answer is yes. Computer

security division head of National institute of standard and technology

NIST Rick Kuhn proposed a way of testing network applications and

proposed a combinatorial method for discrete event simulation of a grid

network. Before purposing any techniques or algorithm, he asked a

simple question. Question: can combinatorial methods help us find

attacks on networks?

 In order to do that he purposed an experiment that find out

deadlock configurations in a network using grid like network simulator

with random simulation input and covering array of 2-way, 3-way and

4-way combinations. Automation Combinatorial testing methodology

was recommended with Goals to reduce testing cost and improve cost-

benefit ratio. The algorithm that was adopted was the covering array to

model the input space. You can study about the reason of his choice and

comparison of this algorithm with other ones in the literature [6].

 The system under test SUT is “Simured” network simulator. It

has a Kernel of approximately 5,000 lines of C++ code (not including

GUI) and it main purpose was to simulate a grid like network. The main

objective of the study is detect configurations that can produce

deadlock, prevent connectivity loss when changing network , attacks

that could lock up network ,Compare effectiveness of random vs.

combinatorial inputs.

 While going through the literature we found out that in order

to properly identify the deadlocks the researchers asked these questions

• Are any of them dangerous?

• If so, how many?

• Which ones?

 On the basis of input model discussed in literature[6]

31,457,280 configurations were detected .Now the next step was to

compare the combinatorial approach with the random after performing

the testing it was concluded that more deadlocks were detected

using the combinatorial approach. This approach detected 14

configurations that can cause deadlock: 14/ 31,457,280 = 4.4 x

10-7[] and the most alarming thing was that combinatorial

approach found one very specific configuration that most of the

random test could not found.

 5. CONCLUSION AND FUTURE WORK
 In this paper we presented you with some of the real

world applications on which combinatorial testing has been

applied directly or indirectly. The process of discovery and

identification was through literature review. We discussed that

why this approach is important and why we adopted it. After

that we describe our sample space that about 43 applications

from different domains were identified and after the

identification proper categorization was done using a proper

schema. After doing the categorization we discussed some of the

results of application on which combinatorial testing has been

applied category wise.

 Although literature and many case studies proves that

applying combinatorial testing to real world applications is a

practical thought and availability of many application is the

testified prove of this idea but classification not only on the

application but also on the testing types level is missing. You

will find many applications on which combinatorial testing has

been applied even you will find some categorization on

application level as well but you will not find categorization on

testing type level(functional, system) which can be an

interesting research area in near future in the field of

combinatorial testing.

 6. REFERNCES

[1]. Xun Yuan, Myra B. Cohen, Member, IEEE, and Atif M.

Memon, Member, IEEE. GUI Interaction Testing:

Incorporating Event Context, IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 37, NO. 4,

JULY/AUGUST 2011

[2]. Sebastian Oster, Florian Markert and Philipp

Ritter.Automated Incremental Pairwise Testing of

Software Product Lines, Real-Time Systems

Group,Computer Systems Group Technische Universitat

Darmstadt, Germany

[3]. Jacek Czerwonka. Pairwise Testing in the Real

World:Practical Extensions to Test-Case Scenarios,

Microsoft Corporation February 2008.

[4]. D. Richard Kuhn and Vadim Okun National Institute of

Standards and Technology Gaithersburg, MD 20899.

Pseudo-Exhaustive Testing for Software, Software

Engineering Workshop, 2006. SEW '06. 30th Annual

IEEE/NASA.

[5]. Mehra N.Borazjany, Linbin Yu, Yu Lei,Raghu Kacker,

Rick Kuhn. Combinatorial Testing of ACTS: A Case Study

,2012 IEEE Fifth International Conference on Software

Testing, Verification and Validation, April 2011.

[6]. Rick Kuhn Computer Security Division National Institute

of Standards and Technology. Combinatorial Methods for

Discrete Event Simulation of a Grid Computer Network,

Computer Security Division National Institute of Standards

and Technology, ModSim World, 14 Oct 09

[7]. Robert Brownlie,James Prowse and Mahdav S.

Phadke.Robust Testing of AT&T PMX/StarMAIL Using

OATS,Bell Labs Technical Journal,6 May 1992.

6

[8]. Ben Smith, Martin S Feather, Nicola Muscetolla, Challenges and

Methods in Testing Remote Agent Planner. AIPS,2000

PROCEEDINGS.

[9]. James Bach,Patrick J. Schroeder. Pairwise Testing: A Best Practice

That Isn’t ,2006 satisfice Inc

[10]. D.M. Cohen,S.R. Dalal,J. Parelius. The combinatorial design

approach to automatic test generation: 83 - 88,IEEE.Sep 1992

[11]. D.M. Cohen,S.R. Dalal,Morristown, NJ, USA,A. Kajla. The

Automatic Efficient Test Generator (AETG) system,Software

Reliability Engineering, 1994. Proceedings.,5th International

Symposium. IEEE 6-9 Nov. 1994

[12]. S.R. Dalal Bellcore,A. Jain,N. Karunanithi.Model-based testing of

a highly programmable system,Software Reliability Engineering,

1998. Proceedings. The Ninth International Symposium on, IEEE

4-7 Nov. 1998

[13]. Robert Mandl,Analogic Corporation, Wakefield, MA. Orthogonal

Latin squares: an application of experiment design to compiler

testing,Magazine. Communications of the ACM CACM

Homepage archive Volume 28 Issue 10, Oct. 1985 Pages 1054-

1058 ACM New York, NY, USA.

[14]. Wenhua Wang1,Sreedevi Sampath2,Yu Lei1,Raghu Kacker. An

Interaction-Based Test Sequence Generation Approach for Testing

Web Applications, 2008 11th IEEE High Assurance Systems

Engineering Symposium

[15]. D.R. Kuhn,M.J. Reilly Nat. Inst. of Stand. & Technol.,

Gaithersburg, MD, USA. An investigation of the applicability of

design of experiments to software testing, Software Engineering

Workshop, 2002. Proceedings. 27th Annual NASA

Goddard/IEEE,5-6 Dec. 2002.

[16]. D. Richard Kuhn,Dolores R. Wallace, Member,Albert M. Gallo

Jr. Software Fault Interactions and Implications for Software

Testing, IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING:VOL. 30, NO. 6, JUNE 2004.

[17]. Bernhard Garn,Ioannis Kapsalis, Dimitris E. Simos, Severin

Winkler. On the applicability of combinatorial testing to web

application security testing: a case study :Pages 16-21 San Jose,

CA, USA — July 21 - 21, 2014

[18]. D. Richard Kuhn ,Raghu N. Kacker, Yu Lei National.

SP 800-142. Practical Combinatorial Testing, Publication:

Technical Report SP 800-142. Practical Combinatorial

Testing/National Institute of Standards & Technology

Gaithersburg, MD, United States ©2010

[19]. Sergiy Vilkomir,Brandi Amstutz. Using Combinatorial

Approaches for Testing Mobile Applications,2014 IEEE

International Conference on Software Testing, Verification, and

Validation Workshops,31 March-4 April 2014

[20]. Utkarsh Goel, James Espeland, Upulee Kanewala, and Mike P.

Wittie.Quality Assurance of a Mobile Network Measurement.

Testbed Through Systematic Software Testing, Department of

Computer Science, Montana State University, Bozeman, MT

USA 59717

[21]. Myra B. Cohen,Joshua Snyder,Gregg Rothermel. Testing

across configurations: implications for combinatorial testing,

SIGSOFT Software Engineering Notes Volume 31: Pages 1-9

, Issue 6, November 2006

[22]. Paul Wojciak,Rachel Tzoref-Brill. System Level

Combinatorial Testing in Practice -- The Concurrent

Maintenance Case Study,2014 IEEE International

Conference on Software Testing, Verification, and

Validation, IEEE 31 March-4 April 2014.

[23]. Cemal Yilmaz, Sandro Fouché,Myra B. Cohen,Adam

Porter, Gulsen Demiroz and Ugur Koc Moving

Forward with Combinatorial Interaction Testing.

Computer(Volume: 47, Issue: 2,):37 - 45,Feb 2014

[24]. D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.

Patton, "The AETG System: An Approach to Testing

Based on Combinatorial Design," IEEE Transactions

on Software Engineering, vol. 23, no. 7, pp. 437-444,

1997.

[25]. IEEE Standard for Information Technology—Portable

Operating System Interface (POSIX)—Part 1: System

Application Program Interface (API)—Amendment 1:

Realtime Extension [C Language] (IEEE Std 1003.1b-

1993), IEEE Computer Society, 1994.

[26]. Nathan P. Kropp, Philip J. Koopman, Daniel P.

Siewiorek. Automated Robustness Testing of Off-the-

Shelf Software Components, Digest of Papers. Twenty-

Eighth Annual International Symposium on Fault-

Tolerant Computing, IEEE 23-25 June 1998

[27]. J. E. Forrester and B. P. Miller. An empirical study of

the robustness of Windows NT applications using

random testing. In USENIX Windows System

Symposium, pages 1–10, July 2000.

[28]. B. Miller, G. Cooksey, and F. Moore. An empirical study

of the robustness of MacOS applications using random

testing. In First International Workshop on Random

Testing, pages 46–54, July 2006.

[29]. Hotwire - Android Apps on Google Play,

https://play.google.com/store/apps/details?id=com.hotwi

re.hotels

[30]. Travelocity.com - Android Apps on Google Play,

https://play.google.com/store/apps/developer?id=Travelo

city.com&hl=en

[31]. BookIt.com - Android Apps on Googlelay,

https://play.google.com/store/apps/details?id=com.booki

t

[32]. Perfecto Mobile, http://www.perfectomobile.com

[33]. Literature review, Deakin University Australia

http://www.deakin.edu.au/library/learn/literature-

reviewRetreived November 12, 2017.

https://play.google.com/store/apps/details?id=com.hotwire.hotels
https://play.google.com/store/apps/details?id=com.hotwire.hotels
https://play.google.com/store/apps/developer?id=Travelocity.com&hl=en
https://play.google.com/store/apps/developer?id=Travelocity.com&hl=en
https://play.google.com/store/apps/details?id=com.bookit
https://play.google.com/store/apps/details?id=com.bookit
http://www.perfectomobile.com/

A Meta-Model for Maturity Model classification

Nils Wild
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

nils.wild@rwth-aachen.de

Horst Lichter
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
horst.lichter@swc.rwth-aachen.de

ABSTRACT
Maturity Models are a common approach to measure and
improve a company’s process capabilities. Although Ma-
turity Models share a common structure, numerous Matu-
rity and Assessment Models have been developed, in fact so
many that it requires a lot of effort for scholars and practi-
tioners to choose an adequate one for their business and sit-
uation. This paper proposes a Meta-Model that represents
this common structure of such models and their attributes.
Based on that Meta-Model these models are classified, such
that choosing an appropriate model becomes easier.

For a better understanding of the common structure an
overview of the history of Maturity Models is given and
how they evolved. By analyzing different models criteria
for grouping will be identified. Based on those findings a
Meta-Model is created and finally applied to some models,
to give an example on how this Meta-Model can be used to
categorize Maturity Models.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—productivity, programming teams,
software configuration management

Keywords
ACM proceedings, Maturity Models, Assessment Model

1. INTRODUCTION
Over time multiple maturity models (MM) have been de-

veloped and evaluated. This is because maturity models and
assessments allow an organization to identify weaknesses and
to assess and compare its own practices against best prac-
tices. Some of those models are very domain specific others
are made to be used as a general structure for a specific
field but have to be highly customized.[22][31] This leads
to a rather complex and time-consuming implementation of
those models and Bamberger — who participated in v 1.0

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2017/18 RWTH Aachen University, Germany.

of CMMI — realized that it was a big challenge for compa-
nies to analyze which elements and properties of the matu-
rity model are important for them.[7] Anyway those Models
share a common structure. This is also because of their
historical development.

2. HISTORY
Maturity models represent the maturity of “something” in

a hierarchical structure. “Something” because there is no
limit of application fields for those models. The hierachi-
cal representation of goals that have to be archived to reach
a certain maturity level has many benefits as hierarchy is
an important organizational property in many natural and
man-made systems. No matter if those are ecosystems, com-
panies, societies or the Internet.[20][27][30][25] But why are
hierarchical models beneficial?

2.1 Origins of hierarchical models
Humans always used hierarchical systems to organize and

understand living and artificial systems, as they help to per-
vade complexity. The natural first step to simplify networks
is to group entities into different modules. For example, we
divide a company into smaller departments like marketing
or production. Entities within one module are highly con-
nected while sparsely connected to entities in other modules.
This already helps to pervade complexity of systems.[14][26]
Hierarchical systems add another layer on top of that. In-
stead of just saying entity A is related to entity B, hier-
archical systems give that relation a meaning: entity A is
greater than entity B. So those connections between entities
are getting more specific and thus help to pervade complex-
ity.[6]. If you’re working in a small company with only a
few employees and there would be no hierarchy only some
departments, you might know who to ask for if you’re miss-
ing some knowledge as this is a property of a specific entity
(worker) or module (department) but you don’t know who
has to tell you what to do. This is where hierarchy simpli-
fies complexity as you instantly know who is the one that
can tell you what to do. Anyway hierarchies can also make
problems more complex if they are too fine-grained for the
problem. For example if you implement a ten layer hier-
archy in a company with ten employees, the time that is
needed to escalate a problem up to the top can be more of a
hindrance. This is why hierarchical models have to fit their
application.[6] Maturity Models are layered models, a spe-
cific type of hierarchical models that can be used to describe
progress. In this case the progress is represented by the level
that is achieved.

Figure 1: Timelie of Maturity Models

To chose a fitting Maturity Model for your application can
be a rather complex task as there have been developed many
over the past few decades.[12][24]

2.2 Evolution of Maturity Models
A lot of Maturity Models have been developed through

the last years (Figure 1). A very basic and fairly famous
maturity model is Maslows pyramid of needs (Figure 2.[19]
It is rather simple and gives an idea of what a maturity
model is. It is used in the field of social psychology to define
and track the maturity of persons social desires. The only
way to reach a higher maturity level is to fulfill all needs
in the lower one.[19] This constraint is shared among all
maturity models and it defines the lowest level of hierarchy
in those models.

Figure 2: Marslow’s pyramid of needs [19]

Business maturity models share that basic structure but
add other layers of hierarchy and interdependence between
Capabilities. They also focus on certain business areas or
even Processes to make assessments against those models
more effective. Maturity models can be divided into staged
or fixed-level maturity models and continuous maturity mod-
els.[22][31] A maturity model always consists out of a ma-
turity reference model and an assessment model that is as-
sessed against the reference model.[23][17]

2.2.1 Staged- and fixed-level maturity models
Staged- and fixed-level maturity models define maturity in

discrete levels. Specific goals have to be reached to archive
a higher level.

One of the staged maturity models is the Capability ma-
turity model (CMM) that has been released in August 1991
and was later refined to the Capability maturity model Inte-
gration (CMMI).[7] It defines five level of maturity. As men-
tioned earlier specific goals have to be reached to achieve
a higher level of maturity and enable certain capabilities.
Those goals have to be achieved in 22 Key Process Areas
(KPA) that are organized by common features which con-
tain key practices that are used to achieve the specific goal.
In fact a KPA is equivalent to a desire in Marslows Pyramid
that has to be optimized or fulfilled respectively. Anyway
it’s not strictly defined so it has to be adapted for your spe-
cific needs. This is why there has been different versions
for different business areas.[2][3][4] It’s usually accompanied
by the Standard CMMI Appraisal Method for Process Im-
provement (SCAMPI) as an assessment framework.[5]

Another staged maturity model is the ISO/ IEC 15504
created in 1993 also known as Software Process Improve-
ment and Capability Determination (SPICE). In contrast
to CMMI it has six levels of maturity but only nine Pro-
cess Groups the equivalent of KPAs in CMMI. In its early
years it focused exclusively on software development pro-
cesses. Later it was expanded to include all related processes
in software business.[28][1][13]

2.2.2 Continuous maturity models
Continuous maturity models don’t have discrete levels of

maturity. Instead of defining maturity by specific levels,
maturity is measured by Key Performance Indicators (KPI).
Those are used to determine if a capability exists and to
what degree.

One of those models is the Organizational Project Man-
agement maturity model (OPM3) is a standard developed by
the Project Management Institute and release in December
2003. Because capabilities build on other capabilities there
is still some sort of hierarchy although not defined through
specific levels.[28][16]

2.2.3 Focus area maturity models
A fairly new type of maturity models are focus area ma-

turity models (FAMM). Instead of fixed maturity levels that
don’t express the dependencies between capabilities inside a
single level, they help to define a road map on how to enable

Table 1: Model Attributes based on van Looy et. al. [18]
Category Criteria

Structural (1) number of assessment items (2) number of business processes
(3) rating scale (4) presence of capabilities
(5) architecture type (i.e. staged with maturity (6) number of lifecycle levels (i.e. maturity
levels or continuous with capability levels) levels or capability levels)
(7) level calculation (8) level representation
(9) labelling of levels (10) external view of levels

Confidence (11) certification (12) benchmarking
(13) number of assessors (14) functional role of respondents
(15) business versus IT respondents (16) data collection technique
(17) number of assessed organisations (18) validation methodology
(19) architecture details (i.e. level of guidance) (20) creation methodology
(21) lead assessor (22) type of business processes

costs (23) assessment duration (24) direct costs to access and use a MM

capabilities by considering those dependencies. By adding
that additional layer of hierarchy complexity is further per-
vaded. This makes it easier to use especially for smaller
organizations. Focus area maturity models are based on the
concept of a number of focus areas instead of KPAs, that
have to be developed to achieve maturity in a functional do-
main. In each of those areas capabilities have to be enabled
in order to mature. The overall maturity is then depicted
by the least mature focus area.[29]

3. CRITERIA FOR GROUPING
In the previous chapter different maturity models were

presented. They obviously differ in some details but also
share a common structure and terminology that is mostly
interchangeable (e.g. KPA and Process Groups).[21] To clas-
sify maturity models, attributes of different MMs that share
and isolate one another were identified.

Van Looy et al. identified 24 criteria that should be con-
sidered when choosing a fitting maturity model.[18] These
criteria can be grouped into three categories. The first cat-
egory contains criteria defining the structure and detail of
the maturity model. E.g. the number of assessment items,
the number of levels or the type of maturity that can be
either staged or continuous. The second category consists
of criteria like the number of assessed organizations or the
type of business processes that are assessed by that model.
Those criteria are related to the level of confidence one could
have regarding the effectiveness and success probability of
that model. The third and last category is related to the
costs. This can either be direct costs to access and use the
model or indirect costs like the assessment duration. Table
1 shows these categories identified by van Looy et al.[18]

Most of the attributes defined by the criteria in the first
category can be derived from the models structure. To make
that possible a single meta model, that combines the mod-
els of different maturity models, is needed. Such model is
presented in the next section. This would also lead to better
comparison of maturity models with different structures.

4. MATURITY REFERENCE MODEL STRUC-
TURE

In order to make maturity reference models comparable,
the attributes and structure of different maturity reference
models has to be integrated in a single Meta Model. To cre-

ate such model the components and relations of those refer-
ence models are analyzed. Further more differences between
those are lifted to a more abstract level to derive a single
meta model that results in a single structure of components
and relations that is applicable to each reference model.

4.1 CMMI
CMMI defines five levels of maturity. The first and ini-

tial level describes the state at the beginning of any project.
Only base practices are applied and processes are ad hoc and
chaotic. There is no stable environment in this stage. To get
to a higher level certain goals in specific key process areas
have to be achieved by using advanced practices.[2][3][4] Fig-
ure 3 shows a model for CMMI based on the more complex
model developed by Ingalsbe et al.[15]

Figure 3: Model for CMMI

4.2 SPICE
SPICE defines six capability levels. Those are applied

to processes through certain process attributes that can be
measured. Each of these attributes consist of one or more
practices that are elaborated into practice indicators. Those
are used to assess each attribute on a four point rating
scale.[28][1][13] Figure 4 shows a model for SPICE.

Figure 4: Model for SPICE

4.3 OPM3
OMP3 defines maturity as a continuous process instead

of stages. The maturity is measured by key performance
indicators as mentioned earlier. Specific practices are im-
plemented to improve these KPIs to enable capabilities. A
Capability can depend on other capabilities and refers to a
specific object — in one of three domains — that should
be managed. Due to that interdependence between capa-
bilities, implicit staged levels are created.[28][16] Figure 5
shows a model for OMP3.

Figure 5: Model for OPM3

4.4 FAMM
Focus area maturity models consist out of a number focus

areas in which capabilities can be enabled. These capabil-
ities do have interdependencies that determine how many
maturity levels exist. In order to enable these capabilities
new processes and practices have to be implemented.[29]
Figure 6 visualize that structure.

Figure 6: Model for FAMMs

5. GENERALIZED META MODEL
At first, they might seem to differ in many ways but in fact

each component of one model can be mapped to a compo-
nent in another model.[11][8]. First of all, the meta models
structure is defined. Subsequently, a methodology is pre-
sented to derive the original attributes — like levels — from
the meta models structure.

5.1 Structure
The structure of the meta model is shown in figure 7. It’s

similar to the model of OPM3.[28][16] It contains the com-
mon features of the different types of maturity models. Do-
mains are used to group several managed objects together.
For each of those capabilities can be enabled. A capabil-
ity can depend on other capabilities. To enable a capability
practices are used. Measures are used to check if a capability
is enabled.

We apply this concept to the four mentioned maturity
models. “ProcessAreaCategorie”(CMMI),“Domain”(OPM3)
and “ProcessCategorie” (SPICE) can be mapped as “Do-
mains”. Domains aren’t need for FAMMs in general but
could be used to group certain focus areas together. “KeyPro-
cessArea” (CMMI), “Process” (SPICE), “MangagedObject”
(OPM3) and “FocusArea” (FAMM) can be handled mapped
to “ManagedObject”. In SPICE process attributes hold in-
formation about measures that can be improved using spe-
cific practices to enable capabilities. This is similar to“Goal”
in CMMI. The equivalent in OPM3 is an “KeyPerforman-
ceIndicator”. There is no specific object for measures for
FAMMs but there has to be some kind of method to decide
whether a capability is enabled or not. All these measures
can be mapped to “Measure” objects. The “Capability” in
combination with its interdependencies to other capabili-

ties in OPM3 and FAMM can be directly mapped mapped.
For staged and fixed-level maturity models like SPICE and
CMMI, we specify that each capability of a higher level is
dependent on all capabilities of a lower level. This mapping
allows to map the different types of maturity models — no
matter if its a staged, fixed-level, continuous or focus area
model — to the meta model shown in figure 7.

If there are no circular dependencies between capabilities,
the number of levels can be easily derived by analyzing those
dependencies — this will always be the case for staged or
fixed-level maturity models. The capability to derive at-
tributes from the object structure is one of the benefits of
object oriented models.[9][10]

In the next section we will take a look on how the original
properties can be derived for the different type of models as
described in section4.

Figure 7: Meta Model

5.2 Level Mapping for staged Maturity Mod-
els

In order to show that the model is sufficient, the CMMI4.1
SPICE4.2 and FAMM4.4 models are transformed into that
meta model. We don’t consider OPM34.3 as this is a 1:1
mapping.

To transform the CMMI model to the meta model all goals
of a KPA are mapped to capabilities that should be enabled.
Their interdependencies are derived from their KPAs. For
example: each goal that has been set for Organizational In-
novation and Deployment (KPA of CMMI level 5) is depen-
dent on all goals of Organizational Process Performance and
Quantitative Project Management (KPAs of CMMI level 4).
The original levels can then be computed.

Theorem 1. Given a set of dependencies expressed as tu-
ples D = {(a, b)|a, b ∈ G} - a depends of b - where G is the
set of goals, each set of goals in an level can be computed by

Li = {a|a ∈ G ∧ ∀(a, b) ∈ D → b ∈ Li−1}

and a starting Level

L0 = {a|a, b ∈ G → (a, b) /∈ D}

The computation can be stopped when⋃
i

Li = G

The same method can be used to map SPICE. The other
components can be mapped in the same manner as described
in Section 5.

Focus area maturity models as presented by van Steen-
bergen et al can be modeled as well as described in Section
5. The dependencies between capabilities that are derived
from the capabilitytable[29]. The information provided by
the measures is then used to determine the current maturity
of each focus area.

The computation of levels as given in Theorem 1 can be
used to derive the levels but we still have to determine the
maturity. This has to be model specific as it depends on the
type of the underling maturity model.

In the case of staged models, maturity can be computed
by finding the maxi({Li|∀a ∈ Li → capabilityaisenabled}.
For continuous maturity models, the measures are used to
measure the overall maturity by either computing the me-
dian or weighting domains and managed objects.

6. CONCLUSIONS
In this paper commonly used maturity models have been

compared, in order to create a meta model for those mod-
els. To create that model the basic components of maturity
models have been evaluated. A maturity model is a de-
scription of the requirements (goals) that an organization
should meet in order to achieve a desired maturity level.
During the evaluation, it showed that each maturity refer-
ence model employed a slightly different structure and ter-
minology. Furthermore, they use different type of measures
to determine the projects’ maturity. Based on those find-
ings a meta model was presented that allows mapping those
models to a higher level of abstraction without losing in-
formation about attributes or structure of those models. It
even gives a better understanding of the hierarchy of Ca-
pabilities, as it can be computed easily. Additional useful
attributes for grouping of those models have been presented.
Those are used to find a fitting maturity model for a specific
use case. This is important as either overfitting as well as
underfitting can lead to higher costs and less acceptance in
the organization. Some model attributes might be useful as
measures for a models’ complexity like the number of man-
aged objects or levels. Due to the higher level of abstraction
these measures can be compared across different types of
maturity models.

7. FUTURE WORK
Another topic that should be considered is a meta model

for maturity model assessment methods, as a maturity model
is always accompanied by an assessment model. A detailed
description of the assessment method is needed for the re-
peatability of an assessment, which contributes to the re-
liability of the resulting measures. This is relevant when
maturity scores, especially between different maturity mod-
els, are compared with each other as well as the criteria of
the second category (Table 1). Such model would allow bet-
ter comparison of different models, as differences in maturity
scores would be less attributable to factors other than the
differences between assessed models and organizations.

8. REFERENCES
[1] Iso/iec 33001:2015 - information technology – process

assessment – concepts and terminology.

[2] Cmmi for acquisition, version 1.3, 01.11.2010.

[3] Cmmi for development, version 1.3, 01.11.2010.

[4] Cmmi for services, version 1.3, 01.11.2010.

[5] Standard cmmi appraisal method for process
improvement (scampi), version 1.1: Method definition
document, 01.12.2001.

[6] C. Anderson and C. Brown. The functions and
dysfunctions of hierarchy. Research in Organizational
Behavior, 30:55–89, 2010.

[7] J. Bamberger. Essence of the capability maturity
model. Computer, 30(6):112–114, 1997.

[8] J. Becker, R. Knackstedt, and J. Pöppelbuß.
Developing maturity models for it management.
Business & Information Systems Engineering,
1(3):213–222.

[9] B. T. Borsoi and J. L. R. Becerra. A method to define
an object oriented software process architecture. In
F. K. Hussain, editor, 19th Australian Conference on
Software Engineering, 2008, pages 650–655, Los
Alamitos, Calif. [u.a.] and Los Alamitos, Calif. [u.a.],
2008. IEEE Computer Soc.

[10] B. T. Borsoi and J. L. R. Becerra. The use of object
orientation to define process models. In W. Dosch,
editor, Proceedings, pages 85–92, Los Alamitos, Calif.,
2008. IEEE Computer Society.

[11] P. Brooks, O. El-Gayar, and S. Sarnikar. A framework
for developing a domain specific business intelligence
maturity model: Application to healthcare.
International Journal of Information Management,
35(3):337–345, 2015.

[12] C. L. Carvajal and A. M. Moreno. The maturity of
usability maturity models. In A. Mas, A. Mesquida,
R. V. O’Connor, T. Rout, and A. Dorling, editors,
Software Process Improvement and Capability
Determination: 17th International Conference, SPICE
2017, Palma de Mallorca, Spain, October 4–5, 2017,
Proceedings, pages 85–99. Springer International
Publishing, Cham, 2017.

[13] W. Guédria, Y. Naudet, and D. Chen. Interoperability
maturity models – survey and comparison –. In
R. Meersman, Z. Tari, and P. Herrero, editors, On the
Move to Meaningful Internet Systems: OTM 2008
Workshops: OTM Confederated International
Workshops and Posters, ADI, AWeSoMe, COMBEK,
EI2N, IWSSA, MONET, OnToContent + QSI, ORM,
PerSys, RDDS, SEMELS, and SWWS 2008,
Monterrey, Mexico, November 9-14, 2008.
Proceedings, pages 273–282. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[14] B. Henriksen and C. C. Røstad. Paths for
modularization. In B. Grabot, editor, Advances in
production management systems, volume 440 of IFIP
Advances in Information and Communication
Technology, pages 272–279. Springer, Heidelberg, 2014.

[15] J. Ingalsbe, D. Shoemaker, and V. Jovanovic. A
metamodel for the capability maturity model for
software. AMCIS 2001 Proceedings, 2001.

[16] M. Khoshgoftar and O. Osman. Comparison of
maturity models. In I. Staff, editor, 2009 2nd IEEE

International Conference on Computer Science and
Information Technology, pages 297–301, [Place of
publication not identified], 2009. I E E E.

[17] M. Lepasaar and T. Makinen. Integrating software
process assessment models using a process meta
model. In IEMC-2002, pages 224–229, [Piscataway,
NJ], 2002. IEEE.

[18] A. V. Looy, M. D. Backer, G. Poels, and M. Snoeck.
Choosing the right business process maturity model.
Information and Management, 50(7):466–488, 2013.

[19] A. H. Maslow. A theory of human motivation.
Psychological Review, 50(4):370–396, 1943.

[20] W. Miller. The hierarchical structure of ecosystems:
Connections to evolution. Evolution: Education and
Outreach, 1(1):16–24, 2008.

[21] J. Patas, J. Pöppelbuß, and M. Goeken. Cherry
picking with meta-models: A systematic approach for
the organization-specific configuration of maturity
models. In J. Vom Brocke, editor, Design science at
the intersection of physical and virtual design, volume
7939 of LNCS Sublibrary: S L 3 - Information
Systems and Application, incl. Internet/Web and HCI,
pages 353–368. Springer, Berlin [etc.], 2013.

[22] J. Poeppelbuss, B. Niehaves, A. Simons, and
J. Becker. Maturity models in information systems
research: Literature search and analysis.
Communications of the Association for Information
Systems, 29(1), 2011.

[23] J. Poeppelbuss and M. Roeglinger. What makes a
useful maturity model? a framework of general design
principles for maturity models and its demonstration
in business process management, 2011.

[24] D. Proença and J. Borbinha. Maturity models for
information systems - a state of the art. Procedia
Computer Science, 100:1042–1049, 2016.

[25] E. Ravasz and A.-L. Barabasi. Hierarchical
organization in complex networks, 2002.

[26] G. G. ROGERS and L. BOTTACI. Journal of
Intelligent Manufacturing, 8(2):147–156, 1997.

[27] R. Rowe, G. Creamer, S. Hershkop, and S. J. Stolfo.
Automated social hierarchy detection through email
network analysis, 2007.

[28] A. Van Looy, G. Poels, and M. Snoeck. Evaluating
business process maturity models. Journal of the
Association for Information Systems, 18(6), 2017.

[29] M. van Steenbergen, R. Bos, S. Brinkkemper, I. van
de Weerd, and W. Bekkers. The design of focus area
maturity models. In R. Winter, J. L. Zhao, and
S. Aier, editors, Global Perspectives on Design Science
Research: 5th International Conference, DESRIST
2010, St. Gallen, Switzerland, June 4-5, 2010.
Proceedings, pages 317–332. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[30] A. Vazquez, R. Pastor-Satorras, and A. Vespignani.
Large-scale topological and dynamical properties of
internet, 2001.

[31] R. Wendler. The maturity of maturity model research:
A systematic mapping study. Information and
Software Technology, 54(12):1317–1339, 2012.

ENTERPRISE
ARCHITECTURE
RESEARCH
GOING BEYOND ARTIFICIAL EVALUATION

NIELS VON STEIN
RWTH Aachen University
Ahornstr. 55
52074 Aachen, Germany
niels.von.stein@rwth-aachen.de

SIMON HACKS
RWTH Aachen University Software
Construction
Ahornstr. 55
52074 Aachen, Germany
simon.hacks@swc.rwth-aachen.de

INTRODUCTION

Enterprise Architecture as a deliverable
• Holistic representation of an enterprise

Enterprise Architecture as a process
• Continuous alignment between business model and

information systems

ENTERPRISE ARCHITECTURE (EA)

Full-Scale Software Engineering Seminar 2018 4

BUSINESS

SOFTWARE

PROCESS

INTEGRATION

TECHNOLOGY

INTRODUCTION

Social-Economic

Tooling

Analysis & Optimization

Security

ENTERPRISE ARCHITECTURE (EA)

Full-Scale Software Engineering Seminar 2018 5

What is the focus
of EA research?

INTRODUCTION

What is the problem with evaluation in EA research?
• Good evaluation requires real world data!
• Very confidential → Hard to get real model data-sets!

What are our options then as a researcher?
• Acquire real world EA model data-sets
• Make up your exemplary EA model data-set

Lower the barriers of sharing real world EA models
• What are the requirements on evaluative EA model data-sets?

MOTIVATION

Full-Scale Software Engineering Seminar 2018 6

METHODOLOGY

Full-Scale Software Engineering Seminar 2018 7

RESEARCH DESIGN

Systematic Literature Review (SLR)
• Observing requirements on evaluative EA model data-sets

Development of taxonomy
• Classification schema for requirements on model content
• Combining observations & accepted findings of EA literature

Case Study
• Application of taxonomy
• Refinement of taxonomy

METHODOLOGY
RESEARCH DESIGN - SLR

Full-Scale Software Engineering Seminar 2018 8

• Conference
publications

• Since 2009

• „Enterprise
Architecture“ …

• … and all variants

• Evaluation is present

• EA model case study

• Exemplary EA data-set

SelectionRetrivalScope

Publications
from 8 year

>100 Publications 11 Publications

MODEL CLASSIFICATION

Full-Scale Software Engineering Seminar 2018 9

SCHEMA DEVELOPMENT

ARCHITECTURE

GOVERNANCE

MOTIVATION

MAINTENANCE

BUSINESS

TECHNOLOGY

PROCESS

APPLICATION

META-MODEL /
FRAMEWORK

CATEGORY SCOPE FORMAT

MODEL CLASSIFICATION

Paper A
• Risk mitigation based on measures from EA models
• Investigates visions and goals of EA model to avoid risk

Evaluation
• Exemplary data-set
• ArchiMate Framework

CASE STUDY

Full-Scale Software Engineering Seminar 2018 10

MOTIVATION

CATEGORY SCOPE FORMAT

ARCHITECTURE ARCHIMATE

MODEL CLASSIFICATION

Paper B
• Automated re-design of operational layer based on data mining
• Motivation, Business functions and process model

CASE STUDY

Full-Scale Software Engineering Seminar 2018 11

MOTIVATION

CATEGORY SCOPE FORMAT

ARCHITECTURE
ARCHIMATE

BUSINESS

PROCESS BPMN

Evaluation
• Real world data-set
• ArchiMate Framework
• Business Process Model

Notation (BPMN)

CONCLUSION

Sparsity of model requirements
• Federated model data-sets

Taxonomy as a Schema
• Basis for EA model indexing

FINDINGS & LIMITATIONS

Full-Scale Software Engineering Seminar 2018 12

Sparsity Schema

Missing meta-model diversity
• Often same meta-model

Diversity

CONCLUSION
FUTURE WORK

Full-Scale Software Engineering Seminar 2018 13

Model Anonymity
Model PortabilityEvaluation

Questions?
& Thanks for your attention!

Automated Refactoring Techniques

dfdfdf

7th Feb., 2018

Jonas Hollm

Software quality

Time

Software quality

Time

Refactoring

€

Software quality

Time

Refactoring

€

Solution: automate the refactoring process

Automated Refactoring - Goals

5

Automated Refactoring - Goals

• Remove code smells
- Shotgun surgery
- Lazy class
- Long method

6

Automated Refactoring - Goals

• Remove code smells
- Shotgun surgery
- Lazy class
- Long method

• Improve software metrics
- Minimize unused methods
- Maximize abstract classes

7

Automated Refactoring - Goals

• Remove code smells
- Shotgun surgery
- Lazy class
- Long method

• Improve software metrics
- Minimize unused methods
- Maximize abstract classes

• Introduce design patterns
- Adapter
- Prototype
- Proxy

8

Automated Refactoring - Tools

• A-CMA
- Technique: Combinatorial Optimization

• TrueRefactor
- Technique: Genetic Programming

• Dearthóir
- Technique: Combinatorial Optimization

• REMODEL
- Technique: Genetic Programming

9

Combinatorial Optimization.

Combinatorial Optimization

11

Refactorer

Input program
class Main {
 public static void main(…) {
 // code
 }
}

Refactored version of
the input program

Combinatorial Optimization

12

Refactorer

Input program
class Main {
 public static void main(…) {
 // code
 }
}

Refactored version of
the input program

Combinatorial Optimization - Search Space

13

Search Space

Combinatorial Optimization - Search Space

14

Combinatorial Optimization - Quality Values

15

3

8

9

8

6

3

5 2

4

2

7

6

1

Combinatorial Optimization - Neighborhood

16

3

8

9

8

6

3

5 2

4

2

7

6

1

Combinatorial Optimization - Refactoring Operations

17

int add(int a, int b) {

 int tmp;

 return (a + b);

}

int add(int a, int b) {

 return (a + b);

}

• Remove unused feld

Combinatorial Optimization - Refactoring Operations

18

int longFunction(int param) {

 // many lines of code

}

int shortFunction(int param) {

 // code

 helperFunction(...);

 // code

}

int helperFunction(...) {

 // code

}

• Split long function

Combinatorial Optimization - Heuristic

19

3

8

9

8

6

3

5 2

4

2

7

6

1

Combinatorial Optimization - Heuristic

20

3

8

9

8

6

3

5 2

4

2

7

6

1

Combinatorial Optimization - Heuristic

21

3

8

9

8

6

3

5 2

4

2

7

6

1

Combinatorial Optimization - Heuristic

22

3

8

9

8

6

3

5 2

4

2

7

6

1

Local optimum

Global optimum

Combinatorial Optimization - Heuristic

23

3

8

9

8

6

3

5 2

4

2

7

6

1

Local optimum

Global optimum Hill climbing heuristic

Genetic Programming.

Genetic Programming

25

Refactorer

Refactoring sequence
for the input program

Input program
class Main {
 public static void main(…) {
 // code
 }
}

Genetic Programming

26

Refactorer

Refactoring sequence
for the input program

Input program
class Main {
 public static void main(…) {
 // code
 }
}

Genetic Programming - Refactoring Sequence

27

Genetic Programming - Refactoring Sequence

28

Remove unused feld
tmp from method add

in class Calculator

Split long method
work() in class Worker
into workShort() and ...

Sequence of refactoring operations

Genetic Programming - Population

29

Population

Genetic Programming - Recombination

30

Genetic Programming - Recombination

31

Genetic Programming - Mutation

32

Modify refactoring
operation

Insert refactoring
operation

Remove refactoring
operation

Genetic Programming - Selection

33

3

2

5

2

5

8 7

6

6

1

Genetic Programming - Selection

34

3

2

5

2

5

8 7

6

6

1

Keep best 40%

Genetic Programming - Generations

• Recombine and mutate remaining individuals
→ next generation

• Solution with sufcient quality has been found
→ stop

35

Conclusion.

Automated Refactoring - Key Findings

37

Automated Refactoring - Key Findings

• Both techniques: systematic trial and error

38

Automated Refactoring - Key Findings

• Both techniques: systematic trial and error
• No guarantee to fnd good/any solution

39

Automated Refactoring - Key Findings

• Both techniques: systematic trial and error
• No guarantee to fnd good/any solution
• Combinatorial optimization

→ iterative small-scale changes

40

Automated Refactoring - Key Findings

• Both techniques: systematic trial and error
• No guarantee to fnd good/any solution
• Combinatorial optimization

→ iterative small-scale changes
• Genetic programming

→ large-scale refactorings are possible

41

Automated Refactoring - Key Findings

• Both techniques: systematic trial and error
• No guarantee to fnd good/any solution
• Combinatorial optimization

→ iterative small-scale changes
• Genetic programming

→ large-scale refactorings are possible
• Most tools only work with Java programs

42

Summary

43

Summary

44

Summary

45

Summary

46

Would you use an automated refactoring tool
for your programming projects?

Metrics in Agile Projects — Does that matter?

Matthias Hansen
matthias.hansen@rwth-aachen.de

Lots of Software projects fail

Metrics In Agile Projects—Does that matter? 2

29%

52%

19%

Project Status

Success At Risk Failed

Data from Standish Group CHAOS Report 2015

Reasons cited for Failure:
• Unclear requirements
• Users not incorporated
• Requirements change

Traditional Project Management Approach

Metrics In Agile Projects—Does that matter? 3

Requirements:
• Software does x
• Software does y
• Software does z

produces

March April May June July

xy z

Monitoring via Milestone Analysis

Metrics In Agile Projects—Does that matter? 4

Mrz/ 18

Apr/ 18

Mai/ 18

Jun/ 18

Jul/ 18

Aug/ 18

Sep/ 18

N
o

v/
 1

7

D
ez

/
1

7

Ja
n

/
1

8

Fe
b

/
1

8

M
rz

/
1

8

A
p

r/
 1

8

M
ai

/
1

8

Ju
n

/
1

8

Ju
l/

 1
8

A
u

g/
 1

8

Se
p

/
1

8

Y X Z

M
ile

st
o

n
e

re
ac

h
ed

Reporting Date

Agile Approach

Metrics In Agile Projects—Does that matter? 5

Framework Problem that is Solved

Xtreme Programming Technical
Preconditions

Scrum Meetings, Roles &
Terminology

Kanban Process Evolution,
Metrics

SAFe Scaling to Company

Meet with Customer
• Deliver Current Version

• Get Feedback

Develop for some Time
(2 Weeks)

How to measure progress in Agile Projects

Metrics In Agile Projects—Does that matter? 6

Requirements:

• Software does x

• Software does y

• Software does z

• Basic x functionality
• Nicer user interface
• “Undo“ functionality
• Keyboard shortcuts
• Automatic validity check
• Special cases
• Auditing Functionality
• Data Export to Excel
• Data Import

decompose

Velocity: # of items done between 2 meetings

Important:
Also account for changes in requirements

The Problem with using Averages and how to Counteract

Metrics In Agile Projects—Does that matter? 7

0%

5%

10%

15%

20%

25%

30%

Estimated Completion
Dates

Historical velocities Added items

2 3

1
4

3

6

2

Solution: Use e.g. 90th Percentile of Estimates

0

2

1

1

2

1

0

Lessons Learned

• “Adapting to Change over Following a Plan”

• Plan “How much?” not “What?” or “How?”

• Plan with Empirical Data

• Explicitly Model Uncertainty

Metrics In Agile Projects—Does that matter? 8

Metrics in Agile Projects — Does that matter?

Matthias Hansen
matthias.hansen@rwth-aachen.de

Literature

• D.J. Anderson. Kanban: Successful Evolutionary Change
for Your Technology Business. Blue Hole Press, 2010.

• K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley Professional, 2000.

• K. Beck et al. Manifesto for Agile Software Development,
2001. http://agilemanifesto.org

• K. Schwaber and J. Sutherland. The Scrum Guide.
<http://www.scrum.org/resources/scrum-guide>

Metrics In Agile Projects—Does that matter? 10

http://agilemanifesto.org/

Features of Combinatorial
Testing Tools

A Literature Review

Joshua Bonn1

if (OS == “Windows“)

if (Browser == “Chrome“) {

//Bad code

} else {

//Good code

}

} else {

//Good code

}

Example Application

3

OS Browser Ping Speed

Windows Chrome 10 ms 1 KB/s

Linux Edge 100 ms 10 KB/s

MacOS Firefox 1000 ms 100 KB/s

Android Safari 1000 KB/s

iOS

240 test cases!

95 2-way combinations

2-way Combinations

4

Linux Firefox 10 ms 1000 KB/s

6 2-way combinations

20 test cases

1,09951E+11

41
208

1134
5746

26898

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1E+11

1E+12

20 2 3 4 5 6

Te
st

 C
as

e
s

t

5

Tools

CATS AETG PairTest TConfig

AllPairs (Perl) Pro-Test Jenny TestCover

TVG TESTONA AllPairs (Python) PICT

rdExpert OATSGen ATD ACTS

IPO-s VPTAG FOCUS Hexawise

PictMaster NTestCaseBuilder Tcases Pairwiser

Nunit ecFeed JCUnit CITLAB

TOSCA Pairwise (Ruby) Pairwise (RMN) JCombinatorial

6

Research Questions

• What features are available?

• How are these features distributed?

7

Core Features

8
https://www.hongkiat.com/blog/high-quality-fruits-stock-photos/

https://www.hongkiat.com/blog/high-quality-fruits-stock-photos/

Parameters | ACTS

9

Parameters | PICT

10

OS: Windows, Linux, MacOS, Android, iOS

Browser: Chrome, Edge, Firefox, Safari

Ping: 10, 100, 1000

Speed: 1, 10, 100, 1000

Constraints | ACTS

11

Constraints | PICT

12

IF [Browser] = “Edge“ THEN

[OS] <> “Linux“ AND

[OS] <> “MacOS“

0

1

2

3

4

5

6

7

8

9

Relation Combination Expression Function

N
u

m
b

er
o

f
To

o
ls

Constraint Type

13

0

5

10

15

20

25

30

35

1 2 3 4 5 6 n full

N
u

m
b

er
o

f
To

o
ls

Testing Strength

14

Advanced Features

15
https://www.hongkiat.com/blog/high-quality-fruits-stock-photos/

https://www.hongkiat.com/blog/high-quality-fruits-stock-photos/

Relations | ACTS

16

Sub-Models | PICT

17

{Browser, Ping, Speed} @ 3

18

Summary

• Fewer test cases through Combinatorial Testing

• Core features/advanced features

• Feature distribution

19
https://www.makingdifferent.com/wp-content/uploads/2014/11/thank-you-cartoon.png

https://www.makingdifferent.com/wp-content/uploads/2014/11/thank-you-cartoon.png

A meta model for maturity models

Nils Wild, nils.wild@rwth-aachen.de

2

1. The idea of maturity models
2. Properties of maturity models
3. Types of maturity models
4. The meta model
5. Conclusion

A meta model for maturity models | 07.02.2018 | Nils Wild

A meta model for maturity models | 07.02.2018 | Nils Wild3

Everything becomes mature over time

• We can influence the process of getting
mature (unfortunately not physically)

• In case of products and projects we can
and we have to control the process of
getting mature

• Maturity models help to track and control
that process

A meta model for maturity models | 07.02.2018 | Nils Wild4

Nursery school School University

• Become old enough
for school

• Foreign language

• Math

• Physics

• History

• …

• Scientific work

• Specific expertise

• …

5

1. The idea of maturity models
2. Properties of maturity models
3. Types of maturity models
4. The meta-model
5. Conclusion

A meta model for maturity models | 07.02.2018 | Nils Wild

A meta model for maturity models | 07.02.2018 | Nils Wild6

Based on van Looy et al.

A meta model for maturity models | 07.02.2018 | Nils Wild7

Properties of maturity models

#of levelsdomainstype of maturity

M
at

u
ri

ty

8

1. The idea of maturity models
2. Properties of maturity models
3. Types of maturity models
4. The meta-model
5. Conclusion

A meta model for maturity models | 07.02.2018 | Nils Wild

A meta model for maturity models | 07.02.2018 | Nils Wild9

Staged / fixed-level

CMMI

• Subjects are key process areas
(KPA)

• Goal is to pass the exam
(discrete)

• Achieve a certain level of
knowledge (capability)

A meta model for maturity models | 07.02.2018 | Nils Wild10

Continous

OPM3

• Subjects are managed objects

• Key performance indicator
(KPI) is the number of
vocabulary (continuous)

• Achieve a certain level of
knowledge (capability)

A meta model for maturity models | 07.02.2018 | Nils Wild11

FAMM

Each focus area has certain capabilities
that can be enabled. The overall maturity
is determined by the least mature area.

12

1. The idea of maturity models
2. Properties of maturity models
3. Types of maturity models
4. The meta-model
5. Conclusion

A meta model for maturity models | 07.02.2018 | Nils Wild

A meta model for maturity models | 07.02.2018 | Nils Wild13

• Structure is similar across
different types of maturity
models

• Measurement of maturity
differs but can be computed by
traversing the dependsOn
relationship

Meta model

A meta model for maturity models | 07.02.2018 | Nils Wild14

Computation of levels and maturity

C_1

C_2

C_4

C_5

C_3

C_6

C_7

• Marking algorithm
determines levels

• Maturity can either be
handled in a discrete or
continuous manner

L1 L2 L3

15

1. The idea of maturity models
2. Properties of maturity models
3. Types of maturity models
4. The meta-model
5. Conclusion

A meta model for maturity models | 07.02.2018 | Nils Wild

A meta model for maturity models | 07.02.2018 | Nils Wild16

Conclusion

• Maturity models share a common structure

• Mapping models to that common structure allows
comparing arbitrary models

• “Levels” can be computed model independent

• Maturity can be computed with a model fitting
function (discrete/continuous, levels/KPIs)

Collaboration in Software Design
How to create UML models collaboratively

Nina Rußkamp,
nina.russkamp@rwth-aachen.de

Imagine…

2

Outline

Collaboration

Collaborative UML Modelling

Collaborative UML Modelling Tools

3

Collaboration

4

Cooperation.

Collaboration

5

Communication.

Cooperation.

To Do Doing Done

Coordination.

Collaboration

6

Product

Process

State of Mind

Why?Collaboration.

7

Why?Collaboration.

8

Limited Resources.

Why?Collaboration.

9

Limited Resources.

Software Complexity.

Why?Collaboration.

10

Limited Resources.

Software Complexity.

More than one person needed.

11

12

13

Software Problem.

UML Modelling

Software Solution.

UML Modelling

14

15

Communication.

To Do Doing Done

Coordination.Cooperation.

16

17

Demo

18

OctoUML

B. Vesin, R. Jolak, and M. R. V. Chaudron. OctoUML: An environment for exploratory and collaborative software design.
In Proceedings of the 39th International Conference on Software Engineering Companion, pages 7-10, 2017.

Demo

19

https://www.youtube.com/watch?v=xodDi8M25tM

20

But?Such a fancy tool.

21

But?Such a fancy tool.

Distributed Collaboration?

22

But?Such a fancy tool.

11:0017:00

Asynchronous Collaboration?

Distributed Collaboration?

23

But?Such a fancy tool.

11:0017:00

Asynchronous Collaboration?

Distributed Collaboration?

Exclusive Collaboration?

Part A Part B Part C

M. Cataldo, C. Shelton, Y. Choi, Y.-Y. Huang, V. Ramesh, D. Saini, and L.-Y. Wang. CAMEL: A Tool for Collaborative Distributed
Software Design. In 2009 Fourth IEEE International Conference on Global Software Engineering, pages 83-92. IEEE, 2009.24

CAMEL

Utopia – Collaborative UML Modelling Tool

25

Part A Part B Part C

Communication

Coordination

Cooperation

CAMELOctoUML

Reality – Collaborative UML Modelling Tools

26

Communication

Coordination

Cooperation

Cooperation

27

28

Collaboration is
COMPLEX

29

Collaboration is
COMPLEX

Collaboration
IMPROVES

UML Modelling

30

Collaboration is
COMPLEX

Collaboration
IMPROVES

UML Modelling

Collaboration Tools are
INSUFFICIENT

31

Collaboration is
COMPLEX

Collaboration
IMPROVES

UML Modelling

Collaboration Tools are
INSUFFICIENT

32

One more question.

33

COLLABORATION – MUCH ADO ABOUT NOTHING?

34

COLLABORATION – MUCH ADO ABOUT NOTHING?

Aspects of Software Complexity
Full-scale Software Engineering Seminar 2018

Ali Ariff (374675)

Motivation

- Software complexity definition is vague
- Known aspects:

- Code
- Architecture

- Goal: Discover more aspects
- Why: Grasp software complexity deeper
- Assess:

- Microservice
- Domain Driven Design

2

Current Definition of Software Complexity

- Complexity is the degree to which a system or
component has a design or implementation that is
difficult to understand and verify

3

Microservice

4 https://martinfowler.com/articles/microservices.html

Findings in Microservice

- Architecture
- Operation
- Skill
- Security

5

Architecture & Operation

- Architecture
- High Cohesion
- Loose Coupling

- Operation
- Test
- Deploy
- Monitor
- Config

6

Skill & Security

- Skill
- One service one team
- Various skill-set required in a team

- Security
- Hardening & securing distributed system
- Maintain update various technology stack

7

Domain Driven Design (DDD)

- DDD is an approach to develop software for complex
needs by deeply connecting the implementation to an
evolving model of the core business concepts

8

Findings in DDD

- Domain
- Process
- Organizational
- Code

9

Domain & Process

- Domain
- Sphere of knowledge
- Domain model
- Bounded context

- Process
- Isolation within the domain model
- Stakeholder required to be collaborative

10

Organizational & Code

- Organizational
- Communication & coordination
- Remove dependency of each other

- Code
- Code structure
- Big codebase, more bugs & errors
- Splitted to smaller parts

11

Conclusion & Future Work

- Hidden aspects are discovered after assessment
- Not only code & architecture
- Increase understanding of overall software complexity
- Guidance to measure overall software complexity

12

Summary

13

Applications of Combinatorial Testing
How to analyze and categorize ?

Radman Sheikh

radman.sheikh@rwth-aachen.de

2

Who have heard of
combinatorial testing
before?

What is combinatorial Testing?

3

Modelling

sampling

Testing Analyzing

1

2

3 4

Four phases of combinatorial interaction testing (CIT). Phases 1

and 2 determine “what” is going to be tested, phases 3 and 4

address the “how.”

Some Questions

Before going into details lets ask ourselves some
questions

•Can we apply CT to real world application.

• If we can apply CT on applications , can we categorize
them

• What will be the result of categorization

4

What if?

Methodology of Finding CT Applications

•Significance of Combinatorial Testing

•Methodology adopted for finding CT application

5

Search

Literature List of applications

Why we did and needed Literature review?

6

Categorization of Application

•46 literature sources considered

•43 applications were discovered

•Focus of Search

•How Literature was found?

7

Categorization of Application

•The categories which were discovered are

8

Operating Systems Web Applications Mobile and space Applications
Business,
Network,
industrial,

server,
Browser and

Test case generating systems
applications

Traffic
Inventory ,

Database systems,
Compiler and

software product
line

9

Categorization of Application

Opreating Systems

Web Applications

Mobile Applications

Space Applications

Industrial Applications

Business Applications

Network Application

Test case generting system

Browser Applications

Server Application

Compiler Application

Software Product line

Traffic Systems

0 2 4 6 8 10 12

Quantity

Quantity

Factors Behind creating a category

Classification in literature

Application’s Contribution

Keywords

Applications Background

10

11

What about the results ?

Combinatorial Testing on Business Applications

0

5

10

15

20

25

30

35

2-way input set 3-way input set 4-way input set >4 way

LAS

DMAS

12

•Undetected bugs

•The variation of n-way input test set

Security Testing of Web Applications

•5 web applications tested

•XSS exploitation was tested using an attacking vector

•BURP and ZAP penetration tools were used

•58 tests were run on each tool

•The result was quite surprising

13

Bug Detection in Browser Applications

•194 bugs reviewed and emulated

•1-6 way input set were

constructed

•The result is

14

0

20

40

60

80

100

120

1-way
input
set

2-way
input
set

3-way
input
set

4-way
input
set

5 way
input
set

6- way
input
set

percent

commulative
percent

Testing of Mobile Application

•Device versatility problem

•Optimal subset selection vs random selection

•Effectiveness measurement EC

•Conclusion

15

Testing ACTS through ACTS

•Testing a real life system

•What is ACTS

•Samples Tests and test results

•Basics for combinatorially testing a real life system

•Conclusion

16

System level testing of industrial application

•Using Combinatorial testing to do system level testing on two industrial
Applications.

•What is charm and EDM

•Building an abstract model

•Measuring quality through quality matrix

•Factor that should be kept in wind while Combinatorial Testing an industrial
applications.

17

Detecting deadlocks in Grid networks

•What about combinatorial testing of network applications

•Question: can combinatorial methods help us find attacks on networks?

•SUT is “Simured” network simulator

•Main Goal :detect configurations that can produce deadlock

•Compare effectiveness of random vs. combinatorial inputs.

•To identify the deadlocks the researchers asked some questions

•Conclusion

18

Conclusion and future suggestions

19

Need
More

categorizations

20

Software Architecture in an Agile Environment

Lukas Schade,
lukas.schade@rwth-aachen.de

Software Architecture in an Agile Environment | 07.02.2018
Lukas Schade, lukas.schade@rwth-aachen.de

2

Agile Software Development

fast

successful

modern light

Software Architecture in an Agile Environment | 07.02.2018
Lukas Schade, lukas.schade@rwth-aachen.de

3

slow

impractical

outdated heavy

Software Architecture

Software Architecture in an Agile Environment | 07.02.2018
´Lukas Schade, lukas.schade@rwth-aachen.de

4

5

Software
Architecture

is this..

Software
Architecture

is BDUF!

Software
Architecture

is ..

Software
Architecture

is that..

I actually
have no idea

Software Architecture in an Agile Environment | 07.02.2018
Lukas Schade, lukas.schade@rwth-aachen.de

What is Software

Architecture?

Software Architecture in an Agile Environment | 07.02.2018
Lukas Schade, lukas.schade@rwth-aachen.de

6

Software Architecture as…

the result of a design process

Software Architecture in an Agile Environment | 07.02.2018
Lukas Schade, lukas.schade@rwth-aachen.de

7

Manifesto for Agile Software Development

http://agilemanifesto.org/

…

Working software over comprehensive documentation

…

Responding to change over following a plan

Software Architecture in an Agile Environment | 07.02.2018
Lukas Schade, lukas.schade@rwth-aachen.de

8

Big design phase upfront is unwanted

Big comprehensive plan is unwanted

Software Architecture in an Agile Environment | 07.02.2018
Lukas Schade, lukas.schade@rwth-aachen.de

9

Software Architecture in an Agile Environment | 07.02.2018
Lukas Schade, lukas.schade@rwth-aachen.de

10

Architecture is developed iteratively

Software Architecture in an Agile Environment | 07.02.2018
Lukas Schade, lukas.schade@rwth-aachen.de

11

→ Allows responding to changes fast

→ Working software at an early stage

→ No big design phase

→ No big Plan

Software Architecture in an Agile Environment | 07.02.2018
Lukas Schade, lukas.schade@rwth-aachen.de

12

Architecture needs to be:

adaptable

open for changes

Software Architecture in an Agile Environment | 07.02.2018 Lukas Schade,
lukas.schade@rwth-aachen.de

13

https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html

by Robert C. Martin

Software Architecture in an Agile Environment | 07.02.2018
Lukas Schade, lukas.schade@rwth-aachen.de

14

Walking Skeleton

Is not complete, but already “walks”

Contains key architectual decisions

Software Architecture in an Agile Environment | 07.02.2018
Lukas Schade, lukas.schade@rwth-aachen.de

15

Software Architecture in an Agile Environment | 07.02.2018
´Lukas Schade, lukas.schade@rwth-aachen.de

16

Software Architecture in an Agile Environment | 07.02.2018
Lukas Schade, lukas.schade@rwth-aachen.de

17

Architecture is developed iteratively

Software Architecture in an Agile Environment | 07.02.2018
Lukas Schade, lukas.schade@rwth-aachen.de

18

Software Architecture in an Agile Environment | 07.02.2018 Lukas Schade,
lukas.schade@rwth-aachen.de

19

Software Architecture in an Agile Environment | 07.02.2018
Lukas Schade, lukas.schade@rwth-aachen.de

20

Thank you!

Software Architecture in an Agile Environment

Software Architecture in an Agile Environment | 07.02.2018
Lukas Schade, lukas.schade@rwth-aachen.de

21

Walking Skeleton

Is not complete, but already “walks”

Contains key architectual decisions

Towards a Quality Model for DevOps

Leon König

leon.koenig@rwth-aachen.de

Demographics in Industry

Towards a Quality Model for DevOps | 07.02.2018
Leon König, leon.koenig@rwth-aachen.de

2

16

19

22

25

30,4

35 35

28
28,8

27

25

27

0

5

10

15

20

25

30

35

40

2014 2015 2016 2017

p
er

ce
n

ta
ag

e
o

f
p

eo
p

le
w

o
rk

in
g

in
 c

er
ta

in
te

am

State of DevOps Report 2014-2017 by Puppet and DORA

DevOps IT Operations and Infrastructure Development or Engineering

DevOps – background and definition

▪ Clipped compound of Development and Operations

▪ Conflicts between development and operation teams

▪ Integration of existing movements

Towards a Quality Model for DevOps | 07.02.2018
Leon König, leon.koenig@rwth-aachen.de

3

Agile Transformation Continuous Deployment

Lean Software
Development

Continuous Delivery

A DevOps Quality Model
A selection from existing quality models

Towards a Quality Model for DevOps | 07.02.2018
Leon König, leon.koenig@rwth-aachen.de

4

Goal-Question-Metric

1. Formulate conceptual goals

2. Specify conceptual goals and assessment by questions

3. Derive metrics to answer questions in a quantitative way

Towards a Quality Model for DevOps | 07.02.2018
Leon König, leon.koenig@rwth-aachen.de

5

Conceptual goals

Towards a Quality Model for DevOps | 07.02.2018
Leon König, leon.koenig@rwth-aachen.de

6

DevOps

Process

inter-team collaboration
intra-team collaboration

development process

Technical implementation

Deployment pipeline

Dev team Ops teamDevOps team

Process view

The three ways of DevOps by
Kim et al.

• Principles of flow and
system thinking

• Principles of feedback

• Principles of continual
learning and
experimentation

Towards a Quality Model for DevOps | 07.02.2018
Leon König, leon.koenig@rwth-aachen.de

7

Source: https://itrevolution.com/the-three-ways-
principles-underpinning-devops/ (25.01.2018)

https://itrevolution.com/the-three-ways-principles-underpinning-devops/

Towards a Quality Model for DevOps | 07.02.2018
Leon König, leon.koenig@rwth-aachen.de

8

Process view

• Average lead time of a feature
• Oldest done feature
• Average badge size

• Mean time to detect
• Number of incidents as result

of release
• Monitoring system features

• Code reviews
• Time to store and retrieve

knowledge
• Percentage of discovered faults

Towards a Quality Model for DevOps | 07.02.2018
Leon König, leon.koenig@rwth-aachen.de

9

Technical implementation view

Pipeline is product of separate development process

ISO 25010 - Systems and software Quality Requirements
and Evaluation (SQuaRE)

Towards a Quality Model for DevOps | 07.02.2018
Leon König, leon.koenig@rwth-aachen.de

10

Source: ISO/IEC 25010:2011 – Figure 4 – Product quality model

Technical implementation view

• Fully automated deployments
• Static code metrics
• Zero-downtime deployments

Functional Suitability

• Equal deployments to different
environments

• Orchestrated deployments
• Library / API management

Compatibility /
Maintainability

• Change failure rate
• Unit / Integration /

Performance tests
• Infrastructure as Code

Reliability

Towards a Quality Model for DevOps | 07.02.2018
Leon König, leon.koenig@rwth-aachen.de

11

Towards a Quality Model for DevOps | 07.02.2018
Leon König, leon.koenig@rwth-aachen.de

12

Towards a Quality Model for DevOps | 07.02.2018 Leon König,
leon.koenig@rwth-aachen.de

13

Conclusion / Outlook

• Result of selection from existing quality models

• Much literature available on agile and continuous
delivery / deployment

• Some gaps identified

• Verify quality model

Towards a Quality Model for DevOps | 07.02.2018
Leon König, leon.koenig@rwth-aachen.de

14

	SWC_2018_paper_1
	Introduction
	Background
	Combinatorial Testing
	Related Work
	Research Process

	Identified Features
	Running Example
	Core Features
	Parameters
	Constraints
	Seed Tests
	Testing Strength

	Parameters
	Types
	Negative Values
	Important Values

	Constraints
	Relations
	Logical Expressions
	Programming functions

	Partial Seed Tests
	Testing Strength
	Mixed Parameter Strengths
	Hierarchies

	Discussion
	Conclusion
	Outlook

	References

	SWC_2018_paper_2
	Introduction
	Agile Process Models
	Goals of Metrics Usage
	Metrics
	Work Estimation and Progress Measurement
	Example Calculation
	Discussion

	Continuous Improvement
	Conclusions
	References

	SWC_2018_paper_3
	Introduction
	Tool Attributes
	Tools
	A-CMA
	Refactoring Goal
	Refactoring Technique
	Input/Output
	Methodology
	Experimental Design
	Result

	TrueRefactor
	Refactoring Goal
	Refactoring Technique
	Input/Output
	Methodology
	Experimental Design
	Result

	Dearthóir
	Refactoring Goal
	Refactoring Technique
	Input/Output
	Methodology
	Experimental Design
	Result

	REMODEL
	Refactoring Goal
	Refactoring Technique
	Input/Output
	Methodology
	Experimental Design
	Result

	DPT
	Refactoring Goal
	Refactoring Technique
	Input/Output
	Methodology
	Experimental Design
	Result

	Discussion
	Conclusions
	References

	SWC_2018_paper_4
	Introduction
	Related Work
	Research Design
	EA Model Classification
	Schema
	Application

	Conclusion
	References

	SWC_2018_paper_5
	Introduction
	Microservice
	Architecture
	Operation
	Skill
	Security

	Domain Driven Design
	Domain
	Process
	Organizational
	Code

	Definition of Complexity
	Conclusions and Future Work
	References

	SWC_2018_paper_6
	SWC_2018_paper_7
	Introduction
	Related work
	A DevOps quality model
	Goals
	Questions
	Metrics

	Discussion
	Conclusion
	References

	SWC_2018_paper_8
	Introduction
	Collaborative Modelling
	Collaboration
	Etymology
	3C Model
	Definition of Collaboration
	Classification of Collaboration Types

	 Modelling
	Collaboration Connected with Modelling

	Collaborative UML Modelling Tools
	OctoUML
	Alternatives to OctoUML

	Discussion
	Conclusions and Future Work
	References

	SWC_2018_paper_9
	introduction
	software architecture vs. agility
	ARCHITECTURE AS STRUCTURE OF SOFTWARE SYSTEMS
	ARCHITECTURE AS RESULT OF A DESIGN PROCESS

	architectural properties
	conclusion
	References

	SWC_2018_paper_10
	SWC_2018_paper_12
	Introduction
	History
	Origins of hierarchical models
	Evolution of Maturity Models
	Staged- and fixed-level maturity models
	Continuous maturity models
	Focus area maturity models

	Criteria for grouping
	Maturity reference model structure
	CMMI
	SPICE
	OPM3
	FAMM

	Generalized Meta Model
	Structure
	Level Mapping for staged Maturity Models

	Conclusions
	Future work
	References

	SWC_2018_paper_13
	SWC_2018_paper_14
	Slide 1
	page2 (1)
	page2 (2)
	page2 (3)
	A Slide Title (1)
	A Slide Title (2)
	A Slide Title (3)
	A Slide Title (4)
	Slide 9
	Slide 10
	page6 (1)
	page6 (2)
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	page13 (1)
	page13 (2)
	page13 (3)
	page13 (4)
	page13 (5)
	Slide 24
	page15 (1)
	page15 (2)
	page16 (1)
	page16 (2)
	Slide 29
	page18 (1)
	page18 (2)
	Slide 32
	page20 (1)
	page20 (2)
	Slide 35
	Slide 36
	page23 (1)
	page23 (2)
	page23 (3)
	page23 (4)
	page23 (5)
	page23 (6)
	page24 (1)
	page24 (2)
	page24 (3)
	page24 (4)

	SWC_2018_paper_15
	SWC_2018_paper_16
	SWC_2018_paper_17
	SWC_2018_paper_18
	SWC_2018_paper_19
	SWC_2018_paper_20
	SWC_2018_paper_21
	SWC_2018_paper_22

