
Proceedings
of Seminar

Full –Scale Software Engineering

2019
Editors: Horst Lichter

Konrad Fögen
Christian Plewnia
Simon Hacks

A Systematic Literature Review
on Functional Robustness Testing

Felix Klenner
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

felix.klenner@rwth-aachen.de

Tim Bolender
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

tim.bolender@rwth-aachen.de

ABSTRACT
With the increasing application of software in critical in-
frastructure, its functional robustness gains more and more
focus. While a variety of techniques for functional testing
are available, their benefits and disadvantages in robust-
ness testing remain unclear. Currently, there is a lack of
recent reviews and comparisons of robustness testing tech-
niques. We therefore systematically review and analyze re-
cent publications in the field. Using five different databases,
we searched with common keywords as well as for well known
functional techniques to get a broad understanding of avail-
able techniques. We see that fuzz testing and state transition
testing received the most attention in the last 8 years. The
latter promises a higher detection rate at the cost of higher
efforts in the first place.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—productivity, programming teams,
software configuration management

Keywords
Robustness Testing, Functional Testing, Software Robust-
ness, Literature Review

1. INTRODUCTION
As it can be found in nearly every area of life, software

is nowadays almost omnipresent. This especially holds for
critical infrastructure. Combined with an increasing com-
plexity, the reliable provision of service becomes challenging.
The question of functional robustness gains more and more
relevance.

For regular functional testing, a wide range of black-box
techniques is available. Unfortunately, existing literature
reviews [38, 17] cover robustness testing only in a general
sense. They therefore lack tangible measurements to evalu-
ate the robustness of a program and improve it during de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2018/19 RWTH Aachen University, Germany.

velopment. Thus, we decided to investigate the available
functional robustness testing techniques. To ensure the com-
pleteness of our search, we do so in a structured literature
review. Based on previous reviews, we focus on contribu-
tions after 2012 (cf. [38]).

The paper is structured as follows: in Section 2, we intro-
duce robustness in a more comprehensive way and present
findings of other literature reviews in the field. This is fol-
lowed by the explanation of our research goals an how we
conducted our review in Section 3. Our findings are pre-
sented in Section 4. Their discussion and a comparison of
the found techniques can be found in Section 5. Section 6
concludes this paper.

2. BACKGROUND & RELATED WORK
Robustness is the measurement to describe how well a

system behaves under non-standard conditions [32]. The
IEEE standard [21] defines robustness as

the degree to which a system or component can
function correctly in the presence of invalid in-
puts or stressful environmental conditions.

An alternative taxonomy defines it as a specialized at-
tribute of dependability [2]. Dependability is the degree to
which one can trust the promised services of a system. Ro-
bustness describes in this context a system reaction to a
certain class of errors.

The goal of robustness testing is to evaluate how robust
the system delivers its service. This is achieved by select-
ing a faultload which contains exceptional input or stressful
conditions [32] leading to an error. Since it does not re-
quire any knowledge about the internal working, robustness
testing is a black-box testing variant.

The failures unveiled are normally classified according to
the five point scale CRASH [28] which was established in the
course of the Ballista project: Catastrophic (whole system
crashes), Restart (process hangs, requiring restart), Abort
(process terminates abnormally, e.g. segmentation fault),
Silent (no error code although one occurred), and Hinder-
ing (incorrect error code returned). These failure types can
then be used to prioritize more critical errors and allow the
categorization of errors found by automated testing meth-
ods.

During our research, we found two reviews on software
testability which contained papers on robustness testing.
Hassan et al. [17] mainly reviewed papers on the observabil-
ity and controllability of testing. While these topics deal
with the requirements of robustness testing, they do not fo-

Initial SLR Type Found Filtered

[17]
Forward 34 9
Backward 214 23

[38]
Forward 7 3
Backward 35 5

Total 290 40

Table 1: Contribution found based on initial SLRs

cus solely on finding robustness testing methods. Shahrokni
et al. [38] categorized their results into categories including
requirements, analysis, design & architecture and verifica-
tion & validation. They found and categorized a total of 144
papers. Many of the papers are on fault prevention, fault
measurement and other analysis of software. Of these cat-
egories, the subcategories fault injection and automated ro-
bustness testing contain papers on robustness testing meth-
ods. Since this review is from 2012, many new contributions
are not included. Both reviews do not compare the test-
ing techniques based on parameters describing their usabil-
ity. As a result, both reviews do not cover the robustness
testing techniques in-depth. We include mainly new papers
and focus only on blackbox testing methods, to provide an
overview over the currently available technologies and tech-
niques used in robustness testing. Furthermore, we decided
on research questions aimed at finding the best technique
depending on specific requirements, to help to understand
which techniques are most suitable for which applications.

3. METHODOLOGY
We decided to perform a literature search with a struc-

ture similar to other reviews [17, 38] in order to present our
results as structured as possible. Thus, we first decided on
critical research questions, then on sources and finally on
specific search terms.

3.1 Research Questions
Our research goal is to create an overview over robustness

testing techniques and to classify the techniques. Further-
more, we want to find use cases and examples for different
techniques, to give a general idea of when a technique could
be used. We concretize this in three research questions:

RQ1 Techniques: Which concrete techniques are available
for robustness testing?

RQ2 Applicability: In which context are the techniques
applicable?

RQ3 Effectivity: How effective are the techniques in find-
ing robustness issues?

Thereby, we want to achieve a broad overview of all avail-
able techniques to aid in finding a suitable robustness testing
technique depending on requirements and software environ-
ment.

3.2 Sources & Search Criteria
To find the most relevant papers we conducted a for-

ward/backward search on the initial starting papers [17, 38].
These papers were chosen because of their general topic and
a high likelihood to be cited in papers on robustness test-
ing techniques of all types. A forward search is conducted
by looking up all papers citing the starting paper using a

Search Engine Found Limited Filtered
Springer 2824 556 20
IEEE 215 155 12
ACM 208178 414 18
ScienceDirect 116137 600 13
Wiley Online 31059 600 7
Total 358413 2325 70

Table 2: Search engine search results (including du-
plicates)

Search Engine Found Limited Filtered
testing technique
OR practices

57480 500 14

fuzz 657 270 14
combinatorial 7248 329 10
boundary value 112298 406 12
equivalence class 65556 404 8
state transition 115174 416 12
Total 358413 2325 70

Table 3: Search engine results by search term (in-
cluding duplicates). All search terms also included
“software robustness”.

search engine and a backward search is done by looking up
the sources cited in a paper. Our search consisted of a for-
ward search as the first step, and a backward search starting
from the results of the first stage as the second step. This
gave us a higher number of more recent results than two for-
ward searches, because the results after the first step were
mostly too recent, to have been cited in other work. The
amount of results of this search is summarized in Table 1.

Additionally, we conducted a keyword search with five
search engines (Springer, IEEE, ACM, ScienceDirect Wiley
Online). We selected these search engines based on their
popularity, number of results and accuracy of the results.
We only allowed results newer than 2012 in this search to
focus on recent advancements that are not yet summarized
by the previously mentioned reviews [17, 38]. When a search
resulted in too many results, the results were limited to 100
and sorted by the ’most relevant’ option to get the results
containing the most keywords. We always marked all key-
words as necessarily contained in the result and used an
appropriate function to substitute the OR statement. Fur-
ther, we narrowed down the results by selecting computer
science and matching areas where applicable. As keywords
we used “software robustness testing techniques OR prac-
tices” as a general search term and “software robustness”
combined with fuzz, combinatorial, boundary value, equiv-
alence class and state transition as terms based on well-
known black-box testing techniques.

Table 4 provides an overview over the amount of papers
we found in each area. In this table and in Table 1 we use
“Found” to refer to the amount of results the search had and
“Limited” to refer to the amount of results after limiting the
results in every search engine to a maximum of 100. Then
we filtered all results first based on title and in unclear cases
the abstract. All papers that were relevant based on this
technique were collected in a table with the search term,
title, link and notes. Table 3 shows the amount of results
we found for each search term. Finally, we removed all du-

plicates, which were found using different search engines or
different terms.

This resulted in a total of 110 filtered papers. In the next
step, both authors read the abstract of the papers and clas-
sified them. The papers were marked as “relevant”, “not
relevant”, and “unclear” depending on whether they investi-
gate a robustness testing technique. We then discarded the
papers, which got marked as not relevant by both and kept
the papers we both marked as relevant. The papers one of
us marked as unclear were kept or removed by looking into
and discussing the contents. In total we had 28 relevant pa-
pers after this step. This includes reviews, chapters in books
and general papers. All papers were then sorted into cate-
gories based on their content. This was necessary since the
categories often only reflected the search term and not the
actual topic. In the next step, we sorted the papers by fo-
cus: whether they contain new and/or improved solutions to
problems and applications or cover testing methods applied
to specific applications. Table 4 shows the final number of
results for each category divided into techniques and appli-
cations.

3.3 Threats to Validity
We addressed many concerns of the threats to validity

by using the literature review by Hassan et al. [17] and
Shahrokni et al. [38] as guidelines. We thereby also followed
the recommendations for structured literature reviews [25].

We searched multiple databases to gain a publisher inde-
pendent overview. To consider all contributions in the field,
we used multiple search queries. A general key word search
was used to find all latest techniques researches without as-
sociation to known approaches. However, to ensure that
improvements of concrete techniques were included, we also
searched the combination with well known techniques.

To conduct the literature review within an respectable
time period we limited our results. We admit that this de-
cision carries the risk of missing important contributions.
We argue that we only limited results when the number of
findings exceeded 100. In addition, particularly the search
engines with constantly high results such as ACM and Sci-
enceDirect (cf. Table 2) are affected. Based on sampling we
can assume that we also received partial hits as results, i.e.,
papers matching only “robustness” or “software”. We there-
fore rely on the relevance ordering provided by the search en-
gine to consider primarily those contributions corresponding
to the largest possible usage of entered key words. Further-
more, we conducted a forward and backward search based on
the initial literature reviews to increase the chance of finding
relevant results. Finally, we note that the sighting of more
than 350000 results without any limitation is utopistic.

We adopted a multi-stage filtering process to select the
relevant contributions from the results. In all stages (the
title-based filtering step, the abstract-based filtering, and
detailed study for categorization) checks were performed.
Every author conducted the task independently from the
other and compared their results in the aftermath. In the
case of deviation, the selected case was jointly studied and
decided. We therefore think to have limited the risk of indi-
vidual bias to influence our results to a minimum.

4. RESULTS AND ANALYSIS
Our reviews covers 2325 results from five search engines

as well as 290 based on our original starting literature re-

Topic Technique Application
Fuzz 5 4
Boundary Values 1 1
Combinatorial 1 1
State Transition 5 1
Miscellaneous 2 6
Total 15 13

Table 4: Unique results aggregated by topic and fo-
cus

views (see Section 2) and yielded 28 relevant papers. After
studying them in detail, we were left with four concrete tech-
niques which were covered: fuzz testing, combinatorial test-
ing, boundary value testing, and state transition testing. For
10 contributions we were not able to decide on a technique
since they cover multiple and/or investigated robustness in
a more general sense. Furthermore, we decided for each
contribution whether the main focus is the extension of the
body of knowledge or the investigation of its application. A
full breakdown can be found in Table 4.

A slightly different classification of robustness testing tech-
niques was introduced by Micskei et al. [32]. They catego-
rized techniques based on the main milestones of the evolu-
tion of testing technique beginning from the early 1990s to
the early 2010s. They root the origins of robustness testing
to physical fault injection. To verify especially safety-critical
systems, fault injection can be used to simulate faults cre-
ated by interacting components or underlying layers. How-
ever, according to Micskei et al., randomized input can be
considered as the first actual robustness testing technique in
the mid 1990s. In the late 1990s, the idea of invalid input be-
came popular, where values outside of the allowed input do-
main were tested. Those independent techniques were then
combined in type specific testing. This involves the combi-
nation of valid and invalid for different parameters. With
the rise of object oriented programming, this approach was
extended to testing object oriented systems. Independent of
this, robustness testing and code mutation were investigated
in the early 2000s. Based on valid code, invalid and thereby
robustness testing sequences can be generated by, e.g., omit-
ting calls or replacing parameter values. The latest trend by
2012 is noted to be model-based robustness testing with the
rise of model-driven software development.

On first sight, our results do not fit this taxonomy. How-
ever, during research, we noticed that the sharp separation
by technique evolution is not reflected in all publications.
All found papers on the topic of randomized input referred
to it as fuzz testing. Although defined slightly different by
Micskei et al. [32], we consider it as synonymous. We noticed
that for the techniques invalid input, type specific testing and
testing object oriented systems, there is no possibility to dis-
tinguish nowadays. Object oriented development is de facto
standard, and testing for invalid values based on the type is
common practise [23]. Common for all techniques, however,
is the goal to find values which violate the input constraint,
i.e., by being outside a “boundary”. Furthermore, valid and
invalid values are tested in combination. Therefore, we con-
sider boundary value testing and combinatorial testing as a
mix of this taxonomy. This perspective is supported by our
findings (cf. Section 4.2 and Section 4.3). The same applies
to the two robustness trends code mutation and model-based

robustness testing. Micskei et al. [32] define the first as tech-
nique for state-based systems and separate it from models
with formal or semi-formal specifications. In our findings,
both are mixed for state transition testing. All contribu-
tions dealing with mutations of valid code consider their
research area as model-based. Additionally, state machine
based testing is commonly considered as model-based [40]
(cf. Section 4.4).

Although we included equivalence class testing in our search
keyword, we were not able to determine a contribution which
covered this testing technique explicitly for robustness test-
ing. We root this mainly to the nature of equivalence test-
ing, its overlapping with boundary value testing and the fact
that only two papers covered the latter at all. Notably, fuzz
testing (9 contributions) and state transition testing (6 con-
tributions) receive the most attention by the research com-
munity since 2012. While for fuzz testing, half focuses on the
application, the overwhelming majority for state transition
testing is investigating the improvement of the technique in
general.

In the following, we give a short introduction for each
technique and present the insights from the respective con-
tributions as shown in Table 4.

4.1 Fuzz Testing
Fuzzy robustness testing techniques randomly generate in-

put data to test the target software. Many of the following
techniques improve the way the data is generated or how
it is inserted into the target software. Despite seeming like
a bad alternative to other techniques due to the random-
ness, it is a popular technique and has a high number of
errors found compared to other techniques [26]. The target
of many techniques is to cover as much of the functionality
of the software as possible. Fuzzing can be especially use-
ful, because no model specific to the application has to be
created. Challenges include the grouping of errors without
creating duplicates or omitting errors [26].

Figure 1 shows the typical workflow of fuzz testing tech-
niques. First test data is generated using a generator that
uses a fuzzy algorithm. Then the generated inputs are ap-
plied to the target system, which has outputs in the form of
a returned value or a crash. This output is then analyzed
to determine if it is expected or an error. After this, some
implementations use the gathered data to generate new test
cases and repeat the process.

This is used, e.g., in the JCrasher robustness testing tool [10],
which automatically searches bugs in Java applications. It
tries to raise runtime exceptions, by calling functions with
random values after examining their input range. It also uti-
lizes heuristics, to determine if an exception is a bug or oc-
curred because of invalid preconditions created by JCrasher.
It takes advantage of the public methods in Java to use them
as an interface to the software.

A different approach to generate test data is to start with
known valid inputs and use a mutation modifier every time a
test is executed [35]. The mutation modifier replaces a valid
input with one just outside the valid bounds. By controlling
the probability of this modifier it allows to control the degree
of the atypical input.

A technique that does not directly use random inputs to
generate the input data is described by Kargen et al. [24].
Instead of randomly generating the direct inputs for a soft-
ware it uses programs that generate valid inputs. These

generation programs are then modified with random muta-
tions to create new slightly different generators for input
data. The researchers implemented the technique in their
tool called MutaGen and discovered 8 bugs in Linux tools
using it. They found increases of one order of magnitude in
code coverage. There are also examples of fuzzing software
for mobile devices like Chizpurfle [20] for Android. The re-
searchers developed Chizpurfle on the Samsung Galaxy S6
Edge with Android 7 and used it to find bugs in the cus-
tomizations made by the manufacturer.

One of the advantages of fuzzing is the low workload com-
pared to other techniques. The fuzzer SulleyEX [43] expands
the open source fuzzer Sulley. It uses a state machine, to
describe the states of a network protocol and includes a cus-
tom generation algorithm. It aims at increasing automation
and reducing the workload. There are also fuzzy test meth-
ods combined with combinatorial testing to improve cover-
age and reduce the amount of shallow paths followed like
SimFuzz [42]. SimFuzz uses a traditional Blackbox fuzzing
algorithm for the initial data acquisition, which can test for
deep semantics. Then it uses combinatorial generation on
these test cases, to increase the amount of inputs exploring
deep program paths.

There is also an approach [9] that uses recorded human in-
teractions with the software. It records human input streams
and then modifies the recordings and plays them back to
cause errors. This can include complex input chains as op-
posed to most other fuzzing techniques. It is also possible to
generate test cases at runtime [37] instead of before the exe-
cution, to improve the efficiency. This method can use previ-
ous results to improve the newly generated test cases easily,
because the test cases are generated at runtime. Fuzzing
can also be used to test deep learning systems. The fuzzer
DLFuzz [16] changes the input to maximize the prediction
difference. This is an important use case as deep learning
rises in popularity and testing their reliability is hard.

A test of the trustworthiness of the results of fuzzing tech-
niques was also performed [26]. It highlights the effects of
improper evaluation of testing methods.

4.2 Boundary Value Testing
When applying boundary value testing, the functional-

ity of a program or function is tested based on its input
domain [23]. Test cases are generated by selecting specific
values from the domain of each input variable and combin-
ing them. The selection and combination depends on the
aimed extent of testing.

For the normal boundary value testing, extreme values
and nominal are chosen, all inside the valid domain. Test
cases are then generated by combining the non-nominal val-
ues of one variable with the nominal values of the others.
To increase the depth of testing, every value of each vari-
able can be combined with each of other variables. This
approach is considered as worst-case boundary value testing
and generates an exponential number of test cases.

However, for evaluating robustness, invalid values are of
interest. Their usage is considered as robust boundary value
testing. This involves the selection of values very close to
the boundary of the input domain. Combining them with
the valid values of other variables yields a set of invalid test
cases. Thereby, a correct behavior to invalid input can be
tested.

Our literature review with focus on the years after 2012

fuzz
generator input outputtarget system

(blackbox)
validator

result (detected faults)

Figure 1: The typical workflow of fuzz testing techniques

yields only two contributions dealing with this topic. Fur-
thermore, only one of them aims at broadening the body of
knowledge in general while the other focus on the applica-
tion of robust boundary value testing.

Crucial for the generation of test values is a comprehensive
knowledge about the boundaries of the input domain. A
very recent publication describes a method to determine the
boundary values automatically [31]. For this purpose, test
cases over a wide range of valid inputs are generated. These
test cases are mutated to find invalid test cases close to the
valid ones. The presented method is evaluated by applying
it to three modules from the standard library of the Julia
programming language.

In [11], a generic tool for the generation of test cases for
boundary value testing including robustness testing is pre-
sented. However, this tool does not focus explicitly on ro-
bustness testing nor can it be considered as more than a
small helper tool.

4.3 Combinatorial Testing
Combinatorial testing is a testing technique that finds

combinations of inputs to achieve a broad coverage with low
computational requirements [5]. In general, systems have
many inputs and it is impossible to test all combinations of
these inputs. To reduce the number of combinations there
are multiple algorithms to generate covering arrays in combi-
natorial testing, which is the main challenge [29]. Covering
arrays contain tests with all t-way combinations of input
parameters. Higher values of t indicate a better coverage.
Because multiple combinations containing each parameter
are tested it can find failures, which are triggered by inter-
actions between parameters [33].

This can be done by first partitioning the values of input
parameters. These partitions could, e.g., be “full-age” and
“under-age”, in the case of a parameter describing the age
of a person. This drastically reduces the amount of input
that needs to be tested. These partitions can then be au-
tomatically combined with different strategies, to cover as
many cases as possible. While every partition should occur
at least once, mostly more combinations for each partition

are used. Combinatorial testing aims to select a small num-
ber of test cases that provide a high coverage. In a survey of
combinatorial testing [33] different strategies to select these
test suites are discussed. This includes variable strength in-
teraction testing, which tries to cover mainly combinations
with many mutual interactions.

This is applied to graphical and command line user inter-
faces by a study testing combinatorial testing on a widely
used tool for combinatorial test generation [4]. The re-
searchers use t-way combinatorial testing, which tests every
combination of values of t parameters at least once. The
papers shows that combinatorial testing can detect a high
number of faults and has a good code coverage although
setting up the model for input parameters may require sig-
nificant work.

Because invalid inputs can mask test cases by leading into
the same abort condition every time, there is a test case gen-
eration method that only allows one invalid input in every
test case [15]. This technique can be used to enhance ex-
isting algorithms to include invalid value combinations. It
uses soft-constraints to create test cases for over-constrained
models.

4.4 State Transition Testing
State transition testing is a model-based testing technique.

For model-based testing, a model of the system under test
(SUT) has to be established which enables the derivation of
test cases from it [34].

Models can be of formal or semiformal nature. Through
their precise nature, the first allows the automatic genera-
tion of test cases, while later requires further human reason-
ing in order to receive tests [23]. But independent of their
notation, models have to describe the behavior of the SUT
with the right level of detail to be useful and abstract enough
to capture the essence of it [40]. Therefore, a wide range of
possibilities exists. Depending on the required expressive-
ness, the SUT can be modelled, among others, through Petri
nets, finite state machines and state transition systems such
as UML transition based systems [23, 40].

Finite state machines and state transition systems consist

state transition
testing

robustness
state transition

testingstate machine
model

s
1

s
2

s
3

s
4

a

b

b

a

b

a

s
1

s
2

s
2

s
3

a a b
s
3

b

s
1

s
4

s
4

b a

s
1

s
2

s
2

s
3

a a b
S
?

a?

s
1

s
4

s
?

b b?

Figure 2: Fundamental model-based approach of (robustness) state transition testing

of nodes connected with arcs. Each node corresponds to a
state of the SUT, while an arc describes an action possible
from this state [40]. These actions are also called transi-
tions. Depending on the exact notation, they can further be
enhanced with guards. This way it is possible to describe
conditions which have to be satisfied to take a transition.

In order to derive test cases, approaches with different test
coverage criteria are available [40]. One can require, e.g.,
that the resulting test cases as whole have to interact with all
states, all transitions, or also all inputs and/or outputs. In
Figure 2, this workflow is depicted with test cases satisfying
the transition coverage criteria.

Our literature search yields the second highest amount
of contributions for the technique of state transition testing.
Five of them deal with the technique as such, while only one
reports its application. This coincides with the observation
of the more increasing interest in model-based testing caused
by the popularity of model-driven development [32].

In this context it is interesting to note that the majority of
the contributions do not describe the relation between the
model and implementation. In model-driven engineering,
models are raised to main development artifacts [39], en-
abling an automated code and test generation at the same
time. Instead of creating and using a model solely as in-
termediate artifact for testing, its usefulness is thereby in-
creased. This aspect is only mentioned by two contribu-
tions [18, 36] and here also used during evaluation. The
focus of other contributions lies mainly on the enhancement
of a own tool suite [1, 30]. One contribution describes its
findings as being of theoretical nature alone [14].

A framework for testing stateful components is presented
by Lei et al. [30]. To receive test cases, first paths covering
all transitions are generated. The actual cases are devised
through divergence from path (calling methods with unspec-
ified transition) or invalid method calls (arguments violating
pre-conditions). Mutation through path divergence is de-
picted in Figure 2. The framework is evaluated with a toy

example and the results were found to be superior to fuzz
testing.

A very similar system is based on the Z3 solver [18]. Ex-
isting coverage criteria for robustness testing (all-transition
coverage, pairwise transition coverage, predicate coverage,
combinatorial coverage) are extended. The solver is used
to determine the testing paths. Furthermore, attempts are
made to speed up the execution by caching. The evaluation
is performed with a generic HashTable implementation and
a toy traffic light controller.

Comparable is the investigation of an aspect oriented ap-
proach [1]. Following the authors, robustness modeling in
complex industrial systems without aspects is not scalable.
Therefore, state machines are enriched with aspects through
the UML profile AspectSM. However, robustness is under-
stood as the ability of the system to recover from faults
whose sources are primarily the environment and not invalid
input. The work is evaluated using a simplified industry case
study.

Savary et al. [36] present a fully model-based approach to
robustness testing on the basis of state machines described
in Event-B. Based on the valid input specifications of sys-
tem, test cases are generated through negation and muta-
tion. This devised approach is then applied to a Java byte-
code verifier.

A quite different usage of models is proposed by Chen
et al. [8]. Instead of requiring the manual construction of
one describing the intended behavior of the SUT, existing
method sequences are transformed to extended finite state
machines. For testing case generation, existing paths are
manipulated. This is done with two algorithms: Operations
Conflict Sequences Generation and Conditions Conflict Se-
quences Generation. In a case study, this is applied to COM
components and shown to have better effective rates com-
pared to fuzz testing.

A theoretical framework model based robustness testing
is described by Fernandez et al. [14]. Therefore, no precise

method of generating test paths are presented.
The only practical contribution investigates the applica-

tion of state transition testing in the automotive industry [6].
Based on the automotive realtime operation system OSEK,
formal test models for parallel state machines execution are
devised. Based on constraints of these state machines, ille-
gal paths are found using a model checker. This technique
is compared to specification based and concolic testing and
found to be superior in an evaluation.

4.5 Miscellaneous
Our search resulted in a number of contributions which

we were not able to categorize. This was either due to the
non-comparability to other approaches, a mixture of differ-
ent techniques or a meta-discussion of robustness. Indepen-
dently, we consider majority of contributions in this category
state their field of research as being model-based.

El-Attar and Abdul-Ghani [13] developed a general ap-
proach for improving security robustness. Instead of devel-
oping a concrete technique for testing application on the
code level, they present the application of misuse case mod-
els. In addition to normal usage scenarios, the goals of a
(malicious) misuser are taken into account. Thereby, effec-
tive robustness acceptance tests can be devised in a model-
based environment. Its application is highlighted in a case
study of a faculty search committee.

An approach to fully automate test case generation with
the help of Markov chains can be considered as model-based
engineering [3]. With their main focus on the automotive
industry, they cover embedded systems with the challenge
of time sensitivity. For fully automated testing, they devise a
system which first predicts the results of input, then executes
the test and decides whether to stop testing. It was applied
in two case studies showing an increased bug detection as
well as a reduced time consumption for testing.

There were five papers describing applications of robust-
ness testing that did not fit in our categories. These mostly
use a combination and/or modified versions of the other
techniques.

Vernotte et al. [41] describe a testing process to find vul-
nerabilities in web applications. The process is called pattern-
driven and model-based vulnerability testing. It uses a model
to describe the tested application and applies vulnerability
test patterns to this model in order to find vulnerabilities.
This is especially useful for vulnerabilities like SQL injec-
tions and Cross-Site scripting that always use similar pat-
terns. To accomplish this, they use a combination of a model
and fuzzing. It was tested on a complex and freely accessible
eHealth system.

A different paper explores the application of Automated
Stress Testing for Autonomy Architectures (ASTAA) [19].
It is an example from the industry combining different tech-
niques. This framework aims to automate the testing pro-
cess by using a three phase system. This project expands the
Ballista tool [27] to cover robotics and autonomy software.

Carozza et al. describe a system to test web services of
an air traffic control application [7]. They create test cases
based on the specification of the API and a predefined set
of rules, which are applied to the specification. They de-
veloped a tool called WSRtesting, which helps to manage
complex parameters and can automatically test XML for-
matted parameters. To test for errors, it first runs without
invalid parameters, to capture the expected response. Then

several tests containing invalid parameters are run. It also
allows the user to analyze the results using the web interface
of WSRtesting.

The SMArDT modeling system introduced by Drave et
al. [12] is a testing solution for automotive software. It does
not focus on robustness testing, but contains robustness as a
metric. There also is a thesis describing robustness testing of
AUTOSAR software components [22]. It uses the interfaces
defined by the AUTOSAR standard to perform robustness
testing based on the input datatypes. Different fault gen-
eration techniques including fuzz testing are supported by
changing a setting.

5. DISCUSSION
This structured literature review gives insights in the re-

search of robustness testing techniques of software systems
since 2012. We were able to identify the four concrete tech-
niques fuzz testing, combinatorial testing, boundary value
testing, and state transition testing. Fuzz and state tran-
sition testing received the most attention since 2012 in the
research community. However, we also found contributions
which could not be assigned to a specific technique. Notably,
the majority of those had an application focus.

Fuzz testing is a popular robustness testing technique which
uses random input values to cause faults. We found many
papers describing new generation strategies as well as ap-
plications for specific use cases [20, 10], which indicates a
high interest in this technique. In general, random values
are generated and inserted into user interfaces and directly
into software components. Fault detection can be a sim-
ple crash/freezing detection of the target system. In many
cases it is the easiest technique to deploy (high applicabil-
ity) and requires the least amount of work, because no ex-
tensive model or documentation of the software is required.
The effectivity expressed by the fault detection rate is not
as good as state transition testing combined with an accu-
rate model. Nevertheless, the number of bugs detected for
a given amount of work is high, because very little setup is
needed for most fuzz based techniques.

Boundary value testing is a well known technique from
regular functional testing. Based on the division of input
space, values are used for testing. For evaluating robust-
ness, invalid values close to the border of permitted input
space are chosen. This approach is commonly known and
referenced in literature in all contexts [23, 34]. Therefore, it
is not surprising to see only a few contributions in this area.
The only active research contribution investigated the au-
tomatic determination of valid input space boundaries [11].
While being useful in theory, it requires an already correct
functioning system. This makes of the idea of robustness
testing a mockery and the idea not applicable in general.

Combinatorial testing is another technique for which we
found only two results. In combinatorial testing, first par-
titions of input values are found and then combinations of
these input parameters are tested. Therefore a model of the
inputs is required for combinatorial testing. The selection of
the combinations can be done using different strategies. Cre-
ating combinations with a maximum of one invalid value [15]
can be beneficial to prevent masking by the first error. This
technique requires the creation of a model for the inputs.
Its applicability is between fuzz testing and state transition
testing, because the model does not have to cover states.

The second active investigated technique by number of

contributions is state transition testing. Since it is a model-
based technique, an increased research activity caused by
the popularity of model-based engineering seems consequen-
tial. This corresponds to only one paper focusing on its ap-
plication. For state transition testing, the behavior of the
tested systems is captured in models, mainly state transi-
tion systems. In these systems, nodes represent states and
transitions method calls. Test cases are generated based on
paths on this model. For robustness, diverging paths are
tested and/or method parameters mutated. Thereby, state-
ful systems can be structurally evaluated. This makes state
transition testing useful in the majority of software systems.
The evaluation of toy examples and case studies indicates
that in those systems, state transition testing results in a
higher fault detection rate than fuzz testing. So far, only
the application in automobile industry was investigated.

The miscellaneous papers investigating techniques, which
we could not directly assign to a category, are also rooted
in model-based engineering. Special model-based notations
are devised to ensure security robustness. To increase test
automation, a self-learning system with focus for the auto-
mobile industry was created. Only in the later cases, an
evaluation with comparison was conducted to highlight the
advantages.

These miscellaneous papers are often specific solutions for
applications and environments that use multiple or modified
versions of our categories. A main goal often is to automate
and optimize the workflow to minimize additional work re-
quired for robustness testing. This is done by using existing
specifications to generate test cases [22] or creating applica-
tions for other steps of robustness testing. These solutions
are mostly targeted at a specific system, which reduces the
applicability through optimization for a special case, but in-
creases the effectivity. This specialization means that less
work is required to set up the test tools.

While we did not find papers specifically exploring equiva-
lence class based robustness testing, equivalence classes are
an important tool, which is often used in the preparation
of other techniques to represent partitions of input groups.
This shows that the interest in using this technique has
dropped, but the idea of equivalence classes in robustness
testing is used by other techniques.

We saw that it is hard to directly compare the techniques,
because there is a lack of comparisons using the same target.
However, we found that fuzz based approaches are generally
the least work and therefore have the best applicability, be-
cause no models are required. State transition testing on
the other hand provides a better coverage and fault detec-
tion rate and therefore effectivity. Combinatorial testing
and boundary value testing are regarding effectivity and
applicability in between both of these. These results are
summarized in Table 5. Additionally, it shows the types of
applications for which the testing methods generally can be
used. There are exceptions to this, but it is a good general
guideline. While some papers remain not categorized, these
papers use multiple techniques or focus on different areas
allowing no general insights.

6. CONCLUSIONS
We performed a systematic literature review on robust-

ness testing techniques. For this we started at two reviews
with a forward/backward search and searched five big search
engines for terms we identified after an initial analysis. We

Technique Required
Effort

Effectivity Application
Context

Fuzz + o/+ Simple
In-/Output

Boundary
Values

o o Numeric Input

Combi-
natorial

o o Mutually depen-
dent parameters

State
Transition

-/o + Stateful systems

Table 5: Overview over the techniques we found and
their properties regarding our research questions.
“+” is better than other results, “o” normal results
and “-” worse than average results.

identified four main techniques. These were then evaluated
based on our research questions. The evaluated testing tech-
niques have different advantages and disadvantages. Fuzzing
is the least amount of work to setup and run, but does not
always cover every combination. Therefore it has a high
applicability, but low effectivity. Combinatorial and state
based testing can be more complicated to setup, but have a
better test coverage. A result of the increased coverage is a
higher effectivity at the cost of more work. Combinatorial
testing can be used when a model for the input parameters
exists and can be useful to achieve a high coverage without a
very complicated model. Boundary value testing is another
alternative, which can be especially useful, if edge cases are
of high interest. In general, fuzz testing is the least man-
ual work and state transition testing achieves the highest
coverage.

7. REFERENCES
[1] S. Ali, L. C. Briand, and H. Hemmati. Modeling

robustness behavior using aspect-oriented modeling to
support robustness testing of industrial systems.
Software & Systems Modeling, 11(4):633–670, 10 2012.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and
C. Landwehr. Basic Concepts and Taxonomy of
Dependable and Secure Computing Algirdas. Institute
for Systems Research, 0114:10, 2001.

[3] R. Awedikian and B. Yannou. A practical
model-based statistical approach for generating
functional test cases: application in the automotive
industry. Software Testing, Verification and
Reliability, 24(2):85–123, 3 2014.

[4] M. N. Borazjany, L. Yu, Y. Lei, R. Kacker, and
R. Kuhn. Combinatorial Testing of ACTS: A Case
Study. In 2012 IEEE Fifth International Conference
on Software Testing, Verification and Validation,
pages 591–600. IEEE, 4 2012.

[5] R. C. Bryce, Y. Lei, D. R. Kuhn, and R. Kacker.
Combinatorial Testing. In Handbook of Research on
Software Engineering and Productivity Technologies,
pages 196–208. IGI Global, 2010.

[6] T. Byun and Y. Choi. Automated system-level safety
testing using constraint patterns for automotive
operating systems. In Proceedings of the 30th Annual
ACM Symposium on Applied Computing - SAC ’15,
pages 1815–1822, New York, New York, USA, 2015.
ACM Press.

[7] G. Carrozza, A. Napolitano, N. Laranjeiro, and
M. Viera. WSRTesting: Hands-On Solution to
Improve Web Services Robustness Testing. In 2011
Fifth Latin-American Symposium on Dependable
Computing Workshops, pages 41–46. IEEE, 4 2011.

[8] J. Chen, J. Chen, R. Huang, Y. Guo, and Y. Zhan. An
approach of security testing for third-party component
based on state mutation. Security and Communication
Networks, 9(15):2827–2842, 2016.

[9] J. A. Cottam, L. Blaha, D. Zarzhitsky, M. Thomas,
and E. Skomski. Crossing the Streams: Fuzz testing
with user input. Proceedings - 2017 IEEE
International Conference on Big Data, Big Data 2017,
2018-Janua:4362–4371, 2018.

[10] C. Csallner and Y. Smaragdakis. JCrasher: An
automatic robustness tester for Java. Software -
Practice and Experience, 34(11):1025–1050, 2004.

[11] N. Debnath, A. Kruger, and M. Alexander. A
Boundary Value Analysis Tool - Design and
Description. In 2013 10th International Conference on
Information Technology: New Generations, pages
77–82. IEEE, 4 2013.

[12] I. Drave, S. Hillemacher, T. Greifenberg, S. Kriebel,
E. Kusmenko, M. Markthaler, P. Orth, K. S. Salman,
J. Richenhagen, B. Rumpe, C. Schulze, M. von
Wenckstern, and A. Wortmann. SMArDT modeling
for automotive software testing. Software: Practice
and Experience, (May):1–28, 10 2018.

[13] M. El-Attar and H. A. Abdul-Ghani. Using security
robustness analysis for early-stage validation of
functional security requirements. Requirements
Engineering, 21(1):1–27, 2016.

[14] J.-C. Fernandez, L. Mounier, and C. Pachon. A
Model-Based Approach for Robustness Testing. In
Testing of Communicating, pages 333–348, 2005.

[15] K. Fögen and H. Lichter. Combinatorial Testing with
Constraints for Negative Test Cases. In 2018 IEEE
International Conference on Software Testing,
Verification and Validation Workshops (ICSTW),
pages 328–331, 2018.

[16] J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun.
DLFuzz: differential fuzzing testing of deep learning
systems. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software
Engineering - ESEC/FSE 2018, pages 739–743, New
York, New York, USA, 8 2018. ACM Press.

[17] M. M. Hassan, W. Afzal, M. Blom, B. Lindstrom,
S. F. Andler, and S. Eldh. Testability and Software
Robustness: A Systematic Literature Review. In
Proceedings - 41st Euromicro Conference on Software
Engineering and Advanced Applications, SEAA 2015,
2015.

[18] P. Heckeler, H. Eichelberger, T. Kropf, J. Ruf,
S. Huster, S. Burg, W. Rosenstiel, and B. Schlich.
Accelerated model-based robustness testing of state
machine implementations. ACM SIGAPP Applied
Computing Review, 13(3):50–67, 2013.

[19] C. Hutchison, M. Zizyte, P. E. Lanigan,
D. Guttendorf, M. Wagner, C. L. Goues, and
P. Koopman. Robustness testing of autonomy
software. Proceedings of the 40th International

Conference on Software Engineering Software
Engineering in Practice - ICSE-SEIP ’18, pages
276–285, 2018.

[20] A. K. Iannillo, R. Natella, D. Cotroneo, and
C. Nita-Rotaru. Chizpurfle: A Gray-Box Android
Fuzzer for Vendor Service Customizations. Proceedings
- International Symposium on Software Reliability
Engineering, ISSRE, 2017-Octob:1–11, 2017.

[21] IEEE (Institute of Electrical and Electronics
Engineers). ISO/IEC/IEEE 24765:2017(E) - Systems
and software engineering: Vocabulary. 2017.

[22] V. Jansson and J. Lindahl. Robustness Testing of
AUTOSAR Software Components (Master Thesis).
2013.

[23] P. C. Jorgensen. Software Testing - A Craftsman’s
Approach. CRC Press, Inc., 4th edition, 2015.

[24] U. Kargén and N. Shahmehri. Turning programs
against each other: high coverage fuzz-testing using
binary-code mutation and dynamic slicing.
Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering - ESEC/FSE
2015, pages 782–792, 2015.

[25] B. Kitchenham and S. Charters. Guidelines for
performing Systematic Literature Reviews in Software
Engineering. Technical Report EBSE-2007-01, Keele
University and Durham University, 2007.

[26] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks.
Evaluating Fuzz Testing. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and
Communications Security - CCS ’18, pages 2123–2138,
New York, New York, USA, 2018. ACM Press.

[27] P. Koopman, K. Devale, and J. Devale. Interface
Robustness Testing: Experience and Lessons Learned
from the Ballista Project. Dependability Benchmarking
for Computer Systems, pages 201–226, 2008.

[28] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and
T. Marz. Comparing operating systems using
robustness benchmarks. Reliable Distributed Systems,
1997. Proceedings., The Sixteenth Symposium on, page
72–79, 1997.

[29] R. Kuhn, Y. Lei, and R. Kacker. Practical
combinatorial testing: Beyond pairwise. IT
Professional, 10(3):19–23, 2008.

[30] B. Lei, Z. Liu, C. Morisset, and X. Li. State Based
Robustness Testing for Components. Electronic Notes
in Theoretical Computer Science, 260:173–188, 1 2010.

[31] B. Marculescu and R. Feldt. Finding a boundary
between valid and invalid regions of the input space.
arXiv e-prints, pages 1–10, 10 2018.

[32] Z. Micskei, H. Madeira, A. Avritzer, I. Majzik,
M. Vieira, and N. Antunes. Robustness Testing
Techniques and Tools. In K. Wolter, A. Avritzer,
M. Vieira, and A. van Moorsel, editors, Resilience
Assessment and Evaluation of Computing Systems,
pages 323–339. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[33] C. Nie and H. Leung. A survey of combinatorial
testing. ACM Computing Surveys, 43(2):1–29, 2011.

[34] M. Pezze and M. Young. Software Testing and
Analysis: Process, Principles and Techniques. John
Wiley & Sons, Inc., 2008.

[35] S. Poulding and R. Feldt. Generating Controllably
Invalid and Atypical Inputs for Robustness Testing. In
2017 IEEE International Conference on Software
Testing, Verification and Validation Workshops
(ICSTW), pages 81–84. IEEE, 3 2017.

[36] A. Savary, M. Frappier, M. Leuschel, and J.-L. Lanet.
Model-Based Robustness Testing in Event-B Using
Mutation. Communications of the ACM, 51(9):54,
2008.

[37] M. Schneider, J. Grossmann, I. Schieferdecker, and
A. Pietschker. Online Model-Based Behavioral
Fuzzing. In 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation
Workshops, pages 469–475. IEEE, 3 2013.

[38] A. Shahrokni and R. Feldt. A systematic review of
software robustness. Information and Software
Technology, 55(1):1–17, 1 2013.

[39] T. Stahl and M. Völter. Model-Driven Software. John
Wiley & Sons, Inc., 2006.

[40] M. Utting and B. Legeard. Practical Model-Based
Testing - A Tools Approach. Elsevier Inc., 2007.

[41] A. Vernotte, C. Botea, B. Legeard, A. Molnar, and
F. Peureux. Risk-Driven Vulnerability Testing:
Results from eHealth Experiments Using Patterns and
Model-Based Approach. In Risk Assessment and
Risk-Driven Testing: Third International Workshop,
RISK, pages 93–109. Springer International
Publishing, 2015.

[42] D. Zhang, D. Liu, Y. Lei, D. Kung, C. Csallner,
N. Nystrom, and W. Wang. SimFuzz: Test case
similarity directed deep fuzzing. The Journal of
Systems and Software, 85:102–111, 2012.

[43] W. Zhou and Y. Xiang. SulleyEX: A Fuzzer for
Stateful Network Protocol. Journal of Network and
Computer Applications, 32(2):345–346, 2009.

Towards a Definition of Enterprise Architecture Debt

A Systematic Literature Review

Hendrik Höfert
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

hendrik.hoefert@rwth-aachen.de

Johannes Salentin
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

johannes.salentin@rwth-aachen.de

ABSTRACT
While Technical Debt is a widely known metaphor intro-
duced by Ward Cunningham describing a mostly invisible
result of past decisions about software that negatively affect
its future, the idea of such debt is not applied to overall
Enterprise Architecture. However, Enterprise Architecture
and Enterprise Architecture Management in particular are
established to support the decision-making process. Thus,
we identified the possibility to expand the idea of the debt-
concept to Enterprise Architecture in order to improve its
quality. Several approaches of using EA have shown to be
useful and facilitate a sustainable development of the enter-
prise. Especially a tool for making undesired aspects visible
and drawing attention to them, as well as serving as a ba-
sis for communication is needed to improve an EA and its
operating capabilities.

First, we conduct a systematic literature review (SLR) to
get to know the metaphor of Technical Debt and important
aspects to assess the quality of Enterprise Architectures. On
the basis of the found work we define a new metaphor of En-
terprise Architecture Debt, aiming at revealing weaknesses
of the current state and drawing attention to opportunities
of improvement. This should help to shape and undertake
development of an enterprise in addition to already known
frameworks. The debt concept should serve as a useful ex-
tension of those, encouraging sustainable and extensive as-
sessment. Moreover, we propose future research topics to
further enhance Enterprise Architectures and the usage of
helpful tools.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—productivity, software qual-
ity assurance

Keywords
Enterprise Architecture Debt, Enterprise Architecture,
Technical Debt

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2018/19 RWTH Aachen University, Germany.

1. INTRODUCTION
Nowadays, organizations continually get more complex,

due to an ever increasing number of interwoven applications.
Therefore, managing and maintaining sustainable develop-
ment is difficult for stakeholders. Enterprise Architecture
(EA) provides a holistic view on the enterprise and its el-
ements that are needed to create value [26]. Stakeholders
need to be aware of their whole application landscape and
overall structure. In order to support this, we want to ex-
pand the known idea of Technical Debt (TD) and base our
concept of Enterprise Architecture Debt (EAD) on it. Be-
cause there is no existing research on this topic yet, we want
to tackle it to help improve EAs.

As Technical Debt has shown its benefits in estimating
deficits of software construction, providing a tool for deci-
sion making and increasing the awareness of said deficits [15,
17, 19, 29], we want to transfer these benefits to the whole
Enterprise Architecture. Metrics that are commonly used
in Software Engineering (cf. TD estimation [6]) should not
only be used on single systems and software, but rather be
generalized to be applicable and helpful for the entire enter-
prise and every scenario [1, 5, 21]. This encompasses then
the different layers of EA, including business and IT with its
systems and strategies in particular. Thus, it gets possible
to estimate the consequences of EA implementation failures
so that with the new metaphor of EA Debt improvements
and measurement of the quality gets possible. Furthermore,
strategic decisions about future development based on ur-
gency and dependency of debt can be facilitated.

For the purpose of introducing the metaphor, we need to
find the answers to the following research questions. Here
we consider our main goal in RQ1, with its two major sub-
questions RQ1.1 and RQ1.2 which have to be answered in
order to answer the primary research question:

What is an adequate definition of Enterprise Architecture
Debt? (RQ1)

How is Technical Debt defined and what criteria is related
to it? (RQ1.1)

Which aspects are important for the quality of EAs and
which layers are included in it? (RQ1.2)

Then we know how the metaphor of Technical Debt ap-
proaches to assess the relevant criteria and which aspects
are crucial to EAs. Thus, we can define EA Debt aiming at
including all relevant issues and becoming a powerful tool
for EA management.

We structure our work as follows: After preparing our
research design in section 2, we compare and point out re-
lated work in section 3. In the main part we define the new
metaphor of Enterprise Architecture Debt with its impor-
tant aspects (section 4) and then come up with two exam-
ples (section 5). Finally, we conclude our work in section 6
and propose future work that rests on the new metaphor of
EA Debt (section 7).

2. RESEARCH DESIGN
We conduct a systematic literature review (SLR) by com-

bining the approaches of Kitchenham [14] and Webster and
Watson [33], in order to find answers to our research ques-
tions.

We searched for “technical debt definition” respectively
“technical debt metaphor” in the metadata (abstract, ti-
tle text and indexing terms) in order to solve our first re-
search question (RQ1.1). We recognized searching simply
for “technical debt” is too inaccurate for our purpose, be-
cause nowadays it is a widespread topic and numerous arti-
cles are published that do not touch our matter. We made
sure that the papers actually come up with a definition or
describe the main idea of Technical Debt.

For the second one (RQ1.2) we searched “enterprise ar-
chitecture quality” in the metadata from 2010 to the present,
because there are many articles addressing this topic and we
want the quality issues to be up to date and most applicable
to our scenario. Also, there was a tremendous increase of re-
search on Enterprise Architecture since then. Additionally,
we searched “enterprise architecture debt” just to be sure
that no work exists yet, addressing our research question
(RQ1).

Those searches were performed on both the IEEE Xplore
Digital Library1 and the ACM Digital Library2, as we had
full access to them through RWTH Aachen University. The
following table 1 shows the number of papers found with the
corresponding search string.

keywords IEEE Xplore ACM
technical debt definition 9 9
technical debt metaphor 45 33
enterprise architecture quality 515 46
enterprise architecture debt 0 0

Table 1: SLR: number of papers found

After analyzing the titles and abstracts we chose a first
pool of seemingly best fitting articles [1, 2, 16, 19, 26], where
many appeared in the results of the different search terms.
Here our inclusion criteria are the citation count, so that the
article appeared under the top ten papers, and the applica-
bility and generalizability to our research questions based on
the abstract, research questions and design and a brief look
at the results. Besides we only took English articles into ac-
count that were available in the selected digital libraries. As
a consequence the exclusion criteria correspond to the oppo-
site of the inclusion criteria. Thus, we excluded, for exam-
ple, articles that are not accessible for free or are written in
another language than English. Regarding Technical Debt
we also chose papers, that provided a better understanding

1https://ieeexplore.ieee.org
2https://dl.acm.org/

of the term, like giving options to identify Technical Debt
fitting to the given definition [18] or provide a look from a
different perspective to the concept [30].

Searching back and forth we added frequently cited work
fitting both our research questions [4, 7, 8, 13, 15, 25, 28,
34, 35]. Here, frequently means that an article belongs to
the most cited throughout our already identified articles or is
cited in more than one paper, that we added to our literature
base so far. By sorting the search result by citation count,
those articles were under the top ten and appeared useful.
For that search we also used Google Scholar3 to find the
respective articles. In a last step we completed the literature
base with related work known to us [24, 27, 31].

3. RELATED WORK
In this section we will point out and discuss related work.

This is split up into two parts, as we have to consider Tech-
nical Debt (section 3.1) and Enterprise Architecture with its
quality issues (section 3.2).

3.1 Technical Debt
We will start discussing the related work regarding Tech-

nical Debt : The metaphor was first introduced by Ward
Cunningham in 1992 and mentions what we today would
call “refactoring”. He describes it as follows: “Shipping first
time code is like going into debt. A little debt speeds devel-
opment so long as it is paid back promptly with a rewrite.
Objects make the cost of this transaction tolerable. The
danger occurs when the debt is not repaid. Every minute
spent on not-quite-right code counts as interest on that debt.
Entire engineering organizations can be brought to a stand-
still under the debt load of an unconsolidated implementa-
tion, object-oriented or otherwise.” [4]. This first idea of
not-quite-right code which we postpone making it right, is
expanded by various people to display also other kinds of
debts or ills of software development, such as test debt, peo-
ple debt, architectural debt, requirement debt, documenta-
tion debt or an encompassing software debt [16, 29].

According to Kruchten et al. Technical Debt refers to
invisible elements, because visible elements for improving
like new features for evolution or repairing defects for main-
tainability issues should not be considered as debt. This is
illustrated in Figure 1 where four types for improvement are
shown: the tasks to attend to in the future, such as adding
new features (green); investing in architecture (yellow); re-
ducing the impact on value of defects (red); and Technical
Debt (black). Whereas project backlogs often consist of the
green elements, namely new features, the invisible elements
should not be neglected [16, 17].

Figure 1: Four types of possible improvements [16]

3https://scholar.google.de/

https://ieeexplore.ieee.org
https://dl.acm.org/
https://scholar.google.de/

Technical Debt should rather serve as a retrospect reflect-
ing change of the environment, rapid success or technological
advancements as a possible cause for debt. However, “the
debt might actually be a good investment, but it’s impera-
tive to remain aware of this debt and the increased friction
it will impose on the development team” [16]. Hence, tools
are required to increase the awareness to identify debt and
its causes and to manage debt-related tasks. Finally, the
debt should not be treated in isolation from the visible ele-
ments of evolving and maintaining. So debt is “the invisible
result of past decisions about software that negatively affect
its future” [16].

Tufano et al. encountered the same phenomenon and
found out that most code smells are introduced at their cre-
ation. Furthermore, the code often gets smellier due to new
artifacts being build on top of suboptimal implementations.
Even refactoring is often done wrong as it introduces fur-
ther bad smells, which highlights the need for techniques
and tools to support such processes [32].

Steve McConnell, for example, tried to categorize differ-
ent types of Technical Debt. He points out that with this
metaphor business and technical viewpoints can be empha-
sized, so that communication regarding specific problems
can be enhanced. Technical Debt is used as a uniform com-
munication tool, that allows us to measure and keep track
of debt which eventually should help find a suitable solu-
tion to the upcoming challenges. In this case it should also
reflect the different viewpoints, including the stakeholder’s
perspective, in order to allow an effective collaboration [19,
30].

Martin Fowler even came up with a categorization of Tech-
nical Debt with his “Technical Debt Quadrant” to identify
different types of it [8]. The quadrant in Figure 2 shows
the division into reckless/prudent and deliberate/inadver-
tent debt. This reflects the different scenarios where debt is
taken and hints at debt being taken unconsciously or negli-
gent sometimes.

“We don’t have
time for design”

Reckless

“We must ship
now and deal with

consequences”

Prudent

“What’s Layering?”
“Now we know
how we should
have done it”

Deliberate

Inadvertent

Figure 2: Technical Debt Quadrant by Martin
Fowler [8]

For him the metaphor’s primary task is to help “thinking
about how to deal with design problems, and how to com-
municate that thinking” [8]. Nevertheless, it is used as a
tool which can reveal possible drawbacks of current design
decisions: the quadrant makes everyone aware that a certain
decision could cause debt. This theoretical concept should

then help to find a reasonable solution [25].
Technical Debt tries to help decide how to invest scarce

resources: “Like financial debt, sometimes technical debt
can be necessary” [2]. Most of the time this debt is not
visible, as Kruchten also pointed out, leading to making debt
visible as one purpose. Additionally, the value and present
value play a role, including the difference between the actual
state and an supposed ideal state as well as the time-to-
impact. This involves a differentiation between “structural
issues (the potential technical debt) and the effect it has
on actual development (the effective technical debt)” [28],
which could also be called problems and risks.

Overall debt has to be seen in its environment and it has
to be determined if the debt was strategic or unintentional.
Ultimately, this Technical Debt can be considered as an ex-
ternal software attribute which needs to be quantified [2, 18].
As a consequence one has to measure all criteria to estimate
the debt and make a proper decision based on that infor-
mation. It has been shown that reasonable decisions can
be made more easily, if corresponding information (debt)
is taken into account. Additionally, delaying a supposed
“right” implementation has a significant impact on the cost
of the project, so that an appropriate management of the
debt concept is useful [3, 9, 22].

3.2 Enterprise Architecture
Now we want to focus on Enterprise Architecture and its

quality issues: Before we proceed we want to clarify the term
of quality for a system. In accordance with ISO/IEC 25010,
quality “is the degree to which a product or system can be
used by specific users to meet their needs to achieve specific
goals with effectiveness, efficiency, freedom from risk and
satisfaction in specific contexts of use” [12].

As described in “Defining Enterprise Architecture: a Sys-
tematic Literature Review”by Saint-Louis et al. [27] the def-
initions diverge significantly, already hinting at differences
in quality issues. Kappelman et al. pointed out that “The
‘enterprise’ portion of EA is understood by some as a syn-
onym to ‘enterprise systems’, yet by others as equivalent to
‘business’ or ‘organization’. [...] Even less uniform is the
understanding of the meaning of ‘architecture’. The most
common understanding of the term is a collection of arti-
facts (models, descriptions, etc.) that define the standards
of how the enterprise should function or provide an as-is
model of the enterprise” [13].

Nonetheless, EA helps to face “ongoing and disruptive
change” [27], by attempting to align IT and business strat-
egy. In fact, 42% of the identified articles used in the SLR
did not include an explicit definition of EA, making a uni-
form approach inappropriate [26, 27].

Despite the diverse perspectives and definitions, some ar-
ticles focus on quality issues regarding EA. One could for ex-
ample derive qualities that encompass IT system qualities,
business qualities and IT governance qualities [26]. IT sys-
tem qualities focus on performance, respectively efficiency,
interoperability, availability, accuracy, maintainability and
sustainability. The effectiveness, flexibility, integration and
decision support evaluated in retrospect are qualities of the
business itself. IT governance qualities include planning, or-
ganizing, monitoring and implementing IT-solutions while
integrating them into the business process [26]. Of course
the interaction of those factors and the resulting interoper-
ability has to be treated as well.

Qualities / as-is situation Situation A Situation B Situation C Situation D

IT system
Performance X X X

Maintainability X X X
Sustainability X X X

Business

Flexibility X
Integration and Coordination X X

Decision Support X X
Control & Follow Up X

Organizational Culture X

IT organization

Plan & Organize X X X
Acquire & Implement X X

Deliver & Support X X X
Monitor & Evaluate X X

Table 2: Top prioritized qualities for as-is situations A, B, C and D [26]

However, Henderson and Venkatraman’s Strategic Align-
ment Model (SAM) identifies Business Strategy, Business
Structure, IT Strategy and IT Structure as four key do-
mains of strategic choice, the so-called “alignment domains”
[10]. Based on this information an artifact-based framework
for business-IT misalignment symptom detection was cre-
ated in the article of the same name [24]. This framework
also includes a first suggestion of catalogues for misalign-
ment symptoms, EA artifacts and EA analysis methods,
so that also rather invisible or underestimated elements are
considered. Moreover, a link between those categories is es-
tablished, in order to know which misalignment symptoms
affect which artifacts and how this can be analyzed.

Addicks and Appelrath searched for key figures and their
metrics in order to unitize the quality assessment of an appli-
cation landscape. This approach can be applied to the EA as
a whole, because business processes, for example, influence
the application’s quality. They stated that “All key figures
must at least fit one of the following three conditions: (a) it
must be used for indications of applications and be based on
the application’s attributes, (b) it must be an indicator of an
application and its value is determined by attributes and re-
lations from other EA artifacts (the applications’ enterprise
context), and (c) it must indicate a landscape’s quality and
therefore use all attributes of applications and their enter-
prise context” [1].

Since many aspects influence the system’s properties, a
unified meta model is difficult to create. Nevertheless, the
results of a survey show that even different enterprise orien-
tations with divergent focuses prefer certain qualities over
others (Table 3):

Top qualities desired in to-be situation

IT system

Interoperability
Availability

Security
Usability
Accuracy

Business
Efficiency

Effectiveness

Table 3: High prioritized qualities in the to-be situ-
ation [26]

Despite the importance of these factors across multiple
enterprises, there are also differences taking distinct as-is

situations into account. In the survey those as-is situations
were condensed into four clusters, such that for each cluster
the top prioritized qualities can be seen (Table 2).

As-Is Situation A is technically oriented with IT/business
alignment to be an important issue. Though, that align-
ment is regarded to be rather low and EA is not seen as a
suitable instrument for such alignment. In As-Is Situation
B business-driven planning is the most important subject
and using EA instruments is only done in the last 2.5 to 4
years. As-Is Situation C focuses on all three identified fac-
tors, paying attention to business and IT-driven dimensions.
Here the usage of EA instruments is quite high. The last As-
Is Situation D is characterized by already high IT/business
alignment and a fair history of EA usage (3.5 to 5 years).
EA is considered as an adequate instrument for assistance
and alignment [26].

In general, the survey shows that the striven qualities dif-
fer across enterprises, nevertheless, there are some general
qualities that are desired in most situations. Thus, special-
ized prioritization and adaptation are needed for the EA and
its IT/business alignment.

Kappelman et al. conducted a survey with the intention
to find out what the purpose of EA is and what benefits
it involves. The results show that with a strong agreement
of the respondents the purpose and function of EA and the
resulting benefits match the previously mentioned desired
qualities. This means that EA can be considered as an ap-
propriate tool for an enterprise. The respondents had to
express their agreement with the suggested statements on a
5-point Likert scale.

Table 4 shows the agreement on five out of six suggested
functions with the mean and the corresponding standard
deviation. For example 92% considered that EA provides a
blueprint for an organization’s data, applications and tech-
nology; and 89% regard EA as a tool for organizational plan-
ning [13].

Purpose / Function Mean Std. Dev.

Provides a blueprint to the organization 4.397 0.682
A planning tool 4.249 0.676
Facilitate systematic change 4.016 0.739
A tool for decision making 4.134 0.709
An Alignment tool 4.083 0.857
Communicating organizational objectives 3.667 0.903

Table 4: Purpose & Function of EA [13]

Regarding the benefits of EA 20 statements had to be as-
sessed. In this case, for example, 87% agreed that EA helps
improve interoperability among Information Systems. 19
out of the 20 items had Agree and Strongly Agree responses
accounting for more than 60%. The only suggested benefit
that was not supported by the majority was related to im-
provement of organizational trust. The top five recognized
benefits are shown in Table 5, again with the mean and the
corresponding standard deviation [13].

Benefits Mean Std. Dev.

Improved interoperability among IS 4.336 0.718
Improved utilization of IT 4.252 0.696
Aligning business objectives with IT 4.139 0.801
More effective use of IT resources 4.024 0.738
Better situational awareness 3.946 0.715

Table 5: Benefits of EA [13]

More general approaches are followed by, for example, ar-
tifact based viewpoints of Winter and Fischer [34] or the
TOGAF Standard [23]. They refer to domains like Busi-
ness/Process Architecture, Software/Data Architecture, Ap-
plication/Integration Architecture and Technology/Infras-
tructure Architecture.

Ylimäki goes even further and defines twelve critical suc-
cess factors for Enterprise Architecture (can be seen in Fig-
ure 3).

These factors obviously influence EA and its quality, al-
though they are different to previously known aspects. In
this case high-quality EA is described with: “high-quality
EA conforms to the agreed and fully understood business
requirements, fits for its purpose (e.g. a more efficient IT
decision making), and satisfies the key stakeholder groups’
(the top management, IT management, architects, IT de-
velopers, and so forth) expectations in a cost-effective way
understanding both their current needs and future require-
ments” [35].

Commitment
Scoping and

Purpose

Governance

Development
Methodology

and Tool
Support

EA Models
and Artifacts

Project and
Program

Management

Skilled Team,
Training and

Education

Organizational
Structure

IT Investment
and Acquisition

Strategies

Assessment
and Evaluation

Business Driven
Approach

Communication
and Common

Language

EA Success
& Quality

Figure 3: Set of potential critical success factors for
EA [35]

Moreover, there is an Enterprise Architecture Model Qual-
ity Framework (EAQF) proposed by Timm et al. which

builds upon six principles to assess the quality of EA models,
namely the principles of validity, relevance, clarity, economic
efficiency, systematic model construction and comparison.
Each of the principles is augmented with quality attributes
that can be assessed in order to determine the quality ad-
dressing the EA Model’s purpose, a specific view of it and
the overall EA Model [31].

This can also be seen in Figure 4 where the EA purpose,
its objectives and the stakeholders’ concerns affect the EA
model’s quality assessment. Here the EA model as a whole
and each EA model view on its own are important to the
quality, such that the interaction of multiple model views
focusing on different issues should not be underestimated.
Although this framework targets the quality of EA models
and not the EA directly, it provides reasonable attributes
for its quality assessment.

• Model Validity
• Model Relevance
• Model Economic Efficiency
• Model Clarity
• Systematic Model Structure
• Model Comparability

• View Validity
• View Relevance
• View Clarity
• Systematic View Structure

Complete EA Model Each EA View

EA Purpose, Objectives, StakeholdersBasis of
Assessment

Assessment
regarding

Product
of Interest

Figure 4: The Enterprise Architecture Model Qual-
ity Framework (EAQF) [31]

4. DEFINING ENTERPRISE
ARCHITECTURE DEBT

As seen in section 3.1, in total the definitions of Technical
Debt are mostly descriptive, naming properties and differ-
ent types of debt, rather than explicitly defining the term.
Nevertheless, Technical Debt is considered as a tool pointing
at possible risks, measuring and tracking deficits and aim-
ing at supporting the process of finding suitable solutions.
The focus mainly lies on increasing awareness of also invisi-
ble or structural elements and providing a uniform basis for
discussions and communication.

To outline the findings regarding Enterprise Architecture
and its quality issues from section 3.2 we can say, in a nut-
shell, Enterprise Architecture is not clearly defined with a
uniform description. Although it is more often described
and its quality aspects are mentioned with respect to a spe-
cific viewpoint and enterprise orientation, the descriptions
diverge. Hence, only a common understanding of EA and a
basis for communication and discussion is established so that
there is a need for proper adjusting of EA and its quality
issues.

Therefore, the requirements differ for each enterprise, mak-
ing a uniform approach according to EA models and quality
issues impossible. Consequently, our definition of Enterprise
Architecture Debt determines a technique providing some
crucial factors in order to estimate an EA’s quality for its
specific purpose. This increases the awareness for possible
suboptimal aspects that may cause severe drawbacks in the
future. The metaphor of debt should serve as a common ba-
sis for communication and discussion, as well as pointing out

differences in as-is situations and proposed ideal to-be situ-
ations [13]. The need for such a basis was observed before:
Nan Niu et al. identified four possible situations regarding
communication [20]:

1. consensus where stakeholders use terminology and con-
cepts in the same way

2. correspondence where they use different terminology
for the same concepts

3. conflict where they use the same terminology for dif-
ferent concepts

4. contrast where stakeholders differ in terminology and
concepts

Furthermore, flexibility and robustness are identified as
important factors in the dynamically changing and evolving
environment of the enterprise and its structures. Hence, it
can be used as a powerful tool, like Technical Debt, and help
to manage a complex enterprise, because it allows to get a
holistic overview and keep track of existing debt. All in all
this should fulfill the purpose and function of EA as shown
in Table 4 [13].

In order to achieve a scenario-unaware definition of En-
terprise Architecture Debt we have to state what we refer
to, when we are talking about EA. Saint-Louis et al. con-
ducted a SLR and found multiple definitions of EA [27]. In
this context we regard EA as a set of artifacts which are
aggregated.

In the TOGAF Standard version 9.2 Business Architec-
ture, Data Architecture, Application Architecture and Tech-
nology Architecture are identified as the four architecture
domains [23]. Those roughly match the different layers of
Winter and Fischer, although they named Process Architec-
ture in particular (cf. Figure 5) [34].

The artifacts themselves and their importance for a spe-
cific enterprise may differ, so we focus on the following as-
pects in particular, which are general enough to be applied
to the majority of EAs:

1. Enterprise Architecture layers

1.1. Business Architecture

1.2. Process Architecture

1.3. Software Architecture and used services (SaaS)

1.4. Technology Architecture (hardware)

2. Other influencing factors

2.1. Stakeholders

2.2. Guidelines and Standards

Regarding EA as a set of artifacts can contain more than
the mentioned, but it is easy to add and remove artifacts
later, so the metaphor of Enterprise Architecture Debt can
be adapted to individual situations. Furthermore, there are
aspects we explicitly will not take into consideration, like
the abilities of people working on and with an EA, because
a measurement and an evaluation are too subjective. We
will focus on a definition evaluating the quality of an EA
and not a cost-benefit-analysis, although it can be applied
to our definition later.

Figure 5: Enterprise Architecture as a Cross-layer
View of Aggregate Artifacts [34]

Winter and Fischer point out that “Most of the artifacts
[...] in EA can be represented as aggregation hierarchies”
[34] and introduce the schema at Figure 5.

Having a look at Figure 5 and the definition of Techni-
cal Debt by Cunningham [4], EA Debt in general can be
understood as an aggregation of taking debts in each layer,
but just adding up each artifact would not give a concrete
overview of the current situation, it could even whitewash
huge issues in the whole EA. Therefore every artifact, and
also every part an artifact consists of, has to be weighted.
Obviously there is no uniform weighting function, because it
depends on how much each artifact is represented in a con-
crete EA. On top of that we need to take into consideration,
that the interfaces of the artifacts can cause debt, too. An
artifact might be optimized and work perfectly, but if there
is a huge overhead caused by interfaces respectively multiple
lines of reporting, the EA does not.

As seen in Table 3 businesses prioritize efficiency and ef-
fectiveness so we assume, that “Assessment and Evaluation”
presented by Ylimäki as a critical success factor for EA &
Quality [35] is not causing any debt. Of course the assess-
ment and its quality are important, but evaluating those
evaluations is an unnecessary overhead. We assume that
with EA Debt and other existing frameworks this aspect
can be ignored.

Now, that we clarified our conditions and assumptions,
we come up with our definition for Enterprise Architecture
Debt:

According to Hurley a definition consists of “the definien-
dum”, the word to be defined, and “the definiens”, the words
that do the defining. Those again can be split into “generic
elements” and “specific elements” or “characteristics” [11], so
that our definition reads as follows:

Enterprise Architecture Debt is a metric, that depicts the
deviation of the currently present state of an enterprise
from a hypothetical ideal organizational position and the

principles governing its design and evolution. This includes
the different layers, respectively domains, of Enterprise

Architecture and its associated artifacts.

Based on this definition we can explain and characterize
appropriate objectives and details:

Enterprise Architecture Debt arises, when debt is taken in
an artifact, which an EA consists of. This means that an el-
ement is not implemented or executed optimally in relation
to the supposed ideal situation. Taking debt in a low hier-
archy can be helpful and pay off, but it has to be “repaid”
as fast as possible. Otherwise the whole EA would rely on
that debt and use faulty or considered bad artifacts. This
entails a high risk of additional debt and hinders the devel-
opment. EA Debt is further increased by bad interfaces or
bad interoperability and different priorities of stakeholders,
not conform with an EA that is considered good by evalua-
tion approaches.

Again a focus on mainly invisible elements can be helpful,
because these factors may not even be recognized or their
impacts are underestimated. By increasing the awareness
for such issues the overall inadvertent debt can be reduced.
Assuming a prudent management, this would lead to debt
mostly being taken consciously and planned strategically.
This means that possible repercussions are weighed and less
trade-offs are accepted, which unnoticeably impair the en-
terprise.

Hence, the identified differences between the current state
and the supposed ideal situation can be managed, such that
the sometimes necessary debt, namely deliberate prudent
debt, holds the largest share. The characterization of debt
in the Technical Debt Quadrant (Figure 2) is of course also
valid for Enterprise Architecture Debt, because EA Debt is
an expansion of Technical Debt [2, 8].

The process and effort going into evaluation of artifacts
and the whole EA does not belong to EA Debt as mentioned
before, although the importance of correct assessment and
its quality should not be neglected.

4.1 Evaluating EA Debt
Applied standards and guidelines are an indication for re-

liable artifacts and therefore lower EA Debt. The Enter-
prise Architecture Model Quality Framework (EAQF) [31]
assesses the quality of an EA model with six principles.
These principles can be used to construct an ideal situa-
tion and detect the differences to the current as-is situation.
In this way also rather invisible or unconsidered elements
can be found which then form a good entry point for EA
Debt estimations. Yet again, the awareness of invisible or
hardly noticeable elements has to be increased, because they
in particular entail high risk of further debt in the future.

Dóra Őri proposed an artifact-based framework that aims
at detecting misalignment in an undesired state of the en-
terprise, which can be used to detect also EA Debt. Based
on the strategic alignment perspectives Strategy Execution,
Technology Transformation, Competitive Potential and Ser-
vice Level (from Henderson and Venkatraman’s Strategic
Alignment Model (SAM) [10]) the framework decomposes
those perspectives into corresponding perspective compo-
nents, namely the “alignment matches”. Then they are con-
nected to typical misalignment symptoms, using a misalign-
ment symptom catalogue as a reference. After that, relevant
containing artifacts are identified, again using an artifact
catalogue. Finally, suitable EA analysis types are collected
respecting the affected artifacts. This article already set up
catalogues based on other research that can be used as a
reference [24].

Despite those frameworks present helpful approaches to
evaluate EA and its models, there are also some shortcom-
ings. They can be referred to EA itself or to our new idea
of EA Debt. As mentioned already before, the development
of a suitable ideal situation for an enterprise is still a hard
task. Furthermore, there exists no uniform solution, so that
an enterprise can hardly assume the structure of another use
case.

Some observations are made by Schmid regarding short-
comings of Technical Debt, that can be transformed and
extended to EA Debt: “Technical debt should be evaluated
with respect to future evolution. [...] We need to differen-
tiate between the structural issues (the potential technical
debt) and the effect it has on actual development (the effec-
tive technical debt). [...] There is nothing like a technical-
debt-free system.” [28]. In general for the entire organiza-
tion and our concept of Enterprise Architecture Debt this
implies:

1. EA Debt should be evaluated with respect to future
evolution, because further development may rest upon
the current suboptimal implementations and structure.

2. We need to differentiate between the structural issues
(the potential EA Debt) and the effect it has on ac-
tual development (the effective EA Debt). One could
also refer to problems and risks that can have diverg-
ing impacts on the EA. Even though something is not
implemented in the best possible way, it may not have
a severe effect on the quality.

3. There is nothing like an EA-Debt-free system. So the
hypothetical ideal state will never be reached. Only
reducing debt can underline a good development, as
long as the debt was valued correctly.

4.2 Possible impacts on EA Debt
As mentioned before there are multiple artifacts that have

an impact on EA Debt, and identifying them should be an
outcome of EA Debt evaluation. Having a look at the devel-
opment of artifacts over time [1] known to cause debt can be
one way to approach the search of new impacts to the cur-
rent EA Debt situation. Finding a slow or even stagnating
development in an artifact A means there is almost no effort
to lower the debt and therefore artifacts relying on A will
increase the overall EA Debt. Starting a search at A can
help finding impacts on EA Debt. On top of the already
mentioned artifacts that are able to cause debt, there are
more hidden or invisible aspects. We propose some of them:

1. Communication overhead (documentation)

2. Interface bottlenecks (incompatibility)

3. Contradictory goals of stakeholders

4. Integrity problems or information inconsistency

Adapted to individual EAs there can be many more, these
are just some artifacts that can have additional impact on
EA Debt.

Another impact that has to be taken into consideration
is that EA Debt itself should not be ignored while evaluat-
ing other artifacts. Even deferring the evaluation can, but
not has to, increase EA Debt exponentially. Ideally, every-
one working on artifacts of an EA should at least know the
concept, so everyone is aware that his acting can cause EA
Debt.

5. EXAMPLES
We come up with two made up and simplified examples,

one showing in which cases taking EA Debt is useful and
one showing that EA Debt is lowering the efficiency of the
whole enterprise and should be removed as fast as possible.

5.1 Useful EA Debt
An enterprise started as a start-up and used one database

to manage all data they want to keep with the according
Data Models. Due to enormous success and much growth
the initial database (DB) and database management system
(DBMS) needs to be replaced, because when starting the
business the founders did not have a fast and huge growth
in mind. Currently they are relying on the old DB and
DBMS, which causes other applications to run slow, result-
ing in increasing EA Debt.

The founders are aware of the problem and want to buy
multiple new servers, and a new DBMS, which will keep the
old data models, if the growth of the business continues at
least one month. Updating the interface of the new DBMS
is already in progress, thus it should work with the current
EA, especially with the existing software systems, so it can
be applied fast when the decision is made.

Relying on the old DB and DBMS is consciously taken
EA Debt and useful in this case because it can keep the
enterprise from making a bad investment. In this case it is
an artifact that indeed causes other artifacts to be not as
performant and efficient as they can be, but the problem
can be improved without touching any other artifact.

5.2 EA Debt hinting at suboptimal decision
A small company A in the chemical industry has devel-

oped an efficient process to produce one certain product.
The process is highly optimized for a certain input and there-
fore works really well, if it stays with the given input. An-
other bigger company B, dealing with chemicals with law
restrictions, bought the smaller company A, because the
highly optimized process works for B’s products well too.
Integrating A’s IT systems into B’s caused EA Debt in the
beginning, but the integration was planned and prepared
well and successfully.

What B did not have in mind was, that not every worker
at company A is authorized to work with their law restricted
chemicals and replacing them would cause more debt, be-
cause training new employees to learn the optimized process
takes too much time. Taking EA Debt here in the business
processes would not pay back. The company cannot use the
efficiency of the process which was the original reason for
them to buy A. Also scaling up is difficult, because of the
high optimization they would need to duplicate everything
that is needed for production, so the employees and training
them is causing debt. Assuming there is no different op-
tion for B, they have to take debt in any way to lower the
loss and hopefully made an investment that pays off in the
future.

Taking debt in this case is different from the first example
in section 5.1, because the enterprise takes debt to lower
the risk of a misinvestment and therefore, in the worst case,
lowers the income. Here in the second example (section 5.2)
the investment is already done and EA Debt has to be taken,
to make the investment a possibly good investment, so the
debt should be removed as fast as possible. Thus EA Debt
also emphasizes this risk.

In two made up and simplified examples we showed, that
EA Debt can be a tool, like monetary debt, to grow (Exam-
ple 1, section 5.1), but it can also be dangerous, if it poten-
tially can not be repaid and consequently does not pay off
(Example 2, section 5.2). In contrast to monetary debt, EA
Debt can suddenly occur, but does not have to. This means
that enterprises have to be careful with taking EA Debt and
even more with not lowering it. Still EA Debt points at
those risks and problems to facilitate a sustainable develop-
ment. Another example, illustrating an as-is situation with
EA Debt in an EA would be rather uninteresting, because
there are no universal guidelines yet, how to deal with EA
Debt (see future work, section 7) but every enterprise has to
deal with EA Debt themselves. Nevertheless, lowering EA
Debt should be the main goal in such a situation. With the
two examples we demonstrate a way how to use the concept
of EA Debt as a tool to prevent bad decisions regarding the
whole EA.

6. CONCLUSION
We defined a new metaphor of Enterprise Architecture

Debt on the basis of the idea of Technical Debt and qual-
ity issues regarding Enterprise Architectures and its models.
We generalized the approach of Technical Debt as a tool for
software engineering to make EA Debt a tool for the whole
enterprise architecture. Therefore, Technical Debt defini-
tions and descriptions are inspected in order to find a way
to define our new metaphor. EA Debt consequently is an
expansion to Technical Debt. Furthermore, diverging defini-
tions of EA and thus different quality attributes are pointed
out. EA Debt then refers to those quality issues and serves
as a common basis for discussion and communication. This
means, both IT and business departments can manage the
structure of the enterprise in collaboration. Besides, the
debt concept should facilitate the alignment of the enter-
prise, because it draws attention to suboptimal and mostly
invisible elements.

By assessing the quality and measuring the emerging EA
Debt identifying differences between the actual as-is state
and a supposed ideal state, the debt concept can help to de-
cide and increase the awareness of suboptimal aspects. As
our definition builds upon EA being a set of artifacts, this
set can be adapted to the specific enterprise, making the
idea of EA Debt a universal approach that can be tailored
to meet the particular needs of the specific enterprise. EA
itself can be considered an appropriate concept to achieve
certain goals and improvements, which is now extended by
the idea of debt to further increase the capabilities to ful-
fill the enterprise’s requirements. Consequently, EA Debt is
flexible in its use, so that one can decide what is to be man-
aged and to what extend by this concept. Needless to say,
the idea targets to support the overall enterprise with its
EA to benefit from all capabilities of EA Debt and maintain
sustainable development.

The main focus is on managing the overall Enterprise Ar-
chitecture, which includes the awareness of existing prob-
lems in particular. As already seen, mainly invisible ele-
ments entail a high risk of further debt, which again im-
pairs the EA’s quality. By the EA Debt term, one can keep
track of undesired aspects, namely the debt, which serves
as a holistic overview over potential tasks and improvement
possibilities. Of course some sort of ideal situation has to
be established as a goal state, such that it can be pursued

with Enterprise Architecture Debt and other suitable frame-
works.

Finally, we presented two small and simplified examples to
demonstrate the idea behind the concept of Enterprise Ar-
chitecture Debt. Additionally, two different cases, in which
taking and lowering the debt affects the enterprise in multi-
ple ways, are highlighted. Based on the diverging complexity
of an enterprise and its artifacts, also the EA Debt can differ.

7. FUTURE WORK
In this paper we defined the idea of Enterprise Architec-

ture Debt. However, further and a more detailed categoriza-
tion of possible factors should be developed as an equivalent
to the well-known “Code Smells” in software respectively the
Technical Debt. This would be like a catalogue for typical
bad decisions and bad habits and should include technical
aspects, EA quality aspects and in particular aggregations
of them. The catalogues from Dóra Őri of misalignment
symptoms, EA artifacts and EA analysis methods can be
used as a suggestion [24].

Furthermore, EA Debt items regarding different types of
debt could be identified based on EA layers respectively the
artifacts. This includes the elaboration of a way of identi-
fying EA Debt with use cases and case studies. All of this
could result in an EA Debt classification tree with different
debt types and affected artifacts.

Another valuable approach could be an adaption to ex-
isting EA Frameworks or guidelines, such that there is no
doubt about what belongs so EA Debt and what does not
in the context of different models for EA. Working with the
concept of EA Debt in future could also give insight on as-
pects, never considered before belonging to EA Debt or EA
in general.

Additionally, some kind of weighting or an approach for an
appropriate weighting should be established, such that the
impact of certain aspects on EA Debt and thus the EA’s
quality can be derived. In this context Portfolio Theory can
be used to calculate the “optimal” fields for improvement.
This would of course lead to a more sophisticated tool that
facilitates and supports the entire EA. This could also help
to establish some kind of guide, how to structure the process
of lowering EA Debt or a cost-benefit approach on dealing
with EA Debt. Overall, the management can be based on
more analytic methods to ensure development and prevent
risks as well as problems.

Eventually, EA Debt evolves to a versatile toolbox enhanc-
ing quality assessment, planning and decision-making for the
entire enterprise. This requires further research on EA Debt
Management as an upgrade to the general EA Management.

8. ACKNOWLEDGEMENTS
We thank Simon Hacks, our research supervisor, for his

valuable and constructive suggestions during the develop-
ment of this work. The given critiques have been appre-
ciated. We also want to thank Yoon Chow Yeong for her
support.

9. REFERENCES
[1] J. S. Addicks and H.-J. Appelrath. A method for

application evaluations in context of enterprise
architecture. In Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC ’10, pages
131–136, New York, NY, USA, 2010. ACM.

[2] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim,
P. Kruchten, E. Lim, A. MacCormack, R. Nord,
I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, and
N. Zazworka. Managing technical debt in
software-reliant systems. In Proceedings of the
FSE/SDP Workshop on Future of Software
Engineering Research, FoSER ’10, pages 47–52, New
York, NY, USA, 2010. ACM.

[3] Z. Codabux and B. Williams. Managing technical
debt: An industrial case study. In 2013 4th
International Workshop on Managing Technical Debt
(MTD), pages 8–15, May 2013.

[4] W. Cunningham. The wycash portfolio management
system. In Addendum to the Proceedings on
Object-oriented Programming Systems, Languages, and
Applications (Addendum), OOPSLA ’92, pages 29–30,
New York, NY, USA, 1992. ACM.

[5] B. Curtis, J. Sappidi, and A. Szynkarski. Estimating
the principal of an application’s technical debt. IEEE
Software, 29(6):34–42, Nov 2012.

[6] B. Curtis, J. Sappidi, and A. Szynkarski. Estimating
the size, cost, and types of technical debt. In 2012
Third International Workshop on Managing Technical
Debt (MTD), pages 49–53, June 2012.

[7] M. Fowler. Technical debt. https:
//martinfowler.com/bliki/TechnicalDebt.html.
Last accessed on 2018-10-16.

[8] M. Fowler. Technical debt quadrant.
https://martinfowler.com/bliki/

TechnicalDebtQuadrant.html. Last accessed on
2018-10-16.

[9] Y. Guo, C. Seaman, R. Gomes, A. Cavalcanti,
G. Tonin, F. Q. B. D. Silva, A. L. M. Santos, and
C. Siebra. Tracking technical debt — an exploratory
case study. In 2011 27th IEEE International
Conference on Software Maintenance (ICSM), pages
528–531, Sept 2011.

[10] J. C. Henderson and H. Venkatraman. Strategic
alignment: Leveraging information technology for
transforming organizations. IBM Systems Journal,
38(2.3):472–484, 1999.

[11] P. Hurley. A Concise Introduction to Logic. Available
Titles CengageNOW Series. Cengage Learning, 2005.

[12] ISO/IEC 25010. Systems and software engineering -
systems and software quality requirements and
evaluation (square) - system and software quality
models. Standard ISO/IEC 25010:2011, International
Organization for Standardization, Geneva, CH, 2011.

[13] L. Kappelman, T. McGinnis, A. Pettite, and
A. Sidorova. Enterprise architecture: Charting the
territory for academic research. AMCIS 2008
Proceedings, page 162, 2008.

[14] B. Kitchenham. Procedures for performing systematic
reviews. Keele, UK, Keele University, 33(2004):1–26,
2004.

[15] T. Klinger, P. Tarr, P. Wagstrom, and C. Williams.

https://martinfowler.com/bliki/TechnicalDebt.html
https://martinfowler.com/bliki/TechnicalDebt.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

An enterprise perspective on technical debt. In
Proceedings of the 2Nd Workshop on Managing
Technical Debt, MTD ’11, pages 35–38, New York,
NY, USA, 2011. ACM.

[16] P. Kruchten, R. L. Nord, and I. Ozkaya. Technical
debt: From metaphor to theory and practice. IEEE
Software, 29(6):18–21, Nov 2012.

[17] P. Kruchten, R. L. Nord, I. Ozkaya, and D. Falessi.
Technical debt: Towards a crisper definition report on
the 4th international workshop on managing technical
debt. SIGSOFT Softw. Eng. Notes, 38(5):51–54, Aug.
2013.

[18] L. Lavazza, S. Morasca, and D. Tosi. Technical debt as
an external software attribute. In Proceedings of the
2018 International Conference on Technical Debt,
TechDebt ’18, pages 21–30, New York, NY, USA,
2018. ACM.

[19] S. McConnell. Managing technical debt slides, 2007.

[20] N. Niu, L. D. Xu, J. C. Cheng, and Z. Niu. Analysis of
architecturally significant requirements for enterprise
systems. IEEE Systems Journal, 8(3):850–857, Sept
2014.

[21] R. L. Nord, I. Ozkaya, P. Kruchten, and
M. Gonzalez-Rojas. In search of a metric for managing
architectural technical debt. In 2012 Joint Working
IEEE/IFIP Conference on Software Architecture and
European Conference on Software Architecture, pages
91–100, Aug 2012.

[22] F. Oliveira, A. Goldman, and V. Santos. Managing
technical debt in software projects using scrum: An
action research. In 2015 Agile Conference, pages
50–59, Aug 2015.

[23] Opengroup. The togaf standard, version 9.2.
http://pubs.opengroup.org/architecture/

togaf92-doc/arch/. Last accessed on 2018-11-21.

[24] D. Őri. An artifact-based framework for business-it
misalignment symptom detection. In J. Horkoff, M. A.
Jeusfeld, and A. Persson, editors, The Practice of
Enterprise Modeling, pages 148–163, Cham, 2016.
Springer International Publishing.

[25] K. Power. Understanding the impact of technical debt
on the capacity and velocity of teams and
organizations: Viewing team and organization
capacity as a portfolio of real options. In Proceedings
of the 4th International Workshop on Managing
Technical Debt, MTD ’13, pages 28–31, Piscataway,
NJ, USA, 2013. IEEE Press.

[26] J. Saat, U. Franke, R. Lagerstrom, and M. Ekstedt.
Enterprise architecture meta models for it/business
alignment situations. In 2010 14th IEEE International
Enterprise Distributed Object Computing Conference,
pages 14–23, Oct 2010.

[27] P. Saint-Louis, M. C. Morency, and J. Lapalme.
Defining enterprise architecture: A systematic
literature review. In 2017 IEEE 21st International
Enterprise Distributed Object Computing Workshop
(EDOCW), pages 41–49, Oct 2017.

[28] K. Schmid. On the limits of the technical debt
metaphor: Some guidance on going beyond. In
Proceedings of the 4th International Workshop on
Managing Technical Debt, MTD ’13, pages 63–66,
Piscataway, NJ, USA, 2013. IEEE Press.

[29] C. Seaman. Measuring and monitoring technical debt,
2013.

[30] T. Theodoropoulos, M. Hofberg, and D. Kern.
Technical debt from the stakeholder perspective. In
Proceedings of the 2Nd Workshop on Managing
Technical Debt, MTD ’11, pages 43–46, New York,
NY, USA, 2011. ACM.

[31] F. Timm, S. Hacks, F. Thiede, and D. Hintzpeter.
Towards a quality framework for enterprise
architecture models. In Proceedings of the 5th
International Workshop on Quantitative Approaches
to Software Quality (QuASoQ 2017) co-located with
APSEC, volume 4, page 14âAS21, 2017.

[32] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. D.
Penta, A. D. Lucia, and D. Poshyvanyk. When and
why your code starts to smell bad. In 2015
IEEE/ACM 37th IEEE International Conference on
Software Engineering, volume 1, pages 403–414, May
2015.

[33] J. Webster and R. T. Watson. Analyzing the past to
prepare for the future: Writing a literature review.
MIS quarterly, pages xiii–xxiii, 2002.

[34] R. Winter and R. Fischer. Essential layers, artifacts,
and dependencies of enterprise architecture. In
Enterprise Distributed Object Computing Conference
Workshops, 2006. EDOCW’06. 10th IEEE
International, pages 30–30. IEEE, 2006.

[35] T. Ylimäki. Potential critical success factors for
enterprise architecture. Tietotekniikan
tutkimusinstituutin julkaisuja, 1236-1615; 18, 2008.

http://pubs.opengroup.org/architecture/togaf92-doc/arch/
http://pubs.opengroup.org/architecture/togaf92-doc/arch/

Comparison of Failure Diagnosis Techniques in
Combinatorial Testing

Felix Engel
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

Felix.Justus.Engel@rwth-
aachen.de

Umair Munir
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany
Umair.Munir@rwth-

aachen.de

Konrad Fögen
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

Konrad.Foegen@swc.rwth-
aachen.de

ABSTRACT
Testing a software can be very difficult and time consuming.
The combination of combinatorial testing, which massively
reduces the amount of test cases that need to be covered, and
failure diagnosis, which helps the developer to find the ac-
tually interesting and problematic parameter combinations,
can cut down the time and complexity of this task consid-
erably. There are multiple algorithms that employ this ap-
proach but implement different strategies to localize those
faults. We study 9 different approaches and categorize them
in order to identify and compare differences.
To do so we first give an introduction to combinatorial test-
ing and fault diagnosis, explain our categories and categorize
each approach and explain it in detail. Then we discuss note-
able differences, benefits and downsides comparatively.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—programming teams, produc-
tivity, software configuration management

Keywords
fault localization, fault characteriztaion, combinatorial test-
ing, software debugging, approach comparison, delta debug-
ging

1. INTRODUCTION
Software testing and debugging is very important and of-

ten expensive part in software development process and can
be very tedious for the developers. Combinatorial testing
is one of the techniques that is used for testing software
efficiently. Under the assumption that all faults in the sys-
tem are caused by not more than n parameters, it allows
to efficiently cover the whole application by only testing all
n-parameter interaction combinations, which is significantly
easier than exhaustive testing while still detecting all faults.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2018/19 RWTH Aachen University, Germany.

Failure diagnosis aims to not only detect the existence of
faults but also to algorithmically determine the causing com-
binations of values without further input from the developer.
Failure diagnosis as described by Nie et al. [13], on which
we will focus in this paper, is an important part of failure
diagnosis and is also known as fault characterization. It iso-
lates which parameters and values actually cause the failure
of the test.

We will perform a literature review on such strategies,
showcase their workings, compare them with one another
and discuss their effectiveness for certain requirements.

Section 3 lays out our methodology of searching for lit-
erature. In Section 4 we explain different methods and al-
gorithms that uses combinatorial testing strategies. In Sec-
tion 5 we compare these methods. In Section 6 we discuss
the conclusion of our search.

2. BACKGROUND
In this chapter we give an overview of combinatorial test-

ing and failure diagnosis in combinatorial testing and termi-
nologies we will use throughout.

The system or software under test is generally referred to
as SUT. Given a test case with n parameters, a combination
(or parameter combination) is a combination of k values for
each parameter with 1 ≤ k ≤ n, such that the parameters
fit the signature of the test case and all values are elements
of the domains of the parameter they represent. A set of
these combinations is called a test suite. A fault is an error
in the SUT caused by code or other aspects of the SUT.
A failure is the failing of a test case, i.e. the returned test
result did not match the expected one. A failure-inducing
combination simply is a parameter combination which al-
ways causes its associated test case to fail when passed to
it. A set of failure-inducing combinations derived from a
set of test cases is complete if it contains every combination
that cause the test cases to fail. Algorithms which work
by removing non-inducing combinations from a set of com-
binations to identify the failure-inducing combinations also
define something like a suspicious combination which just is
a combination that is involved in a failing test, but could
not yet be determined to be the cause of the failure.

Combinatorial testing tries to reduce the amount of test
cases which need to be executed by using t-way combinations
of input parameter values where t is the number of input val-
ues. A combinatorial t-way test set is designed to cover all
interactions of t different parameters. There could be possi-
bly one or many such combinations that can effect the execu-

Table 1: Values of Input Parameters
Browser OS Connection DB
Firefox Linux LAN DB/2

IE Windows ISDN Oracle
Opera Macintosh Modem Access

Table 2: Combinations of Input Parameters
No. Browser OS Connection DB
1 Firefox Linux LAN DB/2
2 Firefox Windows ISDN Oracle
3 Firefox Macintosh Modem Access
4 IE Linux ISDN Access
5 IE Windows LAN Oracle
6 IE Macintosh Modem DB/2
7 Opera Linux Modem Oracle
8 Opera Windows LAN Access
9 Opera Macintosh ISDN DB/2

tion of a system to generate failures. t is typically relatively
small (t ≤ 6) because the large number of software failures
are caused by interactions of only a few parameters as pro-
posed by Kuhn, Wallace and Gallo [11]. For example execu-
tion of a program can be effected by Browser, OS(Operating
System), Connection and DB(Database) which can be possi-
ble input parameters for test cases [16]. Suppose, if we have
3 possible values for each parameter as shown in Table 1.
If we apply exhaustive testing that covers all possible com-
binations, then it will require 34 = 81 test cases but 2-way
combinatorial testing requires only 9 test cases to cover all
pairs as shown in Table 2. Mentionable combinatorial test
set generation tools, which are mentioned by many of the
approaches we will discuss in this paper, are AETG which
is proposed by Cohen et al. [3] and ACTS which is proposed
by Hagar, Wissink et al. [8].

Failure diagnosis is a technique to aid the developer in the
debugging process of a system or software by not just telling
him which tests failed but also which parameter value com-
binations caused a test to fail, significantly cutting down on
the time and resources the developer needs to spend to pin-
point those combinations themselves. For example suppose
the test 4 (IE, Linux, ISDN, Access) failed. In a worst case
with only exactly 2-way interactions considered, the devel-
oper would have to test

(
4
2

)
= 6 different combinations, and

with up to 3-way interactions, so including 1/2-way interac-
tions, they would have to look at up to

(
4
1

)
+

(
4
2

)
+

(
4
3

)
= 14

different combinations. Those numbers can get overwhelm-
ing fast with more complex systems.

3. METHODOLOGY
In this chapter we expound how we conducted our litera-

ture review for our study.
In our search for failure diagnosis (more specifically fail-

ure diagnosis) approaches in combinatorial testing we began
with forward and backward searches on the BEN papers by
Ghandehari et al. [7], [6], [5] which led to the AETG system
proposed by Cohen et al. [3], [1], a widely used combinato-
rial test set generation tool, on which we performed a very
successful forward search. We especially used the keywords
”failure diagnosis”, ”fault localization”, ”fault interaction”,
”fault detection”, ”t-way interactions”, ”pair-wise testing” to

filter the large amount of references. The related works in
some of the more recent papers by Nishiura et al. [14] also
proved very helpful to find significant results.

Overall we tried to focus on newer approaches, but a lot
of the fundamental research dates back to and even before
the 2000s.

We considered including a paper if it either directly pro-
vided an algorithmic approach for failure diagnosis in com-
binatorial testing or contained further information about an
already included approach.

We included nine such approaches, with one notable ex-
ception to the latter; Colbourn et al. [4] introduced LDA
which was a very extensive and fundamental work on non-
adaptive failure diagnosis approaches and was included even
though it did not directly propose an algorithmic solution,
because it provides important knowledge for the approaches
propsed by Nagamoto et al. LDA(1,2) [12] and LDA(d,t)
[10].

In total we considered around 60 research papers and ar-
ticles regarding the general topic of fault localization and
failure diagnosis in combinatorial testing.

4. CATEGORIZATION AND RESULTS
In this chapter we present our results, categorize the al-

gorithms we have considered for our study, discuss each one
and explain their basic approach to failure diagnosis.

Combinatorial failure diagnosis approaches can be classi-
fied into two categories: (1) Test generation, which is gen-
eration of new test cases, and (2) Result Analysis, which is
only the analysis of combinatorial testing results. The divi-
sion of approaches into these categories if important because
the generation of new test cases is a major expense, which
has to prove it is worthwhile making.

The approaches we will cover in this chapter fall under
those categories as follows
Test Generation: BEN, AIFL, IterAIFL, FIC, FIC BS,

DDmin, LDA
Result Analysis: FCI, FROG

Approaches in the category test generation can be further
distinguished into adaptive and non-adaptive. We call an
approach adaptive when the new test cases it generates are
based on the results of previously run tests in some way.
This includes BEN [6], AIFL [15], IterAIFL [16], DDmin
[17], FIC and FIC BS [19]. We call it non-adaptive when the
generated test cases are not based on previously run tests.
This includes the LDA approaches [4],[12],[10]. We make
this distinction because generating tests adaptively can po-
tentially mean a larger expense as we have to execute first,
in many of the iterative approaches multiple times, the test
cases, but it can also help in providing much more accurate
results.

The adaptive approaches can be even further distinguished
by looking at whether they work on the whole set of test
cases and results or on one test case at a time. We call
the former behaviour parallel. Parallel approaches are BEN
[6] and IterAIFL [16] (AIFL technically is as well, but as it
only does one iteration of its process, we omit it here). See
Figure 1 for an overview.

Differences, benefits and problems of all categories will
further be discussed in Section 5.

4.1 BEN

BEN

FIC FIC_BS
DDmin

FCI

FROG

AIFL IterAIFL

LDA(d,t)

Ranking

Test Generation Result Analysis

LDA(1,2)

Ad
ap
tiv
e

N
on
-

Ad
ap
tiv
e

Parallel

Figure 1: An overview of algorithms and their prop-
erties

Ghandehari, Chandrasekaran et al. [5] introduced the
BEN tool which is a combinatorial testing-based fault lo-
calization tool, which consists of two phases of which only
the first one proposed by Lei and some others [7] is relevant
to our study as it deals with the failure diagnosis. It em-
ploys an iterative, adaptive approach which ranks parameter
combinations by their probability to be failure-inducing.

Initially all suspicious combinations are identified and rank-
ed through a first, full-coverage combinatorial-testing set.
This ranking of suspiciousness is based on the two concepts
of suspiciousness of combinations and suspiciousness of the
environment of combination. Basically, the higher the sus-
piciousness of a combination, the lower the suspiciousness
of its environment, the higher the combination is ranked.
Next a set of new tests is generated for each suspicious com-
bination (can be restricted to only the most suspicious ones),
such that the suspiciousness of the environment of each com-
bination is minimized. If those test fail, it is more likely that
the combination is in fact inducing. This can be repeated
until an arbitrary stopping condition is satisfied.

Because not as highly ranked (according to a specified
threshold) combinations might be ignored by the algorithm
for next a next iteration, the result set of combinations is not
necessarily complete. This represents a trade-off between
completeness of the result and swiftness of calculation, a
user of the tool can balance for themselves.

4.2 FROG
Nishiura, Choi and Mizuno [14] introduced FROG (FIL

based on Regression coefficients of logistic regression anal-
ysis) which takes input of all interactions to identify the
minimal failure-inducing interactions. It applies logistic re-
gression analysis on input combinations of a given test suite
to identify the logistic regression coefficient and excludes
the potentially failure-inducing interactions which have a
coefficient value below the given threshold limit to produce
minimal set of failure-inducing interactions with suspicious
combinations.

This coefficient is calculated for each input parameter via
data learning technique from combination of input param-
eters in each iteration. It applies k-way testing on input
combinations. It starts iteration with k = 1 and increases
the value of by 1 in each iteration until maximum num-
ber of input values is reached. In each iteration it excludes

Table 3: 4-way Test Suite and their testing result
tc p1 p2 p3 p4 p5 result
#1 1 2 1 2 2 pass
#2 1 1 2 2 2 fail
#3 1 2 2 2 3 pass
#4 2 1 1 1 2 pass
#5 1 1 1 2 3 fail
#6 2 2 2 1 1 pass

Table 4: Logistic regression coefficients for 1-tuples
1-tuple logistic regression coefficient
(p1.1) 16.341
(p2.1) 15.990
(p3.2) -13.679
(p4.2) 17.839
(p5.2) -1.277
(p3.1) -13.834
(p5.1) -1.403

the failure-inducing interactions which are below the given
threshold value and are considered as less suspicious. By
this way FROG returns only the set of most suspicious in-
put combinations.

As an example suppose we have a test suite as shown
in Table 3 which has passed and failed test cases. FROG
initializes a suit of test combinations TC, failure-inducing
combinations FC and passed combinations PC.

TC = {#1,#2,#3,#4,#5,#6}
PC = {#1, #3, #4, #6}
FC = {#2,#5}

From FC combinations it creates TP which are all the
n-way possible parameter combinations from TC with their
values. In Table 3 combination #2 and #5 are the failure-
inducing combinations. Thus, set of failure-inducing inter-
actions TP after 1-way iteration would be:

TP = {(p1.1), (p2.1), (p3.2), (p4.2), (p5.2), (p3.1), (p5.3)}

Then for each parameter it will calculate the regression
coefficient by using input data as calculated in Table 4. For
further iterations it will take only those parameters which
have a high coefficient value greater than the given threshold
which is 0. From Table 4 sTP which is a set of selected
failure-inducing interaction is given as:

sTP = {(p1.1), (p2.1), (p4.2)}

Thus, for the second iteration extract all 2-tuples in FC
to identify TP

TP = {(p1.1, p2.1), (p1.1, p4.2), (p2.1, p4.2)}

and FI would be:

FI = ∅

Table 5: Logistic regression coefficients for 2-tuples
2-tuple logistic regression coefficient

(p1.1, p2.1) 8.812
(p1.1, p4.2) 10.116
(p2.1, p4.2) 9.735

and after running the regression coefficient the coeffiecient
value of each paramter is given in Table 5. It will again
calculate the sTP :

sTP = {(p1.1, p2.1), (p1.1, p4.2), (p2.1, p4.2)}

Because each coefficient value of each parameter is greater
0 so all paramters in Table 5 will be considered in next it-
eration. If the combination in TP is not in PC then it will
be added into FI. Where FI would be the set of minimal
failure-inducing interaction. The process will continue to n-
way iterations to identify the FI where n is 4 for the given
data.

It will again do the same process for iteration 3. In third
iteration for 3-tuples only following combination will be con-
sidered for TP :

TP = {(p1.1, p2.1, p4.2)}

and thus the most suspicious failure-inducing interactions
FI calculated in iteration 3 would be:

FI = {(p1.1, p2.1, p4.2)}

At this step sTP is empty so the algorithm finishes.

4.3 FIC
Zhang, Zhiqiang and Jian [19] introduced FIC (faulty

interaction characterization) which uses adaptive approach
to reduce the number of test cases. If system has k param-
eters, then It uses at-most k adaptive test cases to locate
failure-inducing interaction. These algorithms not only fo-
cuses on interaction coverage and reducing test cases but
also focuses on diagnosis. FIC runs the test cases on given
number of parameters and identifies for which parameters
the failure-inducing interaction occurs by iterative approach.
The maximum number of adaptive test cases run by FIC are
equal to number of given parameters.

It runs test case on given parameters and identifies the
combinations for which the failures occur and marks those
combinations as fixed parameters. Then it uses this test case
as seed test case and runs iteratively by changing the value
for each parameter and set those parameters as free param-
eters until no failures occur. If a failure-inducing interaction
is discovered by changing the value of parameter, then these
parameters are marked as a candidate parameter.

4.4 FIC_BS
FIC BS (faulty interaction characterization with binary

search) introduced by Zhang, Zhiqiang and Jian [19] uses
the FIC with binary search. Instead of exhaustive approach
it iteratively distributes the parameters into halves until the
failure-inducing parameters are found for each interaction.
It iteratively search for each half for failure-inducing inter-
action. It locates the fixed parameters for each interaction

then apply test for each fixed parameter to identify candi-
date parameter. Once the candidate parameter is found,
the rest of the parameters are marked as free parameters.
The process continues until failure-inducing parameters are
identified. The same procedure is applied for each half. For
each test case it returns either pass or fail on each iteration.

4.5 DDmin
The DDmin (Delta Debugging algorithm that generalizes

and simplifies the failing test case to a minimal test case)
introduced by Zeller and Hildebrandt [17] is an algorithm
which works by minimizing the parameters to reach the fail-
ure inducing part of a combination by checking each possibil-
ity of parameters that can effect the result of the test case.
Isolating failure inducing difference between failure and a
passing test case. It iteratively distribute the parameters in
a binary way until the failing part is found. It can be used
in any situation in which it effects the program execution.

Chances that the test fails depends on the chosen sub-
set of failing test case parameters. If the subset is smaller
then there is a lower chance that the failure-inducing partial
combination is found, else the change is higher. It uses a
minimizing algorithm to find failure inducing partial com-
binations of a test case by divide and conquer approach. It
splits the total set of changes binarily, tests each half to find
the failure inducing combination and continues to split until
the inducing combination has been identified.

If the failure inducing partial combination is not found by
iteratively checking and dividing the set of changes then the
algorithm uses the complements of changes in a combination
for further steps and increase the granularity at each step.
If for the larger combinations no failure is found it returns
unresolved state until all pair of combinations are tested.
The problem with this approach is that the number of tests
required are increased with the number of inputs. It sim-
plifies and isolates the failure inducing inputs by automated
test procedure [17] and can be used any time when a test
case fails.

4.6 FCI
In combinatorial testing a parametric model is used to test

the system and identify FCIs (failure-inducing combinatorial
interactions). It is a black-box testing for a system that have
different components which interact with each other. In CT
a set of test cases is generated to achieve different kind of
coverage i.e pair-wise testing. These test cases are then ex-
ecuted to identify failed test cases and then their cause of
failure is identified by the combination of parameters.

The interaction of these parameters is called failure-indu-
cing combinatorial interactions and are the namesake of this
algorithm proposed by Zhang, Feifei and Zhiqiang [18]. This
algorithm takes input from the result of generated test cases
and produces the solutions for each combination, which be-
comes the criterion to measure the precision of the solution.
FCI uses constraint satisfaction problem(CSP) or satisfia-
bility to solve identification problem [18].

A definition of FCI proposed by Jian, Feifei, and Zhiqiang
[18] is as ” A faulty combinatorial interaction (FCI) is a
CI such that all possible test cases containing it will fail”
whereas CI is defined as ”A combinatorial interaction (CI)
is a vector of length k, which assigns t parameters to specific
values, leaving the rest k‘−′t parameter values undetermined
(undetermined values are denoted by ‘−′). Here t is the size

of the CI.”
Suppose we have an FCI P1, and P2 contains P1. Then

all test cases containing P2 will contain P1, and all of these
test cases will fail. Thus P2 is an FCI. For example, suppose
(1,-,2,-) is an FCI, then (1,1,2,-) and (1,-,2,3) are also FCIs.
[18]

4.7 AIFL
Liang, Changhai and Baowen [15] introduced AIFL (na-

med this way by Wang, Xu et al. [16] in IterAIFL approach
and standing for ”Adaptive interaction fault localization”)
is a rather simple, but adaptive failure localization approach.
It assumes that only one fault is present in the SUT.

The algorithm is given a test suite which is run. Then
only the parameter combinations present in failed tests of
that suite are isolated. In an attempt to reduce that set of
possibly failure-inducing combinations, a new set of n test
cases, where n is the number of parameters of the test case,
is generated for each failed test. Every one of these n test
cases has one of its parameter values changed to a new value.
Combinations that are present in passing tests of this new
test case set are not inducing and therefore removed from
the set of possibly inducing combinations.

As the approach generates n new test cases for each failed
test, the amount of test cases can become very large very
quickly. Additionally, as only parameter combinations which
violate the necessary condition to be inducing are removed
the likelihood that non-inducing combination are also present
in the answer is relatively high. But the resulting set will be
a subset of the set of all inducing combinations which can be
found with the original test set. Therefore the AIFL result
is complete.

4.8 IterAIFL
Wang, Xu et al. [16] introduced IterAIFL which is a con-

tinuation of AIFL. Specifically it employs iteration to im-
prove on the precision of the result of AIFL. Therefore is,
just as AIFL, adaptive, complete and in addition, other than
AIFL, iterative and is able to handle multiple faults in the
SUT.

The algorithm initially executes AIFL is described in sec-
tion 4.7 and then iteratively generates more test cases and
removes suspicious combinations found to be not inducing.
This iteration can be terminated prematurely when the size
of the suspicious combination set reaches a given threshold.
Otherwise the algorithm will terminate when the last iter-
ation did not reduce the set of suspicious combinations, at
which point the result set, except for some cases in which
parameters and their values overlap, 100% precise. Further-
more is the result always complete.

There are two test case generation approaches defined.
The first one called IterAIFL1 mutates previously failed test
cases by changing m parameter values, where m is the mu-
tation strength which is increased by one for every iteration
up to one less than the number of parameters. To given an
example consider the test case (IE, Linux, ISDN, Access).
The newly generated test cases for the 2-th iteration, so us-

ing the mutation strength 2) would be the following:

t′1 = (Opera, Windows, ISDN, Access)

t′2 = (Opera, Linux, Modem, Access)

t′3 = (Opera, Linux, ISDN, DB/2)

t′4 = (IE, Windows, Modem, Access)

t′5 = (IE, Windows, ISDN, DB/2)

t′6 = (IE, Linux, Modem, DB/2)

The second one called IterAIFL2 simply always generates
new test cases based on the failed set of the previous itera-
tion with mutation strength 1.

None of the two test case generation methods is superior
to the other in a general case. The step of new test case
generation however is the key to reduce the cost of failure
diagnosis, but the effectiveness of any chosen approach is
very dependent on the specific software under test and it
may be hard to predict which one will perform better.

4.9 LDA
Colbourn, Charles and McClary [4] introduced LDA (Lo-

cating and Detecting Arrays for Interaction Faults) which is
a non-adaptive approach to failure diagnosis, meaning that
all test cases a generated beforehand and executed in par-
allel. Proposed are (d, t)-locating arrays, which can locate
failure-inducing t-way interactions under the assumption of
a maximum of d in the SUT. So in general the number of
faults in the SUT have to be know a priori or at least an up-
per bound has to be estimated. This is because how many
different faults are to be detected does affect their size of
the locating and detecting arrays and how they are con-
structed. Even though it has been shown that the growth
of these arrays is asymptotic, and the basis of array based
testing, covering arrays, have been researched extensively by
Chateauneuf, Hartman et al. [2] [9], the actual construction
of detecting arrays with fewest test is a challenging problem.
However, there have been algorithms proposed, of which we
will discuss the following two.

4.9.1 LDA(1,2)
LDA(1,2) introduced by Nagamoto et al. [12] is a spe-

cific implementation of the general LDA approach (cf. Sec-
tion 4.9) and therefore non-adaptive. It allows for the detec-
tion of a maximum of one fault caused by a 2-way interaction
of parameters. These very limiting requirements make this
approach relatively unsuited for software testing, but might
be applicable enough for more limited, component based
systems as given as an example by the authors.

The basic idea of the approach is to separate all interac-
tions into equivalence classes over equality of the set of failed
tests for a given 2-way interaction (which is an equivalence
relation) and construct a test suite such that each equiva-
lence class consists of only one interaction. This is achieved
by adding test cases which separate interactions from the
other interactions in an equivalence classes.

4.9.2 LDA(d,t)
Konishi et al. [10] proposed algorithm to find minimum

(d,t)-locating arrays using a SAT solver. Again the problem
of a priori knowledge of the number of faults in the SUT
persist for any practical use case.

5. DISCUSSION
In this chapter we will compare the different approaches

regarding their assumptions, strength, weaknesses and other
differences. We will give an overview over properties at-
tributable to the approaches and highlight differences and
similarities we deemed noteworthy.

As all our reviewed approaches are based in combinatorial
testing, they are all black-box testing methods. 7 out of 9 of
the reviewed approaches fall into the test generation cate-
gory (defined in Section 4) and 6 out of those 7 are adaptive.
This shows a clear bias towards adaptive methods. A cause
for this bias might be that adaptive approaches are easier
to develop in the sense that less ”thinking ahead” is neces-
sary as one can rely on the results of the execution of the
previous tests and only take them into account, while in a
non-adaptive or a result analysing approach one has to make
sure that all additional test cases, necessary to cover all de-
sired combinations, are generated without such knowledge.

Almost all approaches require that the chosen t, maximum
size of failure-inducing interactions, is chosen, or rather pre-
dicted, correctly. Some approaches, like AIFL and LDA(1,2),
only support pair-wise testing (t = 2) which is too harsh a
limitation for a lot of more complex systems. While others,
like BEN and LDA(d,t), become inefficient when t is chosen
too big. How big the interactions are one wants to considers
is therefore a very important matter that can have signif-
icant impact on what algorithm should be chosen for the
task.

As mentioned before in Section 4, the main distinction
between test generating approaches and ones that analyse
the results (see Figure 1) is important because the genera-
tion of new test cases is a significant expense compared to a
mere analysis of the results. But performing failure diagno-
sis based on only the given results of a small test suite can
be very hard or even impossible to do accurately. That is
where test generating (and especially adaptive) approaches
can still be very accurate. With sufficiently large test suites
though result analysing approaches should have a significant
performance advantage.

The differences in adaptive and non-adaptive approaches
result in very different strengths and applicability. For ex-
ample, the test execution in non-adaptive tests can theoret-
ically be highly and easily parallelized due to the fact that
all test cases, which will be executed by the algorithm, are
calculated before any test is executed, but also have to gen-
erate a significant amount of test cases in the first place.
Other in adaptive approaches where newly generated test
are based on the result of previously executed tests. But
the big downside of non-adaptive testing as of now are the
significant restrictions put on the SUTs. LDA(1,2) for ex-
ample can only handle systems that at most have one fault
which is caused by the interaction of only two parameters,
which is definitely not enough for a test suite for a mod-
ern software. So this approach is limited to rather simple
component based systems.

AIFL and LDA in general are rather limited approaches
because of their very basic nature, and a not very promising
(at least for complex software testing) approaches respec-
tively. AIFL has been improved and arguably superseded
by IterAIFL by being able to detect more than one fault in
the SUT and achieve a 100% accurate result in more cir-
cumstances by basically only adding additional iterations of
the same method. LDA as the only non-adaptive approach

trying to solve the problem of failure diagnosis with arrays,
and even though two algorithms for the generation of such
localizing arrays have been proposed, has the very big draw-
back of having to know the amount of faults that want to
be detected a priori. It is fairly limited in it’s application,
especially for larger systems due to the high amount of test
cases needed and limitations imposed on it.

FCI a uses combinatorial test suit as input and executes
test cases with input parameters. To identify the failure-
inducing parameters FCI uses constraint solving and opti-
mization techniques on pair wise testing while FROG uses
regression coefficient to identify the failure-inducing interac-
tions. FCI uses iterative approach to reduce the number of
test cases by changing the value of each parameter in failure-
inducing interaction while FROG uses input of all failure-
inducing interactions and excludes the interaction which are
less suspicious in each iteration.

FIC and FIC BS iteratively execute the failure inducing
input parameters on test cases by changing the value of each
parameter in each iteration and identify the failure-inducing
parameter if the test case passes on a given combination.
FIC takes all inputs in failure inducing combination and it-
eratively runs the test case by changing value of each input.
However, FIC BS uses binary search by dividing combina-
tion of these input parameters into two halves and executes
the iteration on each half by changing value of each param-
eter.

Correctness of FIC and FIC BS depends upon some as-
sumptions which are briefly discussed. In some cases the
status of test case is undetermined and may produce unre-
solved result. The outcome of executing a test case on the
SUT is either pass or fail [19]. It might happen that some
test cases that matches the failure-inducing interaction may
pass due to some error dominations over others but in FIC
and FIC BS each test case that matches the failure-inducing
interaction must fail. All parameters are independent of
each other [19]. All failure-inducing interactions that ap-
pear during FIC are failure-inducing interaction of failing
test cases.

DDmin works very similar to FIC. However, instead of
finding failure-inducing parameter in each iteration it first
reduces the number of test cases by changing the value of pa-
rameter in each iteration and determines the failure-inducing
parameters based on result of failed test cases. It uses the
set of already tested parameters in execution and then in-
creases granularity for further test cases until the failure-
inducing combination is found. Unlike FIC, DDmin returns
unresolved if the status of test case is undetermined. DDmin
only focuses on changeable circumstances and assumes that
by changing the parameters will cause different program be-
haviour.

BEN and FROG impose the least restrictions on the SUT
or test cases of all approaches from the test generation cate-
gory. They also are also notably the only two approach that
rank their results by each combinations suspiciousness. Not
only does this help a developer with debugging by allowing
him to focus on the most likely failure-inducing combina-
tions, but it also enables the algorithms to omit some of the
less likely to be inducing combinations and possibly signifi-
cantly reduce the amount of test cases that need to be con-
sidered or additionally generated. When suspicious combi-
nations are omitted it of course can no longer be guaranteed
that the resulting set of combinations is complete. But with

limited testing resources being able to achieve a higher pre-
cision cheaper might be more interesting. IterAIFL can be
terminated early as well, but as it lacks the ranking of BEN
and FROG, and therefore the pre-filtering by suspiciousness,
it is more likely to be less accurate, but still complete.

FROG uses logistic regression with a configurable thresh-
old to identify the suspiciousness of interactions. Because of
the nature a logistic regression the threshold for the FROG
algorithm is not intuitive and can at least theoretically never
result in a complete set. BEN can, not just in practice, be
configured to give a complete result. This configurability of
both FROG and BEN make them very useful for practical
use-cases, as their completeness can be traded for resource
consumption, i.e. higher precision can be reached cheaper.

Along with the fact that FROG imposes minimal restric-
tions as well, both FROG and BEN are the most practically
usable algorithms, despite their very different approaches.
As none of the papers provide comparable benchmarking
data, and benchmarking is not the scope of our study, we
can not determine which of the two performs better.

6. CONCLUSION
Our literature review yielded a total of 9 different algorith-

mic approaches for failure diagnosis in combinatorial testing.
The efficiency of these algorithms depends upon the selec-
tion of suitable algorithms on the basis of SUTs nature. We
have compared these approaches because it is an important
step to identify the suitability of an approach for any given
SUT.

Main characteristics of these algorithms is that they ei-
ther use tests generation or result analysis for failure diag-
nosis. Algorithms from the tests generation category uses
adaptive/non-adaptive approaches for further test case gen-
erations which works very good for large number of combi-
nations as we have larger test suite for failure diagnosis in
larger programs but its too expensive to run this approach
for smaller number of input combinations. Result analysis
on the other hand is efficient for smaller combinations but
much more expensive for larger combinations.

Most algorithms employ adaptive and iterative, consid-
ering a very wide and complete set of suspicious combina-
tions and iteratively removing ones which are not (or not
enough) suspicious, approaches. With larger and more com-
plex SUTs BEN and FROG provide good approaches be-
cause of their ranking techniques focusing on only combi-
nations which are likely to be failure-inducing and thereby
reducing the amount of suspicious combinations considered,
cutting down on resource consumption, which is especially
valuable for a practical use case.

The non-ranking approaches, namely IterAIFL, FIC(BS),
DDmin, LDA, FCI are less interesting for practical usage.
Their results are generally complete, but this makes the
gained precision too expensive in a resource constricted con-
text. BEN and FROG, the algorithms that include ranking,
do a better job of achieving higher precision whilst using
less resources due to their ranking nature. Thus ranking
algorithms generally

Non-adaptive approaches to failure diagnosis do not ap-
pear to be very promising, because they impose very restric-
tive assumptions upon the SUT which makes them unfeasi-
ble for most more complex SUTs.

In the future we assume that especially adaptive approach-
es will be continued to be pursued, although FROG repre-

sents a very successful approach from the category of non-
adaptive approaches. But adaptive approaches are easier to
develop and implement then non-adaptive ones.

To expand on our work we propose the inclusion of pos-
sibly newer approaches, analysis and categorization of dif-
ferent types of SUTs and systematic benchmarking of the
algorithms for these different types of SUTs.

7. REFERENCES
[1] K. L. Burr and W. Young. Combinatorial test

techniques : Table-based automation , test generation
and code coverage. 1998.

[2] M. A. Chateauneuf, C. J. Colbourn, and D. L. Kreher.
Covering arrays of strength three. Designs, Codes and
Cryptography, 16(3):235–242, May 1999.

[3] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The aetg system: an approach to testing
based on combinatorial design. IEEE Transactions on
Software Engineering, 23(7):437–444, July 1997.

[4] C. J. Colbourn and D. W. McClary. Locating and
detecting arrays for interaction faults. Journal of
Combinatorial Optimization, 15(1):17–48, Jan 2008.

[5] L. S. Ghandehari, J. Chandrasekaran, Y. Lei,
R. Kacker, and D. R. Kuhn. Ben: A combinatorial
testing-based fault localization tool. In 2015 IEEE
Eighth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW),
pages 1–4, April 2015.

[6] L. S. Ghandehari, Y. Lei, R. Kacker, D. R. Kuhn,
D. Kung, and T. Xie. A combinatorial testing-based
approach to fault localization. IEEE Transactions on
Software Engineering, page 1, 2014.

[7] L. S. G. Ghandehari, Y. Lei, T. Xie, R. Kuhn, and
R. Kacker. Identifying failure-inducing combinations
in a combinatorial test set. In 2012 IEEE Fifth
International Conference on Software Testing,
Verification and Validation, pages 370–379, April 2012.

[8] J. D. Hagar, T. L. Wissink, D. R. Kuhn, and R. N.
Kacker. Introducing combinatorial testing in a large
organization. Computer, 48(4):64–72, Apr 2015.

[9] A. Hartman and L. Raskin. Problems and algorithms
for covering arrays. Discrete Mathematics, 284(1):149
– 156, 2004. Special Issue in Honour of Curt Lindner
on His 65th Birthday.

[10] T. Konishi, H. Kojima, H. Nakagawa, and
T. Tsuchiya. Finding minimum locating arrays using a
sat solver. In 2017 IEEE International Conference on
Software Testing, Verification and Validation
Workshops (ICSTW), pages 276–277, March 2017.

[11] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software
fault interactions and implications for software testing.
IEEE Transactions on Software Engineering,
30(6):418–421, June 2004.

[12] T. Nagamoto, H. Kojima, H. Nakagawa, and
T. Tsuchiya. Locating a faulty interaction in pair-wise
testing. In 2014 IEEE 20th Pacific Rim International
Symposium on Dependable Computing, pages 155–156,
Nov 2014.

[13] C. Nie and H. Leung. A survey of combinatorial
testing. ACM Comput. Surv., 43(2):11:1–11:29, Feb.
2011.

[14] K. Nishiura, E. Choi, and O. Mizuno. Improving
faulty interaction localization using logistic regression.
In 2017 IEEE International Conference on Software
Quality, Reliability and Security (QRS), pages
138–149, July 2017.

[15] L. Shi, C. Nie, and B. Xu. A software debugging
method based on pairwise testing. In V. S. Sunderam,
G. D. van Albada, P. M. A. Sloot, and J. Dongarra,
editors, Computational Science – ICCS 2005, pages
1088–1091, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[16] Z. Wang, B. Xu, L. Chen, and L. Xu. Adaptive
interaction fault location based on combinatorial
testing. In 2010 10th International Conference on
Quality Software, pages 495–502, July 2010.

[17] A. Zeller and R. Hildebrandt. Simplifying and
isolating failure-inducing input. IEEE Transactions on
Software Engineering, 28(2):183–200, Feb 2002.

[18] J. Zhang, F. Ma, and Z. Zhang. Faulty interaction
identification via constraint solving and optimization.
In A. Cimatti and R. Sebastiani, editors, Theory and
Applications of Satisfiability Testing – SAT 2012,
pages 186–199, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[19] Z. Zhang and J. Zhang. Characterizing failure-causing
parameter interactions by adaptive testing. In
Proceedings of the 2011 International Symposium on
Software Testing and Analysis, ISSTA ’11, pages
331–341, New York, NY, USA, 2011. ACM.

Classification and Comparison of Approaches to Software
Architecture Reconstruction

Robert Barisic
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

robert.barisic@rwth-aachen.de

Josef Hoppe
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

josef.hoppe@rwth-aachen.de

ABSTRACT
Documentation of software architecture is often missing or
outdated in software projects. To counter this, many ap-
proaches have been developed and improved, utilizing dif-
ferent artifacts and methods to gather information about
a given software system. These approaches produce differ-
ent views on the systems, are designed to work on different
sizes of software, and have different intended uses. When
generating those views, approaches utilize different ways of
processing their input data. While many approaches focus
on clustering units like methods, classes, or files into logical
subsystems, others employ a dynamic analysis on an object-
or even service-level.

Ideally, all artifacts used for designing a software architec-
ture beforehand could be recovered. The approaches consid-
ered in this paper recover the logical structure of methods,
classes and files; dynamic views (like UML Activity Dia-
grams) detailing the run-time interaction of software compo-
nents and dependencies between services based on network
communications.

Additionally, the conformance of a piece of software to its
previously defined architecture can be monitored to detect
and correct deviations or update the architecture accord-
ingly.

This paper classifies the methodology, used and gener-
ated artifacts, and intended application of software archi-
tecture reconstruction approaches. Additionally, we provide
a comparison between the approaches, comparing focus and
methodology as well as appropriate scale and accuracy.

In comparing the approaches, we found non-clustering ap-
proaches are usable or close to usable in a production envi-
ronment, while pointing out challenges to overcome in order
to create viable clustering techniques in the future.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—productivity, programming
teams, software configuration management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2018/19 RWTH Aachen University, Germany.

Keywords
Software Architecture Recovery, Software Architecture, Doc-
umentation, Dependencies, Quality Assurance

1. INTRODUCTION
A wide variety of software architecture recovery approaches

has been developed for many different architectures and us-
ing different methods.

The most researched approach is to analyze the software’s
source code and extract a graph from that. This graph can
then be clustered to receive a logical partition of source files.
Graph clustering is a graph theory problem that precedes
software architecture recovery. The largest differences be-
tween the static analysis approaches are the way of obtain-
ing edges and weightings on the graph: While most utilize
dependencies, others compare the similarity of keywords in
a file’s contents. From now on, we will refer to these as
Graph-based clustering approaches.

Other approaches use runtime information (or dynamic
analysis) in addition to the source code to extract different
perspectives of the software. Dynamic analysis allows for
the recovery of dynamic views on the software system, for
example UML activity or sequence diagrams.

While different, these are all in stages of research. Later,
we will refer to them as ”research prototype”, meaning the
program requires some work to set up, but does produce re-
sults; or ”algorithm”, meaning the program cannot be run on
actual sources but needs additional work such as extracting
the structure first.

Sonargraph is the only commercially available product in
our comparison. It helps its user to refine the recovered
base structure, but is incapable of extracting an abstract
representation of the architecture by itself.

1.1 Definitions
Architect. Software Architect working on a software

from which he wants to recover the architecture.

1.2 Paper Structure
First, we will shortly present all sources used by any of our

considered approaches to give you an understanding of the
sources available to reconstruct the architecture of a software
system.

Following that, we discuss the general methods employed
by the approaches we considered. We only discuss methods
that work on the information. For example, generating a
diagram directly from the base information will not be layed
out here because it can be described quickly enough to fit

into the approach overview.
In the overview section, we describe the concept of each

approach, including the methods used and any specific steps
or concepts.

For our comparison, we considered 5 different aspects. Al-
though not all approaches are directly comparable in every
aspect, we present the results of the comparison in a quali-
tative Kiviat Diagram.

1.3 Related Work
Comparisons between some or all of the graph-based clus-

tering approaches have already been done, including com-
parisons regarding accuracy and performance. We included
[13] into our comparison because it is the most recent com-
parison that compares all graph-based clustering algorithms.
There are earlier comparisons [4, 9, 12] which we didn’t
consider for the results because some of the approaches are
under continuous development, making earlier comparisons
obsolete.

2. ARTIFACTS & SOURCES AVAILABLE
AS INPUT

All software architecture reconstruction approaches use
the source code as input. But there is various information
that can be extracted from it and the reconstruction ap-
proaches differ in what they make use of. Next to the static
source code, there are also other sources of information. We
classified them into static or compile-time sources and dy-
namic or runtime sources.

2.1 Compile-time / static Sources
Compile-time or static sources of information can be di-

rectly extracted from the source code or other documents of
the software project.

2.1.1 System Documentation
The originally intended architecture can be used to de-

tect deviations from it that occur during a software system’s
lifecycle. When the current architecture deviates from this
baseline, this can be automatically detected in order to no-
tify the architect [8]. This can be useful to combat architec-
ture deterioration or keep the documentation updated when
necessary.

2.1.2 Code Dependencies
Code dependencies are a very common source of infor-

mation about the structure of a given system. There are
two kinds of dependencies: file dependencies and symbol
dependencies[13]. File dependencies are based on include,
import or respective statements while symbol dependencies
inspect the code and check for usage of symbols in other
files. This can yield a more complete and meaningful graph
because some file dependencies are not used while some sym-
bol dependencies (e.g. fully qualified names in Java) are not
detected by file dependency analysis [13].

The analysis of code dependencies yields a dependency
graph that can be further analyzed [10, 19].

2.1.3 File Structure and Filenames
Often, folders represent logical groups (for example pack-

ages in Java). These groups can relate to subsystems, but
grouping by other factors (such as a collection of header files)

exists and may be more helpful than folder-based group-
ing[19].

Folder and file names can also be utilized to name identi-
fied subsystems, although extracting the best name can be
difficult [19].

Still, the file system graph directly represents a logical
grouping declared by the developers of the system and can
for example be used to supplement other structural infor-
mation [19].

2.1.4 Comments and Identifiers
Programmers in general try to use expressive names for

classes, functions, attributes and parameters. Comments
often contain useful information too. The information ob-
tained from the comments and this identifiers can be used
for clustering. [5]

2.1.5 Keywords
To understand the intended function of a given piece of

code, keywords and combinations of keywords can be used.
By comparing frequencies of different keywords, topics of a
given file (or any piece of text) are retrievable[10].

This information can be used later, when grouping files
(grouping by topic results in more meaningful groups than
simply grouping by dependencies according to [10]) and to
determine a better description of a module.

With further analysis of the file structure, keywords can
be divided into zones, e.g. function names, comments, etc.
[5, 6].

2.1.6 Static configuration
For dynamic analysis, retrieving the static configuration

of an application can be important: For example, when
analysing network traffic, identification of services in the
network is necessary to extract a relation [11]. Generally,
this info is used as a basis for dynamic analysis.

2.2 Dynamic / Runtime Sources
Next to the static sources of information, there is also a

way to extract information during the runtime of a software
system.

2.2.1 Dynamic dependencies / calls
In order to get more meaningful information about the

cohesion and coupling between software entities, it can be
very useful to include the information about how often for
example functions are called during the runtime of the sys-
tem [22].

Additionally, the interconnection and interaction of soft-
ware components can be recovered in this way [7].

2.2.2 Docker configuration
Docker is a tool for packing applications and services into

containers (similar to virtual machines, but more lightweight)
and running them in composition. From the configuration,
IP-Adresses, Ports, permanent Storage, and other contain-
ers (services) reachable per network can be extracted.

The Docker configuration is particularly useful for systems
consisting of multiple small services, because connections be-
tween different services are more important than with mono-
lithic software [11].

This information can be used to attribute recorded net-
work traffic to the correct container.

2.2.3 Network Communication
Analysis of network communication ensures that, given a

sufficient test scenario, no links between different services
can be missed. Especially when using a service discovery
service, dependencies between services cannot be recovered
using static analysis [11].

2.3 Architect Knowledge
Correctly identifying subsystems has not been reliably

done automatically and can be essential for further analyz-
ing the whole system [11, 19].

Therefore, architect input at critical points during the pro-
cess can be extremely useful. Architects often have an idea
of the whole system or can at least identify useful labels and
central concepts of complex systems.

This intelligent input can be used both for more under-
standable labelling of finished views [19] as well as fitting the
partially analyzed system into a good pattern or identifying
central elements of a pattern, making further analysis more
accurate [11].

3. RECONSTRUCTION METHODS
In the following, we present all methods for reconstruct-

ing software architecture used in any considered approach.
While no considered approach uses all of these, some do use
multiple.

3.1 Graph Analysis
Analyzing the structure of a system as a graph has the

advantage of being able to pick from the large number of
algorithms developed for graphs.

A possible approach is the identification of different struc-
tural patterns in order to find software architecture design
patterns. For example, one of the patterns searched for by
ACDC [19] is the Leaf collection pattern. It is identified by
a number of leafs only accessible via a single node and not
interconnected. Using this collection of patterns, common
design choices made by software architects can be recovered.

In an analysis of the whole software system, cluster analy-
sis is often utilized. Cluster analysis searches for subgraphs
with a high number of connections inside and a small num-
ber of connections to nodes outside the subgraph. These
so called clusters represent logical subsystems. ”Orphaned”
nodes, i.e. nodes not belonging to any cluster, can then
be added to the most suitable cluster. Different approaches
use different parameters for clustering, for example desired
or maximum cluster size [19]. Other metrics, such as key-
words contained in the source files [10] or the file structure
[19] can be utilized to extract clusters more related to the
logical organization of the project.

A weighting of edges can be applied, thereby allowing for
more meaningful clusters [17].

3.2 Hierarchical Clustering
Hierarchical clustering is used by many software architec-

ture reconstruction approaches. It starts with many single
entities and iteratively combines the two most similar enti-
ties with each other to one group.

Before entities can be clustered it has to be defined what
is seen as an entity. For software systems an entity can be
for example the source code files or functions. Next, the
features of the entities must be considered. If for example

functions are defined as the entities, their features could be
what functions and global variables they use and which they
don’t use. If two functions use the same functions and global
variables, these functions have to be similar to a certain ex-
tend. And what clustering is about, is to group such similar
entities.

The basic approach of hierarchical clustering algorithms is
to first calculate the feature vectors of all the single entities.
Next the similarity between every pair of entities is deter-
mined using a predefined similarity measure. In the third
step, the two most similar entities are grouped together and
represent a new entity. Lastly the second and third step are
repeated until the number of desired clusters is reached or
there is only one cluster left [16].

3.3 Name extraction
Finding an expressive name improves the understanding

of the resulting model. Thus, multiple methods have been
proposed.

Keywords can be extracted from one or multiple files. Us-
ing their frequency, a topic can be determined via look-up
in a table. Said topic often provides a meaningful title for a
given cluster [17].

Alternatively, finding common substrings in file or method
names (such as ’Car’ in ’CarFactory’, ’Car’, ’CarModel’,
’CarMake’, etc.) often lead to suitable cluster names as
well[19].

3.4 Network inspection
When the direct communications between networked com-

ponents such as microservices have been discovered (see sec-
tion 2.2.3 Sources / Network Communication), some indi-
rect connections may still be masked. Service discovery ser-
vices or other proxies forward communications between dif-
ferent microservices. This means that a direct (unanalyzed)
extraction of network traffic will result to identify the ac-
tual endpoints of communication, incoming and outgoing
requests of the service discovery service are compared, thus
detecting the logical communication [11].

4. OVERVIEW OF APPROACHES
Before comparing and classifying the current approaches

we considered, they are shortly presented and summarized
in this section.

We considered 6 conceptually similar clustering approaches:
ACDC [19], ARC [10], Bunch [14, 15], LIMBO [3], WCA
[17], and ZBR [6], [5]. These approaches all extract a graph
from the systems source code and then apply a clustering
algorithm to that graph, yielding a logical structure of the
given software system.

In contrast to those 6, we also considered three unique
approaches: Aramis [2, 7, 8, 18], which creates views of run-
time interactions; MicroART [11], which specializes in mi-
croservice architectures; and Sonargraph [1], a commercial
product which assists manual software architecture recovery.

4.1 ACDC
ACDC is short for Algorithm for Comprehension-Driven

Clustering. The algorithm tries to decompose a given soft-
ware system into clusters or subsystems, in order to improve
the level of comprehension of the software system. This hap-
pens within two stages.

In the first stage the algorithm identifies a fundamental
structure of subsystems. These subsystems are constructed
working through different patterns, corresponding to com-
mon software architecture design patterns, in an order of
precedence. It is ensured that the subsystems are named
reasonably and don’t exceed a defined size limit to maintain
a certain clarity.

In the second stage, orphan adoption is used to assign the
remaining resources to the subsystems created in stage one.
This technique looks for the most appropriate subsystem
to place a resource in. The traditional task of the orphan
adoption was to handle the evolution of a system by assign-
ing new components to an already existing subsystem, but
according to the authors, it still produces accurate results
for a large percentage of adopted nodes.

In total, ACDC aims to generate a model with meaningful
names, consisting of clusters of manageable size and repre-
senting useful patterns in software architecture.

4.2 ARC
Architecture Recovery using Concerns is another cluster-

ing approach. The algorithm represents a software system as
a set of documents and the concerns are the topics of these
documents. These concerns are recovered using the statisti-
cal language model LDA. The input for the LDA is obtained
by the source codes comments and identifiers, which act as
the words of the documents. Combining the concerns and
the structural information obtained from the source code,
the algorithm decides, whether a software entity belongs to
a cluster or not. Instead of clusters the algorithm uses the
term bricks. Such a brick implements either a component
or a connector. In order to classify them, the algorithm
distinguish their concerns as application-independent and
application-specific. Furthermore, it considers the usage of
connector-implementing libraries, like the socket library and
the bricks involvement in design patterns that provide in-
teraction service as adapter, proxy or the observer design
pattern. The result is a component-connector model of the
systems architecture.

4.3 Bunch
Bunch is a tool which produces a clustering based on a

systems source code. The tool starts with a such called
module dependency graph, illustrating the relationships be-
tween the components in the source code. In this graph,
bunch searches for an optimal partition according to the
modularisation measurement (see below). Therefore, they
introduced a measurement for Intra-Connectivity and Inter-
Connectivity.

Intra-Connectivity is a measurement for the connectivity
within a cluster and Inter-Connectivity is a measurement
for the connectivity between clusters. The modularisation
quality function combines these two measurements in a form
that results in higher value if the clustering has high cohesion
within the clusters and a low coupling between the clusters.

In order to get the best clustering this modularisation
quality function needs to be maximized. Therefore Bunch
uses a hill-climbing algorithm. Starting with a random par-
tition, the algorithm looks for the neighbouring partitions
of it. If a neighbouring partition with a higher modulari-
sation quality is found, this neighbouring partition is set as
the new partition and the step is repeated until there is no
neighbouring partition of the current partition with a higher

modularisation quality. Bunch also allows the architect to
supply it with predefined clusters in order to include their
knowledge to improve accuracy, making Bunch an optionally
semiautomatic assisted recovery tool.

4.4 LIMBO
LIMBO is an algorithm that tries to minimize the informa-

tion loss while performing a clustering of a software system.
It tries to include a large set of input sources and considers
structural information as well as non-structural information.

LIMBO is short for scaLable InforMation BOttleneck
and uses the Agglomerative Information Bottleneck algo-
rithm which is designed to find a clustering of small car-
dinality and large information content. As this algorithm
doesn’t perform well on large scaled systems, LIMBO first
creates a set of such called Summary Artifacts in order to
compromise the size for the AIB algorithm. AIB is then
employed on this set of Summary Artifacts.

4.5 WCA
The Weighted Combined Algorithm is another hierar-

chical clustering approach. It extracts a similarity graph
on the level of routines and global variables. Contrary to
other techniques like ACDC, the edges don’t represent de-
pendencies between entities but rather how many common
dependencies they share. On this graph, WCA searches for
clusters using a weighted similarity algorithm, introducing
a new distance measure.

4.6 ZBR
Zone Based Recovery (the name was not given by the

original authors but by Garcia et al [9]) is a clustering ap-
proach utilizing lexical information of class files first intro-
duced in [6]. Specifically, all words (except common english
words and Java keywords), their frequency, and their corre-
sponding ”zones”(Javadoc, comments, signatures, variables)
in a class are extracted into a vector of word frequencies,
weighted by their respective zones (although this weighting
is dynamically calculated on the given set of files, for ex-
ample a word contained in a class name will usually have a
higher significance than a word contained in a comment).

These frequencies are used to compute the similarity of
classes. Using those similarities, clusters are formed around
randomly selected nodes using the K-Medioids algorithm. If
the resulting clustering is not satisfactory (measured by the
amount of clusters that are too small), a new set of nodes
is selected for clustering, until it is either satisfactory or a
maximum number of iterations is reached.

The approach was improved one year later. The cluster-
ing algorithm was exchanged for a hierarchical clustering
algorithm in order to get rid of the randomness which the
K-Medioids algorithm contains. In addition the zones were
extended to the six zones: Class names, attribute names,
function names, parameter names and source code state-
ments [5].

4.7 Aramis
Aramis is a dynamic analysis approach that focuses on

continuous evaluation of the software during its lifecycle in
order to detect any deviations from the intended architecture
as soon as possible. In order to do that, Aramis utilizes a
set of rules, specified by the architect, the software system
has to adhere to.

Aramis employs a modular analysis approach, where the
data gathered from a software system is converted into a
standard format which is then analyzed. By performing the
dynamic analysis using multiple use-cases, a dynamic view
on each of those use-cases can be extracted, thereby also
verifying the adherence to the software standard.

During the evolution of the software system, the design
rules need to be kept updated. Aramis simplifies this by
instantaneously alerting the architect of any deviation.

4.8 MicroART
MicroART is a specialized software architecture recon-

struction approach for microservice based architectures. It
provides an overview of the architecture at the service level.

MicroART searches the source code of the services for
Docker configuration: dockerfile is a script-like file with
instructions for Docker to create a container which, among
other information, defines the ports a service uses. docker-

compose.yml defines which services exist in a system and,
to some extent, how they are connected.

Because many microservice based architectures use a ser-
vice discovery service, static analysis isn’t always sufficient
to recover the complete architecture. Therefore, MicroART
analyzes runtime artifacts of the system: By combining net-
work traffic and IP adresses retrieved from the Docker run-
time state, the precise communication between services is
discovered.

4.9 Sonargraph
In contrast to the other approaches, Sonargraph is a com-

mercial product, already in use in the industry. Accord-
ing to its website, the architect recovers the structure with
Sonargraph providing assistance such as detecting common
patterns like cyclic dependencies. Sonargraph furthermore
supports architects when evaluating software systems, such
as approximating technical debt based on best practices.

5. CLASSIFICATION & COMPARISON
The developed approaches are in various states of usabil-

ity. While Sonargraph is already a commercial product,
many others are research prototypes and require extensive
knowledge to use them or thorough preprocessing of infor-
mation. Table 1 gives a comparison between approaches.

The Status column in the table refers to the Status as
detailed in the Introduction to this paper. Except for Sonar-
graph, all approaches provide a single algorithm, while Sonar-
graph is a commercial suite of different extraction algorithms
and tools.

Scope refers to a conceptual limit of the scope, meaning
no entry in the Scope column corresponds to the approach
(potentially) being used on all software projects, although
the current implementation may only support one or a few
languages or adhere to other constraints. For MicroART, the
Scope ”Microservice Architectures”means that conceptually,
MicroART can only ever be used on this type of software
architecture.

Concept is a short summary of the idea a particular ap-
proach uses to extract a logical architecture. For more info,
see the corresponding section for each approach.

Static and Dynamic refer to the utilization of static (mean-
ing any file, including source code and configuration) and dy-
namic (meaning network traffic, function calls, etc.) sources
for reconstructing the software architecture.

Additionally, different foci exist, as detailed below.

5.1 Foci and Base Concepts
ACDC, ARC, Bunch, LIMBO, WCA, and ZBR work on

the same overall principle: Extracting a graph from source
code which can then be analyzed and clustered to recover the
logical software architecture. Therefore, these 6 approaches
can be compared systematically and automatically. In con-
trast, Aramis, MicroART, and Sonargraph all have unique
approaches.

Aramis utilizes a model extracted by another recovery ap-
proach in order to generate views on interactions between
software components and monitor the adherence of a sys-
tem to its design specifications.

MicroART exclusively analyzes microservice architectures.
It detects dependencies between microservices based on their
network communication, but doesn’t apply a further group-
ing or clustering.

Sonargraph, the only commercial product in our compari-
son, extracts dependencies from code, but relies on the archi-
tect to retrieve the architecture, only assisting him in doing
so.

Among the 6 ”Graph Clustering Approaches”, further clas-
sification is required: ACDC is the only considered approach
that uses a software architecture specific clustering algo-
rithm, while the other 5 approaches differ in the extraction
of the base graph and the chosen clustering algorithm.

ACDC specifically searches the (unweighted) dependency
graph of the system for a number of patterns that corre-
spond to common software architecture design patterns. In
contrast, Bunch applies a non-specific clustering algorithm
to the dependency graph, allowing for restrictions by the
architect in order to improve the resulting clustering.

LIMBO condenses the base information into ”Summary
Artifacts” and then applies a badly scaling general algo-
rithm, taking into account many pieces of information.

The remaining 3 algorithms all work on weighted graphs.
WCA works on the number common dependencies be-

tween methods as the basis for the weighting for each edge
of the base graph.

ARC and ZBR both utilize the words contained in each file
to calculate the similarities. ARC identifies topics and their
relevance to the file and compares files based on those to ob-
tain their similarity (weighting) and clusters based on that.
ZBR splits each source code file into 6 logical zones: class
names, attribute names, function names, parameter names,
comments and code statements. Similarities are based on
geometrical interpretation of the ratio of meaningful (non-
fillers and non-Java keywords) common words between a
single document and all documents.

WCA as well as ZBR were compared to unweighted vari-
ants of their approach. In both cases the weighted ap-
proaches performed better, what shows that including weights
in general can be a way to improve the accuracy of the al-
gorithm.

5.2 Accuracy of the recovered architecture
Evaluating the accuracy of a given approach is a complex

task. Firstly, even if the as-is or ground-truth architecture is
available, a comparison is not trivial: The similarity of the
resulting clustering and the ground-truth architecture can be
measured via MoJoFM [20] or by comparing the similarity
of clusters [13], but valuable metadata such as the quality

Name Status Scope Concept Static Dynamic
ACDC Algorithm Pattern-based Clustering 3 7
ARC Research Prototype Content Similarity based Clustering 3 7
LIMBO Algorithm Information-theroetic clustering 3 7
WCA Research Prototype Weighted Hierarchical Clustering 3 7
Aramis Research Prototype Continuous Updates, Dynamic Views 3 3
MicroART Research Prototype Microservice Architectures Single Pattern 3 3
Sonargraph Commercial Assisted Manual Recovery 3 7

Table 1: Framework Overview

of extracted names cannot be evaluated automatically.
Additionally, if the general architecture of a system is

known, related patterns can be extracted more easily, mak-
ing an approach specializing in a single pattern (such as Mi-
croART) more accurate for that specific purpose, but less
accurate or even totally unfit for other systems. This makes
direct comparisons of MicroART with most other tools im-
possible.

Lutellier et al [13] compared ARC, ACDC, WCA, LIMBO,
Bunch (without architect input), and ZBR. They ran them
on 5 different pieces of software and different kinds of de-
pendencies, yielding widely different results. These results
vary depending on the method used to compute dependen-
cies. The authors used different kinds of dependencies (in-
clude and symbol dependencies, among others), with differ-
ent software systems being recovered more accurately on one
dependency kind than another, but there is no overall best
kind of dependency.

When measuring using MoJoFM (a common graph clus-
tering similarity measure; compared to clustering provided
or verified by each software’s developers), ACDC and ARC
were the overall best algorithms 1, although even their best
MoJoFM similarities were 78%2 (ACDC) and 56%3 (ARC).
Overall, their results show a big difference in accuracy based
on the software system, with algorithms performing differ-
ently for different systems: When evaluating ArchStudio,
ACDC scored the overall best similarity of 78%2, while LIMBO
only scored 25%2. While evaluating Chromium however,
LIMBO outperformed ACDC at 79%2 to 73%2.

Overall, Bunch is the third most accurate clustering ap-
proach evaluated by Lutellier et al., followed by ZBR, WCA,
and LIMBO.

Another important result from this study is that the Mo-
JoFM results vary a lot from system to system. ACDC
scored the best MoJoFM value for ArchStudio with 78%2

and performed worst for Hadoop with 24%4. ARC has a
range from 24%3 to 56%3 and the other approaches vary
in their performance, too. This shows that the accuracy of
automated recovery approaches are unpredictable and that
they are therefore not yet reliable when considering real
projects.

Using a different technique for measuring the accuracy of
the recovered architecture, Cluster-to-Cluster Analysis, Gar-
cia et al. still found ARC and ACDC to be the two most ac-
curate approaches, but Bunch now fell behind significantly,
on average only outperforming LIMBO.

1average over all dependency types
2Best of all dependency types
3Not based on dependencies
4Worst of all dependency types

Overall5, ARC and ACDC are the most accurate6 clus-
tering approa-
ches. ACDC is also the only evaluated algorithm to use
pattern-based clustering, indicating that understanding typ-
ical patterns and using that knowledge when clustering leads
to more accurate architectures.

MicroART cannot be compared to the other approaches
because of its widely differing scope. Judged by its method,
MicroART should give an extremely accurate dependency
graph if all possible interactions between services occur dur-
ing its runtime analysis. For the service discovery service
pattern, MicroART should therefore be the best tool pos-
sible with little architect input. On the other hand, Mi-
croART only provides a top-level view on the different con-
tainers used and doesn’t group any services at all. In con-
trast to all other approaches, MicroART also recovers devel-
opers working on projects, outlining responsibilities of de-
velopers and teams. Overall, MicroART is a useful tool for
recovering top-level views on this specific architecture.

Aramis retrieves dynamic views on the software. These
are accurate (the runtime interactions are visualized, but no
further analysis is required), but only as complete as the test
cases used during the runtime analysis.

Compared to MicroART, Aramis recovers a more complex
structure, but requires more test cases: Every significant use
case needs to be covered for Aramis whereas MicroART only
requires every possible combination of communications be-
tween the microservices to be recorded. This of course leads
to a less complex and meaningful structure than Aramis, but
also makes recovery easier. Note however that MicroART
and Aramis are still too different in concept to compare in
more detail, even though both utilize runtime analysis.

Sonargraph, the only considered commercial (and only
production-ready) approach, is not an automatic or architect-
assisted clustering technique but rather a toolset providing
developers with a file-structure based overview. Architects
can automatically find certain undesirable patterns such as
cyclic dependencies, but the more intricate structure has to
be found by the architect. Because the structure is recovered
by the architect, Sonargraph’s accuracy is perfect (manually
recovered architectures were used as baselines in all evalua-
tions).

This leads to the conclusion, that some software struc-
tures are easier to recover (or at least, better techniques
exist for them) than others. ACDCs high accuracy suggests
that pattern-based clustering is a good approach [13], so
an expansion of ACDC patterns may improve its accuracy
with different architecture styles. Further research into why
ARC’s content-based clustering proved to be more accurate

5Average of all dependency types
6measured using MoJoFM

than the content-based clustering of ZBR can serve to im-
prove the accuracy of content-based clustering.

5.3 Scalability and Calculation Time
When evaluating deviance from a planned architecture or

changes between versions of the Architecture, the time an
approach takes to compute the pattern is significant for its
practical use. We don’t consider Sonargraph for this com-
parison because it assists the developer in recovery, mean-
ing that the time it takes to recover virtually equals the
time the developer uses the Sonargraph Program. All other
approaches require only little input from the developer com-
pared to the whole recovery process.

All static approaches can be compared relatively easily.
Lutellier et al [13] tested the scalability of ACDC, WCA,
Bunch, LIMBO, ZBR, and ARC to different program sizes,
using both file and symbol level dependencies for compar-
ison. The following times were obtained on the server of
Lutellier et al in multiple runs of the programs and may dif-
fer, but suffice for a relative comparison. They found that
ACDC was the most scalable technique, taking only 70 to
120 minutes to compute the clustering for the Chromium
Browser. The next fastest methods were WCA and ARC,
both between 8 and 14 hours. Bunch took 20 to 24 hours to
terminate in one variant (Bunch-NAHC) and didn’t termi-
nate at all in its other variant (Bunch-SAHC) before timing
out after 24 hours. LIMBO was forcefully terminated after
failing to do so for more than 4 days. Lastly, ZBR ran out
of memory after using more than 40GB.

Aramis follows a different approach: By assisting in the
manual updating of the architecture, it avoids long recal-
culations, thereby enabling almost real-time dynamic anal-
ysis [8]. The necessary input for Aramis only needs to be
computed once and manually modified and updated dur-
ing a software’s life cycle, meaning a longer time to retrieve
its automatically recovered component is feasible. Aramis’
runtime analysis can take up some time in order to cover all
relevant use-cases, but the duration depends on the amount
of testing / analyzing done after each modification.

MicroART primarily needs time for the dynamic analy-
sis. The time increases with the number of test cases that
need to be performed so that all communications between
services can be recovered. We were not able to find a study
which provides a thorough analysis of MicroART in terms
of performance, but judging from the description of the ap-
proach, the analysis should complete fast. This is mostly
due to the fact that MicroART doesn’t aim to cluster ele-
ments but rather retrieves a clarified dependency (commu-
nication) graph in architectures where communications are
often masked.

5.4 Architect Input
Different approaches allow or require different amounts of

input from the architect.
ACDC, ARC, LIMBO, WCA, and ZBR all work without

any knowledge input from the architect. Bunch can work
without such input, but accepts predefined clusters to im-
prove its accuracy.

MicroART only relies on human input to identify the ser-
vice discovery service which is central to the microservice
architectures it exclusively works on. Additionally, the ar-
chitect has to cover all use-cases with tests in order to re-
trieve all connections dynamically.

Aramis requires the architect to provide a formal descrip-
tion of architectural constraints in a XML-based domain-
specific language. Additionally, all use-cases that need to
be tested need to be executed.

Finally, Sonargraph relies most of all considered approaches
on the input from software architects, solely supporting the
architect in the recovery process.

5.5 Stability of the clustering algorithms
As software architecture reconstruction is applied during

the evolution process of a software system in order to remain
up to date with the current architecture, the used clustering
algorithm needs to be stable. The algorithm is considered
as stable, if slight changes to the input of the algorithm just
have small impact on the resulting clustering. [16]

Different studies include the measure of stability into their
comparison of software architecture reconstruction approaches
[21], [16]. ACDC turned out to be very stable, whereas
LIMBO, WCA and Bunch didn’t perform well in this point.
Especially Bunch couldn’t perform well, because of the ran-
domness included in the approach.

In the first version of ZBR [6], the clustering part of the
approach, similar to the approach of Bunch, started with
a random partition of entities and then improved that par-
tition by reassigning the entities. Only one year later, the
approach was adjusted and one of the changes was to use a
hierarchical clustering algorithm in order to be more stable
[5], underlining the importance of stability.

5.6 Summary
In Figure 1, we gathered all of the previously discussed

results. Note however, that the diagram doesn’t contain a
scale for any measure because none can be accurately quan-
tified to a numerical value.

The amount of architect input is not accurately quantifi-
able, because very different forms of input are required from
identifying critical components over a variable and optional
amount of pre-defined clusters to assisted recovery, the ar-
chitect input is too heterogeneous to precisely quantify.

No single measurement for the accuracy has been found,
with different measurements giving wildly different results.
Therefore, we have based the scale on a direct compari-
son. Furthermore, only the 6 considered static clustering
approaches can be meaningfully compared at all.

In terms of stability, we first ranked the 4 clustering ap-
proaches ACDC, Bunch, LIMBO and WCA as we found
related studies. As we could not find enough studies com-
paring all of the 6 approaches and MicroART in terms of
stability, we also tried to rank the approaches based on
their procedure. Regarding stability, neither Sonargraph
nor Aramis can be compared to the other approaches, as
they do not simply perform a clustering of a system’s ar-
chitecture. However, we tried to rank them on this scale
too. In order to do so we look at this scale as: ”how good
does the approach manage the problem of stability?”. And
as Sonargraph as well as Aramis are tools assisting the soft-
ware architect during the evolution of a system, we ranked
them that high.

For scalability, the 6 clustering approaches cannot be com-
pared to the other approaches. Additionally, we only found
a single measurement for scalability that doesn’t allow a
conclusive rating.

Accuracy

Architect Input

Scalability

Stability

Legend:
ACDC
Aramis
ARC
Bunch
LIMBO
MicroART
Sonargraph
WCA
ZBR

Figure 1: Kiviat Diagram of the quantifyable properties of the considered approaches

6. CONCLUSION AND FUTURE WORK
Automated recovery is not yet usable in actual projects

because it lacks reliability on the recovered architecture. In
order to develop better approaches, more common structural
patterns can be discovered, further improving ACDC’s accu-
racy. These patterns could be selected by architects prior to
the recovery, which would be easier if the structural patterns
could be directly linked to design philosophies.

In addition, a combination of the structural approach of
ACDC and the document similarity approach of ARC could
be an improvement. For example, ACDC relies on adding
”orphaned” nodes to the most related (connected) cluster.
ARC’s high accuracy suggests that, especially in this in-
stance, the document similarity could yield better results.

Since different software systems yield their most accurate
results using different kinds of dependencies, it stands to rea-
son that their structure differs fundamentally. This means
that either fundamentally different views extracted from a
software system can both be accurate, for example because

they have different foci, or that the architecture of systems is
actually different enough that none of the currently available
approaches are capable of recovering both from the same
kind of source. This questions needs to be researched fur-
ther in order to improve current approaches or develop new,
more accurate approaches.

The fact that ACDC, the second oldest considered auto-
mated recovery algorithm, is still among the most accurate
shows that our understanding of what makes an approach
accurate is still lacking. General clustering based on de-
pendencies is, although a common approach, less accurate
than ACDC’s approach of clustering based on specific pat-
terns present in software architecture or ARC’s approach of
lexicographical similarity. Ultimately, a clustering showing
high cohesion and few connections to other clusters doesn’t
necessarily correspond to a logical and helpful view of the
architecture.

Despite their usefulness for understanding the behaviour
of software, dynamic views on the software are so far only

recovered by Aramis, which recovers a low-level interaction
analysis. We propose that more high-level diagrams that
can be understood faster could be obtained by masking and
grouping calls into logical groups, similar to structural clus-
tering used in static analysis. However, without further re-
search into this the practicability of this idea is unclear.

Specialized tools like MicroART yield accurate results al-
ready, although the work saved by automatically recovering
a service-level dependency graph is considerably less than
the work required to recover a full ground-truth architec-
ture, enriched by clustering the modules. For now, relying
on developers to understand the overall design choices of the
system and biasing the recovery process seems to be the best
way to improve accuracy, although the developers may be
mistaken about the structure of their system. Sonargraph
makes the most use of currently production-ready tools by
providing assistance to architects when recovering, evaluat-
ing and changing software architecture.

Although measuring the performance of architect-assisted
recovery methods is difficult, a study correlating invested ar-
chitect time and architecture accuracy of different assisted
reconstruction approaches, contrasted with manual recov-
ery and fully automated recovery, would quantify the added
value of assisted recovery approaches.

When evaluating the quality of recovered models, only
similarities between the recovered clusterings and a base-
line architecture have been compared. We propose that the
value of the model for the architect isn’t only determined
by its similarity to the original on a graph level, but that
certain disparities are more significant than others: Incor-
rectly assigning a core file of a cluster is worse than incor-
rectly assigning a file that serves as a connection between
two modules. Furthermore, the cluster to which a file is
incorrectly assigned plays a role as well: Assigning it to a
similar or tightly connected cluster is less bad than assign-
ing it to a totally different cluster. Many approaches pro-
duce hierarchical clusterings, which have also not been taken
into account. Finally, no Metadata of the recovered model
is taken into account: ACDC aims to recover meaningful
names, but all research up until now has only evaluated the
automatically comparable graph clustering.

7. REFERENCES
[1] Sonargraph architect. https://www.hello2morrow.

com/products/sonargraph/architect9. Accessed:
2018-12-17.

[2] P. Alexander, A. Nicolaescu, and H. Lichter.
Model-based evaluation and simulation of software
architecture evolution. In Proceedings of International
Conference on Software Engineering Advances, ser.
ICSEA, Barcelona, pages 153–156, 2015.

[3] P. Andritsos and V. Tzerpos. Information-theoretic
software clustering. IEEE Transactions on Software
Engineering, (2):150–165, 2005.

[4] R. A. Bittencourt and D. D. S. Guerrero. Comparison
of graph clustering algorithms for recovering software
architecture module views. In Software Maintenance
and Reengineering, 2009. CSMR’09. 13th European
Conference on, pages 251–254. IEEE, 2009.

[5] A. Corazza, S. Di Martino, V. Maggio, and
G. Scanniello. Investigating the use of lexical
information for software system clustering. In Software

Maintenance and Reengineering (CSMR), 2011 15th
European Conference on, pages 35–44. IEEE, 2011.

[6] A. Corazza, S. Di Martino, and G. Scanniello. A
probabilistic based approach towards software system
clustering. In 2010 14th European Conference on
Software Maintenance and Reengineering, pages
88–96. IEEE, 2010.

[7] A. Dragomir and H. Lichter. Model-based software
architecture evolution and evaluation. In Software
Engineering Conference (APSEC), 2012 19th
Asia-Pacific, volume 1, pages 697–700. IEEE, 2012.

[8] A. Dragomir and H. Lichter. Run-time monitoring and
real-time visualization of software architectures. In
Software Engineering Conference (APSEC), 2013 20th
Asia-Pacific, volume 1, pages 396–403. IEEE, 2013.

[9] J. Garcia, I. Ivkovic, and N. Medvidovic. A
comparative analysis of software architecture recovery
techniques. In Proceedings of the 28th IEEE/ACM
International Conference on Automated Software
Engineering, pages 486–496. IEEE Press, 2013.

[10] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic,
and Y. Cai. Enhancing architectural recovery using
concerns. In Automated Software Engineering (ASE),
2011 26th IEEE/ACM International Conference on,
pages 552–555. IEEE, 2011.

[11] G. Granchelli, M. Cardarelli, P. Di Francesco,
I. Malavolta, L. Iovino, and A. Di Salle. Microart: A
software architecture recovery tool for maintaining
microservice-based systems. In IEEE International
Conference on Software Architecture (ICSA), 2017.

[12] T. Lutellier, D. Chollak, J. Garcia, L. Tan,
D. Rayside, N. Medvidovic, and R. Kroeger.
Comparing software architecture recovery techniques
using accurate dependencies. In Software Engineering
(ICSE), 2015 IEEE/ACM 37th IEEE International
Conference on, volume 2, pages 69–78. IEEE, 2015.

[13] T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside,
N. Medvidović, and R. Kroeger. Measuring the impact
of code dependencies on software architecture recovery
techniques. IEEE Transactions on Software
Engineering, 44(2):159–181, 2018.

[14] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R.
Gansner. Bunch: A clustering tool for the recovery
and maintenance of software system structures. In
Software Maintenance, 1999.(ICSM’99) Proceedings.
IEEE International Conference on, pages 50–59.
IEEE, 1999.

[15] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and
E. R. Gansner. Using automatic clustering to produce
high-level system organizations of source code. In
Program Comprehension, 1998. IWPC’98.
Proceedings., 6th International Workshop on, pages
45–52. IEEE, 1998.

[16] O. Maqbool and H. Babri. Hierarchical clustering for
software architecture recovery. IEEE Transactions on
Software Engineering, 33(11), 2007.

[17] O. Maqbool and H. A. Babri. The weighted combined
algorithm: A linkage algorithm for software clustering.
In Software Maintenance and Reengineering, 2004.
CSMR 2004. Proceedings. Eighth European Conference
on, pages 15–24. IEEE, 2004.

[18] A. Nicolaescu and H. Lichter. Behavior-based

https://www.hello2morrow.com/products/sonargraph/architect9
https://www.hello2morrow.com/products/sonargraph/architect9

architecture reconstruction and conformance checking.
In Software Architecture (WICSA), 2016 13th
Working IEEE/IFIP Conference on, pages 152–157.
IEEE, 2016.

[19] V. Tzerpos and R. C. Holt. Acdc: an algorithm for
comprehension-driven clustering. In Reverse
Engineering, 2000. Proceedings. Seventh Working
Conference on, pages 258–267. IEEE, 2000.

[20] Z. Wen and V. Tzerpos. An effectiveness measure for
software clustering algorithms. In Program
Comprehension, 2004. Proceedings. 12th IEEE
International Workshop on, pages 194–203. IEEE,
2004.

[21] J. Wu, A. E. Hassan, and R. C. Holt. Comparison of
clustering algorithms in the context of software
evolution. In Software Maintenance, 2005. ICSM’05.
Proceedings of the 21st IEEE International Conference
on, pages 525–535. IEEE, 2005.

[22] C. Xiao and V. Tzerpos. Software clustering based on
dynamic dependencies. In Software Maintenance and
Reengineering, 2005. CSMR 2005. Ninth European
Conference on, pages 124–133. IEEE, 2005.

Partitioning Data for Massive Data Processing
Applications: an Overview over Data Sharding Techniques

Benedikt Conze
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

benedikt.conze@rwth-aachen.de

Elder Magalhaes
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

elder.magalhaes@rwth-aachen.de

ABSTRACT
Sharding, the process of splitting a database into smaller
partitions, is becoming more prevalent as the amount of data
that needs to be processed increases. Sharding may be used
to split databases across multiple systems to reduce the load
each system has to handle. Furthermore, sharding helps to
accommodate growth of a database by distributing the data
onto different systems and thus allows for horizontal scala-
bility. Another use case where sharding is of importance is
cluster computing where distributing data across multiple
systems can improve parallelism. In this paper we provide
an overview over sharding algorithms which are used in the
areas of cluster computing and database management. The
reasoning behind this paper is the lack of such an overview
which might be useful in order to choose the right algorithm
for a given task. Therefore, we will describe which algo-
rithms might be best suited for which situation.

Keywords
sharding, data partitioning, data processing

1. INTRODUCTION
Every year the amount of data that data processing appli-

cations have to handle and database management systems
have to store increases. In 2012 alone 2.5 exabytes of data
were created every day[17]. Therefore, the issue of partition-
ing the given data in a sophisticated manner becomes more
prevalent. Partitioning data is splitting the data into smaller
chunks. This paper focuses on horizontal partitioning, that
is the displacement of whole database rows to chunks.

Partitioning serves many purposes: it is often necessary
to split the data across multiple machines to reduce hard-
ware costs, since smaller cheaper machines are used instead
of more powerful and more expensive ones, and to increase
the scalability and availability of the data. Partitioning can
also be useful to process large amounts of data in parallel
to increase performance. Partitioning is not a trivial task
but has to deal with lots of use case-specific problems like

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2018/19 RWTH Aachen University, Germany.

(time-varying) data skew, load balancing and cross-partition
transactions. Therefore many specialized algorithms exist to
tackle these problems in different circumstances. We want
to present a concise overview over the subset of these algo-
rithms that target databases or data processing of list- or
graph-structured databases.

1.1 Problems
The reason for there being so many different partitioning

algorithms comes from the fact that different problems can
arise in different use cases and each algorithm tries to mit-
igate different aspects of the problems. Frequent problems
with data partitioning are data skew, workload skew and
temporal skew.

1.1.1 Data Skew
Data skew occurs when one partition contains much more

data than other partitions. This can result in one partition
being queried more often than others or reduce the ability
to process data in parallel. Also the algorithms have to
make sure that the partitions fit into the machine they were
assigned to.

1.1.2 Workload Skew
Workload skew happens when a partition gets queried

much more often than others, or when a processing unit has
to process more data than other units. One possible source
of this problem comes from data skew, however it can also
arise when some part of the data is needed more often than
other parts.

1.1.3 Temporal Skew
Temporal skew is the time-dependent uneven distribution

of workload or data over several machines. An example for
this is Wikipedia partitioning its database by language[19].
This way Wikipedia minimizes the number of cross-partition
data requests, but on the other hand the workload is subject
to a strong temporal skew: the Wikipedia sites of a language
are mostly accessed when it is daytime in the regions the
language is spoken in and are mostly idle when it is night.
Thus the workload fluctuates between small at night and
high at day. A better solution might be to store different
languages on the same partition, so that the workload is
roughly the same throughout the day. In section 3.1 we
describe an algorithm that is specifically designed to create
partitions when a strong temporal skew is present.

1.2 Scope of this Paper
This paper focuses on partitioning algorithms for databases

and processing frameworks. In both areas we have algo-
rithms for list- and graph-partitioning. Our decision to re-
strict this paper to those domains came from the fact that
these are well studied areas of research with many different
techniques, however in both of those domains there is a lack
of overviews over the existing methods. There are a plethora
of partitioning algorithms for different use cases and to de-
scribe them all is not achievable in this paper. As such we
only looked into relevant partitioning algorithms that were
specialized for data processing or databases.

1.3 Related Work
There already exist some overviews of different partition-

ing techniques, however these papers mostly compare simple
methods the authors implemented themselves and don’t dis-
cuss other more popular methods.

Bertolucci et al.[4] discuss multiple partitioning algorithms
in Apache Spark. However all of them are very basic and the
comparison and performance test were in regards to how fast
the different algorithms finished using one of the proposed
partitioning algorithms. No other partitioning methods ex-
cept for their own were included in the tests.

Devi and Sindhura[8] analytically compare different meth-
ods that seek to reduce partitioning skew in Hadoop MapRe-
duce. Our paper will discuss two different methods in this
domain, not described in [8], in greater detail than the meth-
ods discussed there.

Ancy et al.[3] compare locality based partitioning algo-
rithms. However, this paper doesn’t compare the methods
with each other and some of them are only shortly described,
not giving a full picture about the capabilities. In our paper
we describe LEEN, which is also a locality based partitioning
algorithm.

1.4 Structure of this paper
The rest of the paper is organized as follows. In section 2

we introduce basic partitioning algorithms. In section 3, we
discuss the algorithms related to or that can be applied to
partitioning data in relational or graph databases. In section
4 we discuss the algorithms that partition data in data pro-
cessing environments. We decided to divide the algorithms
into these two categories since depending on the use case the
priorities of what the partitioning algorithm should achieve
are different. In section 5 we conclude our work and discuss
in what direction future overviews of sharding techniques
should go.

2. BASIC PARTITIONING ALGORITHMS
To partition data there exist many different algorithms.

Three common algorithms are range partitioning, hash par-
titioning and round-robin partitioning[9]. Even though these
methods are easy to implement, they have shortcomings that
create the need of more advanced methods that handle cer-
tain problems, like data skew. However, these advanced
methods are often built upon the standard partitioners.

2.1 Range Partitioning
For range partitioning the user determines a range of keys

for each partition which are then assigned to it[9]. For ex-
ample, a table consisting of two columns, Name and Age,
may be split into two partitions in the following manner:

Data: Keys K to be partitioned, partition ni to be
partitioned to

forall k in Age do
if k < 18 then

assign k to n1;
else

assign k to n2;
end

end
Algorithm 1: A simple range partitioning implementation

A problem that may arise from the example shown in
Algorithm 1 is that if there are only ten people which are
younger than 18 and thousand that are older, then the par-
titions will have disproportionate sizes. Computations done
on the partition containing the people which are older than
18 will therefore take longer creating an unbalanced load
on the network. Another problem with range partitioning
is that the conditions are very rigid and it is difficult to
maintain such a partitioning. If the number of partitions is
changed then the algorithm has to be adapted to the new
conditions, the already partitioned data however might not
conform to the new partitioning conditions hence that data
has to be moved, which is cost intensive. Furthermore, mit-
igating partitioning skew becomes dependent on the defined
ranges and even if fair partitioning ranges are initially found,
new data might cause skew such that the ranges need to be
recalculated in order to mitigate the skew.

2.2 Hash Partitioning
Another partitioning method is hash partitioning. With

this method keys are mapped to a partition using a hash
function. By hashing the keys, the data is randomly dis-
tributed among all partitions. This reduces the risk of par-
titioning skew regarding the frequency of a key compared
to the range partitioning. One disadvantage of distributing
the data randomly is that it is possible that keys that are
requested often will be assigned to the same partition, or
that some partitions get assigned more keys than others re-
sulting in partitioning skew. Also related data is not stored
in the same partitions[9], thus if related data is requested
then different partitions will be queried, creating more load
than would else be necessary.

2.3 Round-Robin Partitioning
In round-robin partitioning each key ki is assigned to a

partition with index i%n for n partitions. This method is
fairer in comparison to range and hash partitioning in the
context that every node receives approximately the same
amount of keys. However if the data is skewed and some
keys are requested more often, then this will also lead to
partitioning skew. One such case could be that the names of
popular people are looked up more often than not popular
names. Round-robin partitioning ignores other aspects of
the data it partitions and thus it could result in creating
a partition that requires more bandwidth from the network
than other partitions.

3. DATABASE PARTITIONING
Database partitioning algorithms in general create a par-

titioning that the underlying data is going to stay in for a
long amount of time. To achieve good performance in inter-

action with this data different techniques are used, which are
described in this section. Additional algorithms are possible
and required if the data is structured in a graph database.

3.1 Horticulture
Horticulture is a database partitioning algorithm espe-

cially designed for online transaction processing (OLTP) sys-
tems[19]. OLTP systems have a workload that consist of a
large number of small transactions, which still have to sat-
isfy ACID guarantees[11], i.e. have strong transactional and
consistency requirements. A transaction in this context is
an operation that accesses and/or modifies the database.
Furthermore these transactions are short-lived. This means
that most transactions stand for themselves instead of be-
ing part of a long chain of transactions, where the memory
would have to stay consistent all the time. The transactions
are repetitive, so that the required workload can be approx-
imated in advance. Horticulture uses these characteristics
to extrapolate an expected workload out of a given sample
workload. As Horticulture takes time-varying frequency of
transactions into account, it is also well suited for databases
where this effect plays a big role.

3.1.1 Functionality Overview
Horticulture tries to minimize the number of transactions

that span over multiple partitions, because the necessary
communication between the partitions comes with a high
network overhead. It also tries to balance the workload of
all partitions taking time-varying workload into account, as
described in section 1.1.3. It explicitly does not try to spread
data across partitions for a more parallelized workflow as
other algorithms do[18], because this is in general not worth
it on an OLTP workload[19].

Horticulture tries to find a good partitioning scheme by
executing a large-neighborhood search. This works by first
creating an initial partitioning out of the sample workload.
After that it changes a subset of the partitioning parame-
ters and performs a local search around this changed solu-
tion. If the new partitioning is better, the original solution
is replaced by the new solution and the process is repeated.
The first change of the parameters, after a new solution is
found, needs to be big so that the algorithm does not get
stuck inside of a local minimum. The different database de-
signs are compared by a newly created metric, which takes
the database scheme, the given common procedures and the
given sample workload into account.

3.1.2 Primary and Secondary Indices
In its process to partition the database, Horticulture cre-

ates index lists. An index list is a sorted array of pairs of
attribute values and pointers, that point into the table row
with the attribute value. An index list is said to be primary,
if the table is sorted according to the attribute value of the
index list, and secondary if not. There can only be one pri-
mary index per table. Indices allow for fast table look-up
given only the attribute value, because a search in a sorted
list takes logarithmic time, and especially a primary index
allows for fast range queuing in the database.

3.1.3 Algorithm
The input of the horticulture is a set of stored procedures,

a sample workload including timestamps and the database
itself. Stored procedures are functions with input parame-

ters, that contain multiple transactions. In this summary
of the Horticulture algorithm we will disregard them. First
of all an initial solution is created. The given workload is
traversed to find the attributes that are most commonly
accessed. Every table is then range partitioned after its
most frequently used attribute with automatically deter-
mined range boundaries. For the second most frequently
accessed column, a secondary index table is created. The
remaining unused space of each partition is filled up with
replications of the read-only tables with the highest temper-
ature. Temperature is calculated as the number of trans-
actions on the table divided by the number of rows of the
table1. Additionally to the temperature the tables are cho-
sen with the time skew of transactions on them in mind.

In all steps to incrementally improve the first solution
a big number of partitioning attributes, secondary index-
attributes and table replications are semi-randomly changed.
From there on a new solution is searched for with little
changes. This technique tries to prevent the algorithm to
be trapped inside local minima. If the solutions found by
the small changes are all worse, they are discarded and the
next step starts with the same initial solution. If a better
partitioning is found, the initial solution is replaced with the
new solution in the next iteration.

Horticulture uses a customizable cost model to compare
solutions with each other. The cost of a solution with a given
workload basically boils down to its ”coordination cost”,
which describes how well a solution minimizes the number
of cross-partition transactions, times its ”skew factor”, which
rates how little workload skew exists in the database at any
point in time[19]. The database administrator can manually
decide how important both factors are by using two param-
eters in the cost formula.

3.1.4 Conclusion
Horticulture has a narrow area of application, that being

OLTP systems with time skewed transactions. The authors
however claim to excel in this field and prove their success by
multiple benchmarks, which amongst other things show that
Horticulture can produce partitionings four times faster[19]
than the Schism algorithm[7], which we present later in this
paper.

3.2 Balanced Label Propagation
After having looked into a partitioning technique for lists

we now discuss techniques to partition graphs. The main
difference between graphs and lists is that graphs can have
multiple connections to other data points in the data set.

The main goal of many graph database partitioning al-
gorithms is to minimize the number of edges between parti-
tions. This is because the edges correspond to cross-references
between data nodes inside of the database. When accessing
a node inside a partition it is likely that one may access the
neighboring nodes. If these nodes are in another partition
this increases expensive cross-machine communication.

The problem of partitioning graphs into a given number
of partitions with minimal edges in-between partitions is
known as the min-cut problem[20], and the variant of this
with balanced partitions is known as balanced min-cut. This
is known to be a NP-complete problem[10], but a lot of re-
search went into approximating a solution for this problem

1In the horticulture paper this is defined the other way
around[19].

in a reasonable time frame. Subsequently we will show some
of these algorithms that are trimmed to produce the best re-
sults on the kind of large graphs databases often represent.

3.2.1 Motivation
Balanced label propagation is an algorithm that tries to

build partitions of nodes by labeling neighboring nodes with
the same label. The nodes with the same label get assigned
into the same partition, each label corresponds to a parti-
tion. This however introduces the need for a look-up-table,
which lists the partition for every label.

Ugander et al.[25] created their algorithm for massive databases,
specifically for Facebook’s ”People-You-May-Know” (pymk)
database. In the case of such massive data graphs increas-
ing the locality and therefore reducing the need of querying
different partitions increases the performance more than the
decrease caused by the look-ups. Locality in the context of
this paper defines the percentage of edges that are connected
with nodes within the same partition, as was described in
the introduction of this section.

One problem with typical balanced label propagation is
the stopping of the propagation. The propagation needs to
be stopped in order for the partition to fit into the machine
they were assigned to, else a trivial solution would be to only
create a single partition containing every node, which isn’t
feasible due to the limited space of the machines. In tradi-
tional label propagation this is done by using cost penalties.
In their paper Ugander et al.[25] however define a set of
constraints. These constraints not only allow to balance the
partitions, making them the same size, but also to create
unbalanced partitions if that is desired.

3.2.2 Constraints
The first constraint is to define a lower boundary Si and

upper boundary Ti, with 0 ≤ i < n, for n partitions. The
boundaries are determined by the user. To initialize the al-
gorithm, Ugander et al. assign labels to nodes randomly.
The label represents the partition the node will later be as-
signed to, respecting the constraint Si ≤ |Vi| ≤ Ti, ∀i where
Vi is a partition of the graph G = (V,E). An optimization of
the initialization will be described later on. The algorithm
creates n partitions.

After the initialization Ugander et al. then define a max-
imization problem. Every time data wants to move from a
partition to another the utility of this relabeling is calcu-
lated. The utility here is defined as the amount of neighbors
with the same label. They try to maximize the utility gained
from relabeling the data while respecting these constraints.
The third constraint, here given as equation 2, is that after
the moving of data, the sizes of the partition are still within
Si and Ti. The fourth constraint is that no more data is
moved than data that wants to be moved. Data wants to
move if the utility gained from the movement is higher than
if it keeps the label it currently has.

The maximization problem can be formulated as follows:

maxx
∑
i,j

fij(xij) s.t. (1)

Si − |Vi| ≤
∑
j 6=i

(xij − xji) ≤ Ti − |Vi|,∀i (2)

0 ≤ xij ≤ Pij ,∀i, j (3)

fij determines the utility from moving data. xi,j is the

amount of nodes that will be relabeled from label i to label
j. Pij is the amount of data that wants to be relabeled from
i to label j.

3.2.3 Balloon Partitioning and Geographic Initial-
ization

With the random initialization of the labels Ugander et
al.[25] could only achieve 44.8% locality after 8 iterations.
In order to improve their algorithm, a different initialization
is described. Instead of randomly assigning nodes to par-
titions, the nodes get labeled according to the city where
the users come from. This is useful in the Facebook pymk
database, since people are more likely to be friends with
people that live nearby[25].

Then the balloon partitioning algorithm is applied. This
algorithm tries to create n partitions. These can contain

multiple cities c. A partition P has a cost of
∑

c Cost(c)

n
∀c ∈

P . The cost of a city could be defined as the amount of nodes
with that city as label. However for the Facebook database
specifically, the cost of a city is calculated using the degree
of its nodes. People from some countries and people living in
cities tend to have more friends[25], thus the friend-of-friend
calculation is more costly. Therefore an objective was that
a partition containing a popular city contains fewer nodes.

In the beginning no city is assigned to a partition. Then
the city c with the largest unassigned cost is determined, af-
ter which the remaining cities with a non-zero cost are sorted
according to their distance to c, and assign c to a partition.
After this, they then assign the following cities to the par-

tition containing C as long as the cost is below
∑

c Cost(c)

n
.

When the next city does not entirely fit, then that city gets
partially assigned to the partition. The portion of the cost
that was assigned to the partition gets deduced from this
city. When a partition is full, then the algorithm finds the
next city with the largest unassigned cost and assigns that
city to a new partition, then the algorithm repeats again
until every node is assigned to a partition[25].

With this initialization a much higher locality is achieved
in less iterations when compared to the random initializa-
tion. When initialized with this algorithm the initial locality
is 52.7%, with random initialization a locality of 44.8% was
only reached after 8 iterations[25].

3.2.4 Oversharding
One point discussed by Ugander et al.[25] is oversharding.

A problem of this partitioning algorithm is that it is pos-
sible that the most popular cities get partitioned into the
same partition. Even if the cost might be balanced this par-
titioning would not account for the workload at peak times.
Therefore more, thus smaller, partitions are created than
there are machines and then the partitions are sorted ac-
cording to their most populated city. Then they cyclically
assign the partitions to n machines. This results in par-
tition 1 and partition (n + 1) being assigned to the same
machine[25]. This is done to fight temporal skew.

3.3 METIS
METIS is a state-of-the-art[20] graph partitioning algo-

rithm used in community discovery in large graphs, load
balancing in parallel computing and partitioning of graph
databases. It promises a high-quality partitioning in lit-
tle time while being very customizable to the specific use
case[1].

3.3.1 Algorithm
The METIS algorithm works in three phases. The broad

idea is to first coarsen the graph by reducing the number of
vertices, partition the resulting smaller graph and scale the
result back up to the original graph.

The coarsening phase is done in a large number of itera-
tions. In each step at first a maximal matching is calculated,
which is a subset of edges of a graph so that the selected
edges have no common adjacent vertex. Two vertices that
are adjacent in the resulting set are then merged together in
the original graph. Each vertex and edge receives a weight
to keep track of the number of vertices or edges that were
merged into this vertex or edge. METIS provides four dif-
ferent algorithms to compute the maximal matching.

When the number of vertices in the graph is small enough
to perform an inexpensive partitioning, the second phase
begins. A minimum k-way edge cut is calculated while tak-
ing the vertex and edge weights into account to balance
the partitions. METIS again provides four different algo-
rithms to calculate the minimum edge cut. After that the
un-coarsening phase begins. It is again incrementally done
in the same amount of steps phase one was completed. In
each iteration, each vertex in the finer graph is assigned to
the partition the corresponding vertex in the coarser graph
was assigned to. Additionally a partition refinement algo-
rithm is used, which tries to swap the partitions of two sets
of vertices and tests if the new allocation leads to fewer
cross-partition edges. Again, multiple algorithms are pro-
vided[14][16].

3.3.2 Use Case
METIS becomes very customizable by dividing its pro-

cess into clearly confined phases. Since each step may be
optimized for the specific needs of an use case, METIS can
be used in a lot of situations. Some of the prebaked vari-
ants of METIS include hMETIS with a focus on quality and
kMETIS with a focus on speed. There also exists ParMETIS,
which makes the algorithm able to concurrently run on mul-
tiple machines[1].

3.4 Ja-be-Ja
Ja-be-Ja is another min-cut algorithm whose main focus

lies in parallelizing the process of finding the best partition-
ing. It performs no global operations on the graph, which
would require costly synchronization between the machines.
It also requires no strict synchronization, which means that
changes on subsets of all nodes don’t have to be propagated
to the rest of the graph. With all of these parallelizing mech-
anism in place, Ja-be-Ja still claims to have a result compa-
rable to the one of the METIS algorithm[15] while having a
much lower execution time on its application fields[20].

3.4.1 Algorithm
Below we will roughly describe the steps of the Ja-be-Ja

algorithm. Just like in the original paper we will refer to the
partition of a node as the color of the node.

In its initial step Ja-be-Ja initializes each node with a
random color according to the users requirements. Since
Ja-be-Ja later on only performs color swaps on the graph,
it is guaranteed that the initial color distribution will be
kept until a solution is found. This also makes it possible
to create partitions with different, predetermined sizes, by
adjusting the frequency of the colors in this first step.

u

a b

v

Figure 1: Nodes a and b swap their colors only if
α > 1

Next, for every node each of its neighbors and some nodes
from a uniform random sample from the graph are stored for
later reference. Ja-be-Ja uses the Newscast algorithm[24] for
its examples and benchmarks, because it can take a uniform
sample of the graph with low cost and without global op-
erations or strict synchronization. Rahimian et al.[20] list
however multiple other techniques to take a uniform sample
of a graph.

Now the core mechanism of Ja-be-Ja comes into play:
Each node iterates through its stored samples of nodes and
selects a node according to a given algorithm, which we will
describe in more detail below. In short, each node checks if
a swap of colors would result in overall less cross-color-edges
in the neighborhood of the two nodes. If both nodes come
to the conclusion that a swap is beneficial, it is executed.
This algorithm is performed for each node of the graph in
parallel, until a given time limit is reached. The whole algo-
rithm is then repeated many times with different initial ran-
dom distributions of colors following the Generic Multistart
Paradigm[23] and the result of each iteration is compared in
the following manner: every time an edge-cut of the graph
is calculated via a gossip-based aggregation method[13] and
that is used as a metric to compare the solutions to find the
one that overall performs best.

3.4.2 Customization
The formula used to decide whether or not two graph

nodes should swap their colors makes use of a lot of param-
eters that can be fine-tuned based on the application field
and the type of graph. Two nodes p and q swap their color
if the following formula holds true:

(xp(πq)
α + xq(πp)

α) ∗ T > xp(πp)
α + xq(πq)

α (4)

In this inequation xa(πb) stands for the number of neigh-
boring nodes of node a that have the color of node b. This
means that if we choose α = 1 and T = 1, two nodes will
swap their colors if they have strictly less nodes of their own
color in their neighborhood than they have nodes with the
color of the other nodes in their neighborhood.

In the example given in figure 1 the nodes u and v would
swap their colors if one of them holds a reference to the other
one. This is because xu(πv) = 1, xv(πu) = 1, xu(πu) = 0
and xv(πv) = 0 and therefore because of T ≥ 1

(1α + 1α) ∗ T = 2 ∗ T > xp(πp)
α + xq(πq)

α = 1. (5)

α is a parameter that forces the exchange of colors on
nodes if one node profits a lot from the change, even if the
overall number of cross-color edges stays the same or even
goes up. In the example given in figure 1 this would affect
the swap of the nodes a and b: Although a swap of these
two nodes does not result in a lowering of the number of
cross-color edges (xa(πb) = 1, xb(πa) = 3, xa(πa) = 2 and
xb(πb) = 2, 1 + 3 ≯ 2 + 2), the colors of the two nodes are
swapped if α > 1 (1α+3α > 2α+2α for every α > 1). A swap
in this kind of situation was found to often be desirable, and
how to tune this parameter correctly is described in great
length in the original paper[20].
T is a temperature parameter as taken from the Simulated

Annealing technique[23]. It decreases over time towards 1
and tries to prohibit local optima. This is achieved by al-
lowing unfavorable swaps in the beginning which can get
the graph out of a local optimum. Later, when the Temper-
ature T approaches one, swaps have to be more conserva-
tive so that the currently targeted optimum can be reliably
reached. The Temperature T can be tweaked by setting the
initial temperature T0, which has to be greater or equal one,
and the decrease of temperature per round δ. The tempera-
ture at round r is then calculated by Tr = max(Tr−1− δ, 1).

3.4.3 Usage Example
Ja-be-Ja is not only used in the partitioning of graph-

structured databases or in the partitioning of list structured
databases (as we will later see with Schism[7]), but is also
used in the context of graph processing. E. Carlini et al.[6]
propose the use of Ja-be-Ja in the graph processing frame-
work Apache Spark because of Ja-be-Ja’s focus on paral-
lelism. However the authors had to alter the Ja-be-Ja’s al-
gorithm to accommodate the use case circumstances: while
Ja-be-Ja allowed every node to compute its next swaps in
its own pace, this implementation synchronizes all compu-
tation and swaps between the states of computing the next
swap and communicating to the target node. This imple-
mentation also needs every node to know the neighborhood
of every node in their selection, which further adds memory
and time overhead.

3.4.4 Conclusion
Ja-be-Ja claims to have a similar result in terms of qual-

ity like METIS[15], while parallelizing the process of finding
a solution and therefore improving the performance on dis-
tributed graphs[20], which makes it ideal to use on for large
graph data structures. It furthermore offers multiple con-
nection points for the potential of customization. For these
reasons it is a widely used algorithm in database partition-
ing and will be used in some of the other algorithms that we
will present in this paper.

3.5 Schism
Schism is a database partitioning algorithm that works on

relational databases and tries to find a partitioning strategy
that works best in the given situation. What makes Schism
stand out of the database partitioning algorithms is its inter-
nal use of a graph partitioning algorithm and its attention
to the specific workload of the given database, which it ex-
trapolates from a given sample workload. It may be used as
partitioning scheme for a database management system[7].

Schism takes a representative workload (f.e. a SQL trace)
and a database as input and first constructs a graph with

1 2 3

4 5

1

1

1

1

1

12

Figure 2: Schism graph for a sample table and work-
load

a node per database row. For each access of two rows in
the same transaction in the given workload a graph edge is
added. After that a balanced graph partitioning algorithm
is applied on the graph to produce a potential partition-
ing. At last the sample workload is analyzed to find the
most frequently accessed attributes and adds them to spe-
cial dedicated partitions.

3.5.1 Shared-Nothing
Schism is optimized to operate on shared-nothing data-

bases[7]. This means that each machine has sole access to
the data it holds and is therefore the only machine that op-
erates on and works with the subset of the data it holds.
In a pure shared-nothing architecture there exist no shared
memory or data storage. This has the advantages of having
no single point of failure (if a machine fails only the data it
works on is temporarily not available) and being very scal-
able, as enlarging the database can simply be done by adding
more machines.

3.5.2 Graph Partitioning
Figure 2 shows an example corresponding to a single ta-

ble with five rows, which were assigned indices from 1 to 5.
Edges connect nodes that are used in the same transaction
in the sample workload. If two nodes are used in two trans-
actions together, the weight of the edge that connects them
is incremented. In the above example, each style of an edge
stands for a common transaction. For example, the nodes 1
and 2 may share a transaction that had the following lines
in it:

SELECT * FROM table

WHERE id < 3

Two nodes with index 2 and 5 where both used in two
transactions, so their node weight is set to two.

After that a graph partitioning algorithm is used to cre-
ate non-overlapping workload- and data size-balanced parti-
tions. To make the partition data size-balanced, each node
can be provided with a weight. A partition weight then is
the sum of its node weights, which the graph partition al-
gorithm tries to equalize. Furthermore it tries to minimize
the number and the weight of the cross-partition edges.

Furthermore Schism tests for each row if it should be given
solely to one partition or if it should be replicated over all
partitions and afterwards constantly be updated on every
machine if it changes. This would reduce the traffic between
nodes. In general, tuples that change often according to the
sample workload are not replicated because the cost of up-
dating its value on every partition increases with the number
of updates.

Schism uses the METIS algorithm[15] as a balanced graph
partitioning algorithm but notes that any graph partitioning

algorithm may be used here, possibly including ones like
Ja-be-Ja[20], parMETIS[1] or KaFFPaE[22], which offer a
better performance than METIS because of a distributed
workflow with a similar result[20].

To further improve performance Schism uses a look-up ta-
ble on a separate machine that stores the key of each element
and maps to the partition it is stored on. This significantly
improves performance of SQL WHERE-queries that search
for specific keys as they do not have to traverse the whole
database anymore.

3.5.3 Conclusion
Schism in considered the state-of-the-art academic ap-

proach for shared-nothing database partitioning[19]. It can
be used in many situations as it does not depend on the
underlying structure or schema of the database and can be
customized in many aspects.

4. PARTITIONING ALGORITHMS FOR
DATA PROCESSING

After having described some algorithms to partition data
into databases, we will now discuss partitioning in the con-
text of data processing. When talking about data processing
with large amounts of data, then one important point is par-
allelization. This allows to process more data at the same
time on multiple machines. This however only works if the
load is balanced fairly amongst all the machines. How the
data will be partitioned and how the load can be balanced
will be discussed in the following, in particular in the con-
text of the MapReduce algorithm which allows the user to
implement a custom partitioner.

4.1 MapReduce

4.1.1 The Algorithm
A popular algorithm to process large amounts of data is

the MapReduce algorithm. This algorithm allows to pro-
cess data in parallel and thus processing it faster. Data is
stored in partitions which are distributed over different ma-
chines. In the map phase, data stored on such a partition
is passed through a mapping function which outputs inter-
mediate < key, value > pairs. This phase runs in parallel
on every machine. The second phase is called the reduce
phase, in this phase the outputs from the map phase get
combined together to create the desired output. Between
those phases there is a partitioner, which takes the interme-
diate < key, value > pairs and decides which key gets as-
signed to which reducer, the keys are not unique and pairs
with the same key get assigned to the same reducer[5]. How
this decision is made depends on the partitioner, this par-
titioner can either be the standard partitioner or another
custom partitioners, how some of these partitioners work
and what their advantages and disadvantages are, are dis-
cussed later in this paper. On every machine, the reduce
phase can only happen after the map phase, however the
reduce phase can start before every mapper is finished, this
is what Ibrahim et al.[12] define as synchronous implemen-
tation of MapReduce since the map phase and the reduce
phase can run concurrently[12].

4.1.2 Standard Partitioner in Hadoop
A popular framework implementing the MapReduce algo-

rithm is Apache Hadoop[2]. As explained in section 4.1.1 to

partition the keys in MapReduce the user can either create
a custom partitioner or he can use the standard partitioner.
To mitigate the problems of the range partitioning and use
the benefits of both hash and round-robin partitioning, the
standard partitioner in Apache Hadoop determines the re-
ducer to which the keys are partitioned with the following
formula2[5]:

hash(intermediate key) modulo n

n is the amount of available reducers. By hashing the inter-
mediate keys it is assured that the keys are randomly dis-
tributed and the modulo assures that each reducer receives
the same amount of keys. However the combination of both
methods still doesn’t solve the problem of partitioning skew,
the frequencies of keys is ignored, a key that is much more
frequent will produce a higher load, and thus the standard
partitioner is not sufficient if data skew is present. To solve
the partitioning skew problem different methods were devel-
oped[12][27] which we will discuss in the following section.

4.2 LEEN
LEEN is an algorithm that can be used as a partitioning

algorithm in Hadoop’s MapReduce as discussed in section
4.1.1 In their paper Ibrahim et al. discuss how partition-
ing skew results in excessive data transfer when the keys get
assigned to reducers. This algorithm tries to solve this prob-
lem by being locality-aware, in the context of [12] this means
the algorithm tries to keep the data on the machine where it
originally was. Furthermore this algorithm is also fairness-
aware, meaning that it tries to assign the same amount of
data to process to each reducer.

4.2.1 Asynchronous MapReduce
As explained LEEN was developed for the MapReduce al-

gorithm, and as explained in section 4.1.1 the reducers can
start working before every map function is finished. In order
to achieve the best results LEEN proposes an asynchronous
implementation of the MapReduce algorithm. Asynchronous
in this context means that the reduce phase can only start
after every mapper is finished, in opposition to the syn-
chronous implementation of MapReduce in which the re-
duce phase can start before the map phase is completely
finished. The asynchronous implementation is used in order
for LEEN to have information on all the keys frequencies
and distribution and thus achieve better locality and fairer
distribution[12].

4.2.2 Algorithm
The objective of LEEN is to partition the keys by trying

to balance the locality and the fairness. So we first define
those terms in this context.

Locality defines how the keys are distributed. A key that
has a high frequency in few partitions is more local than a
key that is distributed amongst many partitions, it is more
”localized”.

Fairness in this context means that the load is fairly dis-
tributed amongst all the reducers, so that resources are used
more efficiently. So fair in this context refers to the reducers
doing their fair share of the work.

LEEN now tries to find a partitioning which takes into
account the locality of the keys while at the same time trying
to assign the keys fairly.
2Some papers define this function differently.[12][27]

Since finding the best solution is too costly, LEEN applies
a heuristic. It sorts the keys according to their potential im-
pact on the network bandwidth, and then partition the keys
with the highest impact first. The impact is determined by
the frequency of a key and how it is distributed. A key that
is more frequent than other keys and at the same time is
distributed among many partitions, will require much band-
width to transfer them to the assigned partition.

After sorting the keys the LEEN algorithm now tries to
find the best partition for that key. It sorts the partitions
according to the frequency of the key that is to be assigned.
After that LEEN calculates a fairness-score. This score
expresses how the fairness will change if the key gets as-
signed to that partition that the calculation is performed
for. The score is calculated for the first partition, and then
for every following partition until the score gets worse. As
soon as the score gets worse the LEEN algorithm takes the
partition with the best score and assigns the key to it. Then
the algorithm gets repeated for the next key until each key
is assigned to a partition. That the partitions get sorted
according to the frequency is so that the partitions where
the key is most local get checked first if it would be fair to
assign the key to that partition, thus saving bandwidth.

4.2.3 Problem
One major problem of this algorithm is the need to use

asynchronous MapReduce. With heavy data skew a mapper
might take particularly long slowing the whole algorithm
down. Also there is a need of a central controller to monitor
the key frequencies, with big amount of data this might also
lead to a performance degradation[27]. Furthermore, since
the keys are not split up, if there is heavy partitioning skew
it might not be possible to fairly balance the load among
all the reducers, as shown in figure 3. No matter how the
keys get assigned, the partition that gets key 1 will have a
much bigger load, since key 1 is much more frequent than
the other keys.

However, these shortcomings are acknowledged in [12] and
they claim that even though there might be slowdowns, the
objective is to win time because of the reduced needs for
shuffling the data. In fact in their paper they achieve up to
40% faster execution times when compared to the standard
Hadoop partitioner[12].

4.3 Sampling Based Partitioning
Like LEEN the sampling based partitioning algorithm is

an algorithm that was designed to be used as a partitioner
in the MapReduce algorithm. An objective of this method
is to handle partitioning skew, such that the load gets bal-
anced between the different reducers. The main idea of this
algorithm is to be able to estimate the frequencies of the
keys. This estimation is based on a sample of the data to
be processed. One disadvantage of LEEN was that in order
to partition the data, they have to wait until each mapper
is finished. This however can lead to long waiting times if
one mapper takes much longer than the other mappers due
to data skew. Therefore Xu et al.[27] propose an algorithm
that utilizes the benefits of synchronous MapReduce.

4.3.1 The Sampling
To utilize the benefits of synchronous MapReduce, instead

of waiting for each mapper to finish, the map and reduce
phases can run concurrently. As soon as the first mapper

is finished the first reducer can begin without the need to
wait for every mapper to finish. The sampling based algo-
rithm runs in two phases. In the first phase it performs a
MapReduce on a sample of the data. This means it takes
an equally sized sample from every data set and performs a
MapReduce on the samples. The output of this phase is a
partitioning scheme, which takes < key, value > pairs and
assigns them to a reducer[27].

In the second phase the partitioning scheme created in the
first phase is used as a partitioner, thus intermediate keys
can immediately be assigned to a reducer. This allows the
map phase and the reduce phase to run concurrently without
the need to wait for every mapper to finish, in the case of
LEEN. To make a load balanced partitioning scheme, they
need an estimation of the distribution of the keys.

To obtain a sample Xu et al. select keys at random with
a probability of p = 1

ε2N
[27]. Here N is the amount of keys

in this partition and ε ∈ (0, 1) determines the size of the
sample. If ε gets smaller than the probability of a record to
be selected rises and thus the samples become bigger. To
estimate the frequency of keys in a partition they calculate
the frequency of keys in the sample as:

s(k) =
∑
i

δ(ki, k) ∀i in the sample

δ(ki, k) =

{
1, if ki = k

0, otherwise

with k being the key being counted. This gives the fre-
quency of key k in the sample. To now estimate how frequent
a key appears in a partition, they calculate:

ĉ(k) =
1

p
s(k)

In their paper they formally prove that the error between
the estimation and the real value is less than 3εε1N with
ε1 ∈ (0, 1)[27]. If a smaller error is required then it suffices
to decrease ε resulting in a bigger sampling[27].

4.3.2 Partitioning Schemes
After the sampling and calculating the estimation, Xu et

al.[27] describe two different schemes to partition the data.
The first scheme proposed by [27] is called the Cluster

Combination Optimization. In this scheme the main idea
is to partition the most frequent key to the least busy re-
ducer. All < key, value > pairs with the same key form
a cluster. The clusters are sorted descending according to
their size, then the first n clusters get sequentially assigned
to n reducers. After this step the reducers are sorted in de-
scending order according to the frequencies of the keys they
hold. Then the clusters get sequentially assigned to the last
reducer, as this reducer has the least amount of keys. After
each assignment the reducers get sorted again[27].

The second proposed method is called Cluster Partition
Combination. In the first method a problem still arises if
the data is heavily skewed. With the Cluster Combination
Optimization the reducer would be unbalanced which might
lead to a reducer needing significantly longer than the others.

In figure 3 we want to partition two clusters onto two re-
ducers. However Cluster 1 contains many more values than
Cluster 2, thus no matter the partitioning the load will be
unbalanced as the reducer getting Cluster 1 has to compute

Cluster 1

Cluster 2

Reducer 1

Reducer 2

Figure 3: Based on an example of the problem of
partitioning skew[27]

more. To resolve this Xu et al. propose a second method.
For this method, what they propose is to split up the large
clusters. This however violates the rule that each cluster
should only be processed by one reducer[27]. Therefore they
introduce a second reduce phase which merges the results.

Cluster 2

Reducer 1

MergeReducer

Reducer 2

Cluster
1a

Cluster
1b

Figure 4: Based on an example of Cluster Partition
Combination[27]

As can be seen in figure 4 the divided chunk gets reduced
by two different reducers, however with the MergeReducer
one achieves that each value from a cluster gets processed by
the same reducer, thus not violating the rule. Furthermore,
through splitting a large cluster up we see that the reducers
get more even loads, as can be seen in figure 4 compared
to 3. However this requires a second reduce phase which
means data has to be transferred from the first reducer to
the second one which might require more bandwidth.

4.3.3 Comparison with LEEN
The sampling-based algorithm and LEEN are both meth-

ods to partition data in MapReduce, however both have dif-
ferent approaches. The sampling-based algorithm tries to
achieve load balancing between the reducers. This is also an
objective of LEEN, however LEEN further tries to reduce
the data transfer during the shuffle phase, which is ignored
by the sampling based algorithm. Both describe different
methods to gather information about the key distribution.
LEEN waits for the map phase to finish and then parti-
tion according to the resulting distributions[12], however, to
achieve this LEEN has to use an asynchronous implementa-
tion of MapReduce, which results in a slower execution since
it has to wait for the slowest mapper. In comparison, to
avoid the waiting the sampling based algorithm performs a

first MapReduce on small samples and then creates a scheme
on how to partition the < key, value > pairs. Furthermore
the sampling based algorithm proposes two schemes depend-
ing on how skewed the data is. This however requires the
user to know how skewed the data in order to choose the
best scheme. In LEEN this is not necessary.

Both papers have advantages: with LEEN the amount
of data shuffled is reduced which reduces the load on the
network and thus achieves faster results, while the sam-
pling based algorithm loses time while performing the first
MapReduce but then regains that time by being able to
use the synchronous property of MapReduce[27]. So if the
data to be processed has locality properties the application
of LEEN might be better suited, however if not and if net-
work bandwidth is not a problem then the sampling based
algorithm might be best.

5. CONCLUSION AND FUTURE WORK

5.1 Conclusion
In this paper we first presented the basic partitioning tech-

niques and showed why they are not suitable for every case.
We then presented three basic and eight more advanced tech-
niques for different use cases. We ended the section of the
database techniques with Schism, an algorithm that in it-
self combines database with graph partitioning. After that
we presented different techniques for the MapReduce imple-
mentations like Apache Hadoop. Even though many of these
techniques give significantly better results than the standard
partitioning algorithms, none could provide ideal solutions,
mostly because finding the ideal solution is a NP-hard prob-
lem. Therefore many techniques use heuristics and approxi-
mations in order to achieve acceptable results. In conclusion
the reader now should have a broad notion of many different
techniques which each emphasize different aspects of either
the data as presented in section 3 or the processing as in
section 4.

5.2 Future Work
This paper created an overview of different partitioning

techniques, however no performance evaluation was made,
because that would go beyond the scope of this paper. For
future research extensive overviews for specific domains could
be created that compare different partitioning techniques us-
ing many data sets, allowing for extensive analysis on when
to use which method. Further research could also go in
the direction of looking for possible performance increases
by combining algorithmic partitioning techniques with hard-
ware accelerated techniques[26].

Another aspect to increase performance is to look into how
the data is partitioned on the individual nodes. The nodes
inside a cluster of computers often contain multiple proces-
sors, partitioning the workload among these processor in a
sophisticated manner can also lead to further performance
increases[21]. Future research might also test the combina-
tion of such techniques, with techniques presented in this
paper.

6. REFERENCES
[1] METIS homepage. http://glaros.dtc.umn.edu.

Accessed: 2018-12-18.

http://glaros.dtc.umn.edu

[2] Tutorial describing MapReduce in Apache Hadoop.
https://hadoop.apache.org/docs/stable/hadoop-

mapreduce-client/hadoop-mapreduce-client-

core/MapReduceTutorial.html. Accessed: 2018-12-16.

[3] S. Ancy and M. Maheswari. Locality based data
partitioning in map reduce. In 2016 International
Conference on Electrical, Electronics, and
Optimization Techniques (ICEEOT), pages 4869–4874,
March 2016.

[4] M. Bertolucci, E. Carlini, P. Dazzi, A. Lulli, and
L. Ricci. Static and Dynamic Big Data Partitioning on
Apache Spark. Technical report.

[5] B. â. Cambridge, â. Farnham, â. Köln, â. Sebastopol,
â. Taipei, and â. Tokyo. Hadoop: The Definitive
Guide Tom White foreword by Doug Cutting.
Technical report.

[6] E. Carlini, P. Dazzi, A. Esposito, A. Lulli, and
L. Ricci. Balanced graph partitioning with apache
spark. In L. Lopes, J. Žilinskas, A. Costan, R. G.
Cascella, G. Kecskemeti, E. Jeannot, M. Cannataro,
L. Ricci, S. Benkner, S. Petit, V. Scarano, J. Gracia,
S. Hunold, S. L. Scott, S. Lankes, C. Lengauer,
J. Carretero, J. Breitbart, and M. Alexander, editors,
Euro-Par 2014: Parallel Processing Workshops, pages
129–140, Cham, 2014. Springer International
Publishing.

[7] C. Curino, E. Jones, Y. Zhang, and S. Madden.
Schism: A workload-driven approach to database
replication and partitioning. Proc. VLDB Endow.,
3(1-2):48–57, Sept. 2010.

[8] Y. S. Devi and K. Sindhura. A Survey on Partitioning
Skew Diminishing Techniques in Hadoop MapReduce
Environment. International Journal of Innovative
Research in Science, Engineering and Technology (An
ISO, 3297(9), 2007.

[9] D. J. DeWitt and J. Gray. Parallel Database Systems:
The Future of High Performance Database Processing.

[10] T. F. Gonzalez and T. Murayama. Algorithms for a
class of min-cut and max-cut problem. In T. Ibaraki,
Y. Inagaki, K. Iwama, T. Nishizeki, and
M. Yamashita, editors, Algorithms and Computation,
pages 97–105, Berlin, Heidelberg, 1992. Springer
Berlin Heidelberg.

[11] T. Haerder and A. Reuter. Principles of
transaction-oriented database recovery. ACM Comput.
Surv., 15(4):287–317, Dec. 1983.

[12] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi.
LEEN: Locality/fairness-aware key partitioning for
MapReduce in the cloud. In Proceedings - 2nd IEEE
International Conference on Cloud Computing
Technology and Science, CloudCom 2010, pages 17–24,
2010.

[13] M. Jelasity, A. Montresor, and O. Babaoglu.
Gossip-based aggregation in large dynamic networks.
ACM Trans. Comput. Syst., 23(3):219–252, Aug. 2005.

[14] G. Karypis and V. Kumar. Metis – unstructured
graph partitioning and sparse matrix ordering system,
version 2.0. Technical report, 1995.

[15] G. Karypis and V. Kumar. Metis – unstructured
graph partitioning and sparse matrix ordering system,
version 2.0. Technical report, 1995.

[16] G. Karypis and V. Kumar. A fast and high quality

multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing,
20(1):359–392, 1998.

[17] A. McAfee, E. Brynjolfsson, T. H. Davenport,
D. Patil, and D. Barton. Big data: the management
revolution. Harvard business review, 90(10):60–68,
2012.

[18] S. Papadomanolakis and A. Ailamaki. Autopart:
automating schema design for large scientific
databases using data partitioning. In Proceedings. 16th
International Conference on Scientific and Statistical
Database Management, 2004., pages 383–392, June
2004.

[19] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware
automatic database partitioning in shared-nothing,
parallel oltp systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’12, pages 61–72, New York, NY,
USA, 2012. ACM.

[20] F. Rahimian, A. H. Payberah, S. Girdzijauskas,
M. Jelasity, and S. Haridi. Ja-be-ja: A distributed
algorithm for balanced graph partitioning. In 2013
IEEE 7th International Conference on Self-Adaptive
and Self-Organizing Systems, pages 51–60, Sept 2013.

[21] D. SaccA CRAI Rende and C. Wiederhold. Database
partitioning in a cluster of processors. Technical
report.

[22] P. Sanders and C. Schulz. Distributed Evolutionary
Graph Partitioning, pages 16–29.

[23] E.-G. Talbi. Metaheuristics: From Design to
Implementation. Wiley Publishing, 2009.

[24] N. Tölgyesi and M. Jelasity. Adaptive peer sampling
with newscast. In H. Sips, D. Epema, and H.-X. Lin,
editors, Euro-Par 2009 Parallel Processing, pages
523–534, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[25] J. Ugander and L. Backstrom. Balanced Label
Propagation for Partitioning Massive Graphs.

[26] L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross.
Navigating big data with high-throughput,
energy-efficient data partitioning. ACM SIGARCH
Computer Architecture News, 41(3):249, 2013.

[27] Y. Xu, P. Zou, W. Qu, Z. Li, K. Li, and X. Cui.
Sampling-based partitioning in mapreduce for skewed
data. In Proceedings - 7th ChinaGrid Annual
Conference, ChinaGrid 2012, pages 1–8, 2012.

https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

API-Driven Architecture and Development

Marian Kreiser
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

marian.kreiser@rwth-aachen.de

Pascal Brunner
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

pascal.brunner@rwth-aachen.de

ABSTRACT
In recent years several tools have been created to aid devel-
opers with the process of API development. API description
languages like API Blueprint or the OpenAPI Specification
allow developers to describe, produce & visualize APIs in-
dependent of their implementation. Older approaches like
SOAP or WSDL have mostly been replaced by REST APIs
which provide similar functionality and use existing infras-
tructure of the web like HTTP / HTTPS for communication.

Nevertheless modern media landscape requires more per-
meability, and increased flexibility in how we deal with in-
formation. That is why modern API designers came up
with new concepts that go beyond the typical CRUD (Cre-
ate, Read, Update and Delete) principal. Design trends
like Event Subscriptions, Content Negotiation or On-Device
APIs mirror what we actually use APIs for.

This paper will on the one hand sketch out the current
state of the art in context of API development and design,
and on the other hand show challenges in those design ap-
proaches. Beyond that, we want to point out some new
trends and methods to address those challenges, in order to
develop APIs for modern software systems like the voice-
assistant Alexa.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—productivity, programming teams,
software configuration management

Keywords
API Development, Software Development, Software Archi-
tecture, REST, Spring Boot, GraphQL, Swagger, API Blueprint

1. INTRODUCTION
Modern software developers spend much of their time mak-

ing design and architecture decisions. Designing an appro-
priate Application Programming Interface (API) that offers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2018/19 RWTH Aachen University, Germany.

all the required functionality while providing proper docu-
mentation for its users is a challenging task for developers.

In recent years many techniques and tools have been de-
veloped to aid with API Development. However with the
pure number of different standards, tools and conventions
it is hard to stay on top of things. In this paper we try
to give an overview over some of the concepts, tools and
techniques available. We start by looking at how APIs are
designed. There we talk about the so-called “API-First ap-
proach” which makes the API a ”first-class citizen” in a
project. We then switch over to the implementation side
of things and look at some key areas in API implementation
like security, robustness and reliability. We also introduce
the REST paradigm which many APIs implement today.
After that we introduce some Tools and Frameworks like
Spring Boot or Swagger that can help with various aspects of
API development. Subsequently we look at some of the lim-
itations present in current API development and the prob-
lems and challenges that arise from them. Finally we exam-
ine some future and upcoming trends that provide alterna-
tives or improvements to existing technology like GraphQL.
At the end we summarize our findings in a conclusion and
think about some possible future areas that might be im-
portant to investigate.

2. STATE OF THE ART
To give an overview on state of the art, we will give a short

introduction to design methods, best pratices and commonly
used tools in API developoment. Thereby we will start
with elaborating API design methods like the API-First ap-
proach. We will continue explaining some best practices in
security and reliability and finally elucidate tools like Spring
Boot or Swagger.

2.1 API design methods
Software developers and even whole companies are work-

ing on methods and guidelines to standardize APIs. These
guidelines include more concrete approaches like“Public classes
should not subclass other public classes for ease of imple-
mentation” [6], or some general behavior, like “A good API
should be easy to use, even without documentation” [6].

Nevertheless, guidelines are always on a more concrete
and technical level. Regarding methods in API develop-
ment, many companies try to follow the so called “API-First
approach”. API-First approach means that for any given
development project, your APIs are treated as “first-class
citizens”. That means everything about a project revolves
around the idea that the end product will be consumed by

other applications [31]. The API-First approach helps to
organize the entire development process and enables multi-
ple people to work on components in parallel. While older
techniques forced front-end developers to wait for their back-
end developer colleagues to finish the interfaces, API-First
gives teams the ability to work against each other‘s pub-
lic contracts without interfering with internal development
processes [18]. This allows the developers to focus only on
the business logic[30] instead of getting caught up in im-
plementation details and by designing API-First, software
developers are able to facilitate discussion with their stake-
holders well before the projects complexity reaches a point
where it is hard to make structural changes.

Another major factor in API development is the level of
documentation. One thing you will observe in all enterprises
who have made it big in API economy (i.e., Twitter, Expe-
dia, etc.) is that their APIs are easy to use [30]. Those APIs
have extensive documentation and are often supported with
specific tools, like mentioned in 2.3.

Summarizing, API design methods are only a small part
of the whole API development and architecture process, but
have a huge influence on API development and quality. State
of the art design methods allows the management of chal-
lenging tasks in modern software projects.

2.2 Implementation Best Practices
Just as important as the design of an API is the actual

implementation. Especially when handling sensitive or pri-
vate data you have to make careful decisions to keep your
clients data safe.

2.2.1 API-Security
APIs are meant to be as open and visible as possible

so that other applications and services can easily integrate
them. However this openness also creates additional security
risks as it provides new pathways for malicious entities to
get into applications and systems [8]. While some of these
issues, like bugs in operating systems or web servers, are
out of the reach of an API developer, there are still some
approaches you can take to make your API more secure.

It is important that you always assume someone wants to
get access to your data [3]. Even if your API is not meant to
be accessible from the outside you should still secure it as if
it was. Any data that is private or sensitive must be hidden
behind an Authentication and Authorization layer. A com-
monly used method for a client is to obtain some kind of API
key beforehand that both authenticates and authorizes him.
Standards like OAuth make this easier and allow users to
grant third party services access to specific data. Especially
there, developers should give attackers as little information
as possible. When a client fails to authenticate, sending him
a generic authentication error message gives out much less
information than a “Wrong Username Error”.

Another fundamental security requirement is encryption,
keeping authentication credentials safe during transit is es-
sential. Keeping up to date with modern encryption algo-
rithms is important as weaknesses in older security proto-
cols are found all the time. In addition signing your API
Requests and Responses allows both client and server to be
sure that the data has not been tampered with. For HTTP
based APIs using a modern version of Transport Layer Se-
curity (TLS) is an easy way to achieve this.

2.2.2 API Robustness
In computer science robustness refers to “the ability of a

computer system to cope with errors during execution and
cope with erroneous input.” [32]. Especially the second part
is also a desired property of APIs since you generally have
to deal with input that is controlled by clients.

Even if a client is properly authenticated and authorized
you should still not trust the data in their requests. Always
validate and sanitize the parameters and content of API Re-
quests and discard any that do not conform to the rules of
your API. Attacks like SQL Injection or Cross-Site-Scripting
have long been known about but are still exploited today.

If you are logging parts of a clients request make sure that
customer data is omitted from the log files and any data
clients have control over is properly sanitized. Otherwise
attackers might be able to coerce your server into executing
arbitrary code through a so called log injection attack.

2.2.3 API Reliability
Even if your API is secure, that does not help if it is not

accessible in the first place. To keep your API stable and
usable even under load you can apply quotas to your APIs
and throttle clients that exceed them. This also prevents
clients from misusing your API. Quotas can also be used as
a business model, charging users based on the amount of API
requests they make is a business model that companies like
Google use. Depending on the nature of your API caching
can also greatly decrease the requests that actually reach
your API. Having one or multiple backup APIs that traffic
gets redirected to as necessary can help with traffic spikes.
[3]. If applicable a container based approach like Docker
allows you to easily scale your system if demand increases.

2.2.4 REST
Many Web APIs you will find today call themselves REST

(Representational State Transfer) APIs. To be called Rest-
ful an API has to comply with six constraints:

1. There has to be some kind of client-server relationship.
Unlike SOAP APIs where clients are tightly coupled to
their specific server, REST clients and servers should
be able to evolve independently of each other [10].

2. The API has to be stateless, each request from a client
must contain all the information the server needs to
respond to it. This keeps the session state entirely
client side which allows for easy scaling. It also makes
the API reliable as it is easier to recover from partial
failures.

3. Data in API responses should be implicitly or explic-
itly marked as cacheable or non-cacheable by the client.
Allowing a client to cache data can reduce or even elim-
inate the API requests it has to make and therefore
improve efficiency and performance.

4. The API is required to have a uniform interface, REST
imposes four interface constraints: identification of re-
sources; manipulation of resources through represen-
tations; self-descriptive messages; and, hypermedia as
the engine of application state [10].

Individual resources are identified in the request, for
example using the URL in web based REST APIs. The

actual resource on the server is different from the rep-
resentation that is returned to the client. A server
might return data from their database in any kind of
format like JSON or XML none of which necessarily
match the actual data stored. Though if a client holds
a representation of a resource, that has to be enough
information for it to modify or delete it.

Data returned by the server is also required to have
some kind of media type attached to it so the client
can decide how to handle or display it on its own.

A REST client should also be able to discover all meth-
ods and resources a server has to offer from an initial
URL. The server should respond to requests with links
to additional resources and actions that are available.
This will be further elaborated on in the ”Hypermedia
and HATEOAS” chapter of this paper.

5. The API should be layered, each component should not
be able to “see” beyond the layers it directly interacts
with. While this does add some overhead it further im-
proves scalability and allows independent development
of components. Since the client doesn’t know whether
it is talking directly to the API or some intermediary
this can also be used to implement load balancing or
enforce security policies.

6. The last constraint is called“code-on-demand”. Servers
should be able to send their clients executable code to
extend or customize their functionality. This simplifies
clients as less features have to be implemented in them
and allows for easy extendability. Since not every API
requires this kind of customizability and it decreases
visibility of the API itself this constraint is optional
and might even only be applied to parts of the system.

Much of the required infrastructure for a REST API is al-
ready available in the WWW in the form of web servers and
HTTP clients, a server serving a static website to a client
is effectively RESTful. That makes REST a great fit for
Web APIs as it is easy to implement and already available
technology like HTTP or SSL can be used for REST APIs.

2.3 Tools and Frameworks
As software systems get more complex and more powerful

all the time, software engineers develop tools and frame-
works to support API development. As there are many
different disciplines in API development, there are various
tools. Some of these tools will be introduced in the following
chapter.

2.3.1 Spring Boot
The Spring Framework is an application framework for

the Java platform. The framework’s core features can be
used by any Java application. Up to this the Spring Frame-
work is open source, but there are extensions for building
web applications on top of the Java EE (Enterprise Edi-
tion) platform, for which the source code is not available
[35]. One of the extensions build upon Spring is Spring
Boot, a convention-over-configuration solution for creating
stand-alone, production-grade Spring-based Web Applica-
tions [35].

As Spring Boot is a convention over configuration frame-
work, developers using this framework are required to make

few decisions, while there is nearly no loss of flexibility. Con-
vention over configuration itself is a software design paradigm,
where a developer only needs to specify unconventional as-
pects of their application. When the convention implemented
by the tool matches the desired behavior, it behaves as ex-
pected without having to write configuration files.

Spring Boot provides a simple and fast way to set up,
configure, and run both simple and complex web-based ap-
plications. It chooses dependencies, auto-configures all the
features and and allows the developer to quickly create a
runnable application. Furthermore, it also simplifies the de-
ployment process of applications [21]. Spring Boot offers
the option to package the whole application as a JAR-file,
including all required components like for example the web
server.

Listing 1: Spring Boot example

1 @RestController
2 @RequestMapping(”/events”)
3 public class EventController {
4
5 @GetMapping(path = ”/{eventId}”)
6 public Mono<EventDetails> getEventDetails(
7 @PathVariable(value = ”eventId”) String eventId)
8 {
9 return adapter.getEventDetails(eventId);

10 }
11 }

Listing 1 shows a simple example for a Spring Boot class.
The code is written in Java and describes an API Route to
look up details about an event. All necessary imports for
underlying frameworks are managed through Spring Boot
itself. The class is marked as a “@RestController”, in line 1,
and handles the “/events” Route, as defined by the “@Re-
questMappings” annotation, in line 2. In the class a method
is implemented that handles the sub route for event details.
Through the use of curly brackets “eventId” is defined as a
parameter for this request. Spring will call this method with
the parameter extracted from the URL. The EventDetails
returned by the method will automatically get serialized to
JSON, embedded in a http response and sent back to the
client.

Spring Boot is one example for a category of software
frameworks, which all have the purpose of supporting APIs
based on REST. There are several more frameworks, like
Django, Google Web Toolkit, JSF or Node.js, which all sup-
port creating REST interfaces, with Spring Boot being one
of the more popular ones.

2.3.2 Swagger
Swagger is a synonym for two different concepts related to

API development. One of those concepts is the “OpenAPI
Specification”, originally known as the “Swagger Specifica-
tion”, which is a specification for machine-readable interface
files for describing, producing, consuming, and visualizing
RESTful web services [34]. Applications implemented based
on OpenAPI interface files can automatically generate doc-
umentation of methods, parameters and models. The Ope-
nAPI Specification is language-agnostic, therefore it is pos-
sible to adapt it into new technologies and protocols beyond
HTTP [14].

The other meaning of Swagger is an open-source software

framework backed by a large ecosystem of tools that helps
developers design, build, document, and consume REST-
ful Web services [36]. This software framework has been
created, to simplify writing and documenting APIs. The
swagger tooling differentiates primarily between three use
cases.

The main one is developing APIs, where Swagger may
be used to automatically generate an Open API document
based on the code itself. Alternatively, using Swagger Code-
gen [12], developers can decouple the source code from the
Open API document, and generate client and server code
directly from the design.

The second use case, Swagger is meant for, is interact-
ing with APIs. Using the swagger-codegen [12] project, end
users generate client SDKs directly from the Open API doc-
ument.

The last use case is documenting APIs, whereby Swag-
ger open source tooling may be used to interact directly
with the API through the Swagger UI [13]. This project
allows connections directly to live APIs through an inter-
active, HTML-based user interface. Requests can be made
directly from the UI and the options explored by the user of
the interface.

2.3.3 API Blueprint
API Blueprint is a high-level API description language for

web APIs. In API Blueprint you can define API templates as
“.md” files, using an extended Markdown-like syntax. Those
files will later on be translated to HTML documents, that
visualize the API structure in a clear way. The blueprints
themselves start with a metadata section, where you can
define for example the used format. Headings start with
one or more “#” symbols followed by a title. Actions can
for example be defined by “+”. Listing 2 shows a simple
example for a blueprint.

While description languages like JSON are often confusing
about their structure, API Blueprint is simple and accessi-
ble to everybody involved in the API lifecycle [4]. Its format
is far more human readable than JSON and can even be
used to create server mocks, which are invaluable in testing
service ecosystems [18]. API Blueprint is built to encourage
dialogue and collaboration between project stakeholders, de-
velopers and customers at any point in the API life cycle.
Furthermore it is completely open sourced under the MIT
license allowing anybody to use or modify it.

A valuable design feature of API Blueprint is, that it is
built to encourage better API designs through abstraction.
The goal of API Blueprint is to decouple elements of the
API to enable modularity while encapsulating back-end im-
plementation behavior. It is designed to follow the API-First
approach. Similar to tests in test-driven development, API
Blueprint represents a contract for an API.

Listing 2 describes an example for a simple API defined
by API blueprint. Line one defines the HTTP method, that
is used for calling the API, in this case a PUT method. Line
three and five define the possible parameters, which are in
this case plain text or JSON format. At last the return value
is given inside the response part. API Blueprint is able to
translate this format to an HTML document. The resulting
HTML document for Listing 2 can be seen in Figure 1. The
example above is one simple case, but API Blueprint can
also be used to represent more complex data structures. As
data structures get more complex API Blueprint automat-

Figure 1: HTML result for API Blueprint example

ically generates the corresponding JSON structure used in
the implementation. The exported HTML page will provide
the visualization for this underlying structure.

Listing 2: Simple API example defined in API
Blueprint

1 ### Update a Message [PUT]
2
3 + Request Update Plain Text Message (text/plain)
4 All your base are belong to us.
5 + Request Update JSON Message (application/json)
6 { ”message”: ”All your base are belong to us.” }
7 + Response 204

2.3.4 Apiary
Apiary is a sub-tool from Oracle, which means that it is

a tool, designed to support another tool, in this case API
Blueprint. One of its main features is generating server
mocks out of API Blueprints. The combination of API
Blueprint and Apiary allows developers to design APIs as
blueprints, mock those APIs and run automated tests as well
as validations. Since all of this is possible without writing
any implementation code the whole development team can
use the back-end immediately without waiting for it to be
finished. Apiary is also bilingual, instead of API Blueprint
you can also use the Swagger Specification for your server
mocks.

3. CHALLENGES AND LIMITS IN CURRENT
DESIGN

The world of API development is one of constant evolu-
tion. The magnitude of data we dealt with in the 1990s is
not comparable to the one we deal with in 2018, and because
of this, the ways APIs are designed had to change and new
approaches had to be found. There are many issues in the
API architecture space that we are only just now becoming
aware of [26].

APIs are largely evolving, as a result, many of the issues in
the modern API space derive from the fact that developers
have been effectively putting a band-aid over the problems
of past implementations and approaches.

In the 1990s, the concept of Distributed Object Integra-
tion (DOI) reigned supreme, allowing resources to be col-

lated and linked to one another for users to more fully ma-
nipulate and integrate with.

Following this, in the early 2000‘s, the movement to and
support for SOAP for corporation-to-corporation integration
and resource sharing made DOI-style systems somewhat ob-
solete. SOAP reigned on high for many use cases, but had
significant issues that required further systems to be devel-
oped, iterated upon, and implemented in the foreseeable fu-
ture [26].

With the coming of the 2010‘s, APIs shifted away from
stateful APIs designed for network stacks and into the con-
cept of stateless design with a focus on mobile data inte-
gration. REST was a great fit since it could easily be im-
plemented using the existing HTTP infrastructure and pro-
vided basic CRUD operations. This makes it easy to use,
understand and write services against it. REST also makes
efficient use of bandwidth, as it is less verbose than SOAP.
Unlike SOAP, REST is designed to be stateless, and REST
requests can be cached for better performance and scala-
bility. Smartphones, once thought to be a limited field of
telecommunications, are nowadays micro-supercomputers,
and our data solutions had to appropriately scale to meet
this increased demand.

RESTful design was quickly taken to by developers as a
standard. APIs in general are thereby designed for CRUD
actions (Create, Read, Update, Delete). In the regular pro-
cess of an API, the user requests a resource be created, that
they read a resource, that a resource is updated, or that the
resource is deleted. Every single function a CRUD-centric
API will do is a simple combination of those four elements,
and nothing more [26]. This was fine before, but the modern
media landscape requires more permeability, and increased
flexibility in how information is dealt with. Because of this,
the CRUD model is inefficient because it does not mirror
what we actually use APIs for anymore.

As an example for the limitations of CRUD, imagine call-
ing a voice-assistant like Amazon‘s Alexa with “Alexa, add
my reminders for today into the calendar.”. Interfacing with
Alexa in such a way requires collations of resources and AI-
like functions to discern relevance, interest, and value - this
is not something easily done with a CRUD system, which
is why CRUD is not the design structure of the frontend
systems that drive Alexa. It is simply not enough to make
an API call, with one of the CRUD functionalities. If the
user for examples says , first of all several voice recognition
functionalities need to be called. Up to this the API would
need to perform application comprehensive tasks. A simple
CRUD functionality would only be able to perform one of
the tasks, like the CREATE action, which would be adding
a calendar entry in this case. A complex combination of
tasks wouldn’t be possible.

The APIs available in the market all have different stan-
dards regarding stability, reliability and quality; not all are
equally safe, and in some cases a few may become gate-
ways for hackers [29]. Furthermore there is another major
challenge for APIs. They can either be developed as closed
“partner-only”APIs, where a company announces with some
fanfare that it now has APIs, but you can not use them un-
less you are very important. The other situation is that a
company launches a technically great API, but does so with
no developer business model. The closed-API model ends
up missing the big opportunities because, it relies on hand-
crafted partnerships that inevitably try to pick winners and

losers before a line of code has been written by quickly be-
coming about things like exclusivity and co-marketing [5].
In many ways, having a poorly thought out API monitiza-
tion model is even worse than not having one at all, because
it does not provide sustainable incentives and rewards to
either the API provider, the developer or the user.

Monetization has an impact on API design, because for
the different business models different design approaches
need to be implemented. If your API is designed open, you
need to focus on robustness, because theoretically everybody
can use your API. Also your servers need to be scalable, to
handle possible traffic. In comparison to that, a closed API
can have difficulties in its authentication, because you need
to define authentication methods for the clients that should
be able to access your API.

Furthermore there are some timeless challenges, that any
developer has to face during API development. One of those
is the problem of enhancing and versioning APIs. A version
change usually indicates a milestone in the codebase of the
API. It declares a change in the requirements of API con-
sumption and implementation. Often, these new versions
become whole new products. Although they share a com-
mon ancestry, new versions of legacy APIs require careful
thought about their implementation.

Changes that can warrant a new version include for exam-
ple removing an operation, renaming an operation and com-
plex structural changes of data types. A version increment
can also indicate significant changes to API consumption re-
quirements and therefore require changes in the underlying
resources offered by the API.

One school of thought is to focus on one unchanging URI
with just one set of criteria for consumption. If the API
structure is changed, resources altered, or parameter set
modified, then the product is re-launched with the same
URI. This pushes the obligation to refactor code to down-
stream developers.

Another consideration is backwards compatibility. For
many providers of web resource APIs, this is the primary
consideration. Maintaining multiple versions of a resource
intensive API can be a serious drain on the time and focus of
engineering teams. It can also introduce long term stability
problems to services that have moved on to more modern
architectures.

Both measures aren’t ideal to solve the problem of ver-
sioning. Also all the other mentioned challenges have no
optimal solution. This is the reason, why there are several
design trends, to adapt APIs to modern software systems
and web standards. Based on the problem, that there is
not the one ideal solution, it is onto developers to decide
between and even combine those design approaches.

4. FUTURE API DESIGN TRENDS
The following chapter elaborates some trends in API de-

velopment. We will thereby present some more general con-
cepts, like HATEOAS or Event Subscriptions, and explain
languages like GraphQL.

4.1 GraphQL
GraphQL is a query language for APIs, developed inter-

nally by Facebook in 2012. It provides a flexible approach
for developing web APIs using a type system you define for
you data. It is not made with a specific database or stor-
age engine in mind and can instead be adapted to work with

your existing code and data set. As seen in listing 3 the data
returned by the API has the same shape as the query. This
is essential to GraphQL, because you always get back what
you expect, and the server knows exactly what fields the
client is asking for [16]. It therefore preventing excessively
large amounts of data from being returned, but this has im-
plications for how effective web caching of query results can
be.

Where standard, REST based, APIs have endpoints to
several resources, GraphQL is kind of a layer in between,
which organizes the traffic and provides a single endpoint.
This endpoint can take in complex queries, and then fit the
data output into whatever shape the client requires. Basi-
cally the GraphQL layer lives between the client and one or
more data sources, receiving client requests and fetching the
necessary data according to the developers instructions.

A misunderstanding that often occurs is the belief that
GraphQL is a better REST. Comparing the two is not ap-
propriate in the first place, because REST is an architec-
tural concept for network-based software, has no official set
of tools, has no specification and is designed to decouple an
API from the client. The focus is on making APIs last for
decades, instead of optimizing for performance. GraphQL
is a query language, specification, and collection of tools,
designed to operate over a single endpoint via HTTP, opti-
mizing for performance and flexibility.

In order to provide this performance and flexibility, GraphQL
queries access not just to the properties of one resource but
also smoothly follow references between them. With typical
REST APIs you might have to follow multiple URLs to get
all your data, with GraphQL you might be able to get all
data you want in one request.

One of the problems GraphQL tries to solve is versioning.
Developers are able to add new fields and types to their
GraphQL API without impacting existing queries. This is
possible, because with GraphQL fields can be deprecated
and hidden from tools. By using a single evolving version,
GraphQL APIs give apps continuous access to new features
and encourage cleaner, more maintainable server code [15].

Listing 3: GraphQL Example

1 Query:
2 {
3 hero {
4 name
5 }
6 }
7
8 Response:
9 {

10 ”data”: {
11 ”hero”: {
12 ”name”: ”R2−D2”
13 }
14 }
15 }

4.2 Hypermedia and HATEOAS
Hypertext extends normal text by adding references (hy-

perlinks) to other texts that the reader can follow. “Hyper-
text Markup Language” or HTML is the most prominent ex-
ample of a hypertext based language. Hypermedia extends

Hypertext further, linking all types of media like images,
videos audio and plain text together. The whole WWW is
one example of Hypermedia [33].

4.2.1 Influence on APIs
In APIs Hypermedia creates tangible links between mul-

timedia and relevant resources [22]. Like described in the
REST chapter “Hypermedia As The Engine Of Application
State” (HATEOAS) is actually required for an API to be
truly called RESTful. HATEOAS allows a REST client to
discover the functionality of an API server from a single
URL by following hypermedia links provided by the server.
If the client does not know how to handle a media type it
encounters, the server might even be able to send the client
code that allows him to do so through the code-on-demand
REST construct. Still many APIs that consider themselves
RESTful do not implement Hypermedia and instead provide
documentation a client has to be built upon.

4.2.2 Hypermedia Types for Web APIs
There are many different standards available for Hyper-

media types, in this chapter we will talk about “Structured
Interface for Representing Entities” (Siren). Unlike many
other hypermedia types you can also use Siren to define ac-
tions a client can take to alter the application state [27].

Listing 4: Siren actions example

1 GET https://api.com/user/2314
2
3 {
4 ”class”: ”user”,
5 ”links”: [
6 {”rel”: [”self”], ”href”: ”https://api.com/user/2314”}
7],
8 ”actions”: [
9 {

10 ”name”: ”change−image”,
11 ”title”: ”Change image”,
12 ”method”: ”POST”,
13 ”href”: ”https://api.com/user/2314/image”,
14 ”type”: ”image/png”,
15 ”fields”: [
16 { ”name”: ”image”, ”type”: ”file” }
17]
18 }
19],
20 ”properties”: {
21 ”id”: ”2314”,
22 ”name”: ”Max Mustermann”,
23 ”nickname”: ”mustermax”,
24 ”image”: ”https://api.com/user/2314/image.png”,
25 ”dateCreated”: ”2003−11−12”
26 }
27 }

First of all, each siren entity may have one or more classes
(Line 4) that describe the entities content. What classes ex-
ist is implementation-dependent and should be documented.

Properties (Line 20) are a set of key-value pairs that
describe the state of an entity.

Links (Line 6) represent navigational transitions. They
are not used to describe entity relationships. Each link
should have a “rel” property for describing the relationship

of the link to its entity and a “href” property to point to
the target URI. You can also specify a “type” property to
define the media type of the linked resource. Every siren
entity should at least have a self link pointing to itself. One
example of using links is a list structure where each element
has a “next” and “before” element.

Actions (Line 8) describe what behaviour an entity ex-
poses. The only required properties are the “name”, that
has to be unique, and “href” which defines the URI of the
action. “Fields” are effectively the parameter the action has
and “type” the way these parameter are encoded in the re-
quest. [28]

Listing 5: Siren sub-entities example [28]

1 {
2 ”class”: [”order”],
3 ”properties”: {
4 ”orderNumber”: 42,
5 ”itemCount”: 3,
6 ”status”: ”pending”
7 },
8 ”entities”: [
9 {

10 ”class”: [”items”, ”collection”],
11 ”rel”: [”http://x.io/rels/order−items”],
12 ”href”: ”http://api.x.io/orders/42/items”
13 },
14 {
15 ”class”: [”info”, ”customer”],
16 ”rel”: [”http://x.io/rels/customer”],
17 ”properties”: {
18 ”customerId”: ”pj123”,
19 ”name”: ”Peter Joseph”
20 }
21 }
22]
23 }

Entities can also have sub-entities assigned to them, they
can either be referenced via a link like in Line 10 or directly
embedded in the json like in Line 15.

4.2.3 Hypermedia API Examples

Listing 6: FamilySearch example [28]

1 −− GET /platform/tree/persons/PPPJ−MYZ
2 ...
3 <person id=”PPPJ−MYZ”>
4 <link rel=”ancestry” href=”...”/>
5 <link rel=”artifacts” href=”...”/>
6 <link rel=”child−relationships” href=”...”/>
7 <link rel=”children” href=”...”/>
8 ...
9 <living>true</living>

10 <gender type=”http://gedcomx.org/Male”/>
11 <name type= ... id=”name−id”>
12 ...
13 <preferred>true</preferred>
14 <nameForm>
15 <fullText>Alex Aleksandrova</fullText>
16 ...
17 </nameForm>

18 </name>
19 <fact type=”http://gedcomx.org/Birth” id=”born”>
20 ...
21 <date>
22 <original>3 Apr 1836</original>
23 <formal>+1836</formal>
24 </date>
25 <place>
26 <original>Moscow, Russia</original>
27 ...
28 </place>
29 </fact>
30 ...

One example for a Hypermedia driven API is the API of
FamilySearch. In the example, instead of just returning in-
formation about the person it also provides links to other
types of information that is related to that person like their
ancestry or their children. Linking different sources of data
is important when you try to generate new information from
otherwise unlinked data [22]. FamilySearch uses the atom
hypermedia types to represent these links in xml.

4.3 Event Subscriptions
In this type of design approach, the usual interaction be-

tween the API and the user is reversed. In a traditional
architecture, the user comes to the API, makes a request,
and then voluntarily terminates that interaction. The actual
relationship between the user and the provider is terminal
and temporary, and as such, is expressly limited [26]. The
event subscription architecture inverts this relationship. A
relationship is not longer temporary, but the user subscribes
to the information and its future updates.

This type of architecture design forces the user to sub-
scribe to an entity. Every change to the entity will then
trigger changes in the metadata and will be provided via
the data resource. The API in this case serves two primary
functions: First, the API serves the function of actually de-
livering the resources to the requesting user, and second, the
API serves as a message broker to collate publisher additions
and update those who have subscribed [26].

For this reason, event-driven architectures are very popu-
lar, and lead to improved power, bandwidth, and co-processing
than other solutions and architectures such as polling and
other poll-centric derivatives [23]. Because modern software
systems differ in their architecture there are several proto-
cols to use. The following five protocols are examples for
event-driven APIs.

4.3.1 WebSockets and WebHooks
Essentially, WebSocket is a protocol that provides full-

duplex communication on a single TCP connection. It was
standardized by the Internet Engineering Task Force as RFC
6455, and the WebSocket API in Web IDL was later stan-
dardized under the W3C banner [23]. Another functionality,
WebSockets offers is, that its protocol can be used by any
case where a client-server relationship is present, not only
with web browsers and servers, where it was originally meant
for.

Because WebSocket is expressly designed for browser op-
eration, it boasts extremely low overhead for what it actu-
ally does. By establishing a full-duplex conversation using
a standardized methodology, connection both to and from

the two entities can take place simultaneously, resulting in
lower overhead and better throughput [23]. Against that
WebSockets have one distinct disadvantage: While it might
have support for HTTP-like functionality, it is not HTTP.
This has implications, especially when considering optimiza-
tions in HTTP such as caching, proxying, etc., that haven‘t
quite become apparent. Because WebSockets are relatively
new, having been only officially standardized in 2011, the
industry is still understanding what the side effects mean.

Perhaps the strongest argument for the use of WebSockets
are the fact that they are natively supported by all major
browsers [2]. This means that any web application that ties
into it will be intractable within the vast majority of both
browser-based and browser-independent gateways and ap-
plications.

4.3.2 REST Hooks
REST Hooks is essentially “hooking” baked into REST it-

self. Defined as an initiative from Zapier, hooks are collated
to a single target URL as a subscription, which pings the
resource requester when a change is noted. This approach is
a response to the practice of polling, in which a client con-
stantly checks for changes to a resource. Under the REST
Hooks paradigm, the client instead waits for a change, and
reacts to it.

REST Hooks are very powerful, being able to passively
receive a resource rather than dedicating processing power
to constant polling frees up a lot of the client-side cost. Per-
haps the strongest argument for REST Hooks though, is the
fact that it‘s so easy and intuitive to use. While WebHooks
utilize HTTP and thus do not need new architecture to set
up, they are also limited by the fact that they are built
upon HTTP, and can thus be somewhat complex to set up
properly and use effectively.

4.3.3 Pub-Sub
Pub-Sub is a slightly different approach. Referred to by its

full name as publish-subscribe, the concept is where events
are published to a class without knowledge of the client sub-
scribing to the class. Basically, a user will join one or more
classes, and then will receive event updates without regard
or knowledge to the event publisher. The main difference
here is one of conscious choice of provider, where a user
consciously communicates with a given server or provider
and receives events as pre-determined. Under the Pub-Sub
scheme, the user only specifies which class they wish to be
part of and what events they are interested in receiving.
From there, they receive these events when one is pushed
out [23].

A huge benefit of Pub-Sub is the fact that it‘s loosely cou-
pled, and thus is extremely scalable and flexible. The only
thing the event-provider is doing is generating the content,
each other step is done through a separated middleman, and
so the content is easily scaled and modulated to the archi-
tecture and design of the solution. Decoupling is also a huge
disadvantage for this pattern. By being a middleman, Pub-
Sub cannot effectively notify the provider that a message
has been sent, and the listener is separated from the event
and thus may not know if a message wasn‘t sent that should
have been.

4.3.4 Server Sent Events
Server Sent Events, or SSE, is a communication proto-

col much like WebSockets, but with the implication of uni-
directional data. In this architecture, the server is consis-
tently sending updates to the client as an automatic process.
This was standardized under HTML5 by the W3C, and is
thus compatible with any solution that is likewise compati-
ble with HTML5 [23].

SSE is not bidirectional in its communications, so the
server is issuing the events in a steady, predictable method.
This is hugely beneficial to applications which do not need
the two-way communications baked into WebSockets or other
such solutions, as this means lower bandwidth, and an al-
lowance for the connection to be temporary rather than
always-on during the duration of data transfer. That sim-
plicity could be where SSE fails for particular use cases.
SSE is a very poor solution for situations that require bidi-
rectional communication, and while this seems obvious, it
would surprise many developers to see how many systems
actually depend on bidirectional communication for simple
functionality.

4.4 Content Negotiation
As a definition, content negotiation is a process in which a

given set of possible input variations is narrowed down to a
singular likely input that is the best possible representation
of that request for the requesting entity. The content negoti-
ation mechanism allows clients to select different representa-
tion formats from the same resource URI. It‘s a mechanism
defined in the HTTP protocol (RFC 7231) [9].

Listing 7: Language Negotiation example

1 Accept−Language : de ; q=1.0 , en ; q=0.5
2 Accept : t ex t /html ; q=1.0 , t ex t /∗ ; q=0.8 ,
3 image/ g i f ; q=0.6 , image/ jpeg ; image /∗ ;

Listing 7 describes a simple example, why content negotia-
tion is an interesting field in API development. The browser
has been configured to accept German and English, but pre-
fer German, and to accept various media types, preferring
HTML over plain text or other text types, and preferring
GIF or JPEG over other media types, but also allowing any
other media type as a last resort. As a result of that, with
correct usage of content negotiation, developers can enrich
the diversity of result types. While a simple interface can
only return objects and information of a single kind, content
negotiation based system are more flexible.

Content negotiation is a technique that has been around
for decades, but has not been adopted by many REST APIs
that serve structured data or media. When file formats
started to change very fast in the web, content negotiation
became more popular, because it is a way to design long-
lasting APIs that adapt to an ever changing world of file
formats. Content negotiation allows a user to determine
which media types they prefer to receive from the server.

4.4.1 Technology in content negotiation

Listing 8: GET Request example

1 GET / user / avatar / n o r d i c a p i s . png
2
3 Accept : image/png ,
4 image/ jpeg ; q=0.8 ,
5 image/ g i f ; q=0.8 ,
6 image /∗ ; q=0,5
7 a p p l i c a t i o n / j son ; q=0.1

Listing 9: GET Request example adapted for con-
tent negotiation

1 GET / user / avatar / n o r d i c a p i s
2
3 Accept : v ideo / av i ; q=0.8 ,
4 v ideo /mov ; 8=0.5 ,
5 v ideo /∗ ,
6 image/ g i f ; q=0.8 ,
7 image /∗ ; q=0.5 ,
8 a p p l i c a t i o n / j son ; q=0.1 ,

The following scenario describes a situation where the user
wants to retrieve an avatar photo. In Listing 8 the RFC says
that multiple formats may be specified. Because these are
later all accepted, only requesting a PNG becomes redun-
dant. Using an accept header, the developer can drop the
PNG from the resource name, and replace it with a list of
acceptable image types.

Listing 8 presents the situation. The request type is not
longer necessary, as the developer can define specific accept
types. When the application using the API in listing 8 re-
leases a new feature, as also allowing video content, it would
raise errors on client side. An content negotiation approach
is presented in listing 9. In this example the URI remains
constant, and now all the client has to do is say that they
accept videos in the HTTP accept header.

Furthermore, with the help of content negotiation, devel-
opers have another approach to face the versioning chal-
lenge. With content negotiation developers can design their
APIs more open and allow clients to receive a larger range
of return types.

4.4.2 Examples from the real world
Travis CI, a distributed continuous integration service used

to build and test software projects hosted at GitHub, stopped
serving a PNG file. But, for backwards compatibility, the
SVG version will be returned even if you request PNG or
SVG. When format adoption changes, developers may end
up returning a different file format from what is technically
requested.

WebM and Webp are alternative file formats that have
been pushed by Google. Though Google supports the for-
mats within their own apps, they mainly took care on their
own environments. However, because Google has a huge in-
fluence in the web, software developer will also need a way
to evolve their APIs for those formats.

As another example of format evolution on a trusted API-
first platform, in June 2014 Twitter began supporting an-
imated GIFs. In 2015 GIFs were adopted into JSON pay-
loads as well. The way they support it is by taking a GIF,

and converting it into a video (Mp4) for compression bene-
fits.

5. CONCLUSION AND FUTURE WORK
API development as a process has been iterated upon

many times throughout the years and many different tech-
niques and tools have arisen out of it as a result. One mayor
historical milestone was the emergence of REST and as a
consequence thereof a standard in designing web APIs.

A problem with this is that those REST constraints, as
presented in 2.2.4, are not all covered in every REST API.
In fact most of the modern APIs implement only a sub-
set of those constraints and is therefore more Rest-like than
RESTful.

With REST becoming more and more known, also several
tools got developed and published to support creating APIs.
Because REST supports the already described CRUD prin-
ciple, many APIs are limited by it in their functionality. As
a result of that, it is getting increasingly complicated to pro-
vide all the necessary information for modern client systems
and to fit modern software development structures.

As a result, CRUD is no longer always the appropriate
architectural approach like it used to be. The internet is
evolving, and so are the needs of the average user. With
this evolution of needs, API developers need to start consid-
ering additional methodologies and design approaches. In
the future, failing to do so may result in the spread of stop-
gaps designed to make CRUD do things that it is not really
meant to do.

Parallel to the development of tools and frameworks, that
should help developers to write APIs, several new design
trends have been initiated. Although some of them offer
solutions for specific challenges, none of them are able to
solve all difficulties. Approaches like content negotiation
offer a possibility to define a larger range for return types,
but with major releases in APIs, versioning is still a problem.

In conclusion, the presented design trends offer strong so-
lutions for specific problems, and are promising to say the
least. It will be interesting to see what these designs ulti-
mately create, and whether or not they will be able to fully
break free of the CRUD archetype. For future investigations
it might be interesting to see if CRUD is still applicable for
these modern use cases.

6. REFERENCES
[1] https://www.familysearch.org/developers/docs/

api/resources.

[2] Can I use Websockets.
https://caniuse.com/#feat=websockets. sighted
01.2019.

[3] State of API Security.
https://www.soapui.org/learn/security/state-

of-api-security.html.

[4] API Blueprint. A powerful high-level API description
language for web APIs. https://apiblueprint.org/,
2018. sighted 11.2018.

[5] E. Anuff. Almost everyone is doing the API economy
wrong. https:
//techcrunch.com/2016/03/21/almost-everyone-

is-doing-the-api-economy-wrong/?guccounter=1,
2015. sighted 11.2018.

https://www.familysearch.org/developers/docs/api/resources
https://www.familysearch.org/developers/docs/api/resources
https://caniuse.com/#feat=websockets
https://www.soapui.org/learn/security/state-of-api-security.html
https://www.soapui.org/learn/security/state-of-api-security.html
https://apiblueprint.org/
https://techcrunch.com/2016/03/21/almost-everyone-is-doing-the-api-economy-wrong/?guccounter=1
https://techcrunch.com/2016/03/21/almost-everyone-is-doing-the-api-economy-wrong/?guccounter=1
https://techcrunch.com/2016/03/21/almost-everyone-is-doing-the-api-economy-wrong/?guccounter=1

[6] J. Bloch. How to Design a Good API and Why it
Matters.
https://static.googleusercontent.com/media/

research.google.com/en//pubs/archive/32713.pdf,
-. sighted 11.2018.

[7] F. Curbera, M. Duftler, R. Khalaf, W. Nagy,
N. Mukhi, and S. Weerawarana. Unraveling the web
services web. IEEE INTERNET COMPUTING, pages
86–93, March 2002.

[8] T. Despoudis. 7 API Security Best Practices.
https://www.twistlock.com/2018/06/04/7-api-

best-practices/, 2018. sighted 11.2018.

[9] B. DOERRFELD. Content Negotiation For Web API
Longevity.
https://nordicapis.com/content-negotiation/,
2015. sighted 11.2018.

[10] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures.
https://www.ics.uci.edu/~fielding/pubs/

dissertation/rest_arch_style.htm, 2000. sighted
11.2018.

[11] M. Fowler. Richardson Maturity Model.
https://martinfowler.com/articles/

richardsonMaturityModel.html, 2010. sighted
11.2018.

[12] Github. Swagger Code Generator.
https://github.com/swagger-api/swagger-

codegen/blob/master/README.md, 2018. sighted
11.2018.

[13] Github. Swagger UI. https://github.com/swagger-
api/swagger-ui/blob/master/README.md, 2018.
sighted 11.2018.

[14] Github. The OpenAPI Specification.
https://github.com/OAI/OpenAPI-

Specification/blob/master/README.md, 2018.
sighted 11.2018.

[15] GraphQL. GraphQL. https://graphql.org/. sighted
12.2018.

[16] GraphQL. GraphQL Fields.
https://graphql.org/learn/queries/#fields.
sighted 12.2018.

[17] O. Hartig and J. PÃl’rez. An Initial Analysis of

FacebookâĂŹs GraphQL Language.
https://liu.diva-portal.org/smash/get/diva2:

1141747/FULLTEXT01.pdf, -. sighted 11.2018.

[18] K. Hoffman. An API-first approach for cloud-native
app development.
https://www.oreilly.com/ideas/an-api-first-

approach-for-cloud-native-app-development,
2016. sighted 11.2018.

[19] Y. Y. Hung. Writing, Mocking and Testing API
document with API Blueprint, aglio, drakov and
dredd.
https://blog.darkcl.tech/2018/03/01/Writing-

Mocking-and-Testing-API-Document-with-API-

Blueprint-aglio-drakov-and-dredd/, 2018. sighted
11.2018.

[20] A. Parecki. OAuth 2 Simplified.
https://aaronparecki.com/oauth-2-simplified/,
2016. sighted 11.2018.

[21] Z. Raffai. What Is Spring Boot?

https://dzone.com/articles/what-is-spring-boot,
2018. sighted 11.2018.

[22] K. SANDOVAL. How to Improve API Experience
Using Hypermedia.
https://nordicapis.com/improve-api-experience-

using-hypermedia/, 2016. sighted 11.2018.

[23] K. SANDOVAL. 5 Protocols For Event-Driven API
Architectures. https://nordicapis.com/5-
protocols-for-event-driven-api-architectures/,
2017. sighted 11.2018.

[24] K. SANDOVAL. How Could Artificial Intelligence
Improve API Design?
https://nordicapis.com/could-artificial-

intelligence-improve-api-design/, 2017. sighted
11.2018.

[25] K. SANDOVAL. Securing Medical IoT Devices.
https://nordicapis.com/securing-medical-iot-

devices/, 2017. sighted 11.2018.

[26] K. SANDOVAL. 7 Growing API Design Trends.
https://nordicapis.com/7-growing-api-design-

trends/, 2018. sighted 11.2018.

[27] K. Sookocheff. On choosing a hypermedia type for
your API - HAL, JSON-LD, Collection+JSON,
SIREN, Oh My!
https://sookocheff.com/post/api/on-choosing-a-

hypermedia-format/, 2014. sighted 11.2018.

[28] K. Swiber. Siren: Structured Interface for
Representing Entities, super-rad hypermedia.
https://github.com/kevinswiber/siren, -. sighted
11.2018.

[29] UNKOWN. What are APIs and what challenges do
APIs face? https://blog.signaturit.com/en/what-

are-apis-and-what-challenges-do-they-face,
2017. sighted 11.2018.

[30] K. Viswanathan. The Basics of API-Driven
Development. https://dzone.com/articles/abcs-
of-api-driven-development, 2017. sighted 11.2018.

[31] J. Wagner. Understanding the API-First Approach to
Building Products. https://swagger.io/resources/
articles/adopting-an-api-first-approach/, 2018.
sighted 11.2018.

[32] Wikipedia. Robustness (computer science).
https://en.wikipedia.org/wiki/Robustness_

(computer_science). sighted 12.2018.

[33] Wikipedia. Hypermedia.
https://de.wikipedia.org/wiki/Hypermedia, 2018.
sighted 11.2018.

[34] Wikipedia. OpenAPI Specification. https:
//en.wikipedia.org/wiki/OpenAPI_Specification,
2018. sighted 11.2018.

[35] Wikipedia. Spring Framework.
https://en.wikipedia.org/w/index.php?title=

Spring_Framework&oldid=872920248, 2018. sighted
11.2018.

[36] Wikipedia. Swagger (software). https:
//en.wikipedia.org/wiki/Swagger_(software),
2018. sighted 11.2018.

[37] D. Winer. XML-RPC Specification.
http://xmlrpc.scripting.com/spec.html, 1999.
sighted 11.2018.

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/32713.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/32713.pdf
https://www.twistlock.com/2018/06/04/7-api-best-practices/
https://www.twistlock.com/2018/06/04/7-api-best-practices/
https://nordicapis.com/content-negotiation/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://github.com/swagger-api/swagger-codegen/blob/master/README.md
https://github.com/swagger-api/swagger-codegen/blob/master/README.md
https://github.com/swagger-api/swagger-ui/blob/master/README.md
https://github.com/swagger-api/swagger-ui/blob/master/README.md
https://github.com/OAI/OpenAPI-Specification/blob/master/README.md
https://github.com/OAI/OpenAPI-Specification/blob/master/README.md
https://graphql.org/
https://graphql.org/learn/queries/#fields
https://liu.diva-portal.org/smash/get/diva2:1141747/FULLTEXT01.pdf
https://liu.diva-portal.org/smash/get/diva2:1141747/FULLTEXT01.pdf
https://www.oreilly.com/ideas/an-api-first-approach-for-cloud-native-app-development
https://www.oreilly.com/ideas/an-api-first-approach-for-cloud-native-app-development
https://blog.darkcl.tech/2018/03/01/Writing-Mocking-and-Testing-API-Document-with-API-Blueprint-aglio-drakov-and-dredd/
https://blog.darkcl.tech/2018/03/01/Writing-Mocking-and-Testing-API-Document-with-API-Blueprint-aglio-drakov-and-dredd/
https://blog.darkcl.tech/2018/03/01/Writing-Mocking-and-Testing-API-Document-with-API-Blueprint-aglio-drakov-and-dredd/
https://aaronparecki.com/oauth-2-simplified/
https://dzone.com/articles/what-is-spring-boot
https://nordicapis.com/improve-api-experience-using-hypermedia/
https://nordicapis.com/improve-api-experience-using-hypermedia/
https://nordicapis.com/5-protocols-for-event-driven-api-architectures/
https://nordicapis.com/5-protocols-for-event-driven-api-architectures/
https://nordicapis.com/could-artificial-intelligence-improve-api-design/
https://nordicapis.com/could-artificial-intelligence-improve-api-design/
https://nordicapis.com/securing-medical-iot-devices/
https://nordicapis.com/securing-medical-iot-devices/
https://nordicapis.com/7-growing-api-design-trends/
https://nordicapis.com/7-growing-api-design-trends/
https://sookocheff.com/post/api/on-choosing-a-hypermedia-format/
https://sookocheff.com/post/api/on-choosing-a-hypermedia-format/
https://github.com/kevinswiber/siren
https://blog.signaturit.com/en/what-are-apis-and-what-challenges-do-they-face
https://blog.signaturit.com/en/what-are-apis-and-what-challenges-do-they-face
https://dzone.com/articles/abcs-of-api-driven-development
https://dzone.com/articles/abcs-of-api-driven-development
https://swagger.io/resources/articles/adopting-an-api-first-approach/
https://swagger.io/resources/articles/adopting-an-api-first-approach/
https://en.wikipedia.org/wiki/Robustness_(computer_science)
https://en.wikipedia.org/wiki/Robustness_(computer_science)
https://de.wikipedia.org/wiki/Hypermedia
https://en.wikipedia.org/wiki/OpenAPI_Specification
https://en.wikipedia.org/wiki/OpenAPI_Specification
https://en.wikipedia.org/w/index.php?title=Spring_Framework&oldid=872920248
https://en.wikipedia.org/w/index.php?title=Spring_Framework&oldid=872920248
https://en.wikipedia.org/wiki/Swagger_(software)
https://en.wikipedia.org/wiki/Swagger_(software)
http://xmlrpc.scripting.com/spec.html

What is the Added Value of Enterprise Architecture?

A Systematic Literature Review

Barry-Detlef Lehmann
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

barry.lehmann@rwth-aachen.de

Felix Tomski
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

felix.tomski@rwth-aachen.de

ABSTRACT
Back in the days, Information Systems were disconnected from
the actual enterprise infrastructure. Computing was only used
for automating simple processes, but with the growth of tech-
nology the need of a systematic inclusion of Information Sys-
tems (IS) and Information Technology (IT) infrastructure be-
came more and more essential. Because IS and IT were not
aligned with the overall business goals, potential benefits and ef-
ficiency were not realized. Zachman et al. was one of the first
who became aware of this problem in 1987 and designed a frame-
work for IS architecture. Out of this evolved Enterprise Architec-
ture (EA), which gives a rich set of principles, methods, and mod-
els to bring organizational structure, business processes, inform-
ation systems, and infrastructure together.

In the last few decades the relevance of enterprise architecture
for (economic) organizations increased, and so did scientific re-
search on this topic. Most of the research focuses on EA frame-
works, methodologies and models, but there is only a small
amount of research on the question, what actual value EA adds
to a business and what benefits EA brings to a business. Since
most papers which tackle these or similar questions are already
outdated, we decided to approach these questions based on a
systematic literature review to give an update on this specific EA
research topic.

Categories and Subject Descriptors
D.2 [Software]: Information Systems; D.2.9 [Software Engineer-
ing]: Management—productivity, programming teams, software
configuration management

Keywords
enterprise architecture, value, benefits, systematic literature re-
view

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2018/19 RWTH Aachen University, Germany.

1. INTRODUCTION

1.1 Motivation
With the innovation and evolution of technology, Information

Technology (IT) and Information System (IS) became a more and
more important role in businesses [37] [10] [36]. Advanced com-
puter technologies were mostly used for business process auto-
mation [10]. Later on, the use of IT and IS became ordinary in
most organizations, not only in the economy, but also in gov-
ernmental organizations [20] and agencies [12]. Today’s busi-
nesses must be agile, flexible and able to react to market changes
quickly, in order to survive in the modern economic market and
gain competitive advantages [35] [55]. Simultaneously, technolo-
gies evolve and change rapidly, as well as get more complex from
day to day [2]. However, both, IT and IS, were not well integrated
into the organization. But, when both, the IT and IS department
of a business and the rest of it develop independently of one an-
other, and they are not well integrated, the agility and flexibility
is lost. One of the first who addressed this issue was Zachman
in 1987, by proposing “a framework for information systems ar-
chitecture” [57]. The main purpose of Zachman’s framework is to
make a link between things of the real world of the business and
their representation in the computer systems. Out of this evolved
the concept of Enterprise Architecture (EA).

1.2 Enterprise Architecture
To understand what EA is and how it adds value to an organ-

ization, we need to introduce several terms. So we start with the
basic concept of what an “architecture” is.

1.2.1 Architecture
To handle the complexity of any vast organization or system,

you need an architecture. Think of the analogy of building
a house [26]. When you contact an architect to design your
house, you discuss how rooms, staircases, windows etc., will be
put together. You agree on a common base, on which the the
architect will produce a detailed plan, which then can be further
used by engineers and builders [26].

But what makes it so effortless to communicate such a plan? It
might be because you share a common frame of references. You
both know what a ’room’,’window’ and ’staircase’ is. You know
their function and their relationship to each other. You both use
a mental image of a house architecture [26]. This image or model
introduces its major functions and relationships , and they are
structured. It gives us an abstract design, that ignores many
details. Details like which materials to be used will be discussed
later.

To design enterprises we need a similar frame of references
[26]. To create an overview of the structure of an organiza-
tion, its business processes, their application support, and the
technical infrastructure, you need to express their function and
their relationships to each other [26]. So for this LR we use the
ISO/IEC/IEEE FDIS 42010:2011 standard (ISO/IEC/IEEE 2011)
definition of architecture:

“Architecture: fundamental concepts or properties of
a system in its environment, embodied in its elements,
relationships, and in the principles of its design and
evolution.”

Another important definition from IEEE standard is ’stake-
holder’:

“Stakeholder: an individual, team, or organisation
(or classes thereof) with interests in, or concerns rel-
ative to, a system.”

Most stakeholders of the system are not interested in its ar-
chitecture, but how it affects their concerns. But an architect
needs to be aware of these concerns and discuss them with the
stakeholders, and therefor he should be able to explain the archi-
tecture to all stakeholders involved, which often have a different
background [26].

But the term architecture can be applied in many scopes. The
discipline of Enterprise Engineering sees enterprises as whole
designed system that can be adapted and redesigned in a system-
atic and controlled way. In this context ’enterprise’ according to
TOGAF [18]:

“Enterprise: any collection of organisations that has a
common set of goals and/or a single bottom line.”

Architecture at the level of an entire organization is mostly re-
ferred to as ’enterprise architecture’, which leads us to the next
paragraph.

1.2.2 Enterprise Architecture
Even though, the proposition of Zachman et al. is now about

30 years old and thus, is the concept of Enterprise Architecture,
there is still no uniform definition of EA [45]. A first definition
of enterprise architecture was given by Richardson et al. [38],
a few years after Zachman’s proposition, in 1990. Richardson
et al. define EA as “a dynamic information technology founda-
tion that provides a direction for the deployment and integration
of future technological and managerial developments”. However,
this definition does not include the importance of the operat-
ing model or overall business strategy of the organization and
that the whole organization is to consider when talking about EA.
Thus, in this paper, we will use one of the most common defini-
tions of EA, suggested by [42]:

“The enterprise architecture is the organizing logic for
business processes and IT infrastructure, reflecting the
integration and standardization requirements of the
company’s operating model. The enterprise architec-
ture provides a long-term view of a company’s pro-
cesses, systems, and technologies so that individual
projects can build capabilities - not just fulfill imme-
diate needs.”

We chose this definition because it emphasizes that EA not
only describes the current state of the business, but also includes

the business state and goals for the future. Similar definitions can
be found in the majority of literature on EA. Another mention-
able definition, that is often used in EA research by the IT world
[21] [53], is a general definition of architecture [1] standardized
by IEEE Standard 1471-2000.

External
Enviroment

Results

Processes

People

Strategy Technology

Tasks

Corporate
Culture

Organizational
Structure

Information

Relationships

Enterprise Compononents

Inputs Transformation Outputs

Figure 1: Generic Enterprise Architecture, adapted from [41]

Figure 1 gives a visual impression of an abstract enterprise ar-
chitecture. From the definition and the figure, we can observe
that EA gives an holistic view of the enterprise components and
their relationships. This also includes the relationship between
the IT/IS and the rest of the enterprise, which is often emphas-
ized, when discussing EA in IS science. It is often referred to as
business and IT alignment, which we will also discuss later on.
Without this holistic view on the enterprise and its relationships,
each department of an organization may evolve without consid-
ering the other departments and the overall business strategy
[27]. So, EA can help businesses to keep their domains inline with
each other and the overall enterprise strategy. But what further
benefits arise from an enterprise architecture?

In research this question has been almost totally omitted for
quite some time. However, a lot of research was done on EA
frameworks, models and other methodologies [48]. Benefits that
EA delivers to an enterprise receive only little consideration on
the side in most literature, even though this plays an important
role in practice, because of investments in EA must be justified,
e.g. by Chief Information Officers (CIOs). This has changed, at
least a little, in the last few years, but explicit research on the be-
nefits and added value of EA is still only moderate [48].

This brings us to our research topic. We want to gather the
benefits of EA from other literature through a literature review,
to identify the value, EA adds to organizations. The terms value
and benefit will also be delimited from each other and a more
clear definition of value will be given in Section 4. We formulate
our research question (RQ) as:

RQ: What are the values and benefits EA adds to an organiza-
tion?

To find an answer to this question, we continue our paper as fol-
lows. In the next section we describe our research method. Sec-
tion 3 deals with a few related papers which have a similar re-
search question. In Section 4 we will present the findings and
results of our research. The findings are then more discussed and
analyzed in Section 5. Finally, Section 6 gives a summary of the
major findings and propositions for future research.

2. RESEARCH METHOD
We approached the RQ by conducting a Systematic Literature

Review (SLR) following the guidelines proposed by Kitchenham
et al. [24] combined with Webster et al. [52].

To get a rough overview of the topic EA in general and, es-
pecially, EA benefits, we searched various digital libraries men-
tioned by [24]. Thus, our literature consists mainly of confer-
ences and journal articles from online libraries, despite the fact
that a few books on the topic could be found, which are also con-
sidered in the review. That is, we searched via IEEE Xplore, ACM
Digital Library and Google Scholar. Firstly, we only searched
specifically for terms as “enterprise architecture benefits”, “en-
terprise architecture value” and “enterprise architecture added
value”.

The ACM Digital Library only returned 20 results when search-
ing for entries that include “enterprise architecture” and value or
benefit. The exact research term was “"enterprise architecture"
AND (value OR benefit)”. A general search on EA resulted in 182
entries. In these results were still papers that do not cover the
topic EA at all. So, we limited the results further by only including
papers that include “enterprise architecture” in the title, which
resulted in 62 papers.

On the other hand, a search with IEEE Xplore resulted in over
3.000 articles about EA in general and over 2.000 about the value
and/or benefits of EA. Thus, also here, we specified that the pa-
per’s title must include “enterprise architecture” or “"enterprise
architecture" AND (value OR benefit)”, respectively. This resul-
ted then in 423 articles about EA and 92 about EA value and/or
benefits.

A naive search with Google Scholar for EA, with e.g. “(value
OR benefits) AND "enterprise architecture"”, resulted in more
than 20.000 results. Consequently, we chose to only search for
literature that includes those terms in the title, as we did when
searching IEEE Xplore and ACM Digital Library. This specific-
ation resulted in 3.630 entries about enterprise architecture in
general and 101 which also cover the value or benefits of EA.

Since the topic also includes the financial value of EA, we addi-
tionally searched in a database dedicated to economics. We did
this via IDEAS/RePEc, which resulted in 631 results about enter-
prise architecture and 120 about the value or benefits of enter-
prise architecture. The 120 papers were found by searching in
the abstract because only searching in the title resulted in only
3 papers and searching in the whole document again returned
literature that does not deal with EA.

An overview of the results of different search queries on the
search engines can be seen in table 1. Note that the results were
not filtered for duplicates.

Table 1: Results from search engines
Search Engine EA EA Value/Benefits
ACM 62 20
IEEE Xplore 423 92
Google Scholar 3.630 101
IDEAS/RePEc 631 120
Total 4.736 333

It is obvious that we could not review all the 333 or even 4.736
articles in detail. So, the next step was to reduce the literature
that we would review even more by sorting out manually. We de-
cided to first limit the number by only choosing the 40 most cited
articles from the papers that are dedicated to EA value or bene-
fits. To reduce possible information bias we further included 20

most cited articles that do not directly deal with the topic but
enterprise architecture in general. That is, e.g., EA frameworks,
EA benefits and EA values, EA assessments or literature reviews
about EA. We split up the literature on both authors. Each re-
viewer first only read the abstract of their assigned papers and
marked them accordingly as relevant to search the paper in detail
for EA benefits. Our exclusion criteria was simple, all literature
that does not deal directly with EA will not be considered in the
review. However, through the filters we applied on the search en-
gines, there were only a few papers left that were off-topic. This
resulted in 43 final papers to search in detail for EA benefits. After
extracting the claims about EA benefits and value from the liter-
ature, we searched for more papers in the sources of some of the
literature, e.g. [48]. In articles that deal with enterprise architec-
ture in a general way, we additionally reviewed the source when
a benefit was claimed. We did this because often authors just
mention one or two benefits from another source as examples,
even when the original source mentioned more benefits. How-
ever, this backward search was not carried out as systematic as
the primary search with the different search engines.

3. RELATED WORK
While conducting our SLR, we only found 4 other works [50]

[22] [32] [6] dealing with the question what value EA adds to an
organization or business. Most academic research on EA focuses
on frameworks [43] [51], methodologies [46] or other practical
guidelines [13]. Even in the really comprehensive research [48]
on enterprise architecture, the benefits and added value of EA
found no big attention. That can also be seen by our search res-
ults in table 1. However, the papers that concentrate more dir-
ectly on EA value and benefits, often try to exploit the EA value
and benefit realization process. That is, how EA adds value to a
business and how businesses can accomplish benefits of EA, not
what the value actually is. In this section we only want to briefly
mention the four papers we found, that also did a literature re-
view on the added value and benefits of EA.

We begin with the most cited and also most extensive research,
which was carried out by Tamm et al. [50] in 2011. The au-
thors did a systematic and an exploratory literature review to
first identify benefits of enterprise architecture. Tamm et al.
then analyzed the benefits claimed in the reviewed literature and
grouped them in categories. The main focus of the paper is, to
clarify the question of how enterprise architecture leads to or-
ganizational benefits, which was done with the help of the cat-
egorization. In the process of their research, they identified four
benefit enablers, through which EA leads to benefits for an or-
ganization. The benefit enablers are Organizational Alignment,
Information Availability, Resource Portfolio Optimization and
Resource Complementarity. These four benefit enablers them-
selves depend on the quality of the enterprise architecture. Their
relation with EA and EA benefits is summarized in the EA Benefits
Model proposed by Tamm et al. Furthermore, the authors came
to the conclusion that an important factor is the size of the or-
ganization and the complexity of the IT environment of the busi-
ness. So, not all organizations can expect to realize the same be-
nefits when implementing an EA. Their findings also proof that
research on EA benefits is rare, but a lot of other literature with
other topics on EA claim benefits. Out of a total of 50 studies, 9
have as the main topic EA benefits, while 41 make claims of be-
nefits.

To our concerns, the first mentionable literature review on EA
benefits was conducted in 2006 [31], when there was really rare
research on EA value and benefits, at least in academic research.

In this paper, benefits and value of EA were collected and cat-
egorized for the first time. The author grouped the benefits into
a two-dimensional taxonomy. First, how attributable the bene-
fit is to EA, from weakly to strongly and second, how measurable
the benefit is, from non-quantifiable to quantifiable. Hard be-
nefits are quantifiable and strongly related to EA. Indirect bene-
fits are also quantifiable but are not directly attributable to EA.
Intangible and strategic benefits are both non-quantifiable, but
intangible are more directly related to EA than strategic benefits.
Most benefits that were found are of the indirect type and at least
are intangible benefits. The found benefits were also verified by
interviews of practitioners.

We end this section with the latest literature review on benefits
of Enterprise Architecture, which was done in 2017 [22]. The au-
thors not only collected the benefits through a literature review,
but also verified and expanded them by interviewing EA experts.
They gathered 40 EA benefits in total through the review and
the interviews and then grouped the benefits into five categor-
ies. The five categories are Operational, Managerial, Strategic, IT
Infrastructure and Organizational. They adapted the categories
from Shang and Seddon’s framework about enterprise system be-
nefits [47]. Please note that enterprise system is not the same as
enterprise architecture. With 13 benefits, the strategic category is
the one with the most benefits. Additionally, they tried to identify
the success factors of EA to understand the process of benefit
realization. The authors identified 37 EA success factors grouped
in the four categories Product Quality, Infrastructure Quality, Ser-
vice Delivery Quality and Organizational Anchoring.

4. FINDINGS
Before presenting our main findings, which are the EA bene-

fits we identified, we want to discuss the value term in order to
clarify what is meant by value in the context of enterprise archi-
tecture. Further, we give some main examples of the goals that
can be found in various EA literature, e.g., in framework propos-
itions. By comparing the goals with our identified benefits, we
then are able to check whether the goals are actually achieved.
However, such validation of the achievement of EA goals must
be considered critically because of the lack by empirical data in
most literature.

4.1 The Value Term
One important aspect to consider when trying to solve the re-

search question, is the term “value”. In order to answer the RQ,
we first need a clearer understanding of the value concept. When
speaking about the added value of EA, we can not exclusively pay
attention to the direct value that arises from EA [40]. Like gen-
erally in IS, we must rather note that EA may provide indirectly
value to an organization [35]. E.g., not all benefits that arise from
an implemented enterprise architecture lead directly to financial
outcome. We have also seen this in the last section about related
work that other authors grouped the benefits according to, how
quantifiable and how directly they are attributable to EA. Thus, it
is not enough to just measure the direct financial returns of EA.

Rodrigues et al. discussed the value concept in the context of
enterprise architecture critically and several issues of the term in
[40]. One important issue the authors address is they distinction
between the value of EA and EA benefits. According to Rodrigues,
the difference between the two, is the following. When speaking
about value, the expenditure that is necessary to implement an
enterprise architecture has to be considered in addition to the
benefits that arise from EA. So, in the economy value is often
defined as the profit minus the input or investment. While, when

speaking about EA benefits, only the benefits are considered.
One also should take under consideration that some benefits

will be only perceptible after a few years, as the EA becomes
more mature and well integrated to the business [9] [5]. We con-
clude that there are three points which make it quite hard to
measure the value of EA in practice, which may be one major
factor why there is not much empirical data on that topic. Those
are the measurability of the benefits, the attributility towards EA
and long maturing process it takes, until some benefits can be
achieved. Nevertheless, a few frameworks and models to meas-
ure the outcomes of EA exist, e.g., [39] and [44], but they do not
seem to be used in practice very much. Rogrigues et al. emphas-
ize the importance of using both, finical and operational meas-
ures, when talking about the measurement of EA value. In fact,
researchers more likely started to interview EA practitioners and
leading positions in businesses, see e.g. [9], [22] or [50]. From
these interviews we can see that most claims about the potential
benefits of EA can at least be backed up by EA experts and prac-
titioners, see e.g. [47] and [29].

4.2 Goals of EA
In this section we want to name some goals of EA and EA

frameworks, so we can check, if the benefits we found include
these goals. Clearly, each organization has its own goals in mind
when designing an EA for their business. These goals should help
to achieve the overall business goals. However, we want to list
some goals that are found in general EA literature and especially
in literature about frameworks. Lange and Mendling already col-
lected some goals from various other literature in 2011 [25]. We
extended their list with some goals of The Open Group Architec-
ture Framework (TOGAF) [18].

• Business-IT alignment

• Decrease costs

• Reduce risks

• Improve manageability

• Agility, portability and scalability

• Standardization and interoperability

• Improve business operations

• Improve IT effectiveness

TOGAF is one of the most used EA frameworks in practice all over
the world [16].

4.3 EA Value and Benefits
A list of our found benefits can be seen in table 2 with the

sources they were mentioned in. Benefit lists of other SLRs, e.g.
the one mentioned under Related Work, were excluded from the
searched literature for EA benefits. The benefits and the categor-
ization are discussed in the next section.

Table 2: Identified Benefits of EA

Perspective Benefit Source
Governance Support of decision making [33], [28], [32], [9],

[15], [14]
Speed up of decision making [14]
Support of coordination [33], [28], [32], [15]
Support of control [33], [28], [14]
Help managers and workers to analyze problems [33], [28], [15], [14]
Help managers and workers to visualize complex subjects [33], [28], [14]
Gives an integrated vision and a global perspective of informational resources [33], [30], [4], [7]
Discovery and elimination of redundancy in business processes [33], [11], [9], [14]
Helps identifying integration problems [4]
Support of project planning [32], [8], [21], [15],

[14]
Helping the agency meet its transformation objectives [9]
Eliminating duplicate investments [9]
Capturing gains in business process efficiency [9]
Provides an holistic view of all parts of the business [9], [14]
Helps executives assessing their investments in operations and projects [9]
Can help executives carve out areas that can generate cash [9]
Phasing out costly and complex legacy systems [9], [15]
Identify the most promising projects [14]

Operational Brings order and structure to the business [33], [19], [14]
Unify and integrate business processes across the enterprise [4], [7]
Support of business process design [32], [8], [21], [15]
Support of system development [32], [8], [21]
Decreased operating costs [9]
Standardization of automated processes [14]
Greater overall technology effectiveness [9]
Flexibility, especially of IT systems [15], [9], [3]
Faster project initialization [14]

Strategic Help managers and workers to create new products in alignment with overall busi-
ness strategy

[33], [28], [9]

Contributes to having IS that reflect common goals [33], [49]
Business and IT alignment [33], [56], [54], [32],

[17], [9], [3], [14],
[23], [34]

Increase agility to business change [4], [7], [9], [14]
Helps building long-term business value [9]
Improved speed-to-market [9], [15], [3]
Reduction of risk and misaligned programs [9], [14]
Gaining competitive advantage on the business market [9]
Helps completing major IT projects earlier [9]
Tightening the connections between tactics and strategy [9]
Planning and executing customer-focused services [9]
Managing end-to-end customer experience [9]
Identifying key stakeholders [14]

Communication,
Collaboration,
Compliance

Reduction of information and organizational complexity [33], [11], [4], [7],
[17], [9], [14]

Encourage cooperation between different business departments [33], [49], [14]
Standardization across the IT function [9], [15], [14]
Improving transparency [9], [15]
Reuse of IT and business processes [9], [15]
Managing outsourcing arrangements [14]
Facilitate cooperation with other organizations [14]
More efficient communication between organization members [14]

5. DISCUSSION/ANALYSIS

5.1 The Categorization
In order to make sense of the data we grouped them together

into four categories. The categories are Governance, Operational,
Strategic and Communication, Collaboration and Compliance 2.
We chose this categorization because most papers used similar
schemes to group their value from EA together, see e.g. [40]. So
we abstracted them into the four groups we had chosen.

5.1.1 Governance
Governance is the ability to manage the involvement and sup-

port of all parties with an interest or responsibility to the en-
deavor with the objective of guarantee that the cooperate in-
terests are served and the goals achieved [18]. They are clear
identified stakeholders and a clear understanding of their in-
terest in and responsibility to the project [18]. Also, a culture that
positively influences participation towards corporate objectives
instead of locals. A culture that has meaningful, as opposed to
symbolic, participation in management processes and a com-
mitment to project reviews, challenges and an open mind for
advices from outsiders [18]. So values that are helping to reach
these goals fall under this category.

5.1.2 Operational
An operational plan is a highly detailed plan that guides an or-

ganization through handling teams, sections or departments to
achieve the organization’s goals. So this category consists of the
benefits that benefit

What Strategies and task must be done

Who Which people have responsibilities for strategies and task

When In which time the strategies and task must be completed

How
much

the amount of resources to complete the task or strategy

5.1.3 Strategic
A strategic plan outline which course or mission one will be

taking in the far future. This category includes all benefits related
to an improved overall strategy of the business, as well as the in-
tegration of different domains of the business to the enterprise
strategy.

5.1.4 Communication, Collaboration, Compliance
This category includes all aspects concerning the improved

communication between the various departments of the enter-
prise, as well as their improved collaboration.

5.2 Analysis

5.2.1 Governance Analysis
From the table 2 we concluded that a lot of papers had "Sup-

port of decision making" and "Support of project planning" as
benefit from EA for the Governance category. For the Gov-
ernance category most papers also named "Support of coordin-
ation", "Help managers and workers to visualize complex sub-
jects", "Gives integrated vision and a global perspective of in-
formational resources" and "Discovery and elimination of re-
dundancy in business processes". What we noticed is that most
papers matched the same benefits in Governance in compar-
ison to our other categories. Especially [33], [32] , [28], [15], [14]
named a lot of benefits in common.

Strategic
Operative

Governance
Communication, Collaboration,

Compliance

Support
Help Manager

Identify good
projects

Speed up
decision making

Decreased
operating costs

Flexibility

Business and IT
alignment &

Improving
transparency

Support of decision
making

Increase agility to
business change

Improved speed-to-
market

Reduction of
information

Reduction of
organizational

complexity

Figure 2: Categorization of the Benefits

5.2.2 Operational Analysis
The only papers that named operational benefits are [3], [4],

[7], [8], [9], [14], [15], [19], [21], [32], [33]. Those are about 50% of
all our findings. A reason for that could be that the TOGAF [18]
does not clearly state operational planning. But the most titled
benefits (according to table 2) are "Brings order and structure to
the business", "Support of business process design", "Support of
system development" and "Greater overall technology effective-
ness".

5.2.3 Strategic Analysis
About half of the papers name Strategic benefits. Most of them

call "Business and IT alignment" as a benefit. In fact, it is the
most named benefit across all categories. It only makes sense
that a lot of papers call it a benefit, because one of EA goals is
to align Business with IT according to TOGAF. We can also no-
tice that "Increase agility to business change" was called about
30% from the papers that named at least one strategic benefit
(see Table 2). Besides "Help managers and workers to create new
products in alignment with overall business strategy" and "Im-
proved speed-to-market" got a fair share of mentions.

5.2.4 Communication, Collaboration, Compliance
Surprisingly for this category most papers do not name a

lot of benefits. But if they named one, it was most of the
time "Reduction of information and organizational complex-
ity","Encourage cooperation between different business depart-
ments" and "Standardization across the IT function".

5.3 Value Graph
Some benefits from EA are influenced by other categories or

benefits. Categories alone do not capture this aspect. So we
decided to model the relationship between the benefits as the
following graph. We say for the values A and B that A positively
influence B if A has a positive effect on B and visualize it with an
arrow from A to B. If we look at the graph 3 below we see a subset
of the value graph. For the sake of visibility we only choose this
subset. Also, we took especially this one because it models the
relationships between the values quite simple.

Support Manager
Work Support of

business process
design

analyse Problem
Visualize complex

problems

Faster decision
making

Decreasing
operation cost

Support of system
development

Reduction of
information and
organizational

complexity

Increase agility to
business change

Figure 3: Relationships between the different benefits. The colors are corresponding to the figure before. An arrow to the next node
mean a positive influence

If we look closer to the figure 3 we can see the value ”analyze
Problem” which positively influences "Support Manager Work".
This comes due to the fact that, understanding the problem
helps to do a better managing job. Also, the value ”Visualize
complex problems” influences ”Support Manager Work” for the
almost same reasons. Even further ”Support Manager Work” has
a positive influence on ”Faster decision making” and ”Decreas-
ing operation cost”. When the manager is supported in his work
he can make faster decisions and operate more efficient which
leads to decreasing operation costs. Both, ”Faster decision mak-
ing” and ”Decreasing operation cost”, lead to a positive influence
in ”Increase agility to business change” this could be because
the business can react faster to change with fast decision making
and decreasing operation costs. When we look at the graph from
”Visualize complex problems”, we have positive influence on
”Reduction of information and organizational complexity”. It
is only natural that we need less information and the organiz-
ational complexity decrease, when we understand the problem
better. Also, ”Support of business process design” and ”Support
of system development” are positively effected by the value
”Visualize complex problems”. This comes for the same reason
as ”analyze Problem” that understanding the problem better
helps to develop a business process.

As we can see, values may positive influence each other which
can lead to better results.

5.4 How does it fit with the goals of EA?
Earlier in this paper we mentioned the goals of EA according

to TOGAF [18]. If we look back to the analysis of our categoriz-
ation we can notice that some benefits, that align with the goals
of EA, get a lot of mentions. And some goals of EA are not men-
tioned or represented as benefit at all. This is due to the fact that
each organization has its own set of objectives they want to ful-
fill or focus on. So a generic list with goals might only give a
hint in which direction they shall move with EA. But every or-
ganization needs their own set of goals they want to achieve with
EA. Regardless of that we can still notice that Business-IT align-
ment was one of the most mentioned benefits of our LR and this
fits into the goal of EA according to TOGAF "Business-IT align-
ment". Another benefit, that was mentioned a lot, is ” Increase
manageability” which overlaps with the goal ”Agility, portability
and scalability”. Also, the goal ”Improve manageability” is reflec-
ted through many benefits as we can see in table 2. An honorable
mention would be from the Governance category ”Support of de-
cision making” with a couple of mentions. Not surprisingly the
goal”Standardization and interoperability” is represented by the
category ”Communication, Collaboration, Compliance”, whose
benefit ”Reduction of information and organizational complex-
ity” gets mentioned in a lot of papers. The goal ”Improve busi-
ness operations” is also covered with our category ”Operative”
which has some mentions according to table 2. So ”Reduce risk”,
”Decrease costs” and ”Improve IT effectiveness” are rather rarely
or not mentioned at all in our LR about benefits from EA. But how
we can see from figure 3 a benefit that gets mentioned a lot can
still positively influence a benefit that that is rarely mentioned.
So in the end even, when the goals are not represented through
our researched benefits, they might be still present due to the
positive influence of other benefits.

5.5 Summary
At the beginning we introduced our categories and our motiv-

ation that lead to these categories. Then we give a feel in what

we understand under these categories. After that we summar-
ized our findings in each category and highlighted noteworthy
mentions. When we introduced a relationship between benefits
and how they are influenced by other benefits to give a connec-
tion between benefits. In the end we concluded in which way our
findings fit in the goals of EA according to TOGAF.

6. CONCLUSION
In this paper, we presented our findings of a systematic literat-

ure review on the benefits of EA that was conducted in order to
answer the question of what the added value of EA is. First, we
searched ACM, IEEE Xplore, Google Scholar and IDEAS/RePEc
for literature about EA. Next, the literature was reviewed and be-
nefits of EA extracted from it. The benefits found in the literat-
ure were grouped in four categories: Governance, Operational,
Strategic, and Communication, Collaboration, Compliance. The
most benefits that were found belong to the Governance or Stra-
tegic categories, thus not bringing direct value to the business in
form of money, but providing long-term benefits. Even though,
one identified benefit is the reduction of operating costs. The
three benefits that were claimed by the most literature are “Busi-
ness and IT alignment” (strategic), “Reduction of information
and organizational complexity” (communication etc.) and “Sup-
port of decision making” (governance).

We also analyzed the relations between several benefits. So
even though some papers do not recall certain benefits, they are
still related, present or influenced by significant higher named
benefits. However, these relations must be validated by empir-
ical data in further research.

Additionally, we took a short look on some major goals of EA
frameworks and EA in general. They all could be found in the be-
nefits list we gathered from the literature. Nevertheless, the sig-
nificance of this form of validation should not be overestimated,
since most papers do not give empirical proof of the claimed be-
nefits. But, what can be said with more safety is that EA practi-
tioners approve the value that an enterprise architecture brings
to their business. This has been validated by interviews and sur-
veys [29].

Furthermore, we noticed a lack of validation of the benefits
through empirical data. This can be attributed to the difficulty
of measuring the outcome value of EA. Hence, there is a need of
research in a consistent theory to measure the value and bene-
fits that arise from an enterprise architecture. One step forward
could be taken by standardizing the benefits of EA, e.g., by unify-
ing benefits that have the same meaning and delimiting the be-
nefits better from each other.

7. REFERENCES
[1] Systems and software engineering - architecture

description. 2000.
[2] Information system complexity and business value.

International Journal of Economics & Management
Sciences, 6(2):1–4, 2017.

[3] M. Alaeddini, H. Asgari, A. Gharibi, and M. R. Rad.
Leveraging business-it alignment through enterprise
architectureâĂŤan empirical study to estimate the extents.
Information Technology and Management, 18(1):55–82,
2017.

[4] V. Anaya and A. Ortiz. How enterprise architectures can
support integration. In Proceedings of the first international
workshop on Interoperability of heterogeneous information
systems, pages 25–30. ACM, 2005.

[5] A. Bachoo. Enterprise architecture practices to achieve
business value. In 2018 IEEE 20th Conference on Business
Informatics (CBI), volume 01, pages 1–9, July 2018.

[6] V. Boucharas, M. van Steenbergen, S. Jansen, and
S. Brinkkemper. The contribution of enterprise
architecture to the achievement of organizational goals: a
review of the evidence. In International Workshop on
Trends in Enterprise Architecture Research, pages 1–15.
Springer, 2010.

[7] T. Brown. The value of enterprise architecture. Zachman
Institute for Framework Advancement (ZIFA), www. zifa.
com, 2004.

[8] T. Bucher, R. Fischer, S. Kurpjuweit, and R. Winter.
Enterprise architecture analysis and application-an
exploratory study. Journal of Enterprise Architecture,
3(3):33–43, 2007.

[9] P. Burns, M. Neutens, D. Newman, and T. Power. Building
value through enterprise architecture a global study.
Source168) Cited by, 4, 2009.

[10] M. Castells. Power of identity: The information age:
Economy, society, and culture. Blackwell Publishers, Inc.,
1997.

[11] M. A. Cook and M. A. Cook. Building enterprise information
architectures: reengineering information systems, volume 7.
Prentice Hall Upper Saddle River, NJ, 1996.

[12] C. Council. Federal enterprise architecture framework
version 1.1. Retrieved from, 80:3–1, 1999.

[13] F. A. Cummins. Enterprise integration: an architecture for
enterprise application and systems integration. John Wiley
and Sons, Inc., 2002.

[14] R. Foorthuis, M. Van Steenbergen, S. Brinkkemper, and
W. A. Bruls. A theory building study of enterprise
architecture practices and benefits. Information Systems
Frontiers, 18(3):541–564, 2016.

[15] A. Goikoetxea. Enterprise architectures and digital
administration: Planning, design and assessment. World
Scientific, 2007.

[16] T. O. Group. Members of the open group.
https://www.opengroup.org/our-members. [Online;
accessed Dec. 20, 2018].

[17] S. Hacks, M. Brosius, and S. Aier. A case study of
stakeholder concerns on eam. In Enterprise Distributed
Object Computing Workshop (EDOCW), 2017 IEEE 21st
International, pages 50–56. IEEE, 2017.

[18] V. Haren. Togaf version 9.1. 2011.
[19] W. H. Inmon, J. A. Zachman, and J. G. Geiger. Data stores,

data warehousing and the Zachman framework: managing
enterprise knowledge. McGraw-Hill, Inc., 1997.

[20] M. Janssen and K. Hjort-Madsen. Analyzing enterprise
architecture in national governments: The cases of
denmark and the netherlands. In System Sciences, 2007.
HICSS 2007. 40th Annual Hawaii International Conference
on, pages 218a–218a. IEEE, 2007.

[21] H. Jonkers, M. M. Lankhorst, H. W. ter Doest, F. Arbab,
H. Bosma, and R. J. Wieringa. Enterprise architecture:
Management tool and blueprint for the organisation.
Information systems frontiers, 8(2):63–66, 2006.

[22] M. B. Jusuf and S. Kurnia. Understanding the benefits and
success factors of enterprise architecture. In Proceedings of
the 50th Hawaii International Conference on System
Sciences, 2017.

[23] L. Kappelman, T. McGinnis, A. Pettite, and A. Sidorova.
Enterprise architecture: Charting the territory for academic
research. AMCIS 2008 Proceedings, page 162, 2008.

[24] B. Kitchenham and S. Charters. Guidelines for performing
systematic literature reviews in software engineering, 2007.

[25] M. Lange and J. Mendling. An experts’ perspective on
enterprise architecture goals, framework adoption and
benefit assessment. In Enterprise Distributed Object
Computing Conference Workshops (EDOCW), 2011 15th
IEEE International, pages 304–313. IEEE, 2011.

[26] M. Lankhorst. Enterprise Architecture at Work: Modelling,
Communication and Analysis. Springer Publishing
Company, Incorporated, 2nd edition, 2009.

[27] M. Lankhorst. Enterprise architecture at work: Modelling,
communication and analysis. Springer, 2009.

[28] K. C. Laudon and J. P. Laudon. Management information
system: organization and technology in the networked
enterprise. Pearson Custom Publishing, 2000.

[29] Å. Lindström, P. Johnson, E. Johansson, M. Ekstedt, and
M. Simonsson. A survey on cio concerns-do enterprise
architecture frameworks support them? Information
Systems Frontiers, 8(2):81–90, 2006.

[30] F. Niederman, J. C. Brancheau, and J. C. Wetherbe.
Information systems management issues for the 1990s. MIS
quarterly, pages 475–500, 1991.

[31] E. Niemi. Enterprise architecture benefits: Perceptions
from literature and practice. Tietotekniikan
tutkimusinstituutin julkaisuja, 1236-1615; 18, 2008.

[32] E. Niemi and S. Pekkola. Adapting the delone and mclean
model for the enterprise architecture benefit realization
process. In System Sciences, 2009. HICSS’09. 42nd Hawaii
International Conference on, pages 1–10. IEEE, 2009.

[33] C. M. Pereira and P. Sousa. A method to define an enterprise
architecture using the zachman framework. In Proceedings
of the 2004 ACM Symposium on Applied Computing, SAC
’04, pages 1366–1371, New York, NY, USA, 2004. ACM.

[34] C. M. Pereira and P. Sousa. Enterprise architecture:
business and it alignment. In Proceedings of the 2005 ACM
symposium on Applied computing, pages 1344–1345. ACM,
2005.

[35] S. Petter, W. DeLone, and E. McLean. Measuring
information systems success: models, dimensions,
measures, and interrelationships. European journal of
information systems, 17(3):236–263, 2008.

[36] M. E. Porter, V. E. Millar, et al. How information gives you
competitive advantage, 1985.

[37] T. C. Powell and A. Dent-Micallef. Information technology
as competitive advantage: The role of human, business,
and technology resources. Strategic management journal,
18(5):375–405, 1997.

[38] G. L. Richardson, B. M. Jackson, and G. W. Dickson. A
principles based enterprise architecture: Lessons from
texaco and star enterprise. MIS quarterly, pages 385–403,
1990.

[39] D. F. Rico. A framework for measuring roi of enterprise
architecture. Journal of Organizational and End User
Computing, 18(2):i, 2006.

[40] L. S. Rodrigues and L. Amaral. Issues in enterprise
architecture value. Journal of Enterprise Architecture,
6(4):27–32, 2010.

[41] M. A. Rood. Enterprise architecture: definition, content,

https://www.opengroup.org/our-members

and utility. In Enabling Technologies: Infrastructure for
Collaborative Enterprises, 1994. Proceedings., Third
Workshop on, pages 106–111. IEEE, 1994.

[42] J. W. Ross, P. Weill, and D. Robertson. Enterprise architecture
as strategy: Creating a foundation for business execution.
Harvard Business Press, 2006.

[43] J. Schekkerman. How to survive in the jungle of enterprise
architecture frameworks: Creating or choosing an enterprise
architecture framework. Trafford Publishing, 2004.

[44] J. Schelp and M. Stutz. A balanced scorecard approach to
measure the value of enterprise architecture. 2007.

[45] M. Schöenherr. Towards a common terminology in the
discipline of enterprise architecture. In International
Conference on Service-Oriented Computing, pages 400–413.
Springer, 2008.

[46] R. Sessions. A comparison of the top four
enterprise-architecture methodologies. Houston:
ObjectWatch Inc, 2007.

[47] S. Shang and P. B. Seddon. Assessing and managing the
benefits of enterprise systems: the business manager’s
perspective. Information systems journal, 12(4):271–299,
2002.

[48] D. Simon, K. Fischbach, and D. Schoder. An exploration of
enterprise architecture research. CAIS, 32:1, 2013.

[49] R. Stata and P. Almond. Organizational learning: The key to
management innovation. The training and development
sourcebook, 2:31–42, 1989.

[50] T. Tamm, P. B. Seddon, G. G. Shanks, and P. Reynolds. How
does enterprise architecture add value to organisations?
CAIS, 28:10, 2011.

[51] L. Urbaczewski and S. Mrdalj. A comparison of enterprise
architecture frameworks. Issues in Information Systems,
7(2):18–23, 2006.

[52] J. Webster and R. T. Watson. Analyzing the past to prepare
for the future: Writing a literature review. MIS quarterly,
pages xiii–xxiii, 2002.

[53] R. Winter and R. Fischer. Essential layers, artifacts, and
dependencies of enterprise architecture. In Enterprise
Distributed Object Computing Conference Workshops, 2006.
EDOCW’06. 10th IEEE International, pages 30–30. IEEE,
2006.

[54] R. Winter and J. Schelp. Enterprise architecture
governance: the need for a business-to-it approach. In
Proceedings of the 2008 ACM symposium on Applied
computing, pages 548–552. ACM, 2008.

[55] W. Xia and G. Lee. Complexity of information systems
development projects: conceptualization and
measurement development. Journal of management
information systems, 22(1):45–83, 2005.

[56] C. Young. The unexpected case for enterprise it
architectures. Gartner Group Strategy, Trends & Tactics, 9,
2001.

[57] J. A. Zachman. A framework for information systems
architecture. IBM systems journal, 26(3):276–292, 1987.

State of the Art in Combinatorial Security Testing

Harish Balaji Shanmuga Sundaram
RWTH Aachen University

HirschbergerStr 58-64
53119 Bonn, Germany

harish.balaji.shanmuga.sundaram@rwth-
aachen.de

ABSTRACT
Combinatorial testing is an effective black-box testing ap-
proach which has also been applied to security testing. Com-
binatorial methods can make software security testing much
more efficient and effective than conventional approaches.
Combinatorial methods are ideally suited for the Internet of
Things environment, where testing can involve a very large
number of nodes and combinations.

However, so far there is no systematic study that dis-
cusses the approaches in security testing and their differ-
ences. There is no single ultimate approach that fits to all
company requirements and attacker models. But, combina-
tions of different approaches can help the testers to identify
and address the security vulnerabilities or weaknesses of the
software applications.

Thus, the objective of this paper is to identify different
approaches of combinatorial testing for security and to un-
derstand their differences.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Testing—Blackbox Testing, Test Suites, Ap-
proaches

Keywords
Combinatorial Testing, Security Testing, Protocol Testing,
Vulnerabilities

1. INTRODUCTION
In most of the big applications that deal with a big set of

data manipulation, some undetected errors arise even after
many months of implementation. This means there exist
some untested test cases.

Combinatorial testing is a black box testing method that
can help detect such problems early in the testing life cycle.
The idea of the t-way combinatorial testing is that not every
single parameter contributes to every fault and most faults

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2018/19 RWTH Aachen University, Germany.

are caused by interactions between a relatively small number
of parameters [23]. It is found that the maximum of 6-
way combinations are potential enough of creating a fault
in any system [23]. As the number of combinations of test
parameters increases, more error resistant the application
becomes.

On the other hand, Security Testing is a process with an
intention to reveal flaws in the security mechanisms and find-
ing the vulnerabilities of an application.The primary goal of
security testing is to find how vulnerable a system may be
and to determine whether its data and resources are pro-
tected from the potential intruders. Security testing is more
effective in identifying the vulnerabilities when performed
regularly. Performing regular security testing can avoid sev-
eral inconveniences like loss of customer trust, system down-
time, cost associated with securing online resources against
future attacks, cost associated with legal issues for having
negligent security measures.

SBA Research and National Institute of Standards and
Technology(NIST) have developed a research program to
bridge the gap between combinatorial testing and security
testing. This resulted in the establishment of a new research
field called Combinatorial Security Testing.

Identifying vulnerabilities and ensuring security function-
ality by security testing is a widely applied measure to eval-
uate and improve the security of software, which is also an
inevitable part of quality assurance. Many software security
exploitation result from ordinary coding flaws, rather than
design or configuration errors. One study found that 64 per-
cent of vulnerabilities are the result of such common bugs
as missing or incorrect parameter checking, which leaves ap-
plications open to common vulnerabilities including buffer
overflows or SQL injection. Although this statistic might be
discouraging, it also means that better functionality testing
can also significantly improve security.

In the last 50 years, combinatorial methods have had pro-
found applications in coding theory, cryptology, networking
and computer science with software testing being one of the
most recent ones [22]. Covering arrays are discrete math-
ematical structures which, with the aid of proper software
engineering techniques, have been utilised in very effective
test sets in order to provide strong assurance. Yet, the appli-
cation of combinatorial methods to applied computer science
continues to arise and it comes as no surprise that the field
of software security, in particular, provides a rich source of
problems that seek solutions from mathematical methods.
There has been ample evidence over the last few years to
support this observation.

2. BACKGROUND AND RELATED WORK
Combinatorial security testing has rapidly gained favour

among software testers in the past decade as improved al-
gorithms have become available, and practical success has
been demonstrated.

An example of a single-value fault might be a buffer over-
flow that occurs when the length of an input string exceeds a
particular limit. Only a single condition must be true to trig-
ger the fault: input length > buffer size. A two-way fault
is more complex, because two particular input values are
needed to trigger the fault. One example is a search/replace
function that only fails if both the search string and the re-
placement string are single characters. If one of the strings
is longer than one character, the code doesn’t fail; thus we
refer to this as a two-way fault. More generally, a t-way
fault involves t such conditions.

The effectiveness of any software testing technique de-
pends on whether test settings corresponding to the actual
faults are included in the test sets. When such settings
aren’t included, the faults won’t be detected. Conversely,
we can be confident that the software works correctly for
t-way combinations contained in passing tests. For security
evaluations, it isn’t enough that failures are unlikely to occur
in ordinary usage, because attackers seek out even complex
flaws. Testing only to verify requirements coverage is insuf-
ficient for security, or even for assuring critical functionality.

One of the most used solutions to access and protect in-
formation is by using a password. But, an easy to remem-
ber password is very easy to crack. One best way to test
whether the passwords are strong is by using a password
meter. Password meters are used widely to help users cre-
ate better passwords, yet they often provide ratings of pass-
word strength that are, at best, only weakly correlated to
actual password strength. Furthermore, current meters pro-
vide minimal feedback to users. They may tell a user that
his or her password is ”weak” or ”fair”, but they do not ex-
plain what the user is doing wrong in making a password,
nor do they guide the user towards a better password. Data-
driven password meter [25] is a recent development in the
security domain that promises hard to crack passwords.

Bachelor students Elias Alesand and Hanna Sterneling
have proposed a new idea to avoid shoulder surfing, one of
the most common security related vulnerabilities. Shoulder
surfing is the practice of spying on the user of any electronic
device in order to obtain their personal information. They
have proposed a shoulder-surfing resistant graphical pass-
word system [4]. The intention of their system is to make
passwords easier to remember as well as making them harder
to crack through shoulder-surfing and guessing attacks while
still keeping the system quick and user friendly.

In 2016, a research on penetration testing proposed a
new Security Goal Model (SGM), a model-driven penetra-
tion test case generation method[8], which can describe the
regularity of current SQL injection attacks. The experi-
ment showed that the test cases generated by the proposed
method can more effectively find the SQL injection vulnera-
bility hidden behind the inadequate defense mechanism, and
can reduce the omissive report of SQL injection.

The importance of web penetration testing can be felt by
looking at the case study where SBA Research developed an
input parameter model to test the API of Koha integrated
library management system (https:// koha-community.org)
The source code of Koha is under open source license. The

NIST ACTS tool was used to produce test suites that cov-
ered all possible 2-way, 3-way, 4-way and 5-way parameter
combinations. More than 50 cross site scripting (often de-
noted as XSS) vulnerabilities in Koha were reported to the
developers. Two such security vulnerabilities CVE-2015-
4630 and CVE-2015-4631 were assigned to MITRE’s vul-
nerabilities and exposures list [1, 2].

Dimitris E. Simos, a key researcher at SBA Research who
is currently leading the combinatorial security testing re-
search team of SBA Research tested the World Wide Web
Consortium (W3C) tidy service against a test suite using a
prototype cross-site scripting (XSS) injection tool and suc-
ceeded in discovering a previously unknown remote XSS vul-
nerability of this popular service [23].

3. METHODOLOGY
Dimitris E. Simos is one of the active researchers who

works on the combinatorial security testing. I have used his
publishes to develop this paper. Based on his research pa-
pers and the references he used, I managed to come up with
my discussion of the possible combinatorial testing methods.

Dr. Johannes Dahse exploits the security vulnerabilities in
PHP code for 10 years. He is an active speaker at academic
and industry conferences and a pioneer in the field of code
analysis. I have used his works for my references to develop
this paper [9].

With blackbox testing, quality assurance professionals put
themselves in the shoes of the hacker and attempt to break
the app through various attack vectors. This methodology
can yield a lot of information and help better secure the pro-
gram from actual threats. A white paper by Security Inno-
vation noted that software testers first analyze the system’s
architecture and business model to identify any security vul-
nerabilities. Looking over the software logic in this way
can uncover subtle security and privacy issues that may not
have been noticed otherwise, such as defects in design, in-
put, system dependency, authentication, cryptography and
information disclosure. Test cases are built around specifi-
cations and requirements. Test cases are generally derived
from external descriptions of the software, including specifi-
cations, requirements and design parameters. Although the
tests used are primarily functional in nature, non-functional
tests may also be used. The test designer selects both valid
and invalid inputs and determines the correct output, of-
ten with the help of a previous result that is known to be
good, without any knowledge of the test object’s internal
structure.

Technically there are two approaches in combinatorial se-
curity testing.

3.1 Manual Testing Method
Mostly, the web applications are tested from the outside

without the source code. The goal is to simulate an attack
and to get an overview of how successful an attacker could
be. A team of penetration testers is hired that attacks a
production or test setup of the application in a realistic sce-
nario: only with access to the URL/IP and without further
knowledge about the internals.

A crucial factor is how much time is given to the testers.
The final report can only list what was found in the limited
time frame. This time frame should reflect the resources of a
real attacker which varies from a few days for an entry level
hacker to several weeks for a motivated expert level hacker.

It is recommended to hire a small company with a strong
specialized team, preferably with a recommendation or a list
of renowned experts. There is a huge difference in what a
team of skilled security experts can find manually in the web
application than a team that only uses automated blackbox
tools.

3.2 Tools Based Testing Method
Dynamic Application Security Testing (DAST) or black-

box tools perform a lightweight scan from the client-side of
a given web application that is deployed and running. Mul-
tiple malicious input patterns for common web attacks are
automatically send to the URL of the application while its
responses are evaluated for abnormal behavior that could
indicate a vulnerability.

It is recommended to use an additional test setup to pre-
vent interference with real user data. This fuzzing approach
is very slow and only scratches on the surface of an applica-
tion without crawling all features deep enough. For example,
vulnerabilities are missed that require a specific combination
of actions (e.g. login first, activate mode 1, use feature 5).
As a result, blackbox tools have a limited code coverage, a
lack of support for many vulnerability types, and miss many
security issues. The DAST tools are often used for assistance
in manual penetration tests.

4. RESULTS
Cyber criminals use a wide range of methods to lure the

legal users and gain access to the confidential resources like
data and infrastructures [17]. The figure shows the trends
in vulnerability disclosures in 2017 .

4.1 Identified Security Threats
There are different types of threats that can take advan-

tage of the security related vulnerabilities. Some of those
threats are discussed briefly here.

4.1.1 Privilege Elevation
Privilege Elevation is a security threat where the attacker

has an account in the system and tries to increase their
privileges to a higher level than what is allowed for that
specific account [19].

4.1.2 SQL Injection
SQL Injection is a very common application layer level

attack where the attacker inserts a harmful SQL statement

in the input fields for execution. After a successful SQL
Injection, the hacker can get all the critical information from
the database server [18].

4.1.3 Unauthorized Data Access
Unauthorized Data Access may include illegal access to

the reusable client authentication information in addition to
the normal data. This can be achieved through data fetching
operations and by monitoring the access of other people on
a server or on a network [7].

4.1.4 URL Manipulation
URL Manipulation is an attack where the attacker gets

the user information by manipulating the web application’s
URL query strings. The HTTP GET method passes the
user specific data between the client and server systems.
This information is passed as parameters in the query string
which can be easily manipulated by the attacker [20].

4.1.5 Denial of Service
Denial of Service is an attack where the attacker makes

the entire system or some parts unusable for its legal users.
This may cause lack of customer trust [24].

4.1.6 Data Manipulation
Data Manipulation is a kind of attack where the attacker

gets control over the HTML pages and changes the valid
data used by the website [6].

4.1.7 Identity Spoofing
Identity Spoofing can be achieved by the attacker by using

the credentials of a valid user to launch the attacks. This
includes data theft and security compromises [5].

4.1.8 Cross-Site Scripting (XSS)
XSS enables the attacker to insert client side script on

the frequently visited web pages and make the user click the
malicious URL. Once executed on the user’s browser, the
entire system can be compromised [14].

4.2 Identified Security Testing Approaches
To avoid the possible security related vulnerabilities, it is

required to have a deep knowledge in HTTP protocol and
the understanding of client-server communication using this
protocol. Also, some basic ideas about verification and vali-
dation becomes unavoidable. Several approaches for combi-
natorial security testing are discussed in this section.

4.2.1 Buffer Overflow Testing
A generic buffer overflow occurs when a buffer that has

been allocated a specific storage space has more data copied
to it than it can handle. The possible preventive mechanisms
are code reviewing, developer training, compiler tools, de-
veloping safe functions and periodical scanning [13].

To prevent buffer overflow, developers should avoid stan-
dard library functions that are not bounds-checked. In ad-
dition, secure development practices should include regular
testing to detect and fix buffer overflows. The most reliable
way to avoid or prevent buffer overflows is to use automatic
protection at the language level. Another fix is bounds-
checking enforced at run-time, which prevents buffer over-
run by automatically checking that data written to a buffer
is within acceptable boundaries.

4.2.2 Cross Site Scripting
Developers have to ensure that they escape all untrusted

data based on the HTML context such as body, attribute,
JavaScript, CSS, or URL that the data is placed into.

For those applications that need special characters as in-
put, there should be robust validation mechanisms in place
before accepting them as valid inputs.

Cross Site Scripting Testing can be done for special char-
acters like Apostrophe, Greater-Than Sign, Less-Than Sign.
Test suites should be produced that take extra care while
handing these characters [23].

4.2.3 Ethical Hacking
An ethical hacker attempts to bypass the system security

and search for any vulnerability that could be exploited by
malicious hackers. Ethical Hacking also known as Internet
Security is very different from traditional Security. Inter-
net security is more on a proactive basis as compared to
traditional security. While traditional security is based on
catching the criminals, internet security has Ethical Hack-
ers that try to hack into a company or organization before
an ’attack’ so they are able to find any weak links. Ethical
Hackers are hired by companies to hack their own respective
company and be able to identify any loopholes where an ill-
intentional hacker could create damage so that the company
can buff its security and cover the cracks. They use their
creativity and skills to make the internet world of a com-
pany a foolproof and safe place for both the owners and the
clients [16].

4.2.4 Denial of Service Testing
The possible preventive mechanisms for Denial of Services

(DoS) are performing thorough input validations, avoiding
highly CPU consuming operations and separating data disks
from system disks.

An effective defense against an HTTP flood can be the
deployment of a reverse proxies spread across multiple host-
ing locations. By deploying many reverse proxies in dif-
ferent locations, the crush of incoming traffic is split into
fractions, lessening the possibility of the network becoming
overwhelmed. Deploying this type of architecture can be
done in the scramble after an attack has begun, or baked
into the network architecture of a web site as a preventative
defense [24].

4.2.5 Web Penetration Testing
A penetration test is an attack on a computer system with

the intention of finding security loopholes, potentially gain-
ing access to it, its functionality and data.

For performing the automatic web penetration test, web
scanners are used. They first crawl the target, then attack
to the results of the previous phase and finally report vul-
nerabilities in the target [15].

4.2.6 Operating System- Call Testing
The NIST ACTS tool was used to produce test suites

that covered numerous t-way combinations of system-call
arguments in the kernel of the LINUX operating system.
The testing experiments revealed various security related
vulnerabilities that were reported for further analysis [21].

4.2.7 Password Strength Testing
Strong test suites should be developed to test the strength

of passwords. A strong password must contain at least one
upper case letter, one lower case letter, one number, one
special character and minimum 8 characters. Another way of
cracking the password is if user-name/password is to target
cookies if cookies are stored without encryption. Frequent
changing of passwords is also an effective way of reducing
security threats [12] [25]. Checking for the accuracy of the
passwords will also reduce the threats [10].

4.2.8 SQL Injection Testing
SQL Injection Testing can be done for the special char-

acters like Apostrophes, Brackets, Commas and Quotation
marks. Test suites should be designed carefully for checking
these characters. Also, finding out the code from the code
base where direct SQL queries are executed on the database
by accepting some user inputs. Continuously monitoring
SQL statements from database-connected applications and
limiting the use of dynamic SQL will also reduce the SQL in-
jection attacks. The SQL injection attack prevention meth-
ods include improving the safety of the server configuration
and strengthening the code to user input information filter-
ing check [18].

4.2.9 Posture Assessment
This describes the overall security posture of an organiza-

tion; it is a combination of ethical hacking, security scanning
and risk assessment.

A series or combination of these techniques can be em-
ployed at code level and configurations level to identify and
avoid the security vulnerabilities of the system.

5. DISCUSSION
We suggest the companies to have periodic sessions and

workshops on the latest security threats and the best prac-
tices. The passwords should be checked for its endurance
whenever the user tries to change them and this can be
achieved by installing a password meter [25].

Cookies are often used in web applications to identify
users and their authenticated session. Stealing a cookie from
a web application will lead to hijacking the authenticated
user’s session. The cookie value string ensures that the
strings do not contain any commas, semicolons, or white-
space (which are disallowed in cookie values). Some user
agent implementations support cookie prefix signals to the
browser, and cookie request should be transmitted over a
secure channel. Cookies must be restricted and traced to a
secure origin. This prevents the cookie from being sent to
other domains.

The web applications that work more on documents should
be tested in the grounds of file system. Releasing informa-
tion about sensitive documents that may be contained on
a web-page is a good spot for attackers to manipulate un-
guarded web applications. Also, the URLs of the documents
should be encoded.

CERT-UK recommends the use of an appropriate firewall
and anti-virus software (which should be updated regularly).
New vulnerabilities are constantly being discovered and so
a system’s defences are only as good as the day they were
updated. A culture of safety and good housekeeping should
be encouraged as per the UK government’s 10 Steps to Cy-
ber Security [3]. Security vulnerabilties can be caused as a
result of expired softwares. So, it is important to include
the version and validity information of crucial software like

anti-virus in the test suites.
Several other security related precautions should also be

considered while designing the test suites. A regular audit
should be practiced to track the list of legitimate users of
the system. Test Cases should be developed to check against
each user’s validity. Because, an old user who is no longer
working for a company but with unrevoked permissions is
a potential attacker. An efficient test suite developed for
this functionality can help companies to minimize the at-
tacks and compromises at a very early stage. This should
be checked at all the grounds including testing, education
and production environments.

To check whether the user has typed in the correct pass-
word, systems must have a reference to check against. An
attacker who can obtain a copy of this reference file can run
cracking programs against it and will almost inevitably suc-
ceed in discovering the passwords for several user accounts.
Password files should therefore be among the best protected
information the organization holds, held on well-secured ma-
chines with limited access and, unless this is impossible,
holding only salted hashes rather than the actual passwords.
The choice of hashing algorithm can significantly affect the
time to crack a password file. If the passwords are main-
tained in a flat file format, it becomes very easy for the
attackers to gain access to the company’s confidential data.

The National Institute of Standards and Technology has
declared that the Out of Band authentication methods should
be retired in the recently completed SP 800-63 digital iden-
tity guidelines [11]. Because, the knowledge of full name,
phone number and email address can unlock a potential user
account. Information like this is readily available in Face-
book, LinkedIn and other online services where the user has
signed up.

Also, the system should be developed in a way to help
users cope with ’password overload’. Only use passwords
where they are really needed. Use technical solutions to re-
duce the burden on users. Allow users to securely record and
store their passwords. UK National Cyber Security Cen-
tre advice the developers to only ask the users to change
their passwords on indication of suspicion of compromise.
Because, frequent requirement to change passwords runs a
significant risk of encouraging users to adopt sequences of
passwords (e.g. by changing a digit) that increase the like-
lihood of a successful password guessing attack.

Encouraging users to never reuse passwords between work
and home. And when the password needs to be changed,
the new password should not be the one which has been
already used by the user. Train staff to help them avoid
creating passwords that are easy to guess. And, beware of
the limitations of password strength meters. Put technical
defences in place so that simpler but efficient passwords can
be used.

Steer users away from predictable passwords and ban the
most common. NIST Special Publication 800-63B emphasis
the rule that the testers shall compare the prospective se-
crets against a list that contains values known to be expected
or compromised.

• Passwords obtained from previous breach corpuses

• Dictionary words

• Repetitive-sequential characters like ’aaa123’

• Context-specific words, such as the name of the service,
the user-name, and derivatives thereof

Technically, it is a combinatorial security test practice sug-
gested by NIST Special Publication 800-63B. What’s left is
just to flag all bad passwords and maybe to send these users
an email that strongly suggests they change their password.

However, there is no guarantee that the chosen password
is good just because its not obviously bad.

The system should be tested for its ability to lock the ac-
count when repeated failed login attempts occur. An alter-
native method is increasing the delay between login attempts
when there have been repeated failures. A combination of
these methods makes an efficient defence against brute-force
attacks. This can be effective in slowing down the attacks
and letting the legitimate users buy response time to react
to the alarm. I propose a combinatorial testing suite that
checks both the ability of a password meter to measure the
strength of the supplied password and the ability to serve
an alternative strong password as a suggestion.

Checking whether all the computer monitors in the work-
station are having screen privacy filters installed will reduce
the shoulder-surfing to a greater extent.

6. CONCLUSION
Different approaches for combinatorial security testing were

addressed in this paper. Each approach has its own merit
and demerit. Undoubtedly, there is no single approach that
fits to all company requirements and attacker models. How-
ever, it is still helpful to find a combination of different ap-
proaches that serves best to a company’s setup, attacker
model, and budget. To ensure that no security related issue
occurs after the software is released, software testers per-
form rigorous testing. And if a software engineers want to
get best testing results, they should execute combinatorial
security testing at an early stage of software development life
cycle. The aim of the researchers in this field is to reduce the
security related vulnerabilities by introducing different ap-
proaches of testing. However, it is impossible to restrict the
income of new threats. Afterall, every hacker is a developer
himself.

7. REFERENCES
[1] Common Vulnerabilities and Exposures -

CVE-2015-4630. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2015-4630, 2015. Date
Entry Created - 20150616.

[2] Common Vulnerabilities and Exposures -
CVE-2015-4631. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2015-4631, 2015. Date
Entry Created - 20150616.

[3] 10 steps to cyber security. National Cyber Security
Centre., page 1, August 2016.

[4] E. Alesand and H. Sterneling. A shoulder-surfing
resistant graphical password system, 2017.

[5] J. Bi, P. Hu, and P. Li. Study on classification and
characteristics of source address spoofing attacks in
the internet. International Conference on Networking,
0:226–230, 04 2010.

[6] F. Breda, H. Barbosa, and T. Morais. Social
engineering and cyber security. pages 4204–4211, 03
2017.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4630
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4630
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4631
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4631

[7] Chawki, Darwish, Khan, and Tyagi. Cybercrime,
Digital Forensics and Jurisdiction. Springer, 2015.

[8] P. Chen. Research on penetration test of the sql
injection based on the formalization model. In 2nd
International Conference on Electronics, Network and
Computer Engineering (ICENCE 2016). Atlantis
Press, 2016.

[9] J. Dahse and T. Holz. Static detection of second-order
vulnerabilities in web applications. In USENIX
Security Symposium, 2014.

[10] M. Golla and M. Durmuth. On the accuracy of
password strength meters. CCS ’18, Toronto, ON,
Canada, October 2018.

[11] P. A. Grassi, M. E. Garcia, and J. L.Fenton. Digital
identity guidelines. NIST Special Publication
800-63-3., pages 1–74, June 2017.

[12] S. Houshmand. Analyzing password strength and
efficient password cracking. 12 2018.

[13] James.C.Foster, V. Osipov, N. Bhalla, and N. Heinen.
Buffer Overflow Attacks-Detect,Exploit,Prevent.
Syngress, New York, 2004.

[14] A. W. Marashdih and Z. Fitri. Cross site scripting:
Detection approaches in web application.
International Journal of Advanced Computer Science
and Applications, 7, 10 2016.

[15] M. Mirjalili, A. Nowroozi, and M. Alidoosti. A survey
on web penetration test. ACSIJ Advances in Computer
Science: an International Journal, 3, 11 2014.

[16] B. Pandey, A. Singh, and L. Balani. Ethical hacking
(tools, techniques and approaches). 01 2015.

[17] S. Pareek, A. Gautam, and R. Dey. Different type
network security threats and solutions, a review.
IPASJ International Journal of Computer Science
(IIJCS) ISSN 2321-5992, 5:001–010, 04 2017.

[18] S. M. S. Sajjadi and B. T. Pour. Study of sql injection
attacks and countermeasures. International Journal of
Computer and Communication Engineering., 02(05),
September 2013.

[19] O. Segal. Automated testing of privilege escalation in
web applications. A whitepaper from Watchfire., pages
1–6, 2006.

[20] P. Sharma and B. Nagpal. A study on url
manipulation attack methods and their
countermeasures. International Journal of Emerging
Technology in Computer Science Electronics.,
15(01):116–119, May 2015.

[21] D. E. Simos and B. Garn. Eris: A tool for
combinatorial testing of the linux system call
interface. IEEE Seventh International Conference on
Software Testing, Verification and Validation
Workshops., 49(10):58–67, April 2014.

[22] D. E. Simos, R. Kuhn, Y. Lei, and R. Kacker.
Combinatorial security testing course. HoTSoS ’18,
Raleigh, NC, USA, April 2018.

[23] D. E. Simos, R. Kuhn, A. G. Voyiatzis, and
R. Kacker. Combinatorial methods in security testing.
IEEE Computer Society., 49(10):80–83, October 2016.

[24] K. Thakur. Analysis of denial of services (dos) attacks
and prevention techniques. 07 2015.

[25] B. Ur, F. Alfieri, M. Aung, L. Bauer, N. Christin,
J. Colnago, L. F. Cranor, H. Dixon, P. E. Naeini,

H. Habib, N. Johnson, and W. Melicher. Design and
evaluation of a data-driven password meter. CHI 1́7
Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, pages 3775–3786, May
2017.

Theories, Methods, and Tools in Domain Model Discovery

Past, Present, and Future

Marius Molz
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

marius.molz@rwth-aachen.de

Annika Rüll
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

annika.ruell@rwth-aachen.de

ABSTRACT
Programs are full of domain knowledge that we can use to
refine the quality of the program. Different approaches have
been used to discover such domain knowledge. Two main
techniques emerged: Static and dynamic analysis. Static
analysis focuses on the static information in the source code
such as identifier names and comments, whereas dynamic
analysis uses the knowledge contained in in-run-time mem-
ory and execution flow.

In this paper, we present an overview on the different
approaches in domain model discovery. We introduce the
general concept of static and dynamic analysis, followed by
the different tools for extracting domain specific knowledge.
Furthermore, we compare different approaches and evaluate
their past improvements. In addition we give a short view
over future development.

1. INTRODUCTION
Programs are used in business to solve specific domain

problems. When business evolves, the software has to be
able to evolve to the same extent as the business does. The
use of domain-driven design (DDD) gives a skeleton which
can easily be expanded and refined as required. Alas, code is
often not written after the DDD principles, so restructuring
and rewriting are difficult. Therefore, there is a demand for
means discovering the domains implemented in the software.
Since source code is usually written by domain experts, there
is a lot of domain-specific knowledge in it. This raises the
question of how to extract that knowledge.

The skeleton of source code consists of several classes,
methods, and attributes connected with instructions. Run-
ning a program generates output data as well as new ob-
jects or other instances. Both types of data, which means
the static ones in source code and the dynamic ones created
during run-time, contain information about the correspond-
ing domain.

The class, method and attribute identifiers have names
which explain their role, hence they can contain domain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2018/19 RWTH Aachen University, Germany.

knowledge. However, only in rare cases, an identifier name is
one word. One challenge in analyzing identifiers is to find the
correct natural language words for names consisting of mul-
tiple abbreviations. For domain models, not only the topics
but also the connections between each other is important.
Another challenge is to analyze indirect and ambiguously
identifier relations. Apart from this, developers comment
their code or display information to the user of the program.
Comments can contain domain knowledge as well. They are
more unstructured than identifiers, hence analyzing them
needs more effort. These challenges are combined as static
analysis. Based on the source code and other (static) files,
the static analysis has all information of the domain. To
interpret these pieces of information the semantic of the ex-
tracted strings has to be analyzed. That means, there is the
need for algorithms understanding the semantic meaning of
sentences.

The behavior of a program can be analyzed by looking at
output data during run-time, which is called dynamic anal-
ysis. To gain run-time data, e.g., the program has to run
with example input data and tests respectively. The selec-
tion which scenario to run is one of the challenges in dynamic
analysis. However, running a program in a test environment
can cause unexpected effects. Such observer effects should
be avoided while analyzing a program. Another challenge in
the dynamic analysis is that there is too much output data
than a human can cope with.

In this paper, we present an overview of different do-
main model discovery approaches and focus on static and
dynamic analysis. The first section introduce the main prin-
ciple of identifier analysis and states techniques for splitting
and expanding identifier names to natural language terms.
Furthermore, we compare tools regarding correct discovered
words. In the next part, we consider techniques analyzing
relations between identifiers. The last part of static anal-
ysis deals with comment analysis. The main technique we
explain is Information retrieval(IR), thereby we focus on
probabilistic models in combination with different methods
for domain discovery.

The second section describes dynamic analysis. We
present various techniques to set up test cases. Relevant
parts of source code can be found by analyzing how often
they are executed. Otherwise, tests can be generated
automatically, which give a good supplement for other
techniques. To avoid false data which occurs by incorrect
input, special heuristics are used. In the end, we state
different tools using these techniques.

1

2. STATIC ANALYSIS
There are two main sources of domain model knowledge

in source code: The identifier names and the unstructured
data like comments or information that is displayed to the
user. Identifier names contain much information about the
problem domain. The challenge is to find the most useful
meaning of the identifier name as well as to analyze the
connections of the identifier compared to the real world re-
lations.

As a result of their typically unstructured and arbitrary
nature, comments are yet more difficult to analyze. More-
over, the algorithm has to recognize the meaning of the sen-
tence and put it in the right context of the domain.

2.1 Identifier Analysis
To analyze the identifiers, the compiler creates a list of

identifiers and the associated contexts. A context could be
a scope, role or class. Based on this information, ontologies
can be built and merged to create a domain model [21].

Analyzing the identifier name is the first part we focus on.
As the names can be concatenations of abbreviations they
have to be split and expanded to complete words. These
words can be analyzed by their synonyms and translations
to discover similarities with the problem domain. Using the
associated context, we deduce the identifier-level relations.
Matching those relations with their corresponding real-world
counterparts, result in ontologies which form domain mod-
els.

2.1.1 Techniques For Examine Identifier Names
Because identifiers represent complex real-world prob-

lems, developers concatenate several words, which produces
long identifier names. Therefore, identifier names are often
abbreviations or acronyms. The challenge with domain
model discovery is to find the real meaning of the identifier.
An approach to replace identifiers is proposed by Caprile
et al. [5]. However, it is not always useful to restructure
the whole program. We state techniques of identifier
analysis, followed by tools one can use.

Split names: Identifier names are often concatenations
of different words like calcAge and first name. Among oth-
ers, CamelCase and underscores are used to denote the dif-
ferent words. The first step in analyzing identifier names is
to split them on the basis of such separators.

Input : Identifier Id
Output: List with split identifiers S

1 L ← [Id];
2 if match (Id,) then
3 L ← split (Id,);
4 end
5 foreach element s in L do
6 if match (s, CamelCase) then
7 S ← S ∪ split (s, CamelCase);
8 end
9 else S ← S ∪ s;

10 end

1

Figure 1: Hard split algorithm. Adapted from [6]

As the figure 1 shows, the identifier is first split at the
special character (e.g. “ ”, “::”, etc.), and second with the
CamelCase. The match function returns true if the identi-

fier contains a special character and CamelCase respectively.
The identifier is split accordingly. As output we receive a
list with the split identifier, e.g., the identifier user getStr
would be split into {user, get, str}.

Because not all concatenated identifier names mark the
different words with such separators, some approaches also
have a soft split function. This splits a name according
to a given dictionary, e.g., firstname would be split into
{first,name}. The approach from Carvalho et al. [6]
splits the name into different parts and scores them ac-
cording to the dictionary entry. The division with the
highest score would be chosen. Feild et al. analyzes
three different algorithms for soft splitting [14].

Expand names: As we see above str is not very ex-
pressive. Therefore, the next step is to expand the split
identifier. Some identifier only contain program intern ab-
breviations, e.g., cmpStr should be expand to {compare,
string}. Otherwise programmers also use domain specific
vocabulary, e.g., numOfChldn abbreviation of {number, of,
children}. Such expansions are probably not found with
general purpose dictionaries.

Dictionaries dealing with (general) programming abbrevi-
ations and acronyms are proposed Guerrouj et al.. Ab-
breviations will usually expand, but acronyms will only be
recognized [17].

To expand specific names, a so called custom corpus-based
dictionary must be created. In this we include

1. The identifier, extracted from source code

2. The general purpose dictionary, mentioned above

3. The documentation corpus

The documentation corpus is informally a collection of text,
with domain specific content. To create a corpus the follow-
ing sources can be used:

• documentation files, such as JavaDoc or simply plain
text

• README files or INSTALL files, usually containing also
domain specific knowledge

• other content of plain text files

The collected data is stored in a plain text file [6].
For the decision, which expansion of the identifier name is
correct, a scoring function is used. On the basis of the dic-
tionaries, the scoring function checks the occurrence of the
expansions and ranks them. The highest ranked expression
will be chosen. Figure 2 depicts the splitting and expanding
procedure, with its soft and hard splits.

2.1.2 Tools For Examine Identifier Names
In the last twenty years the concept of identifier names

analysis has not significantly changed. Caprile et al [5]
states in 1999 how to split and expand identifier names us-
ing dictionaries. Published nine years later, the tool Samu-
rai [12] uses dictionaries as well. However, they also im-
plement the mentioned scoring function. For that reason
the resulting expansions are more accurate than in the first
approach. TIDIER [16] in 2010 not only makes use of dictio-
naries, but use a quite similar custom corpus-based dictio-
nary as mentioned above too. In addition, the technique of

2

input_numofChldr

input numofChldr

hard splithard split

chldr

children

hard split

specific
expand

soft split

numof

num

number

of

hard split

soft split

general
expand

Figure 2: An example of identifier examination.

Table 1: Precision of different approaches by ana-
lyzing Lynx. Adapted from [6]

Metric Approach Mean Median
precision Samurai 0.47 0.50

TIDIER 0.86 1.00
TRIS 0.93 1.00
LIdS 0.85 1.00

recall Samurai 0.45 0.33
TIDIER 0.84 1.00
TRIS 0.91 1.00
LIdS 0.86 1.00

splitting identifier names and finding expansions is based on
computing distances between the identifier and words found
in dictionaries. The algorithm is inspired by speech recogni-
tion. The same authors published two years later TRIS [17].
This approach uses a set of dictionaries too. The splitting
and expansion process is handled as an optimization prob-
lem: First a set of word transformations including costs, is
created. Then in the next step TRIS searches for the optimal
path in the expansion graph. LinguaId::Splitter(LIdS) [6]
in 2014 is one of the newest tools in identifier analysis. It
uses the same principle as TIDIER, but is able to split one
word abbreviations as well. Table 1 shows a comparison be-
tween the capabilities of correct splitting and expanding of
the different tools [6, 17]. The row precision means the num-
ber of correct split identifier names divided by the absolute
number of computed splits, while recall has been calculated
as the amount of correct splits divided by the number of all
correct splits. As we see in table 1, TRIS achieved with an
average of 93% the best precision. The approach TRIS uses
is slightly different, as it uses path optimization. Although
LIdS is a newer tool, it has a precision of 85%.

2.1.3 Techniques For Examine Identifier Relations
When the source code is parsed, we can not only collect

the identifier name, but its context and relation as well.
Therefore we are able to gain significant information, us-

ing the identifiers context. There are two main methods in
using this information: First, we examine the relations be-
tween the identifier (e.g. isA, hasA relations). This gives us
ontologies, and collected a domain. The use of dictionaries
like WordNet can help to validate and complete the domain
concept [22].

Otherwise, we use the type of the identifier, e.g., class,
function, variable), to find the grammatically corresponding
class, e.g., verb, noun). Using Natural language parsing,
sentences were created and analyzed to discover the concept
of the program [1, 2].

Matching of relations: Especially in object-oriented
programming languages, we can distinguish between mod-
ule system induced relations and type system induced ones.
In module systems there is, among others, the memberOf-
Package, which is used to describe connections between the
classes and interfaces. The attributes belonging to a class,
are described with the memberOfClass relation.

The most important relations in type system are the
supTypeOf relation, stating the relation between two types
and hasType, holding between a variable and its type.
Relations between variables are assignedTo relations and,
quite similar, boundWith relations if the former parameter
is assigned to the actual parameter [22]. Figure 3 depicts
the relations from a sample code snippet. To determine
what the appropriate real world relation is, WordNet is a
useful dictionary. WordNet groups the words by synonyms
and contains additionally lexical concepts. WordNet dis-
tinguished between hypernym and meronym, e.g. wing is
meronym of bird. The example in figure 3 gives among
others the following relations:
Book is hypernym of Novel and story meronym of Novel.

Natural Language Parsing: Another approach makes
use of Natural Language Parsing (NLP). In contrast to the
previous techniques, the identifier names were divided into
their types and from this, sentences can be generated. The
proceeding is as follows:

1. Creating a term list

2. Generating the corresponding sentence

3. Selecting the appropriate sentence

4. Extracting the concepts and relations

Creating the term list can be realized as stated in the previ-
ous subsection. To generate the sentence, there are several
rules (cf. table 2) to apply. Identifiers are distinguished by
class (C), method (M) and attribute (A) identifiers. After
generating the sentences, there are at most two sentences
per term. In step three a sentence is chosen as follows:

• If only one sentence contains U (Unknown), then select
the other

• Select MR2, when there is a match with the attributes
of the enclosing class

• Select highest frequency in term list

• Select highest user defined priority

3

package library.shelf;
class Genre {…}
class Novel extends Book {

Genre theGenre;
Novel (Genre aGenre) {

the Genre = aGenre;
}

}

Genre fantasy = new Genre();
Novel story = new Novel(fantasy);

…

favoriteBook = story;

library.shelf

Book Genre

theGenre

aGenre

story

favoriteBook fantasy

Novel

memberOfPackage memberOfPackage

hasType

hasTypehasType memberOfClass

subClassOf

member
OfPackage

boundTo

assignedTo

assignedTo

Figure 3: An example of identifier concept identification. Adapted from [22]

In the last step, the relations between identifier were taken
into consideration. The ontologies are obtained by map-
ping the linguistic relations to ontological relations. The
target ontological relations and the corresponding natural
language dependency relations to which they are mapped
are described below:

• isA: Connection between general to more specific con-
cepts

• <verb>: Context specific relation between concept
and the object connected to the verb

• hasProperty: Relationship between concept and its
properties

With this, the ontologies can be created and merged to do-
main models [1, 2].

Table 2: Rules for sentences generation. Reprinted
from [1]

Rule Identifier Generated sentence Constraint
CR1 C =< T1 > T1 ”is a thing” T1 is a noun
CR2 C =< T1 > T1er ”is a thing” T1 is a verb
CR3 C =< T1, < T2 >, ... > T1T2... ”is a thing” T1 is a noun
CR4 C =< T1 > T1ingT2... ”is a thing” T1 is a verb
MR1 M =< T1 > ”subjects” T1 ”object” T1 is a verb
MR2 M =< T1 > ”subjects get” T1 T1 is a noun
MR3 M =< T1, < T2 >, ... > ”subjects” T1T2... T1 is a verb
MR4 M =< T1 > ”subjects get”T1T2 T1 is a noun
AR1 A =< T1 > T1 ”is a thing” T1 is a noun
AR2 A =< T1 > T1er ”is a thing” T1 is not a past tense

verb or T1 is a past
tense verb and A is not
a boolean

AR3 A =< T1 > T1 ”subjects are things” T1 is a past tense verb
and A is a boolean

AR4 A =< T1, < T2 >, ... > T1T2... ”is a thing” T1 is a noun
AR5 A =< T1 > T1ingT2... ”is a thing” T1 is a verb

Filter domain specific knowledge: A Disadvantage
of this approach is that the NLP does not distinguish be-
tween implementation details and domain concepts. For

that reason, five years later, Abebe et al. propose an ex-
tension with filter techniques, dealing with concept filtering.
The added filter techniques are non-interactive and interac-
tive keyword based filtering, as well as topic based filtering.
The keyword based filtering approach detects keywords in
the documentation by using term frequency. This consid-
ers terms that have high frequency as keywords. Interactive
keyword based filtering does a closer examination, as it ex-
cludes GUI and user explanation keywords [2].

A concept in the ontology is therefore represented by the
keywords of a given topic. The concept is kept in the filtered
ontology if all the keywords match to each other. The result
is two sets of terms corresponding to the domain and the
implementation.

2.2 Analysis of unstructured data
At this point, we have analyzed the identifier names

and their relations. There is still more information in
the source code. The code in figure 4 contains domain
knowledge in attribute and method identifier names, but
there are a comment and a string with specific knowledge
as well. Other than the identifiers, the comment and the

// Is it morning?
public boolean isMorning(int hours, int minutes, int seconds){

if (!isDate(hours, minutes, seconds)){
throw Exception(”Invalid input: not a time value.”);

}
return hours<12 && minutes<60 && seconds<60;

}

Figure 4: Example code. Reprinted from [19])

exception description are unstructured. There is no clue
where and how many comments appear in the source code.
Additionally, it is more effort to analyze comments and
other strings because they are usually sentences which have
to be analyzed semantically.

4

2.2.1 Techniques For Examine Comments
Comments are scattered all over the source code. Usually,

they are very helpful for domain model discovery, but very
unstructured and hence difficult to analyze. The feasibility
of comment analysis depends strongly on the quantity and
content of comments in source code. Another challenge is
the definition of the scope of comments. Chen et al. pro-
pose an approach from 2018, dealing with this problem [7].
In older approaches, the context of comments is usually the
code in the lines around.

Primary methods in comment analysis make use of
information retrieval techniques (IR). We state the general
IR approach, followed by two tools DARIUS and PATRicia

using this technique.

Information retrieval technique: The first step is
named indexing. Gathering the information of the document
a logical view of the document can be created. The retrieval
is the second step, where the query is processed and returned
as a ranked list. In detail, the procedure is as follows

1. Preprocessing of the source code (i.e. the comments)
and the documentation

2. Creating a logical view (indexing)

3. Execution of queries

4. Retrieving and analyzing the results

5. Returning of the results as a ranked list

There are three mathematical models for this process: The
Set-theoretic, Algebraic and Probabilistic Models. Especially
the last model group is used in comment analysis [15, 20].

2.2.2 Tools For Examine Comments
Although the following tools both implement IR tech-

niques, the underlying analysis of identifier names is
different. PATRicia uses NLP techniques, while DARIUS

uses dictionaries.

PATRicia System: The Program Analysis Tool for
Reuse analyzes comments and identifiers with natural
language processing techniques. The system uses a sentence
parser and a semantic processor. The sentence parser has
information of standard comment syntactic structures and
identifier formats. With a special, for this purpose created
knowledge base, the extracted comments can be analyzed
semantically. PATRicia treats comment understanding and
code understanding individually. To understand comments,
occurrences of words are identified and the relationships
between them are concluded to detect concepts. With the
analyze of the code structure and the order and nature
of the statements on program, PATRicia infers further
concepts. If concepts appear in both, comment and code
understanding, then a domain is found [13, 15].

DARIUS: DARIUS finds the information about the do-
main by using a pdf file, in which the programmer has to
define the problem domain. With two IR models, DARIUS

then searches through the program’s comments and returns
the corresponding data.

Because of the various quality of code comments, DARIUS
preprocesses the comments as follows [15]:

• Comment Extractor: extracts the comments keeping
their context

• Statistics Calculator: provides quantitative results re-
garding comments in a program

• Comment Word Analyzer: computes the frequency of
words on comments

• Graphical Interface: can be used to visualize all the
information provided

2.2.3 Further Techniques and Tools
As seen in figure 4, there is more information in the source

code than identifier names and comments. The comment
//Is it morning? states the meaning of the function and
is relevant for the domain, while “Invalid input: not a time
value” is not. In this last section of the static analysis, we
state approaches to analyze these unstructured data. The
use of IR techniques is central, as mainly all techniques
based on probabilistic models, namely Latent Dirichlet
Allocation(LDA) [3, 24] and Latent Semantic Indexing
(LSI) [19], are used.

LDA and TopicXP: The tool TopicXP uses LDA for
analyzing all natural language terms in source code:

1. Pre-processing words

2. Extracting LDA-Topics

3. Assigning documents to topics

4. Extracting dependencies

5. Computing maximal weighted entropy

The first step is similar to the identifier analysis in section
2.1. Instead of expanding the words, they get stemmed,
e.g., by Snowball a language for stemming algorithms)
to more easily recognize individual words. Using these
words, we compute the topics with LDA. After assigning
the documents to the topics, the linguistic dependencies
are computed and visualized (e.g. by X-Ray). Finally the
maximal weighted entropy for each of the classes in the
system is analyzed. This is because a class usually contains
only a few topics [24].

LSI and semantic clustering: As with most informa-
tion retrieval techniques, LSI is based on the vector space
model approach. This approach models documents as bag-
of-words and arranges them in a term-document matrix A
such that aij equals the number of times term ti occurs in
document dj [19]. Semantic clustering is a approach that
uses the results of LSI to create the domain model. After
applying LSI the clustering steps are as follows:

1. Identifying topics

2. Describing topics with labels and apply LSI again

3. Compare the topics to the structure

The clustering results in linguistic topics. By using an algo-
rithm which groups similar elements together, clusters are
aggregated. The source documents are consequently parti-
tioned in their vocabulary, but there is no indication about

5

the concrete connections between the documents. There-
fore, the topics are labeled, accordingly to their relevance.
We use LSI for this step again. Finally we have to compare
the program structure to the discovered topics, by using a
Distributed Map. This visualizes the correlate linguistic in-
formation with structural information [19].

3. DYNAMIC ANALYSIS
A rather new kind of analysis, the dynamic analysis, does

not only take the source code into consideration but also
analyzes the actual run-time behavior. This information is
more valuable in specific situations because especially for
those, someone can create tests that can be run in a test
environment. Custom scenarios are the prerequisite of the
analysis, and scenarios can be processed using different the-
ories. Because of that, there are several techniques one can
choose from, each one having its strengths at another kind of
scenario [4]. Dynamic analysis aids the programmer to more
detailed information regarding run-time behavior, because a
much smaller, well-defined scope is analyzed [8]. Hence the
dynamic analysis has a few advantages, but also drawbacks:

3.1 Features
Other than the static analysis (where the analysis must

stay as abstract as possible), the dynamic analysis can test
execution traces on its own, giving it the ability to provide
much more detailed (and precise) output to each scenario /
test case. Because of that, the results of the analysis have
a much higher usability, containing highly-accurate infor-
mation over a broad set of test-cases. This refers to the
precision of the analysis [8, 4].

Because the dynamic analysis is not limited in scope (but
in run-time), output regarding wide-spread semantic depen-
dencies can be generated. The static analysis cannot achieve
this, because it is limited to a specific scope. In literature,
this is also referred as goal-oriented strategy meaning “[...]
that only the parts of interest of the software system are
analyzed” [8]. Therefore, dynamic analysis of a program
must be clearly organized, to really obtain all information
needed [4].

3.2 Drawbacks
The analysis of one specific scenario naturally only cap-

tures the run-time behavior (execution traces) in the current
scope, but only one out of the typically infinite set of possible
execution traces of the program’s source code. Because of
that, the results of the analysis regarding the whole program
can be incomplete [8, 4].

Besides, analyzing different scenarios creates a large
amount of output that needs to be processed. The more
specific the scenario is, the more information one has to
understand in the entire program’s scope. Because of that,
the user cannot simply use these techniques, but also must
prioritize because otherwise the person could not process
all data generated. The User would have difficulties scaling
the output [8].

The observer effect : Sometimes the execution of the pro-
gram in a test environment leads to different results or out-
put than under normal (real-world) conditions, even if the
scenarios are the same. This is related to a change of be-
havior of e.g., memory or execution traces. Sharing the
same run-time environment with e.g., monitoring software
or memory analyzers also influences the program flow [8].

3.3 Techniques
Because of the same demands as stated above, the dy-

namic analysis provides multiple theories of analysis, where
each one has its strengths at another style of processing a
specific type of scenario. Many different techniques can be
derived from them. Therefore, a few techniques are pre-
sented in the following section, each having its main focus
on other approach of analyzing the program dynamically.

3.3.1 Frequency Spectrum Analysis
Developed in 1999 and based on program profiling, the

Frequency Spectrum Analysis (FSA) stores information
about how frequently executed some parts of the program
are. Someone then can retrieve differently clustered infor-
mation, such as a partitioning of the program by levels of
abstraction, a set of related computations (that are based
on the same specific program’s output or input) [4].

The FSA itself consists out of three rudiments which can
be analyzed on its own [4]:

1. Atomic (regarding the program’s functionality) func-
tions or actions are called a lot more frequently than
one-time functions such as the program’s initializing
methods. Therefore, a hierarchy of software abstrac-
tions can be derived simply by sorting low frequencies
against high frequencies.

2. One can retrieve dynamic relationships between parts
of the program which does not need to be visible in the
static analysis (e.g., source code). If some methods or
variables are called at the same frequency, it means
that (with high probability) they are in a Frequency
Cluster, meaning they both share that same frequency
of program calls.

3. The analysis also detects specific Frequency Patterns.
As the complexity of run-time, there surely are parts of
a program correlating e.g., with the length of the input.
These dependencies then can outline code fragments
which directly influence the program’s output or input
processing.

3.3.2 Coverage Concept Analysis
Developed in 1940 [26], the Coverage Concept Analysis

identifies groups of similar parts of the program. A set of
relations is used an input. A set is represented by a tuple
of objects and their corresponding attributes, whereas the
objects are tests and the attributes their results. From that,
Concepts are generated; a Concept “[...] is the pair (T,E),
where T is a set of tests and E a set of program entities
[...] if every test in T covers all entities in E [...]” [4]. Hence
Concepts group all sets of tests which are covering identical
objects.

Based on this set of relations, the user then can easily
detect which tests are redundant, and even detect which en-
tities of the program are not covered by at least one test.
Additionally, tests can be run automatically [25]. As shown
in [26], high-level tables containing the relations can be
derived, while only having a few limitations such as rela-
tions between an objects instance and its subobject’s mul-
tiple instances. In this case, the detected relations can not
be linked to a specific subobject, but only the main object.
Siff et al. [25]proposes that Concept Analysis can also be
used for Module Detection, showing multiple possible mod-
ularizations. From there, so-called Concept Partitions can

6

be derived, whereas a partition corresponds to a collection
of modules “[...] such that every function in the program is
associated with exactly one module” [25].

Combined with FSA, this provides much more useful in-
formation for the Discovery of previously unknown (e.g.,
unchecked) code [4].

3.3.3 Software Reconnaissance
This technique from 1996 takes a slightly different ap-

proach as the ones mentioned earlier: Other than mapping
sets of test to their set of test results, Software Reconnais-
sance compares whole traces of different test cases. For this
purpose, traces are generated out of the components of the
specific test first. Then, test cases both having or missing
the corresponding feature in their scope are run (like in the
Concept Analysis). Based on this results, the correct trace
can be received (containing the feature), simply by looking
for components of the program that are executed in the first
(inclusive), but not in the second (exclusive) set of tests [27].

This is most useful for detecting execution branches oc-
curring in an execution trace for a specific feature, which
is also called a masker code. For that, the user must only
take “[...] the set of branches that are executed in some test
case [...] removing any branches[...]” [27] where that specific
feature does not occur in the testing scope.

Since the feature detection works on all tests provided,
the Software Reconnaissance technique has its strength at
detecting features correctly which are wide spread across
large parts of the program’s source code (e.g., still main-
tained legacy code). Nevertheless, this technique (like Con-
cept Analysis still requires both test cases.

3.3.4 Dynamic Feature Traces
In terms of scoping the feature these techniques only build

up binary relationships, that heavily rely on the correctness
of the input [11].

By applying special heuristics, also non-binary relation-
ships can be used to detect features. These so-called Dy-
namic Feature Traces(2005) are artifacts that rank the de-
tected code-fragments - implementing that feature by their
relevance in the source code. Automated feature location
is possible, because these DFTs are also compatible to Test
Driven Development, whereas binary analysis forces the pro-
grammer to create enough additional tests, not containing
the specific feature to be checked against [11].

A DFT consists of ranks (which is an ordered set of meth-
ods called during the execution) and the call set which con-
tains some information about the context of the method
call [11].

Because of the automatic creation of the DFT, the user
must only provide feature mappings to run against the given
test suite. If tests are not mapped to a feature, they then
are grouped to similar tests (by similar structure) automat-
ically [11].

After that, there must only be a test suite “[...] where all
relevant features are tested in at least one case” [11]which
consists out of one containing- and many non-containing test
sets for each feature to be tested [11].

Figure 5: Sampling Window (reprinted from [10])

3.4 Tools
Based on these techniques, tools are developed, whilst

their main purposes differ to each other. To give an broad
overview, some tools, using different approaches of imple-
menting some technique, are presented.

3.4.1 Dynamic Correlation
A tool derived from modified versions of the FSA, the

application from Dugerdil [10] tries to minimize the un-
needed output of the FSA much more. For that, the output
needs to be reduced to the critical data the user shows in-
terest in. This is achieved by filtering out noise, that are
elements executed in the period of time while the feature
was in the scope. This elements then are mostly called (in
terms of absolute calls) outside of the feature scope. This
is a major difference to the FSA, where only frequencies are
analyzed, but not the distribution of frequencies at the time
of execution [10]. By also taking the Distribution of the
frequencies into consideration, Dugerdil claims to achieve
an easier analysis of legacy systems, mapping high-level to
low-level functions, and an easier recovery of the high-level
architecture. For that, so-called Samples are created during
the analysis. These are the time slices (cf. figure 5) the fea-
ture could be detected in. A so-called sampling window of a
given time size (depicted as Dw in figure 5) moves over the
execution trace (with run-time D). Inside the scope set by
the moving sampling window, an algorithm can distinguish
between noise and elements that really refer to the feature
and remove unnecessary information from the output which
otherwise would have been needed to be processed [10]. Af-
ter sampling, dynamic correlated elements can be detected.
These are elements that are occurring in the same samples.
By measuring the number of the shared samples, one can
then define their grade of correlation. Afterwards, the clus-
tering of elements can be computed based on the results of
the dynamic correlation analysis [10].

3.4.2 Visualizing Recurrent Code
Another attempt of making the huge amount of output

data processable by human readers is the visualization of
duplicate code fragments in the execution trace. To de-
tect these code fragments a two-dimensional matrix is used,
whereas entries in the matrix represent string matches in the
lines of code (cf. figure 6). If diagonal lines in this matrix
are present, the program’s source code contains duplicated
code fragments. Based on this matrix, multiple visualiza-
tions, each designed for a different purpose, can be created:

• Recurrent pattern visualization shows reoccurring code
fragments as clear patterns. From that visualization,

7

Figure 6: Feature Trace Correlation Matrix
(reprinted from [10])

new approaches of solving this redundancy can be de-
rived.

• The Execution phase visualization makes it possible to
detect so-called execution phases from trace fragments.
With that knowledge a more focused investigation is
possible.

• The Polymorphism visualization detects “[...] re-
current call traces of which the calls differ only
slightly[...]” [10] by tweaking the comparison algo-
rithm of two events.

3.4.3 GCOV
With the tool GCOV(GNU Test Coverage Program), it is

possible to analyze the coverage of the code. GCOV can be
run using two different modes:

• In the first mode, called Statement Coverage Anal-
ysis, the code is broken down into basic blocks “[...]
which are the blocks of code that exist between
branches.” [18] Because they only appear in one
branch, all the content of the basic block is executed
at the same frequency. The analysis then checks the
number of calls from each statement.

• The other method, called Branch Coverage Analysis,
just overviews how often the branches themselves are
executed. To do this, each branch is analyzed to derive
which branches will be executed in what possible com-
bination and order; from there, also Statement Cover-
age related data can be generated. By creating tests
for each possible combination of executed branches,
even complex branch patterns can be coverage checked
using this method.

GCOV then runs a pre-prepared code file and annotates the
Statements with their number of total executions [18].

3.4.4 PANDA
With PANDA(Platform for Architecture-Neutral Dynamic

Analysis), a QEMU-based system, the user has many possi-
bilities how to analyze the program’s binary code and how
the output is parsed afterwards [23]. Commonly used for
reverse engineering of legacy code, the system relies on the
dynamic analysis of execution traces. For that, PANDA has
the ability to replay specific samples of the execution trace:
Users can iterate over the code that may contain the feature
and pinpoint the exact location. This is possible because
the system’s replay consists out of snapshots of the guest’s
system memory and CPU state [9].

In contrast to common analysis tools, PANDA can also an-
alyze the program backwards. That means, the debugger
holds information about its previous states, which can be
reloaded such that the program can be processed backwards
through its execution trace. This is not common, often the
user must rerun the debugger to debug an earlier program
state [9].

Because the system of PANDA is based on QEMU, the whole
analysis itself stays architecture-neutral, leading to a dy-
namic analysis which even scopes different run-time behav-
ior of the program based on different architectures [23]-

Overall, this tool has a few advantages compared to most
other tools [9, 23]:

• Open Plugin System: Plugins can be easily written
and (un)loaded live, while the code is analyzed

• Architecture-Neutrality: Because multiple Architec-
tures can be emulated, even different behavior based
on multiple architectures can be detected

• No normal debug system: Because of the unique debug
system, execution traces can also be analyzed back-
wards.

• Because of the replay system, one can close in on a
specific feature, by reducing the size of the scope in
each iteration of analysis.

4. FUTURE DEVELOPMENT
With the growth of software systems and their regular re-

finement in practice, domain model discovery has become an
increasingly important part of software development. Identi-
fiers are the predominant knowledge source in domain model
discovery. For this reason, the identifier analysis should be
precise. Existing approaches achieve a precision up to an
average of 93% which is highly accurate. The precision de-
pends mainly on the underlying dictionaries. Neuronal net-
works, trained with these dictionaries, could improve the ac-
curacy of identifier analysis. Avoiding noise is another point
that is not solved satisfactorily. Not all parts of programs
contain domain knowledge. Therefore, there is a need for
techniques which filter results so that only domain knowl-
edge, and not program intern knowledge, is collected. Cur-
rently criteria for non-domain knowledge are still missing.

Regarding the future development in the field of dynamic
analysis, we imagine new tools and techniques will be de-
veloped that make real-time analysis in software develop-
ment possible. Because computers will become even more
powerful, the ability to analyze (and reverse engineering)
obfuscated code will also grow. Taking the recent achieve-
ments in the field of cloud computing and virtualization into

8

consideration, we expect that future tools will be capable
of distributing e.g., their internal tasks of analysis, work-
load across multiple processor units. Based on that, even
the analysis of multi-threaded programs could be improved,
when multiple execution traces can occur simultaneously.
This is also the case for the earlier mentioned problem of
analyzing multiple subobject’s instances of the same object,
because nowadays, retrieved data can not be connected to
the related code fragment out of one of these objects.

Finally, neither static nor dynamic analysis is able to de-
duce the whole domain knowledge included in a program.
A significant improvement can be achieved by combining
both types of analysis. Unfortunately, this approach is not
common in literature.

5. CONCLUSION
In the first section of the paper, we described how static

analysis works and how it retrieves the domain model of the
program’s code. We started with simple identifier names
analysis over to more complex unstructured data analysis.
Using dictionaries we are able to split and expand identi-
fier, which ensures to analyze meaningful names. Combined
with the analysis of relations and identifier types, we have
already a strong knowledge base. The tools we have in-
troduced have a precision up to average 93%. Interesting
in this context is, that within time the techniques changed
and may improve, but the precision does not improve to the
same extent. Furthermore, the use of dictionaries containing
real-world relations, enable the mapping of the program en-
tities counterparts. To avoid ambiguous identifier, they are
transformed into natural language sentences. Than Natural
Language Parsing clearly analyze the sentences. Together
with filter techniques noise and other domain irrelevant con-
tent do not appear in the domain model. Afterward, we ex-
plained how information that is not related to identifiers is
processed. To mention here are comments and other strings
in the source code. The main technique to deal with this is
Information Retrieval. We finally had a closer look at two
probabilistic models from IR and how to extract domain-
specific knowledge with them.

In the second part of the paper, we explained the pur-
pose and usage of dynamic analysis. For that, we give an
overview of techniques, which one can use to find test sce-
narios. After describing techniques like Frequency Spectrum
Analysis, Coverage Concept Analysis, Software Reconnais-
sance and the concept of Dynamic Feature Traces, we listed
some tools used for dynamic analysis. The Visualization of
recurrent code is a solution for scalability. By visualizing
results, the human reader can cope with the data. Lastly,
we described how tools like GCOV and PANDA can be used to
analyze the program’s source code (or even the program’s
binary, through reverse engineering) to detect the domain
model dynamically.

There are several already powerful methods in domain
model discovery. However, combining different approaches,
especially static and dynamic methods, would produce bet-
ter results. Alas, such approaches are very rare in literature.

References
[1] S. L. Abebe and P. Tonella. Natural language parsing of

program element names for concept extraction. In IEEE
International Conference on Program Comprehension,
2010.

[2] S. L. Abebe and P. Tonella. Extraction of domain con-
cepts from the source code. Science of Computer Pro-
gramming, 98:680–706, 2015.

[3] M. Alenezi. Extracting high-level concepts from open-
source systems. International Journal of Software En-
gineering and its Applications, 9(1):183–190, 2015.

[4] T. Bell. The concept of dynamic analysis. ACM SIG-
SOFT Software Engineering Notes, 1999.

[5] B. Caprile and P. Tonella. Restructuring program iden-
tifier names. In Proceedings 2000 International Confer-
ence on Software Maintenance, pages 97–107, 2000.

[6] N. R. Carvalho, J. J. Almeida, P. R. Henriques, and
M. J. Varanda. From source code identifiers to natu-
ral language terms. Journal of Systems and Software,
100:117–128, 2015.

[7] H. Chen, Z. Liu, X. Chen, F. Zhou, and X. Luo. Au-
tomatically Detecting the Scopes of Source Code Com-
ments. In 2018 IEEE 42nd Annual Computer Software
and Applications Conference (COMPSAC), pages 164–
173. IEEE, 7 2018.

[8] B. Cornelissen. Evaluating Dynamic Analysis Tech-
niques for Program Comprehension. PHD Dissertation,
2009.

[9] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and
R. Whelan. Repeatable Reverse Engineering with
PANDA. In Proceedings of the 5th Program Protec-
tion and Reverse Engineering Workshop on - PPREW-
5, 2015.

[10] P. Dugerdil. Using trace sampling techniques to iden-
tify dynamic clusters of classes. In Proceedings of the
2007 conference of the center for advanced studies on
Collaborative research - CASCON ’07, 2007.

[11] A. D. Eisenberg and K. De Volder. Dynamic fea-
ture traces: Finding features in unfamiliar code. In
IEEE International Conference on Software Mainte-
nance, ICSM, 2005.

[12] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker.
Mining source code to automatically split identifiers
for software analysis. In 2009 6th IEEE International
Working Conference on Mining Software Repositories,
pages 71–80, 2009.

[13] L. H. Etzkorn, L. H. Etzkorn, L. L. Bowen, and C. G.
Davis. An Approach to Program Understanding by
Natural Language Understanding. NATURAL LAN-
GUAGE ENGINEERING, 5:1–18, 1999.

[14] H. Feild, D. Binkley, and D. Lawrie. An empirical com-
parison of techniques for extracting concept abbrevia-
tions from identifiers. In Proceedings of IASTED Inter-
national Conference on Software Engineering and Ap-
plications (SEAı̈£¡06), 2006.

9

[15] J. L. Freitas, D. d. Cruz, and P. R. Henriques. A Com-
ment Analysis Approach for Program Comprehension.
In 2012 35th Annual IEEE Software Engineering Work-
shop, pages 11–20, 2012.

[16] L. Guerrouj, M. Di Penta, G. Antoniol, and Y.-G.
Guéhéneuc. TIDIER: an identifier splitting approach
using speech recognition techniques. Journal of Soft-
ware: Evolution and Process, 25(6):575–599, 2000.

[17] L. Guerrouj, P. Galinier, Y. Guéhéneuc, G. Antoniol,
and M. D. Penta. TRIS: A Fast and Accurate Identifiers
Splitting and Expansion Algorithm. In 2012 19th Work-
ing Conference on Reverse Engineering, pages 103–112,
2012.

[18] N. Hinds, P. Larson, H. Franke, and M. Ridgeway. Us-
ing Code Coverage Tools in the Linux Kernel.

[19] A. Kuhn, S. Ducasse, and T. Gı̂rba. Semantic cluster-
ing: Identifying topics in source code. Information and
Software Technology, 49(3):230–243, 3 2007.

[20] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and
A. Sergeyev. Static Techniques for Concept Location in
Object-Oriented Code. In 13th International Workshop
on Program Comprehension (IWPC’05), pages 33–42.
IEEE, 2005.

[21] M. J. Pereira, M. Berón, D. Cruz, N. Oliveira, and
P. Henriques. Problem domain oriented approach for
program comprehension. In A. SimÃţes, R. Queirós,
and D. da Cruz, editors, Symposium on Languages, Ap-
plications and Technologies (SLATEâĂŹ12), pages 91–
105, Wadern, 2012. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik.

[22] D. Ratiu and F. Deissenboeck. Programs are knowl-
edge bases. IEEE International Conference on Program
Comprehension, 2006:79–83, 2006.

[23] Ryan Whelan, Tim Leek, and David Kaeli.
Architecture-Independent Dynamic Information
Flow Tracking. Technical report, European Joint
Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, 2013.

[24] T. Savage, B. Dit, M. Gethers, and D. Poshyvanyk.
TopicXP: Exploring topics in source code using Latent
Dirichlet Allocation. In 2010 IEEE International Con-
ference on Software Maintenance, pages 1–6. IEEE, 9
2010.

[25] M. Siff and T. Reps. Identifying Modules via Concept
Analysis. Technical Report 6, University of Wisconsin,
Wisconsin, 1999.

[26] G. Snelting and F. Tip. Reengineering Class Hierarchies
Using Concept Analysis. In Anonymous, editor, SIG-
SOFT *98, pages 99–110, Braunschweig, 1998. ACM.

[27] N. Wilde and C. Casey. Early Field Experience with
the Software Reconnaissance Comprehension Technique
for Program Comprehension. In N. Wilde and C. Casey,
editors, Proceedings of WCRE ’96, pages 270–276, Pen-
sacola, FL 32514, 1996. University of West Florida,
IEEE.

10

Towards a Catalog of Design Patterns for Domain Modeling

Vitalii Isaenko
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

vitalii.isaenko@rwth-aachen.de

Erik Pinders
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

erik.pinders@rwth-aachen.de

ABSTRACT
The domain model captures our understanding of real world
entities, their relationships and responsibilities in a given
problem domain. This artifact can be used to communicate
domain knowledge to all involved parties. Furthermore, the
quality of the domain model influences the degree to which
an application satisfies business requirements.

The importance of a high-quality domain model can be
observed in complex software solutions, which tend to miss
their business requirements if the underlying domain model
is poorly designed, leading to various problems such as lost
business value and technical debt impacting the evolvability
of the business. To support domain experts in building a
high-quality domain models, design patterns may help them
to better understand the core requirements of the domain
that is being modeled.

But most of the existing design patterns are tackling system-
level complexity, and their applicability in domain modeling
is yet unknown. Despite the emergence of the domain driven
design approach there is a lack of patterns for domain mod-
eling. To solve this problem, this study explores existing
design patterns and assesses their applicability in domain
modeling.

Keywords
Design Patterns, Domain Modeling, Domain Model, Fac-
tory Method Pattern, Publish-Subscribe Pattern, Compos-
ite Pattern, Mediator Pattern, Prototype Patter, Strategy
Pattern, Iterator Pattern, Object Pool Pattern, Chain of
Responsibility Pattern, Decorator Pattern, Software Devel-
opment

1. INTRODUCTION
Building high quality software solutions is a hard and com-

plex process, which requires knowledge about domain spe-
cific topics and technical implementation details.

Over the last decades software design patterns have evolved

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2018/19 RWTH Aachen University, Germany.

to a staple of most software developers to tackle complexity
on a technical level. Due to their acceptance in software de-
velopment, software design patterns are well understood and
researched and there is a wealth of information summarizing
and describing each pattern and its applicability.

However, solving implementation problems is only one
part of a successful software solution. Providing a solution
for an underlying business problem is in a lot of cases much
more difficult.

There are many ways to help participants of a software
project to understand the underlying business problems. One
of the first activities in a new project is called domain mod-
eling. During domain modeling participants try to build
the so called domain model which should capture the un-
derstanding of real world entities, their responsibilities and
relationship among them.

Analogous to software design patterns, one could expect
the existence of such patterns for domain modeling, as it is
quite a complex process. However, too few of design patterns
for domain modeling are discovered so far.

Therefore, initiating a catalog of patterns for domain mod-
eling is the target of this research. There are several quality
factors of a domain model that we will try to tackle in this
paper. Most important are evolvability, understandability
and descriptiveness of the resulting model. The three qual-
ity factors were chosen as the most valuable ones for a good
domain model.

The approach that is chosen in the research for building
a catalog of design patterns for domain modeling consists of
analyzing existing design patterns in software development
and adapting them to domain modeling. Many patterns
from different fields were analysed in advance but the final
catalog contains only adaptations of object-oriented design
patterns as the most relevant ones.

2. BACKGROUND
Before discussing adaptations of existing design patterns

for domain modeling we will have present the background
of our research. Especially some background knowledge re-
garding design patterns and domain modeling will be ben-
eficial over the course of this paper. Design patterns and
domain modeling will be two main topics of the following
sections.

2.1 Design Patterns
A software design pattern is a general, reusable solution

to a commonly occurring problem within a given context
in software design, and using design patterns is often con-

sidered to be a best practice for solving common problems.
But design patterns are not finished designs that can be im-
plemented without additional work, its rather an abstract
description for solving a problem in different situations.

After Erich Gamma, Richard Helm, Ralph Johnson and
John Vlissides published ”Design Patterns: Elements of Reusable
Object-Oriented Software” in 1994, design patterns gained
popularity. Since then design patterns have become a staple
of every professional software developer.

Following that book, there were many different design pat-
terns discovered not only in the object-oriented design, but
also for enterprise integration patterns, patterns of enter-
prise application architecture and functional programming
patterns, which help to develop software in different settings.

However, a collection of tested and proven design patterns
in domain modeling has not been created.

2.2 Domain modeling
Domain modeling is a way to capture our understanding

of real world entities, their relationships and responsibilities
that collectively describe the problem domain space. The
complex process of building a domain model is one of the
first stages in software development and heavily influences
the degree to which an application satisfies business require-
ments.

Identifying domain entities and their relationships can
provide an effective tool for building a common understand-
ing across stakeholders and can help during the design of
the maintainable and testable solution.

Domain modeling requires a sound knowledge of the de-
scribed domain, common understanding among business ex-
perts and processes that promote that common understand-
ing. There are supportive process guides like domain driven
design, feature driven development and object oriented anal-
ysis which come with new design patterns and help to build
useful models. However, a common catalog of proven design
patterns for domain modeling has not yet been created.

3. PROBLEMS WITH DOMAIN MODELING
The main difficulty in creating a good domain model is

due to the fact that it is required to think about software
that will be built based on the model. Not only does domain
modeling require domain knowledge but also understanding
of software development.

Thus, domain modeling is rarely performed by a single
person. Usually, domain experts and developers collabo-
rate on that task that presents even more challenges such as
lack of collaboration among them, divergent focus or misun-
derstanding relationships between concepts of separate do-
mains. Thus, we chose desciptiveness and undestandability
among main quality factors to tackle with proposed pat-
terns.

Another problem that is related to the main artifact of
domain modeling - domain model is keeping it up-to-date.
It degrades with time as requirements change continuously.
Therefore, evolvability of the model is among our main con-
sidered quality factors.

Some of the existing problems are already solved, or par-
tially solved, by proposed and widely used process guide-
lines. However, there is still lack of established and docu-
mented best practices. We believe that domain modeling
field can also benefit from comparison of patterns in domain
modeling and in software development while software solu-

tion is based on the domain model. To address these gaps,
we try to take advantage of existing design patterns in soft-
ware development and apply them to domain modeling.

4. PATTERN DESCRIPTION TEMPLATE
When building a catalog of design patterns it is crucial to

follow a well-defined description template. As patterns pro-
vide solutions for some repetitive problems, the description
of the patterns should be unified for better understanding.
It is also meant to enhance further communication between
domain modeling experts and software developers by hav-
ing the description template. Thus, we developed a tem-
plate with 4 sections. These sections and their purpose are
described below.

• Pattern name.

• Summary: In the section brief summary of the pattern
and its intention is given.

• Original pattern structure: In the section a diagram of
existing software development pattern is presented for
reader to see the relation to its adaptation for domain
modeling.

• Applicability: In this section two questions - ’why to
use the pattern’ and ’how to use it’ are answered. It
incorporates motivation to use the pattern and its in-
tent. Quality factors of resulting domain model that
are influenced by proposed design pattern application
are also discussed in this section.

• Pattern structure: This section provides a diagram of
the pattern application using the example. The visual
representation is meant to enhance reader understand-
ing of the pattern and its real use in domain model.

• Example use: This section demonstrates an example
of pattern application. It has references the pattern
structure to describe it better. It was decided to use
e-commerce domain as an example for all the patterns.
The domain is general enough to be familiar to many
experts. Use of one domain for all described patterns
also facilitates reader’s understanding.

The description of the patterns in section 5 will follow this
template.

5. SELECTED DESIGN PATTERNS
The design patterns we selected for the catalog are well

known object oriented patterns that have been applied in
software engineering for more then 20 years. A lot of these
patterns were described in a seminal book ”Design Patterns:
Elements of Reusable Object-Oriented Software” by Erich
Gamma, Richard Helm, Ralph Johnson and John Vlissides.
Most of the patterns were selected due to the reason they
arise in software solutions. Specifically, the patterns that
are described in the catalog arise from the business needs.
Therefore, the original software design patterns and their
adaptations for domain modeling mostly have the same rea-
son to be applied. Depicting suggested patterns in domain
model will hint developers on their use in developed soft-
ware. Additionally, due to paper size limitations, we focused
on patterns that should be known to every computer science
student from various lectures.

Figure 1: Publish-subscribe pattern

5.1 Publish-Subscribe Pattern
The publish-subscribe pattern, also known as the observer,

is a behavioral design pattern that is commonly used in soft-
ware engineering; potentially many objects publish informa-
tion that is broadcasted to all subscribing objects. [3]

Figure 1 depicts the fundamental structure of the original
publish-subscribe pattern: Objects can be publishers that
manage a list of subscribers and notify them about changes,
while subscribers subscribe to events of publishers and re-
act to broadcasted changes. The exact behavior of both the
publishers and subscribers is determined by concrete imple-
mentations. Furthermore, it is common to see implementa-
tions that diverge from the depicted structure. Sometimes
a third object is introduced which acts as a message bro-
ker between publishers and subscribers, facilitating a better
separation of concerns.

This pattern provides greater scalability and a more dy-
namic network topology but comes at an increased design
complexity. The two main benefits that the publish-subscribe
pattern brings to the system are loose coupling and scal-
ability. The pattern is not restricted to be used only in
OO-system but can be useful on architectural level. Loose
coupling that it brings is especially helpful with the rise of
microservice based architectures. Typically services depend
on each other to perform a given operation using a request-
response pattern that can lead to cascading failures if one
service goes down. The publish-subscribe pattern can help
to mitigate this problem by isolating different services into
a publishing and a subscribing services for concrete events.
This way the services operate independently from each other
and failures do not cascade. Scalability can be improved by
using the publish-subscribe pattern due to the possibility
of parallel message processing. The message published by a
publisher can be read and processed independently by multi-
ple subscribers without them knowing about each other. [11]

The publish-subscribe pattern can be used in e-commerce
in many use cases. One of them being the completion of the
checkout process. Once a customer completes the check-
out process, a number of different other actions like billing
and shipping have to be triggered. Without the publish-
subscribe pattern it would be the checkout process’ respon-
sibility to trigger all of the following processes, which be-
comes inconvenient as the number of subsequent processes

Figure 2: Practical example of publish-subscribe
pattern

increases. Using the publish-subscribe pattern we end up
with the following model, which scales really well while the
number of subsequent processes increases.

Figure 2 shows how the problem could be solved using the
publish-subscribe pattern. The checkout process is a pub-
lisher that once completed publishes a message like ”Check-
out Completed” to a message broker. The message broker
then forwards the message, which triggers both the billing
and shipping process. If we want to add another process fol-
lowing the checkout process we can trigger it based on the
”Checkout Completed” message that is broadcasted by the
broker leaving the checkout process untouched. By using
the publish-subscribe pattern we ended up with a domain
model that is open for modification and more robust against
changes.

5.2 Composite Pattern
The composite pattern is a structural design pattern, which

composes zero-or-more similar objects so that they can be
manipulated as one object. This is done by composing ob-
jects into tree structures that represent whole-part hierar-
chies. [3]

Figure 3 depicts the fundamental structure of the com-
posite pattern: The modeled component has functionality,
in this case the method ”operation()”, which is present on
all objects that can be part of the group of objects that the
pattern describes. If the component is not split into parts
we call it a leaf. If it is broken down further, we call it
a composite. [6] The pattern simplifies the work with tree-
structured data by removing the need to distinguish between
leaf-nodes and a branch, which makes the model less com-
plex and therefore less error-prone. [7]

In the e-commerce domain the composite pattern could
be used to describe a hierarchy of categories, where each
category could have zero-or-more sub-categories. Without
using the composite pattern our domain model would in-
clude a lot of edge cases and would be tightly coupled to

Figure 3: Composite pattern

Figure 4: Practical example of composite pattern

the current number and types of categories, making it hard
to evolve as the existing categories change. But using the
composite pattern we end up with the following model, that
will be easy to evolve as the existing categories change.

Figure 4 shows how the problem could be solved using the
composite pattern. Each category is modeled as a composite
with a certain set of functionality and sub-categories that are
composites themselves. By using the composite pattern we
ended up with a domain model where the existing categories
can easily be changed without affecting the overall structure
of the solution.

5.3 Mediator Pattern
The mediator pattern is a behavioral pattern which aims

to reduce the coupling between a set of interacting objects
and makes it possible to change the interaction between
these objects by introducing a mediator which encapsulates
the communication between objects. [3]

Figure 5 depicts the fundamental structure of the medi-
ator pattern: A mediator manages a number of colleagues
and handles new colleagues that register with the mediator.
Instead of sending messages directly to one of the media-
tor’s colleagues messages are distributed by the mediator
decoupling the sender of the message from its recipient. [10]

Figure 5: Mediator pattern

Figure 6: Practical example of mediator pattern

This pattern makes it easier to build loosely coupled ap-
plications by encapsulating communication between objects.
This prevents us from building applications where objects
directly depend on other objects that reduces the overall
system’s modifyability and testability. The resulting model
is more descriptive and hints an appropriate solution for the
business problem to developers [9]

In the e-commerce domain the mediator pattern could be
used to model the shipping process, where the delivery of
ordered goods has to be arranged. If we did not use a me-
diator in our domain model we would end up with a com-
plex solution where a given customer has to talk to multiple
companies until his ordered goods arrive. A lot of things
could break in this model when processes at other compa-
nies change. Using the mediator pattern we end up with the
following model that encapsulates communication between
different companies.

Figure 6 shows how the shipping process could be mod-
eled using the mediator pattern. All the customer has to
do in this model is to provide the required shipping de-
tails, for example, address. From this point forward the
e-commerce company acts as the mediator between differ-
ent companies that are involved in the delivery process of

Figure 7: Command pattern

the ordered goods. If the actual delivery process changes
only the e-commerce company is affected. The customer will
not notice anything because the communication is encapsu-
lated. By using the mediator pattern we ended up with a
domain model that clearly separates different concerns and
allows future changes without affecting the customers end-
experience.

5.4 Command Pattern
The Command pattern is a behavioral pattern that is used

with intent to encapsulate a request as an object, thereby
letting you parameterize clients with different requests, queue
or log requests, and support undoable operations. [3] The di-
agram of the original pattern is depicted on figure 7.

In domain modeling, the pattern can be used to represent
complex domain entities that consist of a set of instructions
and require additional but closely related data as one sepa-
rate encapsulated object.

It helps to make the model clearer, as only one entity will
be demonstrated. The detailed view of the entity with in-
structions, their order specification and command data can
be shown separately. It also improves understandability and
descriptiveness of the model. Besides simplification of the
model representation, the pattern allows experts to keep the
elements of the command entity together during the model-
ing not spreading them across the system. It facilitates the
quality of the future system design. Proposed pattern also
eases communication among domain experts, as they will
address the closely related set of instructions and their data
as one entity.

A product gift wrapping can be an example of the pattern
application in e-commerce domain (figure 8). The is a pre-
cise procedure to follow while choosing an appropriate gift
box for a product ordered. Besides this procedure there is
wrapping. The algorithm that consists of several steps for
box selection and wrapping is our set of instructions that
we will encapsulate. Information about the order of instruc-
tions execution is added to the detailed view. Some of the
steps require additional information. Information about the

Figure 8: Practical example of command pattern

Figure 9: Factory method pattern

boxes may be external to the modeled entity but the wrap-
ping process may require gift-mode specific information that
can be encapsulated together with above mentioned instruc-
tions.

In the demonstrated example there are three instructions
for the command. They pass control to each other after ex-
ecution. Two of them, namely ’Get a box’ and ’Wrap with
ribbon’ that require additional data - box size and ribbon
color respectively. Without the pattern application, the in-
structions and the data they need would be sprawled in the
model or, at least, not organized well. The order of the in-
structions would not be determined in the model, therefore
additional document would be required for this that brings
inconvenience.

5.5 Factory method Pattern
The factory pattern is a creational design pattern which

uses factory methods instead of constructors to create new
objects. [3]

Figure 9 depicts the fundamental structure of the factory
method pattern: Products are constructed by a creator us-
ing a factory method, which returns the product. In case
when we have different products that have to be created
we can further specify the creator. The concrete creator’s
factory method then return concrete products. [2]

In most non-trivial cases the creation of an object requires

Figure 10: Practical example of factory method pat-
tern

complex processes, which do not naturally fit into the com-
posing object. This may lead to duplication of code, not
to provide a sufficient level of abstraction or couple tightly
the objects of the application together. By using the fac-
tory method pattern the composing class can defer instan-
tiation to another class, called a creator. That way we have
a clear separation of concerns and can change objects with-
out affecting the whole application. [8] In the e-commerce
domain sold products are usually not manufactured by the
e-commerce company itself but ordered by one of its suppli-
ers, which can be modeled using the factory method pattern.

Figure 10 shows how this situation could be modeled us-
ing the factory method pattern, which is a good fit as the
e-commerce company does not need to know how the actual
products are manufactured. By using the factory method
pattern we achieved a clear separation of concerns, which
allows us to model the e-commerce company’s domain inde-
pendently of the supplier’s domain as long as both domains
agreed upon a communication standard between them. It in-
creases descriptiveness and understandability of the model.

5.6 Prototype Pattern
The prototype pattern is a creational design pattern which

specifies the type of objects to create using a prototypical
instance. Instead of calling the ’new’ operator to create an
instance of a class, the client calls the ’clone()’ method on
the prototype. [3]

Figure 11 depicts the fundamental structure of the proto-
type pattern: A client performs an operation, but instead
of creating objects using the ’new’ operator, depends on a
prototype that can be cloned. The exact implementation of
cloning an object can differ. [2]

This pattern can be used to avoid two potential problems;
The existence of subclasses of an object creator that can
exist when using the factory method pattern and the cost of
creating new objects in a standard way. Avoiding subclasses
can help to make a solution more concise and therefore avoid
potential errors.

In e-commerce we can consider objects that are reasonable

Figure 11: Prototype pattern

Figure 12: Practical example of prototype pattern

to clone instead of creating from scratch, because creating
them every time from scratch would be too expensive. For
example, addition of a new product that is similar to a prod-
uct that is already offered in a shop can be unnecessary in
our case. If we were not allowed to use the prototype pat-
tern in our domain model, we could not take advantage of
information that is already embedded in existing products.
Instead we would have to add the product from scratch,
which would require significantly more time. The pattern
improves evolvability of the resulting model. Using the pro-
totype pattern we end up with a domain model that allows
us to take advantage of products that were previously added
and save time later on.

Figure 12 shows how the addition of a new product can be
done using the prototype pattern. Instead of adding ”Prod-
uct B”from scratch we can take advantage of its similarity to
”Product A” and copy ”Product A” and change only the at-
tributes that differ. Depending on the number of attributes

Figure 13: Object pool pattern

Figure 14: Practical example of object pool pattern

that are similar between products that process could save a
significant amount of time.

5.7 Object Pool Pattern
The Object Pool Pattern is a creational design pattern.

Its main intention is to reuse and share objects that are ex-
pensive to create. [4] Its original diagram is shown on figure
13.

The pattern application in domain modeling is meant to
incorporate a set of objects that should be shared among
other entities in the model. Only entities of the same type
can form a pool so they are not differentiated by user.

The pattern contributes expressiveness property of the do-
main model. Using the pattern the resulting model will
communicate a property of objects organized in the pool of
being sharable. It also promotes an idea of sharing these
objects. These two aspects adding descriptiveness to the
domain model might help software developers in making de-
cisions about design of the system.

There may be different reasons to share objects among
entities instead of creating new ones. One example from
e-commerce domain is the transportation of the products
(figure 14). When goods are ordered by people, they are to
be delivered with van or any other transport. The vehicles
are located in a garage that is our object pool. Each vehi-

Figure 15: Chain of responsibility pattern

cle is one shareable object. One vehicle is used to deliver
multiple products.

In our example, having several same vehicles in the pool
hints that any of them can be chosen interchangeably. For
this reason, we intentionally not presenting any information
that could help user to distinguish between them. If we did
not do so, developers might integrate support of different
vehicles in the system following the diagram while these dif-
ferent types are not required. Moreover, by specification one
vehicle can deliver many products. If domain model does
not highlight this idea, developers could design a solution
the way that it will create a new object for each product.
Such dissension with real-world can lead to problems in the
designed system.

5.8 Chain of Responsibility Pattern
The main intention of this pattern is to avoid coupling the

sender of a request to its receiver by giving more than one
object a chance to handle the request. Chain the receiving
objects and pass the request along the chain until an object
handles it. [3] The basic structure is demonstrated on figure
15.

The purpose of the pattern adaptation for domain model-
ing is to organize command entities discussed in Command
pattern section. When the commands are forming a higher
level algorithm of execution, it happens that some of the
commands have the same general responsibilities but exactly
one should be chosen due to some additional criteria. The
chain of responsibility pattern in domain modeling helps to
organize these criteria connected to the commands in the
execution flow. The resulting chain can be considered as an
meta command with instructions regulating execution flow
as well as choosing appropriate commands at each step.

Domain model benefits from the pattern application in
several aspects. The main reason to use the pattern is to
document knowledge about responsibility of each command
in the process that construct a chain. Designers of the sys-
tem will be able to separate responsibilities better following
the model. Another motivation to use the pattern is to ex-
tract information about order of execution from commands
themselves. It will make it easier to understand the com-
mand entities from the model and increase descriptiveness
of the domain model. As the commands may be reusable
out of the chain context, it will also help designers to sep-
arate chain-related information from commands themselves

Figure 16: Practical example of chain of responsi-
bility pattern

Figure 17: Iterator pattern

during the design and development phases.
One example from e-commerce of the pattern applica-

tion is the purchasing process (figure 16). Each step can
be designed as a separate command, such as filling delivery
information containing several simple steps. The payment
step, however, often offers different options - payment meth-
ods. Each of the method can be represented as a command.
These commands are interchangeable in context of the whole
purchase process (chain). The information about choosing
appropriate command is stored in the chain.

If domain model did not combine the commands in a chain
with demonstrating their order as well as the interchange-
able parts, all this information would have to be written
in specification documents. The visual representation gives
better understanding and is easier to memorize.

5.9 Iterator Pattern
The iterator pattern helps to provide a way to access the

elements of an aggregate object sequentially without expos-
ing its underlying representation. [3] The basic structure in
UML is depicted on figure 17.

In domain modeling the pattern can help to encapsulate
information about ordering in the execution of steps in some
process. It contains all the information necessary about it-
erating through a set of steps to achieve intended results.

One application of the pattern come from the idea that in
some cases it is beneficial to separate steps and information

Figure 18: Practical example of iterator pattern

about their order of execution. It also often the case that
the same set of steps executed in different order can lead to
different results. Applying the iterator pattern, we will need
only one set of steps and an entity representing the rules to
iterate them.

The pattern increases generality of the domain model that
improves its evolvability. Model that is more general is easier
to extend in the future. To have new instructions that share
the same set of steps previously defined for other purposes,
only one more entity will have to be added without any other
changes to the model.

The pattern also makes the resulting domain model easier
to understand. Looking at many entities that have much in
common but lead to different results is difficult. The pattern
helps to keep commonalities together.

In e-commerce domain there is a possibility to combine
command and iterator design patterns for purchasing pro-
cess (figure 18). Steps in the purchasing can be executed in
different orders. Questions about address information can
precede questions about gift packaging or other way around.
The order of the commands can be encapsulated in an it-
erator entity to replace it later or use different order for
different clients (as in our case, for ’premium’ and ’basic’
client subscriptions). On the system design stage develop-
ers will treat this iterator as a separate entity that will help
them to make it configurable for each user if required.

The domain model without iterator pattern would need
additional specification document that would encapsulate
rules on instructions order. Disconnecting the visual repre-
sentation of instruction entities and the rules on their exe-
cution brings much cognitive load.

5.10 Decorator Pattern
The decorator pattern allows to attach additional respon-

sibilities to an object dynamically. Decorators provide a
flexible alternative to subclassing for extending functional-
ity. [3] Its formal structure is demonstrated on figure 19.

Decorator pattern in domain modeling helps to label en-
tities that are supplementary to base entities. Instead of
representing several variations of an entity it is suggested
to have one entity with many decorators. The decorators
can be added to the model as separate entities if required.
Decorated entity is located inside of all its decorators in the
model.

Application of the pattern makes the domain model more
concise that improves the understandability quality factor.
The multiple variations of an entity that can be represented
as different ones spoil domain model. The suggested solution
leaves only one entity that can have multiple decorators.

Figure 19: Decorator pattern

Figure 20: Practical example of decorator pattern

The pattern helps to communicate the intention of dec-
orators meaning increased descriptiveness that can help on
the software design phase. Developers will know that there
is only one entity while other objects that bring variations
simply decorate this entity. In case of having one entity for
each variation on the model, it would be more difficult to
recognize. The similar code that is required to be written to
represent the entity would be spread among several objects.
Such system is more difficult to maintain.

An example from e-commerce is a gift wrapping options
for a purchased product (figure 20). Our entity would be
the product and the wrapping is a decorator. As there are
several different wraps for a product, there would be one dec-
orator for each of them, still having only one entity, namely
the product, that we decorate.

Disconnecting an entity and its decorators worsens the
developers’ understanding of decorators main responsibility.
It also makes it difficult to learn all the possible options that
entity can have without having decorators close to it in the
model.

5.11 Strategy Pattern
The strategy pattern, also known as the policy pattern, is

Figure 21: Strategy pattern

Figure 22: Practical example of strategy pattern

a behavioral design pattern which allows selecting an algo-
rithm at runtime instead of making the algorithm statically.
This way the algorithm can be specified on a per-client ba-
sis. [2]

Figure 21 depicts the fundamental structure of the strat-
egy pattern: In a given context we rely on an abstract notion
of a strategy that can be executed and is implemented by
multiple concrete strategies. We can exchange the concrete
at any point in time without breaking objects that rely on
the strategy. This way we gain a lot of flexibility and can
extend our application as the number of strategies grows.

In many there are different algorithms, which solve the
same problem that make the algorithms interchangeable.
Instead of deciding on a single algorithm we can define a
family of algorithms, called a strategy, that encapsulates
each specific algorithm. [3] In e-commerce we can look at
the billing process, which shows potential to be modeled
using the strategy pattern.

Application of the pattern in domain modeling make the
model more descriptive helping developers to make the right
decisions on development phases. Moreover, using the pat-
tern we increase model’s evolvability not requiring much
changes when requirements change and more different al-
gorithms arise.

Figure 22 shows a potential application of the strategy
pattern to our domain. The billing process does not rely on

a concrete billing implementation. Instead, concrete billing
implementations (like PayPal, MasterCard or Visa) are treated
as strategies with the same outcome of billing the customer.
If we want to allow customers to pay with another provider
later on, we can simply add this provider as a new strategy
without affecting existing strategies.

6. EVALUATION
In the previous section we described well known object

oriented patterns and looked at their applicability to domain
modeling providing the adapted version of the pattern using
the e-commerce domain as an example. We have shown
by example that every pattern we looked at is applicable
to the e-commerce domain and that the resulting domain
model benefits from their application. For this reason, we
discussed the quality factors affected by the patterns and
made a comparison of model with and without the suggested
pattern to demonstrate how exactly the quality is increasing.

However, the patterns we looked at are only representative
for a small number of existing design patterns, as all of them
focus on static properties of a model. There are other design
patterns that focus on processes or organizational aspects.
While we demonstrated that the selected object oriented
design patterns were applicable in domain modeling, it is not
clear whether the result would hold as we evaluate process,
organizational or other object oriented design patterns that
do not focus on the static properties of a model. Therefore,
they require further investigation and assessment of their
applicability in domain modeling.

7. RELATED WORK
There is not much work done on the topic so far. This re-

search direction in domain modeling field is still unexplored.
However, there are some articles on the internet as well as
master thesises. The most remarkable book on the topic
is Patterns, Principles, and Practices of Domain-Driven De-
sign [5]. In the book author describes several useful patterns
and discusses their applicability. The patterns follow best
practices in the domain modeling field that are collected in
the book, too. Many of the patterns are based on the ex-
isting ones, collected by Eric Evans and described in book
”Domain-Driven Design” [1]. However, none of the found
researches had the same intention of exploring applicability
of software engineering design pattern in domain modeling,
as in this paper.

8. CONCLUSION & FUTURE WORK
This paper set out to assess the applicability of existing

design patterns to domain modeling. After looking at de-
sign patterns, domain modeling and the problems with do-
main modeling in general, we described a total of eleven well
known object oriented design patterns and showed how their
adaptations could be applied to modeling of the e-commerce
domain cases.

We found that all of them are applicable and provide ben-
efits to the resulting domain model. However, as mentioned
earlier, the selected design patterns focused only on static
properties of a solution, so the question whether design pat-
terns in general are applicable to domain modeling is still
unanswered. Therefore, whether design patterns that do
not focus on static properties, like process or organizational
design patterns are still applicable to domain modeling will

be the big question of future work. The patterns we de-
scribed can be seen as a first step towards a catalogue of
design patterns for domain modeling that can be expanded
with further design patterns after their assessment.

9. REFERENCES
[1] E. Evans. Domain-Driven Design: Tackling

Complexity in the Heart of Software. Addison-Wesley,
2004.

[2] E. K. S. B. B. H. M. L. M. e. Freeman, Eric; Freeman.
Head First Design Patterns. O’REILLY: 162., 2004.

[3] R. J. R. V. J. Gamma, Erich; Helm. Design Patterns:
Elements of Reusable Object-Oriented Software.
Addison Wesley Publishing Company, 1994.

[4] https://www.oodesign.com/. Object pool. https:
//www.oodesign.com/object-pool-pattern.html.
Retrieved December 2, 2018.

[5] S. Millett. Patterns, Principles and Practices of
Domain-Driven Design. Wiley, 2015.

[6] w3sDesign.com. ”the composite design pattern -
implementation”.
http://w3sdesign.com/?gr=s03&ugr=implem.
Retrieved November 28, 2018.

[7] w3sDesign.com. ”the composite design pattern -
problem, solution, and applicability”.
http://w3sdesign.com/?gr=s03&ugr=proble.
Retrieved November 28, 2018.

[8] w3sDesign.com. ”the factory method design pattern -
problem, solution, and applicability”.
http://w3sdesign.com/?gr=c03&ugr=proble.
Retrieved December 3, 2018.

[9] w3sDesign.com. ”the mediator design pattern -
problem, solution, and applicability”.
http://w3sdesign.com/?gr=b05&ugr=proble.
Retrieved December 2, 2018.

[10] w3sDesign.com. ”the mediator design pattern -
structure and collaboration”.
http://w3sdesign.com/?gr=b05&ugr=struct.
Retrieved December 2, 2018.

[11] w3sDesign.com. ”the observer design pattern -
problem, solution, and applicability”.
http://w3sdesign.com/?gr=b07&ugr=proble.
Retrieved November 25, 2018.

https://www.oodesign.com/object-pool-pattern.html
https://www.oodesign.com/object-pool-pattern.html
http://w3sdesign.com/?gr=s03&ugr=implem
http://w3sdesign.com/?gr=s03&ugr=proble
http://w3sdesign.com/?gr=c03&ugr=proble
http://w3sdesign.com/?gr=b05&ugr=proble
http://w3sdesign.com/?gr=b05&ugr=struct
http://w3sdesign.com/?gr=b07&ugr=proble

Optimizing Enterprise Architectures Considering Different
Budgets

Niklas Dohmen
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

niklas.dohmen@rwth-aachen.de

Kevin Koopmann
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

kevin.koopmann@rwth-aachen.de

ABSTRACT
Enterprise Architectures (EA) are used to define the struc-
ture and operation of an organization and commonly find us-
age in the realization and modification of IT business strate-
gies. We propose a technique to optimize the costs incurred
between two layers of the EA, especially considering differing
departmental budgets. This is achieved through considera-
tion of a flow problem aiming to optimize a graph consisting
of budget-, upper layer-, capability- and lower layer nodes
allowing budgets to be used by different departments. Ad-
ditionally, we implement techniques previously published to
allow operational and transitioning costs to be taken into
consideration, in an effort to better reflect the organizational
problems found in reality.

Categories and Subject Descriptors
Applied Computing [Enterprise Computing]: Enterprise
Architecture modeling—Optimizing

Keywords
Enterprise Architecture, Enterprise Architecture Manage-
ment, Linear integer programming, Optimization, Depart-
ment budgets, Minimum-cost flow problem

1. INTRODUCTION
Mostly all IT-Projects in large companies realize techni-

cal requirements which are requested by different business
branches. To adjust IT-Projects to the overall strategy of
the company it is essential to develop and manage enter-
prise architectures [1]. The most common definition of the
term Architecture is found in the ISO norm ISO/IEC/IEEE
42010:2011. There it is described as the ”fundamental con-
cepts or properties of a system in its environment embodied
in its elements, relationships, and in the principles of its de-
sign and evolution”. Therefore an EA is a holistic view over
all underlying structures, elements and their relations. It

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2018/19 RWTH Aachen University, Germany.

gives large enterprises a centralized framework, to consoli-
date their strategic plans and business mission. According
to IT, it includes all IT-relevant components in the business,
like information resource management, life cycle planning,
systems or software reengineering. Furthermore, it is con-
sidered to be the backbone for coordination of actual and
further development of the business IT systems and data. [9]

A real-life example where an EA needs to be used is the
following: The Dutch government did a massive redesign of
their entire chain of organizations involved in their social
security system. In this context, the collection of employ-
ees’ social security premiums is transferred from the cen-
tral social security organization to the tax administration.
For sure, this sounds logical, since the collection of taxes is
pretty similar to collecting social security premiums. This
seemingly simple change needs a major redesign of organi-
zational structures, business processes, IT applications, and
technical infrastructure. Massive data flows need to be redi-
rected within the different organizations.[7]

As in the revolution of information technology (especially
in businesses), IT landscapes like the above described, be-
come increasingly larger (Vodanovich et al. [11]). As a result
of that, the complexity of IT-systems is continuously grow-
ing, so that manual maintenance is unfeasible. Nevertheless,
to keep systems preferably facile, it is a common practice
trying to reduce the complexity of such systems e.g. elim-
inating elements to reduce complexity. There are several
options on which parameters a system should be optimized
e.g. minimal quantity of elements or minimum operating
costs. Aspects which are important for an optimal solution
are depending on the usage, but often a hybrid solution is
necessary. In this paper, we integrate the approach from
Hacks and Lichter [5], in which they find an optimal solu-
tion considering transition costs for adding and removing
applications to be economically reasonable. In larger busi-
nesses departments commonly have department budgets to
get an easier financial overview for managers. Additionally,
budgets are often shared by different departments or one
department is using more than one budget. This will be the
case if e.g. two departments benefit from the same software
in the EA. To achieve a more realistic optimization model
we integrate such department budgets with this approach.

As the goal of this paper is to improve modelling of EAs
in an optimization sense we will not focus on suggestions for
management decisions that could be derived from this data.
We will represent EAs in the form of graphs, where elements
are detailed as nodes and relations as edges. Interpretation
of what constitutes elements and edges will be specific to

the particular usecase.
In section 2 of our paper we introduce related work ac-

cording to mathematically described EAs and their previ-
ous optimization models. Here we focus on two previous ap-
proaches on which this paper is based. The formal definition
of EAs budgets and our approach to optimizing considering
different budgets is introduced in section 3. Considering this
formal definition we also developed a technological imple-
mentation which is described in section 4. To evaluate and
prove our findings we give an insight on how our approach
is scaling in reality according to our implementation which
we will introduce in section 5. In section 6 we summarize
our results and give a short perspective on further regarding
topics.

2. RELATED WORK
Different work has been done to describe and optimize

EAs in a mathematical programming formulation fitted to
their field of use. As mentioned above, the most important
related work, on which this paper is mainly based on, is
worked-out from Hacks and Lichter [5]. Here the authors
optimize relations between two adjacent layers of EAs con-
sidering operational costs and transition costs to change sys-
tems from the as-is state to the optimal state. In this graph,
optimization constraints are interpreted between two layers
as triangles. These triangles consist of the connection be-
tween a needed capability of an upper layer element which is
realized by a lower element. The optimization model is then
solved using a linear integer program which is even appro-
priable for realistic scenarios. In our approach, we extend
this optimization problem from Hacks and Lichter regarding
department budgets which also can be not mutually exclu-
sive.

A similar approach from Giakoumakis et al. focused on
replacing existing services with new services without dis-
rupting the enterprise which they call the ”information sys-
tem architecture evolution management problem” [3]. They
formalized this problem into a graph and solved it using the
multi-objective optimization problem which considers de-
partments, existing services, new services and IT-components.
To apply changes in the EA they link services and mod-
ules, department and services and attach transition costs
for changes. In this paper, old services are replaced by new
services one-to-one, which is not a common practice. Al-
though they considered budgets to fund the changes, each
department has only one budget, so that budgets are mutu-
ally exclusive.

Another optimization approach is made by Franke et al.
[2] where they use a binary integer programming model to
find an optimal mapping between IT systems and processes
based on needed functionalities. These functionalities are
connected with processes they use and with certain fulfilling
IT systems. In a next step, connections for the as-is state
will be made through connecting processes and IT systems
directly, which has to be optimized by applying change costs
and operation costs. Therefore redundant connections will
be dissolved.

One fundamental different approach concerning transition
costs is made from Lagerstrom et al. [6] by using a proba-
bilistic relation model with a meta-model based on literature
research and evaluated through interviews and workshops.
This is used to supply transitions costs estimation for large

software projects. By providing a prediction and not opti-
mizing the as-is state this approach differs from our formu-
lation.

3. MODELLING A BUDGETED ENTERPRISE
ARCHITECTURE OPTIMIZATION

Before presenting our approach we first give a quick overview
in subsection 3.1 of how EAs are modeled in literature. Later
on, we especially take care of the foundations which are al-
ready acquired by Hacks and Lichter. Based on these foun-
dations we provide our optimizing approach.

3.1 Towards an Optimization Model
According to Winter and Fisher [12] enterprise architec-

tures are most commonly composed of hierarchical layers.
Each of these layers consists of various architectural artifacts
which can be connected through different relations with el-
ements of the same layer. Additionally, artifacts on a layer
can be explicitly influenced by elements on the superseding
layer, reflecting a priority of importance of decisions under-
taken on higher levels of the architecture. [8]

For instance, an enterprise architecture could consist of
business entities such as ”Human Resources”, ”Enterprise
Resource Planning” and ”Liquidity Management”, each re-
quiring a certain set of capabilities. Such capabilities could
be functions such as ”Hiring” or ”Stock Trading”. This is
modeled by directed edges from the business entities to the
capability nodes. Furthermore, applications selectively im-
plement certain capabilities, represented through edges from
the capabilities to implementing applications. Figure 1 shows
such an exemplary architecture where the layers are named
as Cost Centers and Applications.

Hiring

s

t

Start Node

Target Node

Human
Resources ERP Liquidity

Management

Resource
Planning

Account
Management

Bank
Transfer

Stock
Trading

Application 1 Application 2 Application 3

Applications

Capabilities

B1 B2 B3

Cost Centers

Budgets

Figure 1: Concrete example for two layers in an
enterprise architecture (reproduced from Hacks and
Lichter [5])

An example of an application of this concept could be the
simplification of an IT business infrastructure in order to

reduce costs. A business resource may require certain capa-
bilities (most times functionalities) fulfilled by applications
on the application layer. An optimization model, in this
case, would be suitable to reduce the operational cost of the
architecture by selecting a set of applications that imple-
ments all required capabilities at the smallest possible cost
to the enterprise.

In order to be able to apply common graph algorithms to
the solution of problems related to the enterprise architec-
ture, we will model these architectures as directed graphs,
as suggested by Hacks and Lichter [5]. An element of the
architecture describing an aggregation hierarchy will be rep-
resented by vertices, and the edges between these vertices
mirror dependencies between elements on different layers of
the architecture.

In our subsequent analysis of the optimization problem
for enterprise architectures we will consider only the inter-
actions between two directly adjacent layers of an overall ar-
chitecture. This is permissible because decisions on higher
layers of the architecture reduce the degree of freedom on
subsequent layers [8], and greatly simplify understanding of
the optimization process. To perform an analysis of the en-
tire architecture, simply repeat the analysis in top-down for
each interface between two layers.

Hacks and Lichter [4] present different objectives that
could be used to optimize the model, such as minimal cou-
pling, amount of lower layer elements or operational costs.
In real-world applications, we often find certain business en-
tities, such as departments, to be restricted to a specific
budget. These often yearly scheduled budgets are impor-
tant for business managers to estimate the project and de-
partment costs. It is common that various departments are
sharing the same IT infrastructure so that each department
has its own scot, which needs a specific budget. We will
extend the model by considering these budget restrictions,
while also incorporating transitional costs for the introduc-
tion or decommissioning of currently active applications in
the architecture. This seems to be warranted as moving
away from old applications or implementing new ones of-
ten arises substantial costs necessary for example to educate
users, transfer data or resolving other dependencies.

3.2 Foundations
Building on this initial understanding of enterprise archi-

tecture modeling and objectives in its optimization we will
now introduce a more formal representation of these archi-
tectures.

As described by Hacks and Lichter [4] we want to represent
the enterprise architecture as a quadruple EA = (L, C, E,R)
where L is an ordered set of architectural layers, C describes
a set of sets of capabilities, E is a set of architectural el-
ements, and R represents a set of relations between these
elements and capabilities.

We assume each layer L ∈ L to consist of architectural
elements so that L ⊂ E, and to be disjunct as prescribed by
eq. 1.

Li ∩ Lj = ∅ ∀Li, Lj ∈ L i ∕= j (1)

For each layer element uli ∈ Lj of the upper layer there
may be an associated budget bi ∈ N0. For each element on
the lower layer lli ∈ Lj+1 there is an associated operational
cost pi and a transitional cost tpi.

Furthermore we place capabilities on interfaces between
two adjacent layers. For each such interface between Li

and Li+1 we assign the symbol Ci. As each capability is
associated with a specific business requirement we assume
all capabilities to be unique to an interface between two
adjacent architectural layers.

Ci ∩ Cj = ∅ ∀Ci, Cj ∈ C i ∕= j (2)

The set of relations consists of tuples of architectural ele-
ments and capabilities, which couples upper layer elements
with capabilities and capabilities with lower layer elements.

R ⊂ {(e, c) : e ∈ Li, c ∈ Ci} ∪ {(c, e) : c ∈ Ci, e ∈ Li+1} (3)

This object EA is the subject of optimization.

3.3 Modeling Cash Flows in Enterprise Ar-
chitectures

Hacks and Lichter [4] present a solution to the optimiza-
tion problem for enterprise architectures by introducing in-
termediate relations between all elements of an adjacent
layer constituting a bipartite graph. In order to be able
to incorporate budget constraints into our model in a mean-
ingful manner and benefit from graph algorithms we chose
a different approach by modeling cost flows originating from
budget nodes.

In order to obtain the desired solution we apply a mod-
ified maximum flow problem to a graph we construct from
input parameters of the problem. The maximum flow is
concerned with obtaining a maximum flow through a single-
source single-sink flow network by assigning a feasible flow
f(e) ∈ R+ to all edges e ∈ E , such that the total flow

Fi,t, (i, t) ∈ E into the sink is maximal. Additionally, the
maximum flow problem imposes an additional constraint by
limiting the flow across an edge to a certain capacity limit c.
Naturally, in a flow network, the flow out of a node must be
equivalent to the flow entering the node, excepting source
and sink nodes. Instead of considering a maximum flow
across the network, we want to minimize cost flow, and we
limit the flow across certain budget-related arcs to a specific
budget value. In linear programming terms, we formulate
this objective in eq. 4, and formulate these initial constraints
in 5, and 10. [10]

We begin to construct a graph with vertices V consisting
of elements from two adjacent layers Li and Li+1, as well as
capabilities Ci. We also start with a set of edges E equivalent
to the set of relations R for these adjacent layers.

We also add a start node s as an entry point for a flow
algorithm. Furthermore, for each budget bi it is necessary
to construct a node and add relations to all upper layer ele-
ments associated with this budget. For additional relations,
we introduce for each budget between s and the budget node
we then apply constraints to these relations to ensure a max-
imum cost flow equivalent to the budget.

From each of the lower layer elements, we construct addi-
tional relations to the sink node t. The activation of a lower
layer element bears operational costs and may additionally
arise transitional costs. The deactivation of a lower layer
application may also arise transitional costs, but no opera-
tional costs. To incorporate this requirement into our cash
flow model, we must also enforce an additional constraint to

force the flow on these edges to be equivalent to exactly the
cost arised by (de-)activation of the element.

This model represents the flow of monetary resources orig-
inating from operational budgets through the architecture.
To optimize towards minimal costs, we can now simply at-
tempt to minimize the flow of cash through the network.

3.4 Final Modelling
To summarize our findings we will now combine the previ-

ous results to formulate the following selection problem for
two adjacent layers of the architecture.

1. All upper layer elements uli are to be implemented.
We also refer to these elements as cost centers.

2. The implementation of a distinct upper layer element
uli requires fulfilling a known subset ci ⊂ C with
C =

Ci∈C Ci of capabilities. We refer to those subsets

indicating the necessary capabilities for the operation
of a cost center as the cost center’s capability set.

3. Fulfilling a capability Ci requires the activation of at
least one element of a known subset Si of lower layer
elements lli. We refer to these lower layer elements
as applications. Furthermore, we refer to the subset
Si which indicates the applications suitable for imple-
menting a capability as the capability’s implementing
set. These implementing sets are not mutually exclu-
sive. If an application belongs to multiple implement-
ing sets, then selecting the application for the solution
would simultaneously satisfy all implementing sets it
is contained in, and thereby all corresponding capabil-
ities.

4. An application which has been activated arises an op-
erational cost pi.

5. Implementing an application which has previously been
inactive arises an additional transitioning cost tpi, and
vice versa.

6. All cost centers are subject to budget constraints. These
budgets are distributed among multiple cost centers
and are not mutually exclusive. That is, a cost center
can receive funds from multiple designated budgets,
and a budget can be designated for multiple upper
layer elements.

The problem we consider is to determine which applica-
tions should be implemented in order to minimize opera-
tional and transitional costs, as well as how the budgets are
consumed by the cost centers in order to realize all capa-
bilities. This combines all the requirements that we have
previously formulated.

In order to accomplish this, we derive a network flow min-
imization problem from the selection problem and formulate
the following integer program. We first construct a graph
from our problem description. Let V denote the set of ver-
tices, and E the set of edges.

Let s be a source, and t be a sink node, and let V− be the
set of vertices V excluding these nodes s and t. Construct
a node Bi for each budget bi and edges (Bi, ulj) for each
cost center ulj assigned to this budget. Construct one edge
(s,Bi) for each budget node Bi.

Construct a capability node Ci for each capability Ci, and
let (ulj , Ci) be the edges from each cost center ulj to the

capabilities it requires. Then let (Ci, llj) be the edges from
the capability Ci to all applications llj it is implemented by.

Finally, construct one edge (lli, t) for each application lli.
Figure 2 shows an example architecture modelled accord-

ingly.

ul1 ul2 ul3

c1 c8c7c6c5c4c3c2

s

ll1 ll2 ll3 ll4

t

Start Node

Target Node

B1 B2 B3

Budgets

Applications

Capabilities

Cost Centers

Figure 2: Abstract example for two layers in an en-
terprise architecture

Let Z be the set of applications already implemented (as
to be considered for transitional analysis), and zi ∈ Z be the
implementation state of the application Ai. Fi,j designates
the flow between two nodes (i, j) and Ai is a boolean de-
termining whether application lli is to be implemented. Let
tni be a boolean variable indicating whether a transition is
necessary for application lli. These are the variables of the
integer program.

The integer program describing the problem we have spec-
ified can now be defined as follows.

Minimize

(i,t)∈E

Fi,t (4)

subject to Fi,j ≤ bj ∀(i, j) ∈ E , j ∈ B (5)

and

(i,j)∈E

Aj ≥ 1 ∀i ∈ C (6)

and tni ≥ Ai − zi ∀(i, t) ∈ E (7)

and tni ≥ zi −Ai ∀(i, t) ∈ E (8)

and Fi,t = (Ai · pi) +

tpi · (zi −Ai)

2 (9)

∀(i, t) ∈ E

and

(i,k)∈E

Fi,j =

(k,j)∈E

Fi,j ∀k ∈ V− (10)

4 describes the objective function. As we are attempting
to minimize accruing costs, our objective is the minimization

of flow across all incoming arcs at the sink node t.
5 enforces budget limits on the edges connecting the

source s to the budget nodes.
6 ensures that at least one of the applications connected

to a capability is activated.
7 and 8 set the variable tni that indicates whether a

transition of application Ai is necessary to the correct value.
9 enforces a valid flow on the edges connecting the ap-

plications to the sink t; that is, the flow is either 0 if the
application is disabled, or exactly the sum of operational
and transitional costs. This is accomplished by adding up
the product of the boolean variable Ai defining whether the
application is to be activated and the corresponding cost pi,
and the transitional cost function.

10 is a constraint common to all flow problems and forces
the amount of flow entering a node to be equal to the amount
of flow leaving it.

Thereby we have implemented all requirements originally
specified in the definition of the selection problem for bud-
geted enterprise architecture optimization.

The variables Ai will contain the implementation state for
application lli in the optimal solution, and Fi,j will describe
the amount of cash flow between the two entities belonging
to i and j.

3.5 Applying the Optimization Model
To apply the optimization model to an example graph

the budget constraints have to be implemented as nodes be-
tween the cost centers and the start node as described in
subsection 3.4. The edges between the start and the bud-
get nodes function as the budget constraints according to
(5) in section 3.4. Cost-centers are provided by different
budgets which are represented as the connecting edges be-
tween those nodes. Figure 3 shows an example of such a
graph where the cost centers Human Resources and Liquid-
ity Management are each sharing their budgets with ERP.
Here Application 1 and Application 2 are not yet used in the
model and can be activated by applying the denoted tran-
sition costs. To calculate an optimal solution we apply our
above-described approach to such a graph with the given
costs. Figure 4 sketches the optimal solution calculated by
our model regarding a minimum cost-flow. This optimal so-
lution suggests to include Application 1 and Application 2
with a total cost of 70 for each consisting of transition and
operating costs. The total costs for this solution amounts to
165 and is reflected to the minimum cost-flow in the network.

4. IMPLEMENTATION
In order to evaluate the performance of the modeling ap-

proach we have presented and in order to apply it to exem-
plary inputs, we felt it be warranted to implement rudimen-
tary software capable of generating and processing appro-
priate enterprise architecture representations.

4.1 Requirements
A solution stack suitable for easy implementation of the

defined objective and constraints with simple and reliable
interfacing with commonly utilized solvers was deemed nec-
essary. It should also be interoperable with software capa-
ble of rendering graphs to enable visual representation. The
solver should provide sufficient performance and be capable
to process quadratic constraints.

Cost Centers

Hiring

s

t

Start Node

Target Node

Human
Resources ERP Liquidity

Management

Resource
Planning

Account
Management

Bank
Transfer

Stock
Trading

Application 1
(20/50)

(Application costs/Transition costs)

Application 2
(10/60)

Application 3
(25/33)

Applications

Capabilities

B3 (44)B2 (65)B1(70)

Figure 3: Concrete example with budgets and costs

Cost Centers

Hiring

s

t

Start Node

Target Node

Human
Resources ERP Liquidity

Management

Resource
Planning

Account
Management

Bank
Transfer

Stock
Trading

Application 1
(20/50)

(Application costs/Transition costs)

Application 2
(10/60)

Application 3
(25/33)

Applications

Capabilities

B3 (44)B2 (65)B1(70)

70 65 30

70 0 65 5 25

70 0 0 0 70 0 0 0 25

10+60 0 0 20+50 0 0 25

70 70 25

Figure 4: Solution for concrete example with cash
flow

4.2 Technology
To accomplish the desired goals we have reformulated the

objectives and constraints from the previous section using
the Pyomo1 optimization modeling DSL and utilized the
Gurobi2 solver to derive an optimal solution.

Furthermore, to allow for visual output of the generated
or processed graph in order to increase comprehensibility
we employed Graphviz3 and the pyGraphviz module4 for
plotting the graph.

We have decided on this solution stack to allow for imple-
mentation of our solution in as little time as possible. How-
ever, we would like to point out that with some effort our
results should be reproducible with an open-source solver
implementation, such as GLPK5.

Our Python program consists of three parts: a module re-
sponsible for providing the command line interface and call-
ing appropriate methods to process and draw the graph, one
using Pyomo’s DSL to state the problem as an AbstractModel
, and a third to allow random graph generation for evalua-
tion purposes.

Pyomo provides a DSL to supply input parameters to an
AbstractModel. The command line interface we have im-
plemented is capable of processing these input files, as well
as generating random architectures by supplying thirteen
parameters: the number of budgets, cost centers, capabili-
ties and applications, minimal and maximal budgets, tran-
sitional and operational costs, as well as density values for
budgets, cost centers and applications which determine how
well connected corresponding nodes are.

We have provided a copy of the source code of our imple-
mentation in a git repository6.

5. EVALUATION
Building on our implementation we will now provide both

a reasoning for our expectations pertaining to the algorithm’s
runtime, as well as an experimental evaluation of this run-
time. This will allow us to predict the practical value of the
solution we have presented.

5.1 Scalability

5.1.1 Runtime Expectations
As is evident from eq. 4 the objective function of our

model is a linear expression and dependent upon the flow
on edges between applications and the sink node t. The
number of linear objective terms in the model is therefore
equivalent to the number of applications.

We expect an increase in the number of edges, for instance,
due to a positive variation of the amount of budget, cost
center and capability nodes, to lead to linear increases in
runtime due to the additional linear constraint terms.

5.1.2 Experimental Runtime Evaluation
For experimental evaluation, we have generated random

architecture representations to be processed by our software

1http://www.pyomo.org/
2https://www.gurobi.com/
3http://www.graphviz.org/
4https://pygraphviz.github.io/
5https://www.gnu.org/software/glpk/
6https://git.rwth-aachen.de/kevin.koopmann/swcseminar

with different values for the number of budgets, cost cen-
ters, capabilities and applications. For the first part of the
evaluation, all density values were set to 0.1, and for each
of these value sets the average runtime and variable count
over 20 runs was determined on a system with 102 GFlops7

of floating-point performance and 8 GB of RAM. At this
density we expect the variable count to be closely related to
the number of edges.

Table 1 shows the resulting runtimes for varying numbers
of budgets, cost centers, capabilities and applications with
fixed ratios at a connectivity density of 0.1. We have de-
cided on these values, as they represent a common balance
between the various entities, even though the connection
density is higher than in most real-world architectures. [6]
However, this reduces the impact of time spent in pre-solving
and optimization phases on overall measurement results, and
is still representative of actual use cases, as we will show the
relationship between density and runtime to be inversely
proportional.

Time measured includes time spent on problem generation
by Pyomo and time in the Gurobi solver, including prepro-
cessing and pre-solving time. Figure 5 shows the runtime of
the solver compared to the number of variables correspond-
ing to edge and vertex counts. We have fitted a linear model
to our measurements using MATLAB and present the result
in Figure 5 as well.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Variables

0

1

2

3

4

5

6

7

Se
co

nd
s

Measured Values
Fitted Curve

Figure 5: Time spent in solver and linearly fitted
corresponding model (data from Table 1)

This shows that with increasing architectural complexity
measured in terms of connectivity between different entities
in the organization graph, in accordance with our expecta-
tions, the runtime of our algorithm increases linearly. We
have found that this relationship holds in most cases for
architectures with equivalent connection densities.

By varying connection densities in a second test run we
confirm that execution time is not solely dependent on the
edge count, but on connectivity as well. The results of these
measurements are shown in Table 2.

Comparison of varying density values against the average
time spent in the solver for each edge in the architecture
yields Figure 6. This is to show that connection density is

7determined using LINPACK

Table 1: Runtime in Solver for varying numbers of budgets, cost centers, capabilities and applications with
fixed ratios, average over 20 runs

Budgets Cost Centers Capabilities Applications Density Variables Edges Runtime
10.0 20.0 60.0 40.0 0.1 595 514 0.331073772907s
20.0 40.0 120.0 80.0 0.1 1945 1784 0.67232862711s
30.0 60.0 180.0 120.0 0.1 4076 3835 1.19684612751s
40.0 80.0 240.0 160.0 0.1 6897 6576 2.07876989841s
50.0 100.0 300.0 200.0 0.1 10571 10170 3.45684739351s
55.0 110.0 330.0 220.0 0.1 12659 12218 4.43302592039s
60.0 120.0 360.0 240.0 0.1 14971 14490 5.768829s
65.0 130.0 390.0 260.0 0.1 17419 16898 6.72238627672s

inversely linearly related to execution time.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Density

2

3

4

5

6

7

8

9

Se
co

nd
s

pe
r E

dg
e

10-4

Measured Values
Fitted Curve

Figure 6: Seconds per edge depending on graph con-
nectivity (data from Table 2)

We assume that the reduction in runtime in very highly
connected architectures compared to architectures with lower
edge counts is related to particular details regarding the im-
plementation of the relaxation or SOCP algorithms of the
solver we have used, or in the simplification of certain prob-
lem parameters in highly connected graphs. However, a
detailed analysis of this effect is beyond the scope of this
article.

In the following section we will analyze the consequences
this entails for the application of this algorithm on real-world
optimization problems.

5.2 Value for Real-World Applications
As is evident from our runtime analysis, the execution

time of the Integer Program we have described is dependent
upon a multitude of factors, including the number of en-
tities on different architectural layers and the connectivity
between such entities. There was a tendency towards a lin-
ear correlation between variable or edge count and runtime
for all evaluated architectures.

Even at linear runtimes, this may still present challenges
for scalability towards optimizing extremely large-scale en-
terprise architectures. Even though such optimizations will
not be performed frequently in most cases, and can often
be executed on large-scale systems, it is conceivable that
on certain architectures execution time might prove to be

prohibitive.
However, most architectures encountered in real-world ap-

plications seem to be of a rather limited size in comparison
to the scenarios of our evaluation model that required high
execution times. Lagerstrom et al.[6] for instance consid-
ered an architecture consisting of 407 nodes and 1157 edges,
translating to a density of just 0.00698 in our notation. Eval-
uating a similar architecture on our test system consistently
yielded a runtime of less than one second.

6. CONCLUSION
Information Technology projects within enterprises de-

mand novel solutions of the organization problem, devised
with awareness of business requirements such as departmen-
tal budgets and transition costs. With the ever increasing
relevance of IT systems in business cases, we predict a cor-
relating rise in demand for consolidation of such systems.

We have shown how this consolidation can currently be
performed using optimization models and presented a dif-
ferent, novel model taking the business need of budgeting
for varying cost centers into account, and incorporated the
transition cost model introduced by Hacks and Lichter [5].

Furthermore, we have demonstrated through our runtime
evaluation that our approach performes adequately for most
real-world use cases, which we showed both for synthetic test
cases and instances from literature.

Currently, the approach considers budgets and transitional
as well as operational costs only at a single point in time.
In reality, certain costs and budgets may constantly change;
an extension of the approach to determine the ideal point of
investment in time could address this challenge.

7. REFERENCES
[1] S. Aier and R. Winter. Virtual decoupling for

it/business alignment–conceptual foundations,
architecture design and implementation example.
Business & Information Systems Engineering,
1(2):150–163, 2009.

[2] U. Franke, O. Holschke, M. Buschle, P. Narman, and
J. Rake-Revelant. It consolidation: an optimization
approach. In Enterprise Distributed Object Computing
Conference Workshops (EDOCW), 2010 14th IEEE
International, pages 21–26. IEEE, 2010.

[3] V. Giakoumakis, D. Krob, L. Liberti, and F. Roda.
Technological architecture evolutions of information
systems: Trade-off and optimization. Concurrent
Engineering, 20(2):127–147, 2012.

[4] S. Hacks and H. Lichter. Optimizing enterprise
architectures using linear integer programming

Table 2: Runtime in Solver for with varying node counts and varying connectivity, average over 10 runs
Budgets Cost Centers Capabilities Applications Density Variables Edges Runtime
20.0 40.0 120.0 80.0 0.5 7960 7799 1.89743793011s
40.0 80.0 240.0 160.0 0.4 25151 24830 9.62528171539s
60.0 120.0 360.0 240.0 0.3 42225 41744 23.9882300377s
80.0 160.0 480.0 320.0 0.2 50185 49544 35.8965565205s
100.0 200.0 600.0 400.0 0.1 40188 39387 33.3532226801s

techniques. INFORMATIK 2017, 2017.

[5] S. Hacks and H. Lichter. Optimierung von
unternehmensarchitekturen unter berücksichtigung
von transitionskosten. HMD Praxis der
Wirtschaftsinformatik, 55(5):928–941, 2018.

[6] R. Lagerström, P. Johnson, and M. Ekstedt.
Architecture analysis of enterprise systems
modifiability: a metamodel for software change cost
estimation. Software quality journal, 18(4):437–468,
2010.

[7] M. Lankhorst. Enterprise architecture at work:
Modelling, communication and analysis. Springer,
2009.

[8] M. D. Mesarovic, D. Macko, and Y. Takahara. Theory
of hierarchical, multilevel, systems, volume 68.
Elsevier, 2000.

[9] M. A. Rood. Enterprise architecture: definition,
content, and utility. In Enabling Technologies:
Infrastructure for Collaborative Enterprises, 1994.
Proceedings., Third Workshop on, pages 106–111.
IEEE, 1994.

[10] L. Trevisan. Cs261-optimization paradigms lecture
notes, lecture 15. Electrical Engineering & Computer
Sciences Department, Berkeley University of
California. Available at
http://theory.stanford.edu/˜trevisan/cs261/lecture15.pdf
[Accessed 12 Dec 2018], 2010.

[11] S. Vodanovich, D. Sundaram, and M. Myers. Research
commentary—digital natives and ubiquitous
information systems. Information Systems Research,
21(4):711–723, 2010.

[12] R. Winter and R. Fischer. Essential layers, artifacts,
and dependencies of enterprise architecture. In
Enterprise Distributed Object Computing Conference
Workshops, 2006. EDOCW’06. 10th IEEE
International, pages 30–30. IEEE, 2006.

Towards Defining the Concept of View, Viewpoint, and
Perspective in Domain Modeling

Marlon Schröter
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

marlon.schroeter@rwth-aachen.de

Aleksandra Pazova
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

aleksandra.pazova @rwth-aachen.de

ABSTRACT
The fundamental logic behind large-scale software solutions
is almost always complex. To understand, analyze, and im-
prove these solutions an all-embracing knowledge of the cor-
responding problem domain is necessary. This knowledge
needs to be depicted in a way that groups with differing
interests can access the knowledge relevant to them easily.
A domain model is a suitable tool for depicting knowledge
about a domain. However, it is hard to design a domain
model depicting the all-embracing knowledge of a problem
domain, while it stays accessible to stakeholder specific in-
terests and maintains the domain’s complexity and inter-
connectivity. Moreover, the model is the basis on which all
future decisions will be made. Therefore it is necessary to
make as little mistakes as possible while creating the do-
main model. To ensure the correctness of the model, de-
spite the complexity of its content, a structure to base the
model on is indispensable. The concept of view, viewpoint,
and perspective is a concept dealing with similar issues in
other model-based environments. It draws the model’s fo-
cus on relevant aspects in regard to different specifications.
Unfortunately, none of the existing definitions taken from
other fields fit domain modeling and multiple contradictions
exist among them. To overcome this, we compare several
definitions from software architecture, information systems,
business, and open distributed processing and check which
aspects of them are applicable to domain modeling. Having
analyzed and assessed the existing definitions we present a
new definition specifically addressing domain modeling.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software
Engineering]: Management—programming teams, produc-
tivity, software configuration management

Keywords
definition, defining, concept, domain model, domain, model,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2018/19 RWTH Aachen University, Germany.

modeling, view, viewpoint, perspective

1. INTRODUCTION
Software solutions are applied in a vast range of domains,

a few examples are managing health records in a hospital, or-
ganizing global shipping, and automatically detecting stock
exchange fraud. In these examples, the problem-domains are
complex and need to be fully understood to provide software
assisting with the problem. However, the developers behind
the software are computer scientists who are seldom familiar
with the domain-specific concepts, processes, and proper-
ties. They need to acquire the necessary domain knowledge
to be able to work on such projects. As such knowledge
is complex and has a high degree of interconnectedness, it
is not possible to obtain the necessary knowledge without
any assistance. One possibility to assist with obtaining rel-
evant knowledge is by providing a domain model in which
all the domain-specific properties and their connections are
depicted. Such a model is created by an expert from within
the domain, who understands all the relevant interconnec-
tions and dependencies of the domain. By consulting the
domain model a developer can then obtain any information
necessary to tailor the solution to the needs of the respec-
tive domain. Therefore, the general purpose of the domain
model is to help make complex information accessible. As
different development teams work on different parts of the
domain, they need to be able to draw specific information
only relevant to their cause from the model. In contrast,
the creator of the domain model has to depict the whole
domain knowledge in it. Taking all this into account, the
domain model is highly complex and needs to be accessi-
ble to the needs of software developers and domain experts.
This is hard to achieve without any structure to base the
model on.

Our approach to solving this problem is to apply the con-
cept of view, viewpoint, and perspective to domain model-
ing. With a supporting structure, the domain expert can
use the different viewpoints and perspectives to guide him-
self along creating the model. The concept gives software
developers multiple views to draw information only relevant
to their cause from the domain model.

There are several existing definitions of view, viewpoint,
and perspective in fields related to domain modeling or other
modeling fields. We closely examine the fields of software
architecture, information systems, business, and open dis-
tributed processing.

However, none of the existing definitions fit the specific
needs of domain modeling and to a certain degree, they even

contradict each other. This makes it impossible to adopt an
already existing definition. To create our own, domain mod-
eling specific definition, we analyze, assess, and compare the
most promising definitions from the aforementioned fields
with domain modeling requirements in mind.

2. BACKGROUND
A domain model is created for a specific purpose. There-

fore not everything regarding the domain needs to be de-
picted in the model, only information concerning the task
the domain model is crafted for is supposed to be depicted in
the domain model.[21] This includes the implications drawn
from this knowledge. Therefore a domain model is more
than just a knowledge representation, ”it is a rigorously and
selective abstraction of that knowledge”.[7]

A domain model is coined by its purpose, which ultimately
is to ensure the correct implementation of a software solution
regarding a domain specific problem. It ensures this by mak-
ing complex fundamentals accessible to software developers
and by only containing information relevant to the software
solution. Thereby the domain model serves as a backbone to
the software project, shaping the design choices and being
shaped by the project’s purpose.[7]

3. METHODS
A domain model is created by experts from the respec-

tive domain. These experts may not be familiar with the
concept of view, viewpoint, and perspective. Therefore, we
begin with definitions from a dictionary and analyze the et-
ymological relations between view, viewpoint, and perspec-
tive. As this shows what anyone would expect the concept
to be just from knowing the meaning of those words. Our
definitions should uphold the correlation between the three
components to make applying the concept as intuitive as
possible.

Continuing from the etymological analysis, we will analyze
and asses the existing definitions from one field and compare
them to domain modeling requirements. In order to do so,
we will examine definitions inside the context of their field.
The applicable parts of this context will then be assessed and
documented while keeping domain modeling and etymology
in mind. This should result in questions or not addressed
aspects of domain modeling, which will then be resolved
by consulting further fields. Doing this often enough leads
to a refined concept of view, viewpoint, and perspective in
domain modeling, which will then be formulated in a final
definition.

To ensure quality, the used definitions have to have wide-
spread acceptance in their respective fields. This will be
determined by citation count of the defining source or im-
portance of their author in their scientific community.

4. RESULTS
We start by analyzing the etymology of view, viewpoint,

and perspective, to help domain experts, who are not famil-
iar with the concept, to understand the fundamental cor-
relations of the three components just from knowing the
meaning of the words. Therefore we look up the dictionary
definitions of these words and highlight relations and inter-
connections.

4.1 Etymology

Definition of view:

1. extent or range of vision

2. the act of seeing or examining

[14]

Point 1 and 2 express what is contained in a view; that
the content is related to each other due to it being visible(1)
or having a contextual relation(2). So a view needs to have
some context regarding what is visible in the view and what
is outside of the view. The contents of the view depend on
the point of view.

Viewpoint relates to point of view and stand-
point, it has no specific definition.
Definition of standpoint:

1. a position from which objects or principles
are viewed and according to which they are
compared and judged

Definition of point of view:

1. a position or perspective from which some-
thing is considered or evaluated

[15]

The position plays a crucial role as the evaluation depends
on it. A change of position results in a different evaluation.
Important hereby is what coins the position and how the
position influences the evaluation.

Definition of perspective:

1. the interrelation in which a subject or its
parts are mentally viewed

2. the capacity to view things in their true re-
lations or relative importance

3. the technique or process of representing on
a plane or curved surface the spatial relation
of objects as they might appear to the eye
specifically

[13]

Point one to three emphasize the interrelation of objects
which are in perspective. One and two generalize this and
three is an example of transforming a higher dimensional
situation into a lower dimension, while maintaining the re-
lation of objects by applying a perspective. This translates
well to domain modeling, as the model is an abstraction of
the real world and any relations need to be maintained.

Taking each of the etymological analyses into account we
result with these interrelations: A view is a coherent collec-
tion of objects, which are all related to each other regarding
at least one common aspect. The relation between the ob-
jects and which properties need to be fulfilled to be a part
of the view is given by the corresponding viewpoint. There-
fore one viewpoint generates one view, which can be only
be assessed from the corresponding viewpoint by applying

the evaluation principles of that viewpoint. A perspective is
maintaining a specific relation between objects. In the con-
text of view and viewpoint, a certain perspective is altering
the view to maintain the perspective specific relations be-
tween all objects in the view. In short, a specific viewpoint
generates a specific view and any perspective can be applied
to that view resulting in alterations to the view, due to the
purpose of the perspective.

4.2 Definitions of View
We start by analyzing the concept of view as it is the

most general of the three components. From an etymological
standpoint the viewpoint dictates what is inside the view,
therefore it is necessary to define the concept of view in
domain modeling as a foundation for the definition of view-
point.

4.2.1 View in Software Architecture
Modeling is an essential part of creating an architecture

for a software system. The architecture model represents
the software system’s design, which is key for a functioning
software solution.[8] As the model plays a similar in domain
modeling these two fields relate well.

The first definition, which plays a significant role in system
architecture is by Nick Rozanski:

A view is a representation of one or more struc-
tural aspects of an architecture that illustrates
how the architecture addresses one or more con-
cerns held by one or more of its stakeholders.

[17]

In domain modeling, a view should represent the concerns
of its stakeholders. However, these concerns might not only
be addressed by structure and architecture, but there are
also several different aspects of a domain which need to be
represented (e.g processes, information flow, ...). Therefore,
in regard to domain modeling, this definition reduces to a
rather basic one, as only the stakeholders’ concern is a com-
mon denominator between the fields.

The next definition we will look at is the definition of
Philippe Kruchten’s 4+1 View Model.

For each view, we define the set of elements to
use (component, containers, and connectors), we
capture the forms and patterns that work, and we
capture the rationale and constraints, connect-
ing the architecture to some of the requirements.
Each view is described by a blueprint using its
own particular notation. For each view also, the
architects can pick a certain architectural style,
hence allowing the coexistence of multiple styles
in one system.

[12]

Kruchten describes the content of a view as the captured
forms, patterns, rationale, and constraints which fit the re-
quirements. Adapting this approach, we can eliminate the
need to address specific aspects of a domain. We can rather
specify components necessary to describe aspects. This re-
sults in a modular definition, which is not subject to a fixed

set of aspects. The exact technical ways of representing
them are described in this definition as well, but those are
not necessary for us, as we do not define the exact way of
formulating a view, we only define the concept of it.

Another definition worth taking into consideration is the
one by IEEE, as they define the industry standard.

Each architecture view shall adhere to the con-
ventions of its governing architecture viewpoint.
Each architecture view shall include:

a) identifying and supplementary information
as specified by the organization and/or
project;

b) identification of its governing viewpoint;

c) architecture models that address all of the
concerns framed by its governing viewpoint
and cover the whole system from that view-
point;

d) recording of any known issues within a view
with respect to its governing viewpoint.

[11]

IEEE relates one view to exactly one viewpoint, which is
also applicable for domain modeling. Moreover, the view’s
content is defined by the corresponding viewpoint in point
c. This part of the definition fits the word analysis of view
and viewpoint, as one’s viewpoint determines what is inside
one’s view. Transferring this to domain modeling, solely
the domain and the viewpoint determine the view’s content.
Additionally, any information deriving from the view itself
is recorded inside the view, specified in point a and d. This
makes sense, as it is the logical place to store such informa-
tion.

Models in system architecture heavily rely on the repre-
sentation of a structural aspect relevant to their stakeholder.
How this aspect is depicted varies depending on how techni-
cal a definition’s approach is. A similarity between system
architecture and linguistic analysis is the direct relation be-
tween viewpoint and view, with the viewpoint governing the
view. What parts of the architecture are represented in the
view solely depends on the viewpoint.

Applicable to domain modeling, is the relationship be-
tween view and viewpoint, the representation of stakehold-
ers’ concerns and Kruchten’s modular approach to define the
content of a view.

4.2.2 View in Information Systems
In an information system information is collected, stored,

and distributed.[16] A domain model’s purpose is to depict
domain knowledge in a structure, which can be easily un-
derstood by non-domain experts. Therefore similarities be-
tween information systems and domain modeling can be ex-
pected.

The Zachman Framework is a ”logical construct (or archi-
tecture) for defining and controlling the interfaces and the
integration of all of the components of the system”.[25] To do
this, Zachman has created a table in which each row depicts
a certain view on the subject and each column an abstrac-
tion. An abstraction is supposed to reduce the complexity
of the subject and focus on a single aspect of the whole.[24]

The rows of the Zachman Framework closely relate to what
a viewpoint is supposed to do in a domain model.

The Abstractions depict the independent vari-
ables that constitute a comprehensive depiction
of the subject or object being described, includ-
ing:

1. Material Description, Structure

2. Functional Description, Transform

3. Spatial Description, Flow

4. Operational Description, Operations

5. Timing Description, Dynamics

6. Motivation Description, Strategies

[24]

Each abstraction deals with a different aspect of the same
subject. What the subject is, is defined by the viewpoint.
Therefore the total of the abstractions can be related to a
view. It is necessary to look at all the different abstractions
to understand the interrelationships inside of the subject.
The first abstraction deals with the material composition
- the structure - of the subject. As already stated, while
assessing software engineering, the structure is only one as-
pect of any domain. More aspects are defined in the other
abstractions of the Zachman Framework. The aspects of
transformation, location, operation, dynamics, and strate-
gies are helpful additions to our findings.

Information Systems maintain the approach of directly re-
lating a view and it’s viewpoint. They provide more aspects
to better understand and depict the complexity and interre-
lations of the assessed subject. These aspects are depicted
separately from each other in a tabular form. The way the
information is divided and presented is not applicable to
domain modeling, but multiple of the aspects are valuable.

4.2.3 View in Business
Business is a domain in which modeling is a strategy to

answer questions about the business idea and how it is sup-
posed to generate profit. As the business model is ”an ar-
chitecture for the product, service and information flows,
including a description of the various business actors and
their roles”[19] it depicts multiple aspects of the underlying
business in its context. This is very similar to our purpose
of the domain model.

With their business model, Eriksson and Penker provide
a tool for companies to assess their products and services.
To be able to assess the product one needs to understand
the product’s environment. This is done by modeling the
business the product is settled in, resulting in a business
model. A key component of their model is the view.

Each view is expressed in one or more diagrams.
The diagrams can be of different types, depen-
dent upon the specific structure or situation in
the business that it is depicting. Diagrams cap-
ture the processes, rules, goals, and objects in the
business, and their relationships and interactions
with each other. The Eriksson-Penker Business
Extensions use four different views of a business,
and they are:

1. Business Vision View

2. Business Process View

3. Business Structural View

4. Business Behavioral View

[6]

Not imposing the types of diagrams fits domain modeling
well, as each domain varies and a fixed way of depicting the
domain will not suit the vast amount of domains. An indi-
vidual approach is more suitable as it can be tailored to the
needs of the domain. A new aspect is the one of depicting
rules inside a view. This aspect is not present in any of the
models we have analyzed so far and it is a welcome addi-
tion. The other aspects have already been assessed while
analyzing previous definitions. The four views presented by
Eriksson and Penker are not applicable to domain modeling,
as the focus on only one of the subject’s aspects. To under-
stand a domain it is necessary to have all aspects present
and not only one of them. Multiple views are important,
but the difference between the views is not due to the fo-
cus shifting between aspects, it is due to the effect different
viewpoints have.

4.3 Definitions of Viewpoint
In this section, we will analyze the concept of viewpoints.

The viewpoint is the structure we are using to create the
model, the components inside the frame view. We insert
the viewpoints to the view so we can have more detailed
structure.

4.3.1 Viewpoint in Software Architecture
The approach of defining viewpoint in the software archi-

tecture is similar to this in the domain modeling. That’s why
we will find here a lot of definitions which can be applied
also in the domain modeling.

The first definition we will look at is that of Ian Som-
mervill. In his opinion, in order to be able to manage ef-
fectively viewpoints and to satisfy the requirements of all
involved sides, we must arrange them hierarchically:

A viewpoint is a way of collecting and organizing
a set of requirements from a group of stakehold-
ers who have something in common. Each view-
point, therefore, includes a set of system require-
ments. Viewpoints might come from end-users,
managers, etc. They help identify the people
who can provide information about their require-
ments and structure the requirements for analy-
sis.

[18]

In the domain modeling, the concept of structuring the
viewpoints in a hierarchy is not applicable. The domain
model should work as a whole mechanism which has all parts
together at the same level but connected with different logic
or functional connections. We are still separating the model
but not in different layers. The Domain itself is a layer from
the division of the software system.

The second definition we will look at is this of IASA, it
says:

A viewpoint is a collection of patterns, templates,
and conventions for constructing one type of
view. It defines the stakeholders whose concerns
are reflected in the viewpoint and the guidelines,
principles, and template models for constructing
its views.

[5]

This definition explains the same as the conception of Eric
Evans for the subdomains and the modules. ”Identify cohe-
sive subdomains that are not the motivation for your project.
Factor out generic models of these subdomains and place
them in separate modules.”[7] In the domain model, we are
also collecting templates which matter to us and then we
apply them to the model. If we replace the word subdo-
main with view and modules with viewpoint we will receive
the same definition but instead of defining stakeholders, it’s
guidelines, principles, and template models we should be di-
rectly influenced by the viewpoint and it’s view’s purpose
itself.

Now we will look at the definition published in a paper
in the University in London. In the opinion of the authors,
we should avoid the use of a single or common represen-
tation scheme and instead of this we should use multiple
viewpoints to partition the domain information, the devel-
opment method, and the formal representations.

A ViewPoint is a loosely coupled, locally man-
aged object which encapsulates partial knowl-
edge about the application domain, specified in
a particular, suitable formal representation, and
partial knowledge of the process of software de-
velopment.

[3]

That means that in their opinion in every part of the de-
veloping process there is a stakeholder who has a particular
responsibility and role in building it. In domain modeling,
these stakeholders are mostly the domain expert and devel-
opers. They both have different knowledge, for example,
the expert has limited knowledge about the software devel-
opment and the developer cannot understand the concepts
and jargon the domain expert uses. If we take that their
different knowledge, in the sphere they work, is the partic-
ular objects that they encapsulate in own concepts we can
easily say that we receive the different viewpoints and can
refer this to our understanding of domain modeling.

Another important definition is this from IEEE. It says:

An architecture viewpoint shall specify:

a) one or more concerns framed by this view-
point;

b) typical stakeholders for concerns framed by
this viewpoint;

c) one or more model kinds used in this view-
point;

d) for each model kind identified in c), the
languages, notations, conventions, model-
ing techniques, analytical methods and/or
other operations to be used on models of
this kind;

e) references to its sources.

[11]

We will look at this definition dividing it into the separate
parts it has. The first two parts correspond also to the do-
main modeling and are the basic concept in creating a good
model. We should focus on the concerns and look at them
from all viewpoints, in particular, considering the opinion
of all stakeholders who are involved in building the model.
Only when we have gathered much of all the concerns, we
can start creating the model. But still in the different situa-
tion, different stakeholders will have misunderstandings and
this is why we have to frame them in viewpoints and apply
these viewpoints to the model so everyone is satisfied. Now
we will look at the third part. Generally, we have one main
model which is our basic structure and we are developing it
as we apply viewpoints, perspectives, etc. But if we look at
the different kinds of models as the subdomains we can refer
this part to the IASA definition and say it is also applicable.
Part d) on the other hand can be met with a metamodel for
the model kind that defines the structure and conventions
of its models which we already have looked addressing the
metamodel definition and concluded that is not relevant to
the domain modeling, so this one is also not relevant. And
the last part of this definition is not relevant because the
domain model is an aggregate work by many people which
ideas in many situations comes from brainstorms from all
stakeholders in the equip and it is not possible to define ex-
actly who is the author of which part. And we really do not
if we know it was teamwork and who are the members of
the team.

Next we will look at the most common and widespread
definition during the time of writing, by Nick Rozanski and
Eoin Woods.

A viewpoint is a collection of patterns, templates,
and conventions for constructing one type of
view. It defines the stakeholders whose concerns
are reflected in the viewpoint and the guidelines,
principles, and template models for construct-
ing its views. Architectural viewpoints provide
a framework for capturing reusable architectural
knowledge that can be used to guide the creation
of a particular type of (partial) AD.

[17]

As IASA are using the same definition for viewpoint ex-
cept for the second part. We are not going to look at the

first part again. Instead, we are going to give more atten-
tion to the second part of this definition and particularly
the last sentence. In their book, Rozanski and Woods try to
give the whole conception of structuring a software model
for a software system. Their aim is to collect long-term ap-
plied methods and norms and to put them in a common
conception which can be used by everyone like a template
for creating a software architecture. And that is exactly
what we try to do with the domain model. We need some
frameworks and rules to apply so we can define the domain
model as a common concept. In their book, Rozanski and
Woods are also defining the viewpoint as:

Viewpoints (and views) are an approach to struc-
turing the architecture definition process and the
architectural description, based on the principle
of separation of concerns. Viewpoints contain
proven architectural knowledge to guide the cre-
ation of an architecture, described in a particular
set of views (each view being the result of apply-
ing the guidance in a particular viewpoint).

[17]

Structuring the model in different subsection as can give
us the flexibility to change some details in it without to
have to change the whole model or the whole structure of
the model. If we apply this also to the domain modeling for
example as subdomains it will be much easier when the do-
main experts and the developers have disagreements later.
An important word in this definition is ”approach” as actu-
ally, we are looking for the best approach to define domain
modeling.

Next, we will present a definition that diverges from the
earlier ones. This is the definition that relies on metamodels:

A viewpoint is defined in relation to one or more
metamodels. For each viewpoint, a non-empty
set of view types is defined. In a viewpoint in-
stance, any number of instance views for each of
the view types can be dynamically created.

[20]

This concept is not applicable to the domain modeling
because it says that the viewpoint is based on one or more
metamodels, but in fact, the domain model is the main struc-
ture which can have different layers in it, but it is not based
on them. We apply them like additional qualities, but the
main and center structure stays the model. It also says that
depending on the data we are applying also the viewpoint
will be different. Our aim is that we create a system which
has a concept which serves us as a template and then by dif-
ferent needs we apply some details and perspectives to bring
it in context. That is why this definition is not relevant to
our concept of a viewpoint.

4.3.2 Viewpoint in Business
Firstly, we will present the definition of IEEE of a business

viewpoint.

Through the analysis of the conceptual model
and the process model, a business process view-
point was built, composed by processes and ob-
jects - represented between the grouping relation-
ships.

[22]

This definition is also applicable to the domain modeling as
we also have different groups of processes and objects which
have relationships between them and we want to group them
in the peculiarities every group carry with it and their differ-
ent purposes. The difference here is that the IEEE business
definition relies on analysis of governance, risk, and compli-
ance, and they build the conception of viewpoint above this.
But in the domain modeling, this is not the main topic. In
the domain modeling, we are looking at the risks but it is
most probably that we put it in separate viewpoints, like se-
curity and not building the whole concept of viewpoint above
this. In domain modeling, the risk and the security are also
important but are very often forgotten. That is why we want
to create a concept like a viewpoint in the domain modeling
so we can be able always to add new categories. To model,
the behavioral, structural and informational structure of the
business viewpoint IEEE is using ArchiMate. ArchiMate is
an open and independent enterprise architecture modeling
language of business domains. The definition ArchiMate
gives us for a viewpoint is the following:

Viewpoints define abstractions on the set of mod-
els representing the enterprise architecture, each
aimed at a particular type of stakeholder and ad-
dressing a particular set of concerns. Viewpoints
can be used to view certain aspects in isolation,
and to relate two or more aspects.

[1]

The concept of this definition is similar. Again if want to
apply certain aspects we are going to use viewpoint. That
is why this definition is also applicable.

At next we will look at the definition of Prof. Dr. Knut
Hinkelman about a business viewpoint:

A view is what you see and a viewpoint is where
you are looking from.

[9]

This definition says that what is and what is not shown
in a view depends on the scope of the viewpoint and on
what is relevant to the concerns of the stakeholders. And
this matches exactly with our understanding of view and
viewpoint in the domain modeling. The view is used as a
frame of the complete model and the viewpoints are different
categories in this model. How we see the model depends
on what for a viewpoint we are going to take. But when
we apply everything together than we receive the complete
model.

The Open Group Architecture Framework (TOGAF) is a
framework for enterprise architecture that provides an ap-
proach to designing, planning, implementing, and governing
an enterprise information technology architecture. It defines
the viewpoint as:

A viewpoint defines the perspective from which
a view is taken. It defines:

1. How to construct and use a view

2. The information needed

3. The modeling techniques for expressing and
analyzing it

4. A rationale for these choices (e.g., by de-
scribing the purpose and intended audience
of the view)

[2]

If we take this definition, first of all, we will admit that
the view depends on the perspective and the perspective
depends on the viewpoint. So, in this case, the viewpoint
will be the main part of the model. It will define how to
construct and use a view which means that the view will
be the subpart of the viewpoint and if we want to change
or add something first we will have to change the viewpoint
appropriate. So in the domain modeling, the viewpoint will
be the base in building the model and the view will be the
different additional structures which describes more detailed
the different spheres and themes of the viewpoint. In this
definition, the viewpoint has the needed information. As
we assumed that the viewpoint is the main part it is obvi-
ous that it will contain the information we are building on.
Maybe in the next level, the view, we will have some addi-
tional information but the main information still will be in
the viewpoint. The same is with the modeling technique.
The main part will be defined from the viewpoint as a fun-
damental part. In the last point as a purpose audience we
can use our client and the customer how will use the domain
after it is ready. His purpose will be the topic which con-
tains the domain model (to inform, to entertain, as means
of payment... etc).

4.3.3 Viewpoint in Open Distributed Processing
For the standardization of open distributed processing is

presented the reference model RM-ODP. This is a framework
which is separate in 5 different viewpoints. The idea is the
following:

A viewpoint is a subdivision of the specification
of a complete system, established to bring to-
gether those particular pieces of information rel-
evant to some particular area of concern during
the analysis or design of the system. Although
separately specified, the viewpoints are not com-
pletely independent; key items in each are iden-
tified as related to items in the other viewpoints.

[23]

This concept is to provide separate viewpoints, each sat-
isfying an audience with an interest in a particular set of
aspects of the system. The viewpoint language is associated
with each of this viewpoints and that optimizes the vocab-
ulary and presentation for the audience of each viewpoint.
This definition could help us with the problem of the Ubiq-
uitous Language that we find in building the domain model.
This language should be a summary of the domain expert

language, the developer language, and any other stakehold-
ers. As most complex system specifications are so extensive
that no single individual can fully comprehend all aspects of
the specifications. If we add that we all have different inter-
ests in a given system and different reasons for examining
the system’s specifications, we will easily see that it is im-
possible to define one complex viewpoint for everyone. But
if each of these stakeholders put his own technical expression
in one viewpoint which describes the problems he is working
on we can solve this problem. For a more in-depth analy-
sis of the definition, we will look at each of the viewpoints
separately and analyze it.

The enterprise viewpoint, which focuses on the
purpose, scope, and policies for the system. It
describes the business requirements and how to
meet them.

[23]

In the domain modeling, this viewpoint can make the con-
nection between the developers and the world outside the
creating participants (the client the marketing strategist and
so on). That means it can be useful in the domain modeling.

The information viewpoint, which focuses on the
semantics of the information and the information
processing performed. It describes the informa-
tion managed by the system and the structure
and content type of the supporting data.

[23]

This viewpoint will be also useful and important for the do-
main modeling as it can translate the terms and the specific
vocabulary of every stakeholder, as the developer, the expert
and also the external users, and translate it to one another.
It also works with the structure of the data every stakeholder
applies and to separate and combined it appropriately.

The computational viewpoint, which enables dis-
tribution through functional decomposition on
the system into objects which interact at inter-
faces. It describes the functionality provided by
the system and its functional decomposition.
The engineering viewpoint, which focuses on the
mechanisms and functions required to support
distributed interactions between objects in the
system. It describes the distribution of process-
ing performed by the system to manage the in-
formation and provide the functionality.

[23]

In the domain modeling normally we connect this two view-
points in one fundamental viewpoint. This functional de-
composition we define as a complex viewpoint which con-
sists of every subviewpoint we already mentioned. But if we
want to take the example from RM-ODP and separate them
in different subsections this both viewpoints can be put to-
gether because in the domain modeling the managing with
information is included in the functional decomposition.

The technology viewpoint, which focuses on the
choice of the technology of the system. It de-
scribes the technologies chosen to provide the
processing, functionality, and presentation of in-
formation. and the domain itself is our technol-
ogy.

[23]

The last viewpoint of the RM-ODP is not applicable in the
domain modeling because in the domain modeling the do-
main itself is the technology we need and any other addi-
tional technologies are not needed.

4.4 Definitions of Perspective
Now we are going to analyze the concept of perspectives.

The perspectives are the qualities that a viewpoint or a
group of viewpoints has. It allows us to apply additional
properties to the objects in the model.

4.4.1 Perspective in Software Architecture
Let’s look at the Nick Rozanski and Eoin Woods defini-

tion:

An architectural perspective is a collection of ac-
tivities, tactics, and guidelines that are used to
ensure that a system exhibits a particular set of
related quality properties that require consider-
ation across a number of the systemâĂŹs archi-
tectural views.

[17]

As this is a general definition of a perspective it should be
applicable to domain modeling as well. If there are as-
pects which influence multiple viewpoints, then these as-
pects should be applied by a certain activity, guideline or
tactic throughout the whole domain model. These are for-
mulated as a perspective. With them, we can easily change a
certain part or characteristic of the model without the need
to change the whole model. This allows us a flexible work
with the model and as in later stages of the developing are
always appear some updates or changes it saves us a lot of
time to repair it because anyway we will have to change the
whole structure of the domain. That’s why perspectives are
not only applicable but also really useful.

4.4.2 Perspectives in Information systems
The first Definition which is from Information systems and

we will look at is of a student from the Copenhagen Business
School.

Each use case describes a scenario in which a
user interacts with the system being defined to
achieve a specific goal or accomplish a particular
task ... The perspective provided by use cases re-
inforces the ultimate goal of software engineering:
to create products that let customers do useful
work.

[10]

In the domain modeling, there is always the conflict between
the domain expert and the developer who are trying to do

the best so at the end, the customers have something useful,
easy and understandable to work with. Although there are
different approaches to tackling the conflict between these
two stakeholders, such as urban language, there is still no
concrete solution to the problem. In this case, the conflict
also involves the client who has requirements that are im-
possible or extremely difficult to implement. This leads to
situations in which the experts are dissatisfied with the task
and are opposed to the client, the client, however, remains
disappointed with the failure to fulfill his wishes and so on.
But if we apply this definition to the domain modeling, we
will have a chance to resolve this conflict much easier and
quicker. In this way, the end user will be satisfied with the
work done and the easy handling of the product. That is
why this definition can be useful also in the domain mod-
eling. The next definition is also from the information sys-
tems. It is defined as:

A modeling perspective in information systems
is a particular way to represent pre-selected as-
pects of a system. Any perspective has a different
focus, conceptualization, dedication, and visual-
ization of what the model is representing.

[23]

This definition is easy to apply to the domain modeling be-
cause if we use the concept of view as a frame and this of
a viewpoint to characterize the different topics and parts of
the system we need also a perspective to all preselected as-
pects which are different for every part (viewpoint) of the
system. As the perspectives in this definition have differ-
ent focus they will be appropriate to the different qualities
one viewpoint has. They can either upgrade the viewpoint
or they can be used as a completely different part which is
connected with the viewpoints like a subsystem, one more
layer. So practically we can use the definition as an addi-
tional description or property of a viewpoint.

4.4.3 Perspectives in Business

An understanding of the service provider and IT
Services from the point of view of the business,
and an understanding of the business from the
point of view of the service provider.

[4]

We can assume that in our case the services provider and
the IT Services are the domain experts and the developers
and the business is the domain model. But if we take this
concept we are not going to be able to connect it with the
concept of view and viewpoint as they both are about the
structure and this is about the meaning and understanding
of the domain model. Moreover, the fact that it is about the
concept of a model it will take it directly at the beginning as
a first step that will determine a next as view and viewpoint.
Like this, the whole perception will be changed. And we will
have to put the whole quality properties in one structure- the
viewpoint- which will do the building it much more complex
and difficult to understand. So as a conclusion we can say
that the definition is applicable but not useful in the domain
modeling.

Evaluating the definitions found was essential to create
an understanding of differing applications for the concept of
view, viewpoint, and perspective. As we want to apply the
same concept to the development of a domain model, we will
discuss in the next section how the results of our research
influenced the creation of our definition for view, viewpoint,
and perspective in domain modeling. We were influenced by
the total amount of definitions we looked in this chapter, but
we manage to take the essentials of each and summarize it.
For example, the definition of the viewpoint aims to describe
that the viewpoint should be used as a sample that can be
repeatedly used and its applying is important to make all
of the stakeholders content. It uses the concepts of IASA,
Nick Rozanski, the reference model RM-ODP and others.
In this way we came up also with the definitions of view and
perspective.

5. DISCUSSION
Before presenting our definitions of view, viewpoint, and

perspective we want to highlight the relation between the
three components. A viewpoint and a view are directly re-
lated to one another as the viewpoint defines the content of
the view. The difference between them is that the view con-
tains the relevant information about the domain, while the
viewpoint describes the observer’s interests in the domain.
A perspective is not limited to one view or one viewpoint.
It is applied after having generated the view from the view-
point with the intention to either maintain specific relations
between objects inside the view or to ensure certain quali-
ties. Therefore a perspective is applicable to any view and
alters it depending on the relations it is supposed to main-
tain or ensure.

As the view is the most fundamental part of the domain
model we will present our definition for it first.

Each view is depicted as a set of elements in one
or more diagrams. The way of expressing the
view is not limited to any modeling language or
other technical constraints. A view represents
several aspects of the domain relevant to the
interests of the view’s corresponding viewpoint.
The aspects that need to be included are:

1. The aspect of structure

2. The aspect of transformation

3. The aspect of location

4. The aspect of dynamics

5. The aspect of strategy

6. The aspect of regulation

Their relationships and interactions with each
other need to be depicted as well.

As in our opinion without the viewpoint the view can not
be completely defined we will present also our definition for
viewpoint.

A viewpoint is a collection of a set of require-
ments, roles, and responsibilities. It is a template
which guides the process of developing the view.
Moreover, all viewpoint collectively define the
different aspects of a system and reflect the con-
cerns of all stakeholders by collecting all needed
requirements and priorities for the total satisfac-
tion of all interested, in the domain model, sides.

As last we are going to present our definition of perspective.

A perspective defines a particular quality prop-
erty. The quality properties of the perspective
define the behavior and the characteristic of a
system. The perspective analyzes and modifies
the domain model to make sure it exhibits a par-
ticular quality property. If necessary, these qual-
ity properties are applicable to some or all of the
views.

Our definitions are strongly influenced by the etymologi-
cal analysis and the resulting relationship of the components.
As Nick Rozanski is the only author presenting definitions
for all three components, his and our findings of how to re-
late the components correspond. Besides this, the applicable
results gained from analyzing the field of software architec-
ture are minimal, as software architecture is too focused on
structural aspects and how to technically define the model.
However, information systems and business construct mod-
els with a broader underlying subject and their principles are
therefore more applicable to domain modeling. This results
in a higher number of represented aspects being depicted in
the model and a flexible way of describing the model itself.

6. CONCLUSION
As a conclusion we can say that there are many definitions

and concepts in several scientific fields regarding what view,
viewpoint, and perspectives are. Some of these definitions
are easy to compare with the concept of the domain model
but there is still no precise and clear concept to capture all
cases, exceptions, and details that arise when we develop a
domain model. However, we are of the opinion that a uni-
versal concept would make the development of the domain
model much easier and would prevent frequent and repeti-
tive mistakes. So we tried to gather all these definitions and
extract the most valuable of each by combining it into a new,
more comprehensive, domain-defined modeling definition.

7. REFERENCES
[1] Architecture viewpoints. 2013.

[2] T. 9. Views and viewpoints.

[3] M. G. Anthony Finkelstein, Jeff Kramer. Viewpoint
oriented software development. Imperial College of
Science, Technology & Medicine, University of
London, 21.

[4] G. T. Authority. Business perspective.

[5] C. Cooper-Bland. Views and viewpoints. An
association for all IT architects.

[6] H.-E. Eriksson and M. Penker. Business modeling
with uml. New York, pages 1–12, 2000.

[7] E. Evans and M. Fowler. Domain-driven Design:
Tackling Complexity in the Heart of Software.
Addison-Wesley, 2004.

[8] C. Ghezzi, M. Jazayeri, and D. Mandrioli.
Fundamentals of Software Engineering. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2nd edition,
2002.

[9] P. D. K. Hinkelman. Enterprise architecture views and
viewpoints. pages 1–12.

[10] J. Holck. 4 perspectives on web information systems.
page 4, 2002.

[11] IEEE. Iso/iec/ieee systems and software engineering –
architecture description. ISO/IEC/IEEE
42010:2011(E) (Revision of ISO/IEC 42010:2007 and
IEEE Std 1471-2000), pages 1–46, Dec 2011.

[12] P. B. Kruchten. The 4+1 view model of architecture.
IEEE Software, 12(6):42–50, Nov 1995.

[13] Merriam-Webster. Perspective | definition of
perspective by merriam-webster.

[14] Merriam-Webster. View | definition of view by
merriam-webster.

[15] Merriam-Webster. Viewpoint | definition of viewpoint
by merriam-webster.

[16] G. Piccoli. Information Systems for Managers: Texts
and Cases. Wiley Publishing, 1st edition, 2007.

[17] N. Rozanski and E. Woods. Software Systems
Architecture: Working With Stakeholders Using
Viewpoints and Perspectives. Addison-Wesley
Professional, 2005.

[18] I. Sommerville. SOFTWARE ENGINEERING.
Pearson Education, 9th edition, 2011.

[19] P. Timmers. Business models for electronic markets.
Electronic markets, 8(2):3–8, 1998.

[20] I. R. M. A. USA. Computer Systems and Software
Engineering: Concepts, Methodologies, Tools and
Applications, volume 2068. IGI Global, 2018.

[21] V. Vernon. Implementing Domain-Driven Design.
Pearson Education, 2013.

[22] P. Vicente. A business viewpoint for integrated it
governance, risk and compliance. Sept 2011.

[23] Wikipedia. Rm-odp. 2018.

[24] J. Zachman. The zachman framework for enterprise
architecture. Zachman International, 79, 2002.

[25] J. A. Zachman. A framework for information systems
architecture. IBM Systems Journal, 26(3):276–292,
1987.

Assessment of cost factors for cloud vs. on-premise
software operation

Julian Krebber
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

julian.krebber@rwth-aachen.de

ABSTRACT
Operating big and complex software applications requires an
analysis to assess individual requirements and most impor-
tantly occurring costs. Technical circumstances and specific
software requirements may influence the price for hosting
on-premise or subscribing to a cloud making a cost forecast
difficult. Therefore, cost models and load based optimiza-
tion methods are needed for a prediction in order to operate
software at minimal cost.
An overview of the current capabilities, options and cost pa-
rameters is provided in order to discuss the advantages and
disadvantages of the most significant approaches focusing
on saving costs. To achieve a reliable cost calculation the
paper presents current research on the cost assessment for
a centralized data center and compares several models such
as Calculating Cloud Computing Cost Effectiveness (CCCE)
and Cloud Cost Amortization Model to determine the To-
tal Cost of Ownership (TCO). Completing the analysis, a
detailed interpretation and discussion on the quality and
possible improvements of the mentioned models is given.

Keywords
cloud, on-premise, hybrid cloud, cloud application, cost
model, cost factors

1. INTRODUCTION
For a long time, organizations operating software applica-

tions had no other choice than to acquire necessary hardware
and manage it on their own. At this time no alternative
solution pattern was available on industry level and thus
no different choice than on-premise execution existed. In
order to get enough computational power or storage it was
necessary to estimate the needed capacity while fulfilling
individual requirements. In general cost assessment focused
on implementing the solution at minimal cost by comparing
hardware products and services needed to operate the IT sys-
tems. With increasing research and publications dealing with
topics about distributed cloud systems and the possibility to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2018/19 RWTH Aachen University, Germany.

provide resources based on dynamic demand, several cloud
providers commercialized this approach by offering a new
paradigm of operating software and introducing new business
models. From this time on big tech companies built a wide
range of cloud services satisfying customer’s needs of all sizes.
With that paradigm shift organizations face new challenges
in the field of executing applications, its cost assessment and
optimizing their optimal software operation strategy.
In this paper a structured overview of my research is provided
regarding the question what and how cost factors must be
considered when deciding whether to execute software in the
cloud or on on-premise systems and if already proposed cost
models cover relevant aspects. After a detailed search on
related work no overview paper with a conclusive discussion
could be found and hence this is the aim of this paper.
In section 2 an overview of three major computing patterns
is provided and their advantages and disadvantages are ex-
plained. Afterwards in section 3 the focus lies on relevant
cost factors and present approaches using metrics to assess
these. Based on the identified factors three proposed cost
models are presented and discussed. In the end a conclusion
and possible improvements are given.

2. BACKGROUND

2.1 Definition

2.1.1 On-Premise
As mentioned in the introduction the cloud solution is

relatively innovative and gained popularity in the last ten
years. Before that on-premise execution was the primarily
followed pattern. Compared to cloud services an on-premise
solution is described as the static pattern because of an often
fixed number of hardware systems and its given limitation.

Before cloud services evolved on-premise hosting was re-
ferred to hardware residing in the local building. With the
rise of cloud vendors not only cloud systems evolved but on-
premise architecture shifted towards a more flexible pattern
taking advantage of massive data centers. Cloud providers
recognized the need of companies to keep hardware which is
not shared and under total control of the respective organiza-
tion. Therefore, the option of fixed-cost hardware was created
combining the advantage of providing dedicated hardware
with no need of managing the hardware itself, maintaining
the data center and around the clock observation.

The advantage of the mentioned architecture is the com-
plete control of the system which resides at the company.
Specific hardware can be chosen, special operating systems

Service Delivery Types

Private
(On-Premise)

Infrastructure
(as a Service)

IaaS

Platform
(as a Service)

PaaS

Software
(as a Service)

SaaS

Applications

Runtimes

Security &
Integration

Databases

Servers

Virtualization

Server HW

Storage

Networking

Applications

Runtimes

Security &
Integration

Databases

Servers

Virtualization

Server HW

Storage

Networking

Applications

Runtimes

Security &
Integration

Databases

Servers

Virtualization

Server HW

Storage

Networking

Applications

Runtimes

Security &
Integration

Databases

Servers

Virtualization

Server HW

Storage

Networking

Prvided by Data
Center

Managed by you

Figure 1: Service Delivery Types

installed and every single component customized. The com-
pany can design and operate its own cloud by their means.
Two options of on-premise hosting exist: On the one hand
a company can operate its own hardware and oversee the
whole life cycle, including buying the hardware. On the other
hand, on-premise hosting, offered by cloud vendors, can be
chosen. This option abstracts from the low-level detailed
management of hardware.

2.1.2 Cloud
The term Cloud is a broad term which describes the ap-

proach of pooling computational power, storage or software
and providing them as a service over the internet to serve
multiple consumers [1]. The allocated services can vary
depending on the individual needs of the customers. Gener-
ally speaking cloud environments offer networking, storage,
servers, virtualization, integration, security and ready-to-use
software applications abstracted from the customer.

The aim of this service based approach is to hide the com-
plexity of managing IT infrastructure [6]. Without this ab-
straction the user would have to deal with detailed configura-
tion and management of hardware devices making the opera-
tion of cloud applications more complex. Three types of cloud
services evolved in the past years, namely Infrastructure-,
Platform- and Software as a Service (IaaS, PaaS and SaaS)
which are briefly defined in Figure 1 [12]. In this paper SaaS
will not be discussed, due to its comparatively specialized
nature and no differentiation will be made between IaaS and
PaaS because of their similar nature concerning cost. Cloud
vendors can offer clients specific supplementary services such
as load-balancing or api-gateways.

Aside from choosing how much control is wanted, benefits
of the cloud are scalability and the possibility to get resources
on-demand or even use distributed Data Centers [1]. This
is described in more detail in section 2.2. Due to the use
of the pay-as-you-go model [3], very high upfront costs for

acquiring hardware can be avoided and redirected to lower
recurring cloud leasing costs. To make this possible the cloud
must be a measured service[1]. It has to be assumed that a
trusted cloud provider is chosen in regard to reliability and
security. Otherwise the cloud could pose a major issue for
clients.

When it comes to Efficiency, Data Centers often have less
than 30% utilization [2] due to uncertain demand. When
using a cloud this is not the businesses concern [8] and the
cloud providers have the possibility to achieve a much better
efficiency, because of multiple and diverse clients. For the
cloud providers it is therefore crucial to know their clients
demand for an optimal resource distribution. Therefore,
most providers will offer different subscription models. For
example either to reserve resources in advance or get them
on-demand as described by Sakir and Ibrahim Yucel [22].

These models make forecasting a businesses own demand
crucial, because using cloud resources without reservation is
more expensive, making cost assessments and optimization
even more important. Whether the cloud fits a businesses
needs depends on the requirements and can be assessed with
this paper.

2.2 Advantages and Disadvantages
As the key concepts of cloud and on-premise were given

there are certain characteristics that differ between them.
A short comparison between the key factors can be seen
in Table 1 followed by a more detailed explanation of each
criteria:

Criteria Cloud On-premise

Hardware, staff Low High
managing cost
Reliability Depends on Depends on

backup backup
Scalability Fast (on-demand) Slow
Security Partially out of Businesses

hands responsibility
Customization Can be limited Unlimited
Expandability Not needed Slow, Investment

required

Table 1: Differences between cloud and on-premise
criteria

• Reliability
An unreliable software system can be problematic:
Downtime of the software system, unexpected inac-
cessibility of the web services etc. will result in profit
loss. To ensure reliability it is crucial to minimize
down- and recovery time. The recovery time especially
regarding hardware failure may be shorter when using
a cloud provider due to unused hardware on standby.
Reliability should be ensured by the cloud provider if
applicable. It is essential to use backup systems to
prevent loss of data and boosting recovery time.

• Scalability
Scalability means how well a change of available re-
source can be made to fit the demand. When using an
own data center there are limited resources. If a cer-
tain consistent demand exists that the businesses data
center meets, scalability is not an issue. But strongly

varying demands can make the businesses data center
uneconomical due to mostly unused hardware that is
required in order to meet peak demands. To deal with
this issue one can either just use the clouds on-demand
advantage or own the resources needed to fulfill the
average demand and use the cloud when additional
resources are needed. It should be taken into considera-
tion how fast or uncertain the demand changes. If there
are rapid changes it must be taken into account that
shut down hardware needs time to be available, while
keeping it in standby minimizes this time it maximizes
operation cost. Clouds may also be able to deal with
this issue more easily.

• Security
When working with sensitive and restricted data, there
is a risk of losing the data or getting it leaked to a
third party. When the businesses does not use a cloud
provider, security is completely in the businesses hands.
That means all the on-site security must be handled
to prevent unauthorized access or physical damage.
Concerning the system level, if security is needed but
the IT department is not capable of maintaining it,
a trusted cloud provider with security knowledge is
obviously favorable. Otherwise the cloud does pose
more security risks. Because of the availability over
the internet it can be attacked more easily [4]. This
risk can be reduced by using a more sealed off network
with an owned data center. When handling restricted
data, privilege abuse may be problematic [13]. In this
case the cloud provider must be trusted as well as
the enterprises employees. More interesting could be
privacy issues [13]. On the businesses data site the
location of the data is known. This must not be true
for a cloud provider or may introduce additional fees
for choosing the vendors hosting site.

• Network
It can be helpful not having resources centralized at
one site. There are cloud services owning different host-
ing sites, eventually globally, that will offer distributed
hosting. As shown in Figure 3 most data centers are
located near strongly populated areas or near the in-
ternet backbone, achieving a stable and fast internet
connection with low latency. Be aware that choosing
special hosting locations can result in higher vendor
prices.

• Customization
On-premise does leave everything to the business. Con-
cerning customization this is beneficial making the use
of specific hardware, operating systems, software and
databases customized to the businesses needs, possible.
Cloud providers are aware that their customization
options are limited [7]. Ergo these options may not be
sufficient, especially for large companies [16].

• Expandability
Buying additional hardware requires an investment and
must be planned long in advance. Delivery times can
take several months, while upgrading the businesses
cloud resources can be relatively quick as described in
the scalability section.

• Dependence
When the businesses whole system is set up in the cloud
it is strongly depending on the provider. To increase
flexibility and reduce dependency migration capability
is relevant. If there is a issue with the provider like
unreliability, costs can be reduced by changing the
provider. So there should be an awareness of any kind
of technological [19] or contract lock-in issues. [13].
There are further dependencies such as the Internet.
Note that the internet is not necessarily required with
a data center on-premise.

2.3 Hybrid Cloud
After introducing the cloud and on-premise approaches and

underlining the key factors of each alternative a definition
and explanation of a possible combination of both variations
is given in this section. This pattern is called hybrid cloud
and consists of mainly two hosting parts specifically the
public and private cloud. Thereby the private cloud can
be an on-premise self-hosted hardware system, or a rented
fix-cost based cloud system stationed in a data center and
maintained by external companies. A survey conducted in
2015 revealed that 58% of the 930 questioned companies were
using a hybrid cloud for business purposes while 30% based
their IT just on public clouds [15].

While the previous section dealt with advantages and dis-
advantages of single services, the hybrid approach melds the
advantages of both and offers a structure to meet critical
requirements of organizations as for example data privacy,
security or compliance while simultaneously retaining the
possibility to outsource to cost-efficient public cloud systems
[9]. The basic motivation of establishing and using a hybrid
approach is to gain the flexibility and agility to execute spe-
cific software components regarding their specifications in
different cloud systems while keeping the overall system run-
ning without disruptions. Following this pattern companies
can store sensible data in their self-operated cloud enforcing
individual regulations while running the business logic in a
public cloud for its dynamic scalability, elasticity and the
advantages mentioned in the previous parts. Furthermore,
it represents an attractive approach for companies, which
have already invested in own IT systems and need to expand
their capacities without huge investment volumes in local
hardware and software.

Another option is to use only specific cloud services as
for example data storage to outsource single components
to a public cloud or the other way around adding missing
capabilities as easy and fast as possible. To guarantee the
seamless operation of such distributed software systems, com-
munication and data transfer between these clouds is crucial,
introducing new technical and economical parameters, that
should be considered. Thus the hosting setup needs to allow
workloads to be switched between clouds preferably auto-
mated [21]. This represents one disadvantage of the hybrid
cloud pattern, namely the more complex communication re-
lation between clouds. Therefore, software must be adjusted
and subsequently made executable for different environments.
For that reason, the settings and runtime environment must
be compatible. This can for example be achieved through
bundled virtual machines or containerized software compo-
nents which are then executed independently of the current
cloud and underlying hardware. This configuration leads to
the opportunity of assessing the cost for executing software

Figure 2: Chart of monthly data center cost [5]

Upfront cost Recurring cost
Site Site rent
Hardware Hardware maintenance and upgrades
Software Software maintenance and updates
Migration Staff

Electricity
Cooling
Network(ISP)
Tax

Table 2: Upfront and recurring cost for an on-
premise site

in different clouds and optimizing the hosting costs by choos-
ing the best-fitting cloud with lowest costs even daily. For
that purpose, general cost models are required, but before
discussing these I am going to define and present relevant
cost factors in the next section.

3. COST ASSESSMENT
To clarify the term cost used in this paper, it mainly refers

to the expenditure for using a data center. That means not
easily quantifiable cost or very individual costs will not be
discussed in this paper. Before investing capital, it should be
planned well ahead what data center solution saves the most
money. In this section the main expenses will be covered,
that are partly derived from Tak et al. [17].

3.1 Cost factors
Before diving into the different cost models (see section

3.2), I am going to present cost factors that are relevant for
using an on-premise or cloud solution. First it should be
differentiated between upfront costs and recurring costs. In
the previous section three possible IT hosting architectures
which can be implemented to execute software on a large scale
were introduced and described. A major difference between
cloud and on-premise costs are the upfront costs: While they
are comparatively small when using a cloud provider, it is
a massive investment to build up an own data center. In
this chapter the focus will therefore lie on the on-premise
cost when it comes to upfront costs. A quick overview of the
factors is given in table 2. It is understandable that most of
the costs cannot be evaluated in great detail due to a case
to case dependence Tak et al [17].

3.1.1 Upfront costs
First of all, a site for the data center is needed. There are

various possibilities to acquire such a site such as building

or renting. Of course, renting would make it a recurring
cost instead of an upfront cost. To get the site operational,
hardware must be acquired. There is a variety of hardware
racks available. What kind of hardware should be used, is
influenced by the requirements that should be met concerning
processing power and storage. To determine processing power
and storage the CCCE method (see section 3.2.2) may be used
from [3]. If a hybrid approach is not used, there may be extra
hardware needed to cope with peak loads reducing overall
cost effectiveness. Also, additional hardware like switches
must be taken into account. The hardware is not of much use
without software, so software licenses need to be purchased.
This must not necessarily count to the upfront investment,
because software vendors can also have different pricing
models such as subscriptions. The purchase of the software
is equally relevant for cloud usage, if required. Furthermore,
switching to a cloud provider can pose migration costs but
makes the company more flexible.

3.1.2 Recurring costs
Without an already owned data center the cloud is without

question the cheapest short-term solution. To determine the
optimal long term solution, the upkeep or operational costs
are of great importance for a future-proof company. When
the business can calculate the approximate upkeep of owning
a data center it is possible to estimate how high the prices
of the cloud will reasonably be. As the acquisition of an
on-premise data center is much more expensive than using
the cloud [1], the upkeep cost for on-premise needs to be
lower than the cloud cost. Otherwise the on-promise solution
is not profitable.

Running an own data center will introduce costs for staff
and maintenance [1]. More technicians, software adminis-
trators and further employees are necessary in comparison
to the cloud to keep hardware, software and databases fully
operational. With time hardware will inevitably fail and
must be repurchased or upgraded. The same is applicable
for software, that needs to be maintained and updated, too
[1]. This may introduce further cost when software licenses
are not acquired with a subscription model that includes
maintenance or free upgrades.

Choosing a site location is not only a matter of real estate
prices and taxes. Cooling the servers is necessary and will
lead to higher electricity bills, if the environmental climate
cannot be used for it. That is one of the reasons, why it is
advisable to build a data center in relatively cold regions.
Much more important are electricity prices in general, be-
cause electricity will make up a huge part of the upkeep
costs as shown in Figure 2. Electricity is clearly essential for
the data center, which will consume huge amounts of energy
proportionally to its size. Placing the data center at a site
with a stable power supply near customers (see Figure 3)
and handling electricity concerns is convenient. For example
power generators may be necessary to prevent damage to
hardware and data [23].

To reduce the amount of power required in an own data
center the power required by energy consumers must be
reduced. Servers that are currently unused should therefore
be set to an energy saving mode or shut down. Instead of
solely measuring the used energy of a data center the usage
or efficiency of the data center is of essence. Because the
cloud commonly uses a pay-as-you-go model it is necessary
to determine cost by resource usage. The main resources that

Figure 3: Microsoft Azure data center locations [10]

are relevant are therefore CPU time, memory and storage.
If transfers with a significant amount of data are required,
networking costs can rise [7].

3.1.3 Execution time, Storage and Data transfer
To run a data center efficiently and reduce costs, the exe-

cution time of the programs, the memory and storage needed
and the data that must be transferred needs to be calculated.
As mentioned in section 2.1.2, cost can be greatly reduced
by determining these factors in order to shift the usage from
on-demand resource acquisition to resource reservation and
resource bidding [22]. While calculations will be done in the
cost models chapter 3.2, I am going to give a summary for
execution time, storage, and data transfer:

• Execution time
Execution time mainly relates to the number of used
computers [3] and CPU time. CPU time is the duration
a program gets 100% of the CPUs attention. Why is
it more relevant to use the CPU time rather than
the number of cores or the CPU speeds? The most
prominent reason is that the CPU time is comparable.
It is difficult to determine how high the utilization of
the CPU is and therefore its power consumption, which
is depending on the currently used software. In the end
it comes down to the time a program needs to finish.
The CPU time can be translated to cost normally given
in price per hour. This is very helpful for instance for
choosing a CPU. If a program has a maximum time
limit, a CPU must be chosen that guarantees to upkeep
the limit. Otherwise by calculating with the price per
CPU hour one can determine if it is less expensive to
execute a program on a slower CPU with a lower cost
per hour or a fast CPU with a higher price per hour.

• Storage
The price for storage given by hard drives depends on
their capacity. The only way of reducing costs is to
minimize the needed storage volume. Still, purchasing
larger quantities of storage will lead to a price reduction
per GB [20]. Depending on the hard drive and cloud
provider there is a limited number of transactions for
the hard drive and the provider may charge for them
[6]. When Cloud storage is used I/O latency can exist

[20]. Cloud providers can also offer backup systems or
dedicated database systems.

• Data transfer
Transferring data can become another cost factor. Send-
ing or receiving significant amounts of data can be nec-
essary. This may not cost if data is transferred in the
local network or inside the data center. But as soon as
a third party is involved cost will occur. This may be
the enterprises data center Internet Service Provider
(ISP) or the cloud provider. In this case moving data
inside the cloud can be affected, too. None the less
the maximum data traffic allowed will be limited or
charged per GB transferred [6]. For this reason, using
the hybrid cloud model is less attractive, if the cost for
moving or accessing data between data centers is too
high.

3.2 Cost models
In this section cost models are presented which focus on

calculating the cost for owning a data center or using the
cloud. The cost models can be used as a guideline to predict
the most beneficial way of using a data center. In other
words: To lease or not to lease from the cloud. All variables
used can be found in Table 4.

3.2.1 Net Present Value Decision Model
Edward Walker presented a way of calculating the cost of

CPU time [19] and cost of storage [20] represented by the
net present value (NPV). His calculations form an approach
for comparing own resources with leased resources and are
therefore used as a basis for additional methods. The idea
behind the NPV is to consider the change of money value
over time. By doing so, money received immediately would
be considered worth more than receiving it at a later date.
This can be expressed by [18]:

PV =
FV

(1 + k)T
(1)

To calculate the NPV of an investment summing up the

annual cash flow (profit-cost) CT for Y years leads to [19]:

NPVP =

Y−1∑
T=0

CT

(1 + k)T
(2)

To incorporate Moore’s Law that seems to apply to IT in-
cluding CPU performance and storage capacity, equation 1
is altered to [19]:

PC =
FV(√

2
)T (3)

To consider the available processing capacity the following
can be used:

TC = TCPU ∗H ∗ η (4)

To include CPUs performance obsolescence, the total capacity
TC can be combined with (1) [19]:

NPCP = TC ∗
Y−1∑
T=0

1(√
2
)T = TC ∗

1− 1

(
√

2)Y

1− 1

(
√

2)

(5)

The real cost of an CPU hour is [19]:

CR =
NPV

NPC
(6)

With given equations (2), (5) and (6) buying computing
resources leads to [19]:

CP =

(
1− 1√

2

) Y−1∑
T=0

CT

(1+k)T(
1−

(
1√
2

)Y)
∗ TC

(7)

In case of leasing resources as in a cloud the NPC should be
altered. No depreciation of computing capacity is needed, as
the cloud provider will keep them up to date [19]:

NPCL = Y ∗ TC (8)

Equation (7) is altered accordingly:

CL =

Y−1∑
T=0

CT

(1+k)T

Y ∗ TC (9)

When it is assumed that purchased CPUs are kept up to date,
depreciation does not matter either, but repurchase/upgrade
costs must be included [19]:

NPVU = C0 +

Y−1∑
T=1

CT −A
(1 + k)T

(10)

This gives me the new cost of a CPU hour for purchasing
and upgrading [19]:

CU =

C0 +
Y−1∑
T=1

CT−A

(1+k)T

Y ∗ TC (11)

Neven Vrček and Slaven Brumec have conducted an anal-
ysis of Edward Walker’s real cost of CPU hour calculation
with focus on the utilization rate η. They concluded that
the cloud is significantly cheaper if the utilization rate is
low. As already highlighted in this paper, they confirm that
many variables play a role for cost. Therefore, the variation
of the variables should be reevaluated constantly [18]. Now I

will shift from CPU performance to Storage where the NPV
approach can be applied, too. For purchase [20]:

NPVSP =

Y∑
T=0

PT − CS
T

(1 + IK)T
+

S

(1 + IK)Y
− E (12)

For lease [20]:

NPVSL =

Y∑
T=0

PT − CS
T

(1 + IK)T
−

Y∑
T=0

LT

(1 + IR)T
(13)

This gives us the possibility to calculate ∆NPV [20]:

∆NPV = NPVSP −NPVSL ⇒ (14)

∆NPV =

Y∑
T=0

CSL
T − CSP

T

(1 + IK)T
+

S

(1 + IK)Y
+

Y∑
T=0

LT

(1 + IR)T
−E

(15)
When considering that a disk controller is needed, disks must
be purchased overtime to satisfy storage needs and disks
must be replaced because of failure, getting the disks salvage
value ET and the capital cost E as the result [20]:

E =
ET

(1 + IK)T
+ C (16)

=
((dVT eΩ − dVT−1eΩ) ∗ Ω +RT) ∗GT

(1 + IK)T
+ C (17)

ET = ((dVT eΩ − dVT−1eΩ) ∗ Ω +RT) ∗GT (18)

To include the varying capital cost ET substitute E in equa-
tion (15):

∆NPV =

Y∑
T=0

CSL
T − CSP

T − ET

(1 + IK)T
+

S

(1 + IK)Y
+

Y∑
T=0

LT

(1 + IR)T

(19)
Now the operating cost for storage CSP

T and CSL
T will be

calculated, considering electricity needed and the human
factor:

CSP
T = (365 ∗ 24) ∗ δ ∗ (PC + PD ∗ dVT eΩ) + α ∗HT (20)

CSL
T = β ∗HT (21)

Using ρ = (α− β) results in:

∆NPV =

Y∑
T=0

−ρ ∗HT − (365 ∗ 24) ∗ δ ∗ (PC + PD ∗ dVT eΩ)− ET

(1 + IK)T

+
S

(1 + IK)Y
+

Y∑
T=0

LT

(1 + IR)T

(22)
By watching the market prices Walker found out that the
SATA disk prices can be predicted with

GT = K0 ∗ e−0.438∗T (23)

Assuming an annual disk replacement rate of 3%:

RT = 0.03 ∗ Ω ∗ dVT eΩ (24)

At last simplifying IR and IK to IF and assuming the disk
salvage value S as the disk price multiplied by a depreciation

factor gets the final storage formula:

∆NPV =

Y∑
T=0

CS
T − ET + LT

(1 + IF)T
+

S

(1 + IK)Y
− C

S = γ ∗ Ω ∗ dVT eΩ ∗K0 ∗ e−0.438∗T

CT = −ρ ∗HT − (365 ∗ 24) ∗ δ ∗ (PC + PD ∗ dVT eΩ)

ET = (1.03 ∗ dVT eΩ − dVT−1eΩ) ∗ Ω ∗K0 ∗ e−0.438∗T

(25)

For an more detailed description of each step, look at the
sources [18, 19, 20]. With these formulas Walker discovers
with his case values: The longer the life expectancy of a disk
is, the more purchasing storage should be the preferred option
instead of leasing it. This summary of Walker’s model showed
how the formulas were derived, creating the possibility to
easily alter them according to variables a company wants to
consider or adjusted to the current market.

3.2.2 Cloud Computing Cost Effectiveness
One way of calculating the costs which will help to negoti-

ate with cloud providers is the Calculating Cloud Computing
Cost Effectiveness (CCCE) method [3]. This method consists
of 10 steps, illustrated in Figure 4, giving Walkers calcula-
tions a structured real world applicable approach:

1. Select the Application (App):
Assuming there is an Application App which is equally
suited for cloud and on-premise computing.

2. Determine how long the execution takes (TA):
How long TA is varies, but mostly there is a minimum
Tmin limited by technical reasons and a Tmax where if
App took longer than Tmax, operating the Application
App would lose its purpose. So Tmin<=TA<=Tmax
should hold [3].

3. Estimate how many computers are needed to achieve
TA(r):
Estimating how many computers are needed can be
tricky, so [3] can be used as reference. It is assumed
that the execution time TA depends on the number of
computers used, as well as on the processing power of
the used computers, the application complexity, the
volume of data to be processed, the database size and
the number of crude actions per query. Their exact cor-
relation for calculating TA is unknown. Slaven Brumec
et al. still present a way to determine the factor for
each variables by setting some of them to a constant
value and measuring others [3].

4. Calculate the cost for on-premise resources (CP):
This can be done by using formula (7).

5. Calculate the cost for cloud provider resources (CS):
This can be done by using formula (9).

6. Compare CP and CS :
Depending on the outcome either leasing the resources
or purchasing them will be more beneficial. This can
be difficult to decide, but if a certain utilization of the
own resources cannot be guaranteed, the cloud will
likely have the better cost per CPU hour [18].

7. Estimate data volume and increase rate (b):
To run the application successfully the required volume
of data should be determined as well as the annual
increase of it.

8. Calculate the ratio between leasing or buying storage:
In other words, the formula (25) is required. If ∆NPV >
0 purchase of storage is more favorable. Otherwise leas-
ing storage would have a better value. Three different
case studies were made with different storage capacities
ranging from 500GB to 10TB. The conclusion was that
leasing is favorable for individuals or very small enter-
prises, as long as the technological lifetime of a drive is
not exceeded. For small and medium sized enterprises
leasing is more favorable, but for large enterprises it is
buying. As many parameters factor in, a much more
concrete statement should be possible for individual
cases [3].

9. Analyze the cost of leasing in the cloud:
Most cloud providers will provide a list price if the
business knows its required resources. Otherwise these
may be calculated [3]. Main parameters that have
an direct cost effect in the biggest clouds, as with
Microsoft, Amazon or Google can be listed: Number
of used computers, processing power of the computers,
volume of sent/received data, size of DB, Number of
r/w transactions, amount of data in RDB, the OS etc.
[3].

10. Bargain for an acceptable and fair price:
Cloud vendors usually publish their prices. The smaller
the cloud provider the bigger is his interest to get the
enterprise as his customer. The bigger the enterprise is,
the bigger will a cloud vendors interest be. That means
if the business is not sure where to get its resources,
there will be bargaining potential. As already discussed
in this paper, the business can calculate how much an
on-premise solution would roughly cost. If the Cloud
vendor exceeds this limit, there is in this aspect, no gain
in using the cloud. I also discussed how to calculate
the cloud cost. That cost is the lowest achievable
bargaining amount. Descending below it would not
generate enough profit for the cloud provider. So the
business can use this information to get a reasonable
price in the bounds of CL < x < CU for processing
power and storage [3].

3.2.3 Addition to Walker
For further research purposes: Based on the NPV concept

Tek et al [17] introduce the formulas to calculate hardware,
os licenses, database licenses, electricity and cloud instance
costs. The needed input is determined by benchmarking
(empirically), similarly to the CCCE method. This can be
considered a addition to Walker because it includes costs
that are not covered in his NPV model.

3.2.4 The Financial Model
This model uses a different calculation method than the

NPV in order to calculate the TCO. In Table 3 all needed
variables can be found. The annual depreciation is deter-
mined by EL, SV and Cpc.

Cd =
Cpc − SV

EL
(26)

The annual power consumption equals the power consump-
tion per instance, times all systems. The power consumption
per instance is the product of the maximum power consump-
tion per system, power utility charge per system and the

Figure 4: CCCE method [3]

power utilization efficiency of the datacenter [23]:

Cp = H ∗ Pmax ∗ Pu ∗ PUE (27)

The Cm, Csc is given. Ajeh et al state, that one system
requires about 23m2. So:

Cs = S ∗ Ca (28)

Now the TCO can be calculated [1]:

TCO = (Cpc + Cp + Cm + Csc+ Cd + Cs) ∗N (29)

µ =
H

24 ∗ 365
(30)

The equations are very simple but show how different param-
eters can be taken into account [1].

3.2.5 Cloud Cost Amortization Model
The cloud cost amortization model is similar to the fi-

nancial model, but it is more adjusted to the real world
and more detailed. Detailed meaning more parameters are
considered that have not been included yet, such as Virtual
Machines(VM) or different types of software licenses. This is
shown in table 5, where all needed variables for this model
are displayed. To make different costs comparable amortiza-
tion (depreciation) must be considered. A cost amortization
parameter can be calculated by [8]:

Arp(t) =
(1 + α) ∗ t

Ap
(31)

Now server, software, networking, support and maintenance,
power, cooling, facility and real estate space cost can be
calculated. The sum gives us the TCO:

TCO = Cse + Cso + Cn + Csu + Cp + Cc + Cf + Csp (32)

As in the other models, all the needed input can be ob-
tained by either benchmarking, contacting a cloud operator
or collected from industry statistics [8]. Server cost:

Cse = V Ips ∗Nserv ∗Arp(t) (33)

Concerning software cost, it is assumed that three types of
software licenses exist:
Type 1 software includes the OS and software being licensed

by suite and priced per virtual image.
Type 2 software includes Application Server, VM software
and every other software that is licensed by the number of
processors.
Type 3 software includes management software that is li-
censed by the number of processors it manages, which leads
to [8]:

Cso = (Ss∗V Is∗Ns+So∗V Io∗No+Sm∗V Im∗Nm)∗Arp(t)
(34)

This method does not consider the network cost to be asso-
ciated with data transfer cost, but the cost of the hardware
the network consists of, which would be e.g. switches:

Cn = Ps ∗Nswitch ∗Arp(t)

Nswitch = SNIC ∗ PNIC ∗
Nserv

Nport

(35)

In this model, the support and maintenance cost would be
better described as staff cost:

Csu = Nt(Tuse ∗Nserv + Tidle)Rsal (36)

The total power cost not only includes the servers and
switches but uninterruptible power supplies (UPS) and light-
ing etc., too:

Cp = Ls ∗ Es ∗ Srp ∗Nrack ∗Arp(t) (37)

To calculate the cooling cost, it is assumed that all the power
consumed is converted to heat. Therefore, a parameter L is
defined, that represents how much of that power is consumed
by the cooling system. Statistically L could have a value of
0.6 leading to the formula [8];

Cc =
L ∗ (1 + P) ∗ Cp(t)

H
(38)

Cf consists of the equipment needed in the racks, like PDU,
KVM and cables etc.:

Cf = Nrack ∗ V Pfp ∗Arp(t) (39)

Real estate can be very costly due to special requirements,

Figure 5: Three-layer model to calculate utilization
cost [8]

such as cooling [17]:

Csp = Ap ∗ SSPACE ∗Arp(t)

SSPACE =
RSF ∗Nrack

RSPACE

(40)

The racks can be quite heavy, so the maximum weight the
floor is able to hold must be considered. That means equation
(41) should be true for the parameters used in formula (40):

Cpressure >
Nserv ∗Wserver +Nrack ∗Wrack

SSPACE
(41)

In order to include the utilization cost derived from the
used VMs, a calculation strategy consisting of three layers
as shown in figure 5 can be used. The figure is an overview
of the order in which the presented costs can be calculated,
by only using the VM number and VM density as input. To
apply this method, the Number of physical servers Nserv and
the number of racks Nrack must be calculated. Nrack can be
calculated by applying a bin-packing problem algorithm [8]:

Nserv =

⌈
NV M

VMdens

⌉
(42)

Nrack = Bin− Packing(Nserv, Vrack, UV server) (43)

By using formulas (42) and (43), finally the eight aspects of
cost are gotten. Their sum will be the utilization cost, which
dynamically copes with the users demands. This concludes
the cloud cost amortization model, with the idea of using
VMs as a parameter.

3.2.6 Practical Use
For calculating the TCO for cloud and on-premise opera-

tion, cloud providers might offer the necessary tools. These
may not be objective, although they come in handy as a
good guideline or indicator for cost calculation with a specific
provider. Based on the cost calculation it can be important
to negotiate prices when using the cloud [13].

4. MODEL DISCUSSION
Edward Walker assumed that a server cluster has no sal-

vage value after its retirement because only a small market
exists for used CPU equipment. He also assumed that the
server cluster’s operational life has no expected cash revenue

and that the lease price is stable. These assumptions simplify
his formulas, but if the market changes, his formulas can
become inaccurate. To calculate a realistic result, I would
recommend further development of his formulas. For ex-
ample, price volatility in the online CPU market could be
incorporated. I still consider his method as an appropriate
and useful way of calculation, because he considered: Moore’s
Law, depreciation, storage and disk replacement rates, capi-
tal expenditure, utility consumption, human operator cost
and salvage value. Some formulas may need altercation like
GT the cost per GB. The formula was created by analyzing
the SATA market, so it may need to be updated and checked
if it also holds for new types of drives like a SSD. I will not be
comparing the financial model, instead the more detailed cost
amortization model will be discussed: The cost amortization
model assumes that all servers have the same CPU, memory
and disk, due to commonly homogeneous hardware in data
centers [8], thus not differentiating between processing power
and storage like the CCCE method. This makes it difficult to
assess the profit of using the cloud, if the cloud provider does
not offer all-in-one VMs but processing power and storage
separately.

5. CONCLUSION
The possibility to outsource processing power and storage

leads to the assessment whether outsourcing is a profitable
option. Therefore, I presented the main advantages and
disadvantages of the concepts on-premise and cloud. It
becomes clear that there are certain aspects such as scalability
and security, that could result in a preference for a system but
that depends on the use case. Combining on-premise and the
cloud results in a hybrid approach, that can be used to just
partly lease from the cloud. To determine the best approach,
the costs for it must be calculated. The parameters that
can be taken into account differ, but the major ones were
identified. To make a cost-effective future proof decision, I
looked into models that provided a guideline of how to take
the parameters into account in order to calculate the cost of
owning or leasing the needed resources. Due to the size of
the topic and its diversity still much more research could be
done. For example, a guideline for optimal resource division
in a hybrid cloud setting could be created.

References
[1] D. E. Ajeh, J. Ellman, and S. Keogh. A cost mod-

elling system for cloud computing. Proceedings - 14th
International Conference on Computational Science and
Its Applications, ICCSA 2014, pages 74–84, 2014. doi:
10.1109/ICCSA.2014.24.

[2] A. Benik. The sorry state of server utilization and the
impending post-hypervisor era, 2013. URL https://gi

gaom.com/2013/11/30/the-sorry-state-of-server-

utilization-and-the-impending-post-hypervisor-

era/.

[3] S. Brumec and N. Vrček. Cost effectiveness of com-
mercial computing clouds. Information Systems, 38(4):
495–508, 6 2013. ISSN 03064379. doi: 10.1016/j.is.2012.
11.002.

[4] D. A. Fernandes, L. F. Soares, J. V. Gomes, M. M. Freire,
and P. R. Inácio. Security issues in cloud environments:

https://gigaom.com/2013/11/30/the-sorry-state-of-server-utilization-and-the-impending-post-hypervisor-era/
https://gigaom.com/2013/11/30/the-sorry-state-of-server-utilization-and-the-impending-post-hypervisor-era/
https://gigaom.com/2013/11/30/the-sorry-state-of-server-utilization-and-the-impending-post-hypervisor-era/
https://gigaom.com/2013/11/30/the-sorry-state-of-server-utilization-and-the-impending-post-hypervisor-era/

A survey. International Journal of Information Security,
13(2):113–170, 2014. ISSN 16155270. doi: 10.1007/s102
07-013-0208-7.

[5] J. Hamilton. Overall Data Center Costs, 2010. URL
https://perspectives.mvdirona.com/2010/09/over

all-data-center-costs/.

[6] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and
D. P. Anderson. Cost-benefit analysis of cloud codlput-
ing versus desktop grids. In IPDPS 2009 - Proceed-
ings of the 2009 IEEE International Parallel and Dis-
tributed Processing Symposium, pages 1–12, 2009. ISBN
9781424437504. doi: 10.1109/IPDPS.2009.5160911.

[7] M. J. Lee, W. Y. Wong, and M. H. Hoo. Next era of
enterprise resource planning system. Review on tradi-
tional on-premise ERP versus cloud-based ERP: Factors
influence decision on migration to cloud-based ERP for
Malaysian SMEs/SMIs. In Proceedings - 2017 IEEE
Conference on Systems, Process and Control, ICSPC
2017, volume 2018-Janua, pages 48–53, 2018. ISBN
9781538603864. doi: 10.1109/SPC.2017.8313020.

[8] X. Li, Y. Li, T. Liu, J. Qiu, and F. Wang. The Method
and Tool of Cost Analysis for Cloud Computing. 2009
IEEE International Conference on Cloud Computing,
pages 93–100, 2009. ISSN 978-1-4244-5199-9. doi: 10.1
109/CLOUD.2009.84.

[9] D. S. Linthicum. Emerging Hybrid Cloud Patterns.
IEEE Cloud Computing, 3(1):88–91, 2016. ISSN
23256095. doi: 10.1109/MCC.2016.22.

[10] J. Markx. MSAzure, 2014. URL https://joranmarkx

.wordpress.com/2014/09/15/update-on-microsoft-

azure-data-center-locations/.

[11] R. McFarlane. Let’s Add an Air Conditioner, 2005. URL
https://searchdatacenter.techtarget.com/news/1

148906/Lets-add-an-air-conditioner.

[12] P. Mell and T. Grance. The NIST Definition of Cloud
Computing. Technical report, National Institute of
Standards and Technology, 2011. URL http://faculty.

winthrop.edu/domanm/csci411/Handouts/NIST.pdf.

[13] J. Opara-Martins, R. Sahandi, and F. Tian. A Business
Analysis of Cloud Computing: Data Security and Con-
tract Lock-In Issues. In Proceedings - 2015 10th Inter-
national Conference on P2P, Parallel, Grid, Cloud and
Internet Computing, 3PGCIC 2015, pages 665–670, 2015.
ISBN 9781467394734. doi: 10.1109/3PGCIC.2015.62.

[14] C. D. Patel and A. J. Shah. Cost Model for Planning ,
Development and Operation of a Data Center. HPl-2005-
107 (R.1), 107:1–36, 2005. doi: 10.1128/JB.183.19.5751.
URL http://www.hpl.hp.com/techreports/2005/HP

L-2005-107R1.pdf.

[15] RightScale. State Of The Cloud Report. Technical
report, Right Scale, 2015.

[16] S. Schilling. Cloud-Computing als Betriebsmodell f{ü}r
ERP- Systeme – Nutzenaspekte und Bedenken im Vergle-
ich zwischen Theorie und Praxis. PhD thesis, Universität
Koblenz Landau, 2012.

[17] B. C. Tak, B. Urgaonkar, and A. Sivasubramaniam.
Cloudy with a chance of cost savings. IEEE Transactions
on Parallel and Distributed Systems, 24(6):1223–1233,
2013. ISSN 10459219. doi: 10.1109/TPDS.2012.307.

[18] N. Vrcek and S. Brumec. Role of utilization rate on cloud
computing cost effectivness analysis. International Con-
ference on Information Society (i-Society 2013), pages
177–181, 2013.

[19] E. Walker. The real cost of a CPU hour. Computer, 42
(4):35–41, 4 2009. ISSN 00189162. doi: 10.1109/MC.2
009.135.

[20] E. Walker, W. Brisken, and J. Romney. To Lease or Not
to Lease from Storage Clouds. Computer, 43(4):44–50,
4 2010. ISSN 0018-9162. doi: 10.1109/MC.2010.115.

[21] J. Weinman. Hybrid Cloud Economics. IEEE Cloud
Computing, 3(1):18–22, 2016. ISSN 23256095. doi: 10.1
109/MCC.2016.27.

[22] S. Yucel and I. Yucel. Estimating the cost of digital
service delivery over clouds. Proceedings - 2016 In-
ternational Conference on Computational Science and
Computational Intelligence, CSCI 2016, pages 623–628,
2017. doi: 10.1109/CSCI.2016.0123.

[23] J. Yuventi and R. Mehdizadeh. A critical analysis of
Power Usage Effectiveness and its use in communicating
data center energy consumption. Energy & Buildings,
64:90–94, 2013. ISSN 0378-7788. doi: 10.1016/j.enbuild.
2013.04.015.

APPENDIX
A. TABLES

Variable Name Unit
N total number of instances -
H total hours of operation per year h
Cpc cost of system acquisition $
Cp cost of power per sys. $
Cs cost of space $
Cm cost of maintenance $
Cd cost of deprecation $
Csc cost of setup and configuration $
Ca cost per square meter $
S required space of one sys. m2

SV salvage value $
EL economic life y
TCO total cost of ownership $
µ utilization %
Pmax max. power consumption per sys. kWh
Pu power utility charge per sys. $/kWh
PUE power utilization efficiency -

Table 3: Variables for the financial model

https://perspectives.mvdirona.com/2010/09/overall-data-center-costs/
https://perspectives.mvdirona.com/2010/09/overall-data-center-costs/
https://joranmarkx.wordpress.com/2014/09/15/update-on-microsoft-azure-data-center-locations/
https://joranmarkx.wordpress.com/2014/09/15/update-on-microsoft-azure-data-center-locations/
https://joranmarkx.wordpress.com/2014/09/15/update-on-microsoft-azure-data-center-locations/
https://searchdatacenter.techtarget.com/news/1148906/Lets-add-an-air-conditioner
https://searchdatacenter.techtarget.com/news/1148906/Lets-add-an-air-conditioner
http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf
http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf
http://www.hpl.hp.com/techreports/2005/HPL-2005-107R1.pdf
http://www.hpl.hp.com/techreports/2005/HPL-2005-107R1.pdf

Variable Name Unit
N total number of instances -
PV present value of capital $
PC present capacity $
FV future value of capital $
FC future capacity $
T time y
Y total number of years y
k annual interest rate %
NPV net present value $
NPC net present capacity CPU hour
TC total processing capacity CPU hour
TCPU total number of CPUs CPU
H working hours per year h
η server utilization %
A annual investment for CPU $
S asset’s salvage value after Y $
E asset’s purchase cost $
ET disk salvage value $
LT lease payment $/Gb
PT annual profit $
CS

T annual storage operation cost $
CSL

T annual storage lease cost $
CSP

T annual storage purchase cost $
CT annual fixed cost $
C0 initial investment $
CS price of server $
CR real cost of CPU hour $/CPU hour
CP CR for purchasing resources $/CPU hour
CL CR for leasing resources $/CPU hour
CU CP including upgrading $/CPU hour
IK interest rate for purchase %
IR interest rate for lease %
IF risk free interest rate %
δ cost of electric util $/kWh
Ω size of purchased drives GB
ρ difference in training needed %
γ disk depreciation factor %
HT annual salary $
VT storage requirement GB
RT disk replacement GB
GT cost per Gbyte $/GB
K0 lowest(T=0) cost $/GB
C disk controller cost $
PC controller power requirement kW
PD disk power requirement kW
α proportion of HT %
β proportion of HT leased %
Cpc cost of system acquisition $
Cp cost of power KW/h

Table 4: Variables for NPV and NPC model

Variable Name Unit
t time h
Ap amortization period h
Arp(t) amortizable rate parameter -
α money cost %
Nserv number of servers -
V Ips cost per server $
V Is unit price of type 2 SW $
V Io unit price of type 1 SW $
V Im unit price of type 3 SW $
Ss, So, Sm subscription factor %
Ns number of type 2 SW license -
No number of type 1 SW license -
Nm number of type 3 SW license -
Nswitch annual number of network switches -
SNIC number of NIC per VM -
PNIC number of ports per NIC -
Ps price per switch $
Nport number of network switch ports -
Cse total cost of servers $
Cso total cost of software $
Cn total cost of networking $
Csu total cost of support/maintenance $
Cp total cost of power $
Cc total cost of cooling $
Cf total cost of facility $
Csp total cost of real estate space $
Nl number of administrators -
Tuse time spent on utilized sys. h
Tidle time spent on idle sys. h
Rsal rating of salary average $/h
Srp sum: power rating of working serv. kWh
Es electricity price $/kWh
Ls steady-state constant -
L cooling load factor [14] %
P airflow redundancy constant [11] -
H inefficiency constant [11] -
Nrack number of racks -
V Pfp Price of facilities per rack $
Ap cost to build Cloud $/m2

RSF area per rack m2

RSPACE taken space by racks m2

SSPACE total amount of space m2

Wserver weight of server kg
Wrack weight of rack kg
Cpressure pressure confronted by floor N/m2

Ra annual percentage rate %
Vrack units taken per server -
UVserver units available per rack -
VMdens number of VMs per server -
NV M number of applied VMs -

Table 5: Variables for the cloud cost amortization
model

	SWC_2019_paper_1
	Introduction
	Background & Related Work
	Methodology
	Research Questions
	Sources & Search Criteria
	Threats to Validity

	Results and Analysis
	Fuzz Testing
	Boundary Value Testing
	Combinatorial Testing
	State Transition Testing
	Miscellaneous

	Discussion
	Conclusions
	References

	SWC_2019_paper_2
	Introduction
	Research Design
	Related Work
	Technical Debt
	Enterprise Architecture

	Defining Enterprise Architecture Debt
	Evaluating EA Debt
	Possible impacts on EA Debt

	Examples
	Useful EA Debt
	EA Debt hinting at suboptimal decision

	Conclusion
	Future Work
	Acknowledgements
	References

	SWC_2019_paper_3
	Introduction
	Background
	Methodology
	Categorization and Results
	BEN
	FROG
	FIC
	FIC_BS
	DDmin
	FCI
	AIFL
	IterAIFL
	LDA
	LDA(1,2)
	LDA(d,t)

	Discussion
	Conclusion
	References

	SWC_2019_paper_4
	Introduction
	Definitions
	Paper Structure
	Related Work

	Artifacts & Sources available as input
	Compile-time / static Sources
	System Documentation
	Code Dependencies
	File Structure and Filenames
	Comments and Identifiers
	Keywords
	Static configuration

	Dynamic / Runtime Sources
	Dynamic dependencies / calls
	Docker configuration
	Network Communication

	Architect Knowledge

	Reconstruction Methods
	Graph Analysis
	Hierarchical Clustering
	Name extraction
	Network inspection

	Overview of approaches
	ACDC
	ARC
	Bunch
	LIMBO
	WCA
	ZBR
	Aramis
	MicroART
	Sonargraph

	Classification & Comparison
	Foci and Base Concepts
	Accuracy of the recovered architecture
	Scalability and Calculation Time
	Architect Input
	Stability of the clustering algorithms
	Summary

	Conclusion and Future Work
	References

	SWC_2019_paper_5
	Introduction
	Problems
	Data Skew
	Workload Skew
	Temporal Skew

	Scope of this Paper
	Related Work
	Structure of this paper

	Basic Partitioning Algorithms
	Range Partitioning
	Hash Partitioning
	Round-Robin Partitioning

	Database Partitioning
	Horticulture
	Functionality Overview
	Primary and Secondary Indices
	Algorithm
	Conclusion

	Balanced Label Propagation
	Motivation
	Constraints
	Balloon Partitioning and Geographic Initialization
	Oversharding

	METIS
	Algorithm
	Use Case

	Ja-be-Ja
	Algorithm
	Customization
	Usage Example
	Conclusion

	Schism
	Shared-Nothing
	Graph Partitioning
	Conclusion

	Partitioning Algorithms for Data Processing
	MapReduce
	The Algorithm
	Standard Partitioner in Hadoop

	LEEN
	Asynchronous MapReduce
	Algorithm
	Problem

	Sampling Based Partitioning
	The Sampling
	Partitioning Schemes
	Comparison with LEEN

	Conclusion and Future Work
	Conclusion
	Future Work

	References

	SWC_2019_paper_6
	Introduction
	State of the Art
	API design methods
	Implementation Best Practices
	API-Security
	API Robustness
	API Reliability
	REST

	Tools and Frameworks
	Spring Boot
	Swagger
	API Blueprint
	Apiary

	Challenges and Limits in current design
	Future API Design Trends
	GraphQL
	Hypermedia and HATEOAS
	Influence on APIs
	Hypermedia Types for Web APIs
	Hypermedia API Examples

	Event Subscriptions
	WebSockets and WebHooks
	REST Hooks
	Pub-Sub
	Server Sent Events

	Content Negotiation
	Technology in content negotiation
	Examples from the real world

	Conclusion and future work
	References

	SWC_2019_paper_7
	Introduction
	Motivation
	Enterprise Architecture
	Architecture
	Enterprise Architecture

	Research Method
	Related Work
	Findings
	The Value Term
	Goals of EA
	EA Value and Benefits

	Discussion/Analysis
	The Categorization
	Governance
	Operational
	Strategic
	Communication, Collaboration, Compliance

	Analysis
	Governance Analysis
	Operational Analysis
	Strategic Analysis
	Communication, Collaboration, Compliance

	Value Graph
	How does it fit with the goals of EA?
	Summary

	Conclusion
	References

	SWC_2019_paper_8
	Introduction
	Background and Related Work
	Methodology
	Manual Testing Method
	Tools Based Testing Method

	Results
	Identified Security Threats
	Privilege Elevation
	SQL Injection
	Unauthorized Data Access
	URL Manipulation
	Denial of Service
	Data Manipulation
	Identity Spoofing
	Cross-Site Scripting (XSS)

	Identified Security Testing Approaches
	Buffer Overflow Testing
	Cross Site Scripting
	Ethical Hacking
	Denial of Service Testing
	Web Penetration Testing
	Operating System- Call Testing
	Password Strength Testing
	SQL Injection Testing
	Posture Assessment

	Discussion
	Conclusion
	References

	SWC_2019_paper_9
	Introduction
	Static analysis
	Identifier Analysis
	Techniques For Examine Identifier Names
	Tools For Examine Identifier Names
	Techniques For Examine Identifier Relations

	Analysis of unstructured data
	Techniques For Examine Comments
	Tools For Examine Comments
	Further Techniques and Tools

	Dynamic analysis
	Features
	Drawbacks
	Techniques
	Frequency Spectrum Analysis
	Coverage Concept Analysis
	Software Reconnaissance
	Dynamic Feature Traces

	Tools
	Dynamic Correlation
	Visualizing Recurrent Code
	GCOV
	PANDA

	Future development
	Conclusion

	SWC_2019_paper_10
	Introduction
	Background
	Design Patterns
	Domain modeling

	Problems with Domain modeling
	Pattern Description Template
	Selected Design Patterns
	Publish-Subscribe Pattern
	Composite Pattern
	Mediator Pattern
	Command Pattern
	Factory method Pattern
	Prototype Pattern
	Object Pool Pattern
	Chain of Responsibility Pattern
	Iterator Pattern
	Decorator Pattern
	Strategy Pattern

	Evaluation
	Related Work
	Conclusion & Future Work
	References

	SWC_2019_paper_11
	SWC_2019_paper_12
	Introduction
	Background
	Methods
	Results
	Etymology
	Definitions of View
	View in Software Architecture
	View in Information Systems
	View in Business

	Definitions of Viewpoint
	Viewpoint in Software Architecture
	Viewpoint in Business
	Viewpoint in Open Distributed Processing

	Definitions of Perspective
	Perspective in Software Architecture
	Perspectives in Information systems
	Perspectives in Business

	Discussion
	Conclusion
	References

	SWC_2019_paper_14
	Introduction
	Background
	Definition
	On-Premise
	Cloud

	Advantages and Disadvantages
	Hybrid Cloud

	cost assessment
	Cost factors
	Upfront costs
	Recurring costs
	Execution time, Storage and Data transfer

	Cost models
	Net Present Value Decision Model
	Cloud Computing Cost Effectiveness
	Addition to Walker
	The Financial Model
	Cloud Cost Amortization Model
	Practical Use

	Model Discussion
	Conclusion
	Tables

