
Proceedings
of Seminars

Full-scale Software Engineering
New Trends in Software Construction

2022
Editors: Horst Lichter

Peter Alexander
Nils Wild
Selin Aydin
Christian Plewnia
Alex Sabau
Ada Slupczynski

Table of Contents

Robert Klingenberg, Sabith Haneef:
Cloud Service Selection and Cost Estimation

Keven Hu, Lennart Holzenkamp:
Identifying Deployment Patterns in MLOps Platforms

David Abdelmalek, Devashish Gaikwad:
Anatomy of a Machine Learning Pipeline

Iskender Savas Köklü:
Towards an Overview of Metrics in Recent Years for Microservice Architectures

Merzough Münker, Jurgen Abazi:
Modelling Portability and Maintainability in Microservice-based Applications

Shu Zhang, Lukas Jansen:
Correlation and Causation between Technical Debt and Quality

Katharina Güths, Egzon Ademi:
Exploring the Relation Between Technical Debt and Risk Management

Tobias Raaf, Simon Hessel:
Exploring Technical Debt Management in Project-Based and Product-Based
Software Development

Sara Prifti, Sandro Schulte:
Property-based Testing: Application Fields, Challenges and New Approaches

Florian Braun, Svetoslav Apostolov:
Classifications of Test Oracles Found in Literature

Cloud Service Selection & Cost Estimation

Sabith Haneef
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

sabith.haneef@rwth-aachen.de

Robert Klingenberg
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

robert.klingenberg@rwth-aachen.de

ABSTRACT
Cloud computing is the delivery of computing services over
the Internet. Choosing the best option from all the avail-
able cloud services can be challenging. There might not be
a single best option. The selection process is further compli-
cated by the fact that the best option can depend on a myr-
iad of factors, such as costs and Quality of Service (QoS)
attributes. These factors are not all equally important in
every use case and hence the service selection has to be tai-
lored to the needs of the specific case. Estimating the fu-
ture costs of your choice can also be challenging, as it de-
pends on your chosen service and the predicted usage. In
this paper, we conduct a systematic literature review of ex-
isting approaches for cloud service selection and future cost
estimation. We discuss the various approaches and enumer-
ate relevant features and characteristics in this context. We
give an overview of the challenges and drawbacks of these
approaches and areas for improvement in the future.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software En-
gineering]: Management—productivity, programming teams,
software configuration management

Keywords
Cloud Computing, Service Selection, Cost Estimation

1. INTRODUCTION
Cloud computing is the delivery of computing services —

including servers, storage, databases, networking, software
— over the Internet and has been around for two decades
now [20]. It provides developers and businesses the ability
to have their solutions up and running with the click of a
few buttons or a few API calls. This enables users to easily
scale their application. We use the term application here,
and elsewhere in this paper, to refer to the software the users

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2022 RWTH Aachen University, Germany.

wants to deploy to the cloud. These computing services, re-
ferred to as cloud services or services in short from here on,
are provided by various different cloud providers. Microsoft
Azure, Amazon Web Services (AWS), Google Cloud Plat-
form (GCP) are examples of cloud providers to name a few.

The large number of cloud services on offer today is a
double-edged sword. While the variety affords flexibility
and increases the chances of finding an ideal service, it also
adds complexity to the selection process. For example, there
are over 50 types of AWS EC2 (virtual compute server) in-
stances[13] alone. Add in the various regions, the various
combinations of memory, network bandwidth, storage and
CPU configurations and finding the ideal one that meets
all the requirements is now a difficult problem. While one
could manually search through the various cloud services on
offer, it can become tedious and error-prone as the number
of services on offer increases. The problem is compounded
when the user has to select cloud services for multiple appli-
cations. Each application can have different requirements.
Cloud services which are suited for one application can be
inadequate for another application. Similarly, changing re-
quirements may trigger the need for different cloud service
than currently employed. All of these problems call for more
automated and systematic approaches to cloud service selec-
tion.

Another aspect that has to be considered when choosing
and using cloud services is cost. For businesses, costs are
an important factor, and therefore it is essential to estimate
the costs for applications in advance. For some, it may even
be the goal to reduce or minimize the costs associated with
the applications.

In this paper, we try to answer the following questions:

• RQ1: What approaches exist for the selection of cloud
services?

• RQ2: What approaches exist to estimate the future
cost of cloud services?

To this extent, we do a systematic literature review and
try to answer these questions from the perspective of the
cloud user - in our case, a project manager who wants to se-
lect a cloud service for their project. The paper is structured
as follows: first, we give an overview of the review process
we employed to identify the papers to review. Then, we
describe the papers reviewed, the objectives they are opti-
mizing for and the approaches they have taken in solving
the problem. We define a set of features and characteristics,
both in general and those specific to service selection or cost
estimation, and identify which papers provide these features

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

and how. Finally, we discuss the challenges, drawbacks, and
shortcomings of the reviewed approaches and provide our
conclusions.

2. REVIEW PROCESS
We conducted the systematic literature review based on

Guidelines for performing Systematic Literature Reviews in
Software Engineering [16]. After a preliminary search based
upon the research questions relevant keywords emerged:

• cost prediction

• price estimator

• service selection

• future costs

These keywords were supplemented with synonyms and com-
bined to relevant search strings.

2.1 Search terms
The search terms were adapted for the respective digital

libraries. The search was conducted on the 05.05.2022 and
covered the years 2009-2022. Two digital libraries were used
for the systematic literature review: IEEE and ACM. IEEE
and ACM are big digital libraries and are recommended for
studies in the field of software engineering by Kitchenham
[16].

The corresponding search string for the document title:
’Cost prediction’ OR ’price prediction’ OR future costs’ OR
’future price’ OR ’future Service selection costs’ OR ’future
Service selection price’ OR ’cost estimator’ OR ’price esti-
mator’ OR ’Cost estimation’ OR ’price estimation’. This
is combined with a search string which is searched in the
metadata: ’Cloud’.

The search terms are focused to find relevant keywords in
the document title and the keyword ”cloud”is searched in the
metadata (i.e. document title, full text, keywords, affiliation
and publisher) to increase the relevance of the results.

2.2 Filters
The search resulted in 73 (IEEE) and 72 (ACM) papers.

The number of papers were narrowed down by the following
inclusion criteria:

• IC1: papers that conducted cloud service selection

• IC2: cost estimation from the user (of the cloud) per-
spective

These exclusion criteria were applied:

• EC1: papers with a focus on short time cost predic-
tions, i.e. spot price predictions.

• EC2: papers with a focus on highly specialized services

These filters narrowed the number of papers to 9.

3. OVERVIEW OF APPROACHES
The approaches are grouped into ”service selection” and

”cost estimation”. This grouping is based on the main ob-
jective of the approach, 8 approaches had service selection
as their main objective and one approach focused only on
cost estimation. We provide an overview of the respective

approaches and provide context for them. The approaches
are compared with a short overview of the commercial tools
available for service selection. The chapters following this
one are focused on specific features that are important based
on the literature. The approaches are discussed in more de-
tail regarding the features they offer. Based on this, the
shortcomings and challenges of the approaches are discussed.

3.1 Service Selection Approaches
In this section, we review how the various papers tackle

the problem of service selection and discuss the objective of
the approach, the inputs, and the outputs.

Cloud service selection is the process of finding a cloud
provider who can best satisfy a user’s needs [25]. The best
cloud provider should meet all the user’s needs, referred to as
requirements by us, while optimizing one or more objectives
- for example minimizing cost of deployment or maximizing
network throughput. We define the user as the project man-
ager of the corresponding project. This is due to the impact
the cloud service selection may have on the project and the
various trade-offs that need to be factored in. We refer to
the project manager, whenever we mention user from here
on out.

While most of the papers reviewed framed the problem
of service selection as that of selecting a service that opti-
mizes a general set of user selected Quality-of-Service (QoS)
attributes, a few were focused on specific use-cases and tai-
lored their optimization objective around that use-case.

Soltani et al.[22] proposed QuARAM Service Recommender
that adopts a hybrid approach (case-based and MCDM based)
for service selection. On receiving application requirements
and customer preferences, a case-based recommender is em-
ployed to recommend a suitable service using previous de-
ployment information. Use of past deployments can help
accelerate the selection process as only a subset of service
providers have to be considered which were previously rec-
ommended. However, this presents a problem in that if a
prior recommendation was bad for whatever reason (maybe
the services at that time were limited and now better services
are available), the recommendations for similar future ser-
vices are also affected. The authors do try to mitigate this
by having the case-bases updated based on feedback from
users. In the absence of any such previous deployments or if
the precision of case-based recommendation is below a spec-
ified threshold, the problem is modeled as a Multi-Criteria
Decision Making (MCDM) problem and solved to find the
most suitable service. This approach is an answer to RQ1,
but it works best if there are enough cases in the case-base
to make it effective.

Abourezq et al. [1] developed the Cloud Services Re-
search and Selection System (CSRSS) to select cloud ser-
vices that best meet the user’s requirements. Initially, user
selects the criteria the cloud services must meet. These re-
quirements are then categorized into two - fixed (such as
provider’s name, OS, etc.) and variable (price, bandwidth,
etc.). The fixed requirements are used to query a database
and obtain a set of services meeting these requirements. A
combination of algorithms were applied to this result set to
select the cloud services that offer the best compromise in
all the criteria defined by the user. This approach posed a
problem in that the final result set was still quite large. For
instance, from 50,000 cloud services the final result set con-
tained over 2,500 services, meaning the user still had work

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

to do to find the ideal service. Rehioui et al.[21] extended
CSRSS by adding clustering to operate on the result of the
previous step and find a small set of services closest to the
user’s ideal service. They were able to reduce the size of the
resulting set to less than 15 and the user now only had to
compare a few services to arrive at their ideal service.

Tan et al.[23] introduced Probabilistic Hierarchical Re-
finement (ProHR) for optimizing selection of composition of
services. They consider an application as a composition of
micro-services with defined global QoS constraints and use
ProHR to find an optimal composition of services from a
pool of competing similar services. ProHR is divided into
three stages - preprocessing, probabilistic ranking, and hier-
archical refinement. In the preprocessing stage, global QoS
constraints are used to prune all services that fail to satisfy
the global constraints and help reduce the search space. In
the probabilistic ranking stage, the remaining services are
ranked according to a combination of two criteria - their
QoS values individually and as part of a composition. In
the final step, Hierarchical Refinement, an optimal compo-
sition of services is selected from the ranked services using
Mixed Integer Programming (MIP). The result is a compo-
sition of services that maximizes the global QoS value and
meeting all global QoS constraints.

Often times, multiple applications need to be deployed at
multiple locations in order to provide the end-users (here
we mean users using the application) the best possible ex-
perience in terms of minimum response times. However,
locations closer to users may also cost more money due to a
multitude of factors (like data centers in metropolitan cities,
where most users might reside, might be costlier than in
smaller towns). Tupsamudre et al. [24] tackled this problem
(also known as Web Services Location Allocation Problem
or WSLAP) subject to minimizing total deployment cost
and network latency. To this end, they proposed a Divide
and Conquer approach whereby WSLAP is decomposed into
sub-problems of finding location allocation for each applica-
tion and then the solutions are merged to arrive at the final
allocation for all applications. They employ evolutionary al-
gorithms to solve the optimization sub-problems and their
own novel combine algorithm for the merge step. The result
is a configuration which tells the cloud user where to deploy
which application, such that the total deployment cost is
minimal while also minimizing the latency for the majority
of end-users.

Another popular use-case of cloud services is using it for
data storage. And for many, loss of data is unacceptable and
replication is a necessity. However, like with all cloud ser-
vices, money is a big factor and finding storage that meets
requirements and is cost effective is a challenge. Chang et al.
[4] focused on this selection of service providers for replicated
cloud storage. They proposed two probability based algo-
rithms for service selection that maximized availability with
a given budget. They characterized service providers with
two properties - price and failure probability - and used these
to find a selection of services that fits within the user’s bud-
get and that minimized the probability of data loss. Their
approach helps answer RQ1 for a particular type of cloud
service, namely cloud storage. A drawback is that it re-
quires knowledge on failure probability of the services, which
is not always the case as some providers does not provide
this information.

Serverless computing is a cloud computing execution model

where users can execute application logic as functions and all
operational concerns are delegated to the cloud platform. To
implement complex business functionality, individual func-
tions are composed into serverless workflows. Estimating the
cost of these workflows is rather complex, as the response
time and hence the cost of a function depends on its in-
put parameters, which are propagated from prior functions
within the workflow. Eismann et al. [8] proposed a method-
ology to predict the cost of such workflows, taking into ac-
count the influence of input parameters. They modeled the
distribution of a function’s response time and output param-
eters and used it to estimate the cost of the workflows. The
cost estimation then enables users to evaluate and compare
workflow alternatives and optimize existing workflows.

Chard et al. [5] developed a Scalable Cost-Aware Cloud
Infrastructure Management and Provisioning (SCRIMP) tool.
This modular tool focuses on reducing the needed knowledge
to select services, improve the performance based on profil-
ing and predictions. This means that user defined policies
(i.e. preferences of the user) are used together with a profil-
ing module and a prediction module to provision infrastruc-
ture. These profiles are a performance measure for specific
applications on specific cloud instances. The profiles are cre-
ated by an ”offline profiling service” (service does not mean
”cloud service” in this context, but is the term used in the
approach) and augmented by monitored data during deploy-
ment. Based on the profiles and price prediction, a list of
possible cloud instances is filtered. SCRIMP then bids based
upon the price prediction together with the user profiles.
The deployment is monitored and changes to the provision-
ing are made continuously. To summarize the inputs and
outputs of this approach: The application/job and user pref-
erences(e.g., preferences for spot-market instances (see Dy-
namic market prediction6.3), or specific instance types[5])
are needed. The application is then deployed to the chosen
service.

Wang et al. [26] focus on mobile micro clouds and their fu-
ture costs. This approach can be adapted for a more generic
service selection. The focus here lies on changing spatial re-
quirements, i.e. applications need to be migrated to accom-
modate the changed location of the end-user. The input for
this approach is composed of discovered cloud services and
estimated costs for migration of a application. The result de-
pends on the used algorithm, the paper provides an offline
and online algorithm. In the case of the online algorithm
the result is the mapping from application to service for the
next time step. For the offline algorithm, the result is the
mapping for a certain time horizon, which can be changed
accordingly. In both cases this mapping corresponds to the
smallest expected costs.

3.2 Cost Estimation Approach
We found a paper that only provides a solution for RQ2

and not for a service selection. We present this separately.
Aoshima et al. [2] focuses on estimating the costs for de-

ploying applications early in the design phase. Speed of this
estimation is preferred to accuracy. This approach does not
provide service selection. For this rough cost estimation sev-
eral details are needed. The rough computational require-
ments are needed, i.e. how many resources are needed to
handle an event, how many events occur and what other ap-
plications are needed. Resources denote the needed software
and hardware, this depends on which cloud service is used.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Resources can include cloud instances, storage, databases,
analytics and other services which are provided by cloud ser-
vice providers. The costs are modelled as a directed acyclic
graph (DAG) where each node corresponds to an application
and an edge represents a relationship between applications,
while the direction shows the direction of a request. The
graph is used to define the relations between the applica-
tions, but for the cost estimations formulas are used (and
not graph algorithms). Costs which are associated with net-
works i.e. requests between applications are considered in
this approach. The computational requirements to handle
an event are also needed. The user has to select a cloud
provider and use the price list as an input for this approach.
This is not necessarily the most cost efficient provider, but
this is not further considered in this rough pre-design cost
estimation. Additionally non-linear costs can be modelled.
This can be useful when the resource needs depend on the
workload, i.e. for a high workload should another instance
be used compared to a low workload.

3.3 Commercial Tools
The landscape of commercial search and selection tools for

cloud services is rather uninspiring. In 2016, Eisa et al.[7]
did an analysis on the available tools at the time which were
Intel Cloud Finder, Cloudorado[6], and RankCloudz[18]. Of
these, Intel Cloud Finder is not available anymore. Rank-
Cloudz has not been updated since at least 2017, the web-
site is not up to modern web standards (like lack of respon-
sive and mobile friendly UI for example) and only feature
five cloud providers. Cloudorado is online and working and
has improved since the analysis was done. It divides cloud
services into three categories- Cloud Server, Cloud Host-
ing and Cloud Storage. It also has a page tabulating the
various cloud providers and their features. Users can spec-
ify their requirements and a list of providers matching the
requirements is returned, sorted from cheapest to most ex-
pensive. Cloudorado limits its search to under 15 providers
and the price provided was less accurate than in the respec-
tive provider’s pricing calculator. For example, on June 1
2022, the price mentioned in Cloudorado for an EC2 in-
stance (c5x.large instance type, US East region, 4 vCPUs,
8 GB RAM, 17 ECU or EC2 Compute Units, 20 GB SSD
Amazon Elastic Block Storage) was $75.00 per month for
1 year while it was $ 80.11 in AWS pricing calculator[14].
Other commercial tools (CloudHarmony[15], cloudcompar-
isontool[17], CompareCloud[10] to name a few) offered lim-
ited capability and customizability and were also restricted
to the major cloud providers in their comparisons.

In summary, while the cloud services on offer has grown
tremendously in the past decade, commercial tools currently
available for cloud service comparison and selection have
failed to keep pace with it. While existing tools do help
users in some capacity, they are all severely lacking in ca-
pability (like ability to mention fine-grained requirements
and constraints), customizability (like add or remove fea-
tures or providers they prefer) and usability (like modern
mobile friendly and responsive UI).

4. GENERAL FEATURES
Several important features emerged while comparing the

different sources. Some features are distinctive features that
apply in service selection, and several are useful in the con-
text of cost estimation. A few features could also be clas-

sified to be relevant for both topics. We grouped them to-
gether in this section. Table 1 gives a quick glance at the
general features.

4.1 Type of Cloud Service
Cloud services are generally classified into three — Infras-

tructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS). Recently, with the rise of
serverless computing, new paradigms such as Function-as-
a-Service (Faas) and Backend-as-a-service (BaaS) have also
emerged[20].

While most of the papers reviewed does not make any such
distinction in their selection process, few focus specifically
on one of these types. The advantage of focusing on one
is that it allows to make use of characteristics specific to
that class and may help enhance the effectiveness of the
approach. For example, Eismann et al. [8] focuses on FaaS
and specifically takes use of the fact cost models employed
by most FaaS providers is directly related to how long each
invocation of the function takes. We also observe that none
of the approaches focus specifically on PaaS, which could be
an area to focus for future research.

4.2 Monitoring
Monitoring can mean different things in the context of

service selection and cost estimation, we define monitoring
as the application monitoring after deployment to assess the
workload in the virtual machines (VMs). This can be used
as an input for online optimization 4.6 which need to know
current workloads to work. Monitoring in the context of ap-
plication profiling is further discussed in the section Profiling
6.2.

Chard et al. [5] uses monitoring in several steps. It is
mainly used in monitored queues for different cloud providers.
Jobs are submitted into a queue to be deployed. After the
application is deployed, the execution is monitored until the
application is finished. This is used in this approach for VM
scaling 4.4 and online optimization 4.6.

4.3 Multicloud
The services of different cloud providers differ in their

price and quality of service (QoS). Often times, the op-
timal selection involves making use of multiple cloud ser-
vice providers. It is more complicated for an service se-
lection/cost estimation approach to support multiple cloud
providers. This is due to the increased search space, the
problem of comparing different services and differences in
pricing structure.

The technique by Tan et al.[23] allows this composition
of multi-cloud providers for IaaS and SaaS selection, while
Eismann et al. [8] and Chang et al. [4] enable this for server-
less cloud functions and cloud storage providers respectively.
Chard et al.[5] support AWS, Globus galaxies and Cloud
Kotta the support for other commercial/academic cloud plat-
forms will be added. Aoshima et al. [2] calculates rough cost
estimates and does only need the costs of different cloud
providers to work in a multi cloud context.

4.4 VM scaling
As an application usage can change overtime, its needs

and requirements can change as well. Due to these changes
resources that were optimal at the beginning may not be suf-
ficient and additional resources may be required. The scal-

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Table 1: General Features
Paper Type of Cloud Service Monitoring Multicloud VM Scaling Network Optimization Online Optimization

Soltani et al.[22] General Yes Yes No Yes No
Tan et al.[23] IaaS/SaaS No Yes No Yes No

Rehioui et al.[21] General No No No No No
Tupsamudre et al. [24] General No Yes No Yes No

Chang et al. [4] IaaS No Yes No No No
Eismann et al. [8] FaaS No Yes No No No
Chard et al. [5] IaaS Yes Yes Yes No Yes
Wang et al. [26] General No No No Yes No

Aoshima et al. [2] General No Yes No Yes No

ing of resources to accommodate the new, changing require-
ments can be divided into horizontal and vertical scaling.
Horizontal scaling means changing the number of virtual
machines and vertical scaling means changing of the virtual
machines size. This change can mean that the number of
VMs/VM size is increased or decreased.

Chard et al. [5] utilizes Profiling 6.2 and Monitoring 4.2
to continuously update application profiles. These profiles
determine the needed resources for this application. This
has the advantage of heterogeneous horizontal scaling, i.e.
the instances for an application are not necessarily of the
same instance type.

4.5 Network optimization
Network optimization is a closely linked to Quality of Ser-

vice (QoS) optimization. It is mainly done to reduce the
latency for end-users of the applications and reduce the re-
quest time between applications. End-users refer to the peo-
ple which use the applications which are deployed in the
cloud. Reduced latency can lead to increased satisfaction
for users. This leads to a need to model the communica-
tion between applications. Aoshima et al. [2] model the
requests an application sends to another application, addi-
tionally the needed bandwidth and CPU resources to handle
the requests are modelled. This is used as a rough estimate
for the resulting costs of the network communication of the
deployed applications.

4.6 Online optimization
The approaches can be categorized broadly into two dif-

ferent groups, based on the point in time when the selec-
tion/estimation is conducted. Some approaches conduct the
selection/estimation once and select services based on the
results (offline algorithm). Other approaches conduct a con-
tinuous selection/estimation, we call this online optimiza-
tion or online algorithms. They usually are computationally
more expensive regarding the selection/estimation but can
react to changing demand, market conditions or other rele-
vant changes.

Chard et al. [5] incorporates a queue based service selec-
tion. This approach can work with applications that have
limited execution time and applications that are running
continuously. Request to deploy Applications can arrive at
anytime. This necessitates an online optimization to select
services for new arriving applications. Additionally service
selection and cost estimation methods are used for VM scal-
ing.

5. SERVICE SELECTION FEATURES
We enumerate several features which we believe service

selection approaches should strive to provide. We discuss
what we mean by these features, why they need to be a part
of any approach and the approaches presented in literature
that provide these features. A quick overview is provided in
Table 2, excluding approaches that do not deal with service
selection.

5.1 Service Selection
The result of service selection can be put into two cate-

gories — a single candidate chosen by the selection process
or a list of viable candidates from which the user can select
the one they see fit. In either case, the selected service or
service(s) meets all the requirements set forth by the user
and it is up to the user to determine which approach they
want to use.

Solutions proposed by Soltani et al.[22], Tan et al.[23],
Tupsamudre et al. [24] and Chang et al. [4] fall into the first
category. Solution of Abourezq et al. [1] and its extension
by Rehioui et al.[21] offer the user a set of service providers
that is as close to the ideal service needed by the user but
leave the final decision to the user itself.

5.2 Deployment
We mentioned already how manually selecting services

can become tedious, especially as the number of services
increases. Deploying to the selected service manually again
poses this same problem, and having the selection service
automatically do the deployment will go a long way in solv-
ing this problem.

Of all the papers reviewed, only the QuARAM Framework
by Soltani et al.[22] has the capability to take the result of
the service selection process and deploy to the selected ser-
vice. In QuARAM, the recommended provider configuration
is passed onto a deployment engine which takes care of the
deployment. All other papers only return the result of the
selection process back to the user and the obligation is on
the user to then deploy their applications.

5.3 Incorporates User Feedback
User feedback on the results of service selection, such as

whether the selected service matched the expectations of the
user or whether the quality of service was not as advertised
by the provider etc., can provide valuable insights. Incorpo-
rating such feedback into the service selection can improve
the results for future queries.

Soltani et al.[22] were able to incorporate user feedback to
their case based recommender and in doing so were able to
improve the quality of future recommendations as measured
by their experiments.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Table 2: Service Selection Features
Paper Service Selection Deployment Incorporates User Feedback Service Composition Performance Optimization

Soltani et al.[22] Yes Yes Yes Yes Yes
Tan et al.[23] Yes No No Yes Yes

Rehioui et al.[21] Yes No No No No
Tupsamudre et al. [24] Yes No No Yes Yes

Chang et al. [4] Yes No No No No
Eismann et al. [8] Yes No No Yes No
Chard et al. [5] Yes Yes No No No
Wang et al. [26] Yes No No No No

Aoshima et al. [2] No No No No No

5.4 Service Composition
We define service composition to mean an application

(also referred to as a composite service) composed of multi-
ple services (called component services) which communicate
with each other to facilitate functionality. Many compa-
nies now employ this type of architecture instead of one big
monolithic application (for example at Netflix [9], Uber[12],
Spotify[11] etc.). Composite service selection aims to find
suitable cloud services for such composition of component
services. For example, the user may not care about the la-
tency in communication between the component services so
long as the total end-to-end latency of the composite service
remains under the specified limit. This may present an op-
portunity to select cloud services which may not have the
best latency but has other factors (for example cost) that
make it a better choice. The selection process should then
take these factors into consideration.

Tan et al.[23] solves this problem by defining global QoS
constraints for the service composition, using their method-
ology to rank services for each component service that sat-
isfy the constraints and then finding an optimal composition
from these ranked services. Soltani et al.[22] used their case-
based recommender to identify an optimal composition from
prior deployments. If the case-based recommendation fails
(as can happen if there are no similar cases in the case-base),
suitable cloud services are found for each component service
separately and a consolidator is used to find the optimal
composition.

5.5 Performance Optimization
Regardless of the different optimization objectives and

use-cases, service selection is a search problem. The search
space gets bigger each year with the number of available
cloud services growing. A bigger search space increases the
computational effort. Combine that with the various choices
for regions, CPU, network bandwidth, storage and memory
configurations, which leads to an even bigger search space.
For example, as of June 2022 in Microsoft Azure[19], there
are over 50 VM instance types and over 40 regions. The
problem is more pronounced in the case of service compo-
sition. A composite service which is made up of 10 com-
ponent services and each of these is deployed on one of the
2000 options (50 types × 40 regions). This results in 200010

possible options and exploring all these is often impractical.
In this case the solution space is already big, but if we con-
sider other cloud service providers, scaling of VM instances
or other features that are considered in this paper, the solu-
tion space gets even bigger. Therefore, different techniques
and optimizations need to be employed, for example to re-
duce the search space, and ensure that service selection is
performant.

Use of the case-based recommender in Soltani et al.[22]’s
approach help speed up the selection process since all avail-
able services are not searched, but rather a subset of services
which were previously recommended for similar applications.
Tan et al.[23] cut down on the search space in their pre-
processing stage by eliminating all services that cannot sat-
isfy the global constraint as well as removing all dominated
services (for a service to be dominated means there exists
another service which is better or equal in all aspects than
this service, this also called ”Skyline operator”). Similarly
Abourezq et al. [1] use the Skyline[3] method to cut-down
on the possible solutions before any optimization algorithms
are applied.

6. COST ESTIMATION FEATURES
Cost estimation approaches can be characterized by sev-

eral features. These are mainly concerned with modelling
capabilities and can depend on other more general features.
We use the term cost as the monetary cost a user of cloud
services has to pay. This includes the costs related to data
processing i.e. the instance cost and the data transmission
costs i.e. API calls to applications. The costs for the data
processing includes the setup of the application and the ac-
tual workload of the application. The cost for data process-
ing can be higher than necessary, if an instance is oversized
compared to the actual need of the application. The papers
and the cost estimation features that they offer is summa-
rized in Table 3.

6.1 Cost estimation
Cost estimation is needed to know the costs of certain

deployments or to have estimations which are used for the
service selection.

Eismann et al. [8] worked on a methodology to estimate
the cost of serverless workflows. One of the factors in decid-
ing the cost of a serverless function is its execution duration
which is directly dependent on the function’s input. For
example, a function which compresses an image will have
longer execution time for a larger image. And in a workflow,
the input of one function is the output of another. The ap-
proach in this paper involved predicting the distribution of
a function’s response time and output parameters based on
it’s input parameters and then using that to model the cost
of various workflows.

Chard et al. [5] use an online optimization approach. The
cost estimation works by approximating resource require-
ments of the application (see Application Profiling 6.2). All
candidate instances are combined with a cost function, this
depends on the dynamic market prediction (See Dynamic
market prediction 6.3), the advertised/negotiated prices and

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Table 3: Cost Estimation Features
Paper Cost estimation Application Profiling Dynamic Market Prediction Non-linear Cost Modeling

Soltani et al.[22] No No No No
Tan et al.[23] No No No No

Rehioui et al.[21] No No No No
Tupsamudre et al. [24] No No No No

Chang et al. [4] No No No No
Eismann et al. [8] Yes No No No
Chard et al. [5] Yes Yes Yes No
Wang et al. [26] Yes No No No

Aoshima et al. [2] Yes No No Yes

the preferences of the user. These preferences can include:
preference for spot market instances, a specific instance type,
or other preferences. Suitable instances are selected with
their associated costs, with the instance cost and the ex-
pected duration the costs can be calculated. Wang et al.
[26] focus on cost estimation with applications that often
need to migrate (to another location, not necessary another
cloud provider). This migration happens to accommodate
spatial requirements of the end-user, i.e. the people which
use the application. The costs are divided into local costs
and into migration costs. The local costs include the costs
for data transmission and data processing, they depend on
the end-user location, network condition and instance cost.
The migration cost denotes the cost associated with the mi-
gration of an application to a service at another location.
For both costs the information are gathered directly from
the cloud provider or are based on historical data.

6.2 Application profiling
For service selection and cost estimation, it is essential

to have an estimation for the resources which are needed.
These estimations are especially important for the cost es-
timations, as the resource type and quantity determines a
substantial part of the cost.

There are several methods to determine the resource needs
for an application. User estimations are often incorporated,
but are often inaccurate [5]. Cloud service providers de-
scribe resources in different formats, which makes it harder
to compare them [5]. The performance of an application can
depend on the specific resources, which makes it even harder
to know the resource demands. Another method which was
found in the literature is application profiling. This is based
on running the application and measuring performance and
resource utilization. These resource requirements are sum-
marized in a profile. We define a profile the same as Chard
et al. [5]: ”[...] a concise description of the performance
and CPU, memory, network, and disk requirements of an
application under different environments and scenarios.”

Only the approach from Chard et al. [5] incorporates such
a profiling. This approach focuses on the provisioning of ap-
plications, therefore only virtual machine (VM) instances
are considered in the profiling. The application profiling is
conducted in two steps: 1. An offline step where the applica-
tion is deployed on several instances to estimate the resource
requirements.2. The application is continuously monitored
to improve the estimation (profile).

6.3 Dynamic market prediction
Market prices are depended on various factors. There are

the advertised prices per instance and unit of time for the

different cloud providers. These can be divided into ”pay
as you go” and ”reserved” instances. Reserved instances are
cheaper, but they are only available with long term contracts
(usually one year or more) These prices and availability are
guaranteed. Cloud providers seek to increase the utilization
of their cloud and incentives the usage of unused instances
with lower prices, so-called spot prices or dynamic market
prices. These instances are bid upon by various users and
have lower prices, but the actual usage can not be guaran-
teed. This happens if the bid is not won. Another disadvan-
tage is that the instance can be withdrawn due to changes
in the market, i.e. the usage of the base price instances
increases. Service selection and cost estimation approaches
can incorporate the capability to handle/use these dynamic
prices to lower the costs for the user.

Chard et al. [5] use an approach which sets a minimum
bid price which provides a probabilistic guarantee that the
bid is won. The is done by predicting the spot market price
of the instance and more that this prediction. This system
is based on a time series of upper bounds of market prices.
This is continuously updated for increased accuracy.

6.4 Non Linear Costs
Costs are often modelled on the assumption of linear scal-

ing, i.e. for an increase in the workload of 50 % roughly 50
% more resources of the same type are needed. The same re-
source type should cost the same when more is needed. This
is not the case when non linear workloads are introduced.
These non linear workloads require different resources de-
pending on the workload. An application could be optimized
in such a way that for low usage a CPU is utilized and with
increased utilization the workload is shifted towards a GPU.
This leads to a change in type of instances that is needed
depending on the workload of the application.

Aoshima et al. [2] provide this capability with a threshold
based non-linear cost modeling. For this, changes in their
cost matrix are made.

7. DISCUSSION
The goal of this paper was to give a systematic literature

review to present the state of the art regarding the research
questions:

• RQ1: What approaches exist for the selection of cloud
services?

• RQ2: What approaches exist to estimate the future
cost of cloud services?

Based on this literature review, 9 relevant papers were
identified which use very diverse approaches to tackle ser-

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

vice selection/cost estimation. Below we present issues we
identified in the approaches we presented in this paper and
then we discuss the limitations of our paper.

7.1 Challenges, Drawbacks, and Shortcomings
of current approaches

A big drawback of all the existing approaches is the lack
of clarity on where the data for analysis comes from. All the
approaches discussed make extensive use of data about the
QoS attributes of the various cloud services like the latency,
throughput, guaranteed up-time etc. They assume the avail-
ability of said data for the selection process, however this
may not be the case all the time for all the services. Simi-
larly, there is no single source where one can go and get a list
of all available services. This is an issue in service discovery
and selection - a lack of a global service registry that is up-
to-date on information like all the available cloud providers,
their features and characteristics. Owing to these challenges
in getting data, some papers (like Rehioui et al.[21]) resorted
to using dummy data for their analysis.

Another aspect almost all the papers fail to incorporate
are the non-quantifiable requirements. For example, certi-
fications and compliance such as track record, trust wor-
thiness, privacy of customer data and customer service are
non-measurable features of the service provider that may
have a big impact in whether a user wants to choose a par-
ticular service. However, current approaches predominantly
focus on quantifiable aspects when selecting services.

Most of the papers on service selection employ offline op-
timizations. These can not react to changing requirements.
With an offline optimization the service selected at the be-
ginning may be inadequate to satisfy the updated require-
ments. More approaches should implement online optimiza-
tions to tackle these problems. Additionally, as new cloud
services are introduced, they may be better suited that pre-
vious services. An approach should discover these and con-
sider it for the future service selection.

The approaches that are considered in this paper also did
not utilize ”reserved instances”, i.e. cheaper instances but
with a long term commitment. This is a field where cost
reductions could be made. This needs to be explored further.

It can be seen that no approach has an implementation for
all identified features. Most papers focus just on service se-
lection or cost estimation and do not implement the other.
Some features are rarely observed, these include monitor-
ing, VM scaling, online optimization, deployment, incorpo-
rating user feedback for future improvements, service com-
position, Cost estimation, Application Profiling, Dynamic
market prediction and Non linear cost modelling. This ob-
servation does not mean that an approach has to implement
all features to be a viable approach. Some features have
only niche usages and are less important than other fea-
tures. Examples for this are ”Incorporates User Feedback”
and ”Non-linear Cost Modeling”, especially the non-linear
cost modeling is only useful if the user wants different in-
stance types for their respective workload.

Future research should therefore focus on utilizing VM
scaling, online optimization, service composition in a multi
cloud environment. Another goal should be to incorporate
dynamic market pricing into the service selection, combined
with the capability of non linear cost modeling.

7.2 Limitations
These findings are based upon a limited number of key-

words and digital libraries. This study is not a comprehen-
sive overview of all relevant papers on this topic. Other
relevant paper can emerge with other keywords and differ-
ent sources. The exclusion criteria EC1, EC2 (See Filter
2.2) could have filtered out papers which focused on the re-
spective topic, while implementing a more general approach
to service selection or cost estimation. While we tried to
appeal to a wide audience, some content may still be at a
deeper level where some prior knowledge might be neces-
sary to understand the text. Conversely, some parts of the
paper might be too high-level and may have needed deeper
explanations.

8. SUMMARY
In this paper, we provided a systematic literature review

based upon the research questions RQ1 and RQ2. We men-
tioned several reasons why a systematic and automated ap-
proach to service selection is needed. We found several ap-
proaches for service selection and cost estimation. We identi-
fied several features any service selection or cost estimation
approach should have, explained why these features were
important and gave an overview of how the reviewed ap-
proaches provided some of these features. We found that
no approach implemented all the identified features. This
should be possible, but is likely impractical. We also docu-
mented the various short comings of these approaches. The
number of approaches that provide an easy to use and pow-
erful real time solution is lacking. Many features have a
trade-off between accuracy, capabilities and computational
complexity/speed. An approach should be selected depend-
ing on the preference of the user.

9. REFERENCES
[1] M. Abourezq and A. Idrissi. A cloud services research

and selection system. In 2014 International
Conference on Multimedia Computing and Systems
(ICMCS), pages 1195–1199, 2014.

[2] T. Aoshima and K. Yoshida. Pre-Design Stage Cost
Estimation for Cloud Services. Proceedings - 2020
IEEE 44th Annual Computers, Software, and
Applications Conference, COMPSAC 2020, pages
61–66, 2020.

[3] S. Borzsony, D. Kossmann, and K. Stocker. The
skyline operator. In Proceedings 17th International
Conference on Data Engineering, pages 421–430, 2001.

[4] C.-W. Chang, P. Liu, and J.-J. Wu. Probability-based
cloud storage providers selection algorithms with
maximum availability. In 2012 41st International
Conference on Parallel Processing, pages 199–208,
2012.

[5] R. Chard, K. Chard, R. Wolski, R. Madduri, B. Ng,
K. Bubendorfer, and I. Foster. Cost-aware cloud
profiling, prediction, and provisioning as a service.
IEEE Cloud Computing, 4:48–59, 2017.

[6] Cloudorado. Cloud Computing Comparison Engine.
https://www.cloudorado.com/cloud_server_

comparison.jsp. Retrieved June 1, 2022.

[7] M. Eisa, M. Younas, K. Basu, and H. Zhu. Trends and
directions in cloud service selection. In 2016 IEEE

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

https://www.cloudorado.com/cloud_server_comparison.jsp
https://www.cloudorado.com/cloud_server_comparison.jsp

Symposium on Service-Oriented System Engineering
(SOSE), pages 423–432, 2016.

[8] S. Eismann, J. Grohmann, E. van Eyk, N. Herbst, and
S. Kounev. Predicting the costs of serverless
workflows. In Proceedings of the ACM/SPEC
International Conference on Performance
Engineering, ICPE ’20, page 265–276, New York, NY,
USA, 2020. Association for Computing Machinery.

[9] J. Evans. Mastering Chaos: A Netflix Guide to
Microservices.
https://www.infoq.com/presentations/netflix-

chaos-microservices/, 2016. Retrieved June 1, 2022.

[10] I. F. Public Cloud Services Comparison.
https://comparecloud.in/, 2022. Retrieved June 1,
2022.

[11] K. Goldsmith. Microservices at Spotify.
https://gotocon.com/berlin-

2015/presentation/Microservices%20@%20Spotify,
2015. Retrieved June 1, 2022.

[12] E. Haddad.
https://eng.uber.com/service-oriented-architecture/.
https://eng.uber.com/service-oriented-

architecture/, 2015. Retrieved June 1, 2022.

[13] A. W. S. Inc. Amazon EC2 Instance Types - Amazon
Web Services.
https://aws.amazon.com/ec2/instance-types/,
2022. Retrieved June 1, 2022.

[14] A. W. S. Inc. Amazon Pricing Calculator.
https://calculator.aws/#/createCalculator/EC2,
2022. Retrieved June 1, 2022.

[15] C. Inc. CloudSquare Provider Directory.
https://cloudharmony.com/cloudsquare/. Retrieved
June 1, 2022.

[16] B. A. Kitchenham. Systematic review in software
engineering: Where we are and where we should be
going. In Proceedings of the 2nd International
Workshop on Evidential Assessment of Software
Technologies, EAST ’12, page 1–2, New York, NY,
USA, 2012. Association for Computing Machinery.

[17] Z. Live. Cloud Comparison Tool.
https://cloudcomparisontool.com/. Retrieved June
1, 2022.

[18] R. T. LLP. RankCloudz Online - Cloud Comparison
and Evaluation.
https://www.rightcloudz.com/RankCloudzOnline/,
2017. Retrieved June 1, 2022.

[19] Microsoft. Azure Products by Region.
https://azure.microsoft.com/en-us/global-

infrastructure/services/?products=virtual-

machines®ions=all, 2022. Retrieved June 1, 2022.

[20] Microsoft. What is Cloud Computing?
https://azure.microsoft.com/en-

us/overview/what-is-cloud-computing, 2022.
Retrieved June 1, 2022.

[21] H. Rehioui, A. Idrissi, and M. Abourezq. The research
and selection of ideal cloud services using clustering
techniques: Track: Big data, data mining, cloud
computing and remote sensing. In Proceedings of the
International Conference on Big Data and Advanced
Wireless Technologies, BDAW ’16, New York, NY,
USA, 2016. Association for Computing Machinery.

[22] S. Soltani, K. Elgazzar, and P. Martin. Quaram

service recommender: A platform for iaas service
selection. In Proceedings of the 9th International
Conference on Utility and Cloud Computing, UCC ’16,
page 422–425, New York, NY, USA, 2016. Association
for Computing Machinery.

[23] T. H. Tan, M. Chen, J. Sun, Y. Liu, E. André,
Y. Xue, and J. S. Dong. Optimizing selection of
competing services with probabilistic hierarchical
refinement. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, page
85–95, New York, NY, USA, 2016. Association for
Computing Machinery.

[24] H. Tupsamudre, S. Saurabh, A. Ramamurthy,
M. Gharote, and S. Lodha. A divide and conquer
approach for web services location allocation problem.
In Proceedings of the Genetic and Evolutionary
Computation Conference Companion, GECCO ’21,
page 1346–1354, New York, NY, USA, 2021.
Association for Computing Machinery.

[25] M. Vakili, N. Jahangiri, and M. Sharifi. Cloud service
selection using cloud service brokers: approaches and
challenges. Frontiers of Computer Science, 13:599–617,
2019.

[26] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer,
and K. K. Leung. Dynamic service placement for
mobile micro-clouds with predicted future costs. IEEE
Transactions on Parallel and Distributed Systems,
28(4):1002–1016, 2017.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

https://www.infoq.com/presentations/netflix-chaos-microservices/
https://www.infoq.com/presentations/netflix-chaos-microservices/
https://comparecloud.in/
https://gotocon.com/berlin-2015/presentation/Microservices%20@%20Spotify
https://gotocon.com/berlin-2015/presentation/Microservices%20@%20Spotify
https://eng.uber.com/service-oriented-architecture/
https://eng.uber.com/service-oriented-architecture/
https://aws.amazon.com/ec2/instance-types/
https://calculator.aws/#/createCalculator/EC2
https://cloudharmony.com/cloudsquare/
https://cloudcomparisontool.com/
https://www.rightcloudz.com/RankCloudzOnline/
https://azure.microsoft.com/en-us/global-infrastructure/services/?products=virtual-machines®ions=all
https://azure.microsoft.com/en-us/global-infrastructure/services/?products=virtual-machines®ions=all
https://azure.microsoft.com/en-us/global-infrastructure/services/?products=virtual-machines®ions=all
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing

Identifying Deployment Patterns in MLOps Platforms

Keven Hu
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

keven.hu@rwth-aachen.de

Lennart Holzenkamp
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

lennart.holzenkamp@rwth-aachen.de

ABSTRACT
Machine Learning (ML) continuously becomes more used
and thus an efficient and standardized set of development
and deployment practices and concepts in the form of MLOps
is sought after. MLOps is not yet as standardized as gen-
eral DevOps. Hence, many organizations struggle to deploy
their machine learning models to production.

Therefore, we analyze the deployment process of machine
learning models which are specified in the documentation
of three cloud providers that offer machine learning tools.
Their differences and similarities in the deployment process
are highlighted and compared. The possible options to use
a deployed model are also explored.

Among all three different machine learning platforms that
are analyzed regarding their deployment process, three com-
mon components needed for deployment are found. All plat-
forms deploy to REST-API endpoints. Only one platform
requires additional components for the deployment of ma-
chine learning models. Therefore, a general deployment pat-
tern of all three tools can be specified.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software Engi-
neering]: Management—deployment, MLOps,
Machine Learning, Machine Learning Platforms

1. INTRODUCTION
Machine Learning is becoming increasingly widespread in

a broad variety of fields. From personalized media recom-
mendations to conversational AI agents, machine learning
seems to become even more important in the future for re-
searchers as well as companies[39] [33]. Moreover, with this
increasing set of potential applications for machine learning,
the financial and ethical cost of potential accidents rises too.
Whether it is about setting the ticket price on a travelling
platform too low or too high or showing only engaging media

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2022 RWTH Aachen University, Germany.

like conspiracy theories or hate speech to social media users,
these accidents incur an unwanted cost[41] [14]. Therefore,
researchers and companies are interested in reducing the
risks of such accidents by ensuring a safe workflow during
the development and deployment of machine learning mod-
els. Therefore MLOps practices support developers. At the
same time, the management and life cycle of machine learn-
ing models should be shorter and more efficient for higher
profitability [41]. Additionally, many companies struggle to
bring their machine learning models to production which
can be improved a lot with MLOps [16][17], especially, by
following deployment standards which may be retrieved from
patterns among the current leading platforms.

To reach a shorter, safer and more efficient life cycle and
management of machine learning models the concept of MLOps
has been invented. Machine Learning Operations (MLOps)
describes a set of practices to develop, analyze, maintain, de-
ploy and publish machine learning solutions including data-
generating, data cleansing and data labelling. The term
MLOps is derived from DevOps (Development & Opera-
tions) but is not yet as standardized as DevOps is.

MLOps uses well-known concepts of DevOps like Contin-
uous Integration and Continuous Delivery while also intro-
ducing new ones like Continuous Training in order to meet
the specific requirements of machine learning development
and management[41].

Many cloud providers offer MLOps platforms for develop-
ing machine learning solutions like Azure Machine Learning
or Amazon SageMaker. They offer the ability to gather data,
monitor deployed models or train models on a platform.
Therefore, a lot of processes along the machine learning life
cycle have specifications within these platforms according to
the platform holders. This includes the deployment process
of machine learning models, which components are neces-
sary for the deployment and how inference requests can be
sent[31] [1].

Therefore, four research questions arise:

• R1: What is the process for machine learning model
deployment on single MLOps-platforms?

• R2: How do the processes differ between platforms and
what do they have in common?

• R3: What model format is needed for deployment?

• R4: What knowledge do developers need in order to
deploy a model on the platform?

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

2. BACKGROUND

Machine Learning.
A description would be to call machine learning the de-

signing of accurate and efficient inference and prediction al-
gorithms which use training data samples and are based on
concepts of computer science, statistics, probability and op-
timization. These algorithms are applied to various learning
problems such as classification, which assigns categories to
objects, ranking, which orders objects according to some
criterion, or clustering, which partitions objects into homo-
geneous regions, for example. The aforementioned learn-
ing problems abstract real-world problems like classification,
which can be used for speech recognition, ranking, for order-
ing web search results, or clustering, for identifying commu-
nities in social networks.

An artefact called a model, which is trained on training
samples, can evaluate new data in processes called predic-
tion and inferencing. The model can make inferences online,
sometimes also called real-time, or in batches. An online
model receives data points in real-time which have to be
evaluated one at a time while a batch model receives large
data sets of data points for evaluation at once[32].

DevOps.
DevOps can be used in highly iterative software devel-

opment processes such as Scrum or Extreme Programming
and offers the realization of three concepts: Continuous Inte-
gration, Continuous Delivery and Continuous Deployment.
Continuous Integration ensures that after each iteration a
ready-to-run application is available which might not have
been tested yet. Furthermore, Continuous Delivery offers a
candidate for testing and then release after each iteration.
Finally, Continuous Deployment ensures that due to Con-
tinuous Integration and Continuous Delivery a tested appli-
cation is deployed. These concepts help realize automation,
for example, in testing[18].

MLOps.
MLOps is about standardizing and shortening the life cy-

cle and its management of machine learning models. The life
cycle of a machine learning model consists of the following
steps:

• Defining the goal and purpose of the machine learning
model,

• gathering data and developing and training the model,

• preparing the model for production,

• deploying the model to production and monitoring the
model for feedback used in future iterations.

Automation of several life cycle steps plays a big part in
shortening and standardizing the life cycle. Thus, Continu-
ous Integration and Continuous Delivery from DevOps are
used, which are necessary for the software-related challenge
of automating, for example, the testing of machine learn-
ing models[41]. Furthermore, Continuous Training is a new
concept from MLOps due to the unique training require-
ments of machine learning models. It ensures that a model
can always be automatically trained on newly obtained data
by requiring some sort of data validation and model valida-
tion[25].

blue/green deployment.
During the deployment of services, that do not tolerate

downtime, it is crucial to have a technique that enables rapid
switching between software versions. Therefore one might
deploy the new software version to a different location (e.g.,
different IP address, different port number). Once the new
deployment is ready, the routing can be redefined so that
the old access point (e.g., IP address, port number) is used
for the new deployment. Some tools offer gradual traffic
shifting between deployments.

3. METHODOLOGY
The deployment processes of three ML platforms, Mi-

crosoft Azure Machine Learning, Amazon SageMaker and
Google Cloud Vertex AI, are compared. In the end, the
differences and similarities of the deployment processes are
analyzed. If there is a common pattern, it is synthesized
and described.

The following parts of the deployment processes and use of
the deployed services are analyzed and later compared: Ex-
pected structure of the given machine learning model which
should be deployed, platform defined steps and components
of the deployment process and the techniques how to access
a deployed model as a client.

For this research, the documentation of the selected plat-
forms is considered and the deployment part, as described
before, is examined for further analysis and comparisons.

Microsoft Azure Machine Learning, Amazon SageMaker
and Google Cloud Vertex AI are selected because they are,
including IBM Watson Studio, in the so-called Leaders quad-
rant of the Gartner Magic Quadrants 2021 for Cloud AI
Developer Services[30].

4. ANALYSIS

4.1 Azure Machine Learning
Azure Machine Learning is Microsoft’s platform and ser-

vice for the life cycle of a machine learning project. In or-
der to understand the deployment of a machine learning
model on Azure Machine Learning, some terms have to be
explained.

4.1.1 Explanation of terms

• An endpoint itself can have multiple deployments. A
deployment is a specification of several resources and
attributes that are necessary for hosting a model on
a compute target. The attributes vary depending on
the type of model and inferencing. The data traffic
from inferencing can be divided in an endpoint using
the concept blue/green deployment, which is the con-
cept of diverting traffic between a blue deployment and
a green deployment in order to change deployments
gradually or to spread the compute load. This is pos-
sible since an endpoint can have multiple deployments.

• A scoring script, also called entry script, is needed. It
receives the input data for inferencing, passes it to the
deployed model and then returns the response of the
model.

• An environment for the model which specifies what
docker image or operating system is used, for example,

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

is needed. The docker image mentioned earlier is a
container which ensures that software runs the same
regardless of the computing system.

• A compute target is the system on which the machine
learning model is hosted on. Some examples are Azure
Kubernetes Service, Azure Container Instances or a
local machine[36].

4.1.2 Deployment process (R1, R3, R4)
Azure Machine Learning can deploy various types of ma-

chine learning models, for example, for batch or online infer-
ence. In the following, the deployment to online and batch
endpoints will be summarized as shown in figure 1.

The deployment of a model with an online endpoint on
Azure CLI requires knowledge in Python, YAML and Azure
Command Line Interface itself, also known as Azure CLI.
Azure CLI and YAML do not have to be used if the deploy-
ment of the model is done on the Azure Machine Learning
studio, which is an online portal for creating and managing
machine learning projects, with a user interface.

• Firstly, Azure CLI v2 and its machine learning exten-
sion, an Azure resource group and an Azure workspace
have to be already set up. An online endpoint for in-
ferencing with its deployments is also needed.

• The next step is to register the model and environment
separately using Azure CLI.

• In order to be able to send inference requests to the
model, a scoring script has to be available.

• With the components consisting of a registered model,
registered environment, an endpoint with at least one
deployment and a scoring script, the model can be de-
ployed. The deployment requires the user to create
the endpoint and its deployments in the cloud by us-
ing Azure CLI.

• An inference can be requested by sending the request
data through an Azure CLI command or by using a
REST client.

If Azure Machine Learning studio is used, the model can
be uploaded and registered from the studio. Furthermore,
during the deployment process Azure Machine Learning Stu-
dio uses a setup wizard which creates an endpoint and the
deployments. The environment and scoring script have to
be uploaded in the following steps of the wizard[36].

The deployment of a batch inferencing model differs from
an online inferencing model only in an additional step where
the compute target, which is an Azure Machine Learning
compute cluster, has to be created beforehand and in the
content of the files[38].

The machine learning model and environment do not re-
quire to change to a format unique to Azure ML. The output
of training jobs, such as the model directory which is out-
put by MLflow or a scikit model in pkl format, can be used
without any changes[37] [35].

Developers require knowledge about Azure CLI, YAML
schema of endpoints, deployment and environment if the
model is not deployed on Azure Machine Learning studio.

Furthermore, a Python scoring script with an init() method
and a run() method are needed. The run() method receives
input data, passes the data to the model for inference and
returns the inference result. In the init() method any initial-
ization tasks such as caching the model into memory, can be
executed.[36].

4.1.3 Explaining the process for machine learning
model deployment on Azure Machine Learning

Based on the deployment process of models on Azure Ma-
chine Learning regardless of inference and compute target
type five core components can be inferred as part of a struc-
ture as shown in figure 2. The components are the endpoint,
the deployments of the endpoint, the scoring script, the ma-
chine learning model and the environment.

The following figure 2 describes only the flow of the infer-
ence request and does not reflect the authentication at the
endpoint for example.

• At first, the inference request reaches the endpoint.

• The endpoint divides the traffic between all deploy-
ments according to its specification if there is more
than one deployment.

• In the next step, the scoring script receives the infer-
ence request and forwards the to be inferenced data to
the model.

• The model is running in the environment on the com-
pute target and offers the scoring script a model re-
sponse which is returned to the endpoint.

• Finally, the endpoint sends the model response to the
sender of the inference request.

4.2 Amazon SageMaker
Amazon SageMaker is Amazon’s platform and service for

managing machine learning models including their deploy-
ment. The deployment of machine learning models on Ama-
zon SageMaker is divided into four types of inference.

• Real-time inference like described in the Background.

• Serverless inference automatically manages and scales
compute resources which is recommended for work-
loads that have idle periods between high traffic pe-
riods.[12]

• Asynchronous Inference is recommended for inference
requests which have high data sizes up to one GB. The
requests are queued and processed in an asynchronous
manner which is possible with automatic scaling and
management of computing resources.[2]

• Batch transform uses a machine learning model and a
dataset to create a transform job which uses a real-
time endpoint for batch inferencing[34].

4.2.1 Deployment process (R1, R3, R4)
Amazon SageMaker offers several options for the deploy-

ment of machine learning models. The SageMaker console
has a user interface for an interactive deployment. It is also
possible to use AWS CLI or AWS SDK’s like Boto3 for de-
ployment using code[6]. The deployment process (figure 3)
is very similar between all inference types. It consists of four
steps if the SageMaker Python SDK is used.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Figure 1: Graphical representation of the deployment process on Azure Machine Learning

Figure 2: Graphical representation of the deployment of machine learning models in Azure Machine Learning

• At first the AWS region and SageMaker role, which
defines which permissions the user gives SageMaker,
have to be specified.

• After that, the container image has to be retrieved and
the trained model has to be provided.

• Then a model object has to be created.

• Finally, the endpoint has to be created and the model
has to be deployed[6][4][5].

• Requesting an inference requires a SageMaker Runtime
client and SageMaker API has to be used[9].

Another concept which can be used for deployment is the
blue/green deployment. It enables a smooth switch between
deployments of, for example, different versions of a model.
In order to make use of the concept, the endpoint can be
updated[3]. The interactive approach in the Amazon Sage-
Maker console offers a wizard to execute the previously men-
tioned steps[7].

SageMaker relies on Docker containers for the deployment
of machine learning models and thus any model developed
in a supported framework on SageMaker or with a pre-built
Docker container has a fitting format and can be deployed.
In the case of models which are serialized in JSON or pkl
or without any Docker container, a container can be created
with the ezsmdeploy SDK. It uses the Amazon SageMaker
Python SDK and requires the model files, a python script
for inference and prediction and a file which lists dependen-
cies[40][8][15].

Thus, a developer requires knowledge of the Amazon Sage-
Maker Python SDK, SageMaker API, Python and ezsmde-
ploy SDK or Docker containers for the deployment of ma-
chine learning models.

4.2.2 Explaining the process for machine learning
model deployment on Amazon SageMaker

The previously introduced steps needed to deploy a model
seemingly only require the container, model and an endpoint
as components. The definition and documentation of these
mentioned components offer a better insight into what com-
ponents are needed for the deployment and which are op-
tional.

Starting with the step of creating a model object in Sage-
Maker, the model object can accept more parameters than
the container, the model URL and the SageMaker role. The
documentation lists a predictor cls() which is method to cre-
ate a predictor[10]. A predictor makes inference requests,
encodes input data and decodes output data. The predictor
encodes data with a serializer that is passed as a param-
eter to the predictor. In the same way, a deserializer can
be passed to the predictor for decoding the output data.
Since a predictor is only created if a method predictor cls()
is passed as a parameter to the model and the model calls
its deploy() method, the predictor is optional[10] [11].

The last step of creating the endpoint and deploying the
model requires the model object to call its deploy() method.
The deploy() method receives the instance type, instance
count and endpoint name as parameters and creates the
endpoint on which the model is deployed. The endpoint
itself can be updated as mentioned in the earlier paragraph.
Using the Amazon SageMaker API in Boto3, the method
update endpoint() changes the already created endpoint by
deleting the old endpoint configuration and deploying a new
one. The endpoint configuration has a deployment config-
uration, which is an attribute which makes the blue/green
deployment possible[13]. However, the definition of the end-
point configuration and deployment configuration is optional

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Figure 3: Graphical representation of the deployment process on Amazon’s SageMaker

Figure 4: Graphical representation of the use of a deployed model on Amazon SageMaker

since they are not required in the deployment process.
Without the optional components, the deployment of a

machine learning model can be represented as the following
diagram 4. The endpoint receives inference requests and
passes them to the model object. The model object which
has the container and machine learning model sends, after
inferencing, the model response to the endpoint.

4.3 Google Cloud’s Vertex AI
Google unified its preceding AI Platforms into the new

Vertex AI platform on May 18th, 2021 [42]. The platform
allows users to create machine learning models and AI appli-
cations within a no-code environment (AutoML) or custom-
trained models based on arbitrary coding (AI Platform) [24].
Google offers to deploy models created within their infras-
tructure as well as models created and trained on other plat-
forms.

4.3.1 Deployment process (R1, R4)
Independent of the used scenario, which are custom-trained

models or the use of Google’s AutoML, the user needs to
create a REST endpoint within the Google Cloud. Google
enables the user to deploy multiple models to the same node,
e.g. for gradually version changes in a model or load bal-
ancing. It is also possible to deploy one model to different
endpoints, e.g. testing and production environment or usage
of the same model with different performance needs [19]. A
visualization of the process can be found in figure 5.

Google’s Cloud Platform offers deployment of custom soft-
ware as well. Considering this, every type of machine learn-
ing software can be deployed. To make use of the beneficial
features of Vertex AI, e.g. using pre-trained containers, us-
ing containerization on Google servers and their optimiza-
tions considering speed and latency, the model needs to be

imported, if not already existing, to Vertex AI. This section
is focused on this part because especially here Google defines
its processes for how to deploy machine learning models.

Regarding research question R3 : For models that are cre-
ated within special Python frameworks (TensorFlow, scikit-
learn, XGBoost) and versions, at least Python 3.7, the user
can work on pre-configured containers provided by Google
[28]. Users that would like to use models created outside
the Google Platform need to import their code as images to
either Googles’ Artifact Registry [26] or Googles’ Container
Registry [20]. These containers can then be used within
Vertex AI [29].

Once a model is created within Vertex AI users can make
use of the versioning and life cycle management of their mod-
els [27].

Google offers deployment in two versions: Creating an
online, synchronous prediction service or accessing an asyn-
chronous batch processing. The processes are different for
both types and eventually introduce restrictions.

Online prediction.
Models from the Vertex AI suite can be deployed either

with the dedicated Vertex AI API [22] or with the more
general Google Cloud Console [21]. Both variants enable
the user to leverage blue/green deployment by assigning an
improved model to an already existing REST endpoint and
adjust the so-called traffic split between these models. The
user can make use of load balancing and horizontal scal-
ing due to replication of the containers used. A relevant
restriction for online prediction is the unavailability of on-
line prediction for models based on Google’s AutoML Video
service. For using the endpoint, a user makes synchronous
HTTP calls to the created REST endpoint in specified for-
mats. These formats vary among the AutoML services and

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Figure 5: Graphical representation of the deployment process on Google Cloud Platforms Vertex AI

Figure 6: Graphical representation of the use of a deployed model on Google Cloud Platforms Vertex AI

especially if a custom-trained or imported container is used.
In figure 6 a visualization of the interaction with a deployed
model is given.

Batch predictions.
The steps described in the paragraph ”Online prediction”

are not relevant if a user would like to make batch predic-
tions. Within Vertex AI a model, which is used to make
batch predictions, does not need to be deployed to an end-
point. The user can specify a batch prediction service with
defined input and output destinations. To specify the model
and its version is relevant as well. To trigger a batch pro-
cess, the user uses the Vertex AI API. For integrating this
service into a larger software, the software has to commu-
nicate via the Vertex AI API and may need to store and
load the input and output data programmatic to the Google
Cloud [23]. The differences compared to online-prediction
can be seen in figure 6 as well.

Required Developer Knowledge (R4).
For deploying an already created model within VertexAI

a user needs to be familiar with the concept of REST-APIs
and able to make use of the Google Cloud API. If it is neces-
sary to create containers from given programs Docker knowl-
edge is also required. In general, the user does not have to be
a skilled developer but has to be familiar with special infor-
mation technology concepts like REST or Containerization.

4.3.2 What are the steps and components of a ma-
chine learning model deployment on Google
Vertex AI?

The deployment can be split into three major components
and related steps:

• raw model as code or as python artifact or as AutoML
artifact

• container created by Vertex AI from python artefact
or AutoML artefact or imported by the user. Google
calls this model which should not be confused with the
raw model.

• endpoint which is configured to horizontal scale or use
special resources, e.g. GPU, and direct traffic to con-
tainers, so-called models

4.4 Comparison (R2)

4.4.1 Deployment process results

Online-processing services.
The final result of the machine learning model deployment

processes is very similar among the different platforms. Ev-
ery platform deploys for online predictions to REST-API
endpoints which are then used by clients. All platforms use
containers for deployment and offer a horizontal scaling via
duplicating container instances. Every platform allows some
type of blue/green deployment with different techniques.

Batch processing services.
Utilizing batch processing services differ among the ana-

lyzed platforms. Azure ML specifies special batch processing
endpoints. Googles’ Vertex AI allows to create batch pro-
cessing jobs on containers, which are called models, but for
utilizing them in an application manual coding is needed.
Amazon SageMaker uses online processing endpoints with
special parameters.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Figure 7: General deployment pattern of the three analyzed tools

4.4.2 Deployment process (R2)

Components and developer provided inputs.
Every platform needs a model which should be deployed.

The form in which a model is available can vary within ev-
ery platform. Amazon’s SageMaker and Googles’ Vertex AI
create a container image from a model which is presented
as an output of their own MLOps services or as an artefact
created from other software, e.g. TensorFlow, scikit-learn
or XGBoost. It is also possible for every platform to deploy
an already created container. Using arbitrary containers in
the process is quite similar to a general deployment process
but may lead to non-optimal use of resources as the contain-
ers created by the platforms themselves make use of special
configurations for ML-related algorithms.

Only Azure ML needs to have a so-called scoring-script
which is used as middleware between a REST endpoint and
a containerized model. It is possible to specify the environ-
ment in more detail for every platform.

Core deployment processes.
The first step of all processes is the derivation of a con-

tainerized version of an already created machine learning
model, whose format may vary. For every platform, the
developer needs to create an endpoint which handles the re-
quests and communicates with several instances of the pre-
viously described containers. All analyzed platforms enable
a blue/green deployment by allowing to use multiple models
in form of different containers behind a single endpoint. The
developers or administrators can define the amount of traffic
which is sent to which model.

Deployment of batch-processing services.
For batch predictions, the processes vary. Azure ML uses

a quite similar process compared to its online-prediction de-
ployment process. An endpoint can be either batch process-
ing or online processing. Amazon SageMaker utilizes online
endpoints for batch processing with specialized parameters.
Googles’ Vertex AI needs a little less configuration for batch-
processing as it is not needed to create an endpoint but it
is possible to define batch processes within the API or the
UI of Vertex AI. The developer needs to add data transfers
and API-Calls to its application or service which should use
batch prediction manually. If it is only needed on a server-
side level a type of cronjob can be defined.

4.4.3 Developer skills and operation of the platform’s
services (R4)

If a containerized version of a model is already present,
every platform enables low coding to no coding deployment
only using a dedicated API or a Web UI. Only Azure ML
requires the user who deploys a model to write the scoring
script. For all platforms, a developer should be familiar with
the concepts of containerization and REST APIs.

4.4.4 Pattern in deployment processes
From all the similarities and differences it is possible to

derive a general pattern which can be found with small de-
viations in every analyzed platform 7.

At first, every platform forces the developers to create a
containerized version of their machine learning model. The
developer must create a REST endpoint, within the plat-
form which communicates with one or more machine learn-
ing models, as well. Every platform utilizes the contain-
ers for horizontal scaling which is parameterized by the de-
veloper. For updating a model every platform presents a
blue/green deployment technique.

5. CONCLUSION
In summary, Azure Machine Learning requires a model,

a scoring script, an endpoint, at least one deployment and
an environment for the deployment of a machine learning
model. In comparison, Amazon SageMaker needs an end-
point and a model object made of the machine learning
model and container for deployment. Lastly, Google’s Ver-
tex AI deploys a model only with a model, an endpoint and
a container. Azure Machine Learning has the most differ-
ences from the other two tools since a scoring script and at
least one deployment are also necessary for Azure Machine
Learning.

Therefore, the general deployment pattern of the three an-
alyzed platforms is made up of the following common com-
ponents:

• A machine learning model,

• an endpoint

• and a container or some sort of another environment.

While the found pattern is not representative of all MLOps
platforms, since only three platforms have been analyzed for
the pattern, it indicates a potential trend in how MLOps
platforms deploy machine learning models in the future.

Furthermore, the results show that, at least concerning
three of the currently leading, according to Gartner[30], plat-
forms, MLOps platforms are becoming more similar to each
other.

6. FUTURE WORK
This paper only offers a comparison of the deployment

process on three MLOps platforms. To decide with certainty
whether a standard is forming, other platforms have to be
analyzed as well in regards to their deployment process and
their required components for deployment. Furthermore, in
the case a standard can be inferred, a general deployment
pattern can be defined such as in this case.

7. REFERENCES

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

[1] Amazon. Amazon SageMaker.
https://aws.amazon.com/sagemaker/?nc1=h_ls.
28.05.2022.

[2] Amazon. Asynchronous inference.
https://docs.aws.amazon.com/sagemaker/latest/

dg/async-inference.html. 28.05.2022.

[3] Amazon. Blue/Green Deployments.
https://docs.aws.amazon.com/sagemaker/latest/

dg/deployment-guardrails-blue-green.html.
28.05.2022.

[4] Amazon. Create a serverless endpoint.
https://docs.aws.amazon.com/sagemaker/latest/

dg/serverless-endpoints-create.html. 28.05.2022.

[5] Amazon. Create an Asynchronous Inference Endpoint.
https://docs.aws.amazon.com/sagemaker/latest/

dg/async-inference-create-invoke-update-

delete.html. 28.05.2022.

[6] Amazon. Create your endpoint and deploy your
model. https://docs.aws.amazon.com/sagemaker/
latest/dg/realtime-endpoints-deployment.html.
28.05.2022.

[7] Amazon. Deploy a Compiled Model Using the
Console. https:
//docs.aws.amazon.com/sagemaker/latest/dg/neo-

deployment-hosting-services-console.html.
28.05.2022.

[8] Amazon. Frameworks. https://sagemaker.
readthedocs.io/en/stable/frameworks/index.html.
13.06.2022.

[9] Amazon. InvokeEndpoint.
https://docs.aws.amazon.com/sagemaker/latest/

APIReference/API_runtime_InvokeEndpoint.html#

API_runtime_InvokeEndpoint_RequestParameters.
28.05.2022.

[10] Amazon. Model.
https://sagemaker.readthedocs.io/en/stable/

api/inference/model.html?highlight=model.
28.05.2022.

[11] Amazon. Predictor.
https://sagemaker.readthedocs.io/en/stable/

api/inference/predictors.html. 28.05.2022.

[12] Amazon. Serverless Inference.
https://docs.aws.amazon.com/sagemaker/latest/

dg/serverless-endpoints.html. 28.05.2022.

[13] Amazon. UpdateEndpoint.
https://docs.aws.amazon.com/sagemaker/latest/

APIReference/API_UpdateEndpoint.html. 28.05.2022.

[14] Z. Arnold and H. Toner. Deep learning for
recommender systems: A Netflix case study. AI
Magazine, 42(3):7–18, 2021.
https://doi.org/10.1609/aimag.v42i3.18140.

[15] M. Du and T. Hughes. Train and host Scikit-Learn
models in Amazon SageMaker by building a Scikit
Docker container.
https://aws.amazon.com/de/blogs/machine-

learning/train-and-host-scikit-learn-models-

in-amazon-sagemaker-by-building-a-scikit-

docker-container/. 13.06.2022.

[16] I. Gartner. Gartner identifies the top strategic
technology trends for 2021.
https://www.gartner.com/en/newsroom/press-

releases/2020-10-19-gartner-identifies-the-

top-strategic-technology-trends-for-2021#:~:

text=Gartner%20research%20shows%20only%2053,a%

20production%2Dgrade%20AI%20pipeline.

19.10.2020.

[17] I. Gartner. Gartner survey reveals 66% of
organizations increased or did not change ai
investments since the onset of covid-19.
https://www.gartner.com/en/newsroom/press-

releases/2020-10-01-gartner-survey-revels-66-

percent-of-orgnizations-increased-or-did-not-

change-ai-investments-since-the-onset-of-

covid-19. 01.10.2020.

[18] J. Halstenberg, B. Pfitzinger, and T. Jestädt. DevOps
Ein Überblick. essentials. Springer Vieweg Wiesbaden,
1. edition, 2020.

[19] G. I. Limited. Considerations for deploying models.
https://cloud.google.com/vertex-

ai/docs/general/deployment. 26.05.2022.

[20] G. I. Limited. Container registry overview.
https://cloud.google.com/container-

registry/docs/overview. 26.05.2022.

[21] G. I. Limited. Deploy a model using the cloud console.
https://cloud.google.com/vertex-

ai/docs/predictions/deploy-model-console.
26.05.2022.

[22] G. I. Limited. Deploy a model using the vertex ai api.
https://cloud.google.com/vertex-

ai/docs/predictions/deploy-model-api. 27.05.2022.

[23] G. I. Limited. Get batch predictions.
https://cloud.google.com/vertex-

ai/docs/predictions/batch-predictions.
27.05.2022.

[24] G. I. Limited. Introduction to vertex ai.
https://cloud.google.com/vertex-

ai/docs/start/introduction-unified-platform.
26.05.2022.

[25] G. I. Limited. MLOps: Continuous delivery and
automation pipelines in machine learning.
https://cloud.google.com/architecture/mlops-

continuous-delivery-and-automation-pipelines-

in-machine-learning. 28.05.2022.

[26] G. I. Limited. Overview of artifact registry.
https://cloud.google.com/artifact-

registry/docs/overview. 26.05.2022.

[27] G. I. Limited. Overview of artifact registry.
https://cloud.google.com/vertex-ai/docs/model-

registry/introduction. 26.05.2022.

[28] G. I. Limited. Pre-built containers for prediction and
explanation. https://cloud.google.com/vertex-
ai/docs/predictions/pre-built-containers.
26.05.2022.

[29] G. I. Limited. Use a custom container for prediction.
https://cloud.google.com/vertex-

ai/docs/predictions/use-custom-container.
27.05.2022.

[30] P. Mechliński. Use a custom container for prediction.
https://www.linkedin.com/pulse/top-5-ai-cloud-

providers-ranking-2021-piotr-mechli%C5%84ski.
21.09.2021.

[31] Microsoft. Azure machine learning.
https://azure.microsoft.com/en-

gb/services/machine-learning/#product-overview.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

https://aws.amazon.com/sagemaker/?nc1=h_ls
https://docs.aws.amazon.com/sagemaker/latest/dg/async-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/async-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/deployment-guardrails-blue-green.html
https://docs.aws.amazon.com/sagemaker/latest/dg/deployment-guardrails-blue-green.html
https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints-create.html
https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints-create.html
https://docs.aws.amazon.com/sagemaker/latest/dg/async-inference-create-invoke-update-delete.html
https://docs.aws.amazon.com/sagemaker/latest/dg/async-inference-create-invoke-update-delete.html
https://docs.aws.amazon.com/sagemaker/latest/dg/async-inference-create-invoke-update-delete.html
https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints-deployment.html
https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints-deployment.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-console.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-console.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-deployment-hosting-services-console.html
https://sagemaker.readthedocs.io/en/stable/frameworks/index.html
https://sagemaker.readthedocs.io/en/stable/frameworks/index.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html#API_runtime_InvokeEndpoint_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html#API_runtime_InvokeEndpoint_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html#API_runtime_InvokeEndpoint_RequestParameters
https://sagemaker.readthedocs.io/en/stable/api/inference/model.html?highlight=model
https://sagemaker.readthedocs.io/en/stable/api/inference/model.html?highlight=model
https://sagemaker.readthedocs.io/en/stable/api/inference/predictors.html
https://sagemaker.readthedocs.io/en/stable/api/inference/predictors.html
https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-endpoints.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://doi.org/10.1609/aimag.v42i3.18140
https://aws.amazon.com/de/blogs/machine-learning/train-and-host-scikit-learn-models-in-amazon-sagemaker-by-building-a-scikit-docker-container/
https://aws.amazon.com/de/blogs/machine-learning/train-and-host-scikit-learn-models-in-amazon-sagemaker-by-building-a-scikit-docker-container/
https://aws.amazon.com/de/blogs/machine-learning/train-and-host-scikit-learn-models-in-amazon-sagemaker-by-building-a-scikit-docker-container/
https://aws.amazon.com/de/blogs/machine-learning/train-and-host-scikit-learn-models-in-amazon-sagemaker-by-building-a-scikit-docker-container/
https://www.gartner.com/en/newsroom/press-releases/2020-10-19-gartner-identifies-the-top-strategic-technology-trends-for-2021#:~:text=Gartner%20research%20shows%20only%2053,a%20production%2Dgrade%20AI%20pipeline.
https://www.gartner.com/en/newsroom/press-releases/2020-10-19-gartner-identifies-the-top-strategic-technology-trends-for-2021#:~:text=Gartner%20research%20shows%20only%2053,a%20production%2Dgrade%20AI%20pipeline.
https://www.gartner.com/en/newsroom/press-releases/2020-10-19-gartner-identifies-the-top-strategic-technology-trends-for-2021#:~:text=Gartner%20research%20shows%20only%2053,a%20production%2Dgrade%20AI%20pipeline.
https://www.gartner.com/en/newsroom/press-releases/2020-10-19-gartner-identifies-the-top-strategic-technology-trends-for-2021#:~:text=Gartner%20research%20shows%20only%2053,a%20production%2Dgrade%20AI%20pipeline.
https://www.gartner.com/en/newsroom/press-releases/2020-10-19-gartner-identifies-the-top-strategic-technology-trends-for-2021#:~:text=Gartner%20research%20shows%20only%2053,a%20production%2Dgrade%20AI%20pipeline.
https://www.gartner.com/en/newsroom/press-releases/2020-10-01-gartner-survey-revels-66-percent-of-orgnizations-increased-or-did-not-change-ai-investments-since-the-onset-of-covid-19
https://www.gartner.com/en/newsroom/press-releases/2020-10-01-gartner-survey-revels-66-percent-of-orgnizations-increased-or-did-not-change-ai-investments-since-the-onset-of-covid-19
https://www.gartner.com/en/newsroom/press-releases/2020-10-01-gartner-survey-revels-66-percent-of-orgnizations-increased-or-did-not-change-ai-investments-since-the-onset-of-covid-19
https://www.gartner.com/en/newsroom/press-releases/2020-10-01-gartner-survey-revels-66-percent-of-orgnizations-increased-or-did-not-change-ai-investments-since-the-onset-of-covid-19
https://www.gartner.com/en/newsroom/press-releases/2020-10-01-gartner-survey-revels-66-percent-of-orgnizations-increased-or-did-not-change-ai-investments-since-the-onset-of-covid-19
https://cloud.google.com/vertex-ai/docs/general/deployment
https://cloud.google.com/vertex-ai/docs/general/deployment
https://cloud.google.com/container-registry/docs/overview
https://cloud.google.com/container-registry/docs/overview
https://cloud.google.com/vertex-ai/docs/predictions/deploy-model-console
https://cloud.google.com/vertex-ai/docs/predictions/deploy-model-console
https://cloud.google.com/vertex-ai/docs/predictions/deploy-model-api
https://cloud.google.com/vertex-ai/docs/predictions/deploy-model-api
https://cloud.google.com/vertex-ai/docs/predictions/batch-predictions
https://cloud.google.com/vertex-ai/docs/predictions/batch-predictions
https://cloud.google.com/vertex-ai/docs/start/introduction-unified-platform
https://cloud.google.com/vertex-ai/docs/start/introduction-unified-platform
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/artifact-registry/docs/overview
https://cloud.google.com/artifact-registry/docs/overview
https://cloud.google.com/vertex-ai/docs/model-registry/introduction
https://cloud.google.com/vertex-ai/docs/model-registry/introduction
https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers
https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers
https://cloud.google.com/vertex-ai/docs/predictions/use-custom-container
https://cloud.google.com/vertex-ai/docs/predictions/use-custom-container
https://www.linkedin.com/pulse/top-5-ai-cloud-providers-ranking-2021-piotr-mechli%C5%84ski
https://www.linkedin.com/pulse/top-5-ai-cloud-providers-ranking-2021-piotr-mechli%C5%84ski
https://azure.microsoft.com/en-gb/services/machine-learning/#product-overview
https://azure.microsoft.com/en-gb/services/machine-learning/#product-overview

24.05.2022.

[32] M. Mohri, A. Rostamizadeh, and A. Talwalkar.
Foundations of Machine Learning. Adaptive
Computation and Machine Learning Ser. MIT Press,
August 2012.

[33] P. Ponnusamy, A. R. Ghias, Y. Yi, B. Yao, C. Guo,
and R. Sarikaya. Feedback-Based Self-Learning in
Large-Scale Conversational AI Agents. AI Magazine,
42(4):43–56, 2022.
https://doi.org/10.1609/aimag.v42i4.15102.

[34] see contributors. Amazon SageMaker Batch
Transform.
https://github.com/aws/amazon-sagemaker-

examples/blob/main/sagemaker_batch_transform/

introduction_to_batch_transform/batch_

transform_pca_dbscan_movie_clusters.ipynb.
28.05.2022.

[35] see contributors. Azure.
https://github.com/Azure/azureml-

examples/tree/main/cli/endpoints/online/mlflow.
07.06.2022.

[36] see contributors. Deploy and score a machine learning
model by using an online endpoint.
https://docs.microsoft.com/en-

gb/azure/machine-learning/how-to-deploy-

managed-online-endpoints. 24.05.2022.

[37] see contributors. MLflow Models.
https://www.mlflow.org/docs/latest/models.html.
07.06.2022.

[38] see contributors. Use batch endpoints for batch
scoring. https://docs.microsoft.com/en-gb/azure/
machine-learning/how-to-use-batch-endpoint.
24.05.2022.

[39] H. Steck, L. Baltrunas, E. Elahi, D. Liang,
Y. Raimond, and J. Basilico. AI Accidents: An
Emerging Threat. Center for Security and Emerging
Technology, 2021.
https://doi.org/10.51593/20200072.

[40] S. Subramanian. Deploy machine learning models to
Amazon SageMaker using the ezsmdeploy Python
package and a few lines of code.
https://aws.amazon.com/de/blogs/opensource/

deploy-machine-learning-models-to-amazon-

sagemaker-using-the-ezsmdeploy-python-package-

and-a-few-lines-of-code/. 13.06.2022.

[41] M. Treveil, N. Omont, C. Stenac, K. Lefèvre, P. Du,
and M. Fraaß. MLOps – Kernkonzepte im Überblick
Machine-Learning-Prozesse im Unternehmen
nachhaltig automatisieren und skalieren . Animals.
O’Reilly Verlag, Deutsche Ausgabe edition, 2021.

[42] C. Wiley. Google cloud unveils vertex ai, one platform,
every ml tool you need.
https://cloud.google.com/blog/products/ai-

machine-learning/google-cloud-launches-vertex-

ai-unified-platform-for-mlops. 18.05.2021.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

https://doi.org/10.1609/aimag.v42i4.15102
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker_batch_transform/introduction_to_batch_transform/batch_transform_pca_dbscan_movie_clusters.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker_batch_transform/introduction_to_batch_transform/batch_transform_pca_dbscan_movie_clusters.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker_batch_transform/introduction_to_batch_transform/batch_transform_pca_dbscan_movie_clusters.ipynb
https://github.com/aws/amazon-sagemaker-examples/blob/main/sagemaker_batch_transform/introduction_to_batch_transform/batch_transform_pca_dbscan_movie_clusters.ipynb
https://github.com/Azure/azureml-examples/tree/main/cli/endpoints/online/mlflow
https://github.com/Azure/azureml-examples/tree/main/cli/endpoints/online/mlflow
https://docs.microsoft.com/en-gb/azure/machine-learning/how-to-deploy-managed-online-endpoints
https://docs.microsoft.com/en-gb/azure/machine-learning/how-to-deploy-managed-online-endpoints
https://docs.microsoft.com/en-gb/azure/machine-learning/how-to-deploy-managed-online-endpoints
https://www.mlflow.org/docs/latest/models.html
https://docs.microsoft.com/en-gb/azure/machine-learning/how-to-use-batch-endpoint
https://docs.microsoft.com/en-gb/azure/machine-learning/how-to-use-batch-endpoint
https://doi.org/10.51593/20200072
https://aws.amazon.com/de/blogs/opensource/deploy-machine-learning-models-to-amazon-sagemaker-using-the-ezsmdeploy-python-package-and-a-few-lines-of-code/
https://aws.amazon.com/de/blogs/opensource/deploy-machine-learning-models-to-amazon-sagemaker-using-the-ezsmdeploy-python-package-and-a-few-lines-of-code/
https://aws.amazon.com/de/blogs/opensource/deploy-machine-learning-models-to-amazon-sagemaker-using-the-ezsmdeploy-python-package-and-a-few-lines-of-code/
https://aws.amazon.com/de/blogs/opensource/deploy-machine-learning-models-to-amazon-sagemaker-using-the-ezsmdeploy-python-package-and-a-few-lines-of-code/
https://cloud.google.com/blog/products/ai-machine-learning/google-cloud-launches-vertex-ai-unified-platform-for-mlops
https://cloud.google.com/blog/products/ai-machine-learning/google-cloud-launches-vertex-ai-unified-platform-for-mlops
https://cloud.google.com/blog/products/ai-machine-learning/google-cloud-launches-vertex-ai-unified-platform-for-mlops

Anatomy of a Machine Learning Pipeline

David Abdelmalek
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

david.abdelmalek@rwth-aachen.de

Devashish Gaikwad
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

devashish.gaikwad@rwth-aachen.de

ABSTRACT
Machine learning is undergoing a revolution with an increase
in the use of ML models in production. The goal of MLOps is
to automate prototyping and deployments for rapid develop-
ment. Many software companies have created their MLOps
solutions by giving their interpretation of an ideal machine
learning pipeline. But there is no common interpretation
of how a generic machine learning pipeline should look and
function. This paper provides a formalization of popular
MLOps pipeline structures, intending to define a common
anatomy of MLOps pipelines. This anatomy will provide
a common terminology for communication about MLOps
pipelines and help improve the modeling process.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software En-
gineering]: Management—productivity, programming teams,
software configuration management

Keywords
Microsoft Azure, Machine learning, AWS, Spark, MLOps,
Anatomy, Pipeline

1. INTRODUCTION
Over the last two decades, machine learning is encoun-

tered often in our daily lives in social media, movie recom-
mendations [20], etc., due to significant data availability and
substantial computing resources offered by various frame-
works for managing the machine learning lifecycle. How-
ever, applying machine learning algorithms on a big scale
comes with risks and challenges, considering auditing, sta-
bility, and software continuous delivery. Continuous delivery
(CD) is a software development procedure to automate the
release of a new version of code to production. As a result,
a unified approach is required in the entire software life-
cycle, starting from business requirements to end-product,
going through the building, testing, and production, which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2018/19 RWTH Aachen University, Germany.

is called MLOps. MLOps are a set of approaches focused
on creating and deploying quality AI models in production
efficiently and automatically. In MLOps, machine learning
models can be tested and deployed in isolated environments,
increasing production pace.

MLOps is a set of practices aiming to produce machine
learning end-to-end products collaboratively between data
scientists and ML engineers. Accordingly, MLOps has a
proven set of advantages [23], for instance, Reproducibility
by defining reusable functions for data preprocessing, train-
ing, and scoring process, Versioning by allowing develop-
ers to work on pipeline concurrently, Reusability by creating
pipeline implementations which can be triggered externally
using REST APIs, and much more.

Certainly, advantages can not be granted without hav-
ing some concrete conventions to supervise stable workflow.
Those principles ensure higher quality, simplify the manage-
ment process, and continuous model delivery using contin-
uous integration and continuous delivery software methods.
Continuous Integration (CI) is a software development pro-
cedure that builds, tests, and merges new code changes to
a repository. Continuous Delivery (CD) aims to automate
the release of the latest version of code to production. Fig 1
presents 4 essential principles for independent MLOps work-
flows [23] and will be discussed subsequently.

Figure 1: MLOps principals.

• CI/CD is a set of practices/techniques. One practice
is to implement a delivery process as an automated
delivery pipeline.

• Workflow Orchestration controls the pipeline stages syn-
chronization using directed acyclic graphs (DAGs), defin-
ing task dependencies and relationships [23].

• Continuous Training / Continuous Evaluation (CT/CE)
establishes automated training and evaluation on new

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

data after extracting feature sets from the data pre-
possessing stage.

• Continuous Monitoring monitors the model’s behavior
after deployment to ensure it works as expected and
evaluates its performance based on a group of metrics.

Multiple offerings currently exist in the market encom-
passing the above principles. There is no common frame-
work or anatomy which can describe these MLOps pipelines
for further study. Therefore, the current solutions are re-
viewed, and then their anatomies are formalized into a generi-
c one so that the understanding of the MLOps pipelines can
be made manageable and optimizable in the future. This
paper aggregates pipelines from different MLOps platforms
and then provides a generalized MLOps pipeline with generic
anatomy.

The structure of the paper will go as follows. First, the
end-to-end MLOps pipeline in popular cloud providers and
data processing frameworks - Azure, Spark, AWS, GCP,
and Databricks is reviewed. After studying different pipe-
line structures, a formalized and generalized overview of the
machine learning pipelines is given. Finally, the findings are
concluded with a summary and proposed future work.

2. MLOPS PROVIDERS

2.1 Azure
Azure is a public cloud computing platform managed by

Microsoft. Azure Machine learning is one of the services
provided for building, managing, and monitoring machine
learning models’ lifecycle. Azure Machine Learning Studio
is a web-based platform where data scientists and engineers
find tools to create and automate high-quality day-to-day
workflows.

In Azure, pipeline stages are encapsulated as several steps
with different computing resources for each stage [24]. Hence,
separate stages allow developers working on the same pipe-
line do changes to scripts independently without overloading
pipeline computation. Fig 2 shows essential steps needed to
employ an independent executable pipeline in Azure. In the
next paragraphs, we will go through each of those stages.

Figure 2: Azure ML workflow.

Step 1: Create workspace - a high-level resource for ma-
chine learning functions to manage and monitor created ar-
tifacts in a centralized platform - to hold and share pipeline
[8].

Step 2: Setup pipeline resources (computation and datas-
tore).

Step 3: Create machine learning model steps. The ma-
chine learning model in Azure is defined as separate steps.
A step - a pre-built function available via the Azure Machine
Learning SDK [27] - takes attributes such as script path, in-
put, output, etc., and runs on the configured compute target

resources. Each step executes a script, from the script di-
rectory, on the input source and stores results to the output
datastore given as value. For instance:

• Data Preparation: This step first takes input data
in any format and then operates different predefined
data preprocessing modules to prepare/clean data for
the training step. For example, selecting the clipping
module to treat incorrect records, using the Normal-
ize Data module to normalize input data, employing
the Group Data Into Bins tool to prepare numerical
data in addition to converting numeric features into
categorical ones.

• Training Evaluating: Model training can be done in
the Azure AutoML tool [10, 11]. Automated machine
learning expeditiously computes different combinations
of algorithms and hyperparameters, tracks the metrics’
outcome from those models, evaluates models, and fi-
nally selects a model with the best results of the metric
chosen.

Stage 4: Model Register is the last step for both deploy-
ing ML models and tracking model different versions. Each
model is created as a docker container with all files stor-
ing the model. After registering, a model is identified by
name and version, while each version is incremented once a
model registers with the same name. For deployment, only
registered models can be deployed as service endpoints. En-
capsulated environment with all dependencies, scoring code
to predict given request, and inference configuration are all
required for successful deployment.

2.2 Spark
Apache Spark [1] is an open-source data processing plat-

form used to process queries on big data and allocate data
queries across multiple clusters. Spark can be deployed in
various programming languages, Python, Java, and Scala,
and provide code reuse for numerous workloads. By using
distributed workloads advantage, Apache defines a machine
learning pipeline that manages machine learning algorithms
along with big data processing and provides an API (MLlib)
that simplifies the development and deployment of scalable
pipelines.

MLlib [1] - a spark machine learning library - is API that
combines multiple powerful machine learning algorithms into
a single workflow. In the next paragraphs, we will define the
main component of the spark machine learning pipeline as
depicted in 3

Figure 3: Spark ML workflow.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Data: MLlip API uses DataFrame from Spark SQL as
a dataset uniform data structure, which can hold different
data types, for instance, text, feature vectors, booleans, etc.

Transformer: is a one-level abstraction in MLlip API that
acts as a preprocessing step containing learned models (out-
put from estimators) and different feature transformation
phases such as one-hot encoding and feature scaling. This
stage technically executes transform() function which trans-
forms one dataframe into another by adding, deleting, or
updating features in the input dataframe and providing the
new dataframe as input for the next stage.

Estimator: is another high-level abstraction that encap-
sulates algorithms that train/fits data. In the essence of
training, the Estimator technically implements method fit(),
which accepts transformed dataframe from the preprocess-
ing step, trains data on ML algorithm, and returns a trans-
former. The returned transformer alters the dataframe ac-
cording to parameters learned during the learning phase.

Evalulator: is the last step before returning model. It
is used to evaluate model performance using ROC [21] and
help with model tuning process by selecting the best model
for generating predictions.

Model: Finally, the pipeline outputs a model with fit()
method, which can be used to start the training of different
models.

2.3 AWS
Amazon Web Services (AWS) is one of most most widely

used Cloud Service Providers. AWS SageMaker Pipeline
[6] is their continuous integration and continuous delivery
(CI/CD) service for machine learning. SageMaker Pipeline
builds upon already existing SageMaker services and are or-
chestrated according to the MLOps templates which list out
the underlying resources needed.

In general, AWS SageMaker pipelines are created accord-
ing to a default MLOps template and a pipeline structure
defined using python SDK. SageMaker project templates of-
fer different choices of code repositories, workflow automa-
tion tools, and pipeline stages. Pipelines can be categorised
into 3 stages with human checks requirements as per speci-
fications. Fig 4 shows general structure of the pipeline. In
next paragraphs we go through the each stage and general
steps involved in them.

Figure 4: Machine learning workflow in AWS

Model Build: Model building stage focuses on the data
pre-processing, training and tuning of the model.

• Processing: Processing Jobs are created for data pre-
processing. A processing step requires a processor
component (for example, SKLearnProcessor from SK-
Learn [13]), python script which defines the sequence

of actions, data read and write locations (S3 object
storage, for example).

• Training: Training jobs are created to train a model.
A training step requires an estimator, as well as train-
ing and validation data inputs. Here, user can select
from a plethora of built-in algorithms and pre-trained
models like XGBoost [14], K-NN, YOLO [30], etc. as
well as define custom models.

• Tuning: Tuning jobs are created to tune hyperparame-
ters, also known as hyperparameter optimization (HP-
O) [29]. It runs multiple training jobs, each one pro-
ducing a model version. Tuning jobs produce model
artifacts such as model weights and hyperparameters.

• Transform: Batch transform the input dataset by run-
ning inference on it. Outputs a dataset. it also allows
to optimize the job by specifying different paralleliza-
tion parameters for any pre-processing.

• ClarifyCheck: ClarifyCheck conducts baseline drift che-
cks against previous baselines for bias analysis and
model explainability. Checks such as data bias check,
model bias check and model explainability check can
be done one at a time. Outputs results.

Register Model: The Model is registered in the AWS Sage-
Maker Registry for deployment and metrics comparison.

• RegisterModel: RegisterModel registers the created
model with AWS SageMaker model registry, each model
can be one model or a combination of two or more
models. Model infrastructure requirements as well any
baselines are also registered. Approval by human or
automatic approval can be programmed in the step.

Model Deployment: MLOps project templates include mod-
el deployment specifications, approved model versions in the
model registry are automatically deployed to production.
Desired endpoint, infrastructure and API specifications have
to be set and deployed using the CreateModel jobs.

Helper Steps: Certain steps are used for flow and logic
control.

• Condition: Condition Steps are used to evaluate the
specified conditionals to assess which action should be
taken next in the pipeline. Nested condition steps are
currently unsupported.

• Callback: Callback steps incorporate additional pro-
cesses and AWS services into the workflow that aren’t
directly provided by Amazon SageMaker Model Build-
ing Pipelines.

• Amazon Elastic Map Reduce: Runs Map Reduce func-
tions [16] on the dataset.

• Fail: Fail steps are run when a desired condition or
state is not achieved and we want to mark the exe-
cution of pipeline as failed, along with custom error
messages.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

2.4 GCP
Tensorflow Extended (TFX) [26] - is the MLOps frame-

work used by Google Cloud Platform (GCP). Under the
hood TFX supports several orchestrators such as Kubeflow,
apache Airflow and Apache Beam. In certain installations
of TFX, there is no need for user to specify and manage any
of the underlying infrastructure. TFX works by specifying
pipelines files beforehand. Most common way of the pipe-
line building and scripting for TFX is done using an online
jupyter notebook provided by Google cloud.

Figure 5: Machine learning workflow in GCP using TFX

TFX pipelines consist of several components which are
mentioned below.

Data Preprocessing

• ExampleGen: ExampleGen splits the data into train-
ing and evaluation datasets. It accepts input data
and creates data as output in different formats such
as CSV, TFRecord, BigQuery, etc

• StatisticsGen: StatisticsGen calculates the dataset stat-
istics like min, max, distribution, missing values etc by
consuming the datasets created by ExampleGen and
creating dataset statistics.

• SchemaGen: SchemaGen creates a data schema show-
ing the expected type of data for each feature by con-
suming statistics from StatisticsGen and creating Data
Schema.

• ExampleValidator: ExampleValidator detects anoma-
lies, missing values and data skew by consuming schema
and statistics from SchemaGen and StatisticsGen re-
spectively and generating data validation results.

• Transform: Transform does feature engineering on the
data created by ExampleGen using a schema created
by SchemaGen. It creates a model for feature engi-
neering the data along with statistics. Transform en-
riches the dataset. It consumes examples (dataset) and
dataset schema and produces a model which is stored
to disk for later usage with any tensorflow compatible
framework.

Model Building and Training

• Trainer: Trainer trains the model. it creates the mod-
els and variables related to them. It also creates a
graph specific to the TensorFlow framework which sto-
res global information, model and variable data, of-
fering robustness, reliability and visualization of pro-
cesses. We specify where, how and the architecture
of the model. It consumes dataset (examples), trainer
logic file, data schema, pre-trained models if any and
creates atleast one inference model and another model
for evaluation.

• Tuner: Tuner tunes the model’s hyperparameters. It
is primarily used with Keras components but can also
be imported from outside libraries. Tuner consumes
dataset, model and objective metrics to produce the
optimum hyperparameters.

Model Validation

• Evaluator: Evaluator evaluates the performance of the
model. It also validates the model using methods such
as K-Means validation and calculating metrics such as
AUC, loss, etc and comparing them with the baselines
set by the devloper. It consumes evaluation split from
ExampleGen and a trained model from Trainer. It
”blesses” models which pass the evaluation tests, that
is, the models are marked as good. It also produces
analysis and validation metadata.

Model Deployment

• Pusher: Pusher pushes a model to deployment. We
specify the endpoints and respective infrastructure here.
It consumes a ”blessed” (see Evaluator above) model
and uses Tensorflow Serving to deploy the model.

2.5 Databricks
Databricks [2] is a data engineering and machine learning

open-source platform for processing and transforming big
data from various cloud-based data providers, ie. Azure,
AWS, GCP, etc., to extract BI reports and build machine
learning models. Moreover, Databricks is a web-based data
warehouse for many data requirements. It is considered the
primary service used by data-driven decision-making com-
panies as a big data tool to achieve the full potential of
combining their data efficiently, ETL processes, and ma-
chine learning. Designed by the founder of Apache Spark
[31], Databricks offers a platform as a service (PaaS) on
the top of cloud computing providers as which they manage
resources (upscaling and downscaling computing clusters)
based on workload.

Built upon centralized datalake, Databricks machine learn-
ing [4] provides an integrated complete ML lifecycle environ-
ment. It incorporates managed services for access data at
any scale, feature management, model training and testing,
and model serving. There are distinct machine learning ar-
chitecture models in Databricks, but fig 6 depicts the most
generic ML pipeline. We will establish a complete definition
of each phase inside diagram in the following paragraphs:

First and foremost, data needs to be loaded into the ML
pipeline. Databricks facilitates data ingestion procedure by
having automated and reliable ETL functions from secure
cloud data storage into centralized Delta Lake.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Figure 6: Databricks ML workflow.

Coming from different secure cloud data providers, Data
in Data Lake is in its native format; hence, it requires se-
lective Data Prepossessing steps such as handling null values,
standardization/normalization, categorical variables, one-hot
encoding, etc. Transformed output data can be easily now
interpreted by ML models.

Data is now ready for the next phase, the Training pipe-
line. It has two interchangeably components which are:

• Feature engineering: takes raw input dataset and is
responsible for not only extracting beneficial features
that influence model prediction scores but also operat-
ing complex calculations such as PCA [19], word em-
bedding [7], etc. A pipeline can be created manually
by the developer or by Feature store [3]. Databricks
Feature Store can create, explore and select features in
the dataset and then publish features to a generalized
repository across the organization to ensure computing
the same feature code in model training and testing.

• Train model can be done either manually or using Au-
toML. All through preparing the dataset for model
training until having the robust best-performed model
across multiple ML models concerning development-
based parameters and production-based parameters,
AutoML can create machine learning models in regres-
sion, classification, and forecasting problems. MLFlow
performs a set of training trails while evaluating var-
ious models from scikit-learn [28] and XGBoost [15]
packages to select the best model. AutoML uses Spark
and Hyperopt [9] - an open-source library that uses
Bayesian optimization for parameter tuning- to para-
lyze the search for the best model across different mod-
els. Finally, it creates a python notebook with source
code executed and trial logs for each run.

Next step is deploying the best model from the training
pipeline as a REST API service using MLflow. MLflow
Model Registry MLflow- an open-source service used for
monitoring and governing machine learning’s end-to-end life-
cycle - uses the selected model artifact stored from AutoML

to migrate from a new model version to staging and then
production stages.

Scoring pipeline runs the model scoring script. First, the
notebook loads the testing dataset (data with no predicted
label(s)) from the data prepossessing stage to ensure reliable
data format as well as the production version of the regis-
tered ML model. Then the trained model classifies input
data and outputs some predictions (scores). Consequently,
predictions along with loaded data directly move to one of
the secure cloud data providers. In addition, Auto Loader
trigger function automates the scoring pipeline by creating a
streaming job once it detects a new input record and passes
it to the score function.

3. GENERALIZATION

3.1 Formalization Proposal
As seen in the study section 2 Different major MLOps

providers structure their MLOps pipelines differently with
different components. There is no common definition of a
MLOps pipeline. Different MLOps maturity level pyramids
from Google [5] and Microsoft [18] try to classify the current
state of MLOps deployments, but none of them generalize
the common stages in a MLOps pipeline. To understand the
common model of MLOps we first need to generalize across
major MLOps providers to find out the commonalities and
formalized stage descriptions.

Figure 7: Generalization of Activities in MLOps

From the study in 2, we can generalize the types of ac-
tivities and objects for any MLOps system. This provides
us with the basic building blocks of any MLOps stage. All
the activities shown in Fig. 7 can be combined together in
different ways and for different number of times to create a
single stage.

3.2 Artifacts
Artifacts are the static components of any pipeline. They

can be data or physical infrastructure generated by users and

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

machines. Activities work on the artifacts to change them
or create new ones. Artifacts act as an input or output to
activities.

• Model Artifacts: Model artifacts are machine learning
models, model specifications and meta data about the
models.

• Data Artifacts: Data artifacts are datasets and data
storages.

• Script Artifacts: Script artifacts are code, scripts and
pipeline templates.

• Reports: Reports are the output of assessment activi-
ties. They contain model performance metrics, model
validation reports, model evaluation metrics and in-
frastructure performance metrics. Any output which
is a human readable measurement and summary of an
artifact is a Report.

• Policies: Policies are the logics which guide the deci-
sion processes. They are generally set by the archi-
tect and direct the decision processes for the pipeline
branches, if any. These consist of conditional state-
ments based on the model evaluation metrics to decide
whether more tuning is required or if the model should
be deployed.

• Infrastructure: The underlying cloud infrastructure re-
sources for hosting the MLOps activities and read-
ing, storing objects. These can be physical (servers,
databases, etc) or virtual (Workspaces, registries, extra-
pipeline operations etc)

3.3 Activities
Activities are the process steps in any MLOps pipeline.

They process the artifacts. One activity or more than one
activities are stacked together create stages in any pipeline.

3.3.1 Transformation
Transformations are the main class of activities. Trans-

formation work on one or more artifacts to produce another
artifact. For example - Training a model, applying the trans-
form operations on the datasets, etc. Following are the im-
portant transformation activities:

• Data Processing: Data processing transformation ac-
tivities are related to reading data from the disk and
processing them in one way or another to make them
ingestable by the models. This also includes increasing
the quality of the data and feature extraction. Gener-
ally, the input and outputs are dataset artifacts.

1. Data Retrieval: These transformation read the
data from physical storages or API endpoints into
datasets which are then processed further. Data-
Frame Reader in Spark and built-in Bucket or Ob-
ject storage reading functionalities in Azure and
AWS are good examples.

2. Data Analysis: These increase the quality of data
by removing or fixing missing values and doing
a statistical analysis of the data to look for data
skew [25] which induce bias in the models. Data
Correction in Azure and ExampleValidator in GC-
P are some notable examples. Datasets are anal-
ysed to create reports and metrics about the data.

3. Data Preprocessing: These apply mathematical
or transformative functions on the existing data
to change its distribution and make it easier for
the models to fit the data. It is also possible to
change the data representation by creating cate-
gorical values from continuous ranges or changing
textual data to word embeddings such as Fasttext
[12], etc. Data Normalization, Binning, Catego-
rization activities in Azure, Feature scaling, One-
hot encoder in Spark, Sklearn based data prepro-
cessing in AWS and ETL operations, feature ex-
traction, PCA, built-in text to word embeddings
trnaformation in Databricks are some notable ex-
amples. Here, datasets are consumed to produce
new datasets with changed features.

4. Feature Extraction: These activities create new
features from the existing features of the dataset.
Although there might be some correlation between
the data attributes, these are useful for simpler
models. Notable examples include feature store in
Databricks and manual feature extractor in AWS.
Old datasets are consumed to create new datasets
with added features.

• Model Training: These transformations are employed
to train models defined using a predefined architecture.
Generally, the input is a dataset artifact and output is
a trained model artifact. There still can be two further
distinctions made:

1. Pure Model Training: In this activity, only the
simple transformation of using a dataset to train
a model is performed. Model training step in
Azure, Training using built-in algorithms, user in-
put and estimators from other libraries in AWS,
Spark Estimators, Trainer in GCP and Manual
training in Databricks are some examples. In-
put artifacts are datasets, evaluation metrics and
output artifacts are trained model, weights and
hyperparameters.

2. Automatic Training: These transformation are a
cross between model training, transformation and
assesment activities. The best example for these
are AutoML [22] functionalities in Databricks, tun-
ing using Hyperparameter Optimization (HPO)
in AWS and tuner functionality in GCP. These
transformations combine the training, testing and
validation activities together, removing the need
for connecting these three activities.

• Model Inference: Model inference operations, usually
called Transform operations in AWS and GCP are used
to batch transform a whole dataset using the trained
model. This method is useful when the MLOps pipe-
line is part of a decision workflow and not just an end-
point being called by another service. The input is a
dataset and a trained model and the output is a trans-
formed dataset.

3.3.2 Assessment
Assessment operations take in artifacts such as machine

learning models and create reports of their performance us-
ing different specified metrics. Model validation in Azure,
ClarifyCheck and QualityCheck in AWS, which compare the

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

model with the metrics of the previous iterations of the
training process, Evaluator in GCP and Scoring pipeline in
Databricks.

3.3.3 Decision
Decision activities use the policies to decide between dif-

ferent pipeline branches and create the relevant artifact.
for example, it can choose the branch of deployment if the
machine learning model has higher then baseline accuracy.
Condition and Fail steps in AWS are explicitly defined De-
cision activities. Most of the time decision activities and
assessment activities are combined together to select the
best model from different training runs. Decision models
have the input of reports and metrics and their output are
branch decisions.

3.3.4 Provision
Provision operations read the artifacts such as templates,

workspace specifications and pipeline configurations to cre-
ate the underlying infrastructure for the whole MLOps pro-
cess. Deployment of models, which is usually done at the
end stages of pipeline, also falls under provision. Provision
activities mainly contain 3 types of activities:

1. Model Registration: Model registration activities are
triggered by decision activities after all the correct cri-
terion for the model metrics are passed by a newly
trained model. The model is ”registered”into the frame-
work registry for storage and deployment.

2. Model Deployment: The registered model is deployed
to an endpoint. The specifics of this have to be de-
fined by user. This allows the model to be used via an
endpoint.

We use these basic activities to define the different stages
in any generic MLOps pipeline. But before that we must
define the Core domain model of the MLOps pipeline.

3.4 Core Domain
The aim of the core domain model is to help in under-

standing the structure and hierarchy of the generalized pipe-
line. We use the methodology from [17] to construct the core
domain model.

• Pipeline: A pipeline represents the whole MLOps pipe-
line.

• Stage: One or more stages make a pipeline. Each stage
has different functions.

• Activity: Activities are the basic building block of any
stage. They can be any of the four specializations. To
represent the flow between the activities, there are two
flow dependency types.

• Preconditions: Every activity has some preconditions
which can be satisfied by artifacts, reports or infras-
tructure provisions.

• Logical Dependency: They represent the control flow in
which the activities should take place because of their
dependencies on each other or as a result of decision
activities.

Figure 8: Pipeline Structure Core Domain

• Functional Dependencies: They represent the data flow
between the activities. If the data from one activity
goes to another activity, then there is a functional de-
pendency between the activities. Functional depen-
dency also implies logical dependency.

3.5 Generalized Stages
From the pipeline stages of MLOps providers in Section

2 and interpolating the pipeline and pipeline flows with the
core domain model in 3, we can define a general pipeline
structure with stages for MLOps. These stages can be or-
dered and are dependent on each other.

• Provisioning: This stage consists of ”provision” activ-
ities. The design can be in such a way that all the
infrastructure required can be provisioned before the
pipeline starts or it can be provisioned just-in-time. So
not all the Cloud providers may have a provision stage
as the first stage, it can run in parallel as well.

• Data Processing: Transformation activities such as Da-
ta Retrieval, Data Analysis, Data Preprocessing and
Feature extractions which convert the data from one
form into another are included in Data Processing stage.
This stage consumes data sources and creates a ready
dataset for the stage.

• Model Build and Training: Model construction, and
model training on the datasets. This is one of the
core parts of any MLOps pipeline. This stage includes
the Pure Model training activity. It consumes the
datasets and metric policies from the user and pro-
duces a trained model.

• Model Tuning and Validation: In this stage the models
metrics are calculated using different validation meth-

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Figure 9: Generalized MLOps stages

ods. This is also the stage where most of the ”deci-
sion” activities take place, since it involves compar-
ing the model against the baselines, thresholds and
the previous iterations of the model. This consumes
trained models from the Model Build Training set and
produces their reports using Assessment activity. Au-
tomatic Training activities combine the Model Build
Training and Model Tuning Validation stages into one
stage.

• Model Registration: Every ”Successful” version of the
trained model is registered in a central registry or repos-
itory. This is to keep track of the models and their ver-
sions. This stage consumes a validated model, stores
the model data in a registry and produces a registry
identifier.

• Model Deployment: Model deployment involves set-
ting up the endpoints for accessing the model via some
interface (commonly HTTP interfaces) and deploying
the model and server application on a server. It con-
sumes model and a registry identifier and produces an
infrastructure endpoint.

4. CONCLUSION
In this paper, we discussed MLOps terminology, reviewed

five workflows from MLOPs providers, and summarized the
examined workflows into one general pipeline structure. Fur-
thermore, we investigated the infrastructure of the different
MLOps pipelines starting from data ingesting to model de-
ployment. We then generalize the studied models into one
model with four activities while defining a generic pipeline
with six stages.

In the future, work can be focused on optimizing the in-
terfaces between the activities and coupling of the stages.

5. REFERENCES

[1] Apache Spark™ - Unified Engine for large-scale data
analytics. https://spark.apache.org/.

[2] Data Lakehouse Architecture and AI Company.
https://databricks.com/.

[3] Databricks Feature Store | Databricks on AWS.
https://docs.databricks.com/applications/machine-
learning/feature-store/index.html.

[4] Databricks Machine Learning.
https://databricks.com/product/machine-learning.

[5] MLOps: Continuous delivery and automation
pipelines in machine learning.
https://cloud.google.com/architecture/mlops-
continuous-delivery-and-automation-pipelines-in-
machine-learning.

[6] What Is Amazon SageMaker? - Amazon SageMaker.

[7] F. Almeida and G. Xexéo. Word embeddings: A
survey. arXiv preprint arXiv:1901.09069, 2019.

[8] balapv. How Azure Machine Learning works (v2) -
Azure Machine Learning.
https://docs.microsoft.com/en-us/azure/machine-
learning/concept-azure-machine-learning-v2.

[9] J. Bergstra, D. Yamins, and D. Cox. Making a science
of model search: Hyperparameter optimization in
hundreds of dimensions for vision architectures. In
International conference on machine learning, pages
115–123. PMLR, 2013.

[10] Blackmist. Tutorial: AutoML- train no-code
classification models - Azure Machine Learning.
https://docs.microsoft.com/en-us/azure/machine-
learning/tutorial-first-experiment-automated-ml.

[11] Blackmist. What is automated ML? AutoML - Azure
Machine Learning. https://docs.microsoft.com/en-
us/azure/machine-learning/concept-automated-ml.

[12] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov.
Enriching Word Vectors with Subword Information.
arXiv:1607.04606 [cs], June 2017. arXiv: 1607.04606.

[13] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa,
A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer,
A. Gramfort, J. Grobler, R. Layton, J. VanderPlas,
A. Joly, B. Holt, and G. Varoquaux. API design for
machine learning software: experiences from the
scikit-learn project. In ECML PKDD Workshop:
Languages for Data Mining and Machine Learning,
pages 108–122, 2013.

[14] T. Chen and C. Guestrin. XGBoost: A Scalable Tree
Boosting System. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pages 785–794,
New York, NY, USA, 2016. Association for
Computing Machinery. event-place: San Francisco,
California, USA.

[15] T. Chen and C. Guestrin. XGBoost: A scalable tree
boosting system. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pages 785–794,
New York, NY, USA, 2016. ACM.

[16] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI’04: Sixth
Symposium on Operating System Design and
Implementation, pages 137–150, San Francisco, CA,
2004.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

[17] J. Döring and A. Steffens. An Architecture for
Self-organizing Continuous Delivery Pipelines. SWC.
https://www.swc.rwth-aachen.de/thesis/architecture-
self-organizing-continuous-delivery-pipelines/.

[18] Ed Price. Machine Learning operations maturity
model - Azure Architecture Center.
https://docs.microsoft.com/en-
us/azure/architecture/example-scenario/mlops/mlops-
maturity-model.

[19] K. P. F.R.S. Liii. on lines and planes of closest fit to
systems of points in space. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of
Science, 2(11):559–572, 1901.

[20] C. A. Gomez-Uribe and N. Hunt. The netflix
recommender system: Algorithms, business value, and
innovation. ACM Transactions on Management
Information Systems (TMIS), 6(4):1–19, 2015.

[21] J. A. Hanley and B. J. McNeil. The meaning and use
of the area under a receiver operating characteristic
(roc) curve. Radiology, 143(1):29–36, 1982.

[22] X. He, K. Zhao, and X. Chu. AutoML: A Survey of
the State-of-the-Art. Knowledge-Based Systems,
212:106622, Jan. 2021. arXiv: 1908.00709.

[23] D. Kreuzberger, N. Kühl, and S. Hirschl. Machine
learning operations (mlops): Overview, definition, and
architecture. arXiv preprint arXiv:2205.02302, 2022.

[24] lgayhardt. What are machine learning pipelines? -
Azure Machine Learning.
https://docs.microsoft.com/en-us/azure/machine-
learning/concept-ml-pipelines.

[25] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman,
and A. Galstyan. A Survey on Bias and Fairness in
Machine Learning. arXiv:1908.09635 [cs], Jan. 2022.
arXiv: 1908.09635.

[26] A. N. Modi, C. Y. Koo, C. Y. Foo, C. Mewald, D. M.
Baylor, E. Breck, H.-T. Cheng, J. Wilkiewicz, L. Koc,
L. Lew, M. A. Zinkevich, M. Wicke, M. Ispir,
N. Polyzotis, N. Fiedel, S. E. Haykal, S. Whang,
S. Roy, S. Ramesh, V. Jain, X. Zhang, and Z. Haque.
TFX: A TensorFlow-Based Production-Scale Machine
Learning Platform. In KDD 2017, 2017.

[27] NilsPohlmann. Create and run ML pipelines - Azure
Machine Learning.
https://docs.microsoft.com/en-us/azure/machine-
learning/how-to-create-machine-learning-pipelines.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[29] V. Perrone, H. Shen, A. Zolic, I. Shcherbatyi,
A. Ahmed, T. Bansal, M. Donini, F. Winkelmolen,
R. Jenatton, J. B. Faddoul, B. Pogorzelska,
M. Miladinovic, K. Kenthapadi, M. Seeger, and
C. Archambeau. Amazon SageMaker Automatic
Model Tuning: Scalable Gradient-Free Optimization.
arXiv:2012.08489 [cs, stat], June 2021. arXiv:
2012.08489.

[30] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi.
You Only Look Once: Unified, Real-Time Object

Detection. arXiv:1506.02640 [cs], May 2016. arXiv:
1506.02640.

[31] M. Zaharia, R. S. Xin, P. Wendell, T. Das,
M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica. Apache spark:
A unified engine for big data processing. Commun.
ACM, 59(11):56–65, oct 2016.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Towards an overview of metrics in recent years for
microservice architectures

Savas Köklü
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

savas.koeklue@rwth-aachen.de

ABSTRACT
Microservices are becoming an increasingly preferred soft-
ware architecture pattern style for companies and develop-
ers. Although it offers many solutions to different problems
in the field of software development, this architectural pat-
tern is missing a clear definition. There are still many un-
certainties in measuring the quality of microservice-based
programs and their architecture. Evaluating the quality of
an architecture is particularly important during design and
implementation in order to be able to detect errors early on
and intervene before the MSA can be deployed. For bet-
ter assessment of the quality of a microservice architecture,
models and metrics have been established, discussed and
many advances have been made in this area, especially in
the research of the last years. In this paper we are reaching
towards an overview of the research of recent years and how
it focuses on quality measurement using design documents
or source code of a microservice architecture. For this pur-
pose, we have extracted 16 metrics. For each metric, we give
a description, relate it to quality attributes and match it to
the design documents or source code of an architecture. We
present these characteristics in two tables as an overview for
researchers and microservice practitioners.

Keywords
microservice architecture, microservice, metrics for microser-
vice architecture, quality measurement microservice-based
applications

1. INTRODUCTION
In 2020, a report published by O’Reilly found that mi-

croservice architecture is becoming increasingly popular in
the software industry, with about 77% of companies using
microservice architectures [23]. Although it gained a lot of
interest, there is still no clear definition for this architec-
ture in the literature. However, in this paper I follow the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2022 RWTH Aachen University, Germany.

definition provided by Dragoni et al. [13] that a microser-
vice architecture (MSA) is a collection of small services with
specific tasks that interact through shared communication
channels to achieve business goals. According to the authors
of [13] the main advantages of MSAs are services with high
granularity, support for different technologies, easy swap-
ping between services, a high fault tolerance and decentral-
ized information.

If an architecture is not properly designed, many disad-
vantages can arise. Kalske et al. argue that the MSA could
become too complex than necessary or its maintenance could
take longer than appropriate [19]. As an example, the au-
thors state that instead of using similar or same technologies,
different ones could be used, so that changes to individual
services and thus also to the MSA could take longer. The
advantages mentioned above might not be used to their full
extent or even be reversed. Creating a system and its ar-
chitecture is a very difficult and important task, especially
if the project can become very large [12]. MSAs can con-
sist of hundreds or thousands of services [10]. Before the
system can be developed, the architecture must be carefully
designed and planned. During implementation, attention
must be paid to ensure that the architecture is not changed
in the wrong way [12].

Bogner et al. identified in 2017 in [9] that there was a lack
of research on measuring the quality of MSAs at that time.
With this work, I want to investigate in which direction the
research of the last years on metrics of MSAs is developing.
For this purpose, I do a lightweight systematic literature
review to answer the following research question RQ1:

• What metrics are present in the research of recent
years for the design documents or source code of a
MSA and for which quality attributes are these met-
rics used?

As a result, I give an overview of the found metrics.
The rest of the work is structured as follows. Section two

begins by setting out the framework for the rest of the paper
and explaining basic concepts and terms. Then, in section
three, I look at research that is close to mine. In section four,
I describe my approach and the design of the study. The re-
sult and discussion comes in section five. Then I close the
study with a conclusion and ideas for future work.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

2. BACKGROUND

2.1 Software quality and quality attributes
The ISO standard 9000 defines quality as the ”degree to

which a set of inherent characteristics of an object fulfils
requirements”. Objects can be goods, raw materials, but
also services, work processes and the content of designs and
concepts [16]. To measure the fulfilment of requirements and
thus the quality of an MSA, I measure the quality attributes
of it. To define the quality attributes, I refer to the ISO/IEC
standard 25010 [17].

The ISO/IEC standard 25010 [17] defines a model that
specifies the quality attributes of a software product. It di-
vides software product quality into the quality attributes
functional suitability, performance efficiency, compatibility,
usability, reliability, security and maintainability. Each of
these quality attributes is broken down into smaller quality
factors. Because these quality factors are granular and spe-
cific, they enable measurement of the quality attributes and
thus the quality of a software product. For example, main-
tainability as a quality attribute is defined in the standard
as ”the degree of effectiveness and efficiency with which a
product or system can be modified to improve it, correct it
or adapt it to changes in environment, and in requirements”.
Maintainability is subdivided into the quality factors modu-
larity, reusability, analysability, modifiability and testability.

To answer the research question RQ1 and thus get a better
overview of the found metrics, I assign them to the quality
attributes from the ISO/IEC standard 25010 [17].

2.2 Software architecture
By focusing on a system’s ”big picture” in a software ar-

chitecture, software architects can abstract away the finer
details of implementation and other development parts [25].
The system’s software architecture can be defined as fol-
lows: ”The structure or structures of the system, which com-
prise software components, the externally visible properties
of those components, and the relationships among them”
[7]. An architectural description can include multiple views
that emphasize different aspects of a system, such as logi-
cal, implementation, deployment, or process views, as well
as perspectives from different stakeholders, such as develop-
ers, end-users, business analysts and project managers. For
example, The implementation view models the source code
of a software architecture and typically shows technical com-
ponents with their properties and relationships to each other
[21]. In this work, I focus on the architecture information
described in higher-level structures with reference to the im-
plementation view. Thus, I consider the software architec-
ture of a microservice-based application as a component and
connectors graph. I see microservices as components that
represent system functionality, units of computation or data
storage, and connectors link them together. Such a graph
abstracts the to-be-implemented source code of an MSA. A
component consists of more technical components or classes
and is characterised by the fact that it can be deployed in-
dependently and thus has no in-memory connection to any
other component of the MSA. The components offer request
possibilities to the other components of the MSA [33].

2.3 Metrics
A key need in all engineering fields is right measurement,

and for software engineering it is the same [15]. According to
the IEEE glossary, a metric is a ”quantitative measure of the
degree to which a system, component, or process possesses a
given attribute”. In the definition it refers to quality metrics
which are defined as a ”quantitative measure of the degree
to which an item possesses a given quality attribute”. A
quality metric is a ”function whose inputs are software data
and whose output is a single numerical value that can be
interpreted as the degree to which the software possesses a
given quality attribute”. Thus, in the terms of the IEEE
definition of a quality metric, a software engineering metric
is the mapping of software or a process of software devel-
opment to a vector or scalar quantity [1]. Often, a metric
includes an understanding of his representation [21].

In the context of my work, I use the source code or design
documents of a software architecture of a microservice-based
application as input for a metric and get a scalar or vector
size for it. I see the source code of a software architecture
as the concrete implementation of the application. To de-
fine design documents, I refer to the IEEE standard 1471
definition of the design of an architecture. The design of
an architecture is described as a ”collection of products for
documenting an architecture” [2]. The design documents
could, for example, have been created using an architecture
description language such as UML [21].

3. RELATED WORK
There are many studies related to the quality measure-

ment of software architectures, such as by Coulin et al. [12]
and by Stevanetic and Zdun [30]. In [12] Coulin et al. col-
lect metrics to measure the quality of the design of a soft-
ware architecture and in [30] Stevanetic and Zdun consider
also the implementation. Five quality attributes were found
by Coulin et al., maintainability, extensibility, simplicity,
reusability and performance, and a wide range of metrics
to measure them. I do not consider software architectures
in general, but restrict myself to microservice architectures.
Also, the paper [12] were published in 2019 and [30] in 2015,
so I review newer work.

Research papers that use metrics to evaluate microservice
architectures are for example [4] by the authors Al-Debagy
and Martinek or [27] written by Pautasso and Wilde. Al-
Debagy and Martinek collect in [4] metrics for evaluating
the design of microservice architectures. They focus on co-
hesion, granularity and complexity and found some similar
metrics like the number of operations or lack of cohesion
metric (LCOM) as I did. However, these studies mostly fo-
cus on one quality attribute, such as maintainability, and do
not attempt to provide an overview.

Another area when it comes to microservice architectures
is the consideration of patterns. There is a lot of research
around collecting and analysing patterns, as Ntentos et al.
in [24] describe. In the work [24] metrics for assessing archi-
tecture conformance to microservice architecture patterns
and practices are collected. In this paper, I do not look
at specific patterns and, how they are used in an architec-
ture, but I give an overview of general metrics for measuring
quality.

Furthermore, there are papers for example by Cojocaru et
al. [11] and [33] written by Zdun et al. that focus on the eval-

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Table 1: Overview of the Extracted Metrics
Metrics Name Measurement Object Quality Attributes Reviewed Cited
Lines of Code Source code maintainability [11] [9]
Lines of Code Average Source code maintainability [11]
Number of Open Interfaces Source code, Design* maintainability [3],[11] [14]
Number of Request Option Usages Source code, Design* maintainability [11] [14]
Ratio of Dependencies Source code maintainability [11] [8]
Number of Technologies Used Source code, Design* maintainability [11] [14]
Number of Asynchronous Dependencies Source code, Design* maintainability [11] [14]
Resiliency to Failure Source code reliability* [11] [5]
Request Options Multiplied Methods Source code, Design* maintainability [11]
Stateless Source code, Design* maintainability, reliability* [11]
Number of Stateless Source code, Design* maintainability, reliability* [11]
GitHub Stars Source code maintainability [11]
Number of Parameters Source code, Design* maintainability [3]
Parameters Used Source code, Design* maintainability [3]
Number of Parameters Used Maximum Source code, Design* maintainability [3]
Lack of Cohesion Metric (LCOM) Source code, Design* maintainability [3]

uation of microservice architectures after the decomposition
from large tightly coupled designed applications. Compared
to Zdun et al., Cojocaru et al. present the smallest subset of
the metrics available in the literature to evaluate microser-
vice architectures generally in the industry. Most of these
focus on maintainability. I have also adopted many of the
metrics found by Cojocaru et al.. However, as the study is
from 2019, I have also found other metrics.

4. STUDY DESIGN
To answer the research question RQ1, this study was con-

ducted with the guidelines of [20]. I have made an effort to
make it reproducible and transparent.

4.1 Search and selection process
I used IEEE as a search platform for my research. It is one

of the most important computer science research databases.
My query was the following:

(”All Metadata”:”microservice* architecture*” OR
”All Metadata”:”microservice* application*”)

AND (”All Metadata”:metric*)
AND (”All Metadata”:evaluation OR ”All Meta-

data”:quality OR ”All Metadata”:assessment)
AND (”Index Terms”:”microservice* architecture*” OR

”Index OR ”Index Terms”: ”microservice applica-
tion”OR ”Index Terms”: ”microservice applications”
OR ”Index Terms”: ”microservices application” OR
”Index Terms”: ”microservices applications”)

AND (”Index Terms”:metric OR ”Index Terms”:metrics)

The search found twelve papers. Due to limited scope of
this work, I included papers that met the following criteria:

• the publication date is after 2018

• the paper contains metrics about the source code or
design documents of a MSA

After applying the two selection criteria, I had selected
two papers for further processing. Based on the first cri-
terion, one paper from 2017 and one from 2018 were not

included and based on the second criterion, I excluded eight
other papers. Due to the limited extent of this work, I did
not make any further attempts to select other papers, for ex-
ample, I did not examine the citations of the papers I found.
For the same reason, I did not perform a quality assessment
of the two selected papers.

4.2 Data extraction
The two papers that resulted from the selection process

contained 16 different metrics that can be applied to the
source code or design documents of a MSA. I summarised
the extracted information about these metrics in the tables
1 and 2. Table 1 gives an overview of the metrics found
and their properties, and table 2 gives a description of the
metrics. The columns of the two tables are the following:
Metrics Name: The name of the metric presented in the
row of the table. If the paper presenting the metric has not
named it, then I have meaningfully given it a name consid-
ering the extracted information.
Measurement Object: Indicates whether the metric can be
applied to the source code or the design documents of an
architecture. Because of size constraints, I have only used
the word design in the table instead of design documents. In
addition to the application mentioned in the papers, I have
also added other possible applications of the metric. These
added applications are based on my own experience and are
marked with the symbol *.
Quality Attributes: For each metric, I have taken the qual-
ity attributes from the papers and added some of my own
consideration. The additional added quality attributes are
marked with *.
Reviewed: The papers resulted from the selection process
that describe the metric are listed here.
Cited: If the metric from the two selected papers was cited
from another source, I have indicated those sources here.
Description: Extracted information from the two papers
found.

5. RESULTS AND DISCUSSION
As a result, to answer the research question RQ1, I build

table 1 and 2 as an overview of MSA metrics that have
been discussed in the literature in recent years. I selected

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Table 2: Metrics Description
Metrics Name Description
Lines of Code The lines of code are incremented to measure the size of the architecture

or a microservice.
Lines of Code Average The lines of code of the microservices in the microservice architecture

are incremented and then averaged. This metric can be used, for ex-
ample, to find large microservices in the microservice architecture and
possibly split them into several.

Number of Open Interfaces The request possibilities provided by the microservices in a microser-
vice architecture are listed. These can be for use in their microservice
architecture as well as for other applications. The level of detail of the
request, i.e. whether to count parameters that are passed in a request,
can be decided at one’s discretion. If the number of operations is only
considered and it exceeds 10, the microservice should be split.

Number of Request Option Usages The total frequency with which the provided request options from a
microservice are used by other microservices.

Ratio of Dependencies The number of request options provided by a microservice is divided by
the total frequency with which these request options are used by other
microservices in the code. Thus, it shows the ratio of the two quantities
and calculates the degree of coupling for a microservice.

Number of Technologies Used The various technologies used to implement a microservice are counted
up. By technologies is meant which languages and frameworks are used,
but other technologies can also be included at your discretion. A high
count negatively influences maintainability.

Number of Asynchronous Dependencies The number of request options a microservice uses while other code of
it can be executed.

Resiliency to Failure The metric can only take the value True or False. If an error occurs,
the microservice is able to restart if necessary and call up the last state
before the error.

Request Options Multiplied Methods The number of request options provided by a microservice is multiplied
by the number of methods needed to implement it. The higher the
result, the more granular the microservice is. The degree of granularity
must not be too high but not too low in order to positively influence
maintainability.

Stateless It is specified whether a microservice is stateless. A stateless appli-
cation does not change its behaviour with incoming requests. Such
Stateless applications can then be enlarged better, e.g. by duplicating
the microservice.

Number of Stateless In the table, the metric Stateless is listed. This is the number of mi-
croservices for which Stateless is true. Microservice architectures that
have many stateless microservices are more scalable and thus more
maintainable.

GitHub Stars The code of microservices or the entire architecture is published publicly
on GitHub. Users can then reuse and rate the code there. This rating
of the individual users is summarized by GitHub into a star rating and
thus indicates the reusability.

Number of Parameters All unique parameters that can be used for a request option provided
by a microservice are counted. The larger the value, the potentially
larger the microservice and thus more potential negative impact on
maintainability.

Parameters Used For each request possibility, the supported parameters are summed up.
The larger the value at the end, the potentially larger the microservice
and thus more potential negative impact on maintainability.

Number of Parameters Used Maximum For a microservice, the number of request possibilities is multiplied
by the previously defined Number of Parameters metric. The result
represents the maximum that the Parameters Used metric can have,
which is the case if all request possibilities provide the same parameters.

Lack of Cohesion Metric (LCOM) The metric indicates how the operations or request options in a mi-
croservice relate to each other in terms of functionality. The metrics,
Parameters Used and Number of Parameters Used Maximum, are given
in the table. Parameters Used is divided by Number of Parameters Used
Maximum and then 1 minus the result is calculated. The final result
should be between 0 and 0.8 otherwise it means a bad cohesion for the
microservice and it should be split. A bad cohesion also affects the
maintenance badly.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

two relevant papers out of the ten. In total, I found 16
metrics of which 13 metrics are just for the measurement of
maintainability, one just for the measurement of reliability
and two just for the measurement of maintainability and
reliability. All metrics I found were applicable to the source
code as referenced in the two papers. For ten of the 16
metrics, I identified that they could potentially be applied
to given design documents.

Eight out of the ten papers I found with my query were
about analysing an MSA in deployment and only two fo-
cused on the source code of an MSA. This coincides with the
findings of other authors in papers published before 2019 like
Alshuqayran et al. in [6] or Pietrantuono et al. in [28]. They
have come to the same conclusion as I have, that the focus
of the research is on the analysis of an MSA at runtime. Al-
shuqayran et al. [6] conducted a systematic mapping study
of microservice architectures in 2016. Their research focused
on the years 2014 to 2016. Before 2014, the term MSA was
not widely used in the literature [26]. They discovered that
in 33 papers found, 31 discussed the topics of ”deployment”,
”cloud”and ”performance”. As described in 2018 by Pietran-
tuono et al. [28], many papers look at runtime properties
of MSAs. Using tools such as AWS Cloud Watch, it is very
popular to monitor performance between service invocations
and runtime errors [29]. Too few papers are published that
present metrics on the source code of an MSA, and in par-
ticular there was no metric described in the found papers
for analysis of design documents.

The metrics found were almost all about the measurement
of maintainability and there were hardly any for the other
quality attributes from the ISO/IEC standard 25010 [17].
These findings coincide with the findings of Coulin et al.
[12] for software architecture metrics in general. Thus, most
of the metrics they found focused on the maintainability, in
particular the coherence and coupling, of a software architec-
ture. Coulin et al. [12] reasoned that maintainability is the
most important quality attribute of a software architecture
and that all others depend on it. When looking at MSAs,
Valdivia et al. also states that maintainability is mainly
measured in the existing literature [31]. I can only agree
with Coulin et al. [12] that maintainability is the most im-
portant quality attribute of a software architecture and thus
also of an MSA. For example, maintainability measures the
granularity of an MSA with the quality factor modularity.
If maintainability is very high, the structure of the MSA
itself, i.e. how the microservices interact individually and
with the others, is also well constructed [18]. Furthermore,
maintainability is often a synonym for sustainability, as it
allows software programs to be updated and used for many
years [22]. However, I think that this is not a reason why
the other quality attributes have hardly been researched in
recent years. The research needs to be more extensive, be-
cause it is also important to be able to measure the quality
of an MSA through the other quality attributes. For exam-
ple, it is relevant to consider performance efficiency before
deploying the MSA to prevent poor performance early on.
If it later becomes apparent that a poor architecture is the
reason for insufficient performance, then this can only be
repaired with great difficulty [32].

6. CONCLUSION AND FUTURE WORK
In software development, architecture is a key factor [12].

With this paper, I have conducted a lightweight systematic
literature review towards finding out which metrics for mea-
suring which quality attributes of a microservice architec-
ture have been discussed in recent years. Out of ten papers
I found with my query, only two contained metrics for the
source code or design documents of a microservice archi-
tecture. From these two papers I extracted 16 metrics. The
metrics were mainly focused on measuring the maintainabil-
ity of a microservice architecture and I hardly found any for
the other quality attributes. Furthermore, the metrics from
the papers were only mentioned for the application on the
source code of a microservice architecture. My result can be
used as a starting point to get an overview of MSA metrics
present in the literature of recent years.

Research in the future can focus on doing a more com-
prehensive systematic literature review, so that the search
can be extended to other platforms such as ACM. In ad-
dition, papers could also be reviewed before 2019 to build
a complete catalogue of metrics. Finally, it is necessary to
find more metrics for source code or especially design docu-
ments, so that quality attributes other than maintainability
of a microservice architecture can be measured.

7. REFERENCES
[1] IEEE standard glossary of software engineering

terminology. IEEE Std 610.12-1990, pages 1–84, 1990.

[2] IEEE recommended practice for architectural
description for software-intensive systems. IEEE Std
1471-2000, 2000.

[3] O. Al-Debagy and P. Martinek. Extracting
microservices’ candidates from monolithic
applications: Interface analysis and evaluation metrics
approach. In 2020 IEEE 15th International
Conference of System of Systems Engineering (SoSE),
pages 289–294, 2020.

[4] O. Al-Debagy and P. Martinek. A metrics framework
for evaluating microservices architecture designs.
Journal of Web Engineering, pages 341–370, 2020.

[5] N. Alshuqayran, N. Ali, and R. Evans. A systematic
mapping study in microservice architecture. In 2016
IEEE 9th international conference on service-oriented
computing and applications (SOCA), pages 44–51.
IEEE, 2016.

[6] N. Alshuqayran, N. Ali, and R. Evans. A systematic
mapping study in microservice architecture. In 2016
IEEE 9th International Conference on
Service-Oriented Computing and Applications
(SOCA), pages 44–51, 2016.

[7] L. Bass, P. Clements, and R. Kazman. Software
architecture in practice. Addison-Wesley Professional,
2003.

[8] J. Bogner, S. Wagner, and A. Zimmermann.
Automatically measuring the maintainability of
service- and microservice-based systems: A literature
review. In Proceedings of the 27th International
Workshop on Software Measurement and 12th
International Conference on Software Process and
Product Measurement, IWSM Mensura ’17, page
107–115, New York, NY, USA, 2017. Association for
Computing Machinery.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

[9] J. Bogner, S. Wagner, and A. Zimmermann.
Automatically measuring the maintainability of
service-and microservice-based systems: a literature
review. In Proceedings of the 27th International
Workshop on Software Measurement and 12th
International Conference on Software Process and
Product Measurement, pages 107–115, 2017.

[10] J. Bogner, S. Wagner, and A. Zimmermann. Towards a
practical maintainability quality model for service-and
microservice-based systems. In Proceedings of the 11th
European Conference on Software Architecture:
Companion Proceedings, pages 195–198, 2017.

[11] M.-D. Cojocaru, A. Uta, and A.-M. Oprescu.
Attributes assessing the quality of microservices
automatically decomposed from monolithic
applications. In 2019 18th International Symposium
on Parallel and Distributed Computing (ISPDC),
pages 84–93, 2019.

[12] T. Coulin, M. Detante, W. Mouchère, and F. Petrillo.
Software architecture metrics: a literature review.
arXiv preprint arXiv:1901.09050, 2019.

[13] N. Dragoni, S. Giallorenzo, A. L. Lafuente,
M. Mazzara, F. Montesi, R. Mustafin, and L. Safina.
Microservices: Yesterday, Today, and Tomorrow,
pages 195–216. Springer International Publishing,
Cham, 2017.

[14] T. Engel, M. Langermeier, B. Bauer, and A. Hofmann.
Evaluation of microservice architectures: a metric and
tool-based approach. In International Conference on
Advanced Information Systems Engineering, pages
74–89. Springer, 2018.

[15] N. Hina, H. Babur, H. AbuBakar, W. Tamoor, and
R. Nasim. Software metrics: Investigating success
factors, challenges, solutions and new research
directions. INTERNATIONAL JOURNAL OF
SCIENTIFIC TECHNOLOGY RESEARCH
VOLUME 9, 2020.

[16] ISO 9000. Standard, International Organization for
Standardization, Geneva, CH, 2015.

[17] ISO/IEC 25010. Standard, International Organization
for Standardization, Geneva, CH, 2011.

[18] ISO/IEC 25010. ISO/IEC 25010:2011, systems and
software engineering — systems and software quality
requirements and evaluation (square) — system and
software quality models, 2011.

[19] M. Kalske, N. Mäkitalo, and T. Mikkonen. Challenges
when moving from monolith to microservice
architecture. In International Conference on Web
Engineering, pages 32–47. Springer, 2017.

[20] S. Keele et al. Guidelines for performing systematic
literature reviews in software engineering. Technical
report, Technical report, Ver. 2.3 EBSE Technical
Report. EBSE, 2007.

[21] J. Ludewig and H. Lichter. Software Engineering –
Grundlagen, Menschen, Prozesse, Techniken / Jochen
Ludewig ; Horst Lichter. 01 2013.

[22] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng.
Decoupling level: a new metric for architectural
maintenance complexity. In 2016 IEEE/ACM 38th
International Conference on Software Engineering
(ICSE), pages 499–510. IEEE, 2016.

[23] A. Muaz, M. E. Rana, and V. A. Hameed. A

framework for catering software complexity issues
using architectural patterns. In 2021 Third
International Sustainability and Resilience
Conference: Climate Change, pages 554–561, 2021.

[24] E. Ntentos, U. Zdun, K. Plakidas, S. Meixner, and
S. Geiger. Metrics for assessing architecture
conformance to microservice architecture patterns and
practices. In International Conference on
Service-Oriented Computing, pages 580–596. Springer,
2020.

[25] P. Oreizy, M. Gorlick, R. Taylor, D. Heimhigner,
G. Johnson, N. Medvidovic, A. Quilici, D. Rosenblum,
and A. Wolf. An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems and
their Applications, 14(3):54–62, 1999.

[26] C. Pahl and P. Jamshidi. Microservices: a systematic
mapping study. CLOSER (1), pages 137–146, 2016.

[27] C. Pautasso and E. Wilde. Why is the web loosely
coupled? a multi-faceted metric for service design.
pages 911–920, 01 2009.

[28] R. Pietrantuono, S. Russo, and A. Guerriero.
Run-time reliability estimation of microservice
architectures. In 2018 IEEE 29th International
Symposium on Software Reliability Engineering
(ISSRE), pages 25–35, 2018.

[29] C. Richardson. Application metrics.
http://microservices.io/patterns/

observability/application-metrics.html.
Accessed: 2022-06-07.

[30] S. Stevanetic and U. Zdun. Software metrics for
measuring the understandability of architectural
structures: A systematic mapping study. In
Proceedings of the 19th International Conference on
Evaluation and Assessment in Software Engineering,
EASE ’15, New York, NY, USA, 2015. Association for
Computing Machinery.

[31] J. A. Valdivia, X. Limón, and K. Cortes-Verdin.
Quality attributes in patterns related to microservice
architecture: a systematic literature review. In 2019
7th International Conference in Software Engineering
Research and Innovation (CONISOFT), pages
181–190, 2019.

[32] L. G. Williams and C. U. Smith. Performance
evaluation of software architectures. In Proceedings of
the 1st International Workshop on Software and
Performance, WOSP ’98, page 164–177, New York,
NY, USA, 1998. Association for Computing
Machinery.

[33] U. Zdun, E. Navarro, and F. Leymann. Ensuring and
assessing architecture conformance to microservice
decomposition patterns. In International Conference
on Service-Oriented Computing, pages 411–429.
Springer, 2017.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

http://microservices.io/patterns/observability/application-metrics.html
http://microservices.io/patterns/observability/application-metrics.html

Modelling portability and maintainability in Microservice-
based applications

Merzough Badry Münker
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany
badry.muenker@rwth-

aachen.de

Jurgen Abazi
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany
jurgen.abazi@rwth-

aachen.de

ABSTRACT
The development of Microservice applications brings new
challenges for quality assurance. Especially as Microservice
architecture (MSA) continues to spread in professional soft-
ware development, it is necessary to ensure MSA’s long-term
maintainability and portability. Currently, there is little re-
search on the influence of MSA on quality attributes and on
how maintainability and portability can be measured and
evaluated in MSA. This paper surveys the literature’s pro-
posed metrics for maintainability and portability. A map-
ping for Quality-Models from service-oriented architecture
(SOA) and service-Based Architecture (SBS) to MSA is pro-
posed. In addition, a visual representation is presented to il-
lustrate the influence of quality factors on quality attributes.
As a result, it can be stated that this field has not yet been
sufficiently explored.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.8 [Software Engi-
neering]: Metrics—maintainability, portability

Keywords
Microservices, Maintainability, Portability, SLR

1. INTRODUCTION
In recent years, Microservice Architecture has gained pop-

ularity as a software architecture pattern and the adop-
tion and success has grown rapidly [9] [20]. Martin Fowler
and James Lewis have defined the Microservice architectural
style ”as an approach to developing a single application as
a suite of small services, each running in its own process
and communicating with lightweight mechanisms, often an
HTTP resource API”[9]. Additionally, the terms Portability
and Maintainability refer to the quality attributes defined in
ISO/IEC 25010 standard, which defines a high-level quality

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2022 RWTH Aachen University, Germany.

model for software products. The quality characteristics de-
fined by the model are the basis of the research, which aims
to study how they can be defined and modeled in Microser-
vice Architecture. The ISO/IEC 25010 standard [13] defines
portability and maintainability as followed:

• Portability as ”the degree of effectiveness and efficiency
with which a system, product, or component can be
transferred from one hardware, software, or other op-
erational or usage environment to another.”

• Maintainability as ”the degree of effectiveness and effi-
ciency with which a product or system can be modified
to improve it, correct it or adapt it to changes in the
environment and the requirements.”

The quality model defined in the ISO/IEC 25010 standard
determines which quality characteristics will be considered
when evaluating a software product’s properties. The model
is used as the basis for defining portability and maintainabil-
ity, as it is widely accepted by both industry experts and
academic researchers [7].

The paper aims to analyze and model maintainability and
portability in the context of Microservice-based applications.
The Systematic Literature Review (SLR) methodology was
applied to identify and synthesize research regarding the
topic to achieve the goal. Based on the extracted data, an
overview of the measurement of portability and maintain-
ability in the context of the MSA was provided. This paper’s
primary contribution is to aggregate the existing metrics for
maintainability and portability and propose a model to mea-
sure the quality attributes.

Section 2 provides background information necessary to
better understand the context of the paper. Section 3 out-
lines studies related to the topic of this paper. Section 4
defines the research questions and explains in detail the re-
search method used in the study. Section 5 presents the
findings and the results of the study and answers the speci-
fied research questions. Section 6 discusses the results in the
context of existing research. Section 7 gives a conclusion and
outlook on further research.

2. BACKGROUND
Microservice architecture (MSA), service-oriented archi-

tecture (SOA) and service-based architecture (SBA) are of-
ten overloaded, with each term having multiple definitions
and variations [22]. In the following subsections, we present
general definitions.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

2.1 SBS, SOA and MSA
SBS is a type of architectural pattern that, unlike mono-

lithic systems, strongly emphasizes service as the primary
architectural component of a system. Both MSA and SOA
are often considered special types of service-based architec-
tures. A common characteristic of these architectures is that
they are distributed. [27]

SOA is a design approach where multiple services collab-
orate to provide some end set of capabilities. A service here
typically means an entirely separate operating system pro-
cess. The communication between these services is done by
calls over a network and not by method calls within a process
boundary. [27]

MSA was described by James Lewis and Martin Fowler
as ”an approach to developing a single application as a suite
of small services, each running in its own process and com-
municating with lightweight mechanisms, often an HTTP
resource API. These services are built around business capa-
bilities and are independently deployable by fully automated
deployment machinery. There is a bare minimum of central-
ized management of these services, which may be written
in different programming languages and use different data
storage technologies” [23].

2.2 Comparison
An SBS is a superordinate concept for SOA and MSA.

Therefore, an SOA or MSA can be understood as an SBS
specialization. Similar to the definition of SOA and MSA,
the distinction between the concepts are unclear. [23]

One possible generalization is to regard MSA as a sub-
form of SOA with additional restrictions. MSA neglect cen-
tral components such as the enterprise service bus or the
business process-centric service choreography. Nevertheless,
complement the latest implementation findings such as con-
tinuous deployment (CD) and DevOps. From this, the fol-
lowing relationship between the terminologies can be derived
1

Figure 1: relation between SBS, SOA and MSA

With this background, it is possible to map selected met-
rics for SBS and SOA to MSA. When mapping metrics from
SOA to MSA, all metrics related to exclusive SOA concepts
such as the Enterprise Service Bus are omitted.

3. RELATED WORK
Shanshan Li et al. did a systematic literature review

on 2020 regarding quality attributes of MSA [19]. How-
ever, maintainability and portability were not among the
attributes studied by the paper.

The first purpose-built quality model for maintainability
metrics for SBS was created by Bogner et al [4] [3] [6]. In [4]
and [3], they summarized existing literary metrics for OO
and SBS. In [3], a notation is introduced to represent the
influence of a quality factor on a quality attribute. Bogner
et al. [3] agrees with Cardarelli [6] that the area of quality
model for maintainability metrics needs further research and
validation.

H. Ghandorh did a systematic literature review, A. Noor-
wali, A. B. Nassif, L .F. Capretz and R. Eagleson in 2020

regarding software portability and the metrics proposed to
measure it [10]. The paper offers preliminary results in an-
alyzing portability in a broader scope but is not focused on
MSA. It must be noted that research on portability of MSA
is lacking.

4. RESEARCH METHOD
The Systematic Literature Review methodology was fol-

lowed according to the guidelines defined by Kitchenham et
al.[14]. This section explains the following steps in detail.

4.1 Research Question
To obtain precise and suitable models of portability and

maintainability, we formulated 2 research questions:
RQ1 - What research studies have been done on portability

and maintainability in the context of Microservice, Service-
Based, and Serviced-Oriented Architecture? Answering this
question provides an understanding of the current state of
research regarding the two quality attributes of interest.
This question is an important step that can lead to an an-
swer to the second research question.

RQ2 - How to model portability and maintainability in the
context of the quality of Microservice Architecture? This
is the central research question of this paper. It aims to
explore the results of the first research question and use
them as the foundation for developing precise, concise, and
correct models of the quality attributes of portability and
maintainability.

4.2 Search and Selection Process

4.2.1 Initial Search
An automatic search was done on three of the biggest

scientific databases in Software Engineering, namely ACM
Digital Library, IEEE Xplore, and Scopus. The meta-search
string used as the basis in the automatic search of the dif-
ferent databases is detailed on listing 1:

(MSA OR ”m i c r o s e r v i c e ” OR ”micro−s e r v i c e ”
OR ”m i c r o s e r v i c e ” OR SBA OR SBS OR
”s e r v i c e −based ” OR ”s e r v i c e −based ” OR soa
OR ”s e r v i c e −o r i en t ed ” OR
”s e r v i c e −o r i en t ed ”) AND (por tab l e ∗ OR
mainta inabi ∗)

Listing 1: The Meta Query String

The search string was designed to limit the search space to
MSA, SOA, and SBS results and either portability or main-
tainability (or both). In the initial phase of the research,
the query was limited to Microservices only. However, the
search space was broadened due to low results, especially re-
garding portability. The string was then updated to match
the specific syntax of each database that it was used on. Fi-
nally, no time-span restrictions on the publication date of
the results were placed; therefore, all papers available at the
time of running the search string were considered.

4.2.2 Impurity and Duplicate Removal
The automatic search returned results that were not re-

search papers. Such results were manually removed. In addi-
tion, papers that shared the same title, publication date, and
author were considered duplicates and manually removed
during this phase.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

4.2.3 Inclusion/Exclusion Criteria
Inclusion and exclusion criteria were defined and applied

to select the appropriate studies. Such selection criteria are
outlined as follows:

Inclusion Criteria:

• I1 - Paper covers maintainability or portability in the
context of Microservices, Service-Oriented or Service
Based Architecture.

• I2 - Paper offers metrics for measuring maintainability
or portability.

• I3 - Paper suggests approaches for modeling maintain-
ability or portability.

Exclusion Criteria:

• E1 - Paper is not written in English.

• E2 - Paper is not available as full-text.

• E3 - Paper only mentions Microservice, Service Ori-
ented, or Service Based Architecture in keywords or as
an example.

• E4 - Maintainability and portability are mentioned but
not further analyzed.

• E5 - Paper focuses on the application of a newly intro-
duced architecture or framework to improve maintain-
ability and portability.

4.2.4 Combination and Snowballing
After the selection process, all the remaining studies were

combined together. However, because of the small number
of remaining results, a snowballing process was performed to
increase the set of potential studies that are relevant to the
topic. The studies were read in detail, and their references
were explored to find potentially interesting papers. The fi-
nal set of documents is shown in table 1 in the appendix of
this paper. The results of the SLR give an outlook on the
current state of research regarding portability and maintain-
ability and additionally serve the purpose of answering the
first research question.

4.2.5 Data Extraction
In the last phase of collecting scientific works, the defini-

tion of attributes was investigated. The focus was on how
an attribute influences the maintainability or portability of
MSA. In addition, different ways were determined around
the attributes to specify. Finally, in the absence of research,
an attempt was made to create a mapping from a higher-
level application structure to MSA. For example, from SBSs
or SOA.

5. RESULTS AND FINDINGS
This section presents the results and findings from the lit-

erature review conducted. In the first subsection, a formal
description of the relationship between quality attributes
and quality factors is presented. In the second subsection,
a quality model of maintainability based on the reviewed
studies is presented, while a quality model of portability is
given in the third subsection. Since there are no metrics for
MSA, the metrics for SBS and SOA are mapped to MSA.
This mapping is possible because, as described in section 2,
an MSA is a specialization of SOA or SBS.

5.1 Formal description
Bogner et al. [3] provide the first formal description of

the relationship and influence between a quality factor and
quality attribute. In the formulation, characteristics are de-
fined as product factors of a combination of an entity and a
quality factor that affects a quality attribute. In the context
of their work, the quality attribute was maintainability. The
proposed notation is as follows:

[Entity|FACTOR]
+|−−−−→ [QualityAttribute]

With a concrete example from Bogner et al.:

[Function|COMPLEXITY]
−−→ [Analyzability]

The given example is interpreted as: The quality factor
complexity of a function has a negative effect on the quality
attribute analyzability.

5.1.1 Visual representation
Based on Bogner’s formal description, we propose a visual

representation in the form of a tree:

• The root node represents the quality attribute.

• The direct children of the root node represent a quality
factor of the quality attribute.

• The direct children of the quality factor node represent
a metric of the quality factor.

• If the quality factor negatively affects the quality at-
tribute, the node has a dashed line.

• If the quality factor influences the quality attribute
positively, the node has a solid line.

The figure 2 shows an abstract example.

Figure 2: Abstract example for a quality model

5.2 Maintainability metrics for MSAs
Characteristics such as granularity, code maturation, size,

complexity, coupling, and cohesion are frequently cited in
literature dealing with maintainability. One of the first re-
searchers to propose a quality model for maintainability of
SBSs is Bogner et al. [6]. An overview and the relation
of quality factors to the quality attribute maintainability is
given in figure 3.

5.2.1 Granularity
Definition: Granularity is described as the size and the

degree of decomposition of the services of a Service-Based
System (and subsequently Microservice Architecture). Tra-
ditionally, the metric used to describe the granularity of sys-
tems is Lines of Code (LOC). However, because of the in-
creased technological heterogeneity found in SBSs and MSAs,
the metric is of little interest. Therefore a few other met-
rics are often suggested in studies more fitting to SBSs and
MSAs, namely Weighted Service Interface Count and Com-
ponent Balance.

[MSA|GRANULARITY]
+−→ [Maintainability]

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Figure 3: Quality Model for Maintainability

Weighted Service Interface Count (WSIC): WSIC(S) de-
notes the count of exposed interface operations of a service
S. Additionally, the interface operations can be weighted in
two ways: by their number or by the granularity of param-
eters with a default weight of 1.

Component Balance (CB): Component Balance defines the
appropriateness of granularity at a system level. It can be
defined as the product of two different measurements, specif-
ically:

• System Breakdown (SB) which creates a value in the
range [0, 1] based on the count of top-level frameworks.

• Component Size Uniformity (CSU) which creates a
value in the range [0, 1] based on the Gini Coefficient
of component volumes.

Studies often use Lines of Code to measure granularity
which, as mentioned before, is not optimal due to microser-
vice architectures being heterogeneous systems. Therefore,
studies such as Bouwers in 2011 [5] suggest using Weighted
Service Interface Count (WSIC). Additionally, CB must be
initialized with an upper bound worst number of top-level
components (CB = 0) and an optimal number of compo-
nents (CB = 1).

5.2.2 Code Maturation
Definition: According to Bogner et al. [4], code maturity

describes the degree of code quality in the areas of tech-
nical proficiency and consistency. A high code maturation
improves the maintainability of an MSA.

[MSA|CODE MATURATION]
+−→ [Maintainability]

Bogner et al. [4] has identified three metrics to determine
the code maturation.

Comment Ratio (CR): Following Fluri et al. [8] findings,
Bogner et al. [4] proposes the Comment Ration CR(S) met-
ric. The metric is defined as the ratio between the number
of comment lines and the total number of lines.

CR(MSA) =
LOCcomment(MSA)

LOC(MSA)

Clone Coverage (CC): Following Koschke et al. [15] find-
ings, Bogner et al. [4] proposes the Clone Coverage CC(S)
metric. The metric is defined as the ratio between the du-

plicated lines and the total number of lines.

CC(MSA) =
LOCduplicated(MSA)

LOC(MSA)

The MSA is harder to maintain with a high amount of
duplicated code.

Test Coverage (TC): Describes how well the MSA source
code is tested. According to Bogner et al. [4] there are many
different ways to determine the metric value. The most used
way is the relative amount of covered lines and condition
coverage based on the number of control flow branches.

5.2.3 Size
Definition: The size of an MSA is the aggregate size of all

services. The large size has a negative impact on maintain-
ability. The larger the aggregated size of all services in an
MSA, the more difficult maintenance becomes. [3].

[MSA|SIZE]
−−→ [Maintainability]

The Line of Code (LOC) describes the size of a service.
However, the definition of size by LOC is controversial be-
cause it is challenging to infer the maintainability of a service
from its size. However, the relative size ratio between ser-
vices can be used to find potential services that are too large
according to Shim et al. [29]. Therefore, the aggregated size
of all services is not very meaningful for maintainability ac-
cording to Bogner et al. [3].

There is only one metric WSIC 5.2.1 to determine the
size. However, we disagree with Bogner et al. that WSIC
can be used to determine the size of an MSA. According to
Hirzalla et al. [11] the metric WSIC is an indicator of the
complexity rather than of the size of a service.

5.2.4 Complexity
Definition: Describes the required interaction of services

to accomplish a task. That is the number of operations and
tasks of a service and their direct and indirect use. High
complexity has a negative impact on maintainability.

[MSA|COMPLEXITY]
−−→ [Maintainability]

According to Bogner et al. [3] it is challenging to assign
the existing metrics to complexity. The reason is that the
authors of the existing metrics do not use unique catego-
rizations. As a result, often no clear distinction is made
between coupling, complexity, or size. In the following, we
present two key metrics that we consider to best measure
complexity.

Total Response for Services (TRS): RFO(O) describes for
an operation O the number of sequences of other operations
and local methods that are executed when the operation O
is called. TRS(S) describes the sum of all Response for
Operation RFO(O) values for each operation of the Service
Interface SIS . Called services are counted as well [25].

TRS(S) =
∑

O∈SIS

RFO(O)

Number of Versions per Service (NOVS): NOV S(MSA)
describes the total number of versions over the total number
of services within the MSA [11].

NOV S(MSA) =
|V |
|S|

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

In an MSA used in production, it is not uncommon to
support multiple versions of services to keep compatible with
an older client application that uses the MSA. Increasing the
number of versions per service makes the MSA difficult to
maintain. According to Bogner et al. [3] it can be beneficial
to set a threshold for both NV SAV G and NV SMAX.

5.2.5 Coupling
Definition: Describes the interdependence and intercon-

nection of a service with other services. For example, an
MSA composed by services which have just a few intercon-
nections to each other can be maintained more easily. [3].

[MSA|COUPLING]
−−→ [Maintainability]

The coupling can be easily analyzed by mapping the ser-
vices links as a graph. This makes the coupling metric very
clear and easy to define. In the literature, many different
proposed metrics capture the coupling of services. In the
following, a few of these metrics are presented.

Services Interdependence in the System (SIY): By Rud et
al. [28], the metric SYI is defined. Here SYI represents the
number of service pairs that call each other in opposite di-
rections. As an example for a pair (S1, S2). The service
S1 calls an operation of the service S2, and the service S2,
in turn, calls an operation of the service S1. This type of
attachment should be avoided in the context of MSA main-
tainability. Therefore, the ideal value for SIY is zero.

SIY (MSA) =
|{(S1, S2)with(S1, S2) ∧ (S2, S1) ∈ EMSA}|

2

Absolute Importance of the System (AIS): Rud et al. [28]
define another metric AIS(S). The metric AIS(S) describes
the number of services that invoke a service S. In a represen-
tation of the MSA as a graph; this is the number of incoming
edges of the service S.

AIS(S) = δ−(VS)

Bogner et al. [3] recommend not excluding clients that
point to the same node. It is not helpful to set a threshold
for the metric. Instead, the metric can be used to identify
essential services.

Absolute Dependence of the Service (ADS): Similarly to
AIS Rud et al. [28] propose ADS(S) to describe the number
of services that are invoked by a service S. In a representa-
tion of the MSA as a graph, this is the number of outgoing
edges of the service S.

ADS(S) = δ+(VS)

Again it is not helpful to set a threshold for the metric.
The metric can be used to identify impotent services [3].

Absolute Criticality of the Service (ACS): Rud et al. [28]
defines the combination of AIS(S) and ADS(S) as followed:

ACS(S) = AIS(S)×ADS(S)

The combination of AIS and ADS allows finding services
with a high degree of coupling.

5.2.6 Cohesion
Definition: Cohesion describes how well individual parts

or services within an MSA represent a logical task or unit.
With a high cohesion, the maintainability of an MSA ap-
plication can be improved. Unfortunately, cohesion is not
extensively discussed in the literature. Only Perepletchikov

et al. [24] have dealt with cohesion in detail. Three metrics
of cohesion SIDC, SIUC, and TSIC are presented below.

[MSA|COHESION]
+−→ [Maintainability]

Service Interface Data Cohesion (SIDC) If all operations
of the interface SIS use the same parameter data types, the
service S has a high cohesion defined as SIDC(S) = 1.
To calculate the value for SIDC(S), the number of op-
erations with the same data types is divided by the total
number of discrete data types for the interface SIS . With
SIDC(S) = 1 a maximum cohesion for a service is defined;
thus a value close to 1 for SIDC(S) is necessary to ensure a
good maintainability of S. [24] [3]

Service Interface Usage Cohesion (SIUC) The SIUC(S)
metric is used to describe how the calling behavior of clients
is for the operations from the service interface SIS . The
service S is considered highly cohesive if every client uses
every operation from SIS . The value of the SIUC(S) metric
thus describes the ratio between the number of operations
used per client and the number of clients multiplied by the
number of operations of the SIS service interface. The value
of the metric thus lies between 0 and 1. As with SIDC, a
value close to 1 is an indicator of good serviceability of the
service S. [24] [3]

SIUC(S) =

∑
s∈S{S} |(s, S)|
δ−(VS) ∗ |OS |

Total Service Interface Cohesion (TSIC) TSIC is used to
express the normalized sum of the two metrics SIDC and
SIUC. The sum of the two metrics SIDC and SIUC is added
and divided by two. [24] [3]

TSIC(S) =
SIDC(S) + SIUC(S)

2

5.3 Portability metrics for MSAs
Portability is the other quality attribute that is investi-

gated in our paper. However, as the results of the conducted
SLR show, research on portability metrics for Service-Based
architectures and especially Microservices, has been mini-
mal. Based on the limited results, we offer a basic model
for it. Direct Portability, Installability and Adaptability are
factors of portability that are frequently mentioned in litera-
ture. This subsection of our paper investigates these quality
factors. An overview of the relation of quality factors to the
quality attribute portability is given in figure 4.

5.3.1 Direct Portability
Definition: Direct portability is the ability to take a piece

of software directly and execute it on another platform with-
out modification [17]. However, portability is not a binary
quality. This type of metric has often been present in liter-
ature regarding portability [21] [17] [16].

[MSA|DirectPortability]
+−→ [Portability]

Degree of Portability of the Service (DDPS): The metric
is based on previous works regarding portability in software
such as J. D. Mooney [21], and J. Lenhard [17]. It shows the
degree to which a single Microservice could be ported from
one environment to another. It can be expressed with the
following equation:

DPS(S) = 1− Cport(S, env1)

Cnew(S, env2)

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Figure 4: Quality Model for portability

Cport is the cost of changes that must be done on a service
S to port it from an old environment env1 to a new environ-
ment env2, Cnew(S, env2) is the cost of rewriting a service
S for a new environment env2. Assuming that the cost of
porting will never be higher than the cost of rewriting, the
degree of portability will always be between the range [0, 1].
If the degree of portability is equal to 0 then the service
can be ported to a new environment without any changes,
while if it is 1 represents a service that needs to be rewritten
entirely. One thing to consider is how to measure the com-
plexity. In studies, it is common to measure it using Lines
of Code (LOC) [21] [17].

5.3.2 Installability
Definition: The ISO/IEC model defines installability as

the ”degree of effectiveness and efficiency with which a prod-
uct or system can be successfully installed and/or unin-
stalled in a specified environment” [13].

[MSA|Installability]
+−→ [Portability]

According to the studies P11 and P13 from Lenhard et,
al. [18] [16], installability can be subdivided into two sub-
attributes, Server Installability and Deployability. In these
studies, for each sub-attribute, a set of metrics that can
measure it. For the rest of the installability subsection, the
metrics from literature are presented.

a) Server Installability.
This sub-attribute of installability measures the ease of

service installation, given that it is possible, and it is cap-
tured by the metrics Ease of Setup Retry and Installation
Effort [18] [16].

Ease of Setup Retry (ESR): The metric measures how easy
it is to repeat an installation successfully. Furthermore, it
can be calculated as the ratio between the number of suc-
cessful installations (Nsuccess) and the total number of at-
tempted installations (Ntotal).

ESR =
Nsuccess

Ntotal

Therefore ESR ∈ [0, 1] where a value close to 1 signifies

a failure-free installation process. Conversely, if the process
is not bug-free or is prone to installation failures, then the
value of ESR will be lower.

Installation Effort (IE): The metric measures the notion of
difficulty of the installation process as the ratio between the
average time complexity (AIT) and the number of distinct
steps (NDS). NDS counts the number of different operations
that need to be performed for the installation process, and
it is calculated using heuristic evaluation. AIT on the other
hand, is calculated by running the steps found during the
evaluation of NDS a suitable number of times and computing
the average time required.

IE(S) =

{
0 if NDS(S) = 0,
AIT (S)
NDS(S)

otherwise.

b) Deployability.
The sub-attribute measures the work needed to deploy a

service in a production environment. To deploy the service
in the production environment, preparations must be done,
including the packaging process and the construction of de-
ployment descriptors [18] [16].

Effort of Package Construction (EPC): Measured by count-
ing the number of folder structure creations (Nfc), descrip-
tor creations (Ndc) and compression operations (Nco) that
must be performed to construct the deployable executable.

EPC(S) = Nfc +Ndc +Nco

Deployment Descriptor Sizes (DDS): Measures the com-
plexity of the descriptors needed for the deployment of a
service and is calculated with the following formula:

DDS(S) =

Ndesc∑
i=1

size(di)

WhereNdesc is the total number of descriptors and size(di)
is calculated based on the type of the descriptor di (such as
with LOC for plain text files or the number of elements for
XML files).

Deployment Effort (DE): DE is an aggregation metric that
combines the metrics EPC and DDS listed above. The met-
ric is therefore calculated using the formula:

DE(S) = EPC(S) +DDS(S)

Deployment Flexibility (DF): Deployment can take differ-
ent forms, which a server can support, and therefore it could
influence deployability. The Deployment Flexibility metric
counts the number of options for deployment that are sup-
ported by a server.

5.3.3 Adaptability
Definition: The ISO/IEC model defines Adaptability as

”the degree to which a product or system can effectively
and efficiently be adapted for different or evolving hardware,
software or other operational or usage environments” [13].

[MSA|Adaptability]
+−→ [Portability]

Metrics for adaptability corresponding explicitly to SBS,
SOA, or MSA were not found. However, the study P12 of-
fers metrics for measuring adaptability of a system at an
architecture level [26]. The metrics in this paper are consid-
ered in terms of components of a system and services where

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

a set of components makes up the system, and these com-
ponent require or offer services (functionalities/interfaces).
The meaning of service in the original study differs from the
meaning of a service used in the context of service-based
systems. As such, the metrics from P12 are mapped to the
context of Service-Based Systems. The main components of
Service-Based Architecture and especially MSA are Services,
and therefore components from the paper P12 are mapped to
services. Additionally, we call as functions what P12 refers
to as services.

Absolute adaptability of a function (AAF): The metric mea-
sures the number of services (denoted by US) used by an
MSA for a given functionality f .

AAF (f) = |USf |

Relative adaptability of a function (RAF): The metric mea-
sures how each functionality stresses its adaptability choices
and gives a notion of how much more adaptable it could be
by measuring the ratio between the number of used services
to achieve the functionality over the number of services that
offer such functionality.

RAF (f) =
|USf |
|Sf |

Mean of absolute adaptability of a function (MAAF): It is a
metric that measures the mean of AAF. MAAF captures the
notion of effort that is needed to manage each functionality.

MAAF =

∑n
i=1AAF (i)

n

Mean of relative adaptability of a function (MRAF): It is
a metric that measures the mean of RAF. MRAF gives an
outlook on the mean utilization of the potential services for
each function.

MRAF =

∑n
i=1RAF (i)

n

Level of system adaptability (LSA): The metric measures
the notion of adaptability for the entire system by evaluating
the ratio of the number of services that compose the current
system over the number of services that the most adapt-
able system would use. The level of system adaptability is
captured by the following formula:

LSA =

∑n
i=1AAFi∑n
i=1 |Si|

6. DISCUSSION
From the results of the SLR, research on Portability mod-

els is very limited compared to other quality attributes.
When limiting the query string to MSA only, no results
were found regarding portability. The results are minimal
when broadening the scope of all service-based architectures.
Our paper introduces a model of different sub-attributes of
portability, such as installability and adaptability, based on
different papers found by the SLR. However, for replace-
ability, another sub-attribute defined by the ISO/IEC stan-
dard [13], there were no results found. J. Lenhard has done
intensive work regarding the portability of Process-Aware
Systems on P13, where all the sub-attributes of portability
are modeled in detail. However, most metrics introduced in
the paper deal with process models and process languages
(such as BMPN, BPEL). For the scope of this paper, a map-
ping could not be done between those metrics to the context

of Microservices. However, this could be a possible area of
future research.

Similarly, research on the maintainability quality model
for MSA is also not extensive. However, Bogner et al. have
laid a solid foundation by introducing and mapping main-
tainability models from object-oriented (OO) to SBS and
SOA. Many of the metrics captured by Bogner et al. can
be transferred to MSA. However, as with portability, these
metrics have not been adequately researched. In particular,
validation and testing of the metrics on real MSA are needed
to verify the correctness of the metrics.

7. CONCLUSION AND FUTURE WORK
Research on quality assurance models of MSA has been

very limited. There is no research that addresses the met-
rics of maintainability and portability for MSA. As such, the
scope of research has been widened to considered SBSs and
SOAs too. To answer RQ1, the current state of research on
portability and maintainability was studied through a de-
tailed systematic literature review. As an answer to RQ2
we propose a model of maintainability 3 based on the re-
sults of the literature review. This model is based on pre-
vious research on the topic. On the other hand, models of
portability were non-existent when strictly speaking about
Microservices. Therefore, we offer an initial simplistic model
of portability 4 based on studies done in a larger scope and
by mapping those results to MSA.

We also hope that these models will serve as a starting
point for further research on this topic. Thus, there is a need
to continue to advance the research and evaluate new metrics
and formal definitions. In addition, empirical evaluation of
the models in a real-world scenario is a possible area for
future research.

8. REFERENCES
[1] D. R. Apolinário and B. B. de França. A method for

monitoring the coupling evolution of
microservice-based architectures. Journal of the
Brazilian Computer Society, 27(1):17, Dec 2021.

[2] J. Bogner, J. Fritzsch, S. Wagner, and
A. Zimmermann. Limiting technical debt with
maintainability assurance – an industry survey on
used techniques and differences with service- and
microservice-based systems. In 2018 IEEE/ACM
International Conference on Technical Debt
(TechDebt), pages 125–133, 2018.

[3] J. Bogner, S. Wagner, and A. Zimmermann.
Automatically measuring the maintainability of
service- and microservice-based systems: A literature
review. In Proceedings of the 27th International
Workshop on Software Measurement and 12th
International Conference on Software Process and
Product Measurement, IWSM Mensura ’17, page
107–115, New York, NY, USA, 2017. Association for
Computing Machinery.

[4] J. Bogner, S. Wagner, and A. Zimmermann. Towards
a practical maintainability quality model for
service-and microservice-based systems. In Proceedings
of the 11th European Conference on Software
Architecture: Companion Proceedings, ECSA ’17, page
195–198, New York, NY, USA, 2017. Association for
Computing Machinery.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

[5] E. Bouwers, J. P. Correia, A. v. Deursen, and
J. Visser. Quantifying the analyzability of software
architectures. In 2011 Ninth Working IEEE/IFIP
Conference on Software Architecture, pages 83–92,
2011.

[6] M. Cardarelli, L. Iovino, P. Di Francesco, A. Di Salle,
I. Malavolta, and P. Lago. An extensible data-driven
approach for evaluating the quality of microservice
architectures. In Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing,
SAC ’19, page 1225–1234, New York, NY, USA, 2019.
Association for Computing Machinery.

[7] R. Ferenc, P. Hegedűs, and T. Gyimóthy. Software
Product Quality Models, pages 65–100. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2014.

[8] B. Fluri, M. Wursch, and H. C. Gall. Do code and
comments co-evolve? on the relation between source
code and comment changes. In Proceedings of the 14th
Working Conference on Reverse Engineering, WCRE
’07, page 70–79, USA, 2007. IEEE Computer Society.

[9] M. Fowler and J. Lewis. Microservices a definition of
this new architectural term. http:
//martinfowler.com/articles/microservices.html,
2014. Retrieved May 20, 2022.

[10] H. Ghandorh, A. Noorwali, A. B. Nassif, L. F.
Capretz, and R. Eagleson. A systematic literature
review for software portability measurement:
Preliminary results. In Proceedings of the 2020 9th
International Conference on Software and Computer
Applications, ICSCA 2020, page 152–157, New York,
NY, USA, 2020. Association for Computing
Machinery.

[11] M. Hirzalla, J. Cleland-Huang, and A. Arsanjani. A
Metrics Suite for Evaluating Flexibility and
Complexity in Service Oriented Architectures, page
41–52. Springer-Verlag, Berlin, Heidelberg, 2009.

[12] H. Hofmeister and G. Wirtz. Supporting
service-oriented design with metrics. In Proceedings of
the 2008 12th International IEEE Enterprise
Distributed Object Computing Conference, EDOC ’08,
page 191–200, USA, 2008. IEEE Computer Society.

[13] ISO/IEC 25010. Standard, International Organization
for Standardization, Geneva, CH, 2011.

[14] B. A. Kitchenham, D. Budgen, and P. Brereton.
Evidence-Based Software Engineering and Systematic
Reviews, volume 4. Chapman & Hall/CRC Press,
2015.

[15] R. Koschke. Survey of Research on Software Clones.
In R. Koschke, E. Merlo, and A. Walenstein, editors,
Duplication, Redundancy, and Similarity in Software,
volume 6301 of Dagstuhl Seminar Proceedings
(DagSemProc), pages 1–24, Dagstuhl, Germany, 2007.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[16] J. Lenhard. Portability of process-aware and
service-oriented software: Evidence and metrics. 01
2016.

[17] J. Lenhard. Improving Process Portability Through
Metrics and Continuous Inspection, pages 193–223.
Springer International Publishing, Cham, 2017.

[18] J. Lenhard, S. Harrer, and G. Wirtz. Measuring the
installability of service orchestrations using the square
method. In 2013 IEEE 6th International Conference

on Service-Oriented Computing and Applications,
pages 118–125, 2013.

[19] S. Li, H. Zhang, Z. Jia, C. Zhong, C. Zhang, Z. Shen,
and M. A. Babar. Understanding and addressing
quality attributes of microservices architecture: A
systematic literature review. Information and Software
Technology, 131, March 2021.

[20] M. Loukides and S. Swoyer. Microservices Adoption in
2020.
https://www.oreilly.com/radar/microservices-

adoption-in-2020/, 2020. Retrieved July 5, 2022.

[21] J. D. Mooney. Issues in the specification and
measurement of software portability. 2001.

[22] C. Pautasso, O. Zimmermann, M. Amundsen,
J. Lewis, and N. Josuttis. Microservices in practice,
part 1: Reality check and service design. IEEE
Software, 34(1):91–98, 2017.

[23] C. Pautasso, O. Zimmermann, M. Amundsen,
J. Lewis, and N. Josuttis. Microservices in practice,
part 1: Reality check and service design. IEEE
Software, 34(1):91–98, 2017.

[24] M. Perepletchikov, C. Ryan, and K. Frampton.
Cohesion metrics for predicting maintainability of
service-oriented software. In Seventh International
Conference on Quality Software (QSIC 2007), pages
328–335, 2007.

[25] M. Perepletchikov, C. Ryan, K. Frampton, and
Z. Tari. Coupling metrics for predicting
maintainability in service-oriented designs. In
Proceedings of the 2007 Australian Software
Engineering Conference, ASWEC ’07, page 329–340,
USA, 2007. IEEE Computer Society.

[26] D. Perez-Palacin, R. Mirandola, and J. Merseguer. On
the relationships between qos and software
adaptability at the architectural level. Journal of
Systems and Software, 87:1–17, 2014.

[27] M. Richards. Microservices vs. Service-Oriented
Architecture. O’Reilly Media, Inc., April 2016.

[28] D. Rud, A. Schmietendorf, and R. Dumke. R.:
Product metrics for service-oriented infrastructures. 01
2006.

[29] B. Shim, S. Choue, S. Kim, and S. Park. A design
quality model for service-oriented architecture. In
Proceedings of the 2008 15th Asia-Pacific Software
Engineering Conference, APSEC ’08, page 403–410,
USA, 2008. IEEE Computer Society.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://www.oreilly.com/radar/microservices-adoption-in-2020/

APPENDIX

Table 1: Reviewed Studies

Code Study Title Ref.

P1 Towards a Practical Maintainability Quality Model for Service and Microservice-based Systems [4]
P2 Automatically Measuring the Maintainability of Service- and Microservice-based Systems – a

Literature Review
[3]

P3 Limiting Technical Debt with Maintainability Assurance – An Industry Survey on Used Tech-
niques and Differences with Service- and Microservice-Based Systems

[2]

P4 An Extensible Data-Driven Approach for Evaluating the Quality of Microservice Architectures [6]
P5 A method for monitoring the coupling evolution of microservice-based architectures [1]
P6 A Design Quality Model for Service-Oriented Architecture [29]
P7 Supporting Service-Oriented Design with Metrics [12]
P8 A Metrics Suite for Evaluating Flexibility and Complexity in Service Oriented Architectures [11]
P9 Coupling Metrics for Predicting Maintainability in Service-Oriented Designs [25]
P10 Product Metrics for Service-Oriented Infrastructures [28]
P11 Measuring the Installability of Service Orchestrations Using the Square Method [18]
P12 On the relationships between QoS and software adaptability at the architectural level [26]
P13 Portability of process-aware and service-oriented software: Evidence and metrics [16]

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Correlation and causation between Technical Debt and
Quality

Shu Zhang
RWTH Aachen University

shu.zhang@rwth-aachen.de

Lukas Jansen
RWTH Aachen University

lukas.maximilian.jansen
@rwth-aachen.de

ABSTRACT
Technical Debt is a metaphor to describe ”not-quite-right”
code. This debt can in most cases speed up software devel-
opment in the short term, but at the risk of paying a higher
cost later.

Therefore, in this paper, we will examine the correlation
and causation between Technical Debt and quality. We at-
tempt to find several models to help us measure Technical
Debt and quality. With these models and methods, we con-
tinue our analysis of what aspects of software quality are
positively or negatively affected by Technical Debt.

We can find a clear correlation between Technical Debt
and software quality for the similar characteristics they have
in many aspects. When the Technical Debt reaches a thresh-
old, it may slow down the software development, which is
similar to what many software developers would expect. At
this threshold, more time is spent on working around Tech-
nical Debt, which can be called paying interest on that debt
than is gained by speeding up development by taking on
Technical Debt. This can negatively affect software quality.
But on the other hand, if developers can manage Techni-
cal Debt in suitable ways, and never reach the threshold,
Technical Debt can also enhance the efficiency of software
development, thus allowing for more time to improve soft-
ware quality. There also has to be a strategy for paying
back the debt. This can be a gradual process where instead
of working on new features, developers pay back some of the
debt every so often.

The results show that Technical Debt can have a varied
impact on software quality. Taking on Technical Debt is
not necessarily a bad idea, but the debt has to be managed
correctly.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software En-
gineering]: Management—productivity, programming teams,
software configuration management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2022 RWTH Aachen University, Germany.

Keywords
Software Quality, Technical Debt, ISO 9126, SQALE Method

1. INTRODUCTION
Before considering the topic at hand, the aspects of Tech-

nical Debt (TD) and quality are introduced respectively.

1.1 What is Technical Debt
TD is a metaphor introduced by Ward Cunningham to

describe the effects of deficiencies in internal quality to non-
technical product stakeholders.

Writing ”not-quite-right code” [10] is like going into debt.
It can speed up development initially, but additional time
spent on this suboptimal code counts as interest on that debt
[10]. When there is TD, developers have to put in extra time
and effort to continually fix the problems and side effects
caused by previous compromises. While there may seem to
be immediate benefits to be gained, software engineers may
have to pay that debt back in the future. Rewriting the code
can be interpreted as the debt being paid back.

A codebase containing a plethora of TD is hard to main-
tain and can make the product inflexible, and the whole de-
partment may have problems due to loose implementation
or incomplete object-oriented design.

While the metaphor of TD is based on financial debt, there
are some differences from financial debt. One is that the
debt is not necessarily taken on by the same person that
has to pay it back. This is because developers often don’t
have to maintain the code that they have written themselves
when it goes into the maintenance phase and is no longer
actively developed [4]. Often debt does not have to be paid
back at all. When a product is retired, all the existing debt
is ignored and does not have to be paid back, unlike financial
debt.

1.2 What are the aspects of Software Quality
In general, regarding Software Quality, there are external

quality and internal quality. The external quality is usually
considered from the view of users. For example, whether
the software functions correctly, the performance of the soft-
ware, the usability, and the security of the software. The in-
ternal quality is considered from the view of developers, and
it the concerns readability of the code, ease of maintenance,
good scalability, reusability, and ease of testing.

External quality is the perceived usefulness of a system. It
provides users with value and meets the specifications of the
software developers. This quality can be measured through
functional testing, quality assurance, and user feedback. It

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Figure 1: Golden Triangle [1]

is the quality that directly affects the users.
Ease of maintenance is how easy it is to change parts

of the code in the future. Scalability is how easy it is to
increase the functionality of the product[11]. Reusability is
the degree to which an asset can be used in more than one
software system, or in building other assets[22].

1.3 Motivation
In the research there are various ways to describe the

boundaries of project quality. The simplest of these is ‘The
Golden Triangle’ (Figure 1)which includes four dimensions
[1]. The reason why quality is placed in the middle of the
triangle is that quality is a reflection of the result of balanc-
ing the other three factors. For example, if the scope is not
reduced, the cost is not increased, and if the team wants to
save time and take shortcuts, the quality will be affected,
and this quality is not only the quality of the product but
also the quality of the architecture and the quality of the
code.

In this paper the authors want to answer the following
research questions:

RQ1 How can TD positively affect software quality?

RQ2 How can TD negatively affect software quality?

2. RELATED WORK
There is a lot of existing research on TD and quality.

Many people focus on the management of and models of
both. These models exist the help stakeholders understand
these abstract concepts. Therefore, the focus is on the two
concepts and to provide the most known models.

2.1 Software Quality
Software is the key to the development process of many

organizations and is becoming an integral part of human
life [22]. This is why the quality of software products is now
considered an important factor in commercial success [3]. It
is defined by the IEEE [1990] as the degree to which a sys-
tem, component, or process meets specified requirements and
customer (user) needs (expectations). And Quality assur-
ance, as defined by TechTarget, establishes and maintains
the requirements for developing or manufacturing reliable
products.

Software quality is important for developers and users.
Developers want a successful product that will continue to

run without crashing and run reliably, free of bugs and de-
fects. A high-quality product means a competitive product
on the market. Ensuring that all products are up and run-
ning can enhance the reputation of an organization. With
good software quality, the company can attract good devel-
opers, because they should aspire to create a culture of tech-
nical excellence, where quality is not negotiable. A quality
assurance system is designed to increase customer confidence
and the company’s reputation while improving workflow and
efficiency and enabling the company to better compete with
others [14].

2.1.1 McCall’s Quality Model
McCall’s Quality Model[20] presented in 1977 is one of

the most well-known quality models in software engineering
history. McCall’s model was developed by the US air-force
electronic system decision (ESD), the Rome air development
center (RADC), and general electric [25], for the quality of
software.

McCall’s model established software quality through three
aspects: Product Revision, Product Operation, and Product
Transition. Every quality factor has a set of quality criteria,
and every quality criterion could be reflected by one or more
metrics [3]. The contents of McCall’s Quality Model are the
following:
Product Revision It is about the ability of the product to
change.

• Maintainability: The quantity of work required to di-
agnose and modify a running software to meet new
user requirements, or when the environment changes
or new errors are found during the operation.

• Flexibility: The quantity of work required to modify or
improve a piece of software that is already in operation.

• Testability: The quantity of work required to test the
software to ensure it can perform its intended function.

Product Operations It is about adaptability to new envi-
ronments.

• Correctness: The ability to which the software meets
the design specification and the user’s intended objec-
tives in the intended environment. The goal is that it
is going to require that the software is free of errors.

• Reliability: The ability to which the software contin-
ues to operate without failure for a specified period of
time and under specified conditions, under the design
requirements.

• Efficiency: The number of computer resources required
by the software system to perform the intended func-
tion.

• Integrity: The ability to protect data from acciden-
tal or intentional destruction, alteration, or loss for a
particular purpose.

• Usability: The quantity of work required for a software
system for users to learn, use the software and prepare
inputs and interpret outputs for the program.

Product Transition It is about the basic operational char-
acteristics.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

• Portability: The quantity of work required to port a
software system from one computer system or environ-
ment to another computer system or environment.

• Reusability: The ability of a software (or a component
of software) to be reused in other applications (the
functionality of which is related to the extent to which
the software or software component performs the func-
tion.

• Interoperability: The quantity of work required to con-
nect software to other systems. If this software is to
be networked or communicate with other systems or
bring other systems under its control, there must be
interfaces between the systems to allow them to be
linked.

In more detail, McCall’s quality model consists of 11 qual-
ity factors that describe the external perspective of the soft-
ware, that is, the customer or user perspective. 23 quality
criteria that describe the internal perspective of the soft-
ware, that is the developer perspective, and a set of metrics
that define and are used to provide standards and methods
of measurement. The key to this model is the relationship
between quality characteristics and metrics. However, the
model does not directly consider the functionality of the
software [2].

2.1.2 Boehm Model
In 1978, B.W. Boehm developed his software quality model.

The model represents a hierarchical quality model which is
similar to the McCall quality model, using a set of predefined
attributes and metrics to describe software quality. These
attributes contribute to the total software quality [9].

Boehm adds new factors to McCall’s model and empha-
sizes the maintainability of software products. This model
aims to address contemporary models’ shortcomings which
automatically assess software quality quantitatively [2].

The Boehm Model structure develops three levels of char-
acteristics, namely High-Level Characteristics, Intermediate-
Level Characteristics, and Primitive Characteristics. Each
High-Level Characteristic contains many Intermediate-Level
Characteristics, and Intermediate-Level Characteristics also
contain corresponding Primitive Characteristics. In Boehm
Model, the High-Level Characteristic represents the basic
high-level requirements for practical use, into which the eval-
uation of software quality can be placed. There are three
high-level characteristics, namely As-is Utility, Portability,
and Maintainability [9]. Next, the Intermediate-Level Char-
acteristics in each High-Level Characteristic are illustrated.
As-is utility Extent to which, the software product can be
used as-is.

• Reliability: The ability to which the software contin-
ues to operate without failure for a specified period of
time and under specified conditions, under the design
requirements.

• Efficiency: The number of computer resources required
by the software system to perform the intended func-
tion.

• Human Engineering is similar to Usability: The quan-
tity of work required for a software system for users

to learn, use the software and prepare inputs and in-
terpret outputs for the program, gets more focused on
Communicativeness.

Portability Effort required to change when the environ-
ment has been changed. Portability has no Intermediate-
Level Characteristics, but it connects directly to Device In-
dependence and Self-Containedness.

• Device Independence: The ability of a software prod-
uct to co-exist in a public environment with other inde-
pendent software with which it shares public resources.

• Self-Containedness: The ability of a software product
to replace another software product for the same pur-
pose in the same environment.

Maintainability Effort required to detect and fix an error
of the software product.

• Testability: The quantity of work required to test the
software to ensure it can perform its intended function.

• Understandability: The ability of a software product
to enable users to understand whether and how the
software is suitable and can be used for specific tasks
and conditions of use (documentation, initial impres-
sions of functionality).

• Modifiability: Software products that give users the
ability to operate, control, and modify it.

Primitive Characteristics can be used to provide the basis
for defined quality metrics, many of which are highly simi-
lar to McCall’s quality model, but the Boehm Model is more
focused on the Operability of users and tries to satisfy the
needs of users. And Boehm defined the ‘metric’ as a mea-
sure of the extent or degree to which a product possesses
and exhibits a certain (quality) characteristic [9]. Boehm’s
model is an improvised version of McCall’s quality model,
but it also has its weaknesses, which continue to manifest
themselves in the course of its development.

2.1.3 A generic standard ISO 9126
As a large number of software quality models were de-

veloped, confusion occurred and new standard models were
needed. As a result, ISO/IEC JTC1 began to develop the
required convergence and encourage worldwide standardiza-
tion. [2] In 1991, the ISO published its first international
consensus about the quality characteristics of software. It
reflects the sum of features and characteristics of a software
product’s ability to satisfy specified and potential require-
ments [3].

As can be seen in Figure 2, this model is a hierarchical tree
structure composed of characteristics and sub-characteristics.
The highest level of this structure consists of quality char-
acteristics and the lowest level consists of software quality
criteria. The model defines six characteristics, including
functionality, reliability, usability, efficiency, maintainabil-
ity, and portability. These characteristics are further classi-
fied into 21 sub-characteristics [8].

In the ISO 9126 Quality Model, internal quality attributes
have an impact on external quality attributes, while external
attributes also have an impact on in-use quality attributes.
In addition, in-use quality depends on external quality, while
external quality depends on internal quality [3].

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Figure 2: The contents of ISO 9126 Quality Model[17]

When comparing ISO 9126 Quality Model with McCall’s
quality model and Boehm Model, it is clear that McCall’s
quality model and Boehm Model are the basis of the ISO
9126 Quality Model and that all the characteristics in ISO
can be referred to in both of the above models. So it can
be said that ISO 9126 is a general standard quality model,
but its separate internal and external quality measures are
its shortcoming.

2.2 Technical Debt
Ever since the coinage of the term by Cunningham in 1992,

TD has been of large research interest, both in academia and
the industry itself. This is even though TD is not directly
visible to the customer of a product, compared to software
quality.

After first giving an ontology and categories of TD, ways
to measure and find TD are covered.

2.2.1 An Ontology of Terms on Technical Debt
TD is can be divided into multiple different types of debt.

These are Architecture Debt, Build Debt, Code Debt, De-
fect Debt, Design Debt, Documentation Debt, Infrastruc-
ture Debt, People Debt, Process Debt, Requirement Debt,
Service Debt, Test Automation Debt, and Test Debt. These
types of debt have different indicators by which TD can be
measured[5].
For example code debt is illegible source code which can
be indicated by duplicated code, non-standard-conforming
code, or inefficient algorithms.

Source code comments can contain information about a
special type of TD: Self-admitted TD [19]. This debt fits
into the deliberate section in Fowler’s quadrant because the
developer knew that something was ”not-quite-right” [10]
and because of that mentioned it in a comment. But not
all categories from there can be found in source code com-
ments. E.g. infrastructure debt can not be identified from
the source code. The five categories which can be identified
are found by the following types of comments [5].

Design debt Comments mentioning that the code is mis-
placed, suffers from a lack of abstraction, is poorly
implemented, a workaround, or a temporary solution.

Defect debt When the comment contains information about
a known defect in the code.

Documentation debt Missing or incomplete documentation
is mentioned.

Requirement debt The incompleteness of the code is men-
tioned.

Test debt Comments that state that tests are nonexistent,
or need to be improved.

2.2.2 The categories of Technical Debt
Martin Fowler defined a quadrant of four classifications of

TD. This quadrant groups TD according to how and why
TD was taken.
Another categorization is between self-admitted TD and not
self-admitted TD.

Reckless Prudent
Deliberate ‘We do not have

time for design’
‘We must ship
now and deal
with conse-
quences’

Inadvertent ‘What is Layer-
ing?’

‘Now we know
how we should
have done it’

TD Quadrant[13]

Reckless Deliberate
This quadrant reflects a team that takes shortcuts without
design and does not follow good development practices
because of cost and time, has no follow-up plans for TD.
For example, codes directly without design and has no
intention of refactoring the code later.

Prudent Deliberate
This quadrant reflects a situation where the team is clear
about the benefits and consequences of the TD and also
has a follow-up plan to improve the architecture and
enhance the quality of the code. For example, to release
the product as soon as possible, they develop it in a rushed
way first and then refactor the code, this kind of debt can
be repaid in time so that it can have some short-term
benefits and no negative impact on the long term.

Reckless Inadvertent
This quadrant reflects a situation where the team is
unaware of the TD and does not know that it has to be
subsequently repaid. For example, the development teams
are ignorant of architectural design, and their code is thus
very unstructured.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

2.2.3 Short-Term and Long-Term Technical Debt
McConnell [21] proposes the distinction between short-

term and long-term debt. Short-term debt is taken on tac-
tically and reactively. This can be the case when due to un-
foreseen problems shortly before a planned release, it is de-
cided to use a quick and maybe not perfect solution to these
problems. It is expected that this kind of debt is then paid
back quickly. Long-term debt on the other hand is taken on
strategically and proactively [21]. That means there does
not have to be a reason like the problems described above
to take on debt. Instead, it is decided that taking on the
debt will have a long-term benefit and it is not expected to
be paid back quickly. One example of long-term TD can
be when a product is quickly developed, without much re-
gard to TD, just reach the market as fast as possible [21].
Otherwise, the product could appear too late which would
result in lost revenue, or maybe a competitor has already
established their product.

Prudent Inadvertent
This quadrant reflects the fact that the team takes
architectural design and TD seriously, but TD arises due
to changes in the business, or other objective factors. For
example, if during the initial design the team cannot
accurately predict the development of the following
business, and as the business grows, the design cannot
meet the new requirements, it is difficult to avoid this TD
in this way, but if the architecture can be upgraded and
refactored promptly, it can be ensured that there will be no
serious impact.

2.2.4 SQALE Method
SQALE, short for Software Quality Assessment Based on

Lifecycle Expectations, is a method to evaluate the source
code of a software application. It is compromised of the
following four key concepts [18]. This evaluation can show
TD in the source code.

The Quality Model Used for formulating and organizing the
non-functional requirements that relate to code qual-
ity.

The Analysis Model Rules for normalizing the measures and
the violations relating to the code as well as rules for
aggregating the normalized values.

The Indices Represent the cost, used to represent and ana-
lyze the TD.

The Indicators Three summarized indicators are used to pro-
vide a visual representation of the TD.

The SQALE is specifically adapted to consider TD in addi-
tion to software quality.

2.2.5 Repair Effort
Repair Effort (RE) is the cost of bringing the internal soft-

ware quality back to the ideal level after taking on TD[23].
The RE consists of the Rework Fraction (RF), the Rebuild
Value (RV), and the Refactoring Adjustment (RA). This re-
pair effort can be specified in man-months and is the product
of RF, RV, and RA. This relationship can be represented by
the following formula:

RE = RF ·RV ·RA

Figure 3: Estimated Rework Fraction[23]

RF is the percentage of lines that need to be changed to
increase the quality of the code from one level to another.
E.g. if the quality is already four out of five only an esti-
mated 40% of lines have to be changed, because the quality
is already quite good. Similarly, if the quality is very poor
(one out of five) 175% of the lines have to be changed. Fig-
ure 3 shows this relationship.
RV is the number of man-months that it takes to rebuild a
system. RV depends on the size of the system and on the
technology that is used to build the system.
RA represents the experience and tooling a team has which
increases the team’s productivity when refactoring. A team
with lots of experience can take 10% less time, which is rep-
resented by the RA value.

2.2.6 Static code analysis
Another way the measure TD is through static code anal-

ysis [6]. Many tools can analyze a project’s source code to
give insights into possible problems that may result in faults
or just TD. In the case of TD, most of them give the princi-
pal of the debt in time to remove issues [6], which is like the
repair effort described above. Some may also calculate the
interest on the debt [6]. Because of the way these tools work
they are limited to only architectural, design, and code debt
from the ontology of terms on TD.

3. METHODOLOGY
The goal of our study was to investigate the correlation

and causation between TD and software quality. To get the
result a literature review in the domains of TD and software
quality was conducted. For finding the relevant literature
Google Scholar was used. The search queries were TD and
Software quality and also in conjunction with other relevant
words like model, measure, or management. From these pa-
pers, their sources were also considered to find further papers
as well.

The authors primarily looked for papers included in jour-
nals and conferences and therefore most of the resulting pa-
pers were from the IEEE or ACM databases. But some
sources were not from academia but the industry instead.
These were often just websites but still sound based on the
fact that they were also cited in the academic papers. The
relevance of the papers was based on whether they might
provide an answer to the research question. Although the
authors searched in recent literature, the foundation which
is in parts quite old was also used.

Both authors evaluated the papers on their own and then
combined the results. For some papers where only a part of
them is relevant to our research question, only these parts
were evaluated and not the paper in its entirety.

4. RESULTS

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Figure 4: The similar characteristics between ISO 9126 and
SQALE Method

Many software quality models were found in the literature.
To keep everything consistent, the authors decided to only
focus on one quality model in the results. ISO 9126 is based
on McCall’s Quality Model and Boehm Model. The model
has two main parts of the attributes of internal and exter-
nal quality and the quality in use attributes. Moreover, ISO
9126 has been used as the basis for Tailored Quality Mod-
els. One of its features standardizes software quality [22].
According to our analysis ISO 9126 is the most representa-
tive and typical software quality model. The SQALE is a
software quality Assessment that is based on lifecycle expec-
tations. It provides a comprehensive assessment of the TD
of the software source code [18].

While causation and correlation can exist at the same
time, correlation does not imply causation, but causation
always implies correlation. In the introduction to models of
software quality and TD above, some minor causation exists
in the correlation between software quality and TD. The au-
thors try to explain this causation by way of studying how
can TD positively or negatively affect software quality.

4.1 The similar characteristics between ISO
9126 and SQALE Method

As can be seen from Figure 4, the five characteristics
are similar in both ISO 9126 Quality Model and SQALE
Method, are Reusability, Reliability, Efficiency, Maintain-
ability, and Portability.

As mentioned above, Testability and Changeability are
sub-characteristics of Maintainability in the ISO 9126 Qual-
ity Model. But in the SQALE Method, they are considered
an early characteristic in the life cycle, so Testability and
Changeability become the characteristics instead of
sub-characteristics [18]. The definition of Testability in ISO
9126 is the capability of the software product to enable mod-
ified software to be validated [3]. At the same time, SQALE
Method has made Regulations for the Testability of soft-
ware: There is no method with a cyclomatic complexity
over 12 [18]. Reducing the cyclomatic complexity of the
software also allows developers to modify the software much
easier. Furthermore, Changeability is defined by ISO 9126
as the capability of the software product to enable a specified
modification to be implemented [3]. SQALE Method con-
tains a requirement for Changeability. For example, there
is no cyclic dependency between packages [18]. The cyclic

dependency between packages a dependency can cause prob-
lems with another package when a package is modified for a
specific function of the software. No cyclic dependency also
ensures that developers have access to implement a specified
modification to the software.

Security is also one of the important characteristics in the
SQALE Method, although it does not appear at the first
level of the ISO 9126 Quality Model because it is a sub-
characteristic of Functionality. Being a sub-characteristic
should not imply it is irrelevant to software quality. Re-
search shows[16] that Functionality is acknowledged as the
most important aspect of software system quality in Safety-
critical Domains. For Security, ISO 9126 states that it is the
capability of the software product to protect information and
data so that unauthorized persons or systems cannot read
or modify them and authorized persons or systems are not
denied access to them [3]. An index called SQALE Security
Index (SSI) is specified in the SQALE Method [18]. This
represents a component of the TD of the source code being
assessed. The index also guarantees the refusal of unautho-
rized individuals.

4.2 How Technical Debt can positively affect
software quality

If the debt is managed correctly by for example only being
taken on for a short duration and then promptly repaid, it
can also be beneficial, by allowing, for example, faster ship-
ping of the product. In this case, the debt will not have
a negative impact on most aspects of the software quality.
Maintainability, reusability, and testability would still suf-
fer from this short-term debt, at least temporarily. This is
because the TD makes working on that part of the source
code harder, thus negatively affecting its maintainability and
reusability. Testability could also suffer from this because of
an overly complex solution or because a unique solution has
to have a special test for it. Therefore the debt should be
repaid quickly to not hinder development in the future too
much [4]. This should not be done excessively because TD
works differently than financial debt [12]. If the product is
near the end of its life the debt does not matter because there
will be very few interest payments and when the product is
retired the remaining debt is no longer a problem [4]. While
the debt is not repaid, because nothing was done to fix the
TD, instead this could be seen as the debt being forgiven.
This should not be used to justify taking on lots of debt
late in a product lifecycle because some of the code could be
reused in a future product if it would not contain much or
any TD. This reusability can then improve the quality of fu-
ture products because many issues regarding the reused code
have already been fixed. That is because eventual problems
have already appeared while the product was in use and are
already fixed.

Wehaibi et al. [27] have found that SATD, which is part
of the deliberate debt from Fowler’s debt quadrant [13], in
a source code file does not lead to more defects in that file.
Therefore this type of TD does not have an impact on many
of the categories under Product Operation from McCall’s
Quality Model [20]. The opposite can be the case because
new features can be developed more quickly when taking
on TD [4]. There should however be a distinction between
short-term and long-term debt that McConnell [21] also pro-
poses. Short-term debt can be beneficial for new features
while long-term debt can cripple the development team so

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Figure 5: Impact of low investment in debt reduction over
multiple releases [24]

much, that they can produce new features and instead their
time is taken up by paying interest on potentially lots of
very old TD [4].

Due to the nature of TD, in the systems that are not
modified, but provide the expected level of service, paying
back that debt could be deemed an additional unnecessary
cost. It could also be decided that these parts of the systems
are built intentionally containing TD. Then the total cost at
the end of the product’s lifecycle might still be lower than
if they were built without any TD. Although the quality of
software could increase due to refactoring, it might also hap-
pen that new bugs negatively affecting the quality would be
introduced. Changing these parts of the source code that
contain TD but are stable and not often changed, may also
introduce new bugs [7]. These new bugs then decrease the
functionality and reliability of the product. This way main-
tainability may be traded for potentially worse functional-
ity and reliability. Because of this leaving the TD as is can
benefit the software quality by not potentially decreasing it
through a bug introducing refactoring of the source code.

Another kind of system where TD can positively affect
software quality is internal tools. Because the end-user of
the product will never interact with them the maybe low
software quality of the tools themselves does not affect the
quality of the product. The opposite is the case because the
increased developer productivity offered by these tools can
then improve the software quality of the product.

4.3 How Technical Debt can negatively affect
software quality

If lots of debt accumulates it can make the software prod-
uct very hard to maintain[12]. Due to maintainability being
a quality characteristic of software quality, for example in
the ISO-9126 quality model [17], this leads to a decrease in
quality.

Although the authors consider that TD may bring short-
term benefits to a project, such benefits often come at the
cost of additional work in the future, similar to paying inter-
est on a debt [15]. Significant TD affects the productivity of
software development teams and reduces their morale and
motivation. This is the case when more time has to be spent
working around that TD than is gained by taking on that
debt and speeding up development this way. The accumula-
tion of TD leads to a vicious circle: low productivity causes
managers to roll out more features and leads to delays in
TD issues, which turn to a further increase in TD. This low

morale can also lead to a high rate of turnover [26], which
only makes the situation worse because developers familiar
with the project will leave. That will then lead to an even
less productive team, or worse even a decrease in quality
because the team is experienced overall. According to the
research findings of Ken Power [24], TD will have a nega-
tive impact on the software team’s velocity of functionality
if it has been ignored, which will severely compress soft-
ware development time. A software team may ignore TD
for the first release, or even the second release. The data
in Figure 5 shows the impact of four consecutive releases in
a typical case, and as TD rises, the team’s feature velocity
falls rapidly. More time is being devoted to reducing TD
to deal with the growing backlog of debt items. In extreme
cases teams may be forced to spend almost the complete re-
lease lifecycle on reducing TD. Consequently, no time will be
spent on improving quality [24]. A high level of TD means
that a lot of effort is allocated to maintenance. This will
ultimately lead to a bankrupt software team and no guar-
antee of software quality. Bankruptcy works similarly to
financial debt because at that point the software team can
either only focus on paying back the principal and thus ceas-
ing all feature development or do a complete rewrite. Not
only does it waste a lot of time, but it also completely affects
the Maintainability and Efficiency of software.

5. CONCLUSIONS
In this paper, we first researched the definitions of TD

and quality in the literature. With these findings, we then
analyzed the relationship between TD and software quality.
In particular, what aspects of software quality can benefit
or are negatively affected by TD.

We found out that there is a strong correlation between
TD and quality. This is because TD and quality share sim-
ilarities in many aspects. Most of the time TD will have a
negative impact on quality, mainly on the aspects of main-
tainability and reusability. Also, if a certain threshold of
debt is reached all development slows down and no new fea-
tures can be implemented at all. The opposite however can
also be the case if the TD is managed correctly and this
critical threshold is never reached. When TD is only taken
on for a small amount of time it can greatly increase devel-
opment speed. Therefore TD can be beneficial to software
quality by improving the functionality of the product.

TD will just be forgotten when a product is retired and
thus will possibly never have to be repaid. If a part of the
source code contains TD but is never or rarely changed, the
debt also does not have a negative impact. The developers
that introduce TD into the source code will often not be
negatively affected by it themselves when they are assigned
to another project or when they leave. This gives them an
incentive to not care about TD as much as they should.

Despite possible benefits of taking on TD, we found that
developers should keep TD to a minimum because it possibly
has a negative impact on the software product.

6. FUTURE WORK
We found lots of theoretical work on the effects of TD on

software quality, but there are very few case studies or em-
pirical work that look into these effects in practice. Such a
practical evaluation could help validate the theoretical ap-
proach to TD. One possible way to conduct such a study

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

would be to use a static code analysis tool on parts of an ex-
isting codebase but not its entirety. Half of the files would be
analyzed using the tool while the other half would not. The
developers should then remove all the TD found by this anal-
ysis. Then after some time the number of faults and bugs
per file which were analyzed compared to files that were not
analyzed could give an estimation of the impact of TD on
software quality in practice. E.g. if the files containing no
TD according to the analysis tool also lead to fewer faults
then TD would have a negative impact on software quality
in practice.

7. REFERENCES
[1] The golden triangle.

https://beingaprojectmanager.com/nuggets/

project-management-golden-triangle/. Accessed:
2017-08-14.

[2] A. B. Al-Badareen, M. H. Selamat, M. A Jabar,
J. Din, and S. Turaev. Software quality models: A
comparative study. In Software Engineering and
Computer Systems, pages 46–55, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[3] R. Al-Qutaish. Quality models in software engineering
literature: An analytical and comparative study.
volume 6, 11 2010.

[4] E. Allman. Managing technical debt: Shortcuts that
save money and time today can cost you down the
road. Queue, 10(3):10–17, mar 2012.

[5] N. S. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes,
and R. O. Sṕınola. Towards an ontology of terms on
technical debt. In 2014 Sixth International Workshop
on Managing Technical Debt, pages 1–7. IEEE, 2014.

[6] P. C. Avgeriou, D. Taibi, A. Ampatzoglou,
F. Arcelli Fontana, T. Besker, A. Chatzigeorgiou,
V. Lenarduzzi, A. Martini, A. Moschou, I. Pigazzini,
N. Saarimaki, D. D. Sas, S. S. de Toledo, and A. A.
Tsintzira. An overview and comparison of technical
debt measurement tools. IEEE Software, 38(3):61–71,
2021.

[7] G. Bavota, B. De Carluccio, A. De Lucia,
M. Di Penta, R. Oliveto, and O. Strollo. When does a
refactoring induce bugs? an empirical study. In 2012
IEEE 12th International Working Conference on
Source Code Analysis and Manipulation, pages
104–113. IEEE, 2012.

[8] B. Behkamal, M. Kahani, and M. K. Akbari.
Customizing iso 9126 quality model for evaluation of
b2b applications. Information and software technology,
51(3):599–609, 2009.

[9] B. W. Boehm, J. R. Brown, and M. Lipow.
Quantitative evaluation of software quality. In
Proceedings of the 2nd international conference on
Software engineering, pages 592–605, 1976.

[10] W. Cunningham. The wycash portfolio management
system. In Addendum to the Proceedings on
Object-Oriented Programming Systems, Languages,
and Applications (Addendum), OOPSLA ’92, page
29–30, New York, NY, USA, 1992. Association for
Computing Machinery.

[11] R. G. Dromey. A model for software product quality.
IEEE Transactions on software engineering,
21(2):146–162, 1995.

[12] M. Fowler. Technical debt. https:
//martinfowler.com/bliki/TechnicalDebt.html.
Accessed: 2022-05-25.

[13] M. Fowler. Technical debt quadrant.
https://martinfowler.com/bliki/

TechnicalDebtQuadrant.html. Accessed: 2022-05-12.

[14] A. S. Gillis. Quality assurance. https:
//www.techtarget.com/searchsoftwarequality/

definition/quality-assurance/.

[15] Y. Guo, R. O. Sṕınola, and C. Seaman. Exploring the
costs of technical debt management–a case study.
Empirical Software Engineering, 21(1):159–182, 2016.

[16] F. Huang, Y. Wang, Y. Wang, and P. Zong. What
software quality characteristics most concern
safety-critical domains? In 2018 IEEE International
Conference on Software Quality, Reliability and
Security Companion (QRS-C), pages 635–636, 2018.

[17] International Standard Organization (ISO).
International standard iso/iec 9126, information
technology - product quality - part1: Quality model,
2001.

[18] J.-L. Letouzey. The sqale method for evaluating
technical debt. In 2012 Third International Workshop
on Managing Technical Debt (MTD), pages 31–36,
2012.

[19] E. d. S. Maldonado and E. Shihab. Detecting and
quantifying different types of self-admitted technical
debt. In 2015 IEEE 7th International Workshop on
Managing Technical Debt (MTD), pages 9–15, 2015.

[20] J. A. McCall, P. K. Richards, and G. F. Walters.
Factors in software quality. volume i. concepts and
definitions of software quality. Technical report,
GENERAL ELECTRIC CO SUNNYVALE CA, 1977.

[21] S. Mcconnell. Managing technical debt. Construx,
pages 1–14, 01 2013.

[22] J. P. Miguel, D. Mauricio, and G. Rodŕıguez. A review
of software quality models for the evaluation of
software products. arXiv preprint arXiv:1412.2977,
2014.

[23] A. Nugroho, J. Visser, and T. Kuipers. An empirical
model of technical debt and interest. In Proceedings of
the 2nd Workshop on Managing Technical Debt, MTD
’11, page 1–8, New York, NY, USA, 2011. Association
for Computing Machinery.

[24] K. Power. Understanding the impact of technical debt
on the capacity and velocity of teams and
organizations: Viewing team and organization
capacity as a portfolio of real options. In 2013 4th
International Workshop on Managing Technical Debt
(MTD), pages 28–31, 2013.

[25] T. Ravichandran and M. A. Rothenberger. Software
reuse strategies and component markets.
Communications of the ACM, 46(8):109–114, 2003.

[26] E. Tom, A. Aurum, and R. Vidgen. An exploration of
technical debt. Journal of Systems and Software,
86(6):1498–1516, 2013.

[27] S. Wehaibi, E. Shihab, and L. Guerrouj. Examining
the impact of self-admitted technical debt on software
quality. In 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering
(SANER), volume 1, pages 179–188, 2016.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

https://beingaprojectmanager.com/nuggets/project-management-golden-triangle/
https://beingaprojectmanager.com/nuggets/project-management-golden-triangle/
https://martinfowler.com/bliki/TechnicalDebt.html
https://martinfowler.com/bliki/TechnicalDebt.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://www.techtarget.com/searchsoftwarequality/definition/quality-assurance/
https://www.techtarget.com/searchsoftwarequality/definition/quality-assurance/
https://www.techtarget.com/searchsoftwarequality/definition/quality-assurance/

Exploring the Relation Between Technical Debt and Risk
Management

Katharina Güths
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

katharina.gueths@rwth-aachen.de

Egzon Ademi
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

egzon.ademi@rwth-aachen.de

ABSTRACT
Technical debt is a metaphor in software engineering that
describes the acceptance of future costs in favor of short-
term benefits. Possible consequences are manifold and in-
clude additional financial costs as well as quality issues and
reduced maintainability. Nevertheless it is a common phe-
nomenon in software which can emerge unnoticed but is also
intentionally taken on due to time pressure and other rea-
sons. For the success of a software project it is important
to manage the amount of technical debt in order to mini-
mize its negative impact. Similarly, risk management is an
important part of software engineering. A risk is defined as
some part of the software or circumstances of the develop-
ment that imposes danger to the project’s success. In order
to minimize such dangers, the identification and handling of
risk factors is crucial. The aim of this work is to determine
the relation between technical debt and risk and whether
these two issues can be managed jointly. For this purpose, a
systematic literature review was performed. Overall, the re-
lation between technical debt and risk management is barely
covered in literature, but sources generally agree that the
issues mutually affect each other, e.g., the accumulation of
technical debt imposes several risks. Due to the similarity
between the management techniques for both issues, they
can be combined and united. Therefore, a joint manage-
ment might be beneficial, but scientific evidence for this is
missing.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software En-
gineering]: Management—productivity, programming teams,
software configuration management

Keywords
technical debt, technical debt management, risk, risk man-
agement, software engineering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2018/19 RWTH Aachen University, Germany.

1. INTRODUCTION
The term of technical debt has gained progressively more

importance since its coining in 1992. It draws a metaphor to
the financial sector as it describes the postponement of dif-
ficult or time consuming tasks as a form of taking on debt
which has to be repaid later. Without regular repayment
of technical debt, it can accrue and lead to severe conse-
quences, including but not limited to higher costs, decreased
productivity of developers, lower maintainability and over-
all reduced project quality [13]. In order to minimize such
negative effects, technical debt needs to be carefully man-
aged, and various techniques for this purpose have been pro-
posed. However, research in this field is still not encompass-
ing and effective tools to manage technical debt are missing
([9], [12]).
This lack of adequate management procedures results often
times in an increase of various risks, as for example the costs
necessary to repay debts may be underestimated which can
lead to missed deadlines or overall project failure. In con-
trast, it has also been pointed out that risks can increase
due to technical debt that is not taken, as the implementa-
tion in accordance to coding standards is more difficult and
time-consuming, such that timelines may not be met [14].
Both technical debt and risk are more and more frequently
discussed in literature and various management techniques
have been proposed. However, they have not been put into
relation extensively. Mutual influences have been mentioned
but not evaluated in detail. An assessment of the relation-
ship might enable developers to manage both issues in a
joint manner and thereby save valuable time and resources.
This study aims to determine the relations mentioned in lit-
erature so far and thereby create a starting point for further
investigation and joint management.
The rest of the paper is structured as follows: Section 2
will examine previous work on technical debt and risk in
software engineering and give an overview about common
management techniques of these separate issues. Section 3
will describe the procedure of this study on their relation
and state concrete research questions. The results will be
presented in section 4 and subsequently discussed in section
5. Lastly, section 6 will give a conclusion and some prospects
on future work.

2. RELATED WORK AND BACKGROUND
In order to discuss the relation between technical debt

and risk as well as a potential joint management of these is-
sues, it is important to understand them separately at first.
Therefore, this section will give an overview of their respec-

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

tive properties and common management techniques.
The term technical debt was coined in 1992 by Ward Cun-
ningham [12] as he compared the usage of immature code
to the financial concept of debt: The development can be
accelerated by taking on debt, but it should be repaid as
soon as possible, to minimize the interest. The repayment
is conducted by rewriting the code, which becomes more
and more complex the longer it is postponed and the more
debt accrues. According to Cunningham, refactorings then
require specialized programmers and engineering organiza-
tions can be damaged severely [8]. While this initial analogy
seems easy to understand, there is still no single universally
acknowledged definition today. After Cunningham’s publi-
cation, the term became widely used in blogs, but only in
2010 it was taken up by scientific research. The Dagstuhl
Seminar on Managing Technical Debt in Software Engineer-
ing in 2016 agreed upon two different viewpoints, concerning
the discussion of design trade-offs with technical debt as a
metaphor on the one hand, and the denotation of software
artifacts indicating future costs on the other hand [12]. The
seminar concluded with the following definition for technical
debt:

”In software-intensive systems, technical debt is a
collection of design or implementation constructs
that are expedient in the short term, but set up
a technical context that can make future changes
more costly or impossible. Technical debt presents
an actual or contingent liability whose impact
is limited to internal system qualities, primarily
maintainability and evolvability.” [5]

This definition clarifies, that technical debt can not only
occur in code, but is also related to documentation, archi-
tecture design and tests [5]. Accordingly, many subtypes
of technical debt have been identified, such as architecture
debt, build debt, code debt, defect debt, design debt, docu-
mentation debt, infrastructure debt and more [3].
The terms principal and interest were adopted in software
engineering too, due to their direct relation to the concept
of debt. The former refers to the benefit gained by taking on
debt, i.e., savings of time and cost resulting from the imper-
fect code or design or, equivalently, the costs of completing
the respective task properly ([5], [2]). Interest is the counter-
part of this benefit, namely the cost resulting from the debt,
which rises over time. Here, one can distinguish between
recurring and accruing interest. Recurring interest is the
consequence of decreased maintainability such as lower pro-
ductivity, defects and poor quality. Accruing interest results
from new software depending on the code containing tech-
nical debt, i.e., decreased evolvability [5]. Note that these
consequences do not always emerge: If, for example, the af-
fected module will not be used further so there is no need for
maintenance and evolvement, the technical debt may not do
any damage. This probability for negative impact is referred
to as interest probability [2].
On average, 32% of the software development time in pro-
duction systems is spent on repayment of technical debt,
which offers an enormous potential of time saving when it is
managed effectively [1]. By employing beneficial regularities,
the incursion of technical debt can be avoided or minimized
from the start. For example, a high frequency of small com-
mits leads to higher complexity, while big changes tend to
reduce technical debt and improve efficiency [3]. Techniques

to manage technical debt after its incursion mainly involve
the identification and monitoring of debt instances in or-
der to repay them at a reasonable time during development
[2]. This can be done by manually analyzing the source
code in search for bad smells such as, e.g., god classes or
code duplication, but such an evaluation is very costly and
time consuming [13]. One of the most used tool to auto-
matically identify instances of technical debt in literature is
SonarQube. It works by scanning the source code for vio-
lations of predefined rules and charging a specified amount
of time needed to repair any given violation. The accu-
racy of this tool has been shown to be similar to the results
of manual evaluation by software specialists. However, the
time estimated for the removal of technical debt items is not
always appropriate, depending on the size and complexity
of a project. While developers of a complex, sophisticated
project may need twice as much time as recognized by Sonar-
Qube to fix a rule violation, the same problem might require
only a fraction of the time in a smaller project. Therefore,
researchers have concluded that this tool is not suitable to
determine the amount of technical debt in a single project,
but rather to compare its ratio between projects [9].
Continuous integration is another approach of managing tech-
nical debt. The method enables developers to discover errors
and duplicate code earlier by having repeatable tests, which
also supports the discovery of technical debt items. This
validation becomes more difficult at the end of product con-
struction, because functionalities and thereby the necessary
test cases become more complex [3].
When identified accordingly, technical debt can also be con-
tinuously repaid by continuous refactoring. This is a good
way to prevent its accumulation to a critical level and also
supports managers in the communication with developers,
such that old solutions can be reused and optimized more
easily. [3].
CAST is another approach, which calculates technical debt
based on coding violations associated with the quality at-
tributes security, performance, robustness, transferability
and changeability. The violations are classified into groups
of low (10%), medium (25%) and severe (50%) degree of vi-
olation, whereby, depending on the category, violations do
not always have to be remedied [7].
Additionally, technical debt can be investigated with vari-
ous analysis tools, for example to identify its subtypes such
as architectural debt. These analysis tools use, e.g., stan-
dardized code metrics or logical flow charts. A requirements
analysis of the current status can give an indication to which
level of severeness a debt item has progressed. By document-
ing the progress of software development, an estimate of the
technical debt can be given based on the detailed description
of the procedure for developing the software. Another ap-
proach is a bottom up enumeration of technical debt, start-
ing with trivial mistakes and progressing to rather unob-
trusive ones. The problem here is, however, this requires
maintenance from the beginning, otherwise the generation
of this overview is too expensive and time-consuming [10].
In addition to technical debt, various risks should be man-
aged in software engineering in order to prevent, e.g., rework
and additional costs. Risk management is defined as a pro-
cess of detection, analyzing and dealing of risk factors in
a project. Risk factors are, for example, unrealistic time
planning, lack of budget and insufficient skills. All of these
factors can contribute to software being improperly devel-

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

oped [1]. A good management, however, can enhance the
development procedure and thereby the quality of software
[7].
There are many different approaches to manage risk. One of
them is the use of checklists which are created from experi-
enced stakeholders and project managers in related software
projects. These lists contain important risk factors identi-
fied in similar projects, which can be found more quickly
when developing new software, e.g., personnel shortfalls or
late changes of requirements [4]. Comparing such lists with
the circumstances of a given project is a quick and low cost
opportunity of managing risks in software engineering. How-
ever, the use of checklists entails difficulties, too. Many dif-
ferent versions exist, but it is not clear which one of them
is the best. Furthermore, there are so many potential risks
in a software project that identifying and managing them
by checklists is not effectively possible, especially concern-
ing large projects [6].
Another approach of managing risks is the use of non-process
based analytical frameworks. The multitude of risk factors
are grouped into categories so that they can be managed
and treated as a group. Various types of grouping exist
in the literature. For example, one grouping option intro-
duced by Cule et al. includes the categories client, self,
task, and environment, referring to the source of risks. An-
other option was introduced by Lam in 2014, where the
categorization is life cycle based, meaning the risk factors
are categorized based on the phase of software development
they emerged in. Putting risk factors together in groups in-
creases treatment efficiency considerably and minimizes the
effort involved. Furthermore, the categorization in groups
supports the discovery of further problems or risks. But as
with checklists, it is not clear which tool or grouping is best.
A previously used or created tool is not always sufficient for
other projects and in some cases a combination of multiple
tools might be beneficial [6].
Process models are another approach that is presented in
the literature and has the most use in practice. Communi-
cation between developers participating in the software is an
important aspect of any jointly cultivated software project,
since changing one component can have a huge impact on
other parts of the software. In order to recognize the extent
of such impacts, a number of steps must be performed. First
of all, the respective causes and possible consequences need
to be recognized and identified in detail. Then, the conse-
quences are analyzed in order to determine resulting risks
and thirdly, these risks are evaluated such that remediation
activities for the most severe risks can be prioritized. After
this series of steps of identification, analysis, and evaluation,
risks can be monitored, and documented and treated appro-
priately [11]. The division of this procedure into individual
steps facilitates the application of corresponding tools, which
can simplify each step. The implementation of risk manage-
ment with the help of process models should be carried out
iteratively during development, such that the emerging risk
factors are recognized early and environmental changes are
integrated [6].
The approaches presented here can also be combined and
used together, as they are partially incomplete and comple-
ment each other. E.g., process models do not offer concrete
solutions. Through the combination of multiple tool op-
tions, risk management can be completed successfully and
efficiently [11].

To conclude this section, the management techniques for
technical debt and risk in software engineering share signifi-
cant similarities. For both issues, identification and monitor-
ing are the main activities. By expanding the criteria during
the identification process, it may be possible to handle debt
and risk at once. A significant difference is the considered
scope: While technical debt relates only to software arti-
facts, i.e., code, documentation or architecture design, risk
factors can be found in external circumstances of the project
as well, e.g., among stakeholders or in characteristics of de-
velopers. It has not been discussed in detail, whether a joint
management of both issues is beneficial. In order to avoid
unwanted side effects, the ways in which technical debt and
risk can influence each other should be identified at first.
This gap in research so far is dealt with in the following
sections.

3. METHOD
The aim of this study is to determine the relation be-

tween technical debt and risk management. Therefor, we
roughly followed the systematic literature review method-
ology proposed by Barbara Kitchenham [10], but omitted
or shortened some parts like the Study Quality Assessment
due to the limited scope of the seminar. In the following,
our procedure is depicted in detail.

3.1 Research Questions
For a precise literature search we formulated the follow-

ing research questions based on the gap discovered in related
work:

RQ1: What is the relation between technical debt and risk?
Both technical debt and risk are common issues in software
development, but their relation is not entirely clear. This
research question is intended to determine how they are con-
nected and to what extend one of them causes or mitigates
the other.

RQ2: Can technical debt and risks be managed jointly and
if so, how?
For a successful project, both technical debt and risk should
be managed effectively. Depending on their relation, it might
be possible to manage them jointly by making use of that
relation.

3.2 Search Strategy
In the initial search, the focus was on narrowing the num-

ber of results by filtering out irrelevant papers, e.g., those re-
lated to financial debt. Furthermore, we aimed to disregard
papers dealing exclusively with technical debt or risk, since
we were looking specifically for connections between both
of these issues. After considering various combinations of
”technical debt”and ”risk management”, the following search
query was selected:

• ”technical debt” in all metadata

• ”risk” in full text and metadata

• ”management” in full text and metadata

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Figure 1: The procedure and intermediate results of the lit-
erature search

3.3 Study Selection
Due to the large number of results obtained in various

databases, the limitation to a single literature database was
estimated to give a sufficient overview of the topic. For
this study, IEEE was used, but we expect other common
databases to yield similar results. In IEEE, 206 Conferences
and Journals were obtained, which were managed in Citavi.
These were portioned evenly between the two authors to
filter them based on their title and abstract: The main in-
clusion criterion was the mentioning of technical debt in the
context of software projects as well as some notion of risks
or the probability of future impairments. After this first fil-
ter, 34 studies remained. The second filtering was based on
the full text of the studies, where each author filtered the
studies selected by the other one in the previous step. Here,
only studies which inferred some kind of relation between
technical debt and risk were selected. An explicit denial of
any relation would have been included as well but was not
found in any study. In the end, 14 studies remained. The
complete procedure of study selection is illustrated in Figure
1.

3.4 Data Extraction
After the study selection, each author analysed half of the

remaining studies to determine the inferred connection of
technical debt and risk. It should be noted, that no study
was found which focuses on the relationship between these
issues, except one which is strictly limited to security debt
and security risk ([9]). General connections were drawn only
in minor subsections or as side notes. Such mentions were
extracted individually for each study and summarized with
respect to the specific context within the paper.

3.5 Data Synthesis
Due to repetitions between studies, the extracted data

was summarized at first. Some explanatory details about
the studies’ context and management techniques were dis-
regarded or complemented in Section 2, as they are not di-
rectly concerned with the topic but necessary for reference.
Then the data was grouped into related concepts in order to
create a comprehensible structure and emphasize the variety
of connections between technical debt and risk.

4. MAPPING RESULTS
The relation between technical debt and risk has not been

examined in detail so far, but several researchers have drawn

Figure 2: The publication years of the papers selected for this
mapping study

a connection in recent years. Figure 1 displays the distribu-
tion of papers mentioning some relation, that were found in
this study. The earliest mention was published in 2014 and
the topic was addressed a maximum of seven times in 2020.
While this might indicate a significant increase of interest in
the topic, the filtering only resulted in one paper from 2021
and did not find any relevant paper published this year.
The relations between technical debt and risk discovered in
literature are manifold and will be described in the following
subsections.

4.1 Risks resulting from taking on debt
Various project risks are significantly effected by techni-

cal debt, but the risk of high effort and duration is the main
effect of technical debt on project level [1]. This leads, e.g.,
many startups into bankruptcy because they fail to manage
technical debt in the early stages, such that it accumulates
and causes severe defects and costs [3]. Without manage-
ment, technical debt can lead to the degeneration of a sys-
tem’s architecture [2].
Due to these potential consequences, the emergence of tech-
nical debt itself can be seen as a risk. Tan et al. investigated
the co-occurring of multiple instances of technical debt in
Python to discover whether the presence of some types of
technical debt can be used to estimate the risk of additional
technical debt to emerge. According to their results, most
associations between technical debt items are random, but
some types have indeed a high chance of occurring simulta-
neously. For example, a high cyclomatic complexity tends to
increase the cognitive complexity of code. Furthermore, the
amount of a specific subtype of technical debt called defect
debt increases, if the software is not tested completely, and
overall the accumulation of bad smells might increase the
risk of specific design problems to emerge soon. Another
finding of the study is that co-occurrence mostly happens
very quickly and is then hard to eliminate [13].
Rindell and Holvitie connected technical debt to security
risk, i.e., they found that for example the data integrity of
the resulting software can be impaired by specific items of
technical debt. They refer to such items as security debt
and argue that previously unknown debt can be identified
by means of a security evaluation, as they are discovered as
the source of security risk. This is an unusual approach and
can not be easily transferred to other types of technical debt
or risk [9].

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

4.2 Risks resulting from repaying debt
In addition to the accumulation of technical debt, its man-

agement and repayment can also impose risks. E.g., the
approach of continuous integration for discovery of techni-
cal debt items can impose the risk of a shifted focus away
from the actual functionalities of the software: Because the
tests become more and more complicated towards the end of
production and need to be updated continuously, developers
may spend too much time on these tests and fail to finish
the implementation of software functionalities in time [3].
A crucial method for the repayment of technical debt is the
refactoring of impacted code. In fact, technical debt is a
main motivator for refactorings in software projects, since
high complexity and low readability of code can make bug
fixing very difficult even for experienced developers. Such
rewritings or reorganisations of code are a common way to
improve its quality and comprehensability. However, refac-
toring can also impose risks: According to a survey with 328
software engineers, 50% of developers fear that refactorings
will introduce new bugs and other side-effects. Especially
refactorings in relation to hierarchies often induce faults.
Those related to the relocation of code are less likely to do
so [8].

4.3 Risk as a decision factor in technical debt
management

Martin Fowler created a way to classify technical debt
items based on the way risks were considered during the de-
cision process to take on the debt with his Technical Debt
Quadrant. He classified technical debt items into the cate-
gories reckless deliberate, reckless inadvertent, prudent de-
liberate, and reckless inadvertent, which correlate to the fol-
lowing attitudes towards risk [14]:

reckless deliberate The risks resulting from technical
debt are ignored and the resulting
consequences were not taken into
account.

reckless inadvertent The resulting risks and conse-
quences are not apparent during de-
velopment.

prudent deliberate The resulting risks and conse-
quences could be identified and an-
alyzed during development.

reckless inadvertent The risks and consequences would
be analyzed if they were evident.

The decision whether or not to take on technical debt should
always be made in consideration of both the advantages and
risks. While the former are usually imminent, e.g., reduction
of time pressure, future risks are often unknown and could
affect various aspects like support costs and code complex-
ity [15]. The knowledge of commonly co-occurring types of
technical debt may help developers to foresee possible con-
sequences of taking on debt [13] and therefore to avoid ad-
ditional project risks.
The following attributes have been found to be key factors
for the decision on whether or not or at what time to repay
technical debt: Severity, existence of a workaround, urgency
of fix required by customer, effort to implement the fix, risk
of the proposed fix, and scope of testing required. Usually,

it is beneficial to repay debt rather sooner than later, as the
interest increases as long as the repayment is delayed. Es-
pecially in large systems refactoring becomes harder when
it is delayed, which also increases the risk of not meeting
timelines. However, there have been instances of technical
debt that did not incur any interest, even when their repay-
ment was delayed, so they do not impose any risks [5]. In
any case, risk is a fundamental component of the subject of
technical debt and when it needs to be repaid [11].

4.4 Prioritization of technical debt based on
risk

Since the resources for debt management are usually lim-
ited, it is important to prioritize the repayment of those
debt items which impose the greatest risk over less danger-
ous ones. Codabux and Williams have developed a frame-
work for this purpose, to categorize technical debt items
into low, medium and high risk items. Thereby, the items
are rated through the Analytical Hierarchy Process, which is
a comparison technique that can be conducted with various
metrics. In this case, suitable metrics would be, e.g., the im-
pact of the debt item estimated by developers, its location
in source code or its relationship to crucial system functions
[2].

4.5 Identifying risks based on technical debt
While most of the literature addresses risk as something to

be considered during technical debt management, the same
holds vice versa, as the technical debt present in a software
project can be utilized to manage risks. Through the catego-
rization of debt items into different subtypes, possible risks
in the individual development phases of the software can be
identified at an early stage and remedied, depending on the
damage [9].

5. DISCUSSION
The mapping results verify our expectation that technical

debt and risk are connected, but the data situation is in-
sufficient. Still, in the following the research questions from
Section 3.1 will be discussed based on our results.

RQ1: What is the relation between technical debt and risk?
The relationship between technical debt and risk manage-
ment can be summarized as follows. Technical debt can be
seen as a risk factor in software development due to the
uncertainty of the emergence and severity of its negative
consequences. In a way, increasing risk is an intrinsic prop-
erty of technical debt. A decisive difference to other risk
factors is that technical debt is often taken on, intentionally
or subconsciously, in order to circumvent current shortages
or problems.
Irrespective of whether technical debt is considered as a risk
factor itself, it can lead to the emergence or increase of var-
ious other risks, such as project failure, additional develop-
ment cost, timeline transgressions and many more. These
consequences and the probability of their occurrence vary
between different items of technical debt, depending on the
kind of debt, its severeness, repayment and the further de-
velopment of the respective artifact.
Furthermore, the management and repayment of technical
debt items bears risks. This might seem contradictory, be-

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

cause the management is supposed to relieve the risks of
technical debt, but the procedure can be very resource in-
tensive and thus hinder actual product development. Be-
sides, refactorings with the purpose of debt repayment are
also prone to error and may incur additional or even more
risky debt.
Despite these connections found in literature, there has not
been any explicit comparison of the amount of risk and tech-
nical debt in software projects yet, to the best of our knowl-
edge. A statistic of, e.g., the number of project failures or
releases behind schedule in dependence of the incurred tech-
nical debt could give a more definite and detailed indication
of the correlation between technical debt and risk.

RQ2: Can technical debt and risks be managed jointly and
if so, how?
When dealing with technical debt and risk management, the
same or very similar procedures can be identified. In both
domains, the remediation of issues is less costly, financially
and in terms of time, when they are identified and managed
earlier. This does not mean, however, that risk manage-
ment strategies can be directly applied to technical debt
or vice versa. Both issues occur in various different forms
with different outcomes depending on the individual soft-
ware project, such that a tailored combination of multiple
management strategies is usually advisable.
We expect the joint consideration of both issues to be ben-
eficial, because an effective management of risks can sup-
port the management of technical debt. With knowledge
of the risks present in a software project, the repayment of
those debt items which cause the greatest risk can be pri-
oritized. Such repayments can also be timed adequately in
dependence of further development and usage of respective
artifacts. Additionally, during the decision whether or not
to take on technical debt, the risks stemming from poten-
tial shortcuts should be contrasted with those that the debt
item is intended to avert. This can help developers to de-
termine whether it is actually profitable to go into debt in
each individual situation.
Note that the joint consideration as described here is only a
suggestion based on the connections between technical debt
and risk found in literature. It has not been put to the test
and needs further investigation to determine its effectiveness
in practice.

5.1 Implications
These results suggest that practitioners in software en-

gineering should consider risks during the management of
technical debt and vice versa. Since the management tech-
niques are similar, they can be combined and extended to
both issues, such that time and resources can be saved. For
every decision on taking on debt, the risks resulting from
this specific debt item should be carefully contrasted with
those it is intended to reduce.
Similarly, researchers should consider the risks coming from
technical debt and its repayment as well as the probabil-
ity for technical debt in dependence of various risk factors
during their work. Knowing about such connections enables
them to draw more specific conclusions and determine the
reasons for project failures or other problems. Besides, the
benefit of a joint management as suggested in this paper
should be statistically verified.

5.2 Threats to validity
In the following subsections, two possible threats to the

validity of this study will be discussed. Thereby, internal
and external validity is separated.

5.2.1 Internal validity
A threat to the internal validity of this study may be the

limitation of the literature search to only IEEE. The pic-
ture of the relation between technical debt and risk man-
agement drawn in this study might be incomplete, because
only one database was taken into account. However, IEEE
is known to be encompassing in the field of software devel-
opment and an initial rough assessment of other databases
such as ACMDL, ScienceDirect and Scopus revealed similar
results.

5.2.2 External validity
Concerning external validity, one should note that this

study deals with the concepts of technical debt and risk as a
whole, respectively. Especially technical debt can be catego-
rized in many different subtypes such as architecture debt,
code debt or defect debt. Each of these types as well as their
repayments may have individual implications on risk, which
is not considered in this study. Such differences might im-
pact the degree to which it is possible to manage the respec-
tive debt item in a joint manner with risk. In fact, even the
same type of debt can have different consequences in differ-
ent software projects, as project properties and development
processes differ. Therefore, a joint management technique
that worked well in one project might not be transferable to
other ones.

6. CONCLUSION
All in all, similarities between managing technical debt

and risk can be noted: For both issues, the detection of
relevant instances constitutes a big part of the manage-
ment techniques. Thereupon, the severity of found instances
needs to be assessed and monitored in both cases, such that
their remediation can be prioritized and planned effectively.
Performing these procedures jointly for technical debt and
risk might therefore be a possibility to save time and other
resources. This is not entirely possible since technical debt is
limited to project artifacts such as code and architecture de-
sign, while risk factors can come from external circumstances
like developer experience or stakeholder involvement. Nev-
ertheless, such circumstances can also influence the occur-
rence of technical debt, so they should be regarded in debt
management too.
Risk should play a significant role in the assessment of tech-
nical debt items, because the incursion as well as the repay-
ment of technical debt items can impose risks. The same
holds vice versa, since the accumulation of technical debt
and especially the growth of its interest can be considered
as a risk with varying severity.
Note that these statements are mainly speculative so far and
are not sufficiently backed with real data. The relation be-
tween technical debt and risk and especially the effectiveness
of a joint management of these issues requires considerably
more research. E.g., as mentioned before, a large scale study
on the frequency of project failure in dependence of techni-
cal debt could give a better indication of the correlation
between technical debt and risk. Such a statistic might also
consider and compare projects where technical debt and risk

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

are already managed jointly to some degree. Additionally,
developers can be questioned in a survey on whether or how
often they have experienced a project risk resulting from
technical debt or vice versa. The questionnaire should also
inquire information on how the connection was identified,
how such situations were handled and which steps were ini-
tiated to avoid their repetition. Since developers may not
be able to answer these questions precisely, it might also
be beneficial to accompany entire software projects in order
to scientifically monitor any occurrence of technical debt or
risk as well as their management.

References
[1] T. Addison and S. Vallabh. Controlling software project

risks: an empirical study of methods used by experi-
enced project managers. In Proceedings of the 2002 an-
nual research conference of the South African institute
of computer scientists and information technologists on
Enablement through technology, pages 128–140. Citeseer,
2002.

[2] N. S. Alves, T. S. Mendes, M. G. de Mendonça, R. O.
Sṕınola, F. Shull, and C. Seaman. Identification and
management of technical debt: A systematic mapping
study. Information and Software Technology, 70:100–
121, 2016.

[3] N. S. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and
R. O. Sṕınola. Towards an ontology of terms on technical
debt. In 2014 Sixth International Workshop on Manag-
ing Technical Debt, pages 1–7, 2014.

[4] T. Arnuphaptrairong. Top ten lists of software project
risks: Evidence from the literature survey. In Proceedings
of the International MultiConference of Engineers and
Computer Scientists, volume 1, pages 1–6, 2011.

[5] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Sea-
man. Managing technical debt in software engineer-
ing (dagstuhl seminar 16162). In Dagstuhl Reports,
volume 6. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2016.

[6] P. L. Bannerman. Risk and risk management in soft-
ware projects: A reassessment. Journal of systems and
software, 81(12):2118–2133, 2008.

[7] B. Boehm. Software risk management: principles and
practices. IEEE Software, 8(1):32–41, 1991.

[8] W. Cunningham. The wycash portfolio management
system. ACM SIGPLAN OOPS Messenger, 4(2):29–30,
1992.

[9] J. S. de Jesus and A. C. de Melo. Technical debt and
the software project characteristics. a repository-based
exploratory analysis. In 2017 IEEE 19th Conference on
Business Informatics (CBI), volume 1, pages 444–453.
IEEE, 2017.

[10] B. Kitchenham. Kitchenham, B.: Guidelines for per-
forming Systematic Literature Reviews in software en-
gineering. EBSE Technical Report EBSE-2007-01. 01
2007.

[11] J. Masso, F. J. Pino, C. Pardo, F. Garćıa, and M. Pi-
attini. Risk management in the software life cycle: A
systematic literature review. Computer standards & in-
terfaces, 71:103431, 2020.

[12] F. Ocker, M. Seitz, M. Oligschläger, M. Zou, and
B. Vogel-Heuser. Increasing awareness for potential tech-
nical debt in the engineering of production systems. In
2019 IEEE 17th International Conference on Industrial
Informatics (INDIN), volume 1, pages 478–484. IEEE,
2019.

[13] L. Rantala. Towards better technical debt detec-
tion with nlp and machine learning methods. in 2020
ieee/acm 42nd international conference on software en-
gineering: Companion proceedings (icse-companion)(pp.
242–245), 2020.

[14] E. Tom, A. Aurum, and R. Vidgen. An exploration
of technical debt. Journal of Systems and Software,
86(6):1498–1516, 2013.

[15] R. Zablah and C. Murphy. Restructuring and refi-
nancing technical debt. In 2015 IEEE 7th International
Workshop on Managing Technical Debt (MTD), pages
77–80, 2015.

APPENDIX
SELECTED STUDIES
[S1] S. Biffl, F. Ekaputra, A. Lüder, J. Pauly, F. Rinker,

L. Waltersdorfer, and D. Winkler. Technical debt
analysis in parallel multi-disciplinary systems engi-
neering. In 2019 45th Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEAA),
pages 342–346. IEEE, 2019.

[S2] Z. Codabux and B. J. Williams. Technical debt
prioritization using predictive analytics. In 2016
IEEE/ACM 38th International Conference on Soft-
ware Engineering Companion (ICSE-C), pages 704–
706. IEEE, 2016.

[S3] R. Colomo-Palacios et al. Continuous practices and
technical debt: a systematic literature review. In
2020 20th International Conference on Computational
Science and Its Applications (ICCSA), pages 40–44.
IEEE, 2020.

[S4] M. de León-Sigg, S. Vázquez-Reyes, and

D. Rodŕıguez-Ávila. Towards the use of a framework
to make technical debt visible. In 2020 8th Interna-
tional Conference in Software Engineering Research
and Innovation (CONISOFT), pages 86–92, 2020.

[S5] Z. Li, Q. Yu, P. Liang, R. Mo, and C. Yang. Interest of
defect technical debt: An exploratory study on apache
projects. In 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages
629–639. IEEE, 2020.

[S6] A. Martini and J. Bosch. Towards prioritizing archi-
tecture technical debt: Information needs of architects
and product owners. In 2015 41st Euromicro Confer-
ence on Software Engineering and Advanced Applica-
tions, pages 422–429, 2015.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

[S7] A. Mayr, R. Plösch, and C. Körner. A benchmarking-
based model for technical debt calculation. In 2014
14th International Conference on Quality Software,
pages 305–314, 2014.

[S8] F. Palomba, A. Zaidman, R. Oliveto, and A. De Lu-
cia. An exploratory study on the relationship between
changes and refactoring. In 2017 IEEE/ACM 25th
International Conference on Program Comprehension
(ICPC), pages 176–185. IEEE, 2017.

[S9] K. Rindell and J. Holvitie. Security risk assessment
and management as technical debt. In 2019 Interna-
tional Conference on Cyber Security and Protection of
Digital Services (Cyber Security), pages 1–8, 2019.

[S10] L. A. Rosser and J. H. Norton. A systems perspective
on technical debt. In 2021 IEEE Aerospace Conference
(50100), pages 1–10, 2021.

[S11] S. Soares de Toledo, A. Martini, A. Przybyszewska,
and D. I. Sjøberg. Architectural technical debt in
microservices: A case study in a large company. In
2019 IEEE/ACM International Conference on Tech-
nical Debt (TechDebt), pages 78–87, 2019.

[S12] M. G. Stochel, P. Cho lda, and M. R. Wawrowski. On
coherence in technical debt research: Awareness of the
risks stemming from the metaphorical origin and rel-
evant remediation strategies. In 2020 46th Euromi-
cro Conference on Software Engineering and Advanced
Applications (SEAA), pages 367–375. IEEE, 2020.

[S13] J. Tan, D. Feitosa, and P. Avgeriou. Investigating
the relationship between co-occurring technical debt in
python. In 2020 46th Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEAA),
pages 487–494. IEEE, 2020.

[S14] A. Zalewski. Risk appetite in architectural decision-
making. In 2017 IEEE International Conference
on Software Architecture Workshops (ICSAW), pages
149–152, 2017.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Exploring Technical Debt Management in Project-Based
and Product-Based Software Development

Simon Hessel
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

simon.hessel@rwth-aachen.de

Tobias Raaf
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

tobias.raaf@rwth-aachen.de

ABSTRACT
Technical debt management (TDM) has been accepted as an
essential part of today’s software development process. As
up to 75% of software development effort is spent on main-
tenance, managing technical debt becomes a key factor for
successful software development. Until now, the research
on TDM was focusing on company, project and tool-specific
case studies, but the impact of different decisions concern-
ing the development process and approach has not been
brought into sharp focus. This paper concentrates on un-
derstanding the influence of different software development
approaches (i.e. product-based and project-based software
development) on TDM strategies. We believe that there
are some dependencies between the development environ-
ment/conditions and TDM.

To find practical evidence in this context, we conducted
a systematic literature review of existing primary studies
(e.g. case studies and developer surveys) on TD. We will
compare TD concepts as well as individual steps taken to
manage TD. Our results show that certain TD concepts dif-
fer strongly between development modes, e.g. decreased TD
visibility in project-based software development or budget-
shortages as a predominant TD cause in projects which call
for proposals. While multiple other TD causes, as chang-
ing requirements or release pressure, are common for both
development approaches, they often differ in detail. There
are also differences in TDM as, for example, project-based
teams tend to implement the action of TD measurement
more often and they have a higher necessity of implement-
ing TD documentation. On the other hand, TD repayment
differs strongly depending on the exact circumstances of the
project/product, and not only depending on the develop-
ment mode. For TD communication, we made assump-
tions that project-based teams could have a higher focus
on this action, but this could neither be proven nor dis-
proven. Other TD concepts and TDM actions differ in de-
tail rather than in their general implementation. Lastly this
study shows the absence of studies solely focusing on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2022 RWTH Aachen University, Germany.

development mode, therefore further research needs to be
done.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software En-
gineering]: Management—productivity, programming teams,
software configuration management

Keywords
Technical debt, technical debt management, product-based
software development, project-based software development,
software development, systematic literature review

1. INTRODUCTION
Technical debt (TD) first used by Ward Cunningham[3]

in 1992 is a metaphor to describe decisions and practices in
a software development team that solve a current problem
fast and/or easy by neglecting code and architectural design.
Similar to its financial counterpart[1], TD can therefore ac-
cumulate interest in the form of increased cost and time to
be spent in later phases of the project.

Managing said debt also called TD management (TDM)
describes the practices of monitoring, quantifying, reducing
and handling TD in a software development environment[7].
With ongoing time, TDM was categorized into activities, for
a clean separation between different approaches and prac-
tices[7]. TD repayment, TD identification and TD mea-
surement are the most commonly discussed activities, these
terms will be explained in detail in section 2 of this paper.

This paper will focus on comparing TD concepts and TDM
in project-based vs product-based software development en-
vironments. Where project-based environments have a sin-
gle customer and a fixed time frame, which should be com-
plied to[5], product-based environments have a flexible scope
and target an open market with multiple possible, but yet
unknown customers. Because the maintenance of ongoing
software development projects is estimated to take up 50-
75% time spent[1] TD and TDM is an important research
field. In the current scientific literature, there are many case
studies on the topic of TD and TDM, in which a specific tool
or method is being applied to a small group or company or
multiple developers are surveyed on TD and TDM. Addi-
tionally, there are multiple systematic mapping studies like
one performed by Zengyang Li et al. named ”A systematic
mapping study on technical debt and its management”[7],
which visualizes and combines the state of scientific research
on TD and TDM until 2014. However, there has been no

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

research conducted on the effectiveness of different TDM
activities when comparing product- and project-based de-
velopment environments. In this paper, we want to focus on
this gap, give insights into certain studies and answer the
following research questions on the topic of TDM:

RQ1 How do TD concepts differ between product- and project-
based development?

RQ2 How does TDM change in product- vs project-based
development?

To answer these questions we will do a systematic literature
review (SLR)[2], in which we will classify the selected papers
and their studied software development teams, see more in
section 3, into project- or product-based development envi-
ronments and analyze the applied TDM strategies as well as
impact on TD concepts.

This paper is organized as follows: Section 2 explains the
underlying concepts of TD, TDM and project- vs product-
based. Section 3 describes the limits of this paper and how
the systematic literature review was performed. Section 4
concludes the results received by the SLR. The discussion of
said results is performed in section 5, and section 6 contains
the conclusion reached by this study.

2. BACKGROUND
In this chapter, we will go into detail on the most impor-

tant concepts used in this paper.
In Ward Cunninghams definition of TD the focus was ly-

ing on ”code debt” i.e. compromises to code quality in fa-
vor of faster releases[3]. Over the years, the definition was
broadened to include other parts of software development,
which then became their own TD types[7]. TD being a fi-
nancial metaphor evolved to being used as communication
ground for non-technical and technical people, which has a
high possibility to backfire as not every financial term and
concept attached can be applied and translated to its tech-
nical counterpart[1]. Therefore, in the following chapters we
will use the following definition of TD: Decisions in a soft-
ware development environment that are made intentionally
or unintentionally to speed up or simplify the current task,
therefore causing more work in the future.

To handle the consequences of these decisions, TDM is
implemented. TDM stands for a group of activities/ap-
proaches to handle TD in software development environment
and therefore eliminate unintentional TD[7]. TDM comes in
form of tools and concepts to be used in software develop-
ment. Most tools e.g. (IDEs, separate tools) are using the
respective source code as input to make use of static analy-
sis, thereby mostly focusing on code TD. TDM concepts are
often coupled with agile development practices like sprint
retrospective and reviews, but also other concepts like test-
driven development (TDD) can be part of TDM[S1].

TDM actions can be categorized into certain steps which
are listed and explained below:

• TD repayment: Removing accumulated TD, e.g. code
refactoring[7].

• TD identification: Finding/Tracking planned or un-
wanted TD, e.g. source code analysis tools [7].

• TD measurement: Calculating positive and negative
impacts of TD[7].

• TD prioritization: Ordering TD by relevance of repay-
ment[7].

• TD communication: Provide transparency of the TD
state to non-technical team members[7].

• TD prevention: Reducing TD before it is created[7].

• TD representation/documentation: Create visualiza-
tions of the state of TD[7].

• TD monitoring: Tracks the TD changes progressively
over time[7].

For improved readability, we graphically emphasized the
names of the TD concepts and TDM activities in the result
chapter of this paper.

For related work, we would like to highlight Zengyang
et al. who conducted a systematic mapping study on TD
and TDM, which is concerned with highlighting the current
scientific status of TD TDM[7]. We identified a research gap
as no prior research has been conducted on the implications
of different TDM strategies depending on the development
environment.

Depending on the project mode, different risks are present,
other restrictions to the cost and project time frame apply
and members with varying technical knowledge are part of
the team on client and vendor site. Two main development
environments, and the two we will focus on in the scope
of this paper, are product-based and project-based develop-
ment.

Jez Humble defines ”product vs project” by classifying
projects to ”have an end-date and a single customer, and
we care about scope, cost and hitting the date”[4]. Prod-
ucts, on the other hand, ”are evolving continuously, we have
multiple customers, and we care about a broader set of
risks”[5]. According to this definition, the three most impor-
tant attributes, to distinguish the development environment
by, are: The presence of a project time frame, the pres-
ence of a single, responsible customer, and whether multiple
teams are working together on the product. The first two
attributes are derived directly from the definition. The third
attribute aims to reflect the evolution of the product and em-
phasizes the existence of self-contained project terms. Any
other means of measuring the evolution of a product with
the amount of information given per reviewed study is im-
possible or out of scope for this paper. This definition will
be the foundation of the mapping of all reviewed studies to
the corresponding development environment.

3. METHODOLOGY
After laying the foundations with the theoretical back-

ground, this chapter will elaborate on the methodology. First,
the limits to our work are defined and the SLR as a method
is explained in general. Afterwards, the selection process
and data synthesis in this paper is explained in detail.

3.1 Limits to our work
As this paper is part of the university seminar, the scope

of the paper had to be limited. Therefore, for the system-
atic literature review (SLR) we only included 3 scientific

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

databases (ACM, Scopus, IEEE) and are not using the snow-
balling principal[6] when selecting the papers to be used in
the SLR.

3.2 Systematic literature review
A SLR was selected as the paper type to fill the current re-

search gap of TDM in relation to product- vs project-based
development environments. This method was used to struc-
ture and document the evaluation of the empirical data con-
ducted by prior studies. Since this paper was conducted as
part of a university seminar, there was no option of peer
reviewing the review protocol before finalizing the paper.
All other guideline steps were performant as proposed by
Kitchenham et al.[2]

3.2.1 Search strategy
The first step taken to ensure that only relevant papers

are included and reviewed was setting the correct search cri-
teria. To exclude all papers in our search scope that do
not address TDM, the main search string was set to ”tech-
nical debt management”. By using each database’s query
engine, the results were filtered on top to only include one
of the following strings in its title ”project” or ”product” or
to include ”project-based”, ”project management”, ”product-
based” or ”product management”. The concrete queries can
be found in section A. Moreover, only peer-reviewed research
was included. The resulting papers were published between
2011 and 2021. These can be seen in table 1.

Database Amount Without duplicates
ACM 29 29
Scopus 22 17
IEEE 22 13
Total 65

Table 1: Database search results

Afterwards the following exclusion and inclusion criteria
were applied by going over the abstract and conclusion of
each paper first and reading the whole paper second.

Exclusion

• The paper is a duplicate from another database

• The paper has no publicly downloadable version

• The paper was not written in English

• The paper focuses on a project with too small scope
e.g. is looking specifically at the implementation of a
feature and not a more general project flow

Inclusion

• The paper discusses TDM strategies and their impact
on the development environment

• The paper is peer reviewed, a case study or survey

Taking into account the exclusion and inclusion criteria
twelve papers were left as part of the SLR, they were dis-
tributed among the databases as follows.

The work of reading through the papers and applying the
criteria to select them as study material was divided evenly
among the two authors. Furthermore, both researchers work-
ing on this, were not working on a scientific study in the field

Database Amount
ACM 3
Scopus 5
IEEE 4
Total 12

Table 2: Database filter results

of TDM before and had their first deeper insights into this
topic while preparing the study and this paper.

3.2.2 Mapping strategy
Although some papers discussed in this systematic liter-

ature review, most notably the case studies, do describe
the observed scenario and development environment, most
do not explicitly state if the development environment is
project-based or product-based. As this paper aims to com-
pare results of studies depending on the development envi-
ronment, we will need a foundation to map all studies to
a development environment, when possible. Therefore, we
derived a list of questions or criteria from the definition and
the list of central attributes of the development environment
stated in section 2:

• Is the development environment explicitly stated?

• Does the described development process have a time
frame?

• Is the team working for/with one customer, or is it
delivering a product to multiple, possible customers?

• Is one team accompanying the whole product develop-
ment lifecycle? Or are different teams working on the
product in different product development phases, e.g.
maintenance after product release?

The first criterion takes into account whether a paper de-
fines its observed development environment explicitly. If this
criterion is clearly met, the definition by the paper itself is
used for the mapping and the remaining criteria are omitted
for this paper. The second criterion reflects the first cen-
tral attribute of a project-based development environment,
a positive response to this question implies a project-based
development environment. Similarly, the third criterion re-
flects the second central attribute of a project-based devel-
opment environment by questioning whether the presence
of a single customer working directly with the development
teams is stated, the presence of a single customer indicating
a project-based development environment. The last, more
complex, attribute of product-based development environ-
ments is covered by the last criterion. In this case a single
team working on the whole product implies a product-based
development environment.

Because of the major management differences between
product- and project-based development, the base assump-
tions of when and how TD is acceptable are different. In the
next sections 4 and 5 we want to highlight specifically how
the different TDM actions may be prioritized differently de-
pending on the project-mode. Therefore, in our next step
the results were manually categorized into project-based,
product-based, mixed and unknown development environ-
ments using the questions outlined in this section.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

2010 2012 2014 2016 2018 2020 2022

1

2

3

Year

S
el
ec
te
d
p
a
p
er
s

Figure 1: Year allocation of primary studies

3.2.3 Mapping by development environment
The process of mapping the studies was performed by

mainly focusing on the description of the survey partici-
pants or case study context, if it was a study that conducted
a survey or a case study respectively. The questions were
answered separately with the information provided in this
description. In some cases such a description was not given
and there was no information found on the context other-
wise. Those studies were mapped to the ”unknown” cate-
gory. While reviewing the answers, no contradictory state-
ments were found. Therefore, no weighting of the statements
among each other had to be carried out. The categorization
of each study was then derived from the summary of the
statements. The resulting distribution of the papers among
the different development environments can be found in ta-
ble 3. The answer for each mapping question per paper can
be found in section C.

Project-b. Product-b. Mixed Unknown
Studies [S3] [S7] [S4] [S6] [S1] [S2] [S5]

[S11] [S10] [S8] [S9]
[S12]

Total 3 3 5 1

Table 3: Paper categorization by development environment

4. RESULTS
When comparing the different case studies and surveys,

categorized by their development environment, it becomes
obvious that there are many similarities between product-
and project-based development processes. For example, TD
categories are often distinguished along the same boundaries
or main groups[S1] and the most integral steps to TDM are
part of product-based, as well as, product-based develop-
ment[S12]. But there are some differences in TD concepts
and TDM depending on the development environment. In
this result chapter, we will first focus on differences in TD
concepts, as these can lead to a higher necessity of certain
TDM steps and in this way differences are transferred to

TDM, and afterwards we will focus on TDM steps which
differ between the development environments.

4.1 Differences in TD concepts
The common TD concept most papers focus on is the

cause of TD. While skill shortage in the developer team is a
generally present cause of TD for both approaches[S6], Some
of the main causes are frequently discussed for both devel-
opment environments, but differ in detail. Deadlines as a
TD cause, for example, are discussed in project-based and
product-based development. While for project-based devel-
opment the customer, pressuring for an early implementa-
tion of a feature or visible changes[S7], and the budget are
main reasons for deadlines[S2], for product-based develop-
ment it is mostly the need to deliver new features to the
targeted market, which generates pressure[S6].

Another similar case for both product- and project-based
development, which solely differs in detail are changing re-
quirements. For product-based development, this often means
a changed product vision, which is necessary to reach a
broader group of possible customers[S6]. For project-based
development, this can occur as well, whenever the customer’s
requirements change[S2]. While the underlying reason for
the cause is different, the effect stays the same, the TD is
generated.

There are some TD causes however, which only occur in
either product-based development or project-based devel-
opment. An example for this is fixed budgets in competi-
tive projects which call for proposals. When development
teams make such a proposal, they often have to include
an estimated budget without being able to negotiate re-
quirements with the customer beforehand. This motivates
shortcuts to speed up feature implementations at the ex-
pense of code quality[S2]. On the other hand, there is a
tendency in project-based development to require a more
detailed architectural design, which is made in consultation
with the customer before even starting the coding process,
while product-based development tends to a more sponta-
neous design approach[S2]. This can lead to inappropriate
planning, which is a cause of TD[S8].
TD consequence is an attribute which is mostly similar be-
tween the two approaches, with the most extreme conse-
quences being unsolvable bugs/defects or even product or
project termination[S1]. Another relevant TD concept is
visibility. For TD visibility, project-based development has
a higher risk of needing extra measures to assure a high vis-
ibility of TD because whenever a project ends and a follow-
up project is started with a new team, intrinsic knowledge
of each former project member is lost[S2][S6]. A necessary
countermeasure to this may be a greater focus on TD com-
munication and TD representation/documentation in TDM.

While these differences in TD concepts may affect TDM,
there are certain characteristics of the two development en-
vironments, which directly influence TDM.

4.2 Differences in TDM
Same as for TD concepts, TDM is largely similar, with dif-

ferences in detail. The goal of TDM, handling TD in a way
to balance interest and repayments, stays the same. When
discussing the individual TDM steps, while all steps are
applied for both development environments[S12][S5], some
gain greater focus as others. Broken down for each TDM
step, this yields different insights:

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

While TD identification is arguably the most costly step
of all[S3], no major differences are noticeable. However,
one reason why TD seems hard to identify and categorize
is that TD propagates throughout the whole development
process[S5], meaning architectural debt could possibly in-
fluence the code design negatively. While the flawed code
design may be easy to see, the actual underlying TD could
be near impossible to identify. This needs to be accounted
when identifying TD and therefore TD identification should
be done for every part of the development process[S5]. While
for product-based development, the whole product lifecycle
is accompanied and measurements can be taken during the
whole process, this does not have to be the case for project-
based development. Because of this, even while the action
taken to identify TD are not necessarily different, the prac-
tical result can differ.

There is evidence for differences in TD measurement. In
an empirical study of Yli-Huumoo et al., teams which fol-
low a rather project-based approach tend to implement TD
measurement, while product-based teams often neglect this
step[S12]. It is important to note that this anomaly seems
to be correlating with the team structure. Teams which
take actions to implement TD measurement hand over the
responsibility for this to their team manager, a role which
was only present for project-based teams in this study. A
difference between product-based and project-based teams
could therefore be coincidental.

For TD monitoring and TD prioritization there is no ap-
parent connection between the development environment
and the implementation of these steps. In general, teams
have a tendency to neglect separate guidelines or calcula-
tions for TD prioritization and instead prioritize them in
the same process as other action items[S1]. This leads to a
higher impact of time- or resource-related pressure lasting
on the development team. When a customer requirement or
an important feature is upcoming, TD items often have a
lower priority[S1].

In theory, TD communication should receive greater focus
in project-based teams. When working with a non-technical
customer, a clear TD communication could be integral for
later repayment. However, a clear statement regarding this
assumption is not possible with the current studies as this
aspect was not widely explored.
When examining TD prevention there is a low influence of
project circumstances and methods in general[S9]. This is
also the case for the development environment.

As stated in the previous section discussing TD concepts,
TD documentation has to be thoroughly conducted for project-
based development in case of exchange of the team[S2][S6].
And finally, TD repayment actions generally differ depend-
ing on the circumstances like system size and age[S8]. But
there are no findings to support the assumption that partic-
ularly the development environment is an influential factor
to this.

In summary, while most TD concepts, regardless of the
development environment, are quite similar, there are cer-
tain attributes such as TD causes and visibility which differ.
This has direct implications for TDM. And when examining
TDM steps as isolated as possible, there are still differences
noticeable depending on multiple factors, including the de-
velopment environment. TDM steps which differ the most
are TD measurement and repayment.

5. DISCUSSION

5.1 Answer to research questions
RQ1 How do TD concepts differ between product- and

project-based development?
As the results show, the amount of differences between the
two development environments depend on the observed TD
concept. Most TD causes occur in both software develop-
ment environments and mostly differ in detail, with inappro-
priate planning and fixed budgets being the only exceptions
found during our study.
For TD consequences there are no apparent differences. TD
visibility differs the most between the development environ-
ments as visibility of TD is decreased in project-based envi-
ronment due the fluctuation of project members or even full
teams leaving a project.

RQ2 How does TDM change in product- vs project-based
development?
There are indeed TDM steps which are generally different,
e.g. TD measurement and TD repayment. However, there
is a gap left. Whether the differences in TD measurement
are connected to team structure or the development envi-
ronment cannot be answered undoubtedly. Similarly, TD
repayment is different depending on multiple process cir-
cumstances and therefore a correlation to the development
environment could not be isolated[S8].

Additionally, for TD communication and documentation
we had assumptions that project-based teams have a higher
reward when implementing these steps, but these assump-
tions could not be proven nor disproven in the scope of this
paper.

5.2 Implication for practitioners/researchers
When reviewing the results of our systematic literature re-

view, it becomes apparent that multiple assumptions could
not be clearly proven or disproven. This is mainly due to lack
of data to support the necessary examination. Therefore,
one implication for future research is that an exploratory
study focusing on the influence of development environments
should be conducted. A possible approach could be an in-
dustrial case study containing multiple cases with teams,
working with either development environment, recording the
TDM process for each team individually. This could lead to
a clearer picture of the influence of development environ-
ments on the frequency of certain TD causes, the general
TD visibility and the design of TDM.

Meanwhile, an implication for practitioners should be a
general understanding of the influence of different process
circumstances, including the development environment, on
TD and TDM. More precisely, this includes a higher aware-
ness of certain TD causes which are naturally inclined to
occur within one development environment, such as inappro-
priate planning for product-based development or shortcuts
motivated by fixed budgets for project-based development.
Further, there are TDM steps which possibly differ in imple-
mentation. Namely, these are TD measurement and repay-
ment. TDM steps such as TD communication and documen-
tation could benefit from a greater focus in implementation,
when working project-based. It is highly recommended to
reflect these differences when approaching TDM for either
development environment.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

5.3 Internal validity
Many of the reviewed literature did not explicitly specify

the development environment of the survey participants or
observed case studies. Therefore, we established criteria to
map studies to either project-based development, product-
based development or mixed approaches. In some cases,
the information provided lead to a well-founded assumption,
but the amount of information was always limited and more
profound insights into the circumstances could result in a
different mapping.

Naturally, when conduction a systematic literature re-
view, we are depending on the validity of the literature. By
excluding literature which was not peer reviewed, we focused
on papers with a higher probability to be valid. Although,
it should be noted that for some surveys and case studies,
the number of participants and subjects to the case studies
were not especially large. For example, the majority of case
studies include less than 10 teams, which in total results in
less than 1000 participants. This limits the meaningfulness
of the collected information.

5.4 External validity
As indicated in section 5.3, the overall scope of develop-

ment environments studied may not be large enough to allow
applying the results to the entire software development in-
dustry. As many of the reviewed papers are case studies
observing a concrete development environment with all of
its circumstantial dependencies, generalising the results and
transferring the learnings to other projects may not be ben-
eficial in every case, because the circumstances could differ
too substantially. By including papers from 2011 to 2021
that observe development environments from years ago, to-
days evolution of TDM is not fully reflected. Although our
results should be applicable to current projects, there may
be new approaches to TDM which could be more applicable
or beneficial.

6. CONCLUSION
While there is a great focus on the concepts of TD and

TDM in the current scientific discussion, it is difficult to
make clear statements about the effectiveness and influence
of different circumstances surrounding the development pro-
cess on TD frequency and the efficiency of TDM. The goal
of this paper was to isolate the influence of the development
environment, particularly the difference between product-
based and project-based development environments, on TD
concepts and TDM. Therefore, we conducted a systematic
literature review, examining 12 examples of scientific litera-
ture, mostly case studies and surveys, focusing on the differ-
ences in the development environment. To compare different
case studies appropriately, we first had to map those studies
to project- and product-based approaches by answering a
catalog of criteria for each paper. Although, limited by the
amount of papers, which discuss this topic in particular, and
the vagueness which comes naturally when mapping studies
on such a small amount of information, our results suggest
that there are no TD types only specific to one project-
mode. When focusing on TDM, data shows that TD mea-
surement and TD repayment are the two actions which differ
most depending on the development environment. However,
the influence on TD measurement could not be validated to
be independent of other circumstances, such as team com-
position. The assumptions that TD communication/docu-

mentation would impact teams more if there were part of
a project-based environment could not be validated or re-
futed. Because of our results there is a clear implication for
researchers to conduct further research, ideally this would
be a study focusing on industrial cases by monitoring TDM
of teams with different development environments. Further-
more, more research on the implementation of single TDM
actions in an industrial context would provide helpful in-
sights into the effectiveness of different approaches to a par-
ticular step. This could lead to more precise proposals and
guidelines on how to effectively implement TDM.

7. REFERENCES
[1] Areti Ampatzoglou, Apostolos Ampatzoglou, Alexander

Chatzigeorgiou, and Paris Avgeriou. The financial
aspect of managing technical debt: A systematic
literature review. Information and Software Technology,
64:52–73, 2015.

[2] Barbara Kitchenham. Guidelines for performing
systematic literature reviews in software engineering.
2007.

[3] W. Cunningham. The wycash portfolio management
system. In Addendum to the Proceedings on
Object-Oriented Programming Systems, Languages, and
Applications (Addendum), OOPSLA ’92, pages 29–30,
New York, NY, USA, 1992. Association for Computing
Machinery.

[4] J. Humble. Unit 1. introduction to the product lifecycle.
https://speakerdeck.com/jezhumbleucb/unit-1-

introduction-to-the-product-lifecycle, 2020.
Accessed: 2022-05-27.

[5] M. Philip and Y. Thirion. From project to product. In
P. Gregory and P. Kruchten, editors, Agile Processes in
Software Engineering and Extreme Programming –
Workshops, pages 207–212, Cham, 2021. Springer
International Publishing.

[6] C. Wohlin. Guidelines for snowballing in systematic
literature studies and a replication in software
engineering. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software
Engineering, EASE ’14, New York, NY, USA, 2014.
Association for Computing Machinery.

[7] Zengyang Li, Paris Avgeriou, and Peng Liang. A
systematic mapping study on technical debt and its
management. Journal of Systems and Software,
101:193–220, 2015.

APPENDIX
A. DATABASE SEARCH QUERIES

A.1 ACM
AllField:((”technical debt management”)) AND (Title:(project)

OR ”project-based”OR ”project management”OR Title:(prod-
uct) OR ”product-based” OR ”product management”)

A.2 Scopus
TITLE-ABS-KEY (”technical debt management”) AND

(TITLE (project) OR ”project-based” OR ”project manage-
ment” OR TITLE (product) OR ”product-based” OR ”prod-
uct management”)

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

https://speakerdeck.com/jezhumbleucb/unit-1-introduction-to-the-product-lifecycle
https://speakerdeck.com/jezhumbleucb/unit-1-introduction-to-the-product-lifecycle
https://dl.acm.org/action/doSearch?fillQuickSearch=false&target=advanced&expand=dl&AllField=AllField%3A%28%28%22technical+debt+management%22%29%29+AND+%28+Title%3A%28project%29+OR+%22project-based%22+OR+%22project+management%22+OR+Title%3A%28product%29+OR+%22product-based%22+OR+%22product+management%22%29&startPage=0&pageSize=50
https://dl.acm.org/action/doSearch?fillQuickSearch=false&target=advanced&expand=dl&AllField=AllField%3A%28%28%22technical+debt+management%22%29%29+AND+%28+Title%3A%28project%29+OR+%22project-based%22+OR+%22project+management%22+OR+Title%3A%28product%29+OR+%22product-based%22+OR+%22product+management%22%29&startPage=0&pageSize=50
https://dl.acm.org/action/doSearch?fillQuickSearch=false&target=advanced&expand=dl&AllField=AllField%3A%28%28%22technical+debt+management%22%29%29+AND+%28+Title%3A%28project%29+OR+%22project-based%22+OR+%22project+management%22+OR+Title%3A%28product%29+OR+%22product-based%22+OR+%22product+management%22%29&startPage=0&pageSize=50
https://www.scopus.com/results/results.uri?sort=plf-f&src=s&sid=48f02bccfa2e7b240860fe5fda9aadc8&sot=a&sdt=a&sl=178&s=TITLE-ABS-KEY+%28+%22technical+debt+management%22+%29+AND+%28+TITLE+%28+project+%29+OR+%22project-based%22+OR+%22project+management%22+OR+TITLE+%28+product+%29+OR+%22product-based%22+OR+%22product+management%22+%29&origin=searchadvanced&editSaveSearch=&txGid=e1363f90a7b39321903dcfbf36ff227f
https://www.scopus.com/results/results.uri?sort=plf-f&src=s&sid=48f02bccfa2e7b240860fe5fda9aadc8&sot=a&sdt=a&sl=178&s=TITLE-ABS-KEY+%28+%22technical+debt+management%22+%29+AND+%28+TITLE+%28+project+%29+OR+%22project-based%22+OR+%22project+management%22+OR+TITLE+%28+product+%29+OR+%22product-based%22+OR+%22product+management%22+%29&origin=searchadvanced&editSaveSearch=&txGid=e1363f90a7b39321903dcfbf36ff227f
https://www.scopus.com/results/results.uri?sort=plf-f&src=s&sid=48f02bccfa2e7b240860fe5fda9aadc8&sot=a&sdt=a&sl=178&s=TITLE-ABS-KEY+%28+%22technical+debt+management%22+%29+AND+%28+TITLE+%28+project+%29+OR+%22project-based%22+OR+%22project+management%22+OR+TITLE+%28+product+%29+OR+%22product-based%22+OR+%22product+management%22+%29&origin=searchadvanced&editSaveSearch=&txGid=e1363f90a7b39321903dcfbf36ff227f
https://www.scopus.com/results/results.uri?sort=plf-f&src=s&sid=48f02bccfa2e7b240860fe5fda9aadc8&sot=a&sdt=a&sl=178&s=TITLE-ABS-KEY+%28+%22technical+debt+management%22+%29+AND+%28+TITLE+%28+project+%29+OR+%22project-based%22+OR+%22project+management%22+OR+TITLE+%28+product+%29+OR+%22product-based%22+OR+%22product+management%22+%29&origin=searchadvanced&editSaveSearch=&txGid=e1363f90a7b39321903dcfbf36ff227f

A.3 IEEE
(”All Metadata”: ”technical debt management”AND (”Doc-

ument Title”: ”project”OR SearchAll : ”project−based”ORSearchAll :
”projectmanagement”ORtitle : ”product”ORSearchAll :
”product− based”ORSearchAll : ”productmanagement”))

B. Selected Studies
[1] Z. Codabux and B. Williams. Managing technical debt:

An industrial case study. In Proceedings of the 4th
International Workshop on Managing Technical Debt,
MTD ’13, pages 8–15. IEEE Press, 2013.

[2] H. Ghanbari. Seeking technical debt in critical software
development projects: An exploratory field study. In
2016 49th Hawaii International Conference on System
Sciences (HICSS), pages 5407–5416, 2016.

[3] Y. Guo, C. Seaman, and F. Da Silva. Costs and
obstacles encountered in technical debt management –
a case study. Journal of Systems and Software,
120:156–169, 2016.

[4] Y. Guo, C. Seaman, R. Gomes, A. Cavalcanti,
G. Tonin, F. Da Silva, A. Santos, and C. Siebra.
Tracking technical debt - an exploratory case study.
IEEE International Conference on Software
Maintenance, ICSM, 2011.

[5] S. Malakuti and J. Heuschkel. The need for holistic
technical debt management across the value stream:
Lessons learnt and open challenges. In 2021
IEEE/ACM International Conference on Technical
Debt (TechDebt), pages 109–113, 2021.

[6] M. Njima and S. Demeyer. Value-based technical debt
management: An exploratory case study in start-ups
and scale-ups. In Proceedings of the 2nd ACM
SIGSOFT International Workshop on
Software-Intensive Business: Start-Ups, Platforms, and
Ecosystems, IWSiB 2019, pages 54–59, New York, NY,
USA, 2019. Association for Computing Machinery.

[7] F. Oliveira, A. Goldman, and V. Santos. Managing
technical debt in software projects using scrum: An
action research. Proceedings - 2015 Agile Conference,
Agile 2015, 2015.

[8] B. Pérez, C. Castellanos, D. Correal, N. Rios, S. Freire,
R. Sp\’ınola, and C. Seaman. What are the practices
used by software practitioners on technical debt
payment: Results from an international family of
surveys. In Proceedings of the 3rd International
Conference on Technical Debt, TechDebt ’20, pages
103–112, New York, NY, USA, 2020. Association for
Computing Machinery.

[9] N. Rios, S. Freire, B. Perez, C. Castellanos, D. Correal,
M. Mendonca, D. Falessi, C. Izurieta, C. B. Seaman,
and R. O. Spinola. On the relationship between
technical debt management and process models. IEEE
Software, title=On the Relationship Between Technical
Debt Management and Process Models, 38(5):56–64,
2021.

[10] C. A. Siebra, G. S. Tonin, F. Q. B. Da Silva, R. G.
Oliveira, L. C. Antonio, R. C. G. Miranda, and
A. L. M. Santos. Managing technical debt in practice:
An industrial report. In Proceedings of the 2012
ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, pages 247–250,
2012.

[11] A. Sousa, L. Rocha, R. Britto, Z. Gong, and F. Lyu.
Technical debt in large-scale distributed projects: An
industrial case study. Proceedings - 2021 IEEE
International Conference on Software Analysis,
Evolution and Reengineering, SANER 2021, 2021.

[12] J. Yli-Huumo, A. Maglyas, and K. Smolander. How do
software development teams manage technical debt? –
an empirical study. Journal of Systems and Software,
120:195–218, 2016.

C. MAPPING RESULTS PER PAPER
Managing Technical Debt: An Industrial Case Study[S1]

(1) While the paper does not explicitly state the observed
development environment, it is mentioned that the sur-
vey had about 250 participants from 28 different teams.
Therefore, it is assumed that this paper contains mixed
development environments.

⇒Mixed

Seeking Technical Debt in Critical Software Development
Projects: An Exploratory Field Study[S2]

(1) It is explicitly stated that the multiple teams observed
are working in highly different development environ-
ments.

⇒Mixed

Costs and obstacles encountered in technical debt manage-
ment[S3]

(1) No.

(2) Yes, a project lifetime of 17 sprints was defined.

(3) The presence of a single customer is stated.

(4) Whether the whole lifecycle is accompanied was not
clearly stated.

⇒Project-based development, because of criteria (2) and
(3).

Tracking technical debt - An exploratory case study[S4]

(1) No.

(2) No, the project ran for the whole product evolution pro-
cess.

(3) No single customer was stated.

(4) The product was developed by the same team pre- and
post-release.

⇒Product-based development, because of criteria (2),
(3) and (4).

The Need for Holistic Technical Debt Management across
the Value Stream: Lessons Learnt and Open Challenge[S5]

(1) No.

(2) Not explicitly stated.

(3) Not explicitly stated.

(4) Not explicitly stated.

⇒Unknown, because not enough information on the
project is provided to map this case study.

Value-Based Technical Debt Management: An Exploratory
Case Study in Start-Ups and Scale-Ups[S6]

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

https://ieeexplore.ieee.org/search/searchresult.jsp?action=search&matchBoolean=true&queryText=(%22All%20Metadata%22:%20%22technical%20debt%20management%22%20AND%20%0A(%22Document%20Title%22:%20%22project%22%20OR%0A%22All%20Metadata%22:%20%22project-based%22%20OR%0A%22All%20Metadata%22:%20%22project%20management%22%20OR%0A%22Document%20Title%22:%20%22product%22%20OR%0A%22All%20Metadata%22:%20%22product-based%22%20OR%0A%22All%20Metadata%22:%20%22product%20management%22))&highlight=true&returnFacets=ALL&returnType=SEARCH&matchPubs=true&refinements=ContentType:Conferences&refinements=ContentType:Magazines
https://ieeexplore.ieee.org/search/searchresult.jsp?action=search&matchBoolean=true&queryText=(%22All%20Metadata%22:%20%22technical%20debt%20management%22%20AND%20%0A(%22Document%20Title%22:%20%22project%22%20OR%0A%22All%20Metadata%22:%20%22project-based%22%20OR%0A%22All%20Metadata%22:%20%22project%20management%22%20OR%0A%22Document%20Title%22:%20%22product%22%20OR%0A%22All%20Metadata%22:%20%22product-based%22%20OR%0A%22All%20Metadata%22:%20%22product%20management%22))&highlight=true&returnFacets=ALL&returnType=SEARCH&matchPubs=true&refinements=ContentType:Conferences&refinements=ContentType:Magazines
https://ieeexplore.ieee.org/search/searchresult.jsp?action=search&matchBoolean=true&queryText=(%22All%20Metadata%22:%20%22technical%20debt%20management%22%20AND%20%0A(%22Document%20Title%22:%20%22project%22%20OR%0A%22All%20Metadata%22:%20%22project-based%22%20OR%0A%22All%20Metadata%22:%20%22project%20management%22%20OR%0A%22Document%20Title%22:%20%22product%22%20OR%0A%22All%20Metadata%22:%20%22product-based%22%20OR%0A%22All%20Metadata%22:%20%22product%20management%22))&highlight=true&returnFacets=ALL&returnType=SEARCH&matchPubs=true&refinements=ContentType:Conferences&refinements=ContentType:Magazines
https://ieeexplore.ieee.org/search/searchresult.jsp?action=search&matchBoolean=true&queryText=(%22All%20Metadata%22:%20%22technical%20debt%20management%22%20AND%20%0A(%22Document%20Title%22:%20%22project%22%20OR%0A%22All%20Metadata%22:%20%22project-based%22%20OR%0A%22All%20Metadata%22:%20%22project%20management%22%20OR%0A%22Document%20Title%22:%20%22product%22%20OR%0A%22All%20Metadata%22:%20%22product-based%22%20OR%0A%22All%20Metadata%22:%20%22product%20management%22))&highlight=true&returnFacets=ALL&returnType=SEARCH&matchPubs=true&refinements=ContentType:Conferences&refinements=ContentType:Magazines

(1) Yes, it is made clear that the participants where start-
ups developing a single product or service.

⇒Product-based development.

Managing Technical Debt in Software Projects Using Scrum:
An Action Research[S7]

(1) No.

(2) No.

(3) Project 2 (out of 2) had a single customer.

(4) Project 1 was a specific adjustment of a finished product
for one use case.

⇒Project-based development, because of criterion (3)
in case of project 2 and criterion (4) in case of project
1.

What Are the Practices Used by Software Practitioners on
Technical Debt Payment: Results from an International Fam-
ily of Surveys[S8]

(1) While the paper does not explicitly state the observed
development environment, it is stated that this is an
open survey with 432 participants from multiple com-
panies with different demographics.

⇒Mixed

On the Relationship Between Technical Debt Management
and Process Models[S9]

(1) While the paper does not explicitly state the observed
development environment, the survey contains a ques-
tion about the development approach of the correspond-
ing project and groups its results by development modes.
Therefore, multiple different development environments
are reflected by the participants of this survey.

⇒Mixed

Managing technical debt in practice: An industrial report[S10]

(1) No.

(2) No.

(3) Multiple possible customers exist.

(4) One team is accompanying the whole lifecycle.

⇒Product-based development, because of criteria (2),
(3) and (4).

Technical Debt in Large-Scale Distributed Projects: An In-
dustrial Case Study[S11]

(1) Multiple teams work on one product but in indepen-
dently carried out projects. A project-based approach
is therefore clearly stated.

⇒Project-based development

How do software development teams manage technical debt?[S12]

(1) Table 1 in this journal article contains a list of all teams
depicted in this case. Those teams are working product-
based as well as project-based.

⇒Mixed

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Property-Based Testing : Application fields, challenges
and new approaches

Sara Prifti
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
sara.prifti@rwth-aachen.de

Sandro Schulte
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
sandro.schulte@rwth-aachen.de

ABSTRACT
Property-based testing (PBT) is a well-known testing me-
thod in theory and has found usage since the famous Quick-
Check library release in 1999. It is different from standard
example-based testing techniques, as it randomizes and gen-
eralizes test cases based on property specifications. This
allows coverage of unconsidered edge cases and equivalence
classes. In addition, PBT can be combined with other well-
known techniques like combinatorial testing to further im-
prove effectiveness. Yet it is not as widely used in the in-
dustry as other testing approaches, despite tooling support
for popular programming languages.

In this paper, we analyze the characteristics of real-world
projects applying PBT to identify challenges in its applica-
tion. Therefore we queried GitHub to find relevant projects
that depend on specific PBT frameworks. Based on the find-
ings, we elaborate on the discovered challenges and present
approaches from the literature to solve them.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software En-
gineering]: Management—productivity, programming teams,
software configuration management

Keywords
property-based testing, software quality assurance, Quick-
Check, GitHub, real-world testing

1. INTRODUCTION
Software testing is a method to provide software qual-

ity and is usually realized by writing test cases for a set of
inputs to check if the output differs from the space of ex-
pected results. Example-based testing is one of the many
techniques in which the software behavior is tested towards
concrete scenarios. However, the example-based tests do
not cover the complete range of results since the number of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2022 RWTH Aachen University, Germany.

possible generated cases might be out of scope for the devel-
oper. Thus, it would be impossible to find faults when some
inputs that might be important are not considered. There-
fore, another technique called boundary-value analysis can
be used. Instead of testing simply inside a certain range of
inputs, this method examines the system’s behavior towards
the input boundaries. Yet, the chosen values for testing are
predefined and pre-selected, which means that the problem
of not covering important test cases still arises [9, 16, 11].

For these reasons, this paper analyzes property-based test-
ing (PBT), a testing technique that deals with these draw-
backs. The PBT tools generate random inputs automati-
cally to test the properties of the system under test that
are formalized by the user beforehand. Quickcheck is the
first tool for property-based testing, which led to the de-
velopment of other approaches and improved extensions for
PBT. It is used to test whether Haskell-written properties
hold up against these randomly generated inputs. Property
testing helps developers to reduce the size of test code and
at the same time increases the likelihood of encountering
a bug by testing cases that developers are unaware of [25].
For example, when wanting to test whether a system au-
thenticates the user correctly, PBT can be used to test the
authentication property that is specified based on the source
code implementation [10].

However, because of problems that arise during property-
based testing related to the range of generated inputs, ex-
pected results and difficulty in property definition, we con-
sidered three research questions.

RQ1: Is the usage of PBT limited to specific application
fields?

RQ2: How popular is PBT in open-source repositories?

RQ3: What are the challenges that might prohibit the usage
of PBT?

This paper is organized as in the following. Section two
describes what property-based testing is, how results are
produced and verified, and how PBT is combined with other
testing approaches. The third section explains where PBT
is used and where it is applied. Also, in this section, a
short code is implemented that helps with finding the most
rated projects related to the PBT on GitHub [18]. After-
wards, section four illustrates an example of possible PBT
problems that arise when deriving properties from business
rule models, followed by section five presenting three new
approaches, that try to deal with those problems.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

2. FOUNDATIONS OF PROPERTY-BASED
TESTING

In testing, we always have to cope with the combinato-
rial explosion of input complexity [4]. It is impossible to
test every input of a given unit under test (UUT). Property-
based testing (PBT) approaches this by defining properties
describing the allowed range of inputs and the expected out-
comes [6]. Since concrete in- and output values are required
for testing, PBT frameworks have to generate test cases from
property descriptions. This can be achieved by providing the
properties in a machine-readable format.

With PBT, we can cover all valid input combinations with
a single property description [6]. Test cases are automati-
cally and randomly generated from the allowed range of in-
puts. Manual creation of relevant test cases is no longer re-
quired. In addition, missed edge cases or equivalence classes
can be detected. The random test cases have a chance to
cover them. However, we have to provide a correct and com-
plete set of properties to ensure adequate testing. Every
specification and every possible input must be considered
when they are defined. Further challenges are discussed in
section 4.

PBT is a generative approach and has similarities to Fuzz
Testing [12] and example tables in Behavior-Driven Devel-
opment (BDD) [24]. It can be used for unit, component,
and system testing. Further functional and non-functional
testing is possible. Since we formulate properties based on
the UUT specification, PBT realizes a black-box testing ap-
proach. The internal structure of the UUT is not considered.
Finally, PBT is not restricted to specific project types.

2.1 Defining Properties
The first step for applying property-based testing is the

definition of properties [6]. They can be formulated as fol-
lows:

for all (x, y, ...)

satisfying precondition (x, y, ...)

property (x, y, ...) holds

The definition consists of two parts. Firstly all available
input variables are defined. Secondly, a valid input range
for which the property must hold is specified with a pre-
condition. Lastly, the property that holds for this input
configuration is described. The precondition and the prop-
erty are denoted as a boolean expression. Through this, the
input and output of a UUT are connected.

We use an addition operation as an example to show the
concrete difference between example-based testing and PBT.
The function add(x,y) adds two integer numbers. In stan-
dard example-based tests this could result in the test case:

Given (3, 2)

When I add them

Then I expect 5

With PBT, we can use the mathematical properties of the
addition operations instead:

• Commutativity

for all (int x, int y)

satisfying precondition (true)

property (add(x, y) equals

add(y, x)) holds

• Associativity

for all (int x)

satisfying precondition (x greater 0)

property (add(add(x, 1), 1) equals

add(x, 2)) holds

• ...

These properties are more general than the concrete example
before. We also notice that properties can contain variable
amounts of inputs, constant values, or too specific precon-
ditions. This can result in less test coverage and therefore
a lower test quality. For instance, we can describe the asso-
ciativity property as

for all (int x, int y, int z)

satisfying precondition (true)

property (add(add(x, y), z) equals

add(x, add(y, z))) holds

to cover more applicable cases.

2.2 Test Procedure
After the property definition, we can insert them into the

testing framework. The already mentioned QuickCheck li-
brary for Haskell has set the foundations of the testing pro-
cedure [6]. We use it as an example to explain the general
structure of every PBT framework. Figure 1 shows the four
parts of a QuickCheck. A Checker API as a control struc-
ture, a generator for providing concrete test inputs, the test
runner and a shrinker to provide human-understandable re-
sults.

Figure 1: Structure of the QuickCheck property-based testing
framework.

Each property is handed to the Checker API. It generates
random input sequences with the help of the generator and
based on the input specification of each property. The given
logical formula needs to be evaluated to check if an input
sequence is valid. Then each valid input sequence will as-
semble a test case. So the number of test cases is controlled
by the number of generated input sequences. The genera-
tor can use a seeding mechanism to provide reproducibility
[8]. A seed is an initialization value for the randomization
function. Previous test runs can therefore be repeated by
providing the same seed.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

All input sequences are then passed to the test runner.
Based on the property specification, it executes the UUT
and other helper functions with the given sequence. In the
end, the logical formula of the property can be evaluated. If
it holds, the test case passes and the next one is executed.
If not, an error is discovered and the test case fails.

Since the generated input can be very complex, the re-
sult of a failed test case is often challenging to comprehend.
Particular difficult situations occur when lists are required
as input. The generator will produce arbitrary large lists
filled with many different elements. If a test case reports
an error, the user cannot quickly understand which part of
the list causes the problem. Therefore, a shrinking of the
generated input sequence should be applied. This step is
optional and not used in every PBT framework since it only
improves usability. So the testing framework can be simpli-
fied if complex input sequences cannot occur.

The shrinker module is executed if a test case fails. It
takes the failing input sequence and applies a simplification
step. This simplification requires different algorithms and
heuristics, like reducing the list size by one. If the new in-
put sequence fails again, we have found a valid reduction and
can repeat the process. If not, we have already found the
smallest input sequence and can output this to the user. It
is possible to use multiple and different simplification proce-
dures [14]. A failing simplification step can then be replaced
by another one. To find the smallest failing input sequence,
all possible combinations of simplifications have to be tested.
This results in a tree of input sequences shown in figure 2.

Figure 2: Tree of input sequences when shrinking is applied.
Nodes represent failing (cross) and succeeding (checkmark)
input sequences of a test case. Each edge applies a specific
simplification procedure according to the edge label.

The effectiveness of the shrinking heavily depends on the
used simplification procedures [14]. We could miss smaller
configurations if the procedures reduce the input too much
in one step or combine different simplifications. However, if
they change the input only slightly and are numerous, the
tree of possible input reductions can get huge. In addition,
complex data structures can be difficult to shrink. There-
fore, usually only basic data types are considered in simpli-
fication steps. Alternatively, user-provided procedures can
be applied to improve shrinking.

At the end of the testing procedure, the Checker API com-

bines all results and returns them to the user. A property
can be marked as passed if it has no failing test cases. For
all other properties, the failing and shrunk input sequences
are returned.

2.3 Combination with other Testing Techniques
Different testing techniques are often applied simultane-

ously to improve software quality even more [3]. Beside us-
ing other techniques separately from PBT, we can combine
them with PBT. This will increase the complexity of the
testing framework but also make all their benefits available
at the same time. In this section, we have a closer look at
boundary value, equivalence class and combinatorial testing
as the most popular alternative approaches.

Boundary value testing [3] is a common technique to test
special input values. We can modify our generator module to
always produce input sequences with given boundary values
in addition to the random test cases. As a result, we can
guarantee that the properties are tested with all recognized
special cases.

As an extension to edge case consideration, equivalence
class testing [3] splits the whole input domain into different
parts. Concrete input sequences from the resulting classes
must have similar properties. So the consideration of equiv-
alence classes can help to define properties. We can also
use equivalence classes to modify the generator further. By
ensuring that input sequences are generated in every given
equivalence class, we can ensure that the domain is tested
more thoroughly. It is no longer possible to miss previously
known equivalence classes in a test run.

Finally, combinatorial testing [3] ensures the coverage of
different input value combinations. This is important if mul-
tiple parameters interact in the execution of the UUT body.
Combining combinatorial testing with PBT will also result
in a modification of the generator module. We require that
specific combinations of input values are generated. Since
boundary values and equivalence classes can be incorporated
into the generation, as seen before, this modification is pos-
sible.

We can observe that all combinations require a modifica-
tion of the generator module and result in a more specific
set of test cases. Consequently, fewer test cases need to be
generated to cover all relevant input sequences. Combined
with optimized shrinking and strong properties, this ensures
efficient and effective testing.

3. APPLICATION OF PBT IN REAL-WORLD
PROJECTS

The application of PBT in the real world requires a good
testing infrastructure. Without frameworks and tool sup-
port, the testing of software projects is infeasible. Usually,
these tools are developed externally and can be used in dif-
ferent projects. There exist many PBT frameworks for pop-
ular programming languages like:

Java JUnit-Quickcheck

C++ RapidCheck

.NET FsCheck*

JavaScript fast-check*

Ruby rubycheck

Python Hypothesis

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Scala ScalaCheck

PHP PhpQuickCheck

Haskell QuickCheck

This list is incomplete and shows only a subset of relevant
projects. Nevertheless, it represents a wide range of possible
usage scenarios like Website development in PHP, academic
usage in Haskell, or end-user software in C++. The two
testing frameworks marked with an asterisk are later used
for a deeper analysis.

Besides using predefined infrastructure, large software pro-
jects sometimes implement their own frameworks or adapt
existing ones to their needs. Two popular examples in the
context of PBT are Apache Flink [8] and the Robot Oper-
ating System (ROS) [23]. The first project is a stream pro-
cessing framework and introduced a completely new testing
framework for Java called FlinkCheck. This testing frame-
work is explicitly fitted to Apache Flink but can also be
applied in other Java projects. It uses a temporal logic to
consider time in property definition and test case genera-
tion. ROS, on the other hand, is a framework for the de-
velopment of robotic software. Since it uses distributed and
reusable components written in different programming lan-
guages, traditional frameworks can only provide unit and
component testing capabilities. However, the problematic
task of component integration remains untested. Hence PBT
was adapted to provide testing capabilities for this task.

The ROS and Apache Flink examples show that PBT can
be applied in very different contexts. In the following, we
analyze application fields of PBT apart from stream process-
ing and robot development. Therefore, projects dependent
on specific PBT frameworks are searched, categorized, and
listed.

3.1 Methodology
To find further application fields of PBT, we queried Git-

Hub for dependencies. GitHub natively provides an insight
on all dependents of a repository. Thus we can find all Git-
Hub projects that rely on PBT frameworks published on
GitHub. Since the list of dependents cannot be sorted or
filtered on the GitHub webpage, we use the GHTOPDEP
project [2] for that purpose.

GHTOPDEP is a python command-line tool. It requires
a public repo token to access all public repositories on Git-
Hub. Then it queries GitHub for all dependents of a given
repository URL using the insight feature. The results are
given in a table and sorted by stars. Each table entry con-
tains the repository URL and the number of stars. Further,
the resulting table can be clipped after a specified amount
of entries and projects with too few stars can be excluded.
Beside the sorted table, additional information about all de-
pendent public repositories is displayed. This includes the
total quantity of found repositories and the quantity of those
with at least one star.

We are using stars as a sorting criterion since they are
the best available metric for project popularity and rele-
vance. Every registered user account can give stars freely to
a GitHub repository. They can be used as a bookmark or
to show appreciation for a project. Consequently they do
not directly reflect usage and can be manipulated with fake
accounts. Still, they display an interaction with a project,
are difficult to manipulate in large amounts, and also re-
flect the popularity of every project type. Alternatives like

the dependent count fail to measure projects that are not
very reusable (e.g. end-user software), while derived met-
rics would require complex weighting and normalization.

In the following section, we evaluate two PBT frameworks
for different programming languages with the introduced
tool. It is set to display a maximum of 50 repositories with
at least 1 star. Because we are only interested in applications
fields of PBT, neither the restriction to public GitHub pro-
jects rated by stars nor the small sample size of two frame-
works has a strong impact on the results. If we find a highly
rated project for a specific application field, we can assume
that PBT was at least considered in this context. So PBT
should also be a valid consideration for other projects in
this application field because they often have similar chal-
lenges, design decisions, or programming languages. Only
the extent to which PBT is used cannot be inferred from a
dependency.

3.2 Results
The first analyzed framework is fast-check [22] for Java-

Script. It was first announced in 2017 and then finally re-
leased in October 2018 with version 1.0.0. It is still in active
development and currently available in version 3.0.0. The
framework is primarily written in TypeScript and publicly
available on GitHub. With a count of 3100 stars and over
600 thousand downloads per month, the project already has
a considerable amount of popularity.

fast-check implements the full PBT feature set including
shrinking. With the help of seeding, it also allows to repro-
duce previously executed tests. Beside the basic PBT im-
plementation, no other testing approaches or fundamental
modifications to the property-based approach are provided
with this framework.

Table 1 shows the command-line tool output for fast-
check. The table only shows the first ten entries of the result
and is extended by a short description of the detected pro-
jects. We can directly observe repositories with high star
counts above 20 thousand like Jest or Ramda. In compari-
son to fast-check, these are highly popular software projects.
Even the last table entry has a considerable amount of rel-
evance with 6500 stars.

When considering the complete tool output, more than
30 projects with at least 1000 stars are listed. The lowest-
rated project in position 50 still has more than 500 stars. In
total, 9430 public repositories were found with 2510 of them
having at least one star.

If we focus on the descriptions, we detect a variety of dif-
ferent project types. There are testing frameworks, cloud
and distributed systems development software, digital cur-
rency libraries, and even software for developing user inter-
faces. Some application fields occur multiple times, like the
functional programming libraries. However, no clear focus
on one type of project can be detected in general. In addi-
tion, all results can be considered typical for JavaScript since
this language is mostly used to develop dynamic and inter-
active web content, mobile apps, and server applications.

FsCheck [20] is the second analyzed PBT tool and enables
testing of .NET software. It was first announced in 2014
and released in version 1.0.0 later that year. It is still in
active development and currently available in version 2.16.5.
The software is mostly written in F# and its source code is
publicly available on GitHub. With a count of 977 stars,
it is less popular than fast-check, although released earlier.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Table 1: Top 10 dependents on fast-check sorted by stars.
repository stars description
facebook/jest 39K JavaScript Testing Framework
ramda/ramda 22K Functional Programming for JavaScript
OpenZeppelin/openzeppelin-contracts 18K Smart Contract Development Kit
jasmine/jasmine 15K JavaScript Testing Framework
trufflesuite/truffle 13K Ethereum Development Kit
tinymce/tinymce 11K Text Editor
aws/aws-cdk 8.7K Cloud Computing Development Kit
MetaMask/metamask-extension 8.0K Crypto Wallet Browser Extension
gcanti/fp-ts 7.8K Functional Programming for TypeScript
adobe/react-spectrum 6.5K User Interface Development for Adobe Software

Table 2: Top 10 dependents on FsCheck sorted by stars.
repository stars description
dotnet/runtime 9.2K .NET Software Development Framework
akkadotnet/akka.net 4.1K Distributed Systems Development Kit
commandlineparser/commandline 3.5K Commandline Parser
dotnet/fsharp 3.1K F# Programming Language
microsoft/onefuzz 2.6K Fuzz Testing Framework for .NET
fsharp/fsharp 2.2K F# Programming Language (old)
MetacoSA/NBitcoin 1.7K Bitcoin library
PragmaticFlow/NBomber 1.5K Load Testing Framework for .NET
NeutroniumCore/Neutronium 1.3K Library for .NET programming via HTML, CSS and javascript
bryanedds/Nu 823 Functional Game Engine

Since FsCheck is a port of Haskell’s QuickCheck library, it
implements the complete PBT feature set. Similar to fast-
check, a seeding mechanism for reproducibility is provided,
but no additional modifications or extensions are introduced.

The command-line tool could detect a total of 1012 repos-
itories dependent on FsCheck, with 327 of them having at
least one star. The complete table ranges from projects with
40 stars to projects with 9200 stars. More than 30 projects
have at least 100 stars. So beside the smaller star count
of FsCheck itself, the number and popularity of dependent
projects are also much smaller than for the fast-check exam-
ple.

Since .NET software platform is mostly used for the de-
velopment of application software for end-users, it has a dif-
ferent focus than JavaScript and is still relevant for the anal-
ysis. A closer view on the top 10 highest rated repositories
for FsCheck in table 2 reveals some additional application
fields. Parsing, Game Engine development, and program-
ming languages are new examples where PBT is applied.
Nevertheless, some previously detected use cases, like test-
ing frameworks and digital currency tools, occur again.

In summary, we can detect usage or consideration of pro-
perty-based testing in thousands of projects. Moreover, pop-
ular projects with up to 40000 GitHub stars are also de-
pendent on PBT frameworks. Finally, the property-based
approach does not seem to be limited to specific applica-
tion fields. However, compared to traditional example-based
testing, both analyzed frameworks are still very unimpor-
tant. Alternatives like the BDD framework Mocha [19] in
JavaScript or the non-PBT framework xUnit [21] in .NET
have a much higher star count and are used in vastly more
projects. Figure 3 shows the differences in popularity be-
tween all mentioned projects. Especially the dependent count
is a significant indicator of popularity since testing frame-
works are designed for reuse. So property-based testing must

have other challenges that prevent developers from using this
approach.

0 20000 40000 60000 80000

0

10000

20000

FsCheck

xUnitfast-check

Mocha

Dependent Repositories

#
S
ta

rs

Figure 3: Number of stars and dependent public GitHub
repositories on different PBT and non-PBT testing frame-
works.

4. CHALLENGES
To discuss challenges in the application of PBT, this sec-

tion describes a specific example of how property-based test-
ing is used for testing business rules [5].

The relational database management system (RDBMS)
has been used before by many applications to store data
since it offers the possibility to define data constraints that
keep data structured and consistent. Business rules repre-
sent the consistency checks of these data constraints and
ensure that the application is well-performing. For their
validation, there are automated tests for within and outside

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

the input bounds generated using QuickCheck. To under-
stand how this works an ordering system example, taken
from Laura M.Castro [5] will be explained. As given in [5]
figure 4 illustrates an Entity-Relationship Diagram (ERD)
between the three system entities, customer, product, and
order.

Figure 4: ERD between customer, product and order entities
[5]

When translating the diagram in the figure 4 into RDBMS
there are constraints implemented, such as the entities should
contain primary keys, the relationships between the enti-
ties are represented as relations with one or more keys, the
amount or the product price should not be empty, and so
on. Other constraints that rely on the system operation,
like how a customer gets the gold status or what featured
products can be bought only by gold customers, are the so
called business rules. To test if the system has implemented
these rules correctly they are translated into SQL queries.
Below is an example of a business rule written in the SQL
query, which states that the customer can purchase a fea-
tured product only if the customer has the gold status [5].

--Business rule:

SELECT customer.id
FROM customer , order , order_products

WHERE customer.id = order.customer_id
AND order.number = order_products.
order_number
AND customer.status <> ’gold’
AND order_products.products_code
IN <featured product list >

Listing 1: Business rule in SQL query

Assume that the customer obtains the gold status after
placing at least five orders. Since the system allows mod-
ifying or canceling the order, it presents the possibility of
violating the business rule. When achieving the gold status,
the customer might place an order which contains a featured
product and afterwards cancel the other four placed orders.
In this situation the customer would have a special prod-
uct and a non-gold status. Since QuickCheck randomizes
tests in the above-described case, it could happen that it is
continuously tested only for placing an order with random
non-existing products or the orders are being canceled [5]. In
this way there will not be any new testing results produced.

To overcome this challenge and produce more test cases,

state-machine testing can be applied. This technique uses
the knowledge of past test results to generate new ones. All
data stored in the database at a particular moment is what
makes a state, while the path from one state to another is
the transition of the state machine. Using only one state
for the whole database and updating only that state con-
tinuously does not provide the possibility of finding errors.
Therefore, when testing it is important to keep only enough
data in the current state to generate all the possible new
states and transitions. The input data is already contained
in the database or it is randomized, meaning that new infor-
mation is added to the database and can be re-used for the
other possible test cases [5]. In this example the author uses
Quviq’s Quickcheck which generates programs written in the
Erlang, a programming language for real-time systems, that
provide high availability [5, 7].

Firstly, an abstract state with an empty customer and
product information is defined. The customer field contains
the customer id and the orders placed by that customer,
while the product field will contain the list of purchased
products [5].

initial_state () ->
#shop{customers = [] ,

product = []} .

#customer {id, orders=[] }

Listing 2: Definition of the first state

The next state function shows how the interaction be-
tween the state and the chosen data for testing affects the
database. Firstly the newly created customer is added to
the list of customers with an id and places orders on that
id. Then the next state function updates the state based on
the information about the customer and the product. If the
information was present in the abstract state, it means that
the data was newly produced and the database is updated by
adding the new orders placed in the customer’s information,
otherwise the state does not change [5].

next_state(State , CallResult ,
{call , ?MODULE , new_customer , [Name]}
)->
NewCustomer = #customer {id = CallResult
},

State#shop{
customer = [NewCustomer] ++

State#shop.customers};

next_state(State , CallResult ,
{call , ?MODULE , place_customer , [Id,

ProductCode]}
)->
case existing(ProductCode , State#shop.

products) of
true ->
case get_customer(State#shop.customers ,
Id) of
not_found -> State;
Customer ->
NewOrders = [CallResults] ++

Customer#customer.
orders ,

State#shop{
customer =

[Customer#customerorder =
NewOrders] ++

delete_customers(S#shop.
customers ,Id)]}

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

end;
false ->

State
end;

Listing 3: Definition of the newly created and updated states

When updating the customer records with the new data,
the previous old records are removed from the state. In
this part the problem relies on the fact that after updating
the state, the database also changes and there is no way of
checking the consistency of the updated information with
the business rules. Afterall, the original database is not
saved in an internal state of the machine model. Therefore,
it was proposed to check for the violation of business logic
after every sequence of tests. This enables the tests to run
faster and in parallel [5].

As mentioned at the beginning of this section each busi-
ness rule is translated into SQL queries and is embedded in
a database transaction.

business_rule(Connection)->
[] == db_interface:process_query(

Connnection ,
"SELECT id"
" FROM order_products NATURAL JOIN

customer"
" WHERE status <> ’gold’ "
" AND code IN ("
++ string:join (? GOLDEN_PRODUCTS])

++") ")"

Listing 4: Embedding a business rule as part of a transaction

The idea of the proposed solution is to evaluate each re-
quested data for testing by checking if the database invari-
ant holds and then observe the compliance of the updated
database with the business logic. Afterwards, the expected
results are compared with the actual results from testing. In
case of a successful test sequence, other tests are generated
from QuickCheck, elseways, it shrinks the set of counter ex-
amples in case of test failures, improving testing effectiveness
[5].

prop_business_logic () ->
?FORALL (Commands , commands (? MODULE),
begin
true = invariant (),
{History , State , Result} =

run_commands (?MODULE , Commands),
PostCondition = invariant (),
clean_up(State),
(PostCondition == true) and (Result ==
ok)

end) .

Listing 5: Testing the compliance of the updated database
with the business logic rule

The above-described example is evaluated using a risk
management information system, ARMISTICE, that con-
tains a database schema with almost 124 data-related busi-
ness rules. In such cases, when the number of business rules
is large, it is suggested to have more than one state machine
as a test module for every possible operation or command
affecting subsets of the database schema. One reason is that
the complexity of the business rules affects the size of the
database. As a consequence tests require more time to be
executed and also the number of bugs increases. Along with

the long testing time, there is also a delay in shrinking the
counter example set during the re-run of the failing tests [5].

PBT also faces challenges in web-service applications. The
described approach in [1] uses FsCheck to test business rule
models when deriving generators for sequences of web-service
requests. This tool supports, similarly to QuickCheck, mod-
els with states and transitions, where the inputs are trans-
lated from parsed XML files to extended finite state ma-
chines. The goal in [1] is to test the incoming requests be-
tween web service applications, which in this case are the
transitions of the state machines. Here a transition repre-
sents the incoming data, the saving of the web page, and
the graphical user interface that is used from the FsCheck
to derive the properties for testing. One problem that oc-
curred during testing happened because of the lacking infor-
mation regarding business-rule models, such as the reference
attributes. For this reason, the tool reported unreal bugs or
exceptions.

However, PBT has proven to be suitable when testing
business rules, since predicting the possible sequence of op-
erations that caused their failure is sometimes out of scope
for a developer. They often do not hold due to the unpre-
dictable changes in conditions, thus, generating sorts of test
cases that might cause a failure helps in detecting errors [5].

5. NEW APPROACHES
In the previous chapter there were described some chal-

lenges of PBT, such as continously testing with random in-
puts even if no new test results were being produced, incre-
mentation of business rules complexity followed by longer
testing time, delay in the shrinking of the counter exam-
ples set or lack of information regarding business-rule mod-
els causing unreal bugs or exceptions. Therefore, in this
chapter there will be presented some new approaches which
deal with some of these challenges.

For example having a large space of input is crucial when
testing out of the input bounds or also known as negative
testing. However, this does not always assure yielding satis-
factory results. An approach called targeted property-based
testing (TPBT), instead of testing via random inputs, ap-
plies a search strategy for the input generation, specified by
the user [15]. The user defines a search-based component
that generates inputs with a higher likelihood of falsifying a
property based on a utility value which measures how close
the random input was to falsifying that property. It has
been shown that the TPBT requires fewer test cases to find
bugs than the random PBT technique.

In case of the property definition it might happen that
the properties contain preconditions on their inputs, which
are not always satisfied, such as the list should be sorted or
must not contain duplicates. Therefore, the system can re-
act by dropping these inputs, leaving many cases untested.
For these reasons, in [13] there was proposed a new ap-
proach of PBT, namely coverage guide property-based test-
ing (CGPT), an extension of QuickCheck called FuzzChick,
which controls the information flow. FuzzChick contains a
generator that produces initial inputs and mutators that are
type-aware. The inputs are mutated until they do not gen-
erate new test results anymore. This approach is based on
fuzz testing, a technique that inputs random bytes in a pro-
gram and tests whether the system fails. As a result it covers
more tests than those that generate inputs for each test [13].

Except for tools, there are also libraries created with the

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

purpose of using PBT. An example is the Hypothesis, a li-
brary built for Python. It has been observed to improve
the scientific research results in software testing and sup-
ports test-case reduction and targeted property-based test-
ing, where the user only specifies the goal and tests are gen-
erated towards that goal [17].

6. CONCLUSION
In this paper, property-based testing was analyzed as a

software testing method as well as the characteristics of
real-world projects that apply PBT to identify challenges
and its application. The root of PBT starts with Haskell, a
functional programming language used to define properties
in the form of functions. Tools like QuickCheck use these
properties to generate random inputs and compare the out-
put with the expected result. After each positive result, the
set of counterexamples becomes smaller, while testing and
the generation of inputs continue until there are no new re-
sults. It is proven that PBT is useful, especially in large
systems where the number of possible inputs is out of scope
for the developers. Again, manually written tests do not
guarantee full coverage of possible inputs and thus possible
results. Additionally, not considering all the inputs increases
the difficulty of finding faults. However, QuickCheck is not
the only tool. With the software becoming more complex
when testing properties, problems also escalated. Therefore
methods such as state-machine testing, usage of SQL queries
to define properties, new tools like FuzzChick, FsCheck, and
libraries, such as Hypothesis, have been developed.

7. REFERENCES
[1] B. K. Aichernig and R. Schumi. Property-based

testing of web services by deriving properties from
business-rule models. Software & Systems Modeling,
18(2):889–911, 2019.

[2] R. L. Andrii Oriekhov. Ghtopdep, 2019.
https://github.com/github-tooling/ghtopdep, last
accessed on 2022-07-06.

[3] A. Bhat and S. Quadri. Equivalence class partitioning
and boundary value analysis-a review. In 2015 2nd
International Conference on Computing for
Sustainable Global Development (INDIACom), pages
1557–1562. IEEE, 2015.

[4] K. Burr and W. Young. Combinatorial test
techniques: Table-based automation, test generation
and code coverage. In Proc. of the Intl. Conf. on
Software Testing Analysis & Review. Citeseer, 1998.

[5] L. M. Castro. Advanced management of data integrity:
property-based testing for business rules. Journal of
Intelligent Information Systems, 44(3):355–380, 2015.

[6] K. Claessen and J. Hughes. Quickcheck: a lightweight
tool for random testing of haskell programs. In
Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming, pages 268–279,
2000.

[7] Erlang. https://www.erlang.org/, last accessed on
2022-07-10.

[8] C. V. Espinosa, E. Martin-Martin, A. Riesco, and
J. Rodŕıguez-Hortalá. Flinkcheck: property-based
testing for apache flink. IEEE Access,
7:150369–150382, 2019.

[9] L. Ferretti. https://www.codemotion.com/magazine/
devops/qa-testing/property-based-testing-2/,
February 12, 2020.

[10] G. Fink and M. Bishop. Property-based testing: a new
approach to testing for assurance. ACM SIGSOFT
Software Engineering Notes, 22(4):74–80, 1997.

[11] T. Hamilton. https://www.guru99.com/equivalence
-partitioning-boundary-value-analysis.html,
April 16, 2022.

[12] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks.
Evaluating fuzz testing. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and
Communications Security, pages 2123–2138, 2018.

[13] L. Lampropoulos, M. Hicks, and B. C. Pierce.
Coverage guided, property based testing. Proceedings
of the ACM on Programming Languages,
3(OOPSLA):1–29, 2019.

[14] F.-Y. Lo, C.-H. Chen, and Y.-P. Chen. Shrinking
counterexamples in property-based testing with
genetic algorithms. In 2020 IEEE Congress on
Evolutionary Computation (CEC), pages 1–8. IEEE,
2020.

[15] A. Löscher and K. Sagonas. Automating targeted
property-based testing. In 2018 IEEE 11th
International Conference on Software Testing,
Verification and Validation (ICST), pages 70–80.
IEEE, 2018.

[16] D. MACIVER. https://increment.com/testing/in
-praise-of-property-based-testing/, August 2019.

[17] D. R. MacIver, Z. Hatfield-Dodds, et al. Hypothesis:
A new approach to property-based testing. Journal of
Open Source Software, 4(43):1891, 2019.

[18] Microsoft. Github, 2008. https://github.com/, last
accessed on 2022-07-06.

[19] OpenSource. Mocha, 2011.
https://github.com/mochajs/mocha, last accessed on
2022-07-06.

[20] OpenSource. Fscheck, 2014.
https://github.com/fscheck/FsCheck, last accessed
on 2022-07-06.

[21] OpenSource. xunit v2, 2015.
https://github.com/xunit/xunit, last accessed on
2022-07-06.

[22] OpenSource. fast-check, 2018.
https://github.com/dubzzz/fast-check, last
accessed on 2022-07-06.

[23] A. Santos, A. Cunha, and N. Macedo. Property-based
testing for the robot operating system. In Proceedings
of the 9th ACM SIGSOFT International Workshop on
Automating TEST Case Design, Selection, and
Evaluation, pages 56–62, 2018.

[24] C. Solis and X. Wang. A study of the characteristics
of behaviour driven development. In 2011 37th
EUROMICRO conference on software engineering and
advanced applications, pages 383–387. IEEE, 2011.

[25] K. Yatoh, K. Sakamoto, F. Ishikawa, and S. Honiden.
Arbitcheck: A highly automated property-based
testing tool for java. In 2014 IEEE Seventh
International Conference on Software Testing,
Verification and Validation Workshops, pages 405–412.
IEEE, 2014.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

https://github.com/github-tooling/ghtopdep
https://www.erlang.org/
https://www.codemotion.com/magazine/devops/qa-testing/property-based-testing-2/
https://www.codemotion.com/magazine/devops/qa-testing/property-based-testing-2/
https://www.guru99.com/equivalence-partitioning-boundary-value-analysis.html
https://www.guru99.com/equivalence-partitioning-boundary-value-analysis.html
https://increment.com/testing/in-praise-of-property-based-testing/
https://increment.com/testing/in-praise-of-property-based-testing/
https://github.com/
https://github.com/mochajs/mocha
https://github.com/fscheck/FsCheck
https://github.com/xunit/xunit
https://github.com/dubzzz/fast-check

Classifications of Test Oracles found in Literature

Svetoslav Apostolov
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

svetoslav.apostolov@rwth-
aachen.de

Florian Braun
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

florian.maximilian.braun@rwth-
aachen.de

ABSTRACT
Test oracles are an integral part of software testing to verify
that the SUT (Software Under Test) behaves correctly to its
specifications. Since the test oracle problem was first investi-
gated in 1978, new approaches have been designed over time
and currently the focus has shifted towards automating ex-
isting solutions. We divide the different methods into classes
and look at their temporal evolution in research. For the cat-
egorisation, we looked at literature of different approaches in
the context of their time periods and present the results of
our analysis. Test oracles can be categorized into pseudo or-
acles for testing non-testable programs, test oracles based on
specifications, metamorphic testing based on metamorphic
relations, test oracles created by machine learning or search
based learning, regression testing and assertions. These cat-
egories are defined in the context of present literature and
are subject to change after further research, be it through
refinement of existing or definition of new groups.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software En-
gineering]: Management—productivity, programming teams,
software configuration management

Keywords
Test Oracles, Classification, Temporal Evolution

1. INTRODUCTION
Software testing allows for easier discovery of issues in

the internal logic and confirming the successful conflict res-
olution thereof by checking the received output for a set
input [11]. It is a key part of development and an accurate
check of program reliability, though it is also costly to effi-
ciently implement in both time and effort [5]. Choosing the
appropriate input and methodology is a complex task that
evolves alongside the development process [3],[5]. Mainte-
nance costs, which are mostly delegated to testing, almost

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2022 RWTH Aachen University, Germany.

certainly surpass initial production costs because of it, given
the software is supported for a certain time [14]. Because
of the importance of this process, the term test oracle was
introduced as the first step in formally categorizing different
test methods [9].
In testing the test oracle takes over the role of verifying the
correctness of an output for a given input and can therefore
validate the behaviour of a system. To be able to confirm a
software’s actions the test oracle needs to be created in such
a way that it is capable of knowing the right output for each
possible input. This process is therefore in most cases costly
in computation time and human effort [1].
Many different oracles have been newly discovered and re-
classified since, with new literature on the subject being
published frequently. However, this abundance of research
material is insufficiently organised. Attempts to classify or-
acles have been made, but are either not up to date, or not
universally applicable [9], [1].

RQ1: The first research question of this paper is to analyze
publications on solving the test oracle problem ranging
from highly specific to generally applicable solutions
and separate them into distinct classes.

RQ2: In addition the second research question is to identify
research trends in the field of test oracles and analyzing
the temporal evolution of the interest in the classes and
give a comparison.

Therefore we will analyse and classify different methods
and approaches to designing a test oracle. Chapter 3 takes
a deeper look at options for testing non testable programs,
as well as the classes of test oracles called metamorphic test-
ing (3.2), regression testing (3.3), specification languages
(3.4), assertions (3.5), implicit test oracles (3.7) and machine
learning approaches to automate the before mentioned test
oracles (3.6).
After the classification we analyse a temporal evolution of re-
search on the aforementioned classes of test oracles in chap-
ter 4, to represent when and how they were first introduced,
how the focus in research shifted towards automation of ex-
isting solutions and take a look at future trends.

2. TERMINOLOGY
We will discuss certain terms in order to give them a uni-

form meaning in this research and to aid in understanding
the following classification of test oracles. Our definitions
are based on the widely-used ISO standard, the current ver-
sion being ISO 2022 at time of writing.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

• Programs are defined as code built on a specific pro-
gramming language with the goal of solving specific
tasks.

• The faults lying in the internal logic of the code are
the cause of errors, which are defined as a difference
between a theoretical condition and its real value.

• Each program produces a set of results derived from
the processes defined by it.

• Testing a block of code consists of setting an expec-
tation for the results of executing it and comparing it
with the returned values.

• Programs being tested are considered Software Under
Test, or SUT.

• One set of conditions and checks applied to a single
program is considered a test case.

• Test data is data which is created or selected to be
suitable for executing one or multiple test cases.

• The test oracle problem describes the challenge to de-
termine if a test has passed or failed for a given set of
test inputs.

3. CLASSIFICATION OF TEST ORACLES
Simple test oracles like input-output comparisons that ex-

plicitly check for equality between given and received in-
formation are common in practice due to their ease of im-
plementation [13]. However, they are rarely discussed in
scientific literature, as they do not hold possibilities for op-
timization or expansion because of this simplicity.
More complex test oracles can be divided into three main
categories: specified, derived and implicit, each of which
has multiple sub-classes that we will focus on in the follow-
ing chapters [1].
Specified test oracles are designed according to formal spec-
ifications which are based on the desired behaviour of a sys-
tem [1]. In our analysis we focus on two types of specified
oracles called specification-language and assertions.
Derived test oracles evaluate the behaviour of a system based
on information extracted from sources like documentation,
system executions or previous versions [1]. In this chapter
we look at the classes of pseudo-oracles, metamorphic test-
ing and regression testing.
Implicit test oracles assess a systems behaviour by analysing
general and implicit information like program crashes. Since
these oracles are independent of any formal specifications or
knowledge about the system they can be used universally
for all programs [1].
The aforementioned classes are a vague categorization of test
oracles, therefore for our analysis we split them into more
specific sub-classes discussed in detail in the following chap-
ters.

3.1 Pseudo Oracles
A program for which there is no oracle or for which an ora-

cle cannot practically be implemented is called non-testable.
There are three types of non-testable programs. Firstly pro-
grams where for a given input the output is unknown and
the purpose of the program is to calculate the right output.
Secondly are programs whose quantity of output is too large

to verify. Lastly are systems impaired by tester’s misconcep-
tions about, for example specifications [3].
It is believed that many systems fall under the category of
being non-testable, which brings up the question of how to
verify the correctness of such programs [15].
One way to test a non-testable program is a pseudo-oracle.
The approach of this method is to implement multiple ver-
sions of the same program in parallel by disjoint teams of
programmers based on the same data and specifications. Af-
ter completion the different programs are compared and if
the outputs are equal the test is valid. Otherwise both pro-
grams are revised and examined again until all differences
are removed. The comparison is taken over by monitor-
ing both programs and can be automated to check larger
amounts of test data in shorter amounts of time. Pseudo-
oracles also solve the problems of non-testable programs
type three, listed in the beginning of this chapter, since it
is highly unlikely that both programming teams are subject
to the same misconception [3].
To make practical use of pseudo-oracles some requirements
have to be met. First independence of the pseudo-oracle
is crucial to reduce the risk of misconceptions influencing
the oracle and its original program. Second a convenient
and high-level programming language to speed up the de-
velopment of the pseudo-oracle, so that programming and
debugging is not overly time consuming. Third the original
program will be used frequently in order to compensate the
extra time and work of producing multiple versions of the
same program. Fourth specifications need to be complete,
precise and equal for each individual team to minimize the
differences between their results. Last is the suitability of
test data, for example programs which output a boolean
value of true and false are more difficult to compare for cor-
rectness then programs with an integer output. This is the
case since it is highly unlikely for two programs to produce
the exact same integer value if one program is not correct.
When comparing two boolean values the confirmation is less
meaningful since the chance of accidentally hitting the right
answer is higher[3].
A second method can be applied for code belonging to cat-
egory 2 that has too much output to verify. For checking
such programs it can be useful to simplify the data and run
tests on these reduced inputs and outputs. However, it is
clear that results from simplified tests can not be taken as a
measurement for the entire program, since often the complex
test case invoke errors and are overlooked by this method.
Therefore it can only be of assistance with finding specific
types of errors. Another more intuitive method is to accept
reasonable results which, however, can not be fully validated
as being correct. This can be done by narrowing down the
scope of possible correct outputs towards an acceptable in-
terval or by calculating the probability of a result to be right
[15].
Testing without a test oracle can mainly result in two con-
sequences that we want to discuss now. In order to do so
we distinguish two different results that are most likely to
happen. First is a correct output but the test’s verification
fails and labels the output as incorrect. Although less likely
and often caused by a tester’s mistake, this always results
in additional time and labour cost for someone to find the
reason for the false error. In a worst case scenario the tester
also changes the code in order to fix the problem and there-
fore adding new real errors [15].

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Second, and more regular, is the consequence of a test out-
put being wrong but the test result verifies it as correct.
It is rarely the case that programs, which were subject to
tests, do not include any errors, but it should be possible to
rely on the fact that the sections of an application that were
previously tested are truly correct [15].
In order to support and simplify testing of non-testable sys-
tems Weyuker suggests the following list of information that
should be included in any program’s documentation as a
guideline for future testing [15]:

1. Specify the testing criteria which the test data is based
on

2. The amount of testing criteria fulfilled in relation to
unfulfilled criteria

3. The actual data used for testing

4. The output for each individual input chosen from the
test data

5. Give a description of how outputs were verified as cor-
rect or incorrect

This concept can also be applied to and be beneficial for the
following classes of test oracles.

3.2 Metamorphic Testing
Metamorphic testing describes the approach of taking ex-

isting tests and test data and transforming them, commonly
used if the test data is complex and time consuming to com-
pute in execution since there are no values beforehand and
therefore need to be generated during runtime. The idea or
goal of metamorphic testing therefore is that the new tests
thus generated should then calculate the output faster and
more efficiently compared to the original tests. As an exam-
ple take an input x and the function f which computes the
output of the program f(x). The goal now is to find a meta-
morphic relation so that for any given input x’ its output
f(x’) can be predicted using f(x) [12].
Testing with metamorphic relations is time- and labour-
intensive for even small tests. Especially the input conver-
sion requires a lot of computation and can be extremely
complicated if the given data is not in a format that is leg-
ible for humans. In addition the output verification faces
difficulties if, for example, the application allows multiple
correct results for a single input [12].
Test oracles based on metamorphic testing still face prob-
lems limiting their effective usage in practice. The most
prevalent challenge is reducing the time and costs necessary
to modify each input while increasing its accuracy and cor-
rectness. Another obstacle is the comparison of an output
to its computed relation as it also struggles with increasing
data size and is susceptible to errors [12]. These problems
might be solved by automating the process but more on that
in chapter 3.6.
One example to illustrate metamorphic testing is finding a
shortest path in an undirected graph. Take two nodes x and
y in a graph G. The goal now is to verify if the computed
shortest path G(x,y) is correct. The simplest metamorphic
relation would be to test if the same path backwards, so
G(y,x), results in the same path length [2].
In order to connect this chapter with section 3.1, it can be
said that metamorphic testing approaches are also a good

method to test non-testable programs. Take the first class
of non-testable programs where for a given input the cor-
rect output is unknown. Tests can still be carried out since
metamorphic testing does not require any detailed knowl-
edge about the program, because if an output for a given
input is not as expected errors can still be detected [12].

3.3 Regression Testing
Regression testing describes the concept of comparing a

new version of a program to its predecessor to check if it is
still performing according to its specifications and require-
ments. It is based on the assumption that the previous ver-
sion of a program can be used as a test oracle for the current
specifications [1].
A distinction is made between adaptive or perfective main-
tenance and corrective maintenance. The former describes
the case that the specifications change from one program
version to the next, in which case all affected tests need to
be updated or reconstructed in order to correctly represent
the new specifications. In comparison, the latter describes
the opposite case, so that the specifications did not change
and the test does not need to be updated or reconstructed
[14].
There are two ways to compare two versions of a program.
On the one hand, the retest-all strategy, as the name implies
testing the correctness of everything but therefore devoting
more resources and time, which is not worthwhile for smaller
changes. And on the other hand, the selective strategy only
testing a partial amount of the tests generated for the previ-
ous version and therefore minimizing resources spent. The
second method has the goal of only needing a new test run
if something in the section of code it covers changed, which
further reduces costs and time spent for testing. Though
it needs to be mentioned that in comparison to the goal
mentioned above, it also adds a new problem of finding de-
pendencies in the code that effect the block of code covered
by the selective test oracle [14].
Take an object-oriented language like Java as an example.
A selective strategy may find the affected code sections in
a class but will miss all other affected parts which are de-
pendent on the changed class. In order to also cover these
indirectly affected classes new methods like collecting cov-
erage information need to be added in order for selective
strategies to be correct. Therefore these methods also col-
lect data about all affected classes for each individual test,
which then can be used for the next version of the program
to select all tests that need to be rerun to verify the correct-
ness of the updated version of a system [8].
According to Wahl a testing process with a selective strategy
can be described in six steps [14].

1. Analyse the differences between both system versions
and the code sections affected by the changes

2. Choose the tests related to the affected code sections

3. Test the affected code section on the basis of its related
tests

4. Check the test results for correctness or identify fail-
ures

5. If an error is found then localize and correct it

6. Update the new program and its tests

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

The concept of regression testing described above applies to
three different levels of a program - the unit, integration and
system level. At each level different failures can occur. Re-
gression testing in general applies to all levels combined but
there are also specific test oracles for each individual one
[14].
The unit level is commonly focused on by regression testing
methods and its goal is to verify correct behaviour accord-
ing to its specifications, for each individual software module
[14].
At the integration level regression testing puts a focus on
gradually merging the individual software modules back to-
gether to form the original program. In this process errors
can be found that did not occur before at the unit level
testing. This procedure is of high importance since around
40% of failures are caused by incorrect merging of individual
modules [14].
On the system level regression testing checks if the complete
program functions according to its specifications. Therefore
it first has to check if there were any failures on the inte-
gration level and that the merged modules meet their re-
quirements and functionality. Thus this testing procedure
does not require any information about the contents of each
individual model [14].
When comparing different regression testing approaches four
different characteristics are mainly considered. First is in-
clusiveness, meaning the range of tests chosen by the method
to find failures triggered by changes in the code. Second is
precision, representing the accuracy of only choosing tests
that are relevant to revealing an error introduced as an ef-
fect of changes. Third is efficiency as a measurement of costs
generated by the computation of a testing process. And as
a last criterion there is generality. As the name implies, it is
describing the adaptability of a test oracle to be used for dif-
ferent languages and applications. When looking for a test
oracle these categories can be used to make a decision, for
example if a program is required to be extremely reliable, a
safer method with high inclusiveness is best to choose in or-
der to guarantee finding as much errors as possible. On the
other hand, if the goal is to minimize the time a test oracle
needs to verify the correctness of an application, a version
with high precision is the best choice since it reduces the
amount of tests needed for confirmation [14].
To come back to the beginning of the chapter we now take
a look at the juxtaposition of cost effectiveness regarding
retest-all and selective testing strategies. In most research
the focus is on selective methods since it is presumed that
these approaches incur less costs by only working with a
fragment of all test cases. But as described above these
methods include a selection process in order to choose the
right tests to work with. Therefore if the task of inspecting
and filtering test cases involves too high costs or can not
reduce the number of test by a significant amount, selective
strategies are equally or even less cost efficient in compari-
son to retest-all approaches. So when comparing the costs
of these two methods it can be said that selective strategies
are more efficient if the added expense of test selection is
lower then the costs of running and verifying the excluded
tests which are included in retest-all techniques [14] .

3.4 Specification Languages
Test oracles based on specifications are designed to de-

scribe the desired behaviour of a system in a formal man-

ner. Once a specification-based oracle is defined it can be
reused for example in regression testing. Therefore the cost
of creating the oracle only has to be raised once and pays
off by its reuse [13].
In the following we will describe the concept of a specification-
based test oracle on the basis of an elevator example given
by Richardson et. al.. The system, in this case the elevator,
has to respond to specific inputs. For example a button to
call the elevator to a certain floor or the buttons inside the
elevator to move to a certain floor. Furthermore it is re-
stricted in its actions. For instance it should not move when
the doors are open. In order to formally represent these
requirements specification languages are used, examples are
formal languages or state charts. For the example we look
at a formal language to represent the events and tempo-
ral properties of an elevator. Actions are represented by
terms of the language like open(elevator), close(elevator) or
set direction(elevator, direction). After all events are defined
the properties of the system can be described. An elevator
should not move with open doors therefore a restriction is
made which is a chronological sequence of events that must
be fulfilled in order for the system to behave correctly. This
could be represented as follows: set direction(elevator, di-
rection) ⇒ (up ∨ down) ⇒ open(elevator) so the elevator
only opens after it has moved up or down. Now at each
control point, for example when the elevator reaches a floor,
an assertion is made to check if the system complies with its
specifications [13].
Specification languages like the one described above model
all the states and operations of a system and therefore are
called state-based specifications [1]. Another subclass is called
state transition systems and, as the name implies, the prop-
erties of a system are depicted as a graph displaying the
transitions between each state. The output of a system is
either the final state or the set of transitions the system
went trough. Specification languages only approximate the
system so differences in its behaviour will therefore occur at
some point and the test oracle needs to be revised in order
to solve the conflict. As a result it is still an open problem to
find models that exactly represent its system which depends
on if the system’s behaviour is observable and deterministic
[1].
In general there are still three challenges for specified test
oracles to be solved. First is, as briefly touched on before,
the task of finding formal specifications that are abstract
enough to work with. This problem leads to challenge num-
ber two, the inaccuracy of a specified test oracle caused by
non-realisable properties or incomplete coverage of all the
required specifications. Lastly it remains a challenge to find
an accurate method for comparing the test oracle output to
the program output. This problem arises because the re-
sults of a specified test oracle are on a higher abstraction
level then the results of the actual program. In addition the
output of an oracle might only be computed to a limited
extent or is simplified in comparison to the actual output
[1].

3.5 Assertions
Assertions as a test oracle are not separated from the orig-

inal program but are integrated into the code and executed
at runtime. They are implemented as boolean expressions
where a value of true symbolises correct execution and a
value of false indicates an error [1].

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

In general assertions are also classified as specification lan-
guages but differ from them in two ways. Firstly, the fact
that assertions can access and use the programs variables
so the probability of a wrong representation in the specifi-
cation language is reduced drastically. Secondly, assertions
are not written after the SUT is finished but alongside its
development [1].
In practice a classic assertion test oracle has constraints to
the amount of properties it can check at each point in the
program [1]. Therefore all the classes analysed above ex-
tend the principle of assertions and add new methods and
functionality in order to create better and more efficient test
oracles.

3.6 Machine Learning for Test Oracles
Machine learning does not introduce a new solution to the

test oracle problem but aims for automating already exist-
ing solutions. The goal is to aid in or even completely take
over the creation of test cases and also executing the task
of a test oracle to verify the correctness of a program. In
research the main focus is on the second target of automat-
ing the generation of test oracles. Since current methods are
often individual for each program and involve a considerable
amount of human resources the automation of this process
would result in massive cost and time reductions. However,
there are currently still limitations in the process of creat-
ing an oracle due to the human involvement in finding good
quality test data in high quantities and then training the
machine learning algorithm [5].
Many developed methods and especially earlier approaches
are reduced to a smaller set of outputs as they struggle with
multiple and more complex outputs [5]. Though machine
learning techniques brought forth recently make use of more
complex and larger-scaled neural-networks for example and
therefore are able to work with more complex problems and
find solutions for them [7], [4], [6].
In general machine learning methods make choices based on
the analysis of the given data and its structure for patterns
and correlations. Automation approaches mainly focus on
three types of test oracles, test verdicts, expected output
and metamorphic testing. Test verdicts try to predict the
results of a test for a specific input. Expected output ap-
proaches attempt to predict the actions of a system caused
by a certain input. The results can vary from exact outputs
to a wider more abstract set of outputs. The latter makes it
difficult to forecast a system’s behaviour if it is more com-
plex. Metamorphic testing was already discussed before,
here machine learning approaches try to find metamorphic
relations based on the data it is given of a new program [5].
Test verdict methods take over the task of creating the in-
formation needed to verify the correctness of a program and
then also perform the verification process. In comparison
the other two approaches assist in or completely take over
the definition of oracle information and specification but do
not take part in the confirmation of correctness, since they
only provide the information needed for that process [5].
However, there are still open problems which need to be
solved in order to include test oracles created by machine
learning algorithms into practical use. The first challenge
is to find adequate training data since it needs to have the
necessary contents and its size can often reach enormous
amounts. In addition it still requires a significant portion of
human involvement in order to produce these training data

sets and can be highly time consuming since the program
needs to be run numerous times to collect the necessary
data to even start the training process [5].
Considering the class of metamorphic test oracles, most ap-
proaches are not yet ready to be used in practice since they
can not overcome the need for human involvement. In order
for a machine learning algorithm to learn which metamor-
phic relations hold or not a person with expertise has to
manually add labels to the code to mark existing relations.
This results in high costs before the actual training process
has even started [5].
Once the learning algorithm has produced a test oracle it
is fixed and does not change during its use. This can cause
inaccuracy if the training data was not complete, therefore
adding the necessity of retraining the oracle with further
data if results are not correct or when new specifications are
included in the program [5].
In general there are still three open problems in research yet
to be solved. First the readability and usability of outputs
which machine learning test oracles give, since they can dif-
fer from current test oracle approaches. Second the correct-
ness of the aforementioned methods because it is believed
that their results are at most partially correct. Third is the
acceptability of users, meaning the aim to find a good way
of organizing the cooperation of human involvement and ex-
pertise with automation of creating, executing and assessing
tests [10].

3.7 Implicit Test Oracles
As described in the beginning of chapter 3, implicit test

oracles are based on finding and analysing more indirect and
universal information of a system to verify its correctness [1].
An often used example is buffer overflow errors, since they
almost always indicate an incorrectness of a system. Con-
sidering these types of information an implicit test oracle
uses, they are applicable to almost all programs and do not
require knowledge about the system and its specifications.
Also these approaches are often not standalone solutions for
verification but are built on already existing processes which
detect those obvious errors, like system crashes. Therefore
an implicit test oracle defines correlations between a certain
error as input and an reaction as output. However, it should
be noted that these approaches are not always guaranteed to
be correct for each program since in some cases even system
crashes can be a desired outcome [1].
One example we want to look at is called fuzzing. The ap-
proach of fuzzing describes a method to detect implicit er-
rors like system crashes in a time and cost efficient manner.
It is based on the idea of generating random, or where the
name comes from, fuzz inputs, and then testing the sys-
tem with that created test data. This method works since it
only analyses implicit information of the software under test
which should result in the same output for each applicable
input. If, however, an error is found in the testing process
a report is made containing the specific error and the input
that caused the problem. A common application for fuzzing
is in the area of software security to find system vulnerabil-
ities caused by a buffer overflow, a leak in the memory or
exceptions that are not being handled [1].

4. TEMPORAL EVOLUTION
The first use of the term ”test oracle” can be found in

a 1978 paper by W. E. Howden [9]. Howden defines test

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Figure 1: Results of the search query ”test oracle” + (”asser-
tion” OR ”specified oracle” OR ”specification language”)

oracles as an assumed to exist tool to check correctness of
an output. Notably he also differentiates between multiple
types of oracles, namely formally and informally defined,
though suggests no further categorization. His work is not
the first to focus on the testing problem, as papers from as
early as the 1950s already looked at other techniques, e.g.
finite state machine testing, but it remains one of the most
influential particularly because of the now staple term.
Following Howden’s proposed terminology, techniques were
being developed increasingly often, with Barr et al. observ-
ing that the 1990s spawned the most out of any decade [1].
The cumulative amount of publications also increased ev-
ery year up to 2012. Replicating the Google Scholar query
method of Barr et al., we observe that this trend continues
into the 2020s, suggesting that the field continues to be re-
ceive interest by researchers.

In order to get a brief overview of how research trends
developed over time we run four different web searches on
Google Scholar, one for each group of test oracles, namely
specified, derived and implicit oracles as well as one search
for automation of oracles via machine learning. The queries
consisted of the keywords ”test oracle” followed by ”test or-
acle class” or ”test oracle sub-class” for all classes discussed
in the previous chapters resulting in the following four query
types:

1. ”test oracle” + (”assertion” OR ”specified oracle” OR
”specification language”)

2. ”test oracle” + (”derived oracle” OR ”pseudo oracle”
OR ”metamorphic testing” OR ”regression testing”)

3. ”test oracle” + (”implicit oracle” OR ”Fuzzing”)

4. ”test oracle” + (”automating test oracles” OR ”auto-
mated oracles”OR ”machine learning”OR ”deep learn-
ing”)

The results of each individual query were added up for each
class and presented in figure 1, 2, 3 and 4.
This approach on analyzing the amount of publications in-
volves some minor drawbacks and inaccuracies. First of all
Google Scholar does not cover all publications and there-
fore might miss papers which were only published in specific
publications or academic journals. Furthermore the papers
found might not exactly fit to the desired topic, but these

Figure 2: Results of the search query ”test oracle”+ (”derived
oracle” OR ”pseudo oracle” OR ”metamorphic testing” OR
”regression testing”)

cases are minimized by requiring that the keywords searched
for need to be exactly contained in each query result. From
this it can be concluded that our approach might not be
100% accurate, but is precise enough to give an overview on
how research trends and interest has developed over time
for each class of test oracles. In the following we will first
analyse each category of test oracles on its own and then
give a comparison between all four.
To start off we take a look at the first search query of spec-
ified test oracles displayed in figure 1. It can be seen that
since the term test oracle was first introduced in 1978 re-
search took a slow start of 4 to 10 published papers per 5
year period until 1990. From 1991-1995 onward research in
the field kept growing up to a steady pace of around one
to three hundred new papers published in each time period
until 2010. From then the interest in research on specified
test oracles grew rapidly reaching 713 new papers between
2016 and 2022. The amount of published papers in this field
reaches an amount of nearly 2100 papers by the year of 2022.
This leads to the conclusion that specified test oracles are
up to this day a research problem of high interest and this
trend is likely to continue in the next years, growing even
faster than in the last time periods.

Next we analyse the results of the next search query on
derived test oracles presented in figure 2. Again it can be
said that after the term test oracle was first coined in 1978,
research in derived oracles started off slowly with the first
papers being published between 1981 and 1985. In the first
time periods from 1986-1990 until 1996-2000 between 12
to 80 papers were published per time span starting off a
bit slower in comparison to research on specified test or-
acles. But from 2001 onward research expanded quickly
nearly doubling from one time period to the next reaching
an amount of 1150 new papers between 2016 and 2022 and a
total amount of nearly 2500 papers. Since publishing num-
bers keep rising it can be assumed that this field of research
will continue to expand in the coming years.
For the third category of test oracles we take a look at the
development in research of implicit test oracles shown in fig-
ure 3. Up to 2005 there was only one paper published which
was between 1986 to 1990 leading to the conclusion that be-
fore this year the field of implicit test oracles did not arouse
any interest for further research. However, from that point

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

Figure 3: Results of the search query ”test oracle” + (”im-
plicit oracle” OR ”Fuzzing”)

onward researchers started to investigate the topic more in-
tensely, publishing 22 papers between 2006 and 2010. In
the next time period the amount of publications more then
quadrupled to 92 new papers and then increased five-fold
in the next time period with 483. In total the research in
implicit test oracles reached an amount of nearly 600 papers
by 2022. Since that breaking point in 2010 the numbers
are increasing rapidly up to today, leading to the conclusion
that the focus on research in this field is starting to attract
a lot of new scientists and that this class will be further in-
vestigated in the future.
At last we also want to take a look at the development of
research in automating the creation and execution of test
oracles with the help of machine learning. The results of the
query are presented in figure 4. Surprisingly the first paper
was already published between 1986 and 1990. From then
research interest started to grow slowly with 12 to 28 papers
per time period until the year 2005. After that the amount
of publications increased rapidly more then doubling every
five years until 2015 reaching 300 new papers from 2011 to
2015. Since then the field of automating test oracles ex-
panded vastly, quadrupling by the end of 2015 to 2022 by
1200 new papers. In 2022 a total amount of roughly 1700
was reached. When looking at figure 4 it can clearly be seen
how the interest in this approach is starting to attract many
new researchers as it seems to promise great possibilities to
increase time and cost efficiency in testing as well as decreas-
ing the need for human involvement.
When comparing all four charts it becomes apparent that

the temporal evolution of specified and derived oracles is
quite similar even in the amounts of publications and only
differ minimally. The same can be said for implicit test ora-
cles and automation, their research trend curves are similar
as well but they differ in their total amount of publications.
Namely 600 for implicit and 1700 for automating test ora-
cles. When ranking all four categories by their total amount
of papers by 2022, derived test oracles are in first place, fol-
lowed by specified test oracles and then automation of test
oracles each by a gap of around 400 papers. Only implicit
test oracles are far behind with a difference of more then
thousand papers to the next class.
After analysing all four categories it can be concluded that
research in all fields is still thriving and will likely continue
this trend in the upcoming years. Although it must be said

Figure 4: Results of the search query ”test oracle” + (”au-
tomating test oracles” OR ”automated oracles” OR ”machine
learning” OR ”deep learning”)

that the focus of research has shifted more towards improv-
ing existing solutions and also automating them instead of
finding new solutions to the test oracle problem [1], [5].

5. CONCLUSION
In this paper we analysed different classes of test oracles

and displayed their temporal evolution in research. To an-
swer the first research question we divided test oracles ap-
proaches into three broad categories, specified, derived and
implicit test oracles. The first category describes test oracles
which are designed on formal specifications of a system in
order to model the desired behaviour of a program. In our
analysis we focused on two types of specified oracles called
specification languages and assertions. The former imple-
ment a language in order to represent the properties of a
system and creating conditions based on this language to
check if the system acts according to its specifications. As-
sertions are boolean expressions integrated into the source
code of a program in order to validate the correctness of a
program at specific checkpoints.
For the next category of derived test oracles we analysed
three different classes, pseudo-oracles, metamorphic testing
and regression testing. Derived test oracles in general de-
scribe the concept of evaluating a systems behaviour based
on information like documentation, system executions or
other versions of the program. Pseudo-oracles are designed
to test and validate programs for which no test-oracle exists
since they are classified as non-testable. In order to achieve
that the original system is programmed multiple times from
multiple disjoint programming teams and their output is
then compared. If they produce the same result the test is
considered to be successful. Metamorphic testing describes
the approach of transforming the current tests and test data
into a new format, which is less complex and faster to com-
pute while still being able to judge the original programs
correctness based on the conversion.

As a last approach in the category of derived test oracles
we looked at regression testing. This concept describes the
process of comparing two versions of a program and ensur-
ing that correctness still holds for the newer version, so that
the changes in the program did not result in any errors or
changes in behaviour.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

For the last category of implicit test oracles we focused
on one exemplary method called fuzzing. The idea behind
fuzzing is to test the system on randomly generated inputs
since the errors covered by implicit testing techniques should
be the same for all input output pairs.
In addition to the three classes we looked at the automation
of these existing test oracle approaches with the use of ma-
chine learning. Automation aims for either taking care of
the creation of test data or executing the tests and verifying
them and in some cases even do both jobs together. The
focus, however, is mainly on the second task of creating a
test oracle.
For our second research question we analysed a temporal
evolution of the research on these topics. With this goal
in mind we made four different search queries on Google
Scholar, one each for specified, derived and implicit test or-
acles as well as automation. We checked the results in five
year periods starting in 1980 up until 2022. All four queries
resulted in a slow increase of research from the 1980 onward
to around 1990-2000 depending on the oracle type. From
this point on all four groups experienced a rapid increase in
interest and therefore also in research and publications.
As a result of our analysis, we can state that the test or-
acle problem and its subfields are still of great interest for
researchers but their focus has shifted more towards opti-
mizing already existing solutions and automating them.

6. REFERENCES
[1] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and

S. Yoo. The oracle problem in software testing: A
survey. IEEE Transactions on Software Engineering,
41(5):507–525, 2015.

[2] T. Y. Chen, S. C. Cheung, and S. M. Yiu.
Metamorphic testing: A new approach for generating
next test cases. 2002.

[3] M. D. Davis and E. J. Weyuker. Pseudo-oracles for
non-testable programs. In T. Shelter, S. Abraham,
E. Friedman, and B. Levy, editors, Proceedings of the
ACM ’81 conference on - ACM 81, pages 254–257,
New York, New York, USA, 1981. ACM Press.

[4] V. A. de Santiago Júnior. A method and experiment
to evaluate deep neural networks as test oracles for
scientific software. In 2022 IEEE/ACM International
Conference on Automation of Software Test (AST),
pages 40–51, 2022.

[5] A. Fontes and G. Gay. Using machine learning to
generate test oracles: a systematic literature review. In
G. Jahangirova and V. Terragni, editors, Proceedings
of the 1st International Workshop on Test Oracles,
pages 1–10, New York, NY, USA, 2021. ACM.

[6] C. Geethal. Training automated test oracles to
identify semantic bugs. In 2021 36th IEEE/ACM
International Conference on Automated Software
Engineering (ASE), pages 1051–1055. IEEE, 2021.

[7] L. Grandinetti, S. L. Mirtaheri, and R. Shahbazian,
editors. High-Performance Computing and Big Data
Analysis. Communications in Computer and
Information Science. Springer International
Publishing, Cham, 2019.

[8] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso,
M. Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi.
Regression test selection for java software. ACM

SIGPLAN Notices, 36(11):312–326, 2001.

[9] W. E. Howden. Theoretical and empirical studies of
program testing. IEEE Transactions on Software
Engineering, SE-4(4):293–298, 1978.

[10] W. B. Langdon, S. Yoo, and M. Harman. Inferring
automatic test oracles. In 2017 IEEE/ACM 10th
International Workshop on Search-Based Software
Testing (SBST), pages 5–6. IEEE, 2017.

[11] L. J. Morell. A theory of fault-based testing. IEEE
Transactions on Software Engineering, 16(8):844–857,
1990.

[12] C. Murphy, K. Shen, and G. Kaiser. Automatic
system testing of programs without test oracles. In
G. Rothermel and L. Dillon, editors, ISSTA 2009,
page 189, New York, NY, 2009. Association for
Computing Machinery.

[13] D. J. Richardson, S. L. Aha, and T. O. O’Malley.
Specification-based test oracles for reactive systems. In
T. Montgomery, editor, International Conference on
Software Engineering, pages 105–118, New York, 1992.
Association for Computing Machinery.

[14] N. J. Wahl. An overview of regression testing. ACM
SIGSOFT Software Engineering Notes, 24(1):69–73,
1999.

[15] E. J. Weyuker. On testing non-testable programs. The
Computer Journal, 25(4):465–470, 1982.

SWC Seminars on Full-scale Software Engineering & New Trends in Software Construction

Copyright © 2022 for this paper by its authors

