
Proceedings
of Seminar

Full-Scale Software Engineering

2023
Editors: Horst Lichter

Alex Sabau
Ada Slupczynski
Selin Aydin
Nils Wild

 Countermeasures Patrick Treppmann, Florian Braun
Towards a Comprehensive Meta-Model for Classifying Software Vulnerabilities
and Countermeasures

Leon Carmincke, Lukas Jansen
A Survey of Jupyter Notebook Quality Attributes

Maximilian Lucas , Vincent Stollenwerk
Comparison of Integration Testing Methods for Component-based Software

Bashmund Shah, Utkarsh Dubey
The relation between Modernization and EA Debt

Erik Wrede, Szymon Habrainski
Overview and Comparison of Automated Threat Modeling Approaches

Table of Contents

The relation between Modernization and EA Debt

Bashmund Shah
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

bashmund.shah@rwth-aachen.de

Utkarsh Dubey
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

utkarsh.dubey@rwth-aachen.de

ABSTRACT
The Software development process is dynamic and may in-

clude perpetual evolution of legacy systems which are prone
to logical and technical fallacies. The technological evolu-
tion of such legacy systems includes Modernization i.e. re-
structuring and modifying the system. Modernization aims
to overcome Technical Debt which is the cost incurred when
expedient solutions are implemented. Even though Modern-
ization affects the entire enterprise, the impact of Modern-
ization on business has not been studied as Technical Debt
alone does not encompass business implications. Technical
Debt is a subset of Enterprise Architecture Debt and Enter-
prise Architecture Debt additionally focuses on business and
data. Since there is significant research on the causes, min-
imization and impact of Modernization on Technical Debt,
we want to use the relation of Technical Debt and Enterprise
Architecture Debt to relate Modernization with Enterprise
Architecture Debt. This research is focused on deducing the
impact of Modernization on the entire enterprise and the re-
lation between Modernization and Enterprise Architecture
Debt. To do that, we performed a literature review of 21
papers to support our findings.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software En-

gineering]: Management—productivity, programming teams,
software configuration management

Keywords
Modernization, Technical Debt, Enterprise Architecture

Debt

1. INTRODUCTION
In today’s world, the ever-changing requirements have led

to the iterative development of software. This involves con-
tinuous software development to adapt to changing require-
ments. It is undeniable that the software development pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2023/24 RWTH Aachen University, Germany.

cess is dynamic, a perpetual evolution of software. Such
development cycles are prone to logical and technical falla-
cies which could lead to rushed or unplanned development.

This leads to the introduction of Technical Debt. Techni-
cal Debt is the cost that is incurred when expedient solutions
are implemented. These solutions might seem practical at
the time but hidden beneath is a liability that has to be
taken care of. Initially, it might seem like a minor issue that
can be dealt with at a later date, however, this negligence
leads to the accumulation of debt. It affects the quality, sta-
bility and functionality of the system. It can be present at
numerous levels such as in the code, data structure, or data
itself. With time, there is a need to take care of such issues.
This can be done in numerous ways which may involve refac-
toring, discarding the software, rewriting the code, or using
a different stack, tools and technologies. There is no single
defined way of dealing with the issue. Moreover, the process
itself is referred to with different terms such as migration,
modernization, evolution, re-structuring, or re-engineering
etc. These terms may vary slightly in their definition pro-
vided by various literature, but all of them have common
goals [5][10].

Modernization is the process of updating or upgrading a
software system that cannot keep up with today’s standards
in terms of performance, goals, or tech stack. This mainly
involves systems known as legacy systems that have been
developed in the past and have accumulated Technical Debt
over time. Not only such systems have deteriorated in qual-
ity and performance, but they do not meet the enterprise
goals anymore as they lack the features to keep up with
today’s competition [6][19][12].

Enterprise Architecture Debt refers to the accumulated
challenges, inefficiencies, and shortcomings within the over-
all Enterprise Architecture of an organization, resulting from
deferred decisions, outdated technologies, and sub-optimal
design choices. It not only involves the technical aspect of
the software system but also highlights the big picture in
terms of hindrances to the architecture, enterprise, business
goals and ideals [4][10].

Now the question arises ”Given a relation between Mod-
ernization and EA Debt, is the relation to Technical Debt
different?”. This research mainly aims to answer this ques-
tion. The goal is to identify similarities and differences
between Modernization and Enterprise Architecture Debt.
Furthermore, the research is aimed to determine the impact
of Modernization on Enterprise Architecture and its relation
with EA Debt.

2. RELATED WORK

2.1 Modernization
System evolution covers a range of development activities

from adding additional fields in a database to completely re-
implementing a system. These activities can be divided into
three categories: maintenance, modernization, and replace-
ment [20]. Regarding software evolution, Lehman’s first law
[14] states that software has to be adopted otherwise it would
not give satisfactory results. In these cases, Modernization
helps to keep things up-to-date and in use. Modernization
involves more extensive changes than maintaining the soft-
ware itself. It includes restructuring the system, enhancing
functionality, or modifying software.

According to [12, 15], there are three main reasons for
modernizing the systems:

• Addressing deterioration: To counteract the deteriora-
tion of the internal structures of the system and pro-
vide a large number of entry points for integration with
other systems.

• Challenges in legacy systems: Legacy systems pose dif-
ficulties in compatibility, security, enhancement, and
complexity, making their maintenance challenging.

• Supplier dependence: Dependence on the supplier be-
comes a challenge when technologies become obsolete,
making it difficult to hire qualified labour.

Overall, Modernization is used when a legacy system re-
quires more pervasive changes than those possible during
maintenance, but it still has business value that must be
preserved. It is crucial to meet the current business needs of
the organization.[19] Most of the previous works on Modern-
ization have addressed the need for Modernization and how
to perform it. However, there is a significant gap in studies
investigating the relationship between Modernization and
Enterprise Architecture.

2.2 Technical Debt
The term Technical Debt has various interpretations. How-

ever, the most common version is the one given by Cunning-
ham.

Cunningham defined Technical Debt as follows [3]:

“Technical Debt includes those internal things
that you choose not to do now, but which will
impede future development if left undone. This
includes deferred refactoring.”

The definition of Technical Debt was further extended by
Seaman et al. [9] to show other kinds of debts in software
development, such as test debt, people debt, architectural
debt, requirement debt, documentation debt, etc.

According to [5], Technical Debt is used as a uniform com-
munication tool that allows us to measure and keep track of
debt, which eventually should help find a suitable solution
to upcoming challenges. In this case, it should also reflect
different viewpoints, including the stakeholder’s perspective,
to allow effective collaboration.

Technical Debt has shown its benefits in estimating deficits
of software construction and providing a tool for decision-
making [9]. However, the metrics used for Technical Debt

must be generalized to be applicable and helpful for the en-
tire enterprise and every scenario. This encompasses the
different layers of Enterprise Architecture (EA), including
business and IT with its systems and strategies in particular.
Therefore, it becomes possible to estimate the consequences
of EA implementation failures using a new term, EA Debts
[10].

2.3 Enterprise Architecture
There are many divergences between Enterprise Architec-

ture (EA) definitions, and the nature of some of them is
significant [18]. The term “enterprise” in EA is interpreted
by some as synonymous with“enterprise systems,”while oth-
ers perceive it as comparable to“business”or “organization.”
The understanding of the term “architecture” has even less
uniformity. The prevailing interpretation of the term “ar-
chitecture” in EA is a collection of artifacts (models, de-
scriptions, etc.) that establish the guidelines of how the
enterprise should function or provide an as-is model of the
enterprise [13].

These divergences in Enterprise Architecture definitions
have several consequences, like the confusion in the role of an
enterprise architect and the lack of common understanding
of EA. However, EA helps to face “ongoing and disruptive
change”by attempting to align IT and business strategy [18].

Overall, it can be concluded that there are different def-
initions of EA in various literature, but it is more often
described for the enterprise orientation. Hence, there is a
common understanding of EA and a basis for communica-
tion and discussion.

2.4 EA Layers
According to Simon Hacks et al., [10], since there are mul-

tiple definitions of Enterprise Architecture (EA), EA should
be regarded as a set of artifacts that are aggregated. The
artifacts themselves and their importance for a specific en-
terprise may differ, so the focus should be on the aspects
in particular, which are general enough to be applied to the
majority of EAs.

This is done by mapping the TOGAF Standard version
9.2 [17] with the different layers of Enterprise Architecture
suggested by Winter and Fischer [21]

Following are the EA layers which are general enough to
be applied to most organizations:

• Business Layer

• Data Layer

• Application Layer

• Technical Layer

Considering EA as a set of artifacts, it can contain more
or fewer than the mentioned artifacts, but it is easy to add
and remove artifacts later [10].

2.5 EA Debts
The term “EA Debt” came about by taking into account

the combination of “Enterprise Architecture” and the “Tech-
nical Debt”. Winter et al.[21] pointed out that “Most of
the artifacts in EA can be represented as aggregation hi-
erarchies.” Combining this with the definition of “Technical
Debt” given by Cunningham [3], it can be concluded that

EA Debt is obtained by taking the aggregation of debt ob-
tained from each layer of an enterprise. However, Simon
et al. [10] argued that adding up each artifact would not
give a concrete overview of the current situation, and one
must weigh every part of every artifact to estimate the EA
Debt. Also, there is no uniform weighting function because
it depends on the concrete EA, the organization, and the
dependencies between the artifacts.

Therefore, the following is the definition of EA Debt given
by Simon et al. [10]:

“Enterprise Architecture Debt is a metric that
depicts the deviation of the currently present state
of an enterprise from a hypothetical ideal state.”

Technical Debt can be related to EA Debt as a sub-domain
of it. However, there are also issues related to EA Debts on
software and technology aspects that are still not covered by
Technical Debt [12]. Overall, based on the above discussion
it can be implied that when the artifact or an element of the
artifact is not implemented properly for the optimal ideal
situation then EA Debt arises [10].

3. METHODOLOGY

3.1 Scientific Literature Review
To answer the desired research questions, a scientific lit-

erature review method is chosen for this purpose. The focus
was mainly on the following terminologies: Modernization,
Enterprise Architecture Debt, and Technical Debt. The fol-
lowing keywords were used in several different combinations
to search for papers:

• “Modernization”OR“Enterprise Architecture”OR“Tech-
nical Debt”

• “Modernization”AND“Enterprise Architecture”AND
“Technical Debt”

• “Modernization” AND “Enterprise Architecture”

• “Modernization” AND “Enterprise Architecture”

• “Modernization” AND “Enterprise Architecture”

• “Enterprise Architecture Debt” AND “Technical Deb”

It is worth noting that both the AND and OR operators
were employed for specific reasons. The AND operator was
chosen due to its tendency to produce fewer results, focus-
ing strictly on the relationship between the specified terms.
However, the inclusion of the OR operator was deemed nec-
essary as it facilitates the analysis of each term individually.

DB# DB Name No. of Papers

1 IEEE Explore 4270
2 Scopus 5425
3 Dblp 927
4 ACM (Digital Library) 897
5 IET (Digital Library) 765
6 Science Direct 694

Table 1: List of databases and their corresponding number of
papers

Modernization, Technical Debt, and Enterprise Architec-
ture Debt. With current search criteria, the following results
were gathered as shown in Table 1.

Since the results are too big, different filtration techniques
must be applied.

3.1.1 Filtration Techniques
To filter out the results, it is important to objectively

analyze all search results based on the following criteria:

1. Relevance to the research

2. Language of the paper

3. Relevant publication topics

4. Subject type

5. Document type

6. Redundant or duplicate results

7. Manual Filtration

The above-mentioned criteria were applied by per- form-
ing the following steps in sequential order:

1. Relevance to the research: Throughout the research,
the goal was to ensure that the papers were relevant to
the research question. This involved choosing the right
search terms and making use of other techniques which
are mentioned below and prioritizing the relevance of
the filtered papers

2. Database Filtration: the following criterion were part
of database filtration by making use of provided filtra-
tion techniques:

(a) Language of the paper: For the sake of simplic-
ity, papers only written in English language were
selected.

(b) Subject type: This criteria is relatively self-explanatory.
The primary interest was mainly in the field of
Computer Science. Interestingly enough, several
other subject types made use of the term: tech-
nical debt. On the other hand, modernization is
a versatile term that can be used in several ways
in different contexts. Therefore, it was very im-
portant to make sure that these papers revolved
around Computer Science.

(c) Relevant publication topics: Some databases had
the functionality to filter the results based on pub-
lication topics. These databases were IEEE Ex-
plore and Scopus. The topics chosen for filtra-
tion were software maintenance, software quality,
project management, software architecture, soft-
ware development management, systematic liter-
ature review, refactoring, and software engineer-
ing.

(d) Document type: The focus was mainly on Con-
ference papers, articles and journals. The reason
behind this criterion is that aforementioned doc-
ument types are published more frequently un-
like books. Therefore, they provide more up-to-
date information compared to books. Further-
more, these documents are specialized and have a
deeper focus on specific research questions.

3. Redundant or duplicate results: As the search was car-
ried out on multiple databases using the same filtration
techniques, it is not unlikely search results end up with
a redundant set of papers from different databases.
Therefore, it had to be ensured that all the documents
from every database were unique and that no such doc-
uments were repeated.

4. Manual Filtration: This process required going through
the search results manually to identify which papers
were more suited for the research. The goal was to find
documents that provided condensed information and
covered a wide range of terms relevant to the research.
Also, it was ensured that the terms are used in some
context which is related to the research questions of
our paper.

This was done using the following evaluation tech-
niques:

(a) Review the title: For each paper, the title was
reviewed to get a rough idea of the context.

(b) Review the abstract of the paper: For each pa-
per, the abstract was reviewed to understand the
relevance of the paper to the research objective.

(c) Searching the relevant keywords in the paper: For
each paper, relevant keywords were searched to
understand the context of their usage throughout
the paper.

(d) Review the conclusion: For each paper, the con-
clusion was reviewed, and a decision was made
whether to include/reject the paper.

(e) Bias reduction: To reduce bias, the databases were
pruned individually. In case of difference of opin-
ions, it was thoroughly discussed within the au-
thors why a specific document was included or
excluded from the list.

After going through an extensive scientific literature re-
view, the following numbers of papers were shortlisted from
each database, as shown in the Table 2.

DB# DB Name No. of Papers

1 IEEE Explore 7
2 Scopus 2
3 Dblp 3
4 ACM (Digital Library) 5
5 IET (Digital Library) 3
6 Science Direct 1

Table 2: Filtered list of papers

Figure 1 presents a comprehensive depiction of the search
and filtration procedures. Initially, the search yielded ap-
proximately 13,000 results. However, following the prescribed
steps, the final count was refined to 2413 papers. Despite
this, the applied filtration steps did not ensure 100% rele-
vant papers. Subsequently, manual filtration became imper-
ative to procure research materials that could meet quali-
tative standards within the specified content constraints of
the seminar. After a meticulous evaluation of various fac-
tors outlined in the fourth step, namely manual filtration,
the final number was further reduced to 21 results.

Figure 1: Overview of Search Results Filtering

4. MODERNIZATION AND ENTERPRISE
Large enterprises, grown over decades have difficulties in

ensuring business innovation and cost-efficiency at the same
time. They often have outdated and difficult-to-maintain
complex systems with overlapping functionality. Therefore,
these enterprises initiate strategic Modernization programs
to modernize essential parts of their enterprise. Such pro-
grams aim to replace outdated, complex systems or software
with loosely coupled services, re-used for business processes
across all relevant regions of the world [8].

Table 1 shows the impact of Modernization programs on
an enterprise. We can conclude from the figure that the
Modernization of an enterprise provides the following bene-
fits:

• Cost-reduction

• Business process optimization

• Business agility and faster time-to-market

In this study, the impact of Modernization programs on
an enterprise is used to assess the impact of Modernization
on the individual layers of an enterprise.

AS-IS TARGET
Slow reaction to business
needs

high business agility

”IT Silos”with redundancies Reduced-redundancies
through common platforms

End-of-life legacy applica-
tion (20+ years)

Moving away from legacy
applications

High Development, Testing
and Deployment costs

Cost Efficient Development
and operations

Table 3: Impact of modernization programs on an enterprise

4.1 Impact of Modernization on the Business
Layer of an Enterprise

The business layer of an enterprise includes the business
processes and functions of an enterprise. These processes
and functions are responsible for ensuring that the enter-
prise provides the desired business outcome [7]. According
to [19], Modernization involves more extensive changes than
maintaining the software like re-structuring and modifying
the system. Whenever any system or software is restruc-
tured or there are changes in the functions that are used to
develop the software, there would be changes in the business
processes that are used by the enterprise. Therefore, it can
be inferred that Modernization could reshape the business
processes and functions of an enterprise which consequently
makes the business architecture more agile and flexible. The
use of legacy systems by an enterprise provides epochal busi-
ness value, which is not suitable when the business needs and
requirements are expected to be agile. Apart from decreas-
ing the efficiency of the business, legacy systems also hold
back the enterprise from creating the best possible business
architecture.

Suman et. al [11] point out that during Modernization,
the existing application is recreated with further enhance-
ments and heightened technical capabilities in the cloud,
which in turn simplifies the business’s streamlined processes.
This helps the enterprise to deliver more consistent perfor-
mance and improved functionalities. Therefore, if Modern-
ization tasks are performed appropriately then the system
would provide more consistent and improved business out-
comes.

Overall, we can conclude that Modernization improves the
agility and flexibility of the enterprise’s business layer. Also,
if the Modernization tasks are performed appropriately by
the enterprise or the organization, then it can also improve
the business outcome.

4.2 Impact of Modernization on the Data Layer
of an Enterprise

The data layer of an enterprise is responsible for providing
secure information exchange and sharing between stakehold-
ers and access to all information to anyone who is authorized
to see it [7]. Now, in the modern day, as data is becoming
more central to businesses, it is clear that outdated data ar-
chitectures can no longer keep up with the demands of the
modern enterprise. Kandukuri et. al [12] point out that en-
terprises turn to Modernization when their data infrastruc-

ture becomes too inflexible for today’s business demands.
Modernization involves various tasks to overcome the data
exchange problems of legacy systems and improve data qual-
ity. This involves updating an organization’s data manage-
ment infrastructure, tools, and processes to keep pace with
evolving technologies and best practices. These strategies
help enterprises improve legacy data quality while applying
a first-principles approach to manage data moving forward.

Higher data quality through Modernization activities would
eventually improve decision-making throughout the enter-
prise by delivering more timely and accurate insights to ev-
eryone in the organization. Also, Modernization offers near-
term cost savings in the data architecture of an enterprise.
For instance, companies can significantly reduce data costs
by migrating data to cloud platforms and reducing the re-
liance on data warehouses.

Overall, it can be inferred that Modernizing an enterprise
can significantly improve the data exchange mechanism of
the enterprise and also keep the data architecture up to date
with the latest standards.

4.3 Impact of Modernization on the Applica-
tion Layer of an Enterprise

The application layer of an enterprise focuses on provid-
ing services-oriented solutions for the application software
that meet the business needs. These solutions are chosen
and implemented based on the optimal combination of com-
plexity, business value and costs. The application layer of
an enterprise generally includes all the IT components that
the stakeholders directly interact with in the automation of
the business process [7].

Legacy systems may have a cumbersome user interface
which is mainly because the solutions provided by these sys-
tems rely on outdated technologies that have poor scalabil-
ity and limited adaptability. Moreover, they provide ineffi-
cient performance that hinders productivity[19]. Therefore,
legacy systems are a major blocker to the goal of optimal
user experience for an enterprise.

The Modernization of the application layer of an enter-
prise is motivated by the need to change or redesign the
application to improve the user experience. The activities
to modernize the application involve improving or replac-
ing legacy applications with more efficient and scalable so-
lutions. For instance, efficient solutions using modern de-
velopment frameworks or micro-services as an architectural
approach for developing software applications as a collec-
tion of small, independent services that communicate with
each other over a network instead of building a monolithic
application where all the functionality is tightly integrated
into a single code base [12]. These efficient solutions are of-
ten approached as part of a broader digital transformation
initiative. These initiatives are a process of using digital
technologies to create new business processes and customer
experiences (or modify existing ones) to meet changing busi-
ness and market requirements. It often involves the integra-
tion of digital technologies and customer-centric approaches
to improve business operations and competitiveness [15].

Hence, it can be inferred that Modernization improves the
application layer by providing more efficient and scalable
solutions which aim to improve the overall user experience.

4.4 Impact of Modernization on the Technol-
ogy or (Technical) layer of an Enterprise

The technology layer (also known as the technical layer or
infrastructure layer [21]) is responsible for the definition and
design of the current and future technology infrastructure of
the described enterprise, including hardware, software and
application platform [7]. The technology layer also supports
the application layer of the enterprise to ensure that the
system satisfies a specified set of requirements.

Legacy systems tend to struggle to adopt and adapt to
emerging technologies. This is mainly because legacy sys-
tems rely on outdated technologies that are built using older
tools and systems which are incompatible with modern stan-
dards and best practices [12]. Therefore, legacy systems may
not easily adapt to changing business requirements, making
them ill-suited for modern, dynamic organizations.

In such cases, Modernization activities allow enterprises to
move away from legacy systems and utilize emerging tech-
nologies. The use of emerging technologies improves the
productivity of the enterprise developing the software and
ensures compatibility with modern standards and best prac-
tices. For instance, the use of technologies like Docker Con-
tainers and Kubernetes delivers speed, simplicity and self-
service for the developers of the enterprise. The adoption of
such technologies by an enterprise also motivates its employ-
ees to learn new skills and work towards their development
which in turn leads to the growth of the enterprise [19].

Overall, it can be inferred that Modernization improves
the technology layer by adopting new emerging technologies
to improve the productivity of the enterprise developing the
software and supporting the application layer of the enter-
prise to ensure that the system satisfies a specified set of
requirements.

5. EA DEBT FACTORS AND MODERNIZA-
TION IMPLICATIONS

One of the biggest goals in the software development pro-
cess for an enterprise is to ensure that the organization works
to achieve its business goals. One such obstacle is the effect
of development liabilities’ build-up that might seem initially
insignificant. However, the continuous growth of such incur-
ring debt eventually proves to be one of the most significant
hurdles for an enterprise. This term is known as Enterprise
Architecture Debt.

Furthermore, EA Debts affect enterprises in numerous
ways that require major reforms to address this issue. Mod-
ernization serves as a solution to this problem. However,
it must be ensured correct measures are taken, otherwise,
it could have adverse effects. The factors mentioned below
show that the relationship between Modernization and EA
Debt is intertwined.

5.1 Business Factors

5.1.1 Uncertainty of use cases in the beginning
At the beginning of software development, there is no

proper infrastructure for development and the business idea
is yet to be nourished. This period is most vulnerable to
quick changes which lead to rapid development, albeit, un-
organized. This contributes to the build-up of Enterprise
Architecture Debt [16][19].

This uncertainty needs strategic Modernization techniques.
There are numerous ways that such reforms can be done.
However, each strategy depends on the given circumstances.

It is likely that once the business is matured, it could be re-
vamped to better cater for the needs of current use cases.

5.1.2 Business Evolution
There are numerous scenarios where business evolves into

something completely new. It could be a merger situation
or a major client’s feature request that would require accel-
erated development into a new direction. This sudden shift
is unanticipated and unstructured. This affects the integrity
of the system where the focus is to provide the new feature
conforming to new business goals instead of the stability of
the overall system [16][19].

In such cases, it is very important to make the system
adaptable to the enterprise changes. The build-up of EA
Debt could be significant if it is not handled timely. Of-
tentimes, it has been seen that every new product launch
is followed by re-factoring at the code and data layer level.
This helps in making the system stable and flexible for fu-
ture changes.

5.1.3 Time Pressure
There is a very fine line between high time pressure for

improved efficiency and reduced quality. One has to balance
the applied pressure to ensure high-quality development at
all times with more efficient methods. However, under nu-
merous circumstances, it has been seen that product man-
agers have to give strict deadlines to meet the goals.

Rushed development comes at the cost of allocating addi-
tional time for refactoring. It is important to realize that un-
realistic deadlines do not improve development’s pace. Mod-
ernization also involves changing development practices that
ensure the stability and quality of the software. Therefore,
it can be concluded that such reforms can also be applied at
the organizational level.

5.1.4 Priority of features over the product
To attract more customers, it has been a common tactic

to incorporate as many features into the product as possible.
This clearly emphasizes quantity over quality. However, in
the long run, the lack of quality leads to incurring EA Debt
which would require major reforms.

Modernization efforts should realign the enterprise’s pri-
orities. Emphasizing product stability as a key priority is
essential for long-term sustainability. Modernization strate-
gies should include a reassessment of feature development
practices, ensuring that each addition aligns with a stable
and well-architected foundation.

5.2 Design & Architecture Documentation
Every software development cycle involves defining soft-

ware specifications and requirements. The lack of proper
or inarticulate documentation leads to misinterpretation by
developers. In most cases, such mistakes are discovered later
on and the cost of rectifying such mistakes is much higher
than early stages.

As Modernization covers the entire enterprise, it also in-
cludes assigning correct methodologies for effective docu-
mentation. It should emphasize the importance of com-
prehensive documentation from the beginning. Otherwise,
this would become a liability at a later stage. Further-
more, such Modernization initiatives prevent misinterpre-
tations that could lead to potential EA Debt.

5.3 Re-use of legacy systems
Using a legacy system may seem to be a good solution

for a quick fix. However, in the long term, it could be seen
that such systems differ in architecture and deviate from
the programming standards of the in-house system based
on modern frameworks. It becomes complex to keep such
micro-services to be compatible [16][20].

This corresponds with an important term known as ”Wrap-
ping” which is a widely used Modernization strategy which
involves using a legacy system under the disguise of a wrap-
per. It is often referred to as black-box Modernization which
requires zero to very little knowledge of the legacy system.

5.4 Parallel Development
Multiple development teams working in parallel on the

same feature leads to contradictory implementation meth-
ods, inefficient synchronization techniques, and varied ap-
proaches. This branches into two different directions where
making amendments is costly and time-consuming.

Such scenarios can be reduced with proper planning. It
would require changing current development practices. How-
ever, it is not the only solution. Such issues could be re-
solved with proper refactoring but it could be more time-
consuming. Each solution has its advantages and disadvan-
tages and it depends a lot on given circumstances to choose
the right solution.

5.5 In-complete Refactoring
It has been a common practice where feature requests are

prioritized over current refactoring tasks. The refactoring
tasks were created in the first place to reduce the build-up
of incurring Enterprise Architecture Debt but leaving such
task halfway through leads to further build-up of EA Debt
[16][1].

Refactoring constitutes a crucial component of Modern-
ization strategies. Incomplete refactoring not only fails to
address existing Technical Debt but also contributes to its
further accumulation, ultimately leading to more Enterprise
Architecture Debt.

5.6 Technology Evolution
With ever-changing technological changes where there is

innovation in every aspect of technology, it is hard to build
a stable product. It is necessary to adapt to technology
evolution otherwise the product likely feels less modern to
current standards. Most enterprises fear being left behind
by their competitors, this fear leads to abrupt and rushed
development strategies to accommodate technological evo-
lution which leads to incurring EA Debt [2][20].

Modernization plays an important role in mitigating the
impact of technology evolution on Enterprise Architecture
Debt. Adopting an iterative and proactive approach to de-
velopment strategies to keep up with technological evolution
is one step toward Modernization.

5.7 Human Factor
Last, but not least, software engineering is susceptible to

mistakes due to inexperience, ignorance, or lack of expertise
in the relevant field. This leads to an unstable product.

To address such problems, periodic re-factoring is one such
solution that can mitigate the problem. However, if the
problem remains unaddressed, it would require re-engineering
the whole product. In the end, it depends on the magnitude

of the problem and ensuring suitable Modernization mea-
sures are taken place.

6. CONCLUSION
The comprehensive examination of the scientific literature

involved the evaluation of around 21 papers, aiding in the
identification of gaps in the field of EA Debt and Modern-
ization. Through the analysis of these papers, connections
were established to address the two research questions.

Firstly, Modernization impacts every layer of an enter-
prise in some or the other way. The extent of the impact on
a specific layer of an enterprise depends mainly on the Mod-
ernization method that is being implemented. For instance,
Modernization activities like re-structuring or modifications
in the functions used to develop a system affect the business
layer. Similarly, upgrading the organization’s data architec-
ture affects the data layer, replacing legacy systems with
more efficient solutions affects the application layer and the
use of emerging technologies affects the Technical layer of
an enterprise.

Finally, EA Debt and Modernization are very deeply re-
lated. They are intertwined in the process of software devel-
opment. It could be stated that in some cases, they act as
the cause and effect of one another. For Example - Modern-
ization strategies include refactoring that helps to minimize
the EA Debt. Similarly, Modernization also plays a key role
in reducing the impact of technology evolution on EA Debts.

Overall, Modernization impacts every layer of an enter-
prise and can minimize the Enterprise Architecture Debt.

7. FUTURE PROSPECTS
Moving forward, there are several potential directions for

future research:

7.1 Developing Metrics for EA Debt
It can be deduced from the given research that there is a

need for a uniform weighting function to estimate EA Debt.
Future research could focus on developing such metrics that
can be generalized to be applicable and helpful for the entire
enterprise and every scenario.

7.2 Exploring the Role of Human Factors
The paper has pointed out that software engineering is

susceptible to mistakes due to inexperience, ignorance, or
lack of expertise. Future research could explore this issue in
more depth, investigating how these human factors can be
mitigated to produce a more stable product.

7.3 Investigating the Impact of Modernization
on Business Outcomes

As it has been discussed if Modernization tasks are per-
formed appropriately, the system would provide more con-
sistent and improved business outcomes. Future research
could investigate this claim further, exploring how different
modernization strategies impact business outcomes.

8. REFERENCES

[1] T. Besker, A. Martini, and J. Bosch. Managing
architectural technical debt: A unified model and
systematic literature review. Journal of Systems and
Software, 135:1–16, 2018.

[2] H. Cervantes and R. Kazman. Software archinaut: a
tool to understand architecture, identify technical
debt hotspots and manage evolution. In Proceedings of
the 3rd International Conference on Technical Debt,
pages 115–119, 2020.

[3] W. Cunningham. The wycash portfolio management
system. ACM Sigplan Oops Messenger, 4(2):29–30,
1992.

[4] S. Daoudi, M. Larsson, S. Hacks, and J. Jung.
Discovering and assessing enterprise architecture
debts. Complex Systems Informatics and Modeling
Quarterly, (35):1–29, 2023.

[5] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and
I. Gorton. Measure it? manage it? ignore it? software
practitioners and technical debt. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software
Engineering, pages 50–60, 2015.

[6] T. C. Fanelli, S. C. Simons, and S. Banerjee. A
systematic framework for modernizing legacy
application systems. In 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and
Reengineering (SANER), volume 1, pages 678–682.
IEEE, 2016.

[7] B. Firmansyah and A. A. Arman. A systematic
literature review of regtech: Technologies,
characteristics, and architectures. In 2022
International Conference on Information Technology
Systems and Innovation (ICITSI), pages 310–315.
IEEE, 2022.

[8] F. J. Frey, C. Hentrich, and U. Zdun. Capability-based
service identification in service-oriented legacy
modernization. In Proceedings of the 18th European
Conference on Pattern Languages of Program, pages
1–12, 2013.

[9] Y. Guo. Measuring and monitoring technical debt.
University of Maryland, Baltimore County, 2016.

[10] S. Hacks, H. Höfert, J. Salentin, Y. C. Yeong, and
H. Lichter. Towards the definition of enterprise
architecture debts. In 2019 IEEE 23rd International
Enterprise Distributed Object Computing Workshop
(EDOCW), pages 9–16. IEEE, 2019.

[11] S. Jain and I. Chana. Modernization of legacy
systems: A generalised roadmap. In Proceedings of the
Sixth International Conference on Computer and
Communication Technology 2015, pages 62–67, 2015.

[12] P. Kandukuri. Software modernization through model
transformations. In First International Conference on
Artificial Intelligence and Cognitive Computing: AICC
2018, pages 165–174. Springer, 2019.

[13] L. Kappelman, T. McGinnis, A. Pettite, and
A. Sidorova. Enterprise architecture: Charting the
territory for academic research. 2008.

[14] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E.
Perry, and W. M. Turski. Metrics and laws of software
evolution-the nineties view. In Proceedings Fourth

International Software Metrics Symposium, pages
20–32. IEEE, 1997.

[15] P. L. Leon and F. E. A. Horita. On the modernization
of systems for supporting digital transformation: A
research agenda. In XVII Brazilian Symposium on
Information Systems, pages 1–8, 2021.

[16] A. Martini, J. Bosch, and M. Chaudron. Investigating
architectural technical debt accumulation and
refactoring over time: A multiple-case study.
Information and Software Technology, 67:237–253,
2015.

[17] G. F. Nama, D. Kurniawan, et al. An enterprise
architecture planning for higher education using the
open group architecture framework (togaf): Case
study university of lampung. In 2017 Second
International Conference on Informatics and
Computing (ICIC), pages 1–6. IEEE, 2017.

[18] P. Saint-Louis, M. C. Morency, and J. Lapalme.
Defining enterprise architecture: A systematic
literature review. In 2017 IEEE 21st international
enterprise distributed object computing workshop
(EDOCW), pages 41–49. IEEE, 2017.

[19] R. C. Seacord, D. Plakosh, and G. A. Lewis.
Modernizing legacy systems: software technologies,
engineering processes, and business practices.
Addison-Wesley Professional, 2003.

[20] N. H. Weiderman, J. K. Bergey, D. B. Smith, and
S. R. Tilley. Approaches to legacy system evolution.
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa, 1997.

[21] R. Winter and R. Fischer. Essential layers, artifacts,
and dependencies of enterprise architecture. In 2006
10th IEEE International Enterprise Distributed Object
Computing Conference Workshops (EDOCW’06),
pages 30–30. IEEE, 2006.

Overview and Comparison of Current Automated Threat
Modeling Approaches

Erik Wrede
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

erik.wrede@rwth-aachen.de

Szymon Habrainski
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

szymon.habrainski@rwth-aachen.de

ABSTRACT
The advancement of threat modeling through automation
presents a transformative opportunity for enhancing soft-
ware security. Current literature extensively explores vari-
ous threat modeling processes and their applications across
diverse environments. However, a focused review of au-
tomating threat modeling—a crucial step for improving cost-
effectiveness and accessibility—has not been conducted yet.
This paper presents a literature review of cutting-edge ap-
proaches to threat modeling automation. We categorize au-
tomation techniques into three distinct areas: the creation
of dynamic threat catalogs, ontology-based threat model-
ing strategies and the use of configuration assets for auto-
mated threat identification. Our discussion evaluates these
methods based on their readiness for industry use, weighing
the necessary effort against their potential for broad appli-
cation across different software development projects. The
automation provided by the approaches was found to be
highly beneficial for adopting threat modeling. However,
we recognize that further research is necessary to integrate
these approaches into effective industry processes. We sug-
gest combining multiple methods to create a fully automated
threat modeling process, underscoring its importance in ad-
vancing software security.

Categories and Subject Descriptors
[Security and privacy]: Software security engineering

Keywords
Threat Modeling, automation, artificial intelligence

1. INTRODUCTION
The increasing digitization of the modern world implies

unique security risks to the software infrastructure power-
ing it. Software security threat modeling is a framework
aimed at systematically identifying potential threats and se-
curity risks to an application during the planning and de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSSE Seminar 2022/23 RWTH Aachen University, Germany.

velopment phase of the software development lifecycle [8,
22]. Threat modeling (TM) is typically applied in a three-
step process, encompassing the modeling of the system ar-
chitecture, threat identification and prioritization, and the
formulation of mitigation techniques [7]. Process execution
is commonly supported by frameworks such as STRIDE [19]
or MITRE ATT&CK [17].

While threat modeling is becoming a common tool in
software development projects [26], its practical adoption
in the industry still faces significant challenges. Yskout et
al. describe the common practice as relying on “ad-hoc”
and pragmatic “whiteboard hacking”, dependent on the par-
ticipants of the meeting instead of a formalized, scientif-
ically founded process [27]. The application of a formal-
ized Threat Modeling Process (TMP) has been identified as
costly, time-consuming, and heavily reliant on expert knowl-
edge [22, 21]. Additionally, artifacts of the process, such
as diagrams or threat catalogs, are often incomplete or un-
clear, rendering threat modeling incapable of providing an
overview of all system threats [26, 10]. Particularly, the cost
and time factors represent significant hindrances to adopt-
ing threat modeling. With the rise of agile software de-
velopment techniques, these challenges are exacerbated due
to the fast-paced, iterative nature of agile software develop-
ment lifecycles (SDLCs). This results in additional overhead
in re-modeling the system for the next threat modeling it-
eration, leading to repetitive meetings [22].

The automation of the identification and modeling phases
of the TMP may help address these challenges by reducing
the need for security expert involvement and increasing the
efficiency and productivity of the process [11]. Automated
Threat Modeling (ATM) can facilitate faster remodeling of
infrastructure changes and reduce human error during the
process [8].

Given the absence of a dedicated literature review specifi-
cally focusing on automation in threat modeling, this paper
performs an unstructured literature review of existing ap-
proaches for ATM, compares them, and discusses their suit-
ability for industry use while also outlining potential future
work in this area. Our review is centered around the follow-
ing two research questions aimed at accurately capturing the
forefront of advancements in ATM:

• RQ1: What is the current state of research in ATM?

• RQ2: How do current methods differ regarding their
applicability in industry and threat reporting accu-
racy?

The remainder of the paper is organized as follows: In
Section 2, we will cover related literature on threat mod-
eling, thereby establishing a foundational baseline for our
research. Section 3 details our research methodology, in-
cluding the specific search query terms used for gathering
relevant literature. The findings from our literature review
are presented in Section 4. Subsequently, Section 5 offers a
comprehensive discussion to compare and evaluate the var-
ious automation approaches that have been presented. The
paper concludes with Section 6, providing insights and per-
spectives on potential future research directions in the field
of ATM.

2. RELATED WORK
Recent research in the field of threat modeling has been

extensively explored through several review papers but is not
focused on ATM. Xiong et al. (2019) offer a comprehensive
overview of TM approaches, categorizing them into manual,
automatic, formal, and graphical methods. Their systematic
literature review, published in 2018, notes a predominance of
manual approaches in the field [26]. While they acknowledge
the emergence of automated methods, these mainly depend
on manual processes, such as system-specific customization
or manual creation of models like attack trees.

Theurich et al. discuss the challenges and practices of
TM in agile environments based on a structured literature
review, mentioning ATM as a promising method to reduce
the high cost associated with traditional TM practices [22].

Similarly, a review focused on TM in cloud environments
by Kharma and Thaweel (2023) highlights automation as a
crucial element in simplifying and enhancing the productiv-
ity of the TMP [12].

3. METHODOLOGY
To examine the current state of ATM, we conducted a lit-

erature review covering the ACM Digital Library, the Web
Of Science, Springer Link, IEEE Xplore and Google Scholar.
The research was initiated using broad search terms, in-
cluding threat modeling and automation, before refining the
query to exclude results unrelated to threat modeling in the
SDLC. Our query was formulated as follows:

BQ := ("threat modeling" OR "threat modelling")

AND ("automation" OR "automatic")

AND "software"

The query was adjusted to the particular syntax require-
ments of the search engines. Accessible results were then
evaluated against a set of inclusion and exclusion criteria:
The selected studies were required to be grounded in recog-
nized threat modeling techniques, ensuring methodological
soundness. We focused on works that addressed threat mod-
eling in the design and development phase of the SDLC, as
opposed to those centered on threat intelligence of oper-
ational systems, only mentioning partial aspects of threat
modeling. Additionally, papers limited to a specific threat
domain such as privacy threats were excluded to focus on
automation of the general TMP.

After a paper was determined to fit these criteria, snow-
balling was performed on references and citations to iden-
tify additional relevant literature. Snowballing results were
again evaluated against the inclusion and exclusion crite-
ria. To capture the most recent advancements and current

trends, only studies published from 2018 onwards were in-
cluded. This cutoff was implied by the extensive review
by Xiong et al., which provides a thorough examination of
earlier literature in the field of threat modeling, including
automation [26].

4. APPROACHES FOR ATM
Our investigation identified three categories of ATM ap-

proaches: machine-learning-supported, ontology-based, and
configuration-based. These approaches all follow a com-
mon process to automate threat modeling. As illustrated
in Figure 1, the process is structured into two phases. The
initial phase involves the creation of universal artifacts ap-
plicable across multiple threat modeling iterations in var-
ious software development projects. This phase comprises
two key steps: firstly, the establishment of an architecture
metamodel, and secondly, the development of a threat cata-
log. The architecture metamodel specifies the concepts and
components essential for system modeling within the chosen
ATM approach. Concurrently, the threat catalog, typically
tailored to the architecture metamodel’s specifications, ei-
ther enumerates security threats or outlines security rules
to mitigate such threats. Most of the approaches we ex-
amined are equipped with a predefined metamodel and a
comprehensive threat catalog.

Subsequently, the second process phase is often tailored
to individual software development projects. It begins with
the system’s architectural modeling, which may include cus-
tom extensions to the metamodel to accommodate complex
architectures. This phase also allows for the incorporation
of domain-specific threats into the threat catalog. The final
step involves identifying threats within the system, culmi-
nating in a compiled list of identified threats.

The structure of the process loosely resembles the three-
step TMP specified by OWASP, containing the application
architecture and threat identification phases [9]. Notably,
none of the presented approaches focuses on mitigation tech-
niques for identified threats. However, this was to be ex-
pected as the specification of mitigation techniques as de-
fined by OWASP or Shostack is a task very specific to the
currently modeled system [9, 20].

The following sections will detail how each of the ATM
approaches implements this process, depicting the current
state of research in ATM and thus answering RQ1.

4.1 Machine-Learning-Supported Generation
of Threat Catalogs

Schaad and Binder [18] propose a method to automatically
derive STRIDE-based threat catalogs from weakness and
vulnerability databases leveraging machine learning (ML)
methods. Implemented within the OVVL Threat Modeling
Tool, this approach primarily contributes to the creation of
universal artifacts, specifically the threat catalog, which is a
key element in the first phase of the ATM process. Although
the subsequent stages of the ATM process, namely system-
specific architectural modeling, and threat identification, fall
outside this paper’s scope, they are facilitated by the OVVL
tool. This tool not only assists in architectural modeling but
also aids in threat identification using the generated threat
catalog [18]. OVVL’s architecture metamodel is not open for
customization and focuses on the dataflow diagrams (DFDs)
created in the tool. An overview of all artifacts of the ML-

Figure 1: The ATM process

Figure 2: Artifacts of the ML-supported ATM process

supported ATM process can be found in Figure 2.
The catalog generation leverages the Common Vulnerabil-

ities and Exposures (CVE) database [15], containing identi-
fied cybersecurity vulnerabilities for numerous software com-
ponents and libraries. Each vulnerability is associated with
a Common Platform Enumeration (CPE) identifier that ac-
curately specifies the affected software or library versions
[15]. These vulnerabilities needed to be mapped to valid
STRIDE categories to be used in the catalog. 60 % of
CVE vulnerabilities are directly associated with one or more
weaknesses in the Common Weakness Enumeration (CWE)
database [16]. The authors propose mapping CWE weak-
nesses to STRIDE categories based on the weakness scope
and impact listed in each CWE entry. This makes the larger
proportion of the CVE vulnerabilities directly suitable for
inclusion in the threat catalog. The remaining 40 % of vul-
nerabilities are now mapped to STRIDE categories using
a text classification model trained on the already mapped
CVEs. The model yields precision and recall scores of al-
most 100 % on all STRIDE categories except for Repudia-
tion, which had the lowest sample size in the training data.
The resulting threat catalog has 129.675 entries. To make
the catalog more manageable, the authors decided to group
threats by the four categories Access Vector (e.g., access by
network), Authentication required, Programming Language
and Technology (e.g., web server).

After that, the threat catalog was integrated into the
OVVL Threat modeling tool and comes into use when mod-
eling the DFD of a system. Upon adding a new component
to the DFD, CPEs associated with the component can be
entered, and the four categories mentioned above need to be
specified. Next, the tool outputs a list of CWEs and CVEs

with their STRIDE categories identified by either the map-
ping or the ML classification. The list is sorted by severity
and relevance, prioritizing severe and frequent vulnerabili-
ties and weaknesses. After modeling the entire system, the
user receives a comprehensive overview of suggestions for
possible weaknesses for each system element (Violated Se-
curity Properties) [18].

4.2 Ontology-Based Approaches
Ontologies are formalized frameworks that define and rep-

resent a domain’s concepts, entities, and their relationships
[3]. In the context of ATM, ontologies are used to formalize
software systems, enabling automation of the TMP by the
inference of logic rules. These logic rules are usually for-
mulated using description logics (DLs) like OWL and are
designed to “mimic[...] the typical expert’s way of thinking”
[8]. Consequently, one can think of DLs as rules putting
entities of the ontology in relation to each other. Special
DL-reasoners can then deduct facts (e.g., a potential threat
for a software component) from those rules [3]. In the follow-
ing, we present three different approaches to ontology-based
ATM. Figure 3 depicts the core artifacts constructed within
each approach as well as the dependencies between them.

4.2.1 OdTM/Brazhuk
Traditional DFD-based architecture models hinder auto-

mated threat modeling due to their informal structure [3].
Addressing this, Brazhuk introduced the OdTM framework
[3]. Following the OdTM framework, a security expert first
creates a base metamodel. This metamodel is an OWL on-
tology that describes DFDs, formally defining their core en-
tities, like components, data flows, trust boundaries, and
their relations. It also specifies rules that make threat and
countermeasure inference possible by connecting counter-
measures to data flows and threats. The base metamodel
also integrates widespread protocols like HTTP and DNS
[4].

However, the base metamodel is not directly utilized to
create the DFD components. Instead, a domain-specific on-
tology is derived from the base metamodel. It is essentially
a domain-specific metamodel and is meant to be created
and managed by a security expert who manually extends
the base metamodel by domain-specific architecture com-
ponents, threats, and countermeasures while maintaining a
connection to the entities in the base metamodel. For his
domain-specific metamodel, Brazhuk includes attack pat-
terns from the CAPEC (Common Attack Pattern Enumera-
tions and Classifications) 1 dictionary and weaknesses from
CWE that aid in creating the domain-specific metamodel.

1https://capec.mitre.org/, Accessed: 17.12.2023

https://capec.mitre.org/

Figure 3: Displayed artifacts from the ontology-based ATM approaches, color-coded by ATM process steps. Orange stripes
indicate a combination of metamodel and threat catalog. Red borders indicate artifacts linked to ontologies or derivation steps
resulting from ontology-inference procedures.

The first implementation of the OdTM-framework was
also created by Brazhuk [1]. It focuses solely on cloud appli-
cations and attempts to address and ease the manual process
of constructing domain-specific models by providing a cata-
log of security patterns. This catalog is derived from sources
like the ENISA (European Union Agency for Cybersecurity)
or OWASP and outlines common security patterns that fol-
low a fixed format described in previous work [3]. It aims to
provide more domain-scoped components for building cloud-
based systems and, based on these components, supply the
modeler with additional domain-specific threats. To enable
non-experts to use the catalog, the paper contributes illus-
trations of common architectural structures and threats in
cloud-based applications. The author does not provide any
form of evaluation of his work.

4.2.2 ThreMA
De Rosa et al. present ThreMA, another ontology-based

approach similar to the OdTM framework [8]. In contrast
to OdTM, the authors of ThreMa contribute a more precise
description of applying the framework and involved stake-
holders. Moreover, they also provide a case study from a
real-world use case, indicating the applicability of their ap-
proach.

ThreMA can be seen as a procedure that requires two
inputs: a metamodel (seen on the left of Figure 3 in yellow-
orange) and the concrete architecture model that references
the latter (seen in the middle of Figure 3 in green).

The metamodel is an ontology describing generic com-
ponents for architecture modeling. It is maintained by a
dedicated metamodel maintainer. Similar to the base meta-
model in the OdTM framework, it also contains inference
rules that connect the architecture components to threats,
enabling threat deduction. Based on this metamodel, an
infrastructure architect manually creates a DFD-based in-
frastructure model to reflect the domain-specific architec-
ture components and their communication flows. After this
manual step, the infrastructure model and the threats pro-
vided by the metamodel are used to infer the applicable
threats automatically. Then, the inference result needs to
be analyzed by a security architect. Finally, a report of all
threats identified as relevant is manually created [8].

ThreMA has been applied in a real-world system with
around 100 components and data flows in the Italian public
sector. The study revealed that ThreMA could successfully
infer and classify more than 1000 possible threats affecting
this particular system [8].

4.2.3 ATMuOF
Välja et al. presented an ATM approach that uses an

ontology framework (ATMuOF) to normalize the names
of architecture components and ensure a common abstrac-
tion level, addressing data quality issues identified in other
Threat Modeling (TM) approaches [23].

The authors first model an ontology using content and rea-
soning patterns, merged and implemented through a graph
database schema (seen on the left of Figure 3 in yellow-
orange). Therefore, the patterns describe the desired struc-
ture (content patterns) of the later-ingested real-world data
from different data sources reflecting the system architec-
ture. The graph database schema will be enforced by nor-
malization procedures (reasoning patterns) discussed later
to leverage a database with a strong data schema.

Information on system architecture is sourced from var-
ious tools, including host machine commands for software
lists, network scanners, and programs capturing data flows,
operating system names, and vulnerability data from the
national vulnerability database. Adapters specific to these
sources process the data using the ontology framework’s
functions, predefined by reasoning patterns, and query a
graph database for tasks like vulnerability classification.
While the method for sourcing data, like application names
or data flows, is detailed in another study [13], the ontol-
ogy framework’s functions are standalone and can be inte-
grated into other environments. Consequently, if an archi-
tecture description already exists, deploying the aforemen-
tioned sourcing solution is unnecessary [23].

The normalized architecture data is then combined into a
model file, which encapsulates a full description of the ar-
chitecture. Finally, the model file is loaded into SecuriCAD,
a tool enabling system analysis and threat modeling.2

2SecuriCAD is no longer available; most likely be-
cause the maintaining company, Foreseeti, has been

In a case study involving three enterprise system setups,
the ontology framework could demonstrate that the offered
functions could normalize operating system names, appli-
cation software names, and the classification of application
software. As with the other ontology approaches, this work
also lacks formal metrics that could give insight into the
quantity and quality of the discovered threats.

4.3 Configuration-based ATM
Configuration-based approaches implement the ATM pro-

cess by utilizing existing Infrastructure as Code (IaC) arti-
facts of modern software development, such as Helm charts
and CloudFormation files, to derive system threats. Such
artifacts configure the setup and interaction of different sys-
tem components, giving a detailed overview of the software
architecture [2]. The schema of IaC files serves as a blueprint
for defining the architecture metamodel in the ATM process.
Important cloud-native concepts such as storage buckets or
message bus subscriptions are represented in the metamodel
and can be instantiated later in the architecture modeling
step. The threat catalog creation step for these methods is
backed by industry-recognized threat catalogs such as the
Microsoft Kubernetes threat matrix [25].

The following sections present three different approaches
to configuration-based ATM. The first two approaches focus
on applying formal techniques to IaC files, which derive a set
of threats based on pre-defined rules. In the third approach,
threat simulations are conducted on running environments
based on test cases derived from an existing threat catalog.
An overview of the artifacts of these approaches, mapped to
the ATM process step, can be found in Figure 4.

4.3.1 Formal Methods

Description Logic generation.
Cauli et al. have proposed a method of translating IaC

files into a format compatible with formal reasoning, with
an aim to detect design flaws and threats based on system
architecture [6]. Developed specifically for CloudFormation,
an Amazon Web Services (AWS) proprietary IaC standard,
the approach seeks to assess system architecture in relation
to a set of security properties. A metamodel for CloudFor-
mation files is created using description logic to enable this,
thereby allowing the translation of CloudFormation files into
a formal language suitable for machine-processed security
analysis.

The metamodel defines the concepts for all CloudForma-
tion components, such as an S3 bucket. Leveraging de-
scription logic, the S3 bucket concept captures attributes
and associated relationships, including its name and affili-
ated buckets used for logging actions performed on it. As
with ontologies, this formal definition of components allows
for automatic evaluation of its configuration in compliance
with security standards. These standards are expressed as
security properties also using description logic and can be
assessed against all components. Security properties either
specify that protection for a threat must be present or that
an issue or threat may be induced by the system. An ex-
ample is the must-security property “All S3::Buckets must
be encrypted”. The example was extracted from the tool’s

acquired by Alphabet https://cloud.google.com/
blog/products/identity-security/introducing-new-
capabilities-for-secure-transformations?hl=en,
Accessed: 17.12.2023

GitHub repository [5]. More complex properties such as the
may-property “There may be a networking component that
opens all ports to all”are also definable using the description
logic.

During the architecture modeling step, entries of Cloud-
Formation files are automatically encoded into description
logic instances. No manual involvement is necessary. In
the next step, a satisfying instance solver is used to eval-
uate the security properties against the description logic
metamodel, the modeled system architecture, and the se-
curity properties. It returns satisfied security properties
and can also return concrete instances (e.g., S3 buckets)
fulfilling these properties. The result will show which of the
must-properties are unsatisfied, indicating a security risk.
May-properties can be unsatisfied or have zero or more sat-
isfying instances. For example, all instances satisfying the
aforementioned may-property checking for open ports have
unprotected open ports.

The affected components are collected, and a final report
based on the logic-solving results is generated for the user.
The entire process runs automated on user-defined Cloud-
Formation files with a customizable pre-provided catalog of
security properties and terminological knowledge. Accord-
ing to the authors, an average CloudFormation file consists
of 50-100 resources and finishes checking against up to 100
security properties in less than 20 seconds [6].

To cover even more threats, the authors propose a strat-
egy to extend the formalized IaC to model data flows us-
ing domain-specific ontologies similar to those described in
the previous section. This allows the integration of data
flow analysis into the existing framework, thus enhancing
the threat modeling capabilities. The authors used domain-
specific DL axioms describing the AWS services to model
the data flows. Since there can be multiple CloudFormation
files for different environments, the trust boundaries can also
be modeled, making it possible to create security properties
checking data flows over trust boundaries, augmented by
the modeling power described previously. Additionally, this
modeling approach allows for the automatic generation of
data flow diagrams, supporting further threat modeling ac-
tivities [6].

Attack tree generation.
Blaise and Rebecchi present a different formal approach

to ATM using IaC files. Instead of encoding CloudForma-
tion files into description logic, they offer an algorithm to
automatically derive attack trees from Helm charts used in
Kubernetes (k8s) deployments [2]. Attack trees are an alter-
native to STRIDE, modeling the path of attacking a system
from the entry point (e.g., a REST Endpoint) to reach a spe-
cific goal (e.g., access to customer data), with each path from
root to leaf node representing a different attack path [20].
Their approach leverages the threat matrix for Kubernetes
by Microsoft [25, 24], and several best practice resources on
designing secure k8s deployments [2] to create the threat
catalog.

Before generating the attack trees, a graph modeling the
system is derived from the Helm charts. The graph’s nodes
represent system resources, including actual components of
the application, secrets, networks, volumes, and application
entry points. Edges between these nodes represent connec-
tions between resources. In the next step, the graph is en-
riched with information on access paths, network policies,

https://cloud.google.com/blog/products/identity-security/introducing-new-capabilities-for-secure-transformations?hl=en
https://cloud.google.com/blog/products/identity-security/introducing-new-capabilities-for-secure-transformations?hl=en
https://cloud.google.com/blog/products/identity-security/introducing-new-capabilities-for-secure-transformations?hl=en

Figure 4: Artifacts of the Configuration-Based ATM approaches. Color-coded according to the ATM process steps.

and interaction between the components. After that, all re-
sources are scored based on their criticality during attacks.
This scoring is used while extracting attack paths from the
graphs. The extraction uses a heuristic, starting at a system
entry point and exploring connected resources. Finally, the
tool outputs the paths in an attack tree and calculates a
global danger score. After the analysis, users can also eval-
uate specific attack paths[2]. In an evaluation using public
Helm charts for frequently used projects, the authors iden-
tified a median number of 100 critical vulnerabilities per
chart, underlining the impact of their tool.

4.3.2 Threat Simulation
Threat Simulation is a vulnerability identification ap-

proach described by Massoud [14]. In contrast to the for-
mal approaches described above, test cases are executed in
a running environment to identify possible security risks.
The technique is again focused on Kubernetes environments.
This approach replaces the threat catalog with a set of test
cases. Like Blaise and Rebecchi, Massoud identified these
test cases using the Microsoft Threat Matrix for Kubernetes,
covering topics like resource hijack attacks, data destruction
attacks, or denial of service attacks. The tests can be run
against a Kubernetes deployment of the actual system using
a custom-made tool. The health probes of the Kubernetes
pods are used to determine if an attack affects a system and
may indicate elevated error levels or high response times in
case an attack affects the component. Test results need to
be evaluated manually, and the tests are not customized to
certain pod types, but run on all pods regardless of its type
[14]. The manually-created evaluation report then contains
a list of identified threats and vulnerabilities. Because the
test cases are created based on the Microsoft Threat Matrix
for Kubernetes, the identified threats can then be used as
artifacts for the mitigation stage of the TMP.

5. DISCUSSION
To enable a formal comparison between the presented ap-

proaches and to answer RQ2, we conduct a systematic as-
sessment based on the ATM process depicted in Figure 1.
The findings, categorized in the dimensions level of automa-
tion and expert involvement are used to estimate the ap-
proaches’ potential industry applicability.

Since this review paper is focused on methods to automate
the TMP, we included the degree of automation of each pre-

sented approach in the ATM process steps as an evaluation
dimension. The scale for this dimension was chosen as fol-
lows:

• Manual: Artifact creation is conducted by hand

• Semi-Automated: Artifact creation is accelerated
through specialized tools

• Automated: Artifact creation requires no manual ac-
tions

Another dimension that heavily influences the chance of
adaptability of an approach is its need for expert knowledge
and experience. In this discussion, we define an expert as
someone with a large amount of knowledge in an area spe-
cific to security or the technology used in an approach (e.g.,
ontologies, DLs, or IaC artifacts). For this dimension, we
also choose a 3-point scale:

• No Involvement: This step can be executed without
consulting an expert

• Partial Involvement: This step is assisted by pre-
provided expert-created resources or needs manual
adaption by an expert

• Full Involvement: The step is completely dependent on
an expert

Our assessment of both dimensions can be found in Ta-
ble 1 and 2. As mentioned above, in the following, we will
comment on our assessments for each step of the ATM pro-
cess and link our findings to the industry applicability of the
ATM approaches.

Define Architecture Metamodel.
The most prominent similarity between all approaches is

the fully manual definition of the respective architecture
metamodels, like the metamodel for DFDs or the formal def-
inition and integration of threats and vulnerabilities. Addi-
tionally, experts are fully involved during this step, as creat-
ing the metamodel requires deep knowledge of the system’s
technology stack and the chosen ATM approach. However,
as mentioned before, many systems share common deploy-
ment environments such as a specific IaC language, domain
characteristics such as IoT, or frequently-used protocols like
HTTP, which enables the reuse of the metamodels between
different projects. Therefore, we believe an open-source en-
vironment would be ideal for industry users of these ap-
proaches to share and adapt their architecture metamod-

Approach
Define Architecture

Metamodel
Create Threat Catalog Model Architecture Identify Threats

ML-Catalogue Generation Manual Semi-Automated Manual Manual
Ontology-Based Manual Manual Manual Automatic
Configuration-Based Manual Manual Automatic Automatic

Table 1: Comparison of automation in presented ATM approaches

Approach
Define Architecture

Metamodel
Create Threat Catalog Model Architecture Identify Threats

ML-Catalogue Generation Full Involvement Partial Involvement Partial Involvement Partial Involvement
Ontology-Based Full Involvement Partial Involvement Partial Involvement No Involvement
Configuration-Based Full Involvement Partial Involvement No Involvement No Involvement

Table 2: Comparison of expert involvement in the presented ATM approaches

els effectively. An active community dedicated to maintain-
ing metamodels could also increase the adoption rate of the
ATM approaches.

Create Threat Catalog.
Creating threat catalogs is also a predominantly manual

step in the presented approaches. Users must manually ag-
gregate threats and/or vulnerabilities relevant to the system
they are working on. This requires the involvement of secu-
rity experts who can identify and categorize possible threats
and add them to the catalog. This will probably hinder in-
dustry adoption as skilled staff is scarce and expensive at
the time of writing. The ML-supported catalog generation
approach presents a special case where the classification of
threats is automated based on a manually created mapping.
As such, most of the threat catalog creation step is auto-
mated, leading to a semi-automated classification. The ini-
tial mapping of categories requires expert involvement, but
later iterations of classification can rely on the previously
created mapping. Similar to the above step, artifacts of the
threat catalog creation are suitable for sharing between dif-
ferent projects, easing the industry adoption challenges.

Model Architecture.
Architecture modeling is only automated by the

configuration-based approaches. All the other approaches
depend on manual modeling with DFDs. This is crucial,
as human errors could prevent the detection of threats.
Consequently, weaknesses generally associated with the
practices of whiteboard hacking-based TM remain part of
the ontology-based and ML-supported ATM approaches.
Whether organizations are willing to pay the overall price
of adoption with those persisting weaknesses in the TMP
is questionable. The automatic modeling of the architec-
ture based on IaC files mitigates this error by providing a
single source of truth for the system model: the configu-
ration of the actual production system. This removes the
effort of manually remodeling the system and greatly eases
the adaptability burden for configuration-based ATM ap-
proaches. Additionally, the involvement of experts in this
step is not necessary since the modeling is fully automated.
For the other approaches, expert involvement in modeling
the data flows and trust boundaries is generally advisable
to reduce human error, especially when newly implementing
threat modeling.

Identify Threats.
Threat identification is mainly automatic in the ontology-

based and configuration-based approaches. Ontologies
leverage their inference capabilities through DLs, and the
configuration-based methods use either a DL reasoner or
custom logic to identify the threats. Additionally, expert in-
volvement is not required for these approaches, as the threat
catalogs are automatically generated, and the inference of
threats is fully automated, not requiring expert oversight.
The only exception to this is the threat simulation approach
presented in this paper. However, it is still in its infancy
and requires future research to enable automatic identifica-
tion of threats. The presented ML-supported catalog gen-
eration approach, on the contrary, is a manual process, as
the corresponding paper only focuses on automating cata-
log generation. Thus, the adaptability of this approach is
dependent on future work that describes how one can adapt
this technique for all steps of the TMP.

Accuracy of Approaches.
The accuracy of threat modeling approaches is critical,

especially in the context of discovered threats. Unfortu-
nately, all discussed approaches are still in an early stage
of development, and the presented literature lacks scientific
evaluations focusing specifically on the accuracy of these ap-
proaches.

6. CONCLUSION
We presented and evaluated ATM approaches in the

configuration-, ontology-based, and ML-supported catalog
generation categories. Based on our findings, there is no
“one-fits-all” approach applicable to current software devel-
opment projects yet, and all ATM approaches are still in
their early stages, with no empirical studies conducted to
evaluate ATM in the industry and check the result accu-
racy.

While the current research already shows significant po-
tential to increase the adoption and degree of automation
of threat modeling in the industry, further work needs to
be done to enable the generalized application of the pre-
sented methods. Future research could focus on combining
the listed approaches into a fully automated ATM process,
leveraging ML-generated threat catalogs and IaC-based ar-
chitecture model generation to infer threats using a large
ontology.

Additionally, a study could focus on integrating threat
simulation as a verification step to the other approaches, en-
suring accurate TM results once the threat simulation eval-
uation is automated. Future work needs to focus on shar-
ing metamodels as open-source artifacts between projects
to reduce metamodel creation effort and make ATM easy to
integrate into modern SDLCs.

7. REFERENCES
[1] B. Andrei. Threat modeling of cloud systems with

ontological security pattern catalog. International
Journal of Open Information Technologies, 9(5):36–41,
2021.

[2] A. Blaise and F. Rebecchi. Stay at the Helm: secure
Kubernetes deployments via graph generation and
attack reconstruction. In 2022 IEEE 15th
International Conference on Cloud Computing
(CLOUD), pages 59–69, Barcelona, Spain, July 2022.
IEEE.

[3] A. Brazhuk. Security patterns based approach to
automatically select mitigations in ontology-driven
threat modelling. 2020.

[4] A. Brazhuk. Owasp ontology-driven threat modelling
(odtm) framework. https://github.com/nets4geeks/
OdTM/blob/master/OdTMBaseThreatModel.owl, 2021.
Accessed: 25.11.2023.

[5] C. Cauli. CloudFORMAL: Reasoning properties for
aws s3.
https://github.com/claudiacauli/CloudFORMAL/

blob/150a201e43e8dac06cdbe0f475837ee48e652364/

src/main/scala/com/cloud/formal/reasoning/

properties/s3.json, 2021. Accessed: 25.11.2023.

[6] C. Cauli, M. Li, N. Piterman, and O. Tkachuk.
Pre-deployment Security Assessment for Cloud
Services Through Semantic Reasoning. In A. Silva and
K. R. M. Leino, editors, Computer Aided Verification,
volume 12759, pages 767–780. Springer International
Publishing, Cham, 2021. Series Title: Lecture Notes in
Computer Science.

[7] L. Conklin, D. Victoria, and S. Strittmatter. Threat
Modeling Process. OWASP Foundation.

[8] F. De Rosa, N. Maunero, P. Prinetto, F. Talentino,
and M. Trussoni. ThreMA: Ontology-Based
Automated Threat Modeling for ICT Infrastructures.
IEEE Access, 10:116514–116526, 2022.

[9] O. Foundation. OWASP Ontology Driven Threat
Modeling Framework.

[10] A.-M. Jamil, S. Khan, J. K. Lee, and
L. Ben Othmane. Towards Automated Threat
Modeling of Cyber-Physical Systems. In 2021
International Conference on Software Engineering &
Computer Systems and 4th International Conference
on Computational Science and Information
Management (ICSECS-ICOCSIM), pages 614–619,
Pekan, Malaysia, Aug. 2021. IEEE.

[11] M. Kharma and A. Taweel. Threat Modeling in Cloud
Computing - A Literature Review. In G. Wang,
K.-K. R. Choo, J. Wu, and E. Damiani, editors,
Ubiquitous Security, volume 1768, pages 279–291.
Springer Nature Singapore, Singapore, 2023. Series
Title: Communications in Computer and Information
Science.

[12] M. Kharma and A. Taweel. Threat Modeling in Cloud
Computing - A Literature Review. In G. Wang,
K.-K. R. Choo, J. Wu, and E. Damiani, editors,
Ubiquitous Security, pages 279–291, Singapore, 2023.
Springer Nature Singapore.

[13] KTH Royal Institute of Technology, 100 44
Stockholm, Sweden, M. Välja, R. Lagerström, KTH
Royal Institute of Technology, 100 44 Stockholm,
Sweden, U. Franke, RISE Research Institutes of
Sweden, 164 40 Kista, Sweden, G. Ericsson, and KTH
Royal Institute of Technology, 100 44 Stockholm,
Sweden. A Framework for Automatic IT Architecture
Modeling: Applying Truth Discovery. Complex
Systems Informatics and Modeling Quarterly,
(20):20–56, Oct. 2019.

[14] A. Massoud. Threat Simulations of Cloud-Native
Telecom Applications. Master’s thesis, Aalto
University. School of Electrical Engineering, 2021.

[15] MITRE Corporation. Common vulnerabilities and
exposures (cve), 2023. Accessed: 2023-11-26.

[16] MITRE Corporation. Common weakness enumeration,
2023. Accessed: 2023-11-26.

[17] MITRE Corporation. Mitre att&ck, 2023. Accessed:
2023-11-26.

[18] A. Schaad and D. Binder. ML-Supported
Identification and Prioritization of Threats in the
OVVL Threat Modelling Tool. In A. Singhal and
J. Vaidya, editors, Data and Applications Security and
Privacy XXXIV, pages 274–285, Cham, 2020. Springer
International Publishing.

[19] A. Shostack. Experiences Threat Modeling at
Microsoft. page 35, 2008.

[20] A. Shostack. Threat modeling: designing for security.
Wiley, Indianapolis, Ind, 2014.

[21] L. Sion, K. Yskout, D. Van Landuyt, A. Van
Den Berghe, and W. Joosen. Security Threat
Modeling: Are Data Flow Diagrams Enough? In
Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops, pages
254–257, Seoul Republic of Korea, June 2020. ACM.

[22] P. Theurich, J. Witt, and S. Richter. Practices and
challenges of threat modelling in agile environments.
Informatik Spektrum, 46(4):220–229, Aug. 2023.

[23] M. Välja, F. Heiding, U. Franke, and R. Lagerström.
Automating threat modeling using an ontology
framework: Validated with data from critical
infrastructures. Cybersecurity, 3(1):19, Dec. 2020.

[24] Y. Weizman. Threat matrix for Kubernetes, 2020.
Publisher: Microsoft Defender for Cloud.

[25] Y. Weizman. Secure containerized environments with
updated threat matrix for Kubernetes, 2021.
Publisher: Microsoft Defender for Cloud.

[26] W. Xiong and R. Lagerström. Threat modeling – A
systematic literature review. Computers & Security,
84:53–69, July 2019.

[27] K. Yskout, T. Heyman, D. Van Landuyt, L. Sion,
K. Wuyts, and W. Joosen. Threat modeling: from
infancy to maturity. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering:
New Ideas and Emerging Results (ICSE-NIER), pages
9–12, 2020.

https://github.com/nets4geeks/OdTM/blob/master/OdTMBaseThreatModel.owl
https://github.com/nets4geeks/OdTM/blob/master/OdTMBaseThreatModel.owl
https://github.com/claudiacauli/CloudFORMAL/blob/150a201e43e8dac06cdbe0f475837ee48e652364/src/main/scala/com/cloud/formal/reasoning/properties/s3.json
https://github.com/claudiacauli/CloudFORMAL/blob/150a201e43e8dac06cdbe0f475837ee48e652364/src/main/scala/com/cloud/formal/reasoning/properties/s3.json
https://github.com/claudiacauli/CloudFORMAL/blob/150a201e43e8dac06cdbe0f475837ee48e652364/src/main/scala/com/cloud/formal/reasoning/properties/s3.json
https://github.com/claudiacauli/CloudFORMAL/blob/150a201e43e8dac06cdbe0f475837ee48e652364/src/main/scala/com/cloud/formal/reasoning/properties/s3.json

Towards a Comprehensive Model for Classifying Software
Vulnerabilities and Countermeasures

Patrick Treppmann
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

patrick.treppmann@rwth-aachen.de

Florian Braun
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

florian.maximilian.braun@rwth-
aachen.de

ABSTRACT
Classification of software vulnerabilities allows their identi-
fication and mitigation to be effectively carried out at any
time. While various classifications exist, a holistic model
for vulnerability classification across different perspectives is
currently unavailable. Our research reviews existing classi-
fications from literature and merges important aspects into
a comprehensive model. The resulting model enables the
identification of vulnerabilities from various perspectives, in-
cluding threat, attack surface, development phase, security
mechanism and mitigation strategy. A mapping of exist-
ing vulnerability data, such as CWE entries, to the model
could facilitate an effective lookup of relevant information,
to support all kinds of software security tasks.

Keywords
Software Security, Vulnerability, Meta-Model

1. INTRODUCTION
Classifications of software vulnerabilities provide a valu-

able support in enhancing software security and mitigating
vulnerabilities [7] [6].
We define the term vulnerability to avoid ambiguities by us-
ing the following NIST1 definition:

Weakness in an information system, system secu-
rity procedures, internal controls, or implemen-
tation that could be exploited or triggered by a
threat source [10].

Existing classifications generally consider vulnerabilities from
one specific perspective such as attack surface [9], architec-
tural weaknesses [11] or implementation errors [12]. Thus
there is a lack of a comprehensive, unified model that in-
tegrates the various specific classifications and enables a
broader view on vulnerabilities. This research addresses the

1https://www.nist.gov/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2023/24 RWTH Aachen University, Germany.

absence of such a model by providing a unified framework for
classifying software vulnerabilities and mitigation strategies.
The central objective of this work is to address the following
research question:

RQ: ”How can a comprehensive model be devel-
oped to integrate diverse perspectives on soft-
ware vulnerabilities?”

The outcome of this research is expected to have practical
implications regarding the classification of CWE2 (Common
Weakness Enumeration) database entries, aiming to provide
more utility of the database in the practice of designing, de-
veloping and maintaining secure software.
The following chapter 2.1 presents existing classifications
found in literature which serve as the basis for the unified
model. Chapter 2.2 briefly introduces the CWE database
that is used to validate the developed model. Chapter 3 out-
lines the applied methodology for finding relevant literature
and constructing the model. Subsequently, chapters 4.1 and
4.2 provide a comprehensive presentation of the resulting
model, detailing its key elements and their interconnections.
Chapter 4.3 goes into detail on which parts of existing clas-
sifications are incorporated into the unified model. Chapter
5 engages in a discussion of the results, including the impli-
cations and limitations of the model presented in chapters
5.2 and 5.3. This includes a mapping of three existing CWE
entries to the model in chapter 5.1. Lastly chapter 6 pro-
vides a conclusion of the paper and an outlook on valuable
future work in chapter 6.1.

2. RELATED WORK
This chapter presents existing classifications found in lit-

erature to provide an overview of the models that are incor-
porated as the basis of the resulting model.

2.1 Existing Classifications
The paper Seven Pernicious Kingdoms: A Taxonomoy of

Software Security Errors introduces a framework tailored to
developers, by prioritizing practicality and relevance over
theoretical completeness [12]. Classification is done on a
code level focusing on vulnerabilities that appear in soft-
ware applications. The taxonomy comprises seven cate-
gories, ranked by their importance for secure software, in-
cluding classes like Input Validation and Representation

and API Abuse. It is emphasised that this model is not the-
oretically complete and open to change and expansion. Due
2https://cwe.mitre.org/

https://www.nist.gov/
https://cwe.mitre.org/

to the focus on providing a practical and intuitive framework
to aid developers in creating secure software, the paper dis-
tinguishes itself from other more theoretical work. In addi-
tion the created taxonomy is available in the CWE database
as an external mapping, currently comprising 88 weaknesses
mapped to the categories presented in the paper.
Another classification already present in the CWE database
are the eleven security tactics presented in the paper A Cata-
log of Security Architecture Weaknesses [11]. The main focus
of this classification is on security tactics to support the cre-
ation of a secure software architecture. A first classification
of architectural vulnerabilities is presented with the three
types Omission, Commission and Realization, describing
the absence of a security tactic, the choice of an inappro-
priate tactic and lastly a faulty implementation of a tactic.
The catalog comprises eleven tactics, ranging from actor au-
thentication and authorization to data encryption and input
validation. Entries of the CWE database are mapped to one
of those security tactics and additionally annotated with one
of the three types. The results can be found in the CWE
view Architectural Concepts, currently including 223 en-
tries.
The paper A Grounded Theory Based Approach to Char-
acterize Software Attack Surfaces provides a comprehensive
classification of software vulnerabilities with a focus on at-
tack surfaces [9]. Based on data collected from the CWE
as well as the CVE3 (Common Vulnerabilities and Expo-
sures) database, attack surfaces are classified into three core
classes: Entry Point, Target and Mechanism. Entries of
each class are assigned to an abstraction level of Code, Pro-
gram, System or Network. A comprehensive model for each
of the three main categories is presented featuring in total
279 entry points, targets and mechanisms.
The taxonomy of the paper A Taxonomy of Computer Pro-
gram Security Flaws covers vulnerabilities based on three
key aspects: Genesis, Time of Introduction and Loca-

tion [8]. Genesis distinguishes between vulnerabilities with
malicious intent, non-malicious intent and ones that occur
unintentionally. Time of Introduction differentiates between
development, maintenance and operation, while the devel-
opment phase is further split up into the requirement and
design, source code and object code. Lastly the category
location includes the classes software and hardware.

The paper Towards Practical Cybersecurity Mapping of
STRIDE and CWE – a Multi-perspective Approach presents
different mappings of the STRIDE4 threat model to vul-
nerabilities in lists from the CWE database like the OWASP

Top Ten and the CWE Top 25 Weaknesses[5]. The mapping
between STRIDE and CWE is based on the attributes Tech-
nical Impact and Scope, that each entry is annotated with
in the database. In addition, a mapping is established be-
tween the STRIDE framework and the CIA concept of Con-
fidentiality, Integrity and Availability. The authors
emphasize the need to further refine the classifications found
in the CWE database as well as adding mappings like the
ones they proposed in order to make it more applicable in
security practices.
Compared to the presented existing literature, this paper
takes a different approach to software vulnerability clas-
sification. While previous works have focused on specific

3https://cve.mitre.org/
4https://learn.microsoft.com/en-us/previous-
versions/commerce-server/ee823878(v=cs.20)

perspectives such as attack surfaces or architectural vulner-
abilities, this paper aims to bring together these different
classifications into a comprehensive unified model. This ap-
proach provides a more complete representation of software
vulnerabilities. By combining various classifications, the pa-
per recognizes the complex nature of software vulnerabilities
and enhances their representation. This integrated perspec-
tive differentiates this work from previous studies, offering
a more thorough understanding of software vulnerabilities.

2.2 Common Weakness Enumeration (CWE)
The CWE database is an essential resource in the field of

software security and vulnerability analysis. Developed and
maintained by the MITRE Corporation, CWE is a standard-
ized system for categorizing and describing common soft-
ware security weaknesses. This comprehensive repository
classifies a wide range of vulnerabilities, providing detailed
information about their characteristics, potential impact,
and recommended mitigation strategies. CWE also classifies
weaknesses based on the phase (e.g. implementation, cod-
ing, design) in which they might be introduced, providing
a comprehensive framework for vulnerability analysis and
mitigation. CWE categorizes software weaknesses into four
levels of abstraction: Category, Class, Base and Variant.
Categories group entries with a common characteristic while
classes contain abstract weaknesses independent of any lan-
guage or technology. Base entries, which are also mostly
technology agnostic, include specific detection and preven-
tion methods. Lastly Variants are specific weaknesses that
affect only a certain language or technology [4].

3. METHODOLOGY
To construct a comprehensive unified model for the clas-

sification of software vulnerabilities, an extensive literature
search is performed across four common databases, includ-
ing Google Scholar, Springer Link, ACM Digital Library,
and IEEE Xplore. The search query was constructed as fol-
lows:

"software" AND

("vulnerability" OR "vulnerabilities"

OR "weakness" OR "weaknesses") AND

("classification" OR "taxonomy" OR

"categorization")

Results are examined and scanned for existing classifica-
tions. All papers describing a vulnerability model are col-
lected and analyzed to work out their commonalities, differ-
ences and connections. The focus lies on identifying differ-
ent classifications that cover a wide range of diverse perspec-
tives on software vulnerabilities like attack surfaces, security
mechanisms and others. Models present in literature are se-
lected based on their adoption in the research and practi-
cal community. This also includes classifications that are
already implemented in the CWE database. Additionally
models are selected that cover a unique approach or per-
spective which is distinct from other existing models.
In order to design a unified model, shared characteristics and
elements between existing classifications are examined. To
prevent ambiguity and duplication of concepts and terms, a
uniform terminology is agreed upon and models are adapted
accordingly. The main focus while combining existing mod-
els is to incorporate various different aspects and perspec-
tives on software vulnerabilities to create a comprehensive

https://cve.mitre.org/
https://learn.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://learn.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)

Requirements
Planning
Design
Implementation
Testing
Deployment

Phase

Maintenance
Data Encryption
Manage User Session
Authentication
Authorization
Limit Access
Limit Exposure
Input Validation

Security Mechanism

...
Network
Software/ Code
System

Attack Surface

Program
Tampering
Repudiation
Spoofing
Information Disclosure
Denial of Service

Threat

Elevation of Privilege
Dynamic Application Security Testing
Penetration Testing
Libraries/ Frameworks
Input Validation
Least Privilege Principle
Use Security Best Practices
Encryption
Dependency Scanning

Vulnerability

Mitigation

...

Table 1: Visualization of the unified model

and expressive unified model.
Due to the interconnected nature of security perspectives,
the inderdependencies between different perspectives are also
addressed. This ensures that the resulting model offers a
comprehensive view without redundancy.

4. RESULTS
The resulting unified model of this work, depicted in table

1, classifies vulnerabilities from various perspectives. A per-
spective in this context is a unique lens or viewpoint through
which the vulnerabilities are analyzed and categorized. It
serves as a conceptual framework that enables a compre-
hensive understanding of the diverse aspects and nuances
of vulnerabilities. Each perspective encapsulates a specific
attribute of a software vulnerability, thus when combined,
providing a multi-faceted view that contributes to a more
nuanced and thorough vulnerability assessment. These per-
spectives form the first layer of the developed model and in-
clude development phase, mitigation strategy, threat,
security mechanism, and attack surface. In the follow-
ing an extensive description of these perspectives, their in-
terrelationships and theoretical foundations is presented.

4.1 Model Description
The development phase perspective in the model is cru-

cial as it helps to identify at which stage of the development
process a vulnerability might be introduced. This could
range from the requirements phase, where a lack of clar-
ity or specificity could lead to potential security gaps, over
the implementation phase, where bugs are introduced, to
the maintenance phase, where outdated components or un-
patched systems could expose vulnerabilities. Understand-
ing the phase of introduction not only helps in pinpointing
the origin of the vulnerability but also aids in devising ef-
fective mitigation strategies tailored to each specific phase.
The mitigation perspective is about proactively address-
ing vulnerabilities. It involves strategies like Dynamic Ap-
plication Security Testing (DAST), which analyzes running
applications for potential security threats, or the use of es-
tablished libraries and frameworks that have been tested
and verified for security. Mitigation also includes rectify-
ing vulnerabilities once identified. This involves actions like
software updates, configuration changes, or code modifica-
tions. Each mitigation strategy is mapped to a development
phase, indicating when it would be most effective to apply.
From the threat perspective, vulnerabilities are categorized
based on the actual threat they enable. For instance, tam-
pering refers to unauthorized changes that could alter the

Attack Surface

Code

Weak Encryption
Error Handling
Improper Input Validation
Serialization/ Deserialization
Unhandled Race Condition
...

Network

Unsafe Channel/ Protocol
Remote Access Control
Open Port
Type of Network Package
...

Program

Interaction with other Applications
Connecting to other Servers
User Input
Device Input
Missing Maintenance Updates
...

System

Improper Server Configuration
Improper Access Control
External Connection Requests
Installing External Programs
...

Table 2: Specification of Attack Surfaces for the Code, Network, Program and System level

system’s behavior or data, while information disclosure in-
volves the exposure of information to individuals who are not
supposed to have access to it. A mapping of these threats
to the CIA triad (Confidentiality, Integrity, and Avail-

ability) proposed by Honkaranta et al., provides a clear
understanding of the potential impact of each threat [5].
Spoofing, Information Disclosure, and Elevation of Privi-
lege directly threaten confidentiality. Integrity risks involve
Spoofing, Tampering, Repudiation, and Elevation of Priv-
ilege. Spoofing and Tampering compromise data integrity,
while Repudiation and Elevation of Privilege pose threats to
system integrity. Availability is targeted by Denial of Ser-
vice [5].
The security mechanism perspective pertains to the dis-
tinct security tactic that a vulnerability is associated with.
This could encompass mechanisms such as data encryption,
authentication, authorization processes, and others. Each
category represents a specific aspect of security, providing
a structured way to categorize and address vulnerabilities.
More targeted and effective mitigation measures can be de-
vised, by understanding the security mechanism related to
a vulnerability.
Lastly, the attack surface perspective examines the poten-
tial points of entry for an attack. These could be the net-

work, which could be vulnerable to attacks if not properly
secured, the software or code, which could have bugs or er-
rors that can be exploited, or the hardware system the code
runs on, which could be compromised if it has weak security
configurations or outdated components. Furthermore the
running program instance could enable new attack surfaces
through interaction with its environment. A representation
of concrete classes for the second layer of attack surfaces was
excluded from the depiction of the overall model in table 1
to avoid overloading it with too much information. Thus
a more detailed classification of software attack surfaces is
presented in table 2, representing types of attack surfaces
for each layer two perspective. The classification in table 2

is derived from the work of Moshtari et al. by combining
the three classes Entry Point, Target and Mechanism, while
focusing on the abstraction levels described above [9].
By providing a comprehensive view of vulnerabilities from
multiple perspectives, the model holds the potential to serve
as a valuable tool for vulnerability assessment. This, in turn,
may facilitate a more nuanced understanding of vulnerabil-
ities. However, it is important to note that the actual effec-
tiveness of the model is yet to be determined, and further
validation and testing is required to assess its practical ben-
efits in real-world scenarios.

4.2 Interconnections in the Model
In the following, a detailed exploration of the interconnec-

tions between each individual layer one perspective is pre-
sented, providing a comprehensive understanding of their
influence within the landscape of vulnerabilities.
In the realm of system security, the design phase serves as
the bedrock for the introduction of security mechanisms.
The absence, wrong choice, or inadequate implementation
of these mechanisms during this phase can lead to a system
that opens up broad attack surfaces and is susceptible to a
wide range of possible threats. This highlights the crucial in-
terplay between the design phase and security mechanisms,
emphasizing the importance of incorporating security con-
siderations early in the system design process.
These security mechanisms, in turn, shape the potential at-
tack surfaces. For example, a flawed, absent, or incorrectly
implemented authentication mechanism can create an at-
tack surface, granting access to sensitive system areas with-
out authentication. This link between security mechanisms
and attack surfaces underscores the importance of correctly
implementing security mechanisms to minimize potential at-
tack surfaces.
The characteristics of these attack surfaces can dictate the
mitigation strategy. For instance, a web application with

Attack
Surface

Security
MechanismPhase

Threat Mitigation

CIA
Triad

introduced in

shape

adapted to

shaped by
decisions

associated adapted to

mapped

Figure 1: Interconnections of layer one perspectives in the model

an extensive attack surface necessitates mitigation strategies
like deploying a firewall. This relationship between attack
surfaces and mitigation demonstrates the need for tailored
security measures that address the specific vulnerabilities of
each attack surface.
Moreover, the choices made during the design phase and
their execution in the development phase can significantly
shape the existence and extent of attack surfaces. This in-
fluence of the design and development phase on the attack
surface underlines the long-term impact of design and devel-
opment decisions on the system’s security.
Specific types of threats are associated with particular at-
tack surfaces. For example, a denial of service threat or
attack will likely target attack surfaces exposing system re-
sources such as network or system memory. This correlation
between threats and attack surfaces illustrates the need for
a comprehensive understanding of potential threats to effec-
tively secure all attack surfaces.
The type of threat also directly influences the corresponding
mitigation strategy. For instance, the threat of information
disclosure could potentially be triggered by weak encryp-
tion. Once this threat is identified, the mitigation strategy
could involve implementing system patches to strengthen
the encryption or notifying users to change their sensitive
information. This connection between threat and mitigation
underscores the need for a dynamic and responsive security
approach that adapts to the specific threats faced by the
system.
In conclusion, these interconnections offer a nuanced under-
standing of vulnerabilities, enabling a comprehensive and
effective vulnerability assessment and management. They
underscore the importance of a holistic approach to system
security, where each perspective is understood not in iso-
lation, but in relation to others. This interconnected view
allows for more effective identification, analysis, and miti-
gation of vulnerabilities. A visual representation of these
interconnections is depicted in figure 1, providing a concise
overview of the relationships between various vulnerability
perspectives.

4.3 Theoretical Foundations
After presenting the structure of the unified model and the

interconnections between the elements, it is crucial to dis-
cuss the theoretical foundation that provided the basis for
its development. The model draws on key concepts from five
notable works in the field of software security. Each of these
works provide insights from a unique perspective, into un-
derstanding and classifying vulnerabilities. In the remainder
of this chapter it is described how these models, introduced
in chapter 2.1, are incorporated and combined into a com-
prehensive unified model. Furthermore, an examination of
which elements were not included and the reasoning behind
these decisions is conducted.
The paper Seven Pernicious Kingdoms: A Taxonomy of
Software Security Errors introduces a taxonomy of software
security errors that is tailored to developers, prioritizing
practicality and relevance [12]. While the specific taxonomy
is not directly incorporated into the model, its influence is
evident in the layer two elements. The taxonomy’s cate-
gories such as Input Validation and Representation and
API Abuse resonate with the security mechanism and at-

tack surface perspectives in layer one of the created model.
These perspectives are crucial for understanding how vul-
nerabilities can be introduced and exploited in software ap-
plications, and how they can be mitigated. Therefore, the
practical focus and emphasis on common types of coding er-
rors in the taxonomy have significantly shaped the layer one
elements of the model. This underscores the importance of
practical, developer-focused considerations in the develop-
ment of the model.
The influence of the paper A Catalog of Security Architecture
Weaknesses is primarily seen in the security mechanism

perspective of the unified model. The security mechanisms
in the developed model reflect the security tactics presented
in the paper. The principles and insights from the paper
have significantly informed the development of the security
mechanism layer in the model. However, the specific Com-
mon Architectural Weakness Enumeration (CAWE) catalog
and the detailed classification of vulnerabilities from the pa-
per are not directly included in the unified model. This is

because the created model aims to provide a broader per-
spective on software security that goes beyond specific cat-
alogs or classifications of individual vulnerabilities.
The third paper, A Grounded Theory Based Approach to
Characterize Software Attack Surfaces [9], provides a com-
prehensive classification of software vulnerabilities with a fo-
cus on attack surfaces. It classifies attack surfaces into three
core classes: Entry Point, Target, and Mechanism, and as-
signs entries of each class to an abstraction level of Code,
Program, System, or Network. In the developed model, the
attack surface layer reflects the abstraction levels of Code,
Program, System, and Network from the paper. These lev-
els were chosen because they provide a broad categorization
that can encompass a wide range of attack surfaces in differ-
ent contexts, making the developed model versatile and ap-
plicable to various software security scenarios. However, the
specific classes of Entry Point, Target, and Mechanism from
the paper are not directly included in the model. This deci-
sion was made to maintain the abstraction level and clarity
of the unified model. Including these specific classes would
add another layer of complexity to the model, which could
make it more difficult to understand and apply. By focusing
on high-level categories, the created model remains accessi-
ble and user-friendly, while still providing a comprehensive
overview of software vulnerabilities.
The fourth paper, A Taxonomy of Computer Program Se-
curity Flaws, classifies vulnerabilities based on three key as-
pects: Genesis, Time of Introduction, and Location [8].
While the unified model does not directly incorporate these
specific aspects, it does reflect the paper’s approach to clas-
sifying vulnerabilities. The Genesis aspect aligns with the
threat perspective in the developed model, both focusing
on the origin of vulnerabilities. The Time of Introduction
aspect resonates with the phase perspective in our model,
emphasizing the importance of considering when vulnerabil-
ities might be introduced during the development process.
The Location aspect is reflected in the attack surface per-
spective in our model, which considers where vulnerabilities
might exist or be exploited. However, the specific classifica-
tions of Genesis, Time of Introduction, and Location from
the paper are not directly included in the developed model.
This is because our model aims to provide a more general-
ized framework that can accommodate various classifications
and perspectives on software security.
The fifth paper, Towards Practical Cybersecurity Mapping of
STRIDE and CWE – a Multi-perspective Approach, presents
different mappings of the STRIDE threat model to existing
categories of vulnerabilities included in the CWE database.
While the unified model does not directly incorporate these
specific STRIDE-CWE mappings, it does reflect the paper’s
approach to mapping threats to their corresponding miti-
gations in the threat and mitigation perspectives. The
specific mappings between STRIDE elements and the CWE
database [5] based on the attributes Technical Impact and
Scope are not included in our model. However the mapping
established between the STRIDE framework and the CIA
concept of Confidentiality, Integrity, and Availability

[5] are integrated into the developed model. This additional
mapping is included as it provides valuable information on
the impact of specific security threats. The decision to ex-
clude the mapping of STRIDE to CWE is made to maintain
the abstraction level of software perspectives and to distin-
guish the created model from current classifications included

in the CWE database. In total, the principles and insights
from the paper have significantly informed the development
of the threat and mitigation layers in the unified model.
In conclusion, the created model incorporates key concepts
from the five papers, including the categorization of vul-
nerabilities, the enumeration of architectural weaknesses,
the characterization of attack surfaces, and the mapping of
threats to their impact as well as the possible mitigations.
This characteristic of a flexible and adaptable framework,
results in a versatile model. It can accommodate a broad
spectrum of software security aspects while still embodying
the fundamental principles of established models. This ver-
satility enhances its applicability across various scenarios in
the realm of software security.

5. DISCUSSION
In order to test the comprehensiveness and applicability

of the the presented unified model, several CWE database
entries are selected through random sampling. By success-
fully mapping these vulnerabilities to the model, we can val-
idate the models effectiveness and capability of categoriz-
ing known vulnerabilities within industry standards. This
ensures interoperability of the model with widely accepted
frameworks and easier integration into existing security ecosys-
tems. It is important to note that the current sampling
comprises only three CWE entries. While these instances
serve as initial validation, it is crucial to emphasize that a
more extensive mapping of vulnerabilities would be neces-
sary to thoroughly validate and ensure the model’s effective-
ness across a broader spectrum of CWE entries. Ultimately,
the goal is to map all CWE entries to the developed model
to enable its practical use in software projects.
Each selected entry is first scanned for completeness, to
avoid entries with missing or incomplete information. Re-
quired information are the description and the phase of in-
troduction. Existing mitigations are desirable but not re-
quired. In addition, CWE entries of the type class and vari-
ant are excluded from the selection process. Class entries are
described only in an abstract fashion and other entries in-
herit and extend their features while variant entries describe
vulnerabilities that are linked to a specific product, being to
detailed for a validation. This exclusion was necessary to
ensure that the entries selected for the mapping provided
concrete and specific information about the described vul-
nerability. Three CWE entries were selected and thoroughly
examined.

5.1 CWE Mapping Test
The first examined CWE entry is Incorrect Implemen-

tation of Authentication Algorithm (CWE-303) [1]. The
introduction phase can directly be mapped to the model and
is classified as implementation. Mitigation strategy in this
entry is missing and thus can not be mapped. The three
other categories threat, security mechanism and attack

surface are not directly contained in CWE entries and thus
can only be inferred from the textual descriptions of exist-
ing categories. For security mechanism authentication is
evident, from the description information disclosure and el-
evation of privilege can be inferred as threats. By bypassing
authentication mechanisms an attacker could get access to
information or other resources they are not authorized to ac-

cess. As the entry refers to an incorrect implementation the
attack surface is classified as code. Lastly as mitigation
strategies are not included as a category, and not mentioned
in the description of the CWE entry they can not be directly
mapped and it might not be possible to semantically derive
them from the entry, as there is only a very short description
available. However they could still be inferred by individuals
with expertise in the field. A potential mitigation strategy
for this entry could be the use of established authentication
libraries.
The second examined CWE entry is Improper Neutraliza-

tion of Input During Web Page Generation (Cross-site

Scripting) (CWE-79) [3]. The introduction phase can di-
rectly be mapped to the unified model and is classified as
implementation. Mitigation strategies in this entry are avail-
able as a CWE category and can be mapped accordingly.
They include among others input validation during the im-
plementation phase and libraries and frameworks in the de-
sign phase. The three other categories threat, security

mechanism, and attack surface are inferred from the tex-
tual descriptions of existing categories. For security mech-

anism, input validation is evident from the mitigation strate-
gies. From the description, tampering can be inferred as a
threat. An attacker could manipulate the website content
or even the website itself by injecting malicious scripts. As
the entry refers to an improper neutralization of input dur-
ing web page generation, the attack surface is classified as
code.
The third and last examined CWE entry is URL Redirec-

tion to Untrusted Site (Open Redirect) (CWE-601) [2].
The introduction phase can directly be mapped to the model
and is classified as both architecture and design, and im-
plementation. Mitigation strategies in this entry are ex-
plicitly mentioned and can be mapped accordingly. They
include input validation during the implementation phase,
firewall during the operation phase, and attack surface re-
duction during both the architecture and design, and imple-
mentation phases. The three other categories threat, se-
curity mechanism, and attack surface are again inferred
from the textual descriptions. The involved security mech-

anism is input validation, because a server redirects to a
user-controlled input link. Since the vulnerability simplifies
a phishing attack, the threat can be considered as spoofing.
The attack surface is code and more specifically improper
input validation.
In the process of mapping three CWE entries to the model,
it became evident that certain categories could be directly
mapped, while others required semantic analysis. Specifi-
cally, the phase of introduction and mitigation strat-

egy categories were directly represented in the CWE entries,
allowing for a straightforward mapping. However, the cat-
egories threat, security mechanism, and attack surface

were not explicitly stated in the CWE entries. These cat-
egories required a deeper semantic analysis of the textual
descriptions provided in the entries, which could be an im-
portant direction for future work. These properties are also
visualized in table 1 as green, for direct mapping, and yellow
for mapping through semantic analysis.

5.2 Implications
The primary goal of the unified model is to provide a

structured framework for classifying software vulnerabili-
ties. This classification system could potentially facilitate

a more systematic understanding and management of soft-
ware vulnerabilities. By categorizing vulnerabilities accord-
ing to specific criteria such as phase, mitigation strat-

egy, threat, security mechanism, and attack surface,
the model could help in identifying patterns, trends, and
correlations among different types of vulnerabilities. This
could, in turn, support the development of more effective
strategies for vulnerability prevention, detection, and miti-
gation. The mapping of the developed model to the three
selected CWE entries serves as an initial test of the models
potential for comprehensiveness and applicability in repre-
senting real-world software vulnerabilities. While this small-
scale test was successful, it does not constitute a full vali-
dation of the model. However, the results are promising
and suggest that, with further testing and refinement, the
created model could become a valuable tool in the field of
software-security. Potential applications could include vul-
nerability assessment, risk management, and security train-
ing. It is important to note that a more extensive validation
using a larger and more diverse set of CWE entries would
provide a more robust evaluation of the models effectiveness.

5.3 Limitations
While the created model provides a valuable framework

for classifying software vulnerabilities, it also has certain
limitations. Firstly, the effectiveness of the model may vary
depending on the nature and complexity of the vulnerabili-
ties being classified. Some vulnerabilities may not fit neatly
into the existing categories of the model or may span mul-
tiple categories, which could complicate the classification
process. Secondly, the model relies on certain assumptions,
such as the availability of complete and accurate informa-
tion about the vulnerabilities. In reality, this information
may not always be available or reliable, which could limit
the applicability of the model. Lastly, the model currently
does not account for the dynamic nature of software secu-
rity, where new types of vulnerabilities can emerge that may
not fit neatly into the existing categories of the model. This
highlights the need for continuous refinement and updating
of the model to keep pace with the evolving software security
landscape.

6. CONCLUSION
In this work we followed the research objective to imple-

ment a comprehensive model for the classification of software
vulnerabilities. The resulting model provides a comprehen-
sive framework for understanding and assessing vulnerabil-
ities from multiple perspectives: development phase, miti-
gation strategies, threats, security mechanisms and attack
surfaces.
The unified model was created by scanning and analyzing ex-
isting classifications, understanding their limitations, finding
their commonalities and merge important aspects together
into a new, holistic model. Furthermore we analyzed the
relations across the different perspectives.
In the resulting model, a vulnerability is classified from ev-
ery perspective. During a specific development phase, a
vulnerability has the potential to be introduced. mitiga-

tion strategies describe actions to be taken to prevent
the vulnerability in the first place or to reduce the potential
harm caused by it. The mitigation strategies are related to
development phases they can be applied in. threats are
categorized based on the actual threat they enable, such as

tampering, spoofing, information disclosure, denial of ser-
vice, repudiation, and elevation of privilege. Each threat is
mapped to an element within the CIA triad (confidential-
ity, integrity, and availability), indicating the inherent dan-
ger associated with it. The security mechanism perspec-
tive characterizes the specific security mechanism to which
a vulnerability belongs, encompassing encryption of data,
authentication processes, management of user sessions, au-
thorization mechanisms, access restriction, input validation,
and exposure limitation. The attack surface examines po-
tential entry points for the attacks based on the vulnerabil-
ity. This perspective includes the host system, the network,
the running program or code.

6.1 Future Work
In advancing the field of software vulnerability classifi-

cation, the resulting model of this work opens avenues for
future work. One of them being the integration of the clas-
sifications provided by the developed model into existing
entries within the CWE database. While some of these clas-
sifications are already present in the CWE database, others
are missing. During mapping of the CWE entries to our
model we have found that many classifications can be ac-
complished by semantic analysis of other fields of CWE en-
tries (e.g. the extended description). Because doing this by
hand consumes a lot of human resources and is error prone,
an automated classification tool using semantic analysis and
machine learning approaches could be a valuable further de-
velopment to our work.
In addition this work establishes the foundation for the im-
plementation of a comprehensive filtering of CWE entries
based on all classifications provided by the model. This
would allow for an easier and more intuitive access to CWE
entries. The filtering could serve as a valuable tool to sup-
port developers and software architects in designing, imple-
menting and maintaining secure software. For that, future
work could explore how the model can be integrated and
utilized in the whole cycle of secure software development.

7. REFERENCES
[1] M. Corporation. Cwe-303: Incorrect implementation of

authentication algorithm, 2023. Accessed: 13.12.2023.

[2] M. Corporation. Cwe-601: Url redirection to untrusted
site (’open redirect’), 2023. Accessed: 13.12.2023.

[3] M. Corporation. Cwe-79: Improper neutralization of
input during web page generation (’cross-site
scripting’), 2023. Accessed: 13.12.2023.

[4] M. Corporation. Cwe glossary, 2024. Accessed:
18.01.2024.

[5] A. Honkaranta, T. Leppänen, and A. Costin. Towards
practical cybersecurity mapping of stride and cwe — a
multi-perspective approach. In 2021 29th Conference
of Open Innovations Association (FRUCT), pages
150–159, 2021.

[6] M. Humayun, M. Niazi, N. Z. Jhanjhi, M. Alshayeb,
and S. Mahmood. Cyber security threats and
vulnerabilities: A systematic mapping study. Arabian
Journal for Science and Engineering, 45(4):3171–3189,
2020.

[7] P. K. Kudjo, S. A. Brown, and S. Mensah. Improving
software vulnerability classification performance using

normalized difference measures. International Journal
of System Assurance Engineering and Management,
14(3):1010–1027, 2023.

[8] C. E. Landwehr, A. R. Bull, J. P. McDermott, and
W. S. Choi. A taxonomy of computer program security
flaws. ACM Comput. Surv., 26(3):211–254, sep 1994.

[9] S. Moshtari, A. Okutan, and M. Mirakhorli. A
grounded theory based approach to characterize
software attack surfaces. In 2022 IEEE/ACM 44th
International Conference on Software Engineering
(ICSE), pages 13–24, 2022.

[10] N. I. of Standards and Technology. Vulnerability, 2023.
Accessed: 10.12.2023.

[11] J. C. S. Santos, K. Tarrit, and M. Mirakhorli. A
catalog of security architecture weaknesses. In 2017
IEEE International Conference on Software
Architecture Workshops (ICSAW), pages 220–223,
2017.

[12] K. Tsipenyuk, B. Chess, and G. McGraw. Seven
pernicious kingdoms: A taxonomy of software security
errors. In Proceedings of Workshop on Software
Security Assurance Tools, Techniques, and Metrics,
volume 500, page 36, 2006.

Comparison of Integration Testing Methods for
Component-based Software

Maximilian Lucas
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

maximilian.lucas@rwth-aachen.de

Vincent Stollenwerk
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

vincent.stollenwerk@rwth-aachen.de

ABSTRACT
Integration testing is crucial in component-based software
development and is essential to ensure the correctness and
reliability of the system in today’s complex software land-
scapes. Despite the existence of a large number of works
on integration testing methods and the frequent emphasis
on their importance, there is a lack of comprehensive com-
parisons of these methods. This paper bridges this gap
by offering a classification of integration testing method-
ologies, highlighting their differences and main attributes
in component-based software environments. Through a sys-
tematic literature review, we classified and analysed research
papers and identified various characteristics in which inte-
gration testing methods differ, including the types of sys-
tems they target, the underlying testing approaches and im-
plementation details, and the features they provide. With
this paper, we aim to assist researchers in classifying inte-
gration testing methods, as well as software developers and
testers, in comparing and selecting suitable integration test-
ing methods.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering—Software Testing

Keywords
Software testing, Systematic Literature Review, Integration
Testing, Component-based, Comparison

1. INTRODUCTION
In software development, ensuring correctness and relia-

bility of software systems is of utmost importance. Myers et
al. estimate that in a typical software project, 50% of time
and more than 50% of costs are associated with the test-
ing of the program [24]. Furthermore, studies indicate that
the majority of errors in the software development life cycle
are integration errors [3, 12] that would not be caught in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2023/24 RWTH Aachen University, Germany.

unit tests. Therefore, integration testing is a crucial part of
software engineering.

While there exists extensive literature on integration test-
ing methods, there is a lack of comprehensive comparisons
between integration testing methods. In conjunction with
the heterogeneous nature of component-based software sys-
tems and integration testing methods, selecting the right
approach and understanding their trade-offs can be compli-
cated in practice. This paper aims to bridge this gap by com-
paring and analysing existing integration testing methods in
a systematic literature review and offering a classification to
simplify comparisons.

In the study, we have identified key characteristics of in-
tegration testing criteria for:

1. The kind of system the method targets

2. The underlying approach and implementation details

3. The features of the integration testing approach

First, we introduce the relevant background and defini-
tions in Section 2. Then, we explain our research method
in Section 3, document the review execution in Section 4,
and develop and discuss our classification in Section 5. In
the end, we discuss threats to the validity of our study in
Section 6 and conclude our work in Section 7.

2. BACKGROUND
Before discussing our literature review, this section defines

the relevant background and terminology. While we provide
the IEEE definitions of our terminology to aid in under-
standing, during the literature review, we did not evaluate
whether the proposed methods match our definitions and
instead left the definitions to the authors of the articles.

Unit “1. separately testable element specified in the design
of a computer software component 2. logically separa-
ble part of a computer program 3. software component
that is not subdivided into other components [. . .]” [1].
In our context, a unit usually refers to one component
of component-based software.

Unit test “1. testing of individual routines and modules by
the developer or an independent tester 2. test of in-
dividual programs or modules in order to ensure that
there are no analysis or programming errors [. . .] 3.
test of individual hardware or software units or groups
of related units” [1]. In our context, a unit test usually
refers to a test that tests an individual component.

Integration test “1. progressive linking and testing of pro-
grams or modules in order to ensure their proper func-
tioning in the complete system [. . .]” [1]. In our con-
text, integration testing usually refers to tests that test
the interaction between different components. Most
integration testing techniques assume that the com-
ponents function correctly individually, which can be
ensured through unit tests.

Additionally, the paper contains some technical terms that
are not necessary to understand the point of the paper, but
might provide interesting context to the reader:

Context-sensitive middleware-based application Context-sen-
sitive middleware-based applications are applications
where a so-called middleware invokes different actions
depending on the application state and the external
context. [27]

An example could be an ice cream advertising soft-
ware. If the weather (context) is cold and there is
no actively running ad campaign (application state),
the middleware does nothing. If then the weather gets
warm (context change), the middleware could invoke
the action to start the ad campaign.

Software product line Software product lines are a software
engineering paradigm where multiple software systems
are created from a shared core, which can be cus-
tomised using variable modules. [26].

3. RESEARCH METHOD
Our Systematic Literature Review (SLR) was led by the

guidelines published by Kitchenham [15]. In this section, we
describe the review process and our research questions.

3.1 Research Questions
To provide a better way to compare integration testing

methods, we have focused our SLR on three research ques-
tions:

RQ1 How can integration testing methods be classified ac-
cording to the type of system to which they are appli-
cable?

RQ2 How can integration testing methods be classified ac-
cording to their implementation characteristics for test-
ing?

RQ3 How can integration testing methods be classified ac-
cording to the capabilities and features they offer in
the software testing process?

We chose these research questions because we deemed the
question of RQ1 – what system the approach targets – rel-
evant both for researchers classifying approaches, as well
as practitioners comparing and choosing a fitting approach.
For RQ2, we believe that the implementation details are
especially relevant for researchers who classify and develop
integration testing methods, while RQ3 aims to assist soft-
ware testers and engineers when selecting integration testing
approaches.

3.2 Planning the Literature Review
In this section, we outline the methodology and strategic

considerations for conducting the literature review. This in-
cludes our search procedures, the criteria for the selection
of articles, and the data extraction strategy that we em-
ployed to ensure a comprehensive and systematic review of
the relevant literature.

3.2.1 Search Procedure
When designing our approach to find and select articles,

our goal was to obtain a broad overview of integration test-
ing methods. Therefore, we kept our filtering and search
process broad.

To find literature, we focused on the following sources:

• ACM Digital Library1

• Google Scholar2

• IEEE Xplore3

• Scopus4

• Springer Science Direct5

To keep our search queries broad, we only queried for “in-
tegration testing” and the terms “approach”, or “technique”.
For Scopus we found that the results were better when we
also included the term “framework”. Because we wanted to
focus on primary literature, we additionally excluded the
terms “survey” and “literature review”. Listings 1, 2, 3, 4,
and 5 show the final queries we used for Google Scholar,
Scopus, ACM Digital Library, IEEE Xplore, and Springer
Science Direct, respectively.

allintitle: integration testing approach OR
technique -"literature review" -survey↪→

Listing 1: Google Scholar search query

TITLE ("integration testing") AND
(TITLE("approach") OR TITLE ("technique") OR
TITLE ("framework")) AND NOT
(TITLE-ABS("survey") OR TITLE-ABS ("literature
review")) AND (LIMIT-TO(SUBJAREA, "COMP"))

↪→

↪→

↪→

↪→

Listing 2: Scopus search query

[Title: integration testing] AND [[Title:
approach] OR [Title: technique]] AND NOT
[[Title: survey] OR [Title: "literature
review"]]

↪→

↪→

↪→

Listing 3: ACM Digital Library search query

To maintain a manageable and relevant dataset for our re-
view, we decided to utilise the first ten papers from Google
Scholar and Scopus. This approach was chosen to ensure
a balance between the comprehensiveness and manageabil-
ity of the literature review. The top ten papers from each

1https://dl.acm.org/
2https://scholar.google.de/
3https://ieeexplore.ieee.org/
4https://www.scopus.com/
5https://www.sciencedirect.com/

https://dl.acm.org/
https://scholar.google.de/
https://ieeexplore.ieee.org/
https://www.scopus.com/
https://www.sciencedirect.com/

(("Document Title": "Integration Testing") AND
(("Document Title": technique) OR ("Document
Title": approach)) NOT ("Document Title":
survey) NOT ("Document Title": "literature
review"))

↪→

↪→

↪→

↪→

Listing 4: IEEE Xplore search query

Title: "Integration Testing" AND (technique OR
approach) -survey -"literature review"↪→

Listing 5: Springer Science Direct search query

source were considered to be the most relevant and of the
highest quality based on their ranking in the search results.
This selection process allowed us to focus on highly relevant
and high-quality studies, while also keeping the volume of
literature to a practical level for in-depth analysis.

3.2.2 Article Selection Procedure
To ensure the relevance of the articles we include, we eval-

uated each search result against a list of inclusion criteria.
First, we have identified and removed duplicates. In this
paper, we consider articles to be duplicates if:

1. The previous search results, including those of other
sources, already contain the same article

2. The article is a conference paper and the search results
contain a corresponding journal article

After we filtered the results for duplicates, each remaining
article was checked against the following inclusion criteria:

• The article must be open-access or licensed to the uni-
versity library of the RWTH Aachen University

• The article must be a primary literature, not a litera-
ture review or survey

• The article must describe an integration testing method

• The article must be in the context of Software Engi-
neering

3.2.3 Data Extraction Strategy
To ensure consistency and later answer our research ques-

tions, each paper was manually reviewed for three questions:

1. What kind of system does the method apply to?

2. What is the approach behind the method?

3. What are the features and attributes of the integration
testing method?

Later, we used the answers to these questions to identify
patterns and develop our classification.

4. REVIEW EXECUTION
Our queries resulted in a total of 1.560 results across all

sources. Table 1 shows the number of results per source.
As described in Section 3, to keep the dataset manageable,
we only considered the first 10 results from Google Scholar
and Scopus. A list of the results considered can be found in
Table 2 for Google Scholar and Table 3 for Scopus. After
removing duplicates, we were left with 19 articles. Out of

Data source Number of results
Google Scholar 192
Scopus 39
ACM Digital Library 1309
IEEE Xplore 16
Springer Science Direct 4

Table 1: Results per source

these, we have removed 3 articles after filtering them with
our inclusion criteria, leaving us with a list of 16 articles for
review.

To extract the relevant information and answer our re-
search questions, we read each article and manually ex-
tracted the relevant data points. In the end, we have com-
pared our findings and identified categories of targets, com-
mon implementation approaches, and common features.

5. RESULTS
This section outlines the results of our study. We present

our findings following the order of the research questions:
First, the classification of integration testing methods based
on system applicability (RQ1), followed by their implemen-
tation characteristics (RQ2), and finally, their capabilities
and features (RQ3).

5.1 Applicability
Generally, we have found three major groups of systems

to which integration testing methods are targeted. In total,
seven methods focus on object-oriented or aspect-oriented
software. Three methods are technology-agnostic and fo-
cus on abstract component-based or modular systems, and
another three focus on IoT-based systems. These three cate-
gories form the majority of target systems in our study. Ad-
ditionally, we found three methods that target other, more
specialised systems: Context-sensitive middleware-based ap-
plications, software product lines, and service-orientated ar-
chitectures. A complete overview of which method applies
to what kind of system can be found in Table 4.

5.2 Implementation Characteristics
In our research, we have identified a set of key characteris-

tics and features that the methods provide or are based on.
Each method can have multiple of these characteristics and
can provide multiple features. Additionally, the list is not
meant to be exhaustive. It is meant to provide a basis for
high-level comparisons and could change as new approaches
emerge.

We have identified the following list characteristics:

Architecture description-based (AD) The method uses a de-
scription of the architecture of the system as an input
parameter.

In our study, the most common representation was
UML diagrams. The approach foregrounds the gen-
eration and execution of integration test cases derived
from architecture-specific models. Bertolino et al. in-
troduce UML-based architectural models to generate
integration test cases. This involves their so-called
Computational Independent Test Model (CITM), Plat-
form Independent Test Model (PITM), and Platform
Specific Test Model (PSTM), which collectively de-

Ref.
no.

Study Title Included

[11] Interface mutation: An approach for integration testing 7
[2] A state-based approach to integration testing based on UML models 3
[25] Integration testing in software product line engineering: a model-based technique 3
[4] An approach to integration testing based on architectural descriptions 3
[16] Integration testing object-oriented software systems: An experiment-driven research approach 7
[9] Integration testing of context-sensitive middleware-based applications: a metamorphic approach 3
[14] Development and application of a white box approach to integration testing 3
[8] A metamorphic approach to integration testing of context-sensitive middleware-based applications 7
[7] Contextual integration testing of object-oriented and aspect-oriented programs: a structural approach

for Java and AspectJ
3

[17] Integration testing of object-oriented and aspect-oriented programs: A structural pairwise approach
for java

3

Table 2: First 10 search results in Google Scholar

Ref.
no.

Study Title Included

[23] A Framework for Continuous Regression and Integration Testing in IoT Systems Based on Deep
Learning and Search-Based Techniques

3

[20] An integration testing approach based on test patterns and MDA techniques 3
[6] PatrIoT: IoT Automated Interoperability and Integration Testing Framework 3
[5] Framework for Integration Testing of IoT Solutions 3
[18] An integration testing framework and evaluation metric for vulnerability mining methods 7
[10] Integration testing in the test template framework 3
[21] Towards Component-Based System integration testing framework 3
[19] A Unified test framework for continuous integration testing of SOA solutions 3
[22] A test framework for integration testing of object-oriented programs 3
[13] An effective model-based integration testing technique for component-based software 3

Table 3: First 10 search results in Scopus

scribe the test objectives, test architecture, and plat-
form-specific test artefacts. Class and sequence dia-
grams are extended using test patterns to formulate
structured integration tests that align with the sys-
tem’s architecture and dynamic interactions. [4]

Control-flow graph-based (CF) The method involves a graph
representing the control-flow of the software system.
This can happen as an input or as an intermediary
representation to work on.

In structural testing, a control-flow graph (CFG) is re-
quired to represent the structure of the program. The
CFG is used to depict the flow of control within the
program, where each node in the graph represents a
statement or a block of statements that are executed
sequentially, and each edge represents the flow of con-
trol transitioning from one statement or block to an-
other [17].

State-graph-based (SG) The method involves a state-graph
or state-machine describing the possible states of the
software system and the existing transitions between
them. This can happen as an input or as an interme-
diary representation to work on.

Mahmood, for example, uses a state-graph in their
integration testing approach. To model component
interactions, a Component Interaction Graph (CIG)
is constructed based on collaboration diagrams from
UML, which represent the interactions between com-
ponents and show possible execution flows. A CIG

consists of nodes representing components and directed
edges representing control flow transfers between com-
ponents, with each edge annotated by an interaction
complexity metric. Through these directed graphs, in-
teraction metrics are constructed, and weights are as-
signed to each interaction based on the frequency and
content complexity of data types involved in exchanges
between components. In the end, they used this graph
to suggest tests based on certain coverage criteria such
as described in the configurable test criteria section of
Section 5.3. [21]

Machine-learning-based (ML) The method involves machine
learning. In our study, use cases were the automatic
discovery of the software architecture and functional-
ity, as well as automatic test-case generation.

Specifically, Medhat et al. use machine learning to in-
fer formal finite-state behavioural models of individual
software components through an active learning ap-
proach. The method involves disassembling a complex
integrated system into its constituent components, ex-
tracting approximated models as Mealy machines, and
then constructing a product model to identify and test
for compositional issues like deadlocks and live-locks.
[23]

Unlimited integration depth (ID) The method does not limit
the number of components that can be integrated and
used in a single test case.

System under test Ref. no.
Object-Oriented or Aspect-Oriented Software [17], [7], [2], [20], [22], [21], [10]
Component-Based or Modular Systems [14], [4], [13]
IoT-Based Systems [23], [6], [5]
Context-Sensitive Middleware-Based Applications [9]
Software Product Lines [25]
Service-Oriented Architecture (SOA) [19]

Table 4: Classification by system under test

Notably, the framework referenced in [17] is the only
approach that restricts integration testing to pairwise
integration tests. All other reviewed papers – while
not always practical – specify no limit for integrated
components exercised in a single integration test.

Specification-based (S) The method relies on formal specifi-
cations as the foundation for generating and executing
integration test cases.

Cristia et al. introduce an approach that integrates
model-based testing with formal specifications utilis-
ing the so-called Z notation. It is based on set theory
and first-order predicate logic, which provides a pre-
cise and mathematically rigorous framework for mod-
elling complex systems. Z notation is particularly well
suited for describing system properties, developing de-
sign specifications, and verifying the correctness of sys-
tem designs through mathematical proofs. [10]

Table 5 lists what criteria apply to which method. It is
important to note that, since the proposed list is not ex-
haustive, fewer check marks do not necessarily mean fewer
features.

Additionally, each characteristic comes with its trade-offs.
Consequently, while our characterisation does highlight some
key characteristics of the examined approaches, it can be
used to compare methods, but cannot be used to judge the
quality of the different methods.

Ref. no. AD CF SG ML ID S

[17] 3

[7] 3 3

[14] 3 3

[9] 3

[4] 3 3 3

[25] 3 3 3 3

[2] 3 3 3

[23] 3 3

[20] 3 3

[6] 3 3

[5] 3 3

[10] 3 3 3

[21] 3 3 3

[19] 3 3

[22] 3 3 3

[13] 3 3 3

Table 5: Characteristics Results Summary

5.3 Capabilities and Features
In the reviewed papers, we have identified the following

list of external-facing capabilities and features. Similar to

the implementation characteristics described in Section 5.2,
this list is not meant to be exhaustive and other features
could be identified in the existing, or evolve with future
methods.

Configurable test criteria (TC) The method provides multi-
ple test criteria with different trade-offs.

In Section 5.2, we have identified that some integration
testing approaches are graph-based. Many of these
approaches suggest test cases by covering the gener-
ated graphs using different coverage criteria. Cafeo et
al., for example, define their so-called CoDU graph,
a graph that models the control flow of the system.
They then define three testing criteria which define
which elements of the program should be exercised.
Two of these criteria require that either each node or
each edge must be exercised by at least one test case,
respectively [7]. Other graph-based approaches also in-
clude a path-coverage criteria where each path within
some scope must be covered [21]. These coverage crite-
ria provide trade-offs in the comprehensiveness of the
tests compared to the required amount of test cases.

Approaches targeting IoT systems, on the other hand,
often allow the user to configure what devices are exer-
cised in the tests. Bures et al., for example, allow the
users to configure testbeds that contain both physical
and simulated devices. In their examples, simulated
devices can be cheaper to test and simpler to han-
dle, while bearing the risk of behaving differently than
physical devices. [5, 6]

Automatic test generation (TG) The method can automat-
ically generate test cases. Some approaches provide
only guidance on the tests but cannot generate test
cases automatically.

Maibaum et al., an architecture-based approach as dis-
cussed in Section 5.2, use UML diagrams to derive
contracts between classes of object-oriented programs.
These contracts are used to automatically generate
Java code which exercises the components with test
data that can be automatically generated or manually
supplied. [22]

Other approaches, such as the graph-based approach
proposed by Ali et al., cannot generate executable test
cases but only generate a list of paths (test cases) that
should be covered. [2] While the user is still prompted
to manually generate the test data, this approach nev-
ertheless lists all cases that the user should cover.

Approaches that do not meet this criterion, such as the
approach proposed by Chan et al., only provide guide-
lines for designing test cases but no comprehensive list.
[9]

Automatic test execution (TE) The method provides an en-
vironment or suite to automate the execution of tests.

Maciel et al. outline how automatic test case gener-
ation can be achieved using test patterns and Model-
Driven-Architecture/Testing practices. Model-Driven-
Testing is a technique that allows for the automated
generation of test cases and the infrastructure needed
to execute them on different platforms. They devel-
oped a tool to support this automatic approach, al-
lowing the generation of test cases from models for
object-oriented software systems. [20]

Liu et al. present a framework employing a flexible
and extensible execution engine that can automatically
execute test cases. This architecture is designed to
understand test case behaviour logic and configuration
files to schedule and execute tests. [19]

Bures et al. utilize a modified version of the JUnit
testing framework, which has been enhanced to sup-
port automated interoperability and integration test-
ing specific to Internet of Things (IoT) systems. The
added features to JUnit include extra synchronization
and orchestration capabilities, such as warning states
and interruption points for automated tests, allowing
for a more flexible management of the test step flow.
[6]

Test case selection and prioritisation (SP) Aiming to maxi-
mize fault detection in large-scale systems, the method
can prioritise executing certain test cases first to re-
duce the cost and effort of testing.

Mahmood et al., for example, employ complexity mea-
sures to identify and prioritise component interaction
metrics and test adequacy criteria. [21]

Medhat et al. use deep learning and search-based tech-
niques to prioritise test cases for IoT systems. [23]

Error handling and propagation (EH) These methods can ex-
amine how errors are handled within a component and
how they are communicated to other components.

Cristia et al. explore the dependency-based order of
component testing. The work suggests constructing
accurate stubs or proving consistent interaction pat-
terns between components to isolate and attribute er-
rors to the correct source during integration tests. [10]

Table 6 summarises which set of features and capabilities
apply to which method.

6. DISCUSSION
In this section, we discuss the limits of our study and high-

light potential threats to the validity of our study. Firstly,
our final analysis was based on 16 papers. Although 16 pa-
pers might be enough to show fundamental characteristics
and approaches, 16 papers cannot be considered representa-
tive of the whole research field. Therefore, while we believe
our fundamental characteristics hold, we suspect that our
lists are not exhaustive. Additionally, we were unable to
draw conclusions about the distributions and trends among
the different approaches.

Secondly, our initial search only included online sources
and we only included articles from Google Scholar and Sco-
pus. As a result, our study might exclude a significant body

Ref. no. TC TG TE SP EH

[17] 3

[7] 3 3

[14] 3

[9] 3

[4]
[25] 3

[2] 3 3 3

[23] 3 3

[20] 3 3

[6] 3 3

[5] 3

[10] 3 3

[21] 3 3

[19] 3 3 3

[22] 3 3

[13] 3 3 3

Table 6: Capabilities and Features Result Summary

of work. Although we do not believe that this impacts our
fundamental findings, a study including all online articles
from more online and offline sources could lead to more ex-
haustive and more representative results.

Lastly, the data extraction process included manual read-
ing and analysis of the articles by humans. While we have
conducted the analysis strictly adhering to our predefined
research method and our best abilities, this does leave room
for human errors.

In conclusion, future studies that analyse a wider body of
work and include more diverse sources might be necessary to
find exhaustive results and draw representative conclusions.
However, our foundational findings provide a strong basis
for comparing integration testing approaches.

7. CONCLUSIONS AND FUTURE WORK
In this section, we provide directions for future research

and conclude our paper. In this systematic literature review,
we critically analysed existing integration testing methods,
with a primary focus on component-based software systems.
Our study identified key classifications based on system ap-
plicability, implementation characteristics, and the capabili-
ties and features offered by various integration testing meth-
ods. The classifications provide a framework for understand-
ing the diverse landscape of integration testing methods and
comparing their suitability for different types of software sys-
tems, including object-oriented, aspect-oriented, IoT-based
systems, and more.

7.1 Directions for Future Research
While our study laid a solid foundation for classifying and

comparing integration testing methods, as discussed in Sec-
tion 6, our list of characteristics is not exhaustive and the
studies we have analysed are not representative of the broad
field of integration testing. Therefore, a literature review
that covers more articles and more sources, including other
digital and physical libraries, could reveal more extensive
findings. Similarly, a literature review that covers a larger
and representative body of work and analyses the distri-
bution of characteristics, as well as trends or correlations
between the system under test and the different implemen-

tation characteristics and capabilities, might be interesting.
Additionally, in the methods we have analysed, we have

identified several areas that raised questions and seem promis-
ing for further exploration:

• Machine Learning in Integration Testing: While we
have analysed several promising approaches that use
machine learning. In general, comparatively few ap-
proaches used machine learning. This leads us to be-
lieve that there is still untapped potential for the use
of machine learning in integration testing. Especially
automating test case generation and optimising test
processes were barely explored in the articles we have
covered. Research in this area could revolutionise the
efficiency of integration testing.

• Performance and Scalability: As systems become larger
and more complex, the performance and scalability of
integration testing methods become critical. During
our research, we found some methods that seemed im-
practical for real-world systems because they required
a lot of computational work or test cases to be imple-
mented. Future work should focus on optimising these
aspects to handle large-scale systems efficiently.

• Human Factors in Integration Testing: Although the
articles we analysed often covered extensive technical
details, they usually did not discuss the applicabil-
ity and developer experience of the proposed methods.
Nevertheless, human factors such as cognitive load and
developer experience are crucial for an effective soft-
ware testing process, as in the end, methods need to
be implemented and used by human engineers. Un-
derstanding the role of human factors in integration
testing methods could lead to more user-friendly and
efficient testing processes.

7.2 Conclusion
Our findings indicate that, while there is a wealth of re-

search on integration testing methods, there remains a lack
of consensus on the best approaches. The diversity in me-
thodologies, from architecture description-based to machine
learning-based approaches, underscores the complexity and
evolving nature of software integration testing. We observed
that most methods offer configurable test criteria and sup-
port automatic test generation, which is crucial for manag-
ing the increasing complexity of software systems.

While our systematic literature review provides a solid
foundation for the current state of integration testing meth-
ods, it also highlights open questions and new developments
in this field. We have identified different kinds of systems
that are targeted by different approaches and highlighted
the differences in their implementation and features. Addi-
tionally, for some implementation details and features, we
have found relations, such as the use of different coverage
criteria for graph-based approaches. Continuous research
and adaptation are required to keep up with advancements
in software development technologies and integration testing
methodologies.

8. REFERENCES
[1] ISO/IEC/IEEE International Standard - Systems and

software engineering–Vocabulary. ISO/IEC/IEEE
24765:2017(E), pages 1–541, Aug. 2017. Conference
Name: ISO/IEC/IEEE 24765:2017(E).

[2] S. Ali, L. C. Briand, M. J.-u. Rehman, H. Asghar,
M. Z. Z. Iqbal, and A. Nadeem. A state-based
approach to integration testing based on UML models.
Information and Software Technology,
49(11):1087–1106, Nov. 2007.

[3] V. R. Basili and B. T. Perricone. Software errors and
complexity: an empirical investigation0.
Communications of the ACM, 27(1):42–52, Jan. 1984.

[4] A. Bertolino, P. Inverardi, H. Muccini, and A. Rosetti.
An approach to integration testing based on
architectural descriptions. In Proceedings. Third IEEE
International Conference on Engineering of Complex
Computer Systems (Cat. No.97TB100168), pages
77–84, Sept. 1997.

[5] M. Bures. Framework for Integration Testing of IoT
Solutions. pages 1838–1839, 2018.

[6] M. Bures, B. Ahmed, V. Rechtberger, M. Klima,
M. Trnka, M. Jaros, X. Bellekens, D. Almog, and
P. Herout. PatrIoT: IoT Automated Interoperability
and Integration Testing Framework. pages 454–459,
2021.

[7] B. B. P. Cafeo and P. C. Masiero. Contextual
Integration Testing of Object-Oriented and
Aspect-Oriented Programs: A Structural Approach for
Java and AspectJ. In 2011 25th Brazilian Symposium
on Software Engineering, pages 214–223, Sept. 2011.

[8] W. Chan, T. Chen, H. Lu, T. Tse, and S. Yau. A
metamorphic approach to integration testing of
context-sensitive middleware-based applications. In
Fifth International Conference on Quality Software
(QSIC’05), pages 241–249, Sept. 2005.

[9] W. K. Chan, T. Y. Chen, H. Lu, T. H. Tse, and S. S.
Yau. Integration testing of context-sensitive
middleware-based applications: a metamorphic
approach. International Journal of Software
Engineering and Knowledge Engineering,
16(05):677–703, Oct. 2006. Publisher: World Scientific
Publishing Co.

[10] M. Cristiá, J. Mesuro, and C. Frydman. Integration
testing in the test template framework. Lecture Notes
in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 8411 LNCS:400–414, 2014.

[11] M. Delamaro, J. Maidonado, and A. Mathur. Interface
Mutation: an approach for integration testing. IEEE
Transactions on Software Engineering, 27(3):228–247,
Mar. 2001. Conference Name: IEEE Transactions on
Software Engineering.

[12] S. Eldh, S. Punnekkat, H. Hansson, and P. Jönsson.
Component Testing Is Not Enough - A Study of
Software Faults in Telecom Middleware. In
A. Petrenko, M. Veanes, J. Tretmans, and
W. Grieskamp, editors, Testing of Software and
Communicating Systems, Lecture Notes in Computer
Science, pages 74–89, Berlin, Heidelberg, 2007.
Springer.

[13] A. Elsafi, D. Jawawi, A. Abdelmaboud, A. Ibrahim,
and I. Almahy. An effective model-based integration
testing technique for component-based software. 2019.

[14] A. Haley and S. Zweben. Development and application
of a white box approach to integration testing. Journal
of Systems and Software, 4(4):309–315, Nov. 1984.

[15] B. Kitchenham and S. Charters. Guidelines for
performing Systematic Literature Reviews in Software
Engineering. 2, Jan. 2007.

[16] Y. Labiche. Integration testing object-oriented
software systems: An experiment-driven research
approach. In 2011 24th Canadian Conference on
Electrical and Computer Engineering(CCECE), pages
652–655, May 2011.

[17] O. A. L. Lemos, I. G. Franchin, and P. C. Masiero.
Integration testing of Object-Oriented and
Aspect-Oriented programs: A structural pairwise
approach for Java. Science of Computer Programming,
74(10):861–878, Aug. 2009.

[18] J. Li, J. Chen, M. Huang, M. Zhou, W. Xie, Z. Zeng,
S. Chen, and Z. Zhang. An integration testing
framework and evaluation metric for vulnerability
mining methods. China Communications,
15(2):190–208, 2018.

[19] H. Liu, Z. Li, J. Zhu, H. Tan, and H. Huang. A
Unified test framework for continuous integration
testing of SOA solutions. pages 880–887, 2009.

[20] C. Maciel, P. Machado, and F. Ramalho. An
integration testing approach based on test patterns
and MDA techniques. volume 23-27-September-2010,
2010.

[21] S. Mahmood. Towards Component-Based System
integration testing framework. volume 2, pages
1231–1235, 2011.

[22] T. Maibaum and Z. Li. A test framework for
integration testing of object-oriented programs. pages
252–255, 2007.

[23] N. Medhat, S. Moussa, N. Badr, and M. Tolba. A
Framework for Continuous Regression and Integration
Testing in IoT Systems Based on Deep Learning and
Search-Based Techniques. IEEE Access,
8:215716–215726, 2020.

[24] G. J. Myers, C. Sandler, and T. Badgett. Front
Matter. In The Art of Software Testing, pages i–xi.
John Wiley & Sons, Ltd, 2012.

[25] S. Reis, A. Metzger, and K. Pohl. Integration Testing
in Software Product Line Engineering: A Model-Based
Technique. In M. B. Dwyer and A. Lopes, editors,
Fundamental Approaches to Software Engineering,
Lecture Notes in Computer Science, pages 321–335,
Berlin, Heidelberg, 2007. Springer.

[26] V. Sugumaran. Software Product Line Engineering.
Jan. 2006.

[27] T. Tse and S. Yau. Testing context-sensitive
middleware-based software applications. In Proceedings
of the 28th Annual International Computer Software
and Applications Conference, 2004. COMPSAC 2004.,
pages 458–466 vol.1, Sept. 2004.

A Survey of Jupyter Notebook Quality Attributes

Leon Carmincke
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

leon.carmincke@rwth-aachen.de

Lukas Jansen
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

lukas.maximilian.jansen@rwth-
aachen.de

ABSTRACT
Jupyter Notebooks are an interactive, web-based tool widely
adopted in various domains, allowing users to share com-
putational documents in over 40 programming languages.
Defining and assessing quality attributes is crucial for creat-
ing and using Notebooks to ensure reproducibility and over-
all effectiveness. Current studies of public Notebooks high-
light the challenges and opportunities, such as ensuring code
quality and enhancing understandability. However, there is
no overview of the quality attributes and their current state.
They are either mentioned implicitly, or the various perspec-
tives haven’t been integrated to provide researchers with a
clear map of the current landscape of quality attributes.

Using a systematic mapping study, we review the current
state of research. We selected 22 papers explicitly or im-
plicitly mentioning quality attributes and identified repro-
ducibility, understandability, and code quality as the lead-
ing attributes. In addition, we found limited consensus in
attaining and evaluating quality standards. However, there
is a common alignment on the quality attributes themselves.
In general, the actual quality of publicly available Notebooks
falls short of the respective standards regardless of how they
are defined. Based on our overview, future work could sug-
gest solutions like a quality model or tools based on the
attributes.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software En-
gineering]: Management—productivity, programming teams,
software configuration management

Keywords
Jupyter Notebooks, Quality Attributes, Literature Survey

1. INTRODUCTION
Jupyter Notebooks have become an essential tool in soft-

ware projects and scientific research. They change how ideas

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2023/24 RWTH Aachen University, Germany.

are prototyped, experimented with, and shared by integrat-
ing code, visualizations, and textual explanations all in one
web-based document. The literate programming paradigm,
introduced by Donald Knuth in 1984, describes exactly this
approach: combining code and natural language to docu-
ment the logic of a program and thus improving understand-
ability [17, 12, 19]. Consequently, it removes barriers to
tracing experiments, ideas, and results, especially for more
technical novices engaging in coding and data science. This
facilitates reproducibility by providing a transparent and ex-
ecutable narrative.

The Notebooks are structured in so-called cells, which
are blocks that contain either code or Markdown text [1].
Code cells can be written in over 40 programming languages.
Some of the most popular are Python, R, and Julia, while
93.11% of the Notebooks use Python [17]. Markdown cells
are used for explanations, documentation, and other con-
tent. Each cell can be run independently. While code cells
are executed, Markdown cells are rendered. This also means
that the cells do not have to be executed linearly. The re-
sults of code cells, if any, are written in new cells below,
while graphics are directly rendered.

The interactive documents close the gap between compu-
tation and explanation, leading to increased use of Note-
books in various fields such as data science, machine learn-
ing, academic research, and industrial applications [26, 8,
4, 20, 23, 28]. Some fields include Notebooks as interactive
documentation and examples for software projects or proto-
types for project acquisition. Also, Notebooks are the tool
of choice for data scientists, enabling researchers to docu-
ment their experiments and publish their results [5, 31] in
a new, directly executable form. Furthermore, the popu-
larity of Notebooks in education has been steadily growing
over the past few years [2, 23]. However, with the increased
usage, quality has become a critical issue for effective collab-
oration, reproducibility, and knowledge transfer. Common
issues include unexpected behavior due to out-of-order ex-
ecution, poor coding practices that hinder readability and
maintainability, and dependency problems that make Note-
books hard to run in different environments [4, 16]. This
excerpt of issues influences the successful use and distribu-
tion of Notebooks in various fields. Best practices and a
definition of quality need to be established to enable disci-
plined and informed usage.

This survey outlines key quality dimensions for a Note-
book, ranging from code to storytelling. We systematically
examine the landscape of quality attributes from a broad
overview to a detailed definition and analysis of the current

state and their interrelationships. This approach improves
the understanding of the various factors influencing the over-
all quality of Notebooks.

Our paper has the following structure. First, Section 2
overviews related papers that give a broad overview of dif-
ferent quality aspects to discuss their insights and limita-
tions. Section 3 describes the methodology employed and
the resulting papers in general and for each step during the
process. Our results are mapped to seven quality attributes
and described in Section 4. Chapter 5 summarizes the qual-
ity attributes and gives an outlook on further improvements
and possible developments.

2. RELATED WORK
Since the spin-off of Jupyter Notebooks from its predeces-

sor project, iPython, in 2014, it has become widely popular
among researchers, data scientists, and professionals in var-
ious fields, making it a key tool for collaborative and data-
centric work [17, 28, 20].

Research has diversified, focusing on improving trans-
parency, highlighting collaborative practices, and establish-
ing standards and best practices to meet the evolving needs
of users in different areas. This evolution in research reflects
the nature of Notebooks and their increasing significance.
Numerous papers discuss the quality attributes from vari-
ous perspectives and propose methods and tools to improve
them. This section presents three papers broadly studying
Notebook quality attributes from different domains, serving
as exemplary cases for the approach in the literature.

Pimentel et al. conducted a large-scale study of 1.4 million
public Notebooks from GitHub and analyzed their charac-
teristics that impact quality and reproducibility [17]. The
study shows that out of over 860,000 Notebooks with defined
Python versions, dependencies, and execution order, only
4.03% produce the same results when re-executed, thus indi-
cating low reproducibility. They proposed the tool Julynter,
a Jupyter Lab extension that identifies and suggests mod-
ifications to improve Notebook reproducibility. The paper
provides a rich insight into the current state of the quality
of public Notebooks, especially reproducibility, and is thus
one of the building blocks of our analysis. In this extensive
work, many attributes that are discussed in the literature
have been elaborated upon. Our study uses several such
publications from various fields to define and discuss the
current state of the quality attributes. This also includes
proposed tools to support the realization, such as Julynter,
to summarize the existing landscape for further research,
and Notebook developers as well.

Candela, Chambers, and Sherratt assessed the quality of
Jupyter projects published by Galleries, Libraries, Archives,
and Museums (GLAM) organizations [3]. Their analysis is
based on seven dimensions: understandability, availability,
efficiency, traceability, portability, recoverability, and credi-
bility. Different metrics were defined for each of these di-
mensions to describe the realization. In contrast to the
previous study, the analysis of the GLAM domain is lim-
ited to 11 Notebook projects. However, it underlines that
understandability is achieved through a good ratio of Mark-
down to code cells with descriptive names. It is also shown
that the analyzed Notebooks do not contain a date when
they were last run, which could negatively impact the re-
producibility in this field. The study does not analyze the
code in the Notebooks regarding software engineering best

practices. The focus on GLAM organizations adds a unique
perspective, although a deeper analysis of coding practices
would be beneficial.

Other papers include clear guidelines for creators of Note-
books to improve quality, such as the ten rules for writing
and sharing computational analyses in Notebooks published
by Rule et al. [21] or the paper ”Best Practices for Collabora-
tion with Computational Notebooks“ by Quaranta et al. [19]
These rules range from the storytelling level over the code to
the sharing experience. Both papers consistently highlight
the documentation and structure of the Notebook. Addi-
tionally, we find information here about the version manage-
ment of Notebooks and a process description for abstracting
Notebooks for various use cases. However, the first paper
does not fully reflect the current literature, as the rules were
gathered during a workshop, and the impressions collected
are summarized. Despite this limitation, the guidelines offer
valuable insight to enhance the quality and communicative
effectiveness.

We contribute to the literature regarding the quality of
Notebooks by giving an extensive overview of quality at-
tributes and their current state. The presented exemplary
papers form the foundation for our work. We combine the
insights from different publications in our systematic map-
ping study to help researchers navigate the field of quality
attributes and build upon them in future work.

3. METHODOLOGY
As this study aims to overview the existing research, we

conducted a systematic mapping study. First, we formulated
our research questions:

RQ1: What are the currently researched quality attributes
of Jupyter Notebooks?
First, we must find a general overview and definition of all
the quality attributes in current research. Therefore, we
start our study with this general question.

RQ2: What is the current state for the identified quality
attributes in Notebooks?
Building upon the identified attributes, we discuss the cur-
rent state of evaluation and assessment methodologies for
them and to what extent these attributes are respected in
publicly available Notebooks.

RQ3: How are the quality attributes related to each other?
After answering both questions, we analyze the found at-
tributes regarding their relationship.

3.1 Search Process
At first, we had to decide which database to use for the

search. Because the process is fairly complex and we wanted
to reduce the additional overhead of using multiple databases,
we decided to use a single database, Scopus. We deem this
acceptable as the content of the other two large databases
in software engineering, ACM Digital Library and IEEE
Xplore, are also indexed by Scopus. Additionally, a sin-
gle missing paper will not influence our results because we
aim to give a general overview. Scopus also enables us to
easily create complex queries and perform snowballing by
searching for citing papers and references.

The general idea for our search, visualized in Figure 1,
is as follows: Start with an initial query, seen in Figure 2,
that will result in a small amount of highly relevant papers.
From there on, we manually filtered out papers by using
these exclusion criteria:

Figure 1: Overview of the Search Procedure

• Paper does not have a DOI. This criterion is critical
for our search process as we use the DOI as the unique
identifier for each found paper. This allows us to keep
track of papers that we excluded. Additionally, if a
paper does not have a DOI, it hints at a low quality.
This also excludes materials without DOIs, like books,
from our results.

• Notebooks are not the focus of the paper. Many pa-
pers use Notebooks to accomplish tasks, e.g., train-
ing an ML model or publishing results. However, the
Notebook itself is often not the focus in this context.

• The quality of Notebooks is not covered.

1 TITLE -ABS -KEY (jupyter AND quality)
2 AND (KEY (jupyter) OR TITLE (jupyter))
3 AND (SUBJAREA (COMP))
4 AND (LIMIT -TO (LANGUAGE , "English "))

Figure 2: Query Used for the Initial Search

The initial query about the ambiguous papers is accept-
able in this new research area, as few papers exist.

After filtering out the irrelevant papers, we started the
snowballing process, in which we looked at the references of
the found papers and at papers that cited the found papers.
We added a relaxed version of the initial query, seen in Fig-
ure 3 as an automatic filter for the snowballing results. This
reduced the results from multiple hundreds down to manage-
able amounts. We also applied the same manual filtering to
these additional papers. We conducted multiple iterations
of this process, called stages, in Figure 1. The next iteration
snowballs on all the papers found up to that point. These
iterations naturally conclude because, at a certain point, no
additional papers will be added to a stage; thus, there is
nothing to snowball. This was the case after Stage 3. At
that point, we had accumulated 63 papers.

1 SUBJAREA(COMP) AND TITLE -ABS -KEY(jupyter)

Figure 3: Query Used during the Snowballing

We were conservative in excluding papers, especially in
Stage 1, because even slightly relevant papers may lead to a
more relevant paper in the next stage.

3.2 Search Results
Based on Figure 4, the growing interest in Notebooks over

time can be seen.

Figure 4: Publication Years of the Resulting Papers

Based on the search process, not every paper was relevant
to answering our first research question. Therefore, we man-
ually looked at the full text of the papers to find the ones
suitable for extracting the results. During this search, we
also came up with the seven attributes we analyzed in the
results. These either came up directly in the papers or were
introduced indirectly. To get an overview of the papers, we
looked at how many papers mentioned the attributes or syn-
onyms, e.g., ”testability“, ”testable“, or ”testing“. There were
24 papers, including code quality, 11 including understand-
ability, 39 including testability, 58 including reproducibility,
23 including reusability, 33 including usability, and 50 in-
cluding shareability. From these papers, we chose 22 papers
as the basis of our analysis.

4. RESULTS
Analyzing the quality of Jupyter Notebooks involves ex-

amining different levels, aligning with well-established soft-
ware quality attributes. Code cells responsible for function-
ality represent one facet, while the description level measures
how well the individual cells are documented and explained.
Given the diverse audience, effective communication and

comprehensive descriptions are key to facilitating collabo-
ration between people from different backgrounds [25].

We have extracted various quality attributes from the lit-
erature that can be categorized into three groups based on
their relationships with each other and characteristics: de-
velopment, storytelling, and collaboration. The following
sections delve into a detailed description of each quality at-
tribute, accompanied by a precise definition, answering RQ1
and RQ2. Furthermore, the current state of each attribute
will be discussed, illustrating their relationships and classi-
fication into one of the three categories to answer RQ3.

Given that over 90% of Notebooks are written in Python,
this analysis focuses primarily on this programming lan-
guage. We limit the following analysis of the quality at-
tributes code quality 4.1, reusability 4.2, and testability 4.3
to this programming language.

Table 1: References Utilized in the Analysis of Each Attribute
Categorization Attribute References

Development

Code Quality
[6, 25, 33, 18, 5]

[7, 17]

Reusability
[13, 21, 25, 17, 11]

[22]

Testability [17, 4, 19]

Storytelling Understandability [17, 5, 4, 12, 21]

Collaboration

Reproducibility [17, 34, 31, 15, 27]

Shareability [3, 17, 21, 24]

Usability [32, 9]

4.1 Code Quality
Code Quality is one of the critical quality aspects in soft-

ware engineering [6]. However, in Jupyter Notebooks, the
code is not always the primary output. Notebooks are used,
among other things, for exploratory data analysis and sci-
entific computing, where the result or insight often takes
precedence over the code [25]. On the other hand, valuable
scientific results need to be consistently verifiable and re-
producible, which is directly affected by the code quality.
Moreover, areas such as teaching at university rely on best
practices in code quality [23] to create a role model for the
students. The transition from Notebooks used as prototypes
into production software also benefits from high quality and
a software engineering-aware approach during the develop-
ment of the Notebook [18]. Overall, high code quality facil-
itates long-term collaboration and further extensibility.

Definition.
Code quality is the degree to which code conforms to stan-

dards and best practices that ensure its readability, main-
tainability, reliability, and efficiency. Regarding Notebooks,
we focus on the programming language Python, so good
quality must respect the Python coding style [30], and main-
tainability standards [33, 14].

Features that define code quality are cyclomatic complex-

ity, cognitive complexity, duplication, code smells, technical
debt, maintainability, and reliability [5]. Proper variable
naming and code structure are mandatory for understand-
ability, including the absence of standard code smells, such
as missing whitespace or excessively long code lines. Due to
the cell layout, the structure influences the overall code qual-
ity [29]. Third-party libraries influence code quality due to
potential compatibility issues, maintenance challenges, and
the impact on code readability. Additionally, relying on dep-
recated functions can compromise code quality by introduc-
ing security vulnerabilities and hindering the adoption of
modern coding practices [33].

Current State.
Studies have shown that public Notebooks suffer from

poor code quality [33]. Writing code directly in Notebooks
is prone to errors and bad software engineering principles
as the support by the editor is limited compared to a full
Integrated Development Environment (IDE) [7]. There is
a lack of available resources, including proper version con-
trol, to improve code quality, resulting in poor programming
habits. Additionally, the analysis by Wang et al. of the us-
age of the popular Python library scikit-learn shows that
around 35.55% of Notebooks use deprecated APIs [33].

Recent tools such as pynblint [18] tackle this issue by
providing linting functionalities, i.e., checking the code against
a predefined set of rules. This general static analyzer can
be used on all Notebooks, regardless of the platform used to
write them.

Relation to Other Attributes.
Code quality is foundational to several other quality at-

tributes and is assigned to the development category. It
directly impacts understandability 4.4, reusability 4.2, and
testability 4.3.

4.2 Reusability
Our analysis considers the reusability quality attribute

from a functional perspective to examine which parts of a
Jupyter Notebook can be functionally reused. Therefore,
reusability is, in a sense, an extension of code quality with a
focus on modularization. Promoting reusability is a key fac-
tor in preventing both code duplication and fragmentation.

However, in the case of Notebooks, reusability interferes
with reproducibility, as it requires in complex cases to de-
couple code from the Notebook in external modules. This
approach can lead to issues since the Notebook is no longer
self-contained, meaning not all data necessary to reproduce
the result is in one file [13].

Definition.
Reusability refers to how parts of a Notebook can be

reused in other projects and applied in different contexts and
purposes. Reusability can be achieved by creating modules,
libraries, or functions that can be imported or called from
other Notebooks. Reusability can also be facilitated by tools
that allow users to search, browse, and insert snippets from
other sources [13].

Reusability can also be considered as the possibility of
reusing the whole Notebook. If the structure of a Notebook
allows for easily changing out the input data, then the whole
Notebook can be reused [21]. However, this approach natu-
rally leads to code duplication.

Current State.
Modularity is the standard approach when developing

large-scale software. However, Notebooks have no standard-
ized approach to, for example, including the contents of one
Notebook in others [25]. Few Notebooks use parameters or
configuration files to customize their execution [17]. It is
possible to extract functions to own Python packages when
they are general enough to be applied to different contexts
and purposes or when they are too complex or lengthy to be
included in the Notebook. Most users do not extract code
into modules, as only around 10% of Notebooks use local
imports [13]. This hinders the reusability and testability of
Notebooks [17].

A study of 2.5 million public Notebooks on GitHub shows
that 50% have no unique code cell, meaning they only consist
of copied code from other Notebooks [11]. The authors of
[11] state that instructions from tutorials or course material
also possibly cause such a high number.

An approach to encourage the reusability of Notebooks is
cell folding [22]. This allows users to hide and show groups
of cells. The new organization and annotation of cells enable
different forms of reuse, as the parts that are not relevant
for further work can just be collapsed.

Relation to Other Attributes.
Reproducibility 4.5 is a prerequisite for reusability. In

Notebooks, this attribute is also related to understandability
4.4, i.e., how well the content is documented. The reusability
attribute is categorized into the“Development”category due
to the high connection to code quality. It might also be cat-
egorized into the “Collaboration” category because reusabil-
ity improves collaboration, as others can share and build on
existing functionality.

4.3 Testability
Testing code is an elementary aspect of software develop-

ment that ensures the quality and functionality of the code.
By writing tests, developers verify that their code meets its
requirements and functions as intended, also after changes
are applied [10].

Testability, similar to code quality, is often not a top prior-
ity in Notebooks. Data scientists, among others, frequently
use Notebooks for fast and rough exploration and analysis.
As a result, they may not give high priority to testing or
following guidelines for code quality and documentation [4].

Definition.
The testability of a Notebook refers to how easily its func-

tionality can be evaluated through testing. A well-organized
and clean notebook design favors effective testing for cover-
age of all functionality. Improving testability is done by
creating functions for complex code and defining a baseline
for expected test results [17].

Current State.
There is no universally accepted methodology for test-

ing code in Notebooks [4]. Tests can be directly embedded
within the Notebook, but challenges exist in establishing
a standardized testing approach. An analysis of a large
dataset of public Notebooks from 2019 shows that only
1.54% import known Python test modules [17]. However, a
minority of repositories test code associated with the Note-
book outside the Notebook environment.

This highlights the opportunity to improve testing prac-
tices, especially for features with more complex code. A
suitable test suite ensures the code can be reproduced in
different environments. For Notebook code focusing on data
exploration, studies have shown that current tools are un-
suitable and can be too complex [17]. Additionally, neces-
sary integrations are not available that let users run tests
and show the results and metrics such as test coverage [19].

Relation to Other Attributes.
Testability is crucial for the reliability of Notebooks. It is

linked to code quality 4.1, as well-tested code contributes to
higher overall code quality. It also affects the understand-
ability 4.4 and reproducibility 4.5 of Notebooks.

4.4 Understandability
Literate programming describes writing code along with

natural text [12]. From a purely software-engineering point
of view, this concept has met with criticism, as good code
should be self-explanatory, and detailed documentation is
time-consuming to maintain.

However, other areas benefit from such an approach. Do-
mains such as research, natural science, or data science want
to convey complex analyses or results with often theories or
equations behind them [12]. The benefits of enriching the
source code with various forms of documentation side-by-
side are evident. This leads to the conclusion that the qual-
ity of a Notebook needs to be observed from at least two
perspectives: software engineering and storytelling.

Definition.
Understandability refers to the ease with which a user can

comprehend the content. This contains various metrics and
attributes that contribute to the overall clarity of the Note-
book. One elementary factor influencing understandability
is the ratio of Markdown to code cells, as highlighted by
Pimentel et al. in their work on quality and reproducibility
[17]. The textual descriptions can also be measured with the
Flesch readability score [5]. In addition, the naming of the
Notebook should be distinctive, and generic terms such as
“Untitled” should be avoided to ensure that it immediately
conveys the purpose or content of the Notebook.

Current State.
Starting with the name of the Notebook file, around 1.99%

of public Notebooks are named “Untitled”, and 0.69% have
“Copy” in their name [17]. Many public Notebooks have in-
sufficient descriptive cells so that users can understand all
of their content [4, 12, 21]. Developers improve the under-
standability by rearranging code cells rather than extensive
use of explanatory Markdown [12]. A minimum of twice
as many Markdown cells than code cells indicates the lit-
erate programming paradigm [32, 31] and therefore good
documentation. In any case, extensive documentation at
the start and end of the Notebook can improve the under-
standability significantly [17].

Relation to Other Attributes.
Understandability is linked to code quality 4.1 and repro-

ducibility 4.5. Since it is heavily influenced by the literate
programming paradigm, it falls under the category of “Sto-
rytelling”.

4.5 Reproducibility
Reproducibility in Jupyter Notebooks involves the ability

to recreate and validate results by executing code cells [21].
On the one hand, reproducibility is closely tied to under-
standability, i.e., how well the code is documented. On the
other hand, the execution order of the code cells, dependency
management, and data availability impact reproducibility.
This includes the presence of a baseline, which means that
all code cells have outputs from a successful execution. This
way, users can verify the outputs after running the code lo-
cally. In this Section, we focus on the reproducibility on
their own, independent of, for example, the underlying code
quality.

Definition.
A Notebook is reproducible if it can be executed without

errors and its outputs match the original ones. This includes
the ability of a user to trace the original execution sequence
to produce a given result.

Current State.
Studies have shown that many Notebooks are not repro-

ducible [17, 34] due to randomness, time, and data or a miss-
ing definition of the execution environment [24]. Pimentel et
al. show that many Notebooks with unambiguous execution
sequences have unexecuted code cells, out-of-order cells, and
execution jumps in the execution counter, making it difficult
to track the execution status [17]. However, it is indicated
that excluding execution jumps at the beginning reduces
their frequency, possibly indicating that re-execution with-
out a Notebook restart causes these jumps.

Additionally, sufficient markdown cells increase navigabil-
ity and understandability, improving reproducibility. Cur-
rently, Notebooks suffer from poor documentation, as over
30% of public Notebooks do not contain a single markdown
cell [17] and as developers tend to neglect the literate pro-
gramming paradigm when writing code [15].

The two tools HeaderGen and Cell2Doc [31, 15] aim
to automatically document the provided code in Notebooks
in the data science field. HeaderGen focuses on machine
learning Notebooks by carrying out a static code analysis of
the code cells and libraries to automatically categorize func-
tions regarding their purpose in a typical machine learning
pipeline. These headers, one to three words long, provide
a basic navigation structure and information regarding the
structure and purpose of each section in data science note-
books. Furthermore, there exist tools such as the Osiris
prototype [34] that can achieve a reproducibility rate of
82.23%, more than three times better than the state-of-the-
art. This tool reconstructs possible execution orders based
on the dependencies between cells.

Histree [27] visualizes the execution order of code cells
as a tree to combat bad reproducibility due to the execution
order of cells. This also allows researchers to trace and re-
produce different experiment sequences representing results
in a natural form.

Relation to Other Attributes.
Reproducibility is closely tied to code quality 4.1, testa-

bility 4.3, and understandability 4.4. Well-documented code
and comprehensive testing contribute to the reproducibility
of results.

4.6 Shareability
Shareability focuses on the collaborative aspects of Jupyter

Notebooks. The main objective is to evaluate the features
that allow seamless sharing, such as clear instructions, the
accessibility of dependent data, and a list of libraries used.

Definition.
Shareability defines the process of allowing foreign users

to work with the Notebook. It depends on the Notebook’s
license and other factors such as the size [3]. The execution
environment must be documented containing the Python
version and dependency management [17, 24].

Current State.
Popular Notebooks tend to have higher quality and are

easier to share and reproduce than the overall corpus, but
there is no clear correlation between quality and citation
[17]. To provide access to Notebooks, the depending data
and software must be available for the user, which can be dif-
ficult if the project size increases [21]. Pimentel et al. exam-
ined that over 79.58% of repositories with dependencies use a
requirements.txt file to document the Python requirements
[17]. Creating the same environment where the Notebook
should be executed on every machine is important, improv-
ing shareability and reproducibility, as the correct version is
pinned in the requirements file.

Relation to Other Attributes.
Shareability is related to the reproducibility 4.5 and un-

derstandability 4.4.

4.7 Usability
The usability of a Notebook depends on several quality

attributes. The quality of the Notebook’s components, such
as text, multimedia, and code is crucial for its usability. It is
important to consider the readability, whether it flows cohe-
sively like a book or appears as a collection of disjointed code
cells. Moreover, it is essential to examine the Notebook’s in-
teractivity, how results are presented, and the potential for
user interaction, especially in visual elements like charts [32].

Definition.
Usability defines the overall user experience, including

text presentation, multimedia elements, and code. It’s about
whether the Notebook follows a coherent structure that
makes reading, understanding, and interacting with the con-
tent easy.

Current State.
Design features enhance the usability of Notebooks. These

features include a combination of HTML and Markdown el-
ements, a navigation pane, alert boxes highlighting prereq-
uisites, and anchor links allowing easy navigation within the
Notebooks [32]. The use of backticks in Markdown cells em-
phasizes important sections or code. These features make
the Notebooks adaptable to different modalities, such as ed-
ucational content, for example, serving as effective materials
for both instructor-led courses and self-paced learning. How-
ever, these aspects are less discussed in current literature,
which focuses more on functionality and less on ultimate
usability. Only well-documented and expressive Notebooks
are suitable for people new to a domain, and well-thought

design choices contribute positively to usability [32].
Providing a Notebook via services like Binder lowers the

entry barrier drastically [9]. The user only requires a web
browser to use a specific Notebook, as the environment is
created on-demand in the cloud. This is handy for all short-
lived interactions where users want to quickly experience and
read the content without the hassle of creating the local in-
stallation and preparing the environment. This includes ed-
ucational content and, for example, documentation of soft-
ware libraries that benefit from interactive examples.

Relation to Other Attributes.
Usability is a natural extension of reproducibility 4.5 and

understandability 4.4. A well-structured and readable Note-
book enhances the user experience, contributing to the over-
all usability.

4.8 Summary
Our literature review has identified seven quality attributes

divided into three categories: development, storytelling, and
collaboration. The development of Notebooks includes the
following three attributes: code quality, reusability, and
testability. The understandability attribute represents the
storytelling level, while reproducibility, usability, and share-
ability fall into the collaboration level.

These levels correspond to different stages of the Note-
book lifecycle. The development level focuses on coding and
software engineering practices. The understanding level em-
phasizes how well others can comprehend the content, while
the collaboration level addresses attributes that promote ef-
fective collaboration and knowledge sharing.

The attributes most frequently mentioned in the litera-
ture are code quality, understandability, and reproducibility.
When attributes mutually influence each other, the impact
of one attribute on the other is mostly positive, with the
only exceptions being reusability and reproducibility. We
observed that increased code reusability is associated with
modularization, meaning code is outsourced from the Note-
book, which can negatively impact the reproducibility of a
Notebook since the entire code is no longer in one place.
Each project must decide this tradeoff, which often depends
on its complexity. Due to the diverse applications of Note-
books and the resulting varied environments, our analysis
does not claim to be complete. For instance, we limit our-
selves to the most popular programming language, Python,
although Notebooks support many other programming lan-
guages.

5. CONCLUSION AND FUTURE WORK
The results show that the quality of Jupyter Notebooks

depends on multiple factors that are each unevenly adapted
in today’s Notebooks. We depict a gap between the desired
quality and the current state-of-the-art. However, there
is promising research that describes these problematic ar-
eas and proposes solutions. High-quality Notebooks utilize
the literate programming paradigm to create a narrative
throughout the content. This is essential for understand-
ability and, consequently, reproducibility. Additionally, the
code is a central element, currently often containing clones
and difficult to test, but directly executable and embedded
in the description. Collaborating through Notebooks is a
further pillar. This contains usability, which becomes espe-
cially important when novices or beginners are the target

audience for educational content.
Overall, our study describes the current landscape of qual-

ity attributes utilizing extensive research from different fields.
This guides researchers in improving the quality of Note-
books as we discuss the current state documented in several
studies as well as approaches and tools to improve quality.

Future Work.
Building on the presented systematic literature review,

future work could involve developing a quality model for
Notebooks similar to ISO/IEC 25000. This model could be
a structured framework for evaluating and improving vari-
ous facets of Jupyter Notebook quality. Additionally, tools
such as Julynter [17] or Histree [27], built around quality
attributes, present an opportunity to introduce and analyze
them and their potential impact on the quality of Notebooks.
Understanding how these tools align with existing practices
can help close identified quality gaps. This is an essential
contribution to establishing best practices of Notebook de-
velopment and use.

6. REFERENCES
[1] Project Jupyter Documentation.

https://docs.jupyter.org/en/latest/, Accessed
November 19, 2023.

[2] Computational and Mathematical Modeling Program.
https://www.cammp.online/, Accessed October 7,
2023.

[3] G. Candela, S. Chambers, and T. Sherratt. An
Approach to Assess the Quality of Jupyter Projects
Published by GLAM Institutions. Journal of the
Association for Information Science and Technology,
2023.

[4] S. Chattopadhyay, I. Prasad, A. Z. Henley, A. Sarma,
and T. Barik. What’s Wrong with Computational
Notebooks? Pain Points, Needs, and Design
Opportunities. In R. Bernhaupt, editor, Proceedings of
the 2020 CHI Conference on Human Factors in
Computing Systems, ACM Digital Library, pages
1–12, New York, USA, 2020. Association for
Computing Machinery.

[5] M. Choetkiertikul, A. Hoonlor, C. Ragkhitwetsagul,
S. Pongpaichet, T. Sunetnanta, T. Settewong,
V. Jiravatvanich, and U. Kaewpichai. Mining the
Characteristics of Jupyter Notebooks in Data Science
Projects, 2023.

[6] B. Curtis. Measurement and Experimentation in
Software Engineering. Proceedings of the IEEE,
68(9):1144–1157, 1980.

[7] T. L. de Santana, P. A. M. S. Da Neto, E. S.
de Almeida, and I. Ahmed. Bug Analysis in Jupyter
Notebook Projects: An Empirical Study, 2022.

[8] H. Dong, S. Zhou, J. L. Guo, and C. Kastner.
Splitting, Renaming, Removing: A Study of Common
Cleaning Activities in Jupyter Notebooks. In 2021
36th IEEE/ACM International Conference on
Automated Software Engineering Workshops (ASEW),
pages 114–119. IEEE, 2021.

[9] H. Fangohr, M. Beg, M. Bergemann, V. Bondar,
Brockhauser, et al. Data Exploration and Analysis
with Jupyter Notebooks. 2019.

[10] M. A. Jamil, M. Arif, N. S. A. Abubakar, and

https://docs.jupyter.org/en/latest/
https://www.cammp.online/

A. Ahmad. Software Testing Techniques: A Literature
Review. In 2016 6th International Conference on
Information and Communication Technology for The
Muslim World (ICT4M), pages 177–182. IEEE,
11/22/2016 - 11/24/2016.

[11] M. Källén and T. Wrigstad. Jupyter Notebooks on
GitHub: Characteristics and Code Clones. The Art,
Science, and Engineering of Programming, 5(3), 2021.

[12] M. B. Kery, M. Radensky, M. Arya, B. E. John, and
B. A. Myers. The Story in the Notebook. In
R. Mandryk, M. Hancock, M. Perry, and A. Cox,
editors, Engage with CHI, pages 1–11, New York,
USA, 2018. The Association for Computing
Machinery.

[13] A. P. Koenzen, N. A. Ernst, and M.-A. D. Storey.
Code Duplication and Reuse in Jupyter Notebooks. In
M. Homer, editor, 2020 IEEE Symposium on Visual
Languages and Human-Centric Computing
(VL/HCC), pages 1–9, Piscataway, NJ, 2020. IEEE.

[14] E. Matthes. Python Crash Course: A Hands-On,
Project-Based Introduction to Programming. No Starch
Press, New York, 3rd edition edition, 2023.

[15] T. Mondal, S. Barnett, A. Lal, and J. Vedurada.
Cell2Doc: ML Pipeline for Generating Documentation
in Computational Notebooks. In 2023 38th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 384–396. IEEE,
2023.

[16] J. F. Pimentel, L. Murta, V. Braganholo, and
J. Freire. A Large-Scale Study About Quality and
Reproducibility of Jupyter Notebooks. In 2019
IEEE/ACM 16th International Conference on Mining
Software Repositories, pages 507–517, Piscataway, NJ,
2019. IEEE.

[17] J. F. Pimentel, L. Murta, V. Braganholo, and
J. Freire. Understanding and Improving the Quality
and Reproducibility of Jupyter Notebooks. Empirical
software engineering, 26(4):65, 2021.

[18] L. Quaranta. Assessing the Quality of Computational
Notebooks for a Frictionless Transition From
Exploration to Production. In Proceedings of the
ACM/IEEE 44th International Conference on
Software Engineering: Companion Proceedings, ACM
Digital Library, pages 256–260, New York, USA, 2022.
Association for Computing Machinery.

[19] L. Quaranta, F. Calefato, and F. Lanubile. Eliciting
Best Practices for Collaboration with Computational
Notebooks. Proceedings of the ACM on
Human-Computer Interaction, 6(CSCW1):1–41, 2022.

[20] F. Rowe, G. Maier, D. Arribas-Bel, and S. Rey. The
Potential of Notebooks for Scientific Publication,
Reproducibility and Dissemination. REGION,
7(3):E1–E5, 2020.

[21] A. Rule, A. Birmingham, C. Zuniga, I. Altintas, S.-C.
Huang, R. Knight, N. Moshiri, M. H. Nguyen, S. B.
Rosenthal, F. Pérez, and P. W. Rose. Ten Simple
Rules for Writing and Sharing Computational
Analyses in Jupyter Notebooks. PLoS Computational
Biology, 15(7):e1007007, 2019.

[22] A. Rule, I. Drosos, A. Tabard, and J. D. Hollan.
Aiding Collaborative Reuse of Computational
Notebooks with Annotated Cell Folding. Proceedings

of the ACM on Human-Computer Interaction,
2(CSCW):1–12, 2018.

[23] F. M. Sallabi and S. Lazarova-Molnar. Teaching
Modeling, Simulation, and Performance Evaluation
Course Online with Jupyter Notebook: Course
Development and Lessons Learned. In 2022 IEEE
Frontiers in Education Conference (FIE), pages 1–8.
IEEE, 2022.

[24] M. Schröder, F. Krüger, and S. Spors. Reproducible
Research is more than Publishing Research Artefacts:
A Systematic Analysis of Jupyter Notebooks from
Research Articles, 2019.

[25] J. Singer. Notes on Notebooks: Is Jupyter the Bringer
of Jollity? In S. Kell, editor, Proceedings of the 2020
ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on
Programming and Software, ACM Digital Library,
pages 180–186, New York, USA, 2020. Association for
Computing Machinery.

[26] N. Sompairac, P. V. Nazarov, U. Czerwinska,
L. Cantini, A. Biton, A. Molkenov, Z. Zhumadilov,
E. Barillot, F. Radvanyi, A. Gorban, U. Kairov, and
A. Zinovyev. Independent Component Analysis for
Unraveling the Complexity of Cancer Omics Datasets.
International journal of molecular sciences, 20(18),
2019.

[27] L. Studtmann, S. Aydin, and H. Lichter. Histree: A
Tree-Based Experiment History Tracking Tool for
Jupyter Notebooks. In Proceedings of the 30th
Asia-Pacific Software Engineering Conference
(APSEC 2023), Seoul, Korea, 2023.

[28] K. Subramanian, N. Hamdan, and J. Borchers. Casual
Notebooks and Rigid Scripts: Understanding Data
Science Programming. In M. Homer, editor, 2020
IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pages 1–5,
Piscataway, NJ, 2020. IEEE.

[29] S. Titov, Y. Golubev, and T. Bryksin. ReSplit:
Improving the Structure of Jupyter Notebooks by
Re-Splitting Their Cells, 2021.

[30] G. van Rossum, B. Warsaw, and A. Coghlan. PEP 8 –
Style Guide for Python Code.
https://peps.python.org/pep-0008/, Accessed 20
November, 2023.

[31] A. P. S. Venkatesh, J. Wang, L. Li, and E. Bodden.
Enhancing Comprehension and Navigation in Jupyter
Notebooks with Static Analysis, 2023.

[32] J. Wagemann, F. Fierli, S. Mantovani, S. Siemen,
B. Seeger, and J. Bendix. Five Guiding Principles to
Make Jupyter Notebooks Fit for Earth Observation
Data Education. Remote Sensing, 14(14):3359, 2022.

[33] J. Wang, L. Li, and A. Zeller. Better Code, Better
Sharing. In G. Rothermel and D.-H. Bae, editors,
Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: New Ideas and
Emerging Results, pages 53–56, New York, USA, 2020.
ACM.

[34] J. Wang, L. Li, and A. Zeller. Restoring Execution
Environments of Jupyter Notebooks. In 2021
IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pages 1622–1633. IEEE,
2021.

https://peps.python.org/pep-0008/

	Cover
	Table of Contents
	Paper 1
	Introduction
	Related Work
	Existing Classifications
	Common Weakness Enumeration (CWE)

	Methodology
	Results
	Model Description
	Interconnections in the Model
	Theoretical Foundations

	Discussion
	CWE Mapping Test
	Implications
	Limitations

	Conclusion
	Future Work

	References

	Paper 2
	Introduction
	Related Work
	Methodology
	Search Process
	Search Results

	Results
	Code Quality
	Reusability
	Testability
	Understandability
	Reproducibility
	Shareability
	Usability
	Summary

	Conclusion and Future Work
	References

	Paper 3
	Introduction
	Background
	Research Method
	Research Questions
	Planning the Literature Review
	Search Procedure
	Article Selection Procedure
	Data Extraction Strategy

	Review Execution
	Results
	Applicability
	Implementation Characteristics
	Capabilities and Features

	Discussion
	Conclusions and Future Work
	Directions for Future Research
	Conclusion

	References

	Paper 4
	Introduction
	Related Work
	Modernization
	Technical Debt
	Enterprise Architecture
	EA Layers
	EA Debts

	Methodology
	Scientific Literature Review
	Filtration Techniques

	Modernization and Enterprise
	Impact of Modernization on the Business Layer of an Enterprise
	Impact of Modernization on the Data Layer of an Enterprise
	Impact of Modernization on the Application Layer of an Enterprise
	Impact of Modernization on the Technology or (Technical) layer of an Enterprise

	EA Debt Factors and Modernization Implications
	Business Factors
	Uncertainty of use cases in the beginning
	Business Evolution
	Time Pressure
	Priority of features over the product

	Design & Architecture Documentation
	Re-use of legacy systems
	Parallel Development
	In-complete Refactoring
	Technology Evolution
	Human Factor

	Conclusion
	Future Prospects
	Developing Metrics for EA Debt
	Exploring the Role of Human Factors
	Investigating the Impact of Modernization on Business Outcomes

	References

	Paper 5
	Introduction
	Related Work
	Methodology
	Approaches for ATM
	Machine-Learning-Supported Generation of Threat Catalogs
	Ontology-Based Approaches
	OdTM/Brazhuk
	ThreMA
	ATMuOF

	Configuration-based ATM
	Formal Methods
	Threat Simulation

	Discussion
	Conclusion
	References

