
Proceedings
of Seminar

New Trends in Software Construction

2023
Editors: Horst Lichter

Ada Slupczynski
Selin Aydin
Alex Sabau

Table of Contents

Ilija Kovacevic, Bastian Levartz:
How does software architecture correlate with legacy systems?

Joris Mohar, Konstantin Dao:
An Analysis of Graphical Notations for ML Solutions in Academic
Research

Haydar Genc, Mohamed Amine Zormati:
Comparing Selected Security Modeling Languages Using SEQUAL
Framework

Leila Mangonaux, Marco Heinisch:
Classification of modernization methods based on experience reports:
A Systematic Literature Review

How does software architecture correlate with legacy
systems?

Ilija Kovacevic
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

ilija.kovacevic@rwth-aachen.de

Bastian Levartz
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

bastian.levartz@rwth-aachen.de

ABSTRACT
The problem of legacy software systems has been known for
a long time and several approaches have been proposed to
eliminate the issues concerning maintainability and modi-
fiability. It can be achieved by transforming the current
solution to a more maintainable one or decommissioning it
after migrating to an entirely new system. However, any ap-
proach bears the risk of being time-consuming, costly and
unsuccessful.

Therefore, it is of increasing interest to build software sys-
tems in a way that they are as maintainable and extensible
as possible. This paper examines in an exploratory literature
review what the connection is between software legacy sys-
tems and their software architecture. We look at the extent
to which the maintainability, adaptability and performance
of a legacy system is influenced by the chosen software ar-
chitecture. In doing so, we also explicitly highlight architec-
tures that either delay or advance a system in the process
of turning into a legacy one.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.7 [Software En-
gineering]: Distribution, Maintenance, and Enhancement—
Restructuring, reverse engineering, and reengineering

Keywords
software architecture, legacy systems, architectural technical
debt

1. INTRODUCTION
Reverse engineering, modernisation and migration of legacy

software systems are a common practice. Many different ap-
proaches have been presented in the past years, approaching
the issue from different perspectives [1, 7]. One thing that
most of them have in common is a change of the architec-
tural approach. For example in the last few years many

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2023 RWTH Aachen University, Germany.

monolithic systems had been migrated to a microservice ar-
chitecture. Within the scope of this development it is a
relevant question, whether the selection of an architecture
correlates with the probability of creating a legacy system.
Understanding the influence can not only enhance the se-
lection of new architecture, but also offer opportunities to
modify older, non-legacy systems in a way that slows down
the process.

1.1 Definition of legacy systems
In the scientific community there is no uniform and fixed

definition of legacy systems. However, there are some as-
pects in which most definitions agree. The main part char-
acterising a system as legacy is its ability to deliver business
value but simultaneously being accompanied with significant
disadvantages. Those are the non-existing ability to change
the legacy system in order to fulfill new business needs, the
fragility of the system and lastly the increasing amount of
necessary maintenance to keep it running [3, 4, 5, 18]. These
properties also result in increasing costs for the persistence
of the system.

To identify the possibility of systems becoming legacy we
choose the following characteristics for the classification of
a legacy system:

• High maintenance effort

• Significant business value

• Limited modifiability and expandability

• High integration efforts

• System is operative

Replacing such a system comes with technological, oper-
ational and organizational problems. These include missing
documentation, unstructured code due to frequent modifi-
cations and missing knowledge from the original developers,
because they retired or left the company [18]. In addition
one has to find a suitable way to keep the legacy system
running while engineering a new solution.

1.2 Overview Software Architectures
In any sufficiently complex system one has to use a global

view outside of the systems inner workings in order to cap-
ture all necessary dependencies, core values and the human
workflow. This encapsulates the definition of a software ar-
chitecture as it represents the gross structure of a software
system [30]. Furthermore, the architecture addresses the

business goals and quality goals by providing specific guide-
lines for reliability, performance, modifiability, usability and
security [2].

We interpreted that a software architecture is the theoret-
ical construct of how a business wants to develop complex
pieces of software without specifying technology. We chose
to examine shortly the history of how the software engineer-
ing landscape changed in the last few decades. This involved
revisiting mainframes, the introduction of the internet, some
scientifically examined architectures e.g. domain-driven or
service-oriented architectures and the recent development
towards microservices and cloud. These are the major ar-
chitectures which are referenced as source or target ones in
papers about migrations.

1.3 Problem statement
In an era of massive technological advances the pressure

for continuous modernisation increases, making the adaption
in the systems unavoidable. In case of software the handling
of these changes is challenging, because a repetitive redevel-
opment is not possible due to costs and time. Therefore,
the maintainability and portability is an important aspect
of software engineering.

In this paper we discuss the potential correlation of the
underlying software architecture of a system and its lifes-
pan until it turns legacy. For this purpose we analyze cer-
tain software architectures and corresponding techniques for
modernisation. In this context we also search for architec-
ture models, which are designed to withstand the pressure
of change and avoid or at least slow down the process of
turning into a legacy system. More precisly, we defined the
following research questions:

• RQ1: Does a correlation between software architec-
tures and legacy systems exist?

• RQ2: Which software architectures increase the chances
of a system becoming legacy?

• RQ3: Which software architecture are able to avoid or
delay the creation of legacy systems?

1.4 Methodology
This paper presents an exploratory literature review on

software architectures and their impact on the creation of
legacy systems all over the world. For conducting this review
we used the SCOPUS database. The review is split into
two parts. The first one focuses on the term architectural
technical debt, the second one on the correlation of legacy
systems and their software architecture. The architectural
technical debt part will be discussed in the third chapter
and focuses on the definition of the term and corresponding
problems caused. Furthermore, we have a look at presented
approaches for the management of these problems. Within
the scope of the literature review we searched in SCOPUS for
resources with architectural technical debt in the title, the
abstract or the keywords. We then excluded papers, which
are not inside of the computer science area and papers with
less than five citations.

The review for the fourth chapter is conducted similarly.
We used the search string ”software AND legacy AND (mod-
ernisation OR migration)“. From the results we only picked
papers written in English. Then we empirically analyzed
the papers, by splitting them into several age groups and

extracting the source and target architectures of the pre-
sented modernisations.

2. FROM MAINFRAME TO CONTAINER
The landscape of software and hardware architectures is

ever changing. We examine how mainframe rose and fell out
of popularity, the scientific advancement in software archi-
tectures and the most recent move towards cloud infrastruc-
ture and containerization. These are some major milestones
which reflect critical changes in how businesses operate their
software development.

2.1 Mainframe
When talking about legacy systems the most obvious ex-

ample is a mainframe device as it is seen as the embodiment
of a resource which is business critical but hard to migrate
away from. It is by definition a large computer which used to
fill a whole room but at this point the leading manufacturer
IBM builds mainframes which are the size of a refrigerator
[17].

In the time period from the first commercial mainframes
in the 1950s until the 90s a mainframe was the only ac-
ceptable means of handle data processing for large business.
They are built for reliability and a high throughput of trans-
actions per seconds. This made them be at the core of any
large business as they were utilized to process databases,
costumer transactions or statistical analysis. All hardware
components are redundant and have the ability of being ex-
changed while the system is running thus it enables a busi-
ness to fully encapsulate all its business logic and computing
needs on a single machine [17].

The software on a mainframe was mostly written in COBOL
and as a procedural language which relied heavily on hu-
man readable keywords as such it was limited in what it
could accomplish efficiently. The speed at which computer
capabilities rose could not be reflected by COBOL. It was a
language written in the style of punch cards in order to ease
the transition to modern computers but this made it hard
to write and follow the logic. There was no architecture
designed to help with code re-usability, security or stability
thus all COBOL code is a unique piece of business logic.
With people retiring or leaving the knowledge of the code
base shrunk and the corporations were bound to a physical
legacy system which was unmaintainable [15].

2.2 Internet and distributed systems
The commercialization of the ARPANET and creation of

the world wide web is regarded as the most influential tech-
nological milestones in human history. The availability of
an internet connection has been declared as part of persons
livelihood and an ISP has to carry that burden.

In the same time frame the computational power of PCs
and small-scale Servers has reached a point which allowed a
business to not invest in a mainframe. This lead to a move-
ment towards the ”edge” of their infrastructure. A business
was able to connect remote locations by using the third layer
of the ISO/OSI model [23].

2.3 Software architectures
The starting point for modern software architecture can

be contributed to the paper of Perry and Wolf [29] as it is
referenced in most papers dealing with software architecture

[16, 30]. The paper lays the foundation of software archi-
tecture research. At its core a software architecture is the
conjuction of ”Elements, Form, and Rationale”. Elements
are divided into the categories processing, data and connec-
tion.

The architectural form can be understood as an indicator
of how important a piece in the overall architecture is and in
which relation it stands with all the other pieces. Finally the
rationale is the underlying motivation of why certain choices
were made [29].

2.3.1 Domain-driven architecture
Following the starting point of software architectures the

first one which evolved into a large set of models, rules and
guideline was the ”domain-driven design” which is outlined
by Eric Evans in 2003.

An architecture which follows the guidelines of domain-
driven design will be founded on two principles:

• All software components reflect business and domain
logic

• Any interaction between components is based on a
model

These principles are not of technical nature but they ad-
vise how to think about the complex software project at
hand. It is a way of translating the businesses knowledge
into a suitable software product by combining the knowledge
of developers and business analysts by following ”model-
driven designs”. These entail the direct communication of
developers and business analysts in order to translate the
business needs directly into an abstracted software model.

The transformation to a working product is supported by
technologies which are able to clearly represent this model.
These are in most cases object oriented languages and simple
architecture patterns e.g. layered models or monoliths.

The usage of a domain-driven design for a particular soft-
ware product will result in an encapsulation of domain logic
in a technical domain objects which needs to be (directly)
accessed by a client to be modified. In front of such a request
will be a gateway service which is responsible to deliver this
request from the client to the domain object. This ”gate-
way pattern” does not scale well in environments where the
manipulation of domain objects needs to happen often, fast
and regularly [10].

2.3.2 Service oriented architecture
The necessity to decouple business logic from specific ob-

jects resulted in the object agnostic way of architecting soft-
ware. The service oriented architecture (SOA) is supposed
to help developers and architects follow principles to accom-
plish that task.

One can find many definitions of SOA and its correspond-
ing practices. We will draw on the summary done by Duggan
[10] in order to gain an understanding how SOA is defined.
It is outlined as a set of ”design characteristics” and ”design
principles”.

The characteristics include but are not limited to:

• Standardized service contract: Services adhere to a
standard communications agreement, as defined col-
lectively by one or more service description documents
within a given set of services.

• Service reusability: Business logic is split into several
services and is ”context agnostic”, to promote reuse of
code.

• Service autonomy: Any Service can work independently
thus each service can work autonomously even others
are not working properly.

• Service statelessness: In a stateless service, each re-
quest is treated independently, without any reliance
on previous requests or knowledge of the client’s past
interactions.

The design principles define how these design characteristics
are applied:

• Service loose coupling: Services are designed to have
minimal knowledge and reliance on each other, allow-
ing them to evolve and operate independently without
significant impact on other services.

• Service abstraction: It enables service consumers to in-
teract with services without being aware of the under-
lying technologies, platforms, or complexities involved.

• Service composability: Services can be combined to
create higher-level services or complex business pro-
cesses.

A subset of further principles includes ”service discoverabil-
ity”, ”service statelessness” or ”service autonomy” [10].

2.3.3 Microservices
The concept of microservices can be seen as a newer and

revisioned version of SOA with key differences in the way
these architectures are governed, the relative size of a service
and the autonomy.

SOA emphasizes centralized governance and standardiza-
tion of service contracts and interfaces. It often employs
an ”Enterprise Service Bus” or a central service repository
for service management and orchestration. In contrast, mi-
croservices prioritize decentralized governance, allowing in-
dividual teams to have autonomy over their services without
relying on a centralized infrastructure or standardization.
This enables any team to individually deploy or scale their
provided service [10].

Furthermore, a service needs to be ”micro” to serve a busi-
ness function in a microservice architecture which is not
clearly defined in SOA. The service size may be small in
a SOA software project but it is not prioritized [33].

The scientific community surrounding software engineer-
ing has had a major interest in microservice architecture as
in recent almost all migrations have been moving towards
such an architecture. It is regarded to be one of the most
efficient ways of dealing with legacy systems as the process
is well documented. Another advantage is that splitting up
a layered monolith can happen in small batches and reduces
risk of a vital business workflow failing [33].

The migration from legacy codebases towards microser-
vices is often accompanied by a mindset change towards a
more agile approach in software development. The moderni-
sation towards such an architecture, aims to achieve a faster
time to market of new software releases, high available sys-
tems which are more resilient against any types of failure,
better maintainability of the codebase and a ”cloud-ready”
infrastructure [32].

2.4 Cloud / Container
We will briefly introduce cloud and container technologies

in order to understand how these technologies are used as an
integral component of software architectures. They are most
often deployed in combination because the small footprint
of a container can be used well in a cloud environment.

”The cloud is just someone else’s computer” is a popular
joke among people criticizing the movement to the cloud.
One can differentiate between three services a cloud provider
offers:

• IaaS: Infrastructure as a Service e.g. virtual machines,
routers, load balancers

• PaaS: Platform as a Service, e.g. Databases, App En-
gines, Storage

• SaaS: Software as a Service, e.g. Mail, Netflix, Zoom

The overall benefit of any cloud offering is flexibility to
scale up or down almost infinitely and the abstraction layer
which handles underlying systems depending on what ser-
vice one uses.

Containers are lightweight and isolated environments that
package software applications and their dependencies, allow-
ing them to run consistently across different computing en-
vironments. They provide a standardized way to package
and distribute applications, making them portable and easy
to deploy [27].

They are most suitable to be utilized in a microservice
architectures because they can be run autonomously, can be
scaled up or down independently and they represent a single
business function [27].

3. TECHNICAL DEBT
The metaphor technical debt has been introduced by Ward

Cunningham in 1992 in the beginning of agile development
and has been spread further since, together with the growth
of agile development [8]. It is used to describe a trade off
between short-time and long-term value, which is for ex-
ample induced by the pressure to meet a deadline[6, 26].
This comes at the cost of ”debt” which has to be repaid and
increases the total amount of engineering work [25]. The
creation of technical debt in the process of writing new soft-
ware is not necessarily bad, but causes problems, when it’s
not repaid promptly. Furthermore, technical debt increases
the costs for maintenance during the life span of the applica-
tion [8]. Using our defined characteristics for legacy systems
the increasing maintenance effort can therefore increase the
risk of a system to become legacy.

Another problem is, that technical debt can also be cre-
ated within the lifetime of a software, introduced by bug
fixes and continuous development of new features. In this
context technical debt often refers to debt on the code level.
For example structural problems in the code or the disregard
of best practices[21].

Since the creation of the metaphor technical debt, the
term has been used in many different endeavours, to describe
different kind of debts. This includes for example code debt,
documentation debt, architectural debt, requirement debt or
infrastructure debt [19, 28].

Following from the architectural focus of the paper, we
especially focus on architectural technical debt. As Ernst et.
al showed in their empirical study, about the understanding

and view on technical debt, that most of the debt results
from poor architectural choices [13].

3.1 Architectural technical debt
Architectural technical debt (ATD) refers to a special

form of technical debt, caused by poor architectural design
decisions over the course of time. This includes violations of
best practises and the integrity of the software architecture
[22]. ATD can also be caused by the decisions to use already
existing legacy components, instead of rewritting them from
the beginning. The decision to create debt in such a way,
is often driven by economic factors like time-to-market or
financial costs [21].

The main problem of creating ATD in a system is the in-
fluence on the quality attributes of the system. Especially
the ability to add new or change components (evolvabilty)
and the maintenance gets harder with increasing debt, be-
cause the system deviates from the standard with every
decision for a shortcut[21]. Therefore, also the costs rise,
which can be a reason for companies to classify the system
as legacy. The decision to take the debt may be better for
the short term view, but the higher short term business value
from the decision is destroyed by the effects in the long term
costs and loss of quality[21].

A further problem of ATD results from the point in time,
where architectural decisions are made. Most of the clas-
sic approaches to the development of software systems put
the architectural decisions at the beginning of the process,
which can make it hard to foresee all consequences of cer-
tain decisions[13]. This effect can increase when the business
interests (limited time or budget) play a key role in the de-
cision process. Ernst et. al also found out, that most of the
developers they interviewed see the repaying of the debt as
the bigger challenge. The long life span of a software system
causes it to continuously drift further away from the original
decision, design and also documentation[20]. This is under-
lined by their results, which include a proof for at least a
small, measurable correlation between the age of a system
and the notion of architectural issues by the developers [13].

A big problem in the scope of this development is the
inability to calculate the value of paying back debt. The
potential increases on overall system health, maintainability
or the ability to simplify the construction of new features in
the future is harder to estimate than the costs and gains of
a completely new feature, visible to the customer [26]. This
is especially the case in an agile development environment,
because the agility favors shorthand decisions rather than a
complete planing of the system before starting to program,
as done in classical, linear approaches.

From the publications listed in SCOPUS the first year
where the term ATD is considered, is 2012 and it became a
relevant issue in the science community from the year 2018
on. This suggests, that the issue of debt in the architectural
part of a system is a quite recent discovery, because the
pure technical debt, which mostly focuses on problems in
the source code, has already been an issue from 1992 on,
where Cunningham defined the metaphor.

Since the appearance of architectural technical debt, the
management and identification of it is a central issue in the
research.

3.1.1 Managing architectural technical debt
Within the scope of our review we found multiple ap-

proaches to the management of ATD. These are spread-
ing between simple approaches for the inclusion of found
issues in the development process to more complicated con-
cept models and metrics to estimate the current debt. This
development has a high importance, because back in 2015
the study presented by Ernst et. al showed, that about 65%
of the participants did not have a defined and systematic
practice for the management of technical debt[13].

Overall the management of ATD can be separated into two
parts. The first part describes the preventive management,
which is used during the initial software development, with
the target to decrease the amount of debt created and to
ensure that the creation of debts is conscious. The second
approach is the implicit handling of ATD, which focuses on
the debt, that has already been created[21].

A simple approach for the implicit handling of technical
debt, has been presented by Brown et. al. They proposed
to handle technical debt in an agile environment, by simply
adding the found issues to the product backlog, next to all
the new features, which are included anyway [6]. This allows
the reuse of already existing valuation methods from the
classical project planing.

In addition Nord et. al presented a more systematic ap-
proach and created a formula to calculate the total develop-
ment costs, based on splitting the costs into the direct de-
velopment costs and the costs created in the rework, when
deciding for taking on debt. The target is to make the de-
cisions related to the value and offer an approach to handle
debt within the development process [26]. In this case they
described the management of technical debt as a “choice be-
tween focus on value and focus on costs”, which results in
agile methods tending to accumulate debt and more phase
based approaches, focusing on cost, tending to delay the
creation of value [26].

All the presented methods focus mainly on the implicit
handling of ATD, which is quite important, because as men-
tioned in the introduction to technical debt, debt only be-
comes a real problem when it becomes too large. Therefore,
it is a key part of the management to visualize the current
debt level. Such a visualization has already been introduced
for classical technical debt by Eisenberg et al. They defined
different metrics that describe the amount of debt and then
introduced thresholds so that timely action can be taken if
the debt becomes too big [11]. This approach can probably
also be fit to the architectural debt management, by defining
different metrics and fitting thresholds.

Besides these implicit approaches it would be very useful,
if approaches for the management exists, which aim to pre-
vent the creation of debt. A possible approach for this has
been presented with the development of Continuous Archi-
tecture. This approach mainly focuses on fitting the software
development process to the acceleration of the development
cycles, following from the trend of continuous delivery. One
of the six key principles is to “delay design decisions until
they are absolutely necessary”[12]. This could lead to the
reduction of ATD, because the decisions are made with the
most knowledge possible and are fitted as good as possible
to the current system.

4. CORRELATION
Besides the architectural technical debt, which is created

by many but small decisions about the architecture in the
development process, the reference architecture could also

have an influence on the probability of a system to turn
legacy. This can be due to effects, which are created by
decision made in the definition of the reference architecture
or technological developments, which create needed abilities,
not considered in the creation of the architecture.

Following from the focus of this paper, we do not analyze
the effects induced by the development of new programming
languages. Today no new system will be written in COBOL
or Fortran, because many new programming languages are
easier to understand and therefore more popular. In addi-
tion many of these old programming languages were devel-
oped in a time, where storage and computing power had
been rare, resulting in different requirements for a language.
Systems written in a dying language have to become legacy,
because together with the language much of the knowledge
about the language dies. Therefore, the costs for the people
to do the maintenance and adjustments increases continu-
ously, which is a characteristic of a system turning legacy.

Nevertheless the programming language cannot be ex-
cluded completely for the investigation of the relationship
of the architecture and the life span of the software systems,
since new programming languages also often bring new con-
cepts, which form the basis for new architectures.

4.1 Empirical analysis
As described in the beginning, this part analyzes our re-

search results from the SCOPUS database, by looking at the
source and target architectures used in different migration
or modernisation approaches presented in the different time
spaces. We decided to divide the found documents into four
equally sized time spaces. This results in the following time
spaces: 1996-2002, 2003-2009, 2010-2016, 2017-2023.

Due to the short time space of the seminar we need to
restrict the number of analyzed papers. Therefore, we only
take the first 15 papers with the most citations from each
time space and then filter out the paper that do not describe
a migration or modernisation process of a software system.

4.1.1 1996-2002
In the time span from 1996 to 2002 nine out of fifteen

papers contained a migration or modernisation of a legacy
system in the software engineering space. The nine results
focused primarily on transitioning from one language to an-
other one. None of the papers mentioned any specific target
architecture or any specific pattern which we could assign
to one of our outlined architectures from chapter two.

source target count

COBOL / PL1 OO 5
C OO 2

Assembler C 1
Mainframe Server-Client 1

Table 1: source and target of migrations from 1996 to 2002.

As can be seen in Table 1 most migrations targeted main-
frame systems towards object-oriented languages. Some pa-
pers mentioned specific languages e.g. Java or C++ but
most were focused on technical algorithms to extract infor-
mation out of procedural languages into specific objects.

4.1.2 2003-2009

In the time span from 2003 to 2009 10 out of the 15 se-
lected paper are helpful for our purpose. The other five had
to be excluded, because they did not contain information
about a system migration, but a specific health system or
a visualization for high performance computing. 100 % of
the useful papers described a migration to a SOA, that in
some cases is specified as Webservice architecture. Based on
what can be extracted from the papers they all start with
a monolithic or formbased architecture. Both of these can
be described as a domain-driven architecture. Two of the
10 approaches proposed a simple black box wrapping ap-
proach that takes the legacy system and wraps it into an
architecture enabling the switch to a SOA.

4.1.3 2010-2016
From the 15 selected papers within this time span, only

seven are helpful for our research, because the rest focuses on
the evolution of GPUs or on the transition from classical net-
work structures to the implementation of Software Defined
Networking infrastructure. The useful papers can be divided
into two parts. The first groups consists of three papers de-
scribing a migration to a SOA. The second group focuses
on the migration of existing systems in to an cloud environ-
ment. The second group therefore mainly describes a change
of the underlying hardware, which does not give much infor-
mation about the influence of the software architecture, but
the influence of technological change. However, it is possi-
ble to derive information from the migration, because the
process can be divided into two different approaches. The
first approach simply moves its legacy system to the cloud.
In other words, they are only replacing the hardware. Thus,
this approach does not really lead to an improvement in the
issues characterising the system as legacy. The second ap-
proach includes not only the move to the cloud, but also a
reengineering of the system. In this case SOA is still the
chosen architecture, as for example in [9, 24].

4.1.4 2017-2023
Seven out of 15 papers specified the source and target

architectures in order for us to analyze them further. Out of
the eight remaining papers three were dealing with software-
defined networks and the rest had miscellaneous content e.g.
biology, quantum computing which is of no interest for our
analysis.

The seven paper all dealt with the target architecture
of microservices while the source architecture was always a
monolithic design. Specifically the paper ”Microservices Mi-
gration in Industry: Intentions, Strategies, and Challenges”
[14] consisted of 14 different systems migrating from a mono-
lith to multiple microservices.

The research interest in microservices started in 2015 [32]
but is apparently dominating the field of migrations and
modernisations.

4.1.5 Results
The most apparent result one can draw from our anal-

ysis is that until now the migration towards new software
architectures has been acyclic. This means that the field of
research and the software architecture in private companies
has been moving in one direction only.

Furthermore, our results indicate that the modernization
of software architectures schemes only became important
from 2003 onwards. Before that the modernisation and mi-

gration papers only focused on a switch of the programming
language.

One can see in Figure 1 that all of the identified archi-
tectures can be attributed to the overarching domain-driven
design. While in Figure 2 one can see that a heavy focus
lies on SOA and microservice architecture.

Figure 1: Source architectures for modernisation approaches
from 2003-2023

Figure 2: Target architectures for modernisation approaches
from 2003-2023. The cloud characterisation has been added,
because it is an important path within that timespace, al-
though it does not directly corresponds to a software archi-
tecture. It can be added partwise to monolithic or to SOA
as described in chapter 4.1.3

4.1.6 Methodology problems
The results of the literature analysis must be viewed with

some caution, as our chosen procedure has problems in both
internal and external validity. The internal validity is mainly
affected by the lack of specificity in the publications. Most
of the papers used say very little about the exact initial
architecture as well as about the reasons that made mod-
ernization necessary. This is probably due to the fact that
the approaches presented should be kept as general as pos-
sible and therefore not limited by more specific information.
Overall, these problems mean that the learnings from the
review are limited.

We also found some aspects in the external validity that
limit the transferability of the results. The main issue here is
that of the 60 papers selected, only a total of 33 were suitable
for analysis, which results in a hit rate of 55%. This problem
could have been reduced by a more thorough pre-selection
of the papers. Furthermore, the search strategy could have

been improved by taking a certain number of papers for each
year instead of looking at very long periods of time.

5. DISCUSSION
The software architecture is a major part of the develop-

ment and research in software engineering. The goal is to
create systems fulfilling quality attributes like maintainabil-
ity, scalability, modularity and security, while also keep the
overall costs for production and maintenance low.

An important part of keeping the costs down is trying to
prevent the system from turning into a legacy system, be-
cause the reengineering and the new development is expen-
sive. Therefore, we compiled the architectures and ecosys-
tem which should be avoided or used.

5.1 Architectures to avoid
Regarding RQ2 we could extract two main architectures

out of the learnings from the review, which should be avoided
to improve the longevity of a system. The first architecture
is based primarily on empirical analysis. We found that al-
most all modernisations move away from monolithic archi-
tectures to service-oriented architectures. The main reason
for this is the lack of scalability of monolithic systems, as
they offer several services, not all of which are used equally
often. It follows that the services can not be independently
scaled, which leads to a waste of resources for the services
rarely used [31]. This effect can be intensified by the ad-
vancement of the Internet, which requires high scalability
and flexibility. Therefore, the avoidance of monolithic sys-
tems can be a sensible step to slow down the process of turn-
ing legacy, especially for web applications offering multiple
services.

Another practice to avoid is the multiple wrapping of
legacy systems. In this case, the legacy system remains as
a blackbox and is simply connected to the new system by
a wrapping layer. This is a very low effort solutions, but
comes with the problem that the issues of the actual legacy
system, such as maintenance or central dependencies with
limited support, are not fixed, but only obscured. Running
this practice multiple times can make the system incompre-
hensible, increasing the cost of reengineering at some point
in the future.

5.2 Architectures to choose
Answering RQ3 is complicated, because our research can

not foresee the future. Therefore, we have to be careful
about calling out architectures which will not turn obsolete
in the distant future. We can however focus on the reasons
why the migration or modernisation happened towards a
specific architecture.

The migration towards SOA is supported by the develop-
ment of modular and reusable services. By breaking down
applications into smaller, independent services, organiza-
tions can reuse these services across multiple systems and
applications. This modular approach enhances flexibility,
scalability, and maintainability, as changes in one service do
not necessarily impact the entire system [10].

Migrating to a microservice architecture has the same
advantages while also having decentralized governance and
scaling down the size of a service to a single function. Fur-
thermore, the current technologies are driven by supporting
such an architecture e.g. container, kubernetes or cloud [32,
33].

Moving infrastructure or software to the cloud is not strictly
a migration of a software architecture but it still influences
how the software products will be written. Cloud comput-
ing enables organizations to scale their resources based on
demand, providing scalability and flexibility. This elasticity
allows businesses to handle spikes in traffic, accommodate
growing workloads, and optimize resource allocation [27].

6. CONCLUSION
Our exploratory literature review has partly succeeded in

answering our research questions. We were able to find some
correlations between architectures and their tendency to de-
volve into a legacy systems and architectures which have
shown to be more resilient. In general one can say that
monoliths, mainframes, procedural languages and variances
of domain-driven architectures show a tendency to become
unmaintainable.

The most common target architectures for modernisations
were SOA, cloud infrastructures and microservices which is
due to their flexibility, modular nature and scalability. In
addition to the influence of reference architectures, the re-
view also showed the impact that even small decisions, taken
during or before the lifetime of a system, can have on the
lifetime of the system, because they can appear as architec-
tural technical debt.

The chosen methodology shows problems regarding the
selection of publications thus future work should draw from
multiple databases, refine the search terms and filter more
heavily towards software architectures. Lastly one could
focus on the impact new technologies have on longetivity
of software systems. This may include DevOps practices,
CI/CD pipelines, machine learning or advanced cloud con-
figurations.

7. REFERENCES
[1] R. Arshad Khan. Trends in software reverse

engineering. 04 2020.

[2] R. Bahsoon and W. Emmerich. Evaluating software
architectures: Development stability and evolution. In
Proceedings of the ACS/IEEE International
Conference on Computer Systems and Applications,
Tunis, Tunisia, pages 47–56. IEEE Computer Society
Press, 2003.

[3] K. Bennett. Legacy systems: coping with success.
IEEE Software, 12(1):19–23, 1995.

[4] A. Bianchi, D. Caivano, V. Marengo, and G. Visaggio.
Iterative reengineering of legacy systems. IEEE
Transactions on Software Engineering, 29(3):225–241,
2003.

[5] J. Bisbal, D. Lawless, B. Wu, J. Grimson, V. Wade,
R. Richardson, and D. O’Sullivan. An overview of
legacy information system migration. In Proceedings of
Joint 4th International Computer Science Conference
and 4th Asia Pacific Software Engineering Conference,
pages 529–530, 1997.

[6] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim,
P. Kruchten, E. Lim, A. MacCormack, R. Nord,
I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, and
N. Zazworka. Managing technical debt in
software-reliant systems. In G.-C. Roman and
K. Sullivan, editors, Proceedings of the FSE/SDP

workshop on Future of software engineering research,
pages 47–52, New York, NY, USA, 2010. ACM.

[7] S. Cetin, N. I. Altintas, H. Oguztuzun, A. H. Dogru,
O. Tufekci, and S. Suloglu. A mashup-based strategy
for migration to service-oriented computing. In IEEE
International Conference on Pervasive Services, pages
169–172, 2007.

[8] W. Cunningham. The wycash portfolio management
system. 1992.

[9] J. Delsing, J. Eliasson, R. Kyusakov, A. W. Colombo,
F. Jammes, J. Nessaether, S. Karnouskos, and
C. Diedrich. A migration approach towards a
soa-based next generation process control and
monitoring. In IECON 2011 - 37th Annual Conference
of the IEEE Industrial Electronics Society, pages
4472–4477. IEEE, 2011.

[10] D. Duggan. Enterprise software architecture and
design: Entities, services and resources, volume 10 of
Quantitative software engineering series. Wiley,
Hoboken NJ, 2012.

[11] R. J. Eisenberg. A threshold based approach to
technical debt. ACM SIGSOFT Software Engineering
Notes, 37(2):1–6, 2012.

[12] M. Erder. Continuous architecture : sustainable
architecture in an agile and cloud-centric world.
Morgan Kaufmann, Amsterdam, [Netherlands, 1st
edition edition, 2016 - 2016.

[13] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and
I. Gorton. Measure it? manage it? ignore it? software
practitioners and technical debt. In E. Di Nitto,
M. Harman, and P. Heymans, editors, Proceedings of
the 2015 10th Joint Meeting on Foundations of
Software Engineering, pages 50–60, New York, NY,
USA, 2015. ACM.

[14] J. Fritzsch, J. Bogner, S. Wagner, and
A. Zimmermann. Microservices migration in industry:
Intentions, strategies, and challenges. In 2019 IEEE
International Conference on Software Maintenance
and Evolution (ICSME). IEEE, sep 2019.

[15] Gary Barnett. The future of the mainframe. 2005.

[16] W. Hasselbring. Software architecture: Past, present,
future. In V. Gruhn and R. Striemer, editors, The
Essence of Software Engineering, pages 169–184.
Springer International Publishing, Cham, 2018.

[17] C. Jacobi and C. Webb. History of ibm z mainframe
processors. IEEE Micro, 40(6):50–58, 2020.

[18] R. Khadka, B. V. Batlajery, A. M. Saeidi, S. Jansen,
and J. Hage. How do professionals perceive legacy
systems and software modernization? In P. Jalote,
L. Briand, and A. van der Hoek, editors, Proceedings
of the 36th International Conference on Software
Engineering, pages 36–47, New York, NY, USA, 2014.
ACM.

[19] P. Kruchten, R. L. Nord, and I. Ozkaya. Technical
debt: From metaphor to theory and practice. IEEE
Software, 29(6):18–21, 2012.

[20] M. M. Lehman and L. A. Belady. Program Evolution:
Processes of Software Change. Academic Press
Professional, Inc., USA, 1985.

[21] Z. Li, P. Liang, and P. Avgeriou. Architectural debt
management in value-oriented architecting. In
Economics-Driven Software Architecture, pages

183–204. Elsevier, 2014.

[22] Z. Li, P. Liang, and P. Avgeriou. Architectural
technical debt identification based on architecture
decisions and change scenarios. In 2015 12th Working
IEEE/IFIP Conference on Software Architecture,
pages 65–74. IEEE, 2015.

[23] T. C. Melewar and N. Smith. The internet revolution:
some global marketing implications. Marketing
Intelligence & Planning, 21(6):363–369, 2003.

[24] P. Mohagheghi and T. Sæther. Software engineering
challenges for migration to the service cloud paradigm:
Ongoing work in the remics project. In 2011 IEEE
World Congress on Services, pages 507–514. IEEE,
2011.

[25] Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick
Kazman, Miryung Kim, Philippe Kruchten, Erin Lim,
Alan MacCormack, Robert Nord, Ipek Ozkaya,
Raghvinder Sangwan, Carolyn Seaman, Kevin
Sullivan, and Nico Zazworka. Foser 2010: The fse/sdp
workshop on the future of software engineering
research. In Proceedings of the 18th ACM SIGSOFT
Symposium on the Foundations of Software
Engineering. ACM, 2010, New York, NY, 2010.

[26] R. L. Nord, I. Ozkaya, P. Kruchten, and
M. Gonzalez-Rojas. In search of a metric for managing
architectural technical debt. In 2012 Joint Working
IEEE/IFIP Conference on Software Architecture and
European Conference on Software Architecture, pages
91–100. IEEE, 2012.

[27] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi. Cloud
container technologies: A state-of-the-art review.
IEEE Transactions on Cloud Computing,
7(3):677–692, 2019.

[28] E. Penttinen, N. Mäki, and T. Rinta-Kahila. A
Domino Effect: Interdependencies among Different
Types of Technical Debt. Honolulu, HI?, 2023.

[29] W. Perry. Foundations for the study of software
architecture.

[30] M. H. Valipour, B. Amirzafari, K. N. Maleki, and
N. Daneshpour. A brief survey of software architecture
concepts and service oriented architecture. In 2009 2nd
IEEE International Conference on Computer Science
and Information Technology, pages 34–38. IEEE, 2009.

[31] M. Villamizar, O. Garcés, H. Castro, M. Verano,
L. Salamanca, R. Casallas, and S. Gil. Evaluating the
monolithic and the microservice architecture pattern
to deploy web applications in the cloud. In 2015 10th
Computing Colombian Conference (10CCC), pages
583–590, 2015.

[32] H. Vural, M. Koyuncu, and S. Guney. A systematic
literature review on microservices. In O. Gervasi,
B. Murgante, S. Misra, G. Borruso, C. M. Torre,
A. M. A. Rocha, D. Taniar, B. O. Apduhan,
E. Stankova, and A. Cuzzocrea, editors,
Computational Science and Its Applications – ICCSA
2017, volume 10409 of Lecture Notes in Computer
Science, pages 203–217. Springer International
Publishing, Cham, 2017.

[33] Z. Xiao, I. Wijegunaratne, and X. Qiang. Reflections
on soa and microservices. In 2016 4th International
Conference on Enterprise Systems (ES), pages 60–67.
IEEE, 2016.

An Analysis of Graphical Notations for ML Solutions in
Academic Research

Joris Mohar
RWTH Aachen University

Ahornstraße 55
52074 Aachen, Germany

joris.mohar@rwth-aachen.de

Konstantin Dao
RWTH Aachen University

Ahornstraße 55
52074 Aachen, Germany

konstantin.dao@rwth-aachen.de

ABSTRACT
This paper gives a guideline for graphical notations for fu-
ture papers. We also form a clearer analogy for meta-models
in software architecture to enhance understanding and com-
munication between researchers.

There needs to be more prior research into graphical no-
tation in machine learning (ML) solutions since little to no
research on meta-models in ML in general exists. Many
academic research papers use graphical notations that are
difficult to understand and read. In this analysis, we ex-
plore why these notations are inadequate and which are of
better use.

By applying Grounded Theory, we analyzed the different
groups of graphical notations in academic research. We an-
alyzed about 50 papers from the last 34 years to understand
how these graphical notations work and evolve.

Throughout all the analyzed research papers, we discov-
ered similarities and differences in flow charts and neural
network (NN) diagrams. High-level overview components
are often visualized as rectangles or circles and explained
in other depictions. Furthermore, input data is included to
improve the comprehensibility of how data is altered and
used.

In conclusion, the trend goes from complex, difficult-to-
read graphs to readable, straightforward graphs interacting
with input data.

Keywords
Graphical Notations, Machine Learning Architecture, Graphs,
Charts, Flow Charts, Neural Networks

1. INTRODUCTION
The Unified Modeling Language (UML) provides guide-

lines for conventional software architectures on how certain
parts of the architecture should be represented. Despite ef-
forts to visualize ML architectures for beginner ML practi-
tioners [1] or to research in specific areas such as computer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2022/23 RWTH Aachen University, Germany.

vision on the visualizations used [39], no similar guidelines
exist for ML architectures in general.

Since ML practitioners find it difficult to present com-
plex ML architectures in a way that is understandable to all
stakeholders, there is a need for visualization or documen-
tation guidelines [33]. Therefore we set up three objectives
for this paper:

G1: First, we aim to provide a comprehensive collection of
graphical notations used over the past 34 years.

G2: Our goal is also to offer a practical guide for best prac-
tices. We seek to alleviate the challenge of crafting
effective scientific papers and enhance readers’ under-
standing of architectural solutions.

G3: At last, we try to anticipate future trends.

The paper follows a clear structure. Section 2 explains
our procedure, section 3 presents our findings and analysis,
and Section 4 provides recommendations for using graphical
notations and possible trends. Section 5 summarizes the
paper’s results, while section 6 includes acknowledgements.

2. METHODOLOGY
We analyzed these graphical notations in part through

Grounded Theory [9]. We used this method by examining
around 50 ML papers spanning 34 years and investigating
which graphical notations they use to demonstrate the ar-
chitecture of their solution.

The databases we searched through are Google Scholar,
RWTH Publications [7] and arXiv.

The selection criteria included multiple keywords asso-
ciated with subsections of ML, which were listed on the
RWTH page from the AI Center [7]. The subsections were
Deep Learning, Learning Theory, Learning on Graphs, Graph
Neural Networks, Probabilistic and Statistical Learning, Re-
inforcement Learning, Data Mining, Process Mining and
AutoML. We also added Supervised Learning and Unsuper-
vised Learning to the selection criteria since they are also
bigger subsections of ML [1]. Those criteria were often com-
bined with keywords like graphical notations, visualization,
model and architecture.

Initially, we added papers that lacked visual representa-
tions of the architecture to our collection. However, we later
removed them from the collection due to their large number.

We skimmed through the visualizations for every search
with applied selection criteria and added new research pa-

pers to the collection as long as the speed of new notations
appearing has not decreased to an insignificant number.

After collecting the data, the relationships between the
explored graphical notations were investigated, and similar
notations were grouped under an overall theme.

3. RESULTS
Overall, five types of graphical notations were identified:

automata, decision trees, nearest neighbor graphs, flow charts
and NN diagrams.

We analyze in what cases these graphical notations are
applied, as well as their advantages and disadvantages.

3.1 Automata
The first graphical notation we analyzed is automata, which

illustrates the interactions and transitions between states in
ML solutions.

Additionally, automata can effectively represent matrix
states and associated data to give the reader a better idea
of how the ML solution solves the problem. This is achieved
through the numbering of all transitions, as it is obligatory
to do for automata. It is mostly done by naming the tran-
sition by the numerals of the states it connects. A prime
example demonstrating the interaction between automata
and matrices is the Hidden Markov Model, which can be
seen in figure 1.

However, automata have limitations in their applicabil-
ity, as they are primarily suited for Hidden Markov Models
but can be added as support for other graphical notations.
Flow charts make more sense in most cases, as they allow
for more detail and give a greater understanding of the ML
solution than automata [16]. This advantage arises due to
automata’s limited capacity of representing only a limited
portion of data along with its interactions and correlations
[31].

Automata can become harder to interpret and compre-
hend as the ML solution grows in complexity and size. This
absence of a mechanism to condense and manage data within
automata and the limitation of representing only one data
level pose a challenge to handling more extensive ML solu-
tions.

In conclusion, while automata find their relevance in Hid-
den Markov Models, they have a very limited range of ap-
plications for other ML solutions, especially because of their
constraints in representing data and their scalability issues
[31].

3.2 Decision Trees
One commonly used way to visually represent machine

learning solutions is through decision trees. They are most
often used to show ML solutions’ various decision paths. Ad-
ditionally, decision trees give insight into probabilities and
factors influencing the selection of the path they could go
down or for what reasons they might take that path.

Decision trees excel at showing data effectively. Each node
can give data about itself, including data about the nodes
that come after or before them and their interactions.

However, decision trees pose certain challenges, especially
in a research paper context, as we can only show a very
limited number of decisions. The reason for that is the scal-
ing with kn, where k is the number of decisions possible for
each node and n is the number of iterations of these deci-
sions. For binary decision trees, which are the minimum

Figure 1: Automata. Taken From [31]

decision tree possible from a scaling perspective, the scaling
effect becomes 2n. Consequently, decision trees with more
potential decisions show a more pronounced scaling effect.

Another problem is that decision trees primarily provide
information about the decisions themselves. Only limited
information about individual nodes and their immediate sur-
roundings is conveyed. Consequently, as a standalone graph-
ical notation, a decision tree often does not display a com-
prehensive overview of the ML solution, as seen in figure 2.
However, it can effectively be used with other graphical no-
tations like flow charts or heat maps to improve the overall
comprehension of the ML solution [22].

In summary, decision trees are valuable for showing de-
cision paths in an ML solution. However, their scalability
issues and narrow focus often make combining them with
other graphical notations necessary to offer a more compre-
hensive understanding of the ML solution [2] [38].

Figure 2: Binary Decision Tree. Taken From [2]

3.3 Nearest Neighbor Graphs
The third notation we analyzed was nearest neighbor graphs,

which depict how an ML algorithm identifies nearby nodes
and constructs clusters based on the nearest neighbor config-
uration. It uses multiple starting points to illustrate which
nodes are closest to which respective starting point.

Nearest neighbor graphs, while powerful for nearest neigh-
bor and clustering algorithms, have certain limitations. They
provide little information about the ML solution and are
confined in the application to nearest neighbor and cluster-
ing algorithms.

However, this specification helps to enhance their useful-
ness in showing nearest neighbor and clustering solutions as

well as their workings and outcomes, which can be seen in
figure 3 [2].

In essence, nearest neighbor graphs serve as an application-
specific graphical notation, highly useful for nearest neigh-
bor algorithms and clustering. However, the uniqueness of
this notation makes it otherwise unsuitable for any other
ML solution.

Figure 3: Nearest Neighbor Graph. Taken From [2]

3.4 Flow Charts
Flow charts are one of the most widely used graphical no-

tations in ML solutions due to their effectiveness in showing
interactions and the detailed workings of each step or com-
ponent in the architecture. They can also include detailed
images of what they represent, enhancing the understanding
of the ML solution.

An advantage of flow charts is that they scale well when
showing complex ML solutions. This advantage can be achieved
using different graphical tools like matrices and examples,
which help improve the flow chart by making it more com-
pact, readable and easy to understand for the reader. Fur-
thermore, flow charts are still very readable even with fac-
tual data, interactions and correlations that the ML solution
shows [16] [31].

Flow charts have an advantage over automata, decision
trees, and nearest neighbor graphs as they can be applied
to most machine learning problems and solutions, including
Supervised, Reinforcement, and Unsupervised Learning [29].

In reinforcement learning, flow charts are often used as it
is possible to show the iterative structure that is needed for
these ML solutions, e.g. figure 4. The repetition required
in Reinforcement Learning can be shown through circles of
activities and arrows. These can also interact with matrices,
images or other supportive graphical notations.[2]

Another advantage of flow charts is that they can be di-
vided and joined easily at any point. It is mostly possi-
ble due to their composition in various graphical notations.
Consequently, the author can explain a subsection of the
flow chart to help understand the main ML solution by tak-
ing a part of it and enhancing the detail of that subsection
[14].

Flow Charts can also vary greatly in complexity for what
is needed to be shown. The range goes from uncomplicated
graphical notation like in the flow chart of a Reinforcement
Learning solution in figure 4 to a fairly complex flow chart in
figure 7 where BERTScore is illustrated. This ML solution
is more complex and utilizes various graphical notations as
support, such as heatmaps, matrices, arrows, activities, im-
ages, and examples. These notations help the reader better
understand the complex ML method.

In conclusion, authors have a wide range of different com-
plexities of flow charts to choose from to fit the ML solution
they present. As such, flow charts offer a powerful means to

visualize ML solutions and provide clarity and comprehen-
sibility to readers.[16]

3.4.1 Activity
Activities in flow charts refer to bubble, circle or square

shapes. These building blocks are connected through lines
and arrows, often containing textual information, like data
or ML solution features, to convey relevant information.

Figure 4: Flow Chart of a Reinforce-
ment Learning Solution. Taken From
[2]

They are also
used to give ex-
amples through text,
showing how the
ML solution oper-
ates and evolves
the example through-
out the chart [16].
Images can also
be integrated with
activities by tran-
sitioning between
text and visual
representations [35].

Using these activities can give the reader a better under-
standing of the solution, as it gives an idea of how it works
and enables the reader to easily follow the ML solution pre-
sented in the paper [16] [2].

3.4.2 Images
Images in flow charts show the connection between the

real-world aspect and the ML solution. They can be easily
integrated into a flow chart through arrows and texts to ex-
plain their relevance and how they relate to the ML solution
or graphical notation.

These images play a vital role in enhancing the reader’s
understanding by showing the practical application of ML
solutions in the real world. They can be photographs taken
of real-world instances or custom-designed graphics. The
designed graphics are often combined with another graphic
notation to provide additional context, as depicted in figure
5. Notably, recent papers have emphasised providing images
to reinforce the connection between the ML solution and its
real-world aspect.[35, 16].

Figure 5: Example of an Image and a Flow Chart Interacting
and Complementing Each Other. Taken From [35]

3.4.3 Heatmaps in Flow Charts
Heatmaps, another graphical notation we analyzed, are a

supportive rather than a main tool for ML solutions. Their
primary use lies in illustrating correlations and data, strength-
ening other graphical notations in the process, which as an
example, can be seen in figure 6. Heatmaps are particu-
larly valuable in showing the learning aspect of ML solutions
within the context of a flow chart. In flow charts, they are

similarly used to matrices, as in figure 7.
An advantage of Heatmaps is their flexibility to show vary-

ing amounts of data depending on what is needed for the ML
solution or to enhance the graphical notation [16] [22].

3.4.4 Matrices

Figure 6: Example of a
Heatmap. Taken From [16]

Matrices play a sig-
nificant role in ML ar-
chitecture, particularly
in representing the in-
teractions of nodes and
states through transi-
tion matrices[31]. They
are also utilized in a
supporting role to rep-
resent how the data in-
teracts within a model.

In this supporting role,
they are often inte-
grated into flow charts
to enhance the reader’s
understanding of the
utilized data, as shown
in figure 7. While
numbers are the most
common representation

within matrices, they can also incorporate text or colours
to convey information.

While matrices do not represent a useful graphical nota-
tion, their importance lies in their ability to support other
graphical notations. Their role as a supporting notation for
flow charts and similar graphical notations is significant in
clarifying and effectively conveying information [16].

Figure 7: Example of Flow Chart With Matrices. Taken From
[16]

3.5 Neural Network Diagrams
Despite using flow charts for NN architectures, more graph-

ical notations are only related to the context of NNs. They
are usually applied for classification and generative problems
[1], which the data reflects. Despite their regular use, they
are challenging to convey [39]. Among other things, this is
also the reason why it is analyzed in more detail below.

3.5.1 Components
Usually, well-known networks are abstracted to compo-

nents of a model visualized as boxes with a name label [17]
[19] [11]. Sometimes more specific network details are de-
picted in the box [34]. Some common network types in which
such visualization can be applied are a Recurrent Neural
Network (RNN), Convolutional Neural Network (CNN) and
Generative Adversarial Network (GAN) [37].

Figure 8: Top: Glassner’s Schematic Form. Bottom: Tradi-
tional Box-And-Label Form. Taken From [1]

Fully Connected Networks Another typical network in our
data is a Fully Connected Network (FNN) or Deep Network
(DN). There exist multiple alternatives to visualize it. Us-
ing a base graph structure with continued dots is one way
to do it [27] [43]. Another way is to abstract it as a normal
component of the architecture with the name label ”MLP”
as an abbreviation for Multilayer Perceptrons [1] with some
key characteristics like the width and length [11] [17] [20].
This terminology seems to be outdated and should not be
used further. Instead, it should be labelled with the name
”Dense” as in figure 8 and in figure 11 or ”FNN” [1]. A sim-
ple graphical notation is a square with a cross, as depicted
in figure 8. The cross intuitively conveys that each node
between two layers is connected in pairs.

Figure 9: Transformer Encoder
and Decoder. Taken From [4]

Encoder And De-
coder

Encoder and de-
coder, in their tra-
ditional sense, repre-
sent the operations
to compress and de-
compress data like
in autoencoder [37].
That is why they
are often depicted as
trapezes [27], indi-
cating that the re-
sulting data has a
lower or bigger di-
mension.

For generators in
GANs, [34], the trapeze
visualization is also
useful to represent
an output of different
dimensionality.

In transformer, RNN
and other related ar-

chitectures, encoder and decoder networks are very fre-
quently part of the architecture. Therefore they are usually
extra highlighted, like in figure with grey boxes 9 (see also
for other architectures [42] [18] [24].

Since encoders and decoders are not always built the same,
the sublayers of those networks are usually defined either in
the same figure or in a separate figure. These sublayers are
often networks themselves. Like in figure 9, both compo-

nents contain a feed-forward network.
Other more complex, self-defined components are typi-

cally further explained in another graphical figure or at the
side, like in figure 10, which depends on the available space.

3.5.2 Legends
A legend is a perfect tool to increase the comprehensibility

of used graphical components in architecture. For example,
when the meaning of a component is not derivable from the
figure caption, like in the above schematic representation in
figure 8, a legend would make it clear. Four papers from
our data collection included legends since they introduced
multiple new meta-models. They had either no name label
or had a label with an uncommon abbreviation [36], [19] [43]
[10].

Figure 10: Input Data, Masked Data and Further Explained
Components. Taken From [20]

3.5.3 Layers
Sometimes the architecture of a ML-Solution is a new cat-

egory of an Artificial Neural Network [25] or a neural net-
work of an existing kind but with some tweaks or adjust-
ments. They often come with a certain advantage, such as
shorter training times or a higher outcome quality. That is
why there is a high interest in visualizing and highlighting
them. Usually, these adjustments are made in the form of
different configurations of various layers.

If the type of NN is defined, then each neuron in a layer
generally does the same. Therefore, only layer-relevant char-
acteristics are often stated. For example, in convolutional
neural networks (CNN), each layer is usually depicted with a
text label, including width, length, number of channels and
activation function [12] [19] [21] [5] [3] [23]. In cases where
some of this information is clear from the context, it can be
left out.

Based on our data, layers are represented as nodes in the
NN diagram and are labelled differently depending on the
type of layer. Using a unique graphic to represent them is
even better, as demonstrated in figure 8.

3.5.4 Data Representation
Several NN diagrams include images or visualization of

their input data, as depicted in figure 10 with point clouds
[15]. Multiple papers [30] [5] [43] [8] [26] [25] also included
those visualizations during data flow like in figure 7 with
sentences or in figure 11 with images. By following this
approach, the architectures can be understood much faster
and are more appealing to the eye.

Feature Visualization In certain research papers [25] [23]
[3] [26] [40], the data produced by convolutional layers are

Figure 11: Data-Oriented Visualization of a CNN-
Architecture. Taken From [23]

often depicted rather than the layers themselves. This data-
oriented visualization is practical because convolutional lay-
ers and CNNs are commonly used in image-processing ap-
plications.

The image data, also called feature [1], is stored in a ma-
trix and passed from one convolutional layer to another with
typical techniques. Techniques include pooling, striding, fil-
ter size and the resulting data size. In figure 11, the cuboids
are the features of a convolutional layer, which have the ma-
trix size in (length x width x depth or channel) attached as
information.

The smaller cuboids in the data cuboids are an example
of a filter. Like above, the size of the filter is specified as
(length x width). The quantity of channels is the same as
for the feature. That is why the filter cuboid and feature
cuboid have the same depth. The pyramid form with dashed
lines on each filter cuboid visualizes the information that the
neuron’s output is combined into a (1x1xn) output matrix,
which is part of the next feature cuboid.

More specific information about what the convolutional
layer does with the input data can be specified between two
cuboids, like in the same figure for the common operation
”Max pooling”.

Data Embeddings Usually, data also get abstracted to a
collection of smaller data embeddings, which represent the
data going through the diagram [8] [43] [4]. Figure 10 shows
how data embeddings can be handled during data flow and
support imparting information. The student is only fed with
non-masked data embedding, conveyed with a red-slanted
solid line for each masked data embedding. The results are
then added to the earlier masked data and given to the de-
coder. Instead of using a concatenation or add sign, the in-
put has the same data dimension with just the masked data
parts signed with an ”M”. This approach is recommended
since it mediates the process intuitively and space-efficiently.

3.5.5 Table Visualization
Another option to depict CNNs, including their layers, is

in the form of tables, which convey key information about
a network in a space-efficient manner [12] [21]. In our data,
this graphical notation is only used for common or simple
networks where the data flows from one layer to the other
without alternative routes, unlike the architecture in figure
11. The advantage is that the architecture is more compa-
rable to other NN architectures.

3.5.6 Common Basic Operations
Some layers or components have similar or the same func-

tionalities and are used across different types of architec-
tures. We define those components as basic operations.

Concatenation A very common basic operation is concate-
nation, which is usually stated as a mathematical add sign
like in figure 9. A name label also suffices, but it should be
distinct from other layers or components of the architecture.
In the same figure, specifically in the encoder and decoder
part, a fundamental component includes concatenation in
the form of ”add” in combination with another basic opera-
tion called ”norm”, whose functionality can also be derived
from the name. The abbreviation ”cat” (or ”concat” [42]) is
also valid, which was used in figure 10.

Pooling Pooling or downsampling is a technique to reduce
the dimension of a matrix, which can be the input or out-
put data of a whole network layer. The advantages include
insensitivity to changes, memory needs, and execution time.
That is why it is often used in different NN architectures,
especially with convolution. Our collection of papers con-
tains different visualization approaches for pooling. One of
those is in the form of a triangle with a name label [15].
This visualization reflects the functionality of reducing the
dimension very well and is unambiguous. Another similar
alternative is a trapeze [1], but it should only be used if the
context includes no encoder or decoder due to the likelihood
of confusion. In such cases where the space for visualization
is sparse, a good alternative is to use a small thin oval with
a colour label combined with a legend [36]. Our data also
includes negative examples. An oval or a circle representing
a pooling layer gives, despite the contrast to other parts of
the architecture, no information about what happens with
the data during the process [20].

Dropout Another basic operation is dropout, which un-
like before, relates more to the training of a NN. In the
architecture, graphical notations for dropout layers specify
how many neurons in the previous layer should be consid-
ered during training [1]. In figure 8, the notation includes a
slanted solid line over the connecting line of those layers.

Activation Functions A standard for NNs is activation func-
tions, which prevent the network from ”collapsing into the
equivalent of a single neuron”, as Glassner states. (p.329)
[1] Therefore, activation functions are very often implicitly
assumed for each neuron. A better approach than implic-
itly assuming the type of function from the context is to
use a name label for the type under the layer, like in figure
8 or in other papers [26] [3]. Some papers in our collec-
tion also included a mathematical graph for those functions,
which, of all the options, was the best due to the intuitive
understanding and non-ambiguity of other components in
the architecture. Those graphics can be divided into two
categories. Either way, the graphic gives the information
when a function is linear or non-linear, or the information
that approximates the outline of the graph has [8] [1]. In
the first case, linear graphs are depicted with a straight line
and non-linear graphs with a sinus curve [1] [13].

Another common activation function is softmax, whose
visual representation is, as our data shows, sometimes han-
dled differently than the others [28]. In our data, there has
never been a graphic for this operation with the outline of
a function graph. Only a box with a name label, like in fig-
ure 8 or in another paper [42]. These softmax boxes almost
always occur at the end of the architecture, as we can infer
from our research data.

Mathematical Functions And Signs If functions are used

outside the context of activation functions [4] [8] [13] [6],
then graphics depicting their outlines can also be used. That
should only be used when graphics for activation functions
are marked as such, for example, with the name label for
the type.

Some architectures also included mathematical signs to
add details that could not be easily expressed with graphical
notations [18] [13]. This notation should be used as little as
possible due to the rapidly increasing complexity it causes.

3.5.7 Neural Network Units

Figure 12: The Inner Struc-
ture of a NN Unit. Taken
From [32]

In cases notable ar-
chitectural changes were
made in NN layers, it
offers a graphical expla-
nation of those changes.
As our data reflects, a
layer is visualized as a
conventional flow chart
[42].

Our data also in-
cludes close-up views
from single neurons [32]
[13]. Their overall
structure resembles a
conventional graph, but
with the addition of in-
coming and outgoing ar-

rows, as visualized in figure 12. As usual in graphs, nodes
are depicted as circles with arrows directing the data flow
from one node to the next. The neuron is visualized as a
square object to differentiate it from the nodes.

4. DISCUSSIONS
For large and complex architectures, flow charts are the

preferred graphical notation, as our data reflects, which is
no surprise. Flow charts can be used in many ways and can
include multiple supporting notations like heatmaps, images
as data, matrices and special symbols.

During data exploration, we came across various papers
which used little to no graphical notation [13] or just spec-
ified the mathematical models [41] to show their ML solu-
tion. This makes it harder for readers to apprehend the inner
workings of the architecture, especially for readers with no
computer science or mathematical background. In the latter
case, we suggest the use of easily digestible visualizations.
For example, they should include fewer mathematical for-
mulas and good data visualization. That can be achieved
with various notations stated in section 3.4.2, section 3.5.4
and section 3.5.5. Even if the visualization is not mathemat-
ically formally sufficient, it should be included for overview
purposes of the core idea.

More known architecture components should be visually
abstracted or shorted if the audience consists only of scien-
tific researchers with ML backgrounds. As a result of the
abstractions and shortenings, the notable changes in an ar-
chitecture solution are emphasized. Examples of this com-
mon approach are FNN, CNNs, GANs, convolution layers
or common basic operations, stated in section 3.5.5. This
approach can also make sense if an architecture is complex
and large.

Since an architecture’s components might get unrecognis-
able at first glance, the usage of a legend would compensate

for it. This goes well with unique representations for differ-
ent types of components, as it usually happens with basic
operations and data embeddings in NN diagrams. Likewise,
complex as well as newly introduced components can and
should be explained in a separate, more detailed visualiza-
tion as in Figure 10.

In cases where data representations are included in the
visualization, which we also recommend for computer vision
and natural language processing, a good ratio between con-
tent and data should be emphasized.

In the near future graphical notations like using data rep-
resentations, legends and more abstractions are likely to in-
crease in frequency due to the AI hype caused by ChatGPT
and similar applications. It leads to more interest from a
younger audience and non-graduates. An indicator of that
change is that many universities have recently added ML
and artificial intelligence to their curriculum of undergrad-
uate programs. Furthermore, many research journals will
probably start to see a rise in non-graduate readers. Con-
sequently, researchers will have to design their papers care-
fully to address those audiences. Those visual abstractions
of known components like encoder, decoder, NN types, and
basic operations are slowly becoming more standardized.

After analyzing around ten papers from the last four years,
we also came upon the trend that architecture visualizations
will go away from complex hard to understand graphical
notations. We also think that the trend will go more to-
wards clear and easy-to-read graphical notations like flow
charts and NNs as it improves the reader’s understanding
immensely, so the reader can comprehend the ML solution
before reading the text.

5. CONCLUSIONS
Our analysis of around 50 papers allowed us to gather

many graphical notations used over the past 34 years for
ML architecture solutions. It would have been more effec-
tive to apply more selection criteria during data exploration
for better coverage of used meta-models in the ML domain
knowledge. Since it cannot be ruled out that other notations
exist, we can only report partial success in pursuing our goal
(G1).

Regarding our second objective (G2), we recommend graph-
ical notations that are easy to read and enhance the under-
standing of the ML solution. We recommend using NN di-
agrams and flow charts with supporting graphical notations
discussed in section 4.

With our third goal (G3) in mind, we tried in section 4
carefully to give a trend for graphical notations. This was
particularly difficult considering how little it is known of fu-
ture requirements of ML architectures and its fast-changing
research landscape. Knowing we predict the trend for graph-
ical notations will go more towards flow charts and standard-
izations of common components in an architecture. We also
think that new, improved graphical notations will be found,
leading graphical notations in ML solutions to new heights.

6. ACKNOWLEDGMENTS
We want to thank our Mentor Selin Aydin for her guidance

and input.

7. REFERENCES
[1] A. Glassner. Deep Learning: A Visual Approach. 2021.

[2] A .Vermeulen. Industrial Machine Learning: Using
Artificial Intelligence as a Transformational
Disruptor. 2019.

[3] Alec Radford and Luke Metz and Soumith Chintala.
Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks, 2016.

[4] Ashish Vaswani and Noam Shazeer and Niki Parmar
and Jakob Uszkoreit and Llion Jones and Aidan N.
Gomez and Lukasz Kaiser and Illia Polosukhin.
Attention Is All You Need, 2017.

[5] C. Elich, F. Engelmann, J. Schult, T. Kontogianni and
B. Leibe. 3D-BEVIS: Birds-Eye-View Instance
Segmentation. 2019.

[6] Carpenter, G.A. and Grossberg, S. and Markuzon, N.
and Reynolds, J.H. and Rosen, D.B. Fuzzy ARTMAP:
A neural network architecture for incremental
supervised learning of analog multidimensional maps.
IEEE Transactions on Neural Networks, 3(5):698–713,
1992.

[7] Center für Künstliche Intelligenz. Machine Learning.
https://www.ai.rwth-aachen.de/cms/KI/

Forschung/AI-Methods/~mbxkr/Machine-Learning/.
Accessed: 2023-07-06.

[8] Clinton Ansun Mo and Kun Hu and Chengjiang Long
and Zhiyong Wang. Continuous Intermediate Token
Learning with Implicit Motion Manifold for Keyframe
Based Motion Interpolation, 2023.

[9] D. Walker and F. Myrick. Grounded theory: An
exploration of process and procedure. Qualitative
health research, 16:547–559, 2006.

[10] Fjodor van Veen. The Neural Network Zoo. https:
//www.asimovinstitute.org/neural-network-zoo/.
Accessed: 2023-07-07.

[11] Francis Engelmann and Theodora Kontogianni and
Jonas Schult and Bastian Leibe. Know What Your
Neighbors Do: 3D Semantic Segmentation of Point
Clouds. pages 395–409. 2019.

[12] He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing
and Sun, Jian. Deep Residual Learning for Image
Recognition. pages 770–778, 2016.

[13] Hochreiter, Sepp and Schmidhuber, Jürgen. Long
Short-Term Memory. Neural Computation,
9:1735–1780, 1997.

[14] I. Sárándi, A. Hermansand B. Leibe. Learning 3D
Human Pose Estimation from Dozens of Datasets
using a Geometry-Aware Autoencoder to Bridge
Between Skeleton Formats. 2023.

[15] J. Groß, A. Ošep and B. Leibe. AlignNet-3D: Fast
Point Cloud Registration of Partially Observed
Objects. 2019.

[16] J. Tang,A. LeBel, S. Jain and A. Huth. Semantic
reconstruction of continuous language from
non-invasive brain recordings. Nature Neuroscience,
pages 1–9, 2023.

[17] Jiaqing Xie and Rex Ying. Fea2Fea: Exploring
Structural Feature Correlations via Graph Neural
Networks. pages 238–257. 2021.

[18] Jie Zhou and Ying Cao and Xuguang Wang and Peng
Li and Wei Xu. Deep Recurrent Models with
Fast-Forward Connections for Neural Machine
Translation, 2016.

https://www.ai.rwth-aachen.de/cms/KI/Forschung/AI-Methods/~mbxkr/Machine-Learning/
https://www.ai.rwth-aachen.de/cms/KI/Forschung/AI-Methods/~mbxkr/Machine-Learning/
https://www.asimovinstitute.org/neural-network-zoo/
https://www.asimovinstitute.org/neural-network-zoo/

[19] Jingxia Jiang and Tian Ye and Jinbin Bai and Sixiang
Chen and Wenhao Chai and Shi Jun and Yun Liu and
Erkang Chen. Five A+ Network: You Only Need 9K
Parameters for Underwater Image Enhancement, 2023.

[20] K. Abou Zeid, J. Schult, A. Hermans and B. Leibe.
Point2Vec for Self-Supervised Representation Learning
on Point Clouds. 2023.

[21] Karen Simonyan and Andrew Zisserman. Very Deep
Convolutional Networks for Large-Scale Image
Recognition, 2015.

[22] Kassambara, Alboukadel. Practical guide to cluster
analysis in R: Unsupervised machine learning. 2017.

[23] Krizhevsky, Alex and Sutskever, Ilya and Hinton,
Geoffrey E. ImageNet Classification with Deep
Convolutional Neural Networks. Commun. ACM,
60(6):84–90, 2017.

[24] Kyunghyun Cho and Bart van Merrienboer and Caglar
Gulcehre and Dzmitry Bahdanau and Fethi Bougares
and Holger Schwenk and Yoshua Bengio. Learning
Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation, 2014.

[25] LeCun, Y. and Boser, B. and Denker, J. S. and
Henderson, D. and Howard, R. E. and Hubbard, W.
and Jackel, L. D. Backpropagation Applied to
Handwritten Zip Code Recognition. Neural
Computation, 1(4):541–551, 1989.

[26] LeCun, Yann and Bengio, Yoshua and Hinton,
Geoffrey. Deep learning. Nature, 521:436–444, 2015.

[27] Lemley, Joe and Bazrafkan, Shabab and Corcoran,
Peter. Deep Learning for Consumer Devices and
Services: Pushing the limits for machine learning,
artificial intelligence, and computer vision. IEEE
Consumer Electronics Magazine, 6(2):48–56, 2017.

[28] Levi, Gil and Hassncer, Tal. Age and gender
classification using convolutional neural networks.
pages 34–42, 2015.

[29] Liu, Yanli and Wang, Yourong and Zhang, Jian. New
machine learning algorithm: Random forest. pages
246–252, 2012.

[30] M. Knoche, I. Sárándi and B. Leibe. Reposing
Humans by Warping 3D Features. 2020.

[31] M. Nilsson and M. Ejnarsson, Marcus. Speech
recognition using hidden markov model, 2002.

[32] M. Sundermeyer, R. Schlüter and H. Ney. LSTM
neural networks for language modeling. pages 194–197,
2012.

[33] Nahar, Nadia and Zhang, Haoran and Lewis, Grace
and Zhou, Shurui and Kästner, Christian. A
Meta-Summary of Challenges in Building Products
with ML Components–Collecting Experiences from
4758+ Practitioners. 2023.

[34] P. Achlioptas, O. Diamanti, I. Mitliagkas and L.
Guibas. Learning Representations and Generative
Models for 3D Point Clouds, 2018.

[35] R. Wang, J. Lehman, A. Rawal, J. Zhi, Y, Li, J. Clune
and K. Stanley. Enhanced poet: Open-ended
reinforcement learning through unbounded invention
of learning challenges and their solutions. pages
9940–9951, 2020.

[36] Samiul Based Shuvo and Syed Samiul Alam and
Syeda Umme Ayman and Arbil Chakma and Prabal

Datta Barua and U Rajendra Acharya. NRC-Net:
Automated noise robust cardio net for detecting
valvular cardiac diseases using optimum
transformation method with heart sound signals, 2023.

[37] Sarker, Iqbal H. Deep Learning: A Comprehensive
Overview on Techniques, Taxonomy, Applications and
Research Directions. SN Computer Science, 2(6):420,
Aug 2021.

[38] Schumacher, Tobias and Wolf, Hinrikus and Ritzert,
Martin and Lemmerich, Florian and Grohe, Martin
and Strohmaier, Markus. The effects of randomness on
the stability of node embeddings. pages 197–215, 2022.

[39] Seifert, Christin and Aamir, Aisha and Balagopalan,
Aparna and Jain, Dhruv and Sharma, Abhinav and
Grottel, Sebastian and Gumhold, Stefan.
Visualizations of Deep Neural Networks in Computer
Vision: A Survey, pages 123–144. 2017.

[40] Taigman, Yaniv and Yang, Ming and Ranzato,
Marc’Aurelio and Wolf, Lior. DeepFace: Closing the
Gap to Human-Level Performance in Face
Verification. page 1701–1708, 2014.

[41] Troy Maasland and João Pereira and Diogo Bastos
and Marcus de Goffau and Max Nieuwdorp and Aeilko
H. Zwinderman and Evgeni Levin. Interpretable
Models via Pairwise permutations algorithm. CoRR,
abs/2111.09145, 2021.

[42] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,
W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, J. Klingner, A. Shah, M. Johnson,
X. Liu, Lukasz Kaiser, S. Gouws, Y. Kato, T. Kudo,
H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang,
C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals,
G. Corrado, M. Hughes, and J. Dean. Google’s Neural
Machine Translation System: Bridging the Gap
between Human and Machine Translation, 2016.

[43] Zhijun Zhai and Jianhui Zhao and Chengjiang Long
and Wenju Xu and Shuangjiang He and Huijuan
Zhao. Feature Representation Learning with Adaptive
Displacement Generation and Transformer Fusion for
Micro-Expression Recognition, 2023.

Comparing Selected Security Modeling Languages Using
SEQUAL Framework

Haydar Genc
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
haydar.genc@rwth-aachen.de

Mohamed Amine Zormati
RWTH Aachen University

Software Construction
Ahornstr. 55

52074 Aachen, Germany
mohamed.amine.zormati@rwth-

aachen.de

ABSTRACT
Nowadays, safeguarding valuable assets has become a param-
ount concern for companies. However, it is impractical to
address every security threat that arises. To deal with these
challenges, Security Modelling Languages (SMLs) have been
developed to encompass Security Risk Management.
Nonetheless, selecting the most suitable language can be a
daunting task, as it requires comparing and evaluating these
languages to determine the most fitting solution. In this
paper, we present initially an overview of a certain group
of SMLs together with their respective metamodel. In ad-
dition, we make use of SEQUAL assessment framework to
compare the language assessments based on their syntax,
semantics, and pragmatics. At the end, we evaluate the
comparative analysis and come to the conclusion that there
is no best SML to cover all the security threats that might
appear under certain circumstances. The choice of a SML
always depends on the security aspects one wants to model.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Software Engi-
neering]: Management—software configuration management,
SMLs, SecureUML, Mal-Activity-Diagrams, PrivUML, SE-
QUAL framework

1. INTRODUCTION
In today’s world, software applications are connected to

the internet and are facing major risks of potential haz-
ards from data leaks to the failure of critical secure systems,
which may be fatal and costly. For this reason, software se-
curity plays a vital role in the system development process.

Modeling solutions at an architectural level becomes es-
sential for developing effective security measures. Popular
languages like UML provide the necessary elements to ex-
press and document the required building blocks. The mod-
eling language choice in security context is unclear.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2023/24 RWTH Aachen University, Germany.

The contribution of this paper lies in its in-depth compari-
son of some prominent SMLs, by comparing their metamod-
els based on the SEQUAL Framework [5]. It is within the
scope of this paper to identify and highlight the characteris-
tics and properties of each language. Through an empirical
research and literature review, it provides a comprehensive
analysis that aids developers in selecting the appropriate
language for their specific security requirements.

In conclusion, this paper will address the following re-
search questions (RQs):
RQ 1: How can SMLs be compared with each other?
RQ 2: How do the selected SMLs SecureUML, MADs, and
PrivUML compare?

2. DEFINITIONS
In this section, we define the terminology used in this

paper, because these terms are defined differently by various
authors.

Security modelling languages (SMLs) are defined languages
that allow the representation, analysis, and reasoning re-
garding various aspects pertaining to computer networks,
systems, and software applications. They serve by provid-
ing an organized framework for communicating critical ideas
surrounding topics such as policies, threats, and vulnerabil-
ities alongside potential countermeasures.

SMLs typically consist of a set of well-defined syntax and
semantics, along with a collection of constructs and rules
that allow for the representation of security properties, sys-
tem components, their interactions, and the security con-
trols in place. Depending on their needs they may deploy
graphical representations or written documentation (some-
times even combining both approaches) enabling analysts
and engineers alike an opportunity to model their systems’
security-properties in a precise and formal manner.

Metamodel: In the context of modeling languages, a meta-
model refers to an abstract representation or description of
a language itself. It defines the structure, concepts, relation-
ships, and rules that govern the construction and interpreta-
tion of models within that particular modeling language. In
this paper, a metamodel provides a formal representation for
defining the syntax and semantics of the modeling language,
allowing users to create consistent and meaningful security
models. It defines the types of elements or entities that can
be used in the models, such as assets, threats, vulnerabili-
ties, controls, and relationships between them. It specifies
associated properties and attributes of these elements.[2].

According to Faily et al. [11], the metamodel of a SML
serves as a foundation for creating specific models within
that specific language. It establishes the vocabulary and
grammar that users can utilize to describe security-related
aspects, such as risk assessments, access control policies, sys-
tem architectures, and attack scenarios. By adhering to the
metamodel, users can ensure that their models are conform-
ing to a standardized representation and can be understood
and processed by tools or other stakeholders.

3. SELECTED SMLS
During our literature review we found several modeling

languages that claim to be SMLs like SI*[16], UMLSec [13],
SecureUML [22], Mis-Use-Case [1], SecureTropos [19], Knowl-
edge Acquisition in Automated Specification (KAOS) [17],
PrivUML [18], UMLintr [12], Mal-Activity-Diagrams (MADs)
[23], SecureBPMN [6] and PaML [8].

For our comparison, we are aiming for SMLs which have
an existing graphical representation of their metamodels
which is not too complex. Some modeling languages have
metamodels that are too big and hard to compare with
other metamodels, thus are exceeding the scope of this work.
Hence, we selected the following SMLs: SecureUML, MADs
and PrivUML. In this paper, we’ll introduce and compare
these languages in terms of metamodel expressiveness and
quality properties. We will present characteristic elements
of PrivUML and SecureUML to demarcate these SMLs from
UML. Since MADs are not based on UML, we will not pro-
vide example usages MADs’ elements.

3.1 SecureUML
SecureUML is designed for incorporating essential access

control information into UML-based models by providing a
set of new notations. These notations encompass various
aspects of access control such as roles, permissions associ-
ated with roles (role-permission), and assignments of users
to roles (user-role assignment). With its comprehensive ac-
cess control model, extensibility, visual representation, and
the capability to create designs at a high level of abstraction,
SecureUML is highly suitable for designing secure systems,
conducting business analysis, and generating design mod-
els for diverse technology stacks [22]. Developers without
extensive security expertise can utilize SecureUML to build
secure systems by implementing the defined model [4].

SecureUML builds upon the foundation of Role-Based Ac-
cess Control (RBAC) and extends it by endowing it an abil-
ity of authorization constraints. RBAC is an approach that
restricts system access to authorized users by assigning roles
and thus permissions to users. An authorization constraint
sets conditions for accessing a specific action [15].

Creating A SecureUML Model
In order to create a SecureUML model, there is, according to
Andrey et al[22], a workflow of 6 steps that must be followed.
To make these steps concrete, we are going to apply them
to the example of an online banking system.

Identify Users: In the online banking system context,
Alice assumes the client role and is represented as a class
labeled with the stereotype “<<user>>” in the system.

Identify application roles: Within the online banking sys-
tem, a role called “account holder” is defined to enable the
client to access the system’s services. This role is represented
as a class with the stereotype “<< role>>”.

Map users into roles: In the system, the user named Alice
is linked with the role of “account holder”.

Identify resources: In this example, the bank account is
considered a resource and is depicted as a class labeled with
the stereotype “<<ModelElement>>”.

Identify actions: The stereotype “permission” is utilized
as an association class with the <<permission>>” stereo-
type to establish actions within the system. By employing
the attribute “action type”, it defines various actions. For
instance, in our example, The user Alice can view her ac-
count through the system and also update it. That’s why,
“read” and “update” can be considered as actions.

Identify authorization constraints: In order for an autho-
rization to be applicable, certain authorization constraints
must be fulfilled. These constraints can be viewed as pre-
conditions. For instance, in this example, the constraint
BusinessHoursOnly ensures that transactions can only be
performed during business hours.

Account for cardinality: SecureUML also includes the rep-
resentation of cardinality, which illustrates the relationship
between Account holder and Bank account as a one-to-many
relationship. The relationship between the User Alice and
Account hold is a one-to-one relationship.

Metamodel Of SecureUML
SecureUMLmetamodel (shown in figure 1) extends the UML
metamodel by introducing three new concepts: User, Role,
and Permission.

Figure 1: SecureUML metamodel (adapted from [4])

The “Subject” type serves as the base for all users and
groups in the system, where it is an abstract type that can-
not be directly instantiated. Users represent system entities,
while groups name sets of users and groups. Subjects are as-
signed to groups through the “SubjectGroup” aggregation,
which establishes an ordering relation. Subjects are assigned
roles via the ”SubjectAssignment” association.

Roles represent jobs and encompass all the privileges nec-
essary for carrying out those jobs. Permissions grant roles
access to one or more actions. The actions are assigned
through the “ActionAssignment” association, and the enti-
tled roles are indicated by the “PermissionAssignment” as-
sociation. Permissions must be assigned to at least one role
and action due to cardinality constraints. Roles can be hier-
archically ordered through the “RoleHierarchy” aggregation,
with the aggregate role inheriting all the privileges.

Authorization Constraints are logical predicates attached
to permissions through the “ConstraintAssignment” associ-
ation. These constraints make the validity of permissions
dependent on the system state, such as the current time or
attribute values. The constraints are expressed using OCL

(Object Constraint Language [24]) expressions, where the
system model defines the vocabulary and includes the addi-
tional symbol “caller”, representing the user on whose behalf
an action is performed.

The “Resource” class serves as the base for all model ele-
ments representing protected resources in the system mod-
eling language. Actions that can be performed on these re-
sources are represented by the “Action” class. Each resource
offers one or more actions, and each action belongs to a sin-
gle resource, indicated by the “ResourceAction” composite
aggregation. Actions are categorized into atomic actions,
which directly map to target platform actions, and compos-
ite actions, which are high-level actions used for grouping
purposes. Composite actions form an ”ActionHierarchy.”

3.2 Mal-Activity-Diagrams
Mal(icious)-Activity-Diagrams build upon the principles

of UML Activity diagrams, focusing specifically on the be-
havioral aspects of security issues [23]. Constructing a MAD
involves creating a regular process and then incorporating
undesired behavior into it. [7].

MADs enhance UML activity diagrams by introducing a
negative element to depict security and dependability con-
cerns within the process. These diagrams use the same syn-
tax and semantics as UML activity diagrams but add extra
syntax elements to enhance their functionality: [7], [9]

Malicious activities represented using regular activity icons,
but with their colors inverted. Malicious actors portrayed as
misusers, distinguished by white text on a black background.
These malicious actors, also known as misusers, are assigned
dedicated swimlanes. Malicious decision boxes represented
using regular decision boxes, but with a black filling.

Metamodel Of MADs
MADs begin with an InitialState as the starting point and
conclude with a FinalState as the endpoint. Within the di-
agram, there are three types of activities: Activity, MalAc-
tivity, and MitigationActivity. All these constructs are en-
compassed within an AnySwimlane, which can be either a
Swimlane or a Mal-swimlane. A Swimlane contains Swimla-
neElements, which can be an Activity, a MitigationActivity,
or a Decision.

Activities in the diagram specify a parameterized sequence
of behavior. MitigationActivities represent process improve-
ments aimed at preventing MaliciousActivities. Decisions il-
lustrate branching based on the order of rejected or accepted
conditions.

A Mal-swimlane consists of Mal-swimlaneElements, which
can be Mal-activities or Mal-decisions. Alongside Mal-activi-
ties, a Mal-swimlane may also include legitimate activities.
Mal-activities are performed by malicious actors with the in-
tention to disrupt the normal process. In some cases, a legit-
imate user may unknowingly perform a Mal-activity when
deceived by an attacker. Mal-decisions refer to decisions
made with malicious intent.

3.3 PrivUML
PrivUML is a SML that aims to provide its user with a

model-driven design-approach that allows the design of se-
cure and privacy-friendly systems. Thus, UML is being used
as foundation for a more profound SML that allows to model
consolidated access control information that guarantees pri-
vacy in its design. In the following paragraphs, we will define

Figure 2: Metamodel of MADs [7]

the terms: personal information and privacy.
According to [20], personal information takes in scope any

factual/objective or subjective information, whether recorded
or not, about an individual that can be identified.

Privacy can be defined formally in four definitions: usage
purpose of the data, access right visibility (who is allowed
to see the data), the level of detail of the information and
the amount of time the data is stored [3].

Fundamental Of PrivUML: OrBAC Model
Since PrivUML is an extension of OrBAC we want to take
a look at the OrBAC model. OrBAC is an access con-
trol model that stands for organization-based access control.
The central component of an OrBAC model is the organi-
zation. Privileges are part of a role that gets assigned to a
subject. Thus, privileges do not apply directly to the sub-
jects. Permissions are expressed through the predicate “Au-
thorization (organization, role, activity, view, context)” [18].
RBAC and OrBAC are both models for access control, but
their focus is different. So, according to the OrBAC model,
a role can be permitted to perform a certain activity with
an organization’s view on the activity in a context. Context
is used to constrain the access rules. In OrBAC a privilege
does not solely include permission. It can optionally include
a prohibition and an obligation independently of each other.
To cover privacy protection requirements, the data owner’s
consent is needed to access his data/for a subject to perform
an activity on owner’s data. This can be modeled with the
OrBAC context [18].

PrivUML is able to model: the OrBAC model, terms of
access (permission, ban, and obligation), consent of the data
owner, access objectives and a hierarchy of object views.

PrivUML Metamodel
PrivUML expresses the hierarchy at the level of the enti-
ties “View” and Role. The data owner can define the same
view with of objects with different levels of detail, thus two
subjects are allowed to access the same object with different
levels of detail. The PrivUML metamodel uses the entities
“RSO, “AO” and “VOO”.

RSO (Role of the Subject in the Organization): An associ-
ation class that allows a subject to play multiple roles in an
organization [18]. As an example, an employee that plays
the role of a “service worker” at online bank A can play the
role “customer” at online bank B.

AO (Activity in the Organization): An association class,
AO, links activities and organizations, allowing the meta-

model to structure the same activity in different ways. [18].
As an example, we are linking the activity of transferring

money at a online bank. Online bank A transfers money
by reducing the sent amount in the senders’ database entry
and adding the sent amount in the receiver’s database en-
try. Online bank B instead transfers money by withdrawing
the sent amount of money from the sender’s bank account
and deposits it to the receiver’s bank account. The activity
“transferring money” is linked with two different organiza-
tions, and thus the activity is structured according to the
needs of the different online banks.

VOO (Object View in Organization): An association class
that links object views with organizations. Objects are as-
sociated with VOOs to define the same object view differ-
ently [18]. For example, the view “money command” corre-
sponds in online Bank A to database tables. In online bank
B “money command” is defined as a money safe.

The association class Access Modality links the entities
“RSO”, “AO”, “VOO” and “Context” to express the permis-
sion, the prohibition, or the obligation, provided in a context
to a role to perform activities on views in an organization
[18]. Action is an association class that links the entities
“AO” and “VOO”. An action depends on the activity and
the view of objects in the organization. In case of two su-
permarkets A and B, the activity “Delete” in organization A
is the action “delete”, while the activity “delete” corresponds
to the action “remove”. “A subject with a role allowing an
action on an object can perform this action if the consent
context is positive.” [18]. Consent can be established by the
object’s owner and for a specific object/in favor of the sub-
ject requesting access/according to the purpose of access/to
communicate the explicit permission of the object’s owner
expressed as an OCL constraint [18].

Figure 3: PrivUML meta-model [18]

4. ASSESSING THE SMLS

4.1 The SEQUAL Framework
The SEQUAL Framework is a reference model for assess-

ing the quality of models. It recognizes three distinct types
of qualities: semantics, syntax and pragmatics [21], [5]. As a
result, it establishes essential principles for evaluating model
quality. However, it maintains an abstract nature, and it is
dedicated to general-purpose models and not only security
models [14]. Consequently, we will introduce a set of mea-
sures to comprehend the quality of security models.

Semantic quality refers to the alignment between a model
and its semantic domain. We evaluate semantic quality us-
ing the following qualitative properties and measures:

-Semantic completeness: This property assesses whether

the model encompasses all the necessary functionalities re-
quired by the software. In the context of security model-
ing, a language should incorporate concepts that pertain to
the Role-Based Access Control (RBAC) domain. We se-
lected RBAC since it is often used in identity and access
management (IAM). To measure semantic completeness, we
calculate the ratio between the number of RBAC concepts
represented in the model and the total number of RBAC
concepts (a total of 7: Users, Roles, Operations, Objects,
Permissions, Permission assignment, User assignment).

-Semantic correctness: This property examines whether
the model accurately represents the required developmen-
tal aspects. In the security domain, it necessitates distin-
guishing between data-related concerns and security-related
concerns, since the security model should solely incorporate
security-related knowledge. The qualitative measure for this
property is the ”Percentage of security-related statements”
in the model.

-Executability refers to the presence of a technology that
can take the model as input and effectively translate it into
a functional implementation. The determining factor here
is the availability of such technology. This characteristic is
gauged using the measure “Technology capable of executing
the model”, which indicates whether the necessary technol-
ogy exists to carry out the implementation process.

Syntactic quality pertains to ensuring syntactic correct-
ness, meaning that the statements within the model adhere
to the syntax rules and relevant conventions of the model-
ing language. The following qualitative properties and their
corresponding measures are established: -Syntactic validity:
This property evaluates whether the grammatical expres-
sions used in the SML are correct. The measure assigned
to assess this qualitative property is the “Number of syntac-
tically invalid statements”. A higher value indicates poorer
syntactic validity in the SML.

-Syntactic completeness: This property examines whether
all the grammar constructs and their constituent parts are
present in the SML. To assess syntactic completeness, we
use the measure ”Number of incomplete statements”.

Pragmatic quality addresses the alignment between the ac-
tors’ interpretation of the model and their existing domain
knowledge. Consequently, the emphasis lies on how partic-
ipants perceive and interpret the model. To evaluate this
aspect, we establish the following qualitative properties and
their respective measures:

-Annotation: This property focuses on whether a reader
can easily identify elements that are likely to undergo changes.
This is particularly significant as new system security poli-
cies are frequently introduced. Being aware of relevant sec-
tions and efficiently implementing new security concerns can
reduce system maintenance costs. The measure ”Number of
annotation elements”indicates the count of annotations used
in the model.

-Modifiability: This property measures the ease with which
the structure and content of the model can be modified. This
aspect is especially crucial in the security model, given that
system security policies may require frequent changes. To
estimate modifiability, we employ the measure “Time spent
to modify” (in minutes), which indicates the duration re-
quired to alter the security policy within the system.

-Cross-referencing: This property examines whether the
various components of the model content are interconnected.
To assess cross-referencing, we utilize the measure “Number

of cross-reference links”, which quantifies the count of links
established between different model components.

4.2 Results
In this section, we provide the outcomes of our evaluation

of the SMLs. The results for the three quality types are sum-
marized in Table 1. As specified in the previous section, we
assessed semantic quality based on semantic completeness,
semantic correctness, and executability. Syntactic quality is
represented by measures of syntactic validity and syntactic
completeness. Lastly, pragmatic quality is defined in terms
of annotation, modifiability, and cross-referencing.

Semantic quality
Qualitative property SecureUML MAD PrivUML
Semantic complete-
ness

100% 57.14% 42.85%

Semantic correctness 100% 50% 100%
Executability YES NO YES

Syntactic Quality
Qualitative property SecureUML MAD PrivUML
Syntactic validity 1 0 1
Syntactic complete-
ness

0 0 0

Pragmatic quality
Qualitative property SecureUML MAD PrivUML
Annotation 3 0 5
Modifiability 5–10 2-5 2-5
Cross-referencing 3 1 3

Table 1: Evaluation of the SMLs

5. COMPARISON OF THE SMLS
In this section, we cover the comparison on SMLs based

on our SEQUAL Framework assessment.

5.1 SecureUML And MADs
Our evaluation revealed that SecureUML and MAD ex-

hibit equal scores only for syntactic completeness. However,
two qualitative properties were identified as being stronger
in MAD compared to SecureUML(i.e., syntactic validity and
modifiability). On the other hand, the remaining five qual-
itative properties were found to have higher evaluations in
SecureUML when compared to MAD. In terms of semantic
completeness, SecureUML strives to capture a comprehen-
sive set of security-related functionalities, including those
pertaining to RBAC. It ideally incorporates all seven RBAC
concepts.

MADs are primarily focused on modeling malicious activi-
ties and security threats, rather than comprehensive RBAC-
based functionalities. As such, the expectation for seman-
tic completeness in MADs may not directly align with the
RBAC concepts. However, MADs should still include rele-
vant security-related concepts specific to malicious activities
and threat modeling.

When comparing SecureUML and MADs based on seman-
tic correctness, SecureUML, being a more comprehensive
security modeling language, exhibits a higher percentage of
security-related statements, reflecting its focus on broader
security aspects. On the other hand, MADs would em-
phasize security-related statements that pertain to modeling
malicious activities specifically.

In terms of executability, SecureUML holds an advantage
over MADs due to the likely availability of tools and tech-
nologies supporting SecureUML models. While SecureUML
can be interpreted and translated into functional implemen-
tations using existing technology, the absence of dedicated
technology for MADs limits their executability. This limita-
tion can hinder the practicality and usefulness of MADs.

MADs score better in Syntactic Validity compared to Se-
cureUML. This indicates that MADs exhibit a higher level
of correctness in terms of the grammatical expressions used
within their models. The “Number of syntactically invalid
statements” is lower for MADs, suggesting a stronger ad-
herence to syntax rules and conventions compared to Se-
cureUML. Both SecureUML and MADs achieve the same
score in terms of Syntactic Completeness. This implies that
both languages encompass all the necessary grammar con-
structs and their constituent parts.

SecureUML outperforms MADs in the property of Anno-
tation, which means SecureUML incorporates a higher num-
ber of annotation elements, indicating its ability to facilitate
the identification of elements likely to undergo changes.By
efficiently implementing new security concerns, SecureUML
can contribute to reduce the overall maintenance costs of
the system. On the other hand, MADs may have a lower
number of annotation elements, potentially making them
less effective in highlighting areas requiring modifications.
Conversely, MADs surpass SecureUML in terms of Modifia-
bility. MADs exhibit greater ease in modifying the structure
and content of the model, as indicated by a shorter “Time
spent to modify” measure. This indicates that MADs allow
for more efficient alteration of the security policy within the
system.

SecureUML has a higher number of cross-reference links,
indicating a stronger inter-connectivity among the various
components of the model content. This characteristic en-
sures that relationships between different model components
are well-established and effectively captured. MADs, have a
relatively lower count of cross-reference links, potentially in-
dicating a lesser degree of interconnection among its model
components.

5.2 SecureUML And PrivUML
SecureUML outperforms PrivUML in terms of the qual-

itative property of Semantic Completeness. However, five
other qualitative properties, namely Semantic Correctness,
Executability, Syntactic Validity, Syntactic Completeness,
and Cross-referencing, are evaluated equally for both Se-
cureUML and PrivUML. Nevertheless, PrivUML excels in
the remaining two qualitative properties, namely Annota-
tion and Modifiability.

PrivUML, being a modeling language tailored for privacy
concerns, has a different emphasis compared to SecureUML
in terms of its completeness in representing RBAC concepts.
While RBAC might still play a role in PrivUML, it might
not be the primary focus. Instead, PrivUML may priori-
tize privacy-related concepts, such as data sensitivity, access
control policies, or privacy-enhancing technologies.

SecureUML and PrivUML have the same semantic cor-
rectness because both modeling languages aim to accurately
represent the required developmental aspects, encompass-
ing both security and privacy considerations. They focus
on capturing the necessary knowledge, concepts, and rules
related to security and privacy within their models.

PrivUML and SecureUML are both executable. Due to
its broader adoption and longer history, SecureUML has a
mature ecosystem of tools and technologies that can effec-
tively execute the models (i.e., MagicDraw tool that, based
on some rules, transforms the SecureUML-model into a code,
which could be executed through Oracle database manage-
ment system). This means that SecureUML models can be
translated into functional implementations with greater ease
and reliability. PrivUML, being a more specialized model-
ing language for privacy aspects, have a relatively smaller
ecosystem of supporting technologies. While there are some
technologies available for PrivUML, their availability and
maturity might be more limited compared to SecureUML.
Both SecureUML and PrivUML have the same score in Syn-
tactic Validity. This indicates that both languages demon-
strate an equal level of correctness in terms of the grammat-
ical expressions used within their models.

Similarly, both SecureUML and PrivUML achieve the same
score in terms of Syntactic Completeness. This implies that
both languages incorporate all the necessary grammar con-
structs and their constituent parts to the same extent.

PrivUML outperforms SecureUML in the property of An-
notation. PrivUML exhibits a higher number of annotation
elements, indicating that it offers better support for iden-
tifying elements likely to undergo changes. This enables
readers to efficiently implement new security concerns and
reduce overall maintenance costs. On the other hand, Se-
cureUML may have a relatively lower number of annotation
elements, which could make it less effective in highlighting
areas requiring modifications.

Similarly, PrivUML surpasses SecureUML in terms of Mod-
ifiability. PrivUML demonstrates greater ease in modifying
the structure and content of the model. This means that
implementing changes to the security policy within the sys-
tem is more efficient in PrivUML. In contrast, SecureUML
may require more time and effort for modifications, poten-
tially hindering flexibility in adapting to frequent changes in
system security policies.

Both SecureUML and PrivUML achieve an equal score
in Cross-referencing. This means that both languages ef-
fectively establish links between different components of the
model content.Therefore, in terms of Cross-referencing, both
SecureUML and MADs exhibit an equal level of effectiveness
in capturing the relationships between different elements.

5.3 MADs And PrivUML
Our comparison of MADs and PrivUML revealed that

PrivUML and MADs only have equal score in two quali-
tative properties, syntactic completeness and Modifiability.
MADs surpass PrivUML in regard to semantic complete-
ness. MADs are inferior to PrivUML in any other qualita-
tive properties (i.e., semantic correctness, syntactic validity,
annotation and cross-referencing.

In regard to semantic completeness, MADs surpass PrivUML
because MADs are more aligned with the RBAC concepts
than PrivUML is. PrivUML is based on the OrBAC model
and thus focuses on organization-based access-control which
indeed overlaps with RBAC concepts (in terms of Roles, Op-
erations, and Objects) but does not put its focus on RBAC
concepts. On the other hand, MADs are focused on model-
ing malicious activities. Thus, MADs do not focus on RBAC
concepts and only allow modeling four out of seven RBAC
concepts. When comparing MADs with PrivUML in re-

gard to semantic correctness, we found out that PrivUML
can derivate solely security-related statements where MADs
also allow non-security-related statements. In terms of ex-
ecutability, PrivUML likely has the tools needed to be im-
plemented by an engine. PrivUML can be transformed to
Transformation of PrivUML into XACML Using QVT (A
model-to-model transformation language) [10]. After trans-
forming PrivUML into XACML, we can make use of XACML
based authorization engines (e.g., Balana) to implement the
PrivUML model as code in a structured manner following
the rules of XACML. MADs have an absence of technical
tools, and thus MAD is not executable.

The amount of syntactically invalid statements is lower for
MADs than for PrivUML. This relation between the number
of syntactically invalid statements and the SMLs suggests
that MADs have a stronger adherence to syntax rules than
PrivUML. Thus, MADs have a better syntactical validity
than PrivUML.

MADs and PrivUML have the same score regarding syn-
tactical completeness. Both MADs and PrivUML achieve
the same score in terms of Syntactic Completeness. This im-
plies that both languages encompass all the necessary gram-
mar constructs and their constituent parts.

Since the number of syntactically incomplete statements
is equal for both languages, indicating that they meet the re-
quirements for syntactic completeness equally well. PrivUML
outperforms MADs in regard to annotation, which means
that PrivUML incorporates a higher number of annotation
elements. This fact indicated that PrivUML makes it easy
to identify elements which are likely to undergo changes.
MADs may have a lower number of annotation elements,
potentially making it less effective in highlighting areas re-
quiring modifications.

PrivUML and MADs score equally in the qualitative prop-
erty modifiability. Altering a security policy takes around
2–5 minutes for both SMLs.

PrivUML has a higher number of cross-reference links
than MADs. This means that the relationships between dif-
ferent model components in PrivUML are well-established
and effectively captured. On the other hand, MADs have a
significantly lower count of cross-reference links, which in-
dicates a lower degree of interconnection along its model
components.

6. DISCUSSION
You do not need classifications for SMLs in order to com-

pare them with each other. The SEQUAL Framework is a
reference model for assessing the quality of models. To per-
form a SEQUAL assessment on SMLs, you need the meta-
model of the SMLs.

When we sum up our comparison from sections 4 and 5,
we realized that MADs performed the worst. SecureUML
and PrivUML score equally in the qualitative property syn-
tactic quality. Since SecureUML outperforms PrivUML in
semantic quality and PrivUML outperforms SecureUML in
pragmatic quality, we cannot conclude a “best” SML. Re-
garding the SEQUAL assessment, you can pick SecureUML
as a SML, if semantic quality is more important for you than
pragmatic quality. If it is the other way around, we would
suggest PrivUML.

These conclusions are based on the results of an assess-
ment on SMLs with our adaption of the SEQUAL Frame-
work, which does not consider the focus of a SML. For exam-

ple, the SEQUAL Framework assesses SMLs based on their
RBAC implementation and not all SMLs focus on RBAC.
PrivUML for example takes in account OrBAC, MADs fo-
cus on modeling malicious activities and others take a look
at the sociotechnical aspects of security. Thus, the level of
implementation of RBAC concepts may not be the best cri-
teria to compare non RBAC SMLs. When choosing a SML
to work with, make sure to check if you need a specialized
SML. If so, take a SML that focuses on the area that has
to be modeled. Otherwise, you can choose a more general
SML. It always depends on the security aspects the security
engineer focuses on.

Thus, we question if the SEQUAL Framework is a good
comparison method for SMLs. The qualitative properties of
the SEQUAL Framework had to be adapted to work with
SMLs. Besides that, we found it difficult to compare SMLs
with different foundational concepts like RBAC and OrBAC
with each other. We propose the idea of comparing SMLs
with the same security focus and adapting the qualitative
property semantic completeness according to the founda-
tional security concepts category of SMLs tries to model. For
example, for OrBAC modeling languages, we would adapt
semantic completeness to the ratio of the amount of mode-
lable OrBAC concepts in one SML divided by the amount
of concepts needed to model OrBAC optimally. The refer-
ence number here would be the number of different concepts
from OrBAC. The numerator would be the amount of Or-
BAC concepts implemented by the SML. SMLs that try to
model different foundational security concepts can still be
compared with each other, but then the comparison of se-
mantic completeness would not be as decisive as comparing
two SMLs that try to model the same foundational security
concepts with each other because it is trivial that a SML
from one area e.g., SecureUML (has a focus on RBAC) is
better at modelling RBAC concepts than a SML with focus
on OrBAC concepts e.g., PrivUML.

The only case where such a comparison makes sense is
when looking for a SML that can model multiple founda-
tional security concepts. When looking for a SML that can
model OrBAC and RBAC, we suggest taking RBAC and Or-
BAC based SMLs and assess them based to the SEQUAL
Framework with an adapted semantic completeness. SMLs
can be compared with each other by utilizing the SEQUAL
Framework. We presented the idea of assessing a SML on
multiple different security paradigms to find a SML that can
model two or more foundational security paradigms. The
only issue was that the results were not summed up yet. We
propose an equation to calculate the semantic completeness
of an SML that is being assessed on multiple foundational se-
curity paradigms. A security paradigm in this case is, e.g.,
OrBAC. Let x be the semantic completeness, l1 the num-
ber of concepts applied by the SML l from the modeling
paradigm d1 and d1a the amount of security concepts from
the modeling paradigm d1. Thus, l2 the number of con-
cepts applied by the SML l from the modeling paradigm d2
and d2a the amount of security concepts from the modeling
paradigm d2. All other variables are defined analogously.
Equation for semantic completeness:

x =

l1
d1a

+
l2
d2a

+ ...+
ln
dna

|{d1, d2, ..., dn}|
, where n ∈ N fixed but arbitrary

Two SMLs are equivalent to each other if and only if their

metamodels are fully transformable into each other. Two
languages that are SMLER equivalent have the same expres-
siveness and thus are semantically equivalent. We propose
the SML-Equivalence-Relation (SMLER): Let L be the set
of all SMLs and T be the set of all model-to-model trans-
formation languages. (l1 ≡ l2) ≡ l1 ∼SML l2 ≡ ∃t1, t2 ∈
T : t1(l1) = l2 ∧ t2(l2) = l1, where l1, l2 ∈ L The SMLER
is transitive, reflexive, and symmetrical. These properties
make the relation an equivalence relation. This property is
useful when forming SML-Equivalence-Classes (SMLECs).

Now we can derive statements about the equivalence of
SMLs. We can extend the concept of SML equivalence by
introducing SMLECs. These equivalence classes allow us to
categorize equivalent SMLs and sort out redundant SMLs,
which helps when choosing between SMLs. Since each SM-
LEC focuses on different security paradigms, we can assess
SMLs from one SMLEC with our adaption of the SEQUAL
Framework and then choose the SML that fits our need re-
garding all qualitative properties (without semantic com-
pleteness). [l1]∼SML = {l2 ∈ L|l1 ∼SML l2 ∧ l1, l2 ∈ L}
The expenses of comparing multiple SMLs with each other
was at

(
n
k

)
, where n is the amount of SMLs to compare

with each other and k = 2 is the amount of SMLs you can
compare directly with each other. Thus, the upper limit
of comparisons of SMLs when comparing their SMLECs
is in worst-case

(
n
k

)
comparisons. Let T be the set of all

model-to-model-transformation-languages, L be the set of
all SMLs and t(x) be defined as the function that executes
the model-to-model-transformation language t on the SML
x with the resulting SML on the right side of the equation.
t : L −→ L, t(l1) −→ l2 ,where l1, l2 ∈ L.

Comparing SMLs from different SMLECs does not make
sense because they focus on different security paradigms.

7. CONCLUSION
This research paper emphasizes the significance of soft-

ware security in today’s world. By comparing prominent
SMLs using the SEQUAL Framework, the study provides
developers with valuable insights for selecting the most suit-
able language based on their specific security requirements.
The analysis focuses on the meaningfulness and quality prop-
erties of the metamodels of SecureUML, Malicious-Activity
Diagrams (MADs), and PrivUML. The research questions
posed in this pre-study set the stage for further discussions
and exploration in the field of SMLs. Overall, this paper
serves as a valuable resource for enhancing software security
practices and aiding decision-making processes in software
development. The findings and insights presented in this
paper will inform future studies and contribute to the ad-
vancement of software security practices in an increasingly
interconnected world.

8. FUTURE WORK
We propose the idea of a table that categorizes all SMLs

into their equivalence classes regarding the SMLER and as-
sesses the resulting SMLEC based on our adaption of the
SEQUAL Framework with semantic correctness according
to the security modeling paradigm of the equivalence class,
which may be more than just one paradigm. The fact that
the SMLER is transitive is very helpful here.

We propose a decision framework that supports the mod-
eler in choosing the adequate SML. The idea is to categorize

SMLs by security modeling paradigms to give an overview
over all SMLs and their general capabilities. We think that
it is likely that all SMLs can be abstracted to their core
functionalities, which are represented by the security mod-
eling paradigms. Additionally, an adaption of the SEQUAL
Framework could be used to assess these security modeling
paradigms on a higher level.

We propose introducing a set of scales to sum up the qual-
itative properties of the SEQUAL Framework to display se-
mantic quality and the other metrics by one single number
per quality metric. These 3 metrics can be summed up fur-
ther to give the SEQUAL Framework an ability of assessing
a SML by solely a single number. Now, the expenses to
compare SMLs with each other are significantly easier than
having to compare each qualitative property of the SEQUAL
Framework of a language with the SEQUAL assessment of
another language. SMLs are now comparable by one metric.
We call this metric the “SEQUAL Score”.

9. REFERENCES
[1] I. Alexander. Misuse cases: use cases with hostile

intent. IEEE Software, 20(1):58–66, Jan. 2003.

[2] U. Aßmann, S. Zschaler, and G. Wagner. Ontologies,
meta-models, and the model-driven paradigm.
Ontologies for software engineering and software
technology, pages 249–273, 2006.

[3] K. Barker, M. Askari, M. Banerjee, K. Ghazinour,
B. Mackas, M. Majedi, S. Pun, and A. Williams. A
data privacy taxonomy. In Dataspace: The Final
Frontier, pages 42–54. Springer Berlin Heidelberg,
2009.

[4] D. Basin, J. Doser, and T. Lodderstedt. Model driven
security: From uml models to access control
infrastructures. ACM Transactions on Software
Engineering and Methodology (TOSEM), 15(1):39–91,
2006.

[5] C. Cares and J. Franch Gutiérrez. Towards a
framework for improving goal-oriented requirement
models quality. In 12th Workshop on Requirements
Engineering, pages 3–14, 2009.

[6] Y. Cherdantseva, J. Hilton, and O. Rana. Towards
SecureBPMN - aligning BPMN with the information
assurance and security domain. In Lecture Notes in
Business Information Processing, pages 107–115.
Springer Berlin Heidelberg, 2012.

[7] M. J. M. Chowdhury. Towards security risk-oriented
mal activity diagram. International Journal of
Computer Applications, 56(10), 2012.

[8] P. Colombo and E. Ferrari. Towards a modeling and
analysis framework for privacy-aware systems. In 2012
International Conference on Privacy, Security, Risk
and Trust and 2012 International Confernece on
Social Computing. IEEE, Sept. 2012.

[9] M. El-Attar. From misuse cases to mal-activity
diagrams: bridging the gap between functional
security analysis and design. Software & Systems
Modeling, 13:173–190, 2014.

[10] J. El Mokhtari, A. Abou El Kalam, S. Benhaddou,
and J.-P. Leroy. Transformation of privuml into xacml
using qvt. In Proceedings of the 12th International
Conference on Soft Computing and Pattern
Recognition (SoCPaR 2020) 12, pages 984–996.

Springer, 2021.

[11] S. Faily and I. Fléchais. A meta-model for usable
secure requirements engineering. In Proceedings of the
2010 ICSE Workshop on Software Engineering for
Secure Systems, SESS ’10, page 29–35, New York, NY,
USA, 2010. Association for Computing Machinery.

[12] M. Hussein and M. Zulkernine. UMLintr: a UML
profile for specifying intrusions. In 13th Annual IEEE
International Symposium and Workshop on
Engineering of Computer-Based Systems (ECBS'06).
IEEE, 2006.

[13] J. Jürjens. UMLsec: Extending UML for secure
systems development. In ≪UML≫ 2002 — The
Unified Modeling Language, pages 412–425. Springer
Berlin Heidelberg, 2002.

[14] J. Krogstie. SEQUAL as a framework for
understanding and assessing quality of models and
modeling languages. In Encyclopedia of Information
Science and Technology, Third Edition, pages
1611–1620. IGI Global, July 2014.

[15] L. Lúcio, Q. Zhang, P. H. Nguyen, M. Amrani,
J. Klein, H. Vangheluwe, and Y. L. Traon. Advances
in model-driven security. In Advances in Computers,
pages 103–152. Elsevier, 2014.

[16] F. Massacci, J. Mylopoulos, and N. Zannone. Security
requirements engineering: The SI∗ modeling language
and the secure tropos methodology. In Advances in
Intelligent Information Systems, pages 147–174.
Springer Berlin Heidelberg, 2010.

[17] m. mbd. Developing secure and safe systems with
knowledge acquisition for automated specification
(kaos). 2021.

[18] J. E. MOKHTARI, A. A. E. KALAM,
S. BENHADOU, and H. MEDROUMI. PrivUML: A
privacy metamodel. Procedia Computer Science,
151:53–60, 2019.

[19] H. MOURATIDIS and P. GIORGINI. SECURE
TROPOS: A SECURITY-ORIENTED EXTENSION
OF THE TROPOS METHODOLOGY. International
Journal of Software Engineering and Knowledge
Engineering, 17(02):285–309, Apr. 2007.

[20] T. Piper. The personal information protection and
electronic documents act-a lost opportunity to
democratize canada’s technological society. Dalhousie
LJ, 23:253, 2000.

[21] K. Rekstad and J. Krogstie. Using sequal for
identifying requirements to ecore editors. arXiv
preprint arXiv:2202.02565, 2022.

[22] A. Sergeev. Role based access control as secureuml
model in web applications development with spring
security. Ph. D. dissertation, Master thesis, 2016.

[23] G. Sindre. Mal-activity diagrams for capturing attacks
on business processes. In Requirements Engineering:
Foundation for Software Quality: 13th International
Working Conference, REFSQ 2007, Trondheim,
Norway, June 11-12, 2007. Proceedings 13, pages
355–366. Springer, 2007.

[24] J. Warmer and A. Kleppe. The Object Constraint
Language: Getting Your Models Ready for MDA.
Addison-Wesley Longman Publishing Co., Inc., USA,
2 edition, 2003.

Classification of modernization methods based on
experience reports: A Systematic Literature Review

Leila Mangonaux
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

leila.mangonaux@rwth-aachen.de

Marco Heinisch
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

marco.heinisch@rwth-aachen.de

ABSTRACT
Modernization of legacy systems is considered a complex
task, beginning with the selection of the method to be used.
Numerous and diverse strategies exist, and each comes with
its own set of advantages and disadvantages. Due to a lack
of comprehensive classification of these strategies and their
characteristics, the evidence-based choice of such a strategy
for a given legacy system is challenging. In this work, we
performed a systematic literature review of experience re-
ports with the aim of providing guidance for future software
modernization processes. We propose five major character-
istics of legacy systems and types of migrations upon which
suitable modernization methods can be selected. They serve
as general guideline which takes into account the goals and
available resources.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.7 [Software En-
gineering]: Distribution, Maintenance, and Enhancement—
restructuring, reverse engineering, and reengineering

Keywords
legacy system, modernization, migration, systematic litera-
ture review, SLR

1. INTRODUCTION
A legacy system [33] is commonly understood as an old

system that still provides value and remains in operation
within an organization. Such systems often provide core
business functionalities and are critical. Due to this impor-
tance the functionality of these systems must be preserved.

However, maintainability costs are high and flexibility or
extensibility of such systems is difficult due to old or lack-
ing design principles and outdated technology. In addition,
there is often a lack of knowledge as employees with expertise
leave or retire over time and documentation is incomplete or
outdated. Thus, dealing with legacy systems is challenging.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2023 RWTH Aachen University, Germany.

To fulfill new requirements and to reduce maintainability
costs, modernization is needed [1]. As this is a task prone
to failure, best practices, experience, and recommendations
are needed, to be able to decide which approach is the most
appropriate one with the highest success chance for a given
legacy system. However, due to a broad variety of methods
for software modernization and the lack of a standard ap-
proach, the identification of a suitable strategy is complex.

Case studies and experience reports about past modern-
ization procedures are available, but no review has been per-
formed yet. Our main research question is to find out, how
software modernization methods can be categorized, by con-
ducting a systematic literature review (SLR). We aim to find
evidence-based characteristics of both the applied strategies
and modernized software. This paper’s contribution is a
classification of the applied methods by these characteristics
to provide an indication for future selections of moderniza-
tion methods.

Our paper is structured as follows: In section 2 we dis-
cuss related work and SLRs. We then give an overview of
definitions in section 3, before explaining how we conducted
the SLR in section 4. In section 5, we report our results and
propose our categorization of methods. We discuss these
results in section 6 and finally give a conclusion in section 7.

2. RELATED WORK
Jamshidi et al. [22] performed a systematic literature re-

view on cloud migration. They analyzed 23 publications and
characterized four types of cloud migration. They found that
partial migration and cloudification were the most common
types, followed by migrations of the whole stack. But they
did not analyze why the reviewed cases were migrated in the
chosen manner, and therefore cannot provide guidance for
future modernizations.

A second SLR in the field of software modernization was
performed by Khadka et al. (2013) [25]. They analyzed 121
publications on SOA (service-oriented architecture) migra-
tion and found that the selection of a specific architecture
is the most common method for target system understand-
ing. The authors also conclude that candidate services are
mostly identified manually and wrapping is the most com-
mon technique for SOA implementation. However, this SLR
lacks an analysis of the reasons for the migrations.

Althani and Khaddaj [1] give an overview of migration
methods by defining a categorization in their systematic re-
view. They identified three major categories: complete, in-
cremental and partial migration. A complete migration, also
known as big bang, describes a complete redevelopment of

the system from scratch. Incremental migration signifies a
gradual re-implementation while partial migration describes
the migration of parts of the legacy system. However, the
categories are defined solely by the migration approach, in-
stead of considering the characteristics of the legacy system.

Another categorization is described by Comella-Dorda et
al. [10]. They use the term of software evolution and group
this in three subclasses: maintenance describes small changes
aiming to keep the system running, modernization encom-
passes more extensive interventions and replacement entails
a redevelopment of the entire system. The authors sub-
classify modernization in white box modernization, which
encompasses reverse engineering before reengineering, and
black box modernization. Comella-Dorda et al. discuss
approaches, including wrapping and GUI reengineering, for
black box modernization only.

Khadka et al. (2014) [24] conducted interviews with pro-
fessionals on the topic of software modernization. Thus, they
identified which benefits of legacy systems the interviewees
perceive: this includes the business logic encompassed in the
code, the reliability and performance that were reinforced
through use and extensive tests. As drivers towards mod-
ernization, the authors identify the inflexibility with regard
to changes in the system, rising maintenance costs, the lack
of knowledge in the form of documentation and expertise
and the risk of system failure. Though these findings co-
incide with our results, they don’t provide guidance on the
type of modernization to apply for a given legacy system.

3. BACKGROUND
In the course of our work, we have encountered a variety

of terms and concepts used and defined differently by var-
ious authors. In this section, we therefore define the most
important concepts and have referred to these definitions for
the remaining work.

3.1 Legacy system
The definition of legacy system proposed by Stamati et al.

[33] picks up on many aspects, such as the large efforts put
into it, typical for this kind of software: ”It describes an old
system that remains in operation within an organisation and
often represents a massive, long-term business investment
that could be composed of extremely efficient robust and fine
tuned applications built over many years by a combination
of IT and business experts.”

However, in this work, we consider a broader variety of
legacy systems, including software for individual products,
rather than solely software designed for internal use of com-
panies. These systems can include a lot more than the code
itself, as indicated by Dedeke [12] who defines ”a legacy sys-
tem as an aggregate package of software and hardware so-
lutions whose languages, standards, codes, and technologies
belong to a prior generation or era of innovation”.

Indeed many of the reviewed systems strive towards more
modern technologies. Yet, we consider a legacy system inde-
pendent of the age or era of the previously used technologies
but rather define it as a ”conjunction of soft- and hardware,
code, documentation and technology that is in use although
it does not fulfill the current requirements set by the organi-
zation running it”.

3.2 Reengineering
Chikofsky and Cross [8] define reengineering as follows:

”Reengineering (...) is the examination and alteration of
a subject system to reconstitute it in a new form and the
subsequent implementation of the new form. Reengineer-
ing generally includes some form of reverse engineering (to
achieve a more abstract description) followed by some form
of forward engineering or restructuring. This may include
modifications with respect to new requirements not met by
the original system.”

Further, we will clarify the newly introduced concepts of
forward engineering and reverse engineering. Reverse engi-
neering describes the process of analyzing code with the aim
of gaining full understanding by identifying its components.
Forward engineering, in turn, encompasses the reimplemen-
tation of the system (often based on the results of the reverse
engineering process), mostly according to a defined architec-
ture or paradigm.

3.3 6R’s: six migration strategies
Based on the descriptions by Orban [2] and Hayretci and

Aydemir [20] of cloud migration strategies, we have defined
the following six migration strategies which we will refer to
as the 6R’s:

1. Rehost: migrating the legacy system to a new platform
without any changes to the code

2. Replatform: migrating the legacy system to a new
platform with minimal adaptions (e.g. wrapping)

3. Repurchase: replacing the legacy system with a com-
mercial product

4. Refactor/Rearchitect: migrating the legacy system to
a new architecture, programming language or paradigm
with extensive changes to the code

5. Retire: shutting down the legacy system without re-
placing it

6. Retain: no migration or modernization of the legacy
system

All in all, our redefinition of the 6R’s aims to make them
applicable to any type of migration, rather than restricting
it to cloud migration, as does the original definition.

3.4 Restructure and Refactor
Chikofsky and Cross [8] also provide a definition of the

term restructuring as ”the transformation from one repre-
sentation form to another at the same relative abstraction
level, while preserving the subject system’s external behaviour
(functionality and semantics).”

In the reviewed papers, restructuring was more commonly
referred to as refactoring. As Mens et al. state in their
study on refactoring [28] that the definition of the terms is
”basically the same”, we will use them interchangeably.

3.5 Refactor and Rearchitect
While refactoring and rearchitecting are terms often used

interchangeably in relation to the 6R’s, we have found that
these modernization strategies describe different methods
when used in other contexts. We therefore distinguish be-
tween the two terms, defining refactoring as above and refer-
ring to other changes in the system architecture, program-
ming language or paradigm as rearchitecting. However, we
do consider both approaches as a single category in the 6R’s

as they are often used together and the extent of the changes
made to the legacy system is comparable.

4. RESEARCH METHOD
To identify relevant case studies and reports, we con-

ducted a Scientific Literature Review as proposed by Kitchen-
ham [26]. This approach reduces the risk of bias and allows
reproducibility. Having identified the need for a review in
section 1, we completed the initial step of the SLR. The
further steps are explained in the following sections.

4.1 Research Question
The primary goal of the SLR is to identify categories of

modernization method characteristics based on experience
reports. More precisely, we formulate the following research
questions:

RQ 1: How can software modernization methods
be categorized?
RQ 1.1: What are the characteristics of legacy
systems that influence the choice of the modern-
ization method?
RQ 1.2: What are the characteristics of the cho-
sen modernization methods that are relevant for
a decision?

4.2 Search strategy

4.2.1 Search string
To find relevant literature addressing our research ques-

tions, the search string must identify papers that contain ex-
perience reports on modernization efforts related to a legacy
system. Additionally, we considered synonyms to collect as
much relevant material as possible. After conducting initial
test searches, we developed the following search string:

Title:(”case study” OR ”case studies” OR ”re-
port”) AND Abstract:(”modernisation”OR ”mod-
ernization” OR ”re-engineering” OR ”reengineer-
ing” OR ”migration”) AND Abstract:(”legacy”)

We limit results to include (”case study” OR ”case studies”
OR ”report”) in the title instead of in the abstract, as we had
too large numbers of false positives and non-case studies
when testing previous search strings.

4.2.2 Sources
Kitchenham [26] listed relevant databases a comprehen-

sive software engineering SLR should consider. Due to lim-
ited search and filtering possibilities, we excluded Springer-
Link, CiteSeerx, Wiley InterScience and Google Scholar from
these, as well as El Compendex due to lack of access.

For each remaining database, we adapted the search string
to the respective syntax and search functionalities. We had
to deviate from the stated search string in dblp due to lim-
ited search syntax by using ”case” instead of ”case studies”
OR ”case study”. If possible, we used filtering functions to
already apply the selection criteria we define in the following
section. The number of resulting papers of the conducted
searches on the databases are presented in table 1.

4.2.3 Selection Criteria
After conducting the automated searches, we imported

the initial results into a Citavi project. In the next step, we

Table 1: Search Results
Sources Results Accessed
ACM 14 01.05.2023
dblp 19 10.05.2023
IEEE 24 01.05.2023
Inspec 59 07.05.2023
Scopus 90 04.05.2023

Sum 206

Table 2: Number of excluded papers by criteria
Criteria Remaining papers
Initial 206

Duplicate -98
No PDF -8
by title -19

by abstract -30
by content -10

Result 41

verified the relevance of each result, as we encountered false
positives such as ”Cadastral positioning accuracy improve-
ment: A case study in Malaysia”. Therefore, we defined and
applied the following selection criteria.

All criteria are meant to improve and ensure the quality
of the results. Fist, we consider only literature in English
language and with available full-text to assure the accessi-
bility of the content. A final publication stage and specific
document type (Article, Conference Paper, Book (Chapter),
Poster) is required to ensure a high scientific standard of re-
sults. Additionally, we filter by subject area and only include
papers attributed to related topics (Computer Science, En-
gineering, Decision Science, Business Management, Social
Science). To fulfill our research goal, we only consider liter-
ature containing experience reports that describe the mod-
ernization of a legacy system.

Subsequently, we processed the initial results as follows:
We first filtered the publications by reading the titles, then
also considered the abstracts. For the remaining papers, we
took the full text into account. Statistics of the selection
process are provided in table 2.

4.2.4 Data Extraction
For each result, we identified the modernization method(s)

applied in the case study, as well as justifications for the
chosen method or reasoning about other methods. We also
collected reasoning stated in the paper, about other not ap-
plied methods. In Citavi, we grouped our findings based on
the 6R’s and sorted justifications and methods by categories
to gain a comprehensive initial overview of our findings.

Figure 1: Number of papers by publication year

19
94

19
95

19
96

19
99

20
01

20
02

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
18

20
21

20
22

1
2
3
4

Figure 2: Number of applications 1of a method by publication
year

19
94

19
95

19
96

19
99

20
01

20
02

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
18

20
21

20
22

1
2
3
4
5
6

Refactor/-architect -tain -platform -purchase

Rehost

Figure 3: Split of applied methods in resulting papers

Refactor/-architect

79.1%

Replatform

8.3%
Rehost

2.1% Retain
8.3% Repurchase
2.1%

Figure 4: Split of applied submethods of ”Refactor-
ing/Rearchitecting”

Not specified

32.6%
Other

18.6%

SOA

11.6%

Product lines

9.3%

Microservices

6.9%

Object orientation

6.9%
Refactor2

6.9% Pattern-based
4.7%

Migration to cloud4.7%

5. RESULTS

5.1 Demographics
Figure 1 and 2 give an overview over the distribution of

the reviewed studies. We cannot observe any significant
trend in published experience reports on modernization pro-
cedures, implying a steady interest in the field. The same ap-
plies when considering the temporal distribution by strategy.
Moreover, this visualization already indicates how predom-
inantly refactoring/rearchitecting is selected over the other
strategies. The proportional distribution is shown in figure 3
and confirms that 79.1% of the reviewed case studies applied
this method. We therefore provide more detailed insight in
the distribution of different refactoring/rearchitecting meth-
ods in figure 4, showing that the most popular architec-
tures are the service-oriented and product line architectures.
However, 51.2% of the target architectures were selected
only once (other) or not further specified.

5.2 Findings on applied methods and their jus-
tifications

In the following section, we describe our findings, particu-
larly the justifications for the chosen modernization methods
mentioned in the reviewed publications.

Big bang and iterative approach
There are two general approaches that can be considered for
software modernization: the replacement of the entire sys-
tem or application at once, often referred to as ’big bang’,
or an iterative approach which modernizes the system step
by step [30]. Although mentioned in the reviewed publi-
cations, the big bang approach was never selected as mod-
ernization approach. This was mostly due to the risks and
costs involved which could be mitigated using an iterative
or incremental approach. Table 3 lists the advantages for
the respective approaches mentioned in the reviewed publi-
cations.

Table 3: Justifications for big bang (b) and iterative (i) ap-
proaches

b avoids co-existence of two potentially in- [34]
compatible systems

b cheaper than iterative approach if this [11]
requires extensive reverse engineering

i lower risks/higher success chances (e.g. [15],
with regard to limited time/experience) [34]

i lower costs [6]
i customers see modernization efforts [34]

from the beginning

6R’s
After the selection of a suitable modernization approach, the
specific strategy must be chosen. We have classified these
by the 6R’s defined in section 3.3 which define migration
strategies. All of the reviewed modernization procedures
can be viewed as a type of migration (towards a new archi-
tecture, programming paradigm, language etc.), thus these
categories can be applied. The tables 4 to 9 summarize the
justifications for and against the individual strategies, indi-
cated with + and -.

5.2.1 Retain
Retainment is used in four of the reviewed case studies,

though in all cases it is used for parts of the legacy system
only. While the rest of the systems undergo larger changes,
such as rearchitecting, the retained systems are not in the
scope of the main modernization effort. There are two major
reasons mentioned for these decisions which are tightly con-
nected to the characteristics of the respective legacy system.

Table 4: Justifications for (+) and against (-) retaining
+ preserves well functioning subsystem [3], [31]
+ preserves rarely used/uncritical subsystem [19], [20]

5.2.2 Rehost
Rehosting (also referred to as ’lift and shift’ ([36])) was

used in a single reviewed publication ([20]). In this case,
the application was rehosted to a cloud platform and subse-
quently rearchitected.

1As some papers (partly) apply multiple methods, there is
a difference between sums in figure 1 and figure 2
2See definition in 3.4

Table 5: Justifications for (+) and against (-) rehosting
+ fast migration [20],[36]
+ minimal adaptations needed [36]
- not suitable if target system is not usable [36]

to full capacity without adaptation

5.2.3 Replatform
In the reviewed publications, replatforming, also referred

to as ’soft migration’ by Fürnweger et al. [3], was selected
four times as modernization strategy. A typical method used
is wrapping which implements an adapter around legacy
code to integrate it in the new platform. It was applied to
the server component of a system, when migration to web
([5]) as well as a data management system during database
migration ([21]). Furthermore, half of the replatforming case
studies describe the migration of databases, i.e. from a DB2
database to an Oracle database ([14]) and from a network
database to a relational database ([21]).

Table 6: Justifications for (+) and against (-) replatforming
+ preserves critical data [5]
+ minimal changes needed [5], [21]
+ high feasibility if programming language [3]

of legacy system is well suited (e.g. Java
is designed for platform independence)

- no long-term solution for legacy systems of [5]
poor quality

5.2.4 Repurchase
Repurchasing proves to be a rarely described method in

the publications we reviewed: it was selected in one, and
mentioned as consideration or optional strategy for the fu-
ture in two other reports.

Table 7: Justifications for (+) and against (-) repurchasing
+ suitable for applications with standard

functionality
[20]

+ saves costs [32]
- risk of breach of copyright [15]
- not suitable for sensitive software [15]
- non-standard functions must be added [32]

5.2.5 Retire
We could not find any description of software retirement

in the publications we reviewed.

5.2.6 Refactor/Rearchitect
Refactoring was used in several publications. The main

goals were improvement of the understandability and legi-
bility of the code whilst preserving the semantics. This was
especially important for legacy systems that were highly ap-
preciated by the developers.

Table 8: Justifications for (+) and against (-) refactoring
+ minimal changes avoid functionality and [17]

performance loss
- lower code quality if used without redesign [29]

Rearchitecting was the most commonly used type of mod-
ernization. The major reason for rearchitecting was the aim
for better maintainability, flexibility and availability. In ad-
dition, there is a trend towards adapting the legacy systems
to modern technologies as well as the services and products
they offer. We have deduced this from the most popular
types of architectures selected and the reasoning given, listed
in table 9.

Further system architectures and programming paradigms
were described in the reviewed reports. As these were men-
tioned only once and/or lacking justifications, we cannot
present findings on the reasoning for these strategies.

However, we have found that some legacy systems were de-
scribed as leaning towards an architecture without fully im-
plementing it. These systems were then modernized accord-
ing to the identified architecture, using the predisposition
it displayed. For example, Goedicke and Zdun [18] identi-
fied that the observed legacy system, though it implemented
parts of multiple paradigms, was ”almost structured accord-
ing to the component-paradigm”. They therefore chose to
fully implement the component-orientation, aiming for more
flexibility and understandability.

Table 9: Justifications for (+) and against (-) rearchitecting
by architecture/paradigm

Service-oriented architecture (SOA)
+ efficient delivery, addition and [16]

change of business processes
+ flexibility [6], [16]
+ reuse of services and cost reduction [6], [16], [20]
+ suitable for integration/merge of [31], [6]

existing systems
Product-line architecture
+ enables faster product development [7], [27]
+ higher flexibility in the applications [23]
+ code reuse and cost reduction [7], [23], [27]
Microservice-based architecture
+ increased scalability [20], [35]
+ resilience to changes [20], [35]
+ improved code structure due to [4]

modularization
Object orientation
+ increased reusability, maintainabi- [9]

lity, scalability and portability
+ higher level of abstraction [9]
+ code reuse and cost reduction [11]
- may confuse developers who are un- [15]

familiar with this paradigm
Pattern-based design
+ increased understandability, [9]

reusability and maintainability
+ facilitated communication between [9], [18]

developers
+ allows integration of meta- [18]

programming techniques

5.3 Categorization
We have found that many of the justifications are related

to similar characteristics of either the legacy system itself
or the respective modernization strategy. Consequently, we
have grouped these recurring factors into five dimensions.

Regarding RQ 1.1, we identify two main categories or di-
mensions of characteristics of a legacy system that influence
the choice of a modernization method in the presented case
studies:

1. Quality of the legacy system includes various aspects of
quality and was already identified by Althani and Khaddaj
[1]. A system with good implementation and predominantly
consistent architecture, comprehensive documentation, or
a disposition for change or modernization, for example to
component-based architecture [18], enables different meth-
ods than a system not fulfilling these. Our results show that
such systems can, for example, be replatformed or rehosted
without large changes to the architecture whereas systems
with low quality have to undergo restructuring or rearchi-
tecting during migration to ensure better performance.

2. Extent of non-standard functionalities and business value
of the legacy system is decisive for the choice between big
bang/repurchasing and other methods and was already in-
troduced as a second category by Althani and Khaddaj [1].
According to the publications we analyzed, the fewer non-
standard functionalities are provided by the legacy system,
the more suitable repurchasing is, since only few adjust-
ments would have to be made.

Regarding RQ 1.2, we identify three categories of charac-
teristics of the modernization methods themselves that are
relevant for a decision:

1. Extent of adaption/modification. We perceive this as
a continuous scale starting with not changing anything or
maintenance followed by modernization and ending with re-
placement. It also allows structuring different classifications,
such as the 6R’s: Here, the method with no or little adap-
tion is Retain, followed by Rehost, Replatform and Refac-
tor/Rearchitect. Finally, the most comprehensive change is
Repurchasing or Retiring. This category is highly related to
the extent of new requirements and business needs that the
legacy system cannot fulfill.

2. Speed or time-to-market. Time constraints caused by
limited resources or urgency of the modernization greatly
restrict the suitable modernization strategies. The less time
is available for the procedure, the less extensive the applied
strategy can be. For example, the big bang method was
frequently rejected due to the effort it would have entailed,
whereas iterative refactoring (without rearchitecting) and
replatforming were chosen due to the little reverse engineer-
ing they require. Yet, the case studies showed that fast
modernization methods are frequently short-term solutions
which offer a lower quality system in comparison to other,
more time-consuming, methods.

3. Risk or success chances vary widely from one legacy sys-
tem to another and may be difficult to estimate. However,
we have observed that the way the developers deal with risks
and changes is mentioned in several case studies and can be
assessed before and during the modernization by including
them in the process. The less these developers are willing to
adapt to the changes and take risks, the less invasive these
changes should be in order to avoid overwhelming the people
concerned. Such methods could, for example, be refactor-
ing, thus preserving the semantics and minimizing risks.

Other categories such as cost and available personnel are
relevant but rarely discussed in the identified literature and
therefore not stated here.

To give an answer to RQ1, we suggest the categorization
based on the dimensions stated above. Using these allow
classifying strategies by factors that are relevant as guide-
lines determining whether or not to use them.

In the case of deciding which strategy for a modernization
of a legacy system fits best, the stated dimensions need to
be analyzed and prioritized for this specific task. For exam-
ple, characteristics of the system (quality) and the current
requirements (extent of adaption/modification) need to be
carefully considered. Similarly to the concept of The Golden
Triangle3, not all priorities can be fulfilled for a specific case.
But defined priorities and current state knowledge allow us
to narrow down the options and focus on those moderniza-
tion strategies that serve the prioritized goals.

6. DISCUSSION

6.1 Discussion of results
Though we were able to classify all methods used in the re-

viewed publications, the extraction of reasoning of the choice
of method proved to be less obvious. We have observed that
the justifications were often not explicitly stated. Instead,
the anticipated benefits were highlighted without further
justification why the selected method would achieve these
best. Yet, this permitted an analysis of the major drivers
towards a modernization and goals for the given software.
We found these results to coincide well with the results pre-
sented by Khadka et al. (2014) [24] (see section 2).

A striking result is the lack of documented rehosting, re-
tainment, retirement and big bang processes in the reviewed
publications. These were not or rarely mentioned in the
case studies and often rejected. Due to this gap, we can
only suggest explanations for this phenomenon: we cannot
distinguish, whether these gaps are due to rare use of the
methods or rare documentation thereof.

The mentioned methods may rarely be applicable to given
legacy systems. For example, rehosting may rarely be em-
ployable, because this would require changes to the system,
making the modernization a replatforming process. Retiring
and replacing legacy systems may not be considered due to
the importance of many legacy systems. Many case studies
mention the extent of business logic implemented in legacy
systems and the reliability of such proven software which
make many systems indispensable. Moreover, retiring sys-
tems may simply not be considered whilst they are function-
ing, even if they are superfluous.

The shortage of evidence on the use of these methods can
also be caused by lacking reporting. We have noticed that
the majority of case studies only describe the part of the
legacy system that is rearchitected, making a differentia-
tion between complete and partial migrations difficult. This
implies that many other subsystems are retained or retired
and these procedures are not considered worth a report. The
same could apply to rehosting processes, as this is one of the
least complex migration approaches.

During our research, we noted that some authors, such as
Thiele [13], include rewrite, a complete re-implementation
of the legacy system, as a migration strategy. Although we
did not consider this initially, we later found that it was not
selected in the reviewed case studies.

3https://beingaprojectmanager.com/nuggets/project-
management-golden-triangle/

6.2 Threats to validity
For the analysis of the internal and external validity of our

methodology and results, we employ the definitions provided
by Zhou et al. [37].

6.2.1 Internal validity
The internal validity ”seek(s) to establish a causal rela-

tionship, whereby certain conditions are believed to lead to
other conditions” ([37]).

An aspect to consider is the quality of the search query
employed. In order to include as many relevant publica-
tions as possible, we used several synonyms for the different
aspects of our search and included as many databases as
possible. However, due to the limited extent of the seminar
and time constraints, we had to limit our research query to
keywords in the abstract and title of the publications. A
broader search query would have enabled a more extensive
literature review.

It is also due to limited time that we could not perform
the quality assessment proposed by Kitchenham et al. [26].

To avoid bias regarding the categorization of the identified
modernization methods by the 6R’s, we took different mea-
sures to classify the publications equally: we reported our
findings amongst each other, discussed the categorization of
individual publications together and examined parts of the
publications categorized by the second author respectively.

A further aspect regarding internal validity is the pub-
lication bias of the reviewed publications. We have ob-
served that the majority of the reviewed case studies de-
scribe the advantages of the selected modernization method
only, rather than also specifying the drawbacks and chal-
lenges faced in the process. We can therefore only make
suggestions on the disadvantages and lack of information on
these approaches, as done in the discussion of results (sec-
tion 6.1).

6.2.2 External validity
The external validity ”define(s) the domain to which a

study’s findings can be generalized” ([37]). To achieve a
reproducible result and minimize bias in the selected publi-
cations, we followed the methodology proposed by Kitchen-
ham [26] and described the entire process, particularly the
selection criteria. Similarly to the procedure for the catego-
rization of the publications, we continuously compared our
approaches and decisions regarding the selection of relevant
publications.

7. CONCLUSIONS AND FUTURE WORK
Modernizing a legacy system can be a successful task if

the appropriate method is selected. In this paper we con-
ducted a comprehensive scientific literature review on expe-
rience reports in the field of legacy system modernization.
We provide an overview of methods applied in the research
community, as well as major arguments and justification au-
thors stated regarding different methods. Finally, we pro-
posed categorization based on our previous results that can
be used as guideline for decision.

Further work could evaluate the proposed categorization
based on the five dimensions for applicability, usefulness
and completeness. Furthermore, conducting the SLR with a
more inclusive search query could improve the quality and
significance of the results.

8. REFERENCES
[1] B. Althani and S. Khaddaj. Systematic Review of

Legacy System Migration. In 2017 16th International
Symposium on Distributed Computing and
Applications to Business, Engineering and Science
(DCABES), pages 154–157. IEEE, 2017.

[2] Amazon Web Services. 6 Strategies for Migrating
Applications to the Cloud | Amazon Web Services,
2016.

[3] Andreas Fürnweger, Martin Auer, and Stefan Biffl.
Software Evolution of Legacy Systems - A Case Study
of Soft-migration. In Slimane Hammoudi, Leszek A.
Maciaszek, Michele Missikoff, Olivier Camp, and José
Cordeiro, editors, ICEIS 2016 - Proceedings of the
18th International Conference on Enterprise
Information Systems, Volume 1, Rome, Italy, April
25-28, 2016, pages 413–424. SCITEPRESS, 2016.

[4] W. K. G. Assunção, T. E. Colanzi, L. Carvalho, J. A.
Pereira, A. Garcia, M. J. de Lima, and C. Lucena. A
Multi-Criteria Strategy for Redesigning Legacy
Features as Microservices: An Industrial Case Study.
In 2021 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER),
pages 377–387, 2021.

[5] L. Aversano, G. Canfora, A. Cimitile, and
A. de Lucia. Migrating legacy systems to the Web: an
experience report. In Proceedings Fifth European
Conference on Software Maintenance and
Reengineering, pages 148–157, 2001.

[6] P. Bhallamudi and S. Tilley. SOA migration case
studies and lessons learned. In 2011 IEEE
International Systems Conference, pages 123–128,
2011.

[7] H. P. Breivold, S. Larsson, and R. Land. Migrating
Industrial Systems towards Software Product Lines:
Experiences and Observations through Case Studies.
In 2008 34th Euromicro Conference Software
Engineering and Advanced Applications, pages
232–239, 2008.

[8] E. J. Chikofsky and J. H. Cross. Reverse engineering
and design recovery: a taxonomy. IEEE Software,
7(1):13–17, 1990.

[9] W. C. Chu, Chih-Wei Lu, J. P. Shiu, and Xudong He.
Pattern based software re-engineering: a case study.
In Proceedings Sixth Asia Pacific Software Engineering
Conference (ASPEC’99) (Cat. No.PR00509), pages
300–308, 1999.

[10] S. Comella-Dorda, K. Wallnau, R. Seacord, and
J. Robert. A survey of legacy system modernization
approaches. page 30, 04 2000.

[11] S. Datar and S. R. Schach. Reuse of legacy software in
object-oriented re-engineering: A case study.
Transactions of the South African Institute of
Electrical Engineers, 87(3):101–107, 1996.

[12] A. Dedeke. Improving Legacy-System Sustainability:
A Systematic Approach. IT Professional, 14(1):38–43,
2012.

[13] Dipl.-Ing. Udo Thiele. Mainframe-Modernisierung –
Best Practice im Überblick: Metamorphose der
Dinosaurier. ITSpektrum, (04/2022):10–15, 2022.

[14] B. Düchting and T. Laszewski. Delta lloyd
deutschland data migration case study. Information

Systems Transformation: Architecture-Driven
Modernization Case Studies, 2010.

[15] J. Ewer, B. Knight, and D. Cowell. Case study: an
incremental approach to re-engineering a legacy
FORTRAN Computational Fluid Dynamics code in
C++. Advances in Engineering Software,
22(3):153–168, 1995.

[16] M. Galinium and N. Shahbaz. Success factors model:
Case studies in the migration of legacy systems to
Service Oriented Architecture. In 2012 Ninth
International Conference on Computer Science and
Software Engineering (JCSSE), pages 236–241, 2012.

[17] B. Geppert and F. Rossler. Effects of refactoring
legacy protocol implementations: a case study. In 10th
International Symposium on Software Metrics, 2004.
Proceedings, pages 14–25, 2004.

[18] M. Goedicke and U. Zdun. Piecemeal legacy migrating
with an architectural pattern language: A case study.
Journal of Software Maintenance and Evolution,
14(1):1–30, 2002.

[19] W. Hasselbring, R. Reussner, H. Jaekel,
J. Schlegelmilch, T. Teschke, and S. Krieghoff. The
Dublo architecture pattern for smooth migration of
business information systems: an experience report. In
Proceedings. 26th International Conference on
Software Engineering, pages 117–126, 2004.

[20] H. E. Hayretci and F. B. Aydemir. A Multi Case
Study on Legacy System Migration in the Banking
Industry. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
12751 LNCS:536–550, 2021.

[21] J. Henrard, D. Roland, A. Cleve, and J.-L. Hainaut.
An Industrial Experience Report on Legacy
Data-Intensive System Migration. In 2007 IEEE
International Conference on Software Maintenance,
pages 473–476, 2007.

[22] P. Jamshidi, A. Ahmad, and C. Pahl. Cloud Migration
Research: A Systematic Review. IEEE Transactions
on Cloud Computing, 1(2):142–157, 2013.

[23] K. C. Kang, M. Kim, J. Lee, and B. Kim.
Feature-oriented re-engineering of legacy systems into
product line assets - A case study. Lecture Notes in
Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in
Bioinformatics), 3714 LNCS:45–56, 2005.

[24] R. Khadka, B. V. Batlajery, A. M. Saeidi, S. Jansen,
and J. Hage. How do professionals perceive legacy
systems and software modernization? In P. Jalote,
L. Briand, and A. van der Hoek, editors, Proceedings
of the 36th International Conference on Software
Engineering, pages 36–47, New York, NY, USA, 2014.
ACM.

[25] R. Khadka, A. Saeidi, A. Idu, J. Hage, and S. Jansen.
Legacy to SOA Evolution. In A. D. Ionita, M. Litoiu,
and G. Lewis, editors, Migrating Legacy Applications,
pages 40–70. IGI Global, 2013.

[26] B. Kitchenham. Procedures for performing systematic
reviews. Keele, UK, Keele University, 33(2004):1–26,
2004.

[27] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi.
Refactoring a legacy component for reuse in a software

product line: A case study. Journal of Software
Maintenance and Evolution, 18(2):109–132, 2006.

[28] T. Mens, S. Demeyer, B. Du Bois, H. Stenten, and
P. van Gorp. Refactoring: Current Research and
Future Trends. Electronic Notes in Theoretical
Computer Science, 82(3):483–499, 2003.

[29] P. Antonini, Gerardo Canfora, and Aniello Cimitile.
Reengineering Legacy Systems to Meet Quality
Requirements: An Experience Report. In Hausi A.
Müller and Mari Georges, editors, Proceedings of the
International Conference on Software Maintenance,
ICSM 1994, Victoria, BC, Canada, September 1994,
pages 146–153. IEEE Computer Society, 1994.

[30] A. Padenga. Application Software Re-engineering.
Dorling Kindersley, 2010.

[31] Prabhakar Cherukupalli and Y. Raghu Reddy.
Reengineering Enterprise Wide Legacy BFSI Systems:
Industrial case study. In Srinivas Padmanabhuni,
Raghu Nambiar, Premkumar T. Devanbu, Murali
Krishna Ramanathan, and Ashish Sureka, editors,
Proceedings of the 8th India Software Engineering
Conference, ISEC 2015, Bangalore, India, February
18-20, 2015, pages 40–49. ACM, 2015.

[32] H. M. Sneed and K. Erdoes. Migrating
AS400-COBOL to Java: A Report from the Field. In
2013 17th European Conference on Software
Maintenance and Reengineering, pages 231–240, 2013.

[33] Teta Stamati, Konstantina Stamati, and Drakoulis
Martakos. Key Factors in Legacy Systems Migration -
A Real Life Case. In Yannis Manolopoulos, Joaquim
Filipe, Panos Constantopoulos, and José Cordeiro,
editors, ICEIS 2006 - Proceedings of the Eighth
International Conference on Enterprise Information
Systems: Databases and Information Systems
Integration, Paphos, Cyprus, May 23-27, 2006, pages
340–344, 2006.

[34] P. Tonella and R. Tiella. Weekly Round Trips from
Norms to Requirements and Tests: An Industrial
Experience Report. In 2015 IEEE/ACM 2nd
International Workshop on Requirements Engineering
and Testing, pages 20–26, 2015.

[35] A. Vera-Baquero, O. Phelan, P. Slowinski, and
J. Hannon. Open Source Software as the Main Driver
for Evolving Software Systems Toward a Distributed
and Performant E-Commerce Platform: A Zalando
Fashion Store Case Study. IT Professional,
23(1):34–41, 2021.

[36] H. Wu, X. Qian, A. Shulman, K. Karanawat, T. Singh,
H. P. Crowell, P. Bhimani, C. Tang, Y. Li, L. Zhang,
and C. Ulherr. Move Real-Time Data Analytics to the
Cloud: A Case Study on Heron to Dataflow
Migration. In 2021 IEEE International Conference on
Big Data (Big Data), pages 2064–2067, 2021.

[37] X. Zhou, Y. Jin, H. Zhang, S. Li, and X. Huang. A
Map of Threats to Validity of Systematic Literature
Reviews in Software Engineering. In 2016 23rd
Asia-Pacific Software Engineering Conference
(APSEC), pages 153–160. IEEE, 2016.

	Seminars
	Slide Number 11

	NTSE2023_paper_1
	Introduction
	Definition of legacy systems
	Overview Software Architectures
	Problem statement
	Methodology

	From mainframe to container
	Mainframe
	Internet and distributed systems
	Software architectures
	Domain-driven architecture
	Service oriented architecture
	Microservices

	Cloud / Container

	Technical Debt
	Architectural technical debt
	Managing architectural technical debt

	Correlation
	Empirical analysis
	1996-2002
	2003-2009
	2010-2016
	2017-2023
	Results
	Methodology problems

	Discussion
	Architectures to avoid
	Architectures to choose

	Conclusion
	References

	NTSE2023_paper_2
	Introduction
	Methodology
	Results
	Automata
	Decision Trees
	Nearest Neighbor Graphs
	Flow Charts
	Activity
	Images
	Heatmaps in Flow Charts
	Matrices

	Neural Network Diagrams
	Components
	Legends
	Layers
	Data Representation
	Table Visualization
	Common Basic Operations
	Neural Network Units

	Discussions
	Conclusions
	Acknowledgments
	References

	NTSE2023_paper_3
	Introduction
	Definitions
	Selected SMLs
	SecureUML
	Mal-Activity-Diagrams
	PrivUML

	Assessing The SMLs
	The SEQUAL Framework
	Results

	Comparison Of The SMLs
	SecureUML And MADs
	SecureUML And PrivUML
	MADs And PrivUML

	Discussion
	Conclusion
	Future Work
	References

	NTSE2023_paper_4
	Introduction
	Related Work
	Background
	Legacy system
	Reengineering
	6R's: six migration strategies
	Restructure and Refactor
	Refactor and Rearchitect

	Research Method
	Research Question
	Search strategy
	Search string
	Sources
	Selection Criteria
	Data Extraction

	Results
	Demographics
	Findings on applied methods and their justifications
	Retain
	Rehost
	Replatform
	Repurchase
	Retire
	Refactor/Rearchitect

	Categorization

	Discussion
	Discussion of results
	Threats to validity
	Internal validity
	External validity

	Conclusions and Future Work
	References

	Blank Page

