
Proceedings
of Seminar

Full-Scale Software Engineering

2025
Editors: Horst Lichter

Alex Sabau
Ada Slupczynski
Selin Aydin
Nils Wild

Table of Contents

Atharva Jadhav and Bora Avcu:
Prompt Engineering: Analyzing Developer Needs and Challenges

Maren Hanke and Tsvetina Angelova:
The Role of Technical Debt in Legacy System - Modernization: A Systematic
Literature Review

Jonas Hartwig and Ahmad Al Housseini:
Evaluating Automated Testing Methods for Microservice Systems

Rares Eugen Marc and Muhammad Omar:
Microservices Architecture -Insights into Benefits, Challenges, and Best
Practices

Prompt Engineering: Analyzing Developer Needs and
Challenges

Atharva Jadhav
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

atharva.jadhav@rwth-aachen.de

Bora Avcu
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

bora.avcu@rwth-aachen.de

ABSTRACT
Prompt engineering is a critical technique for optimizing the
performance of large language models (LLMs) which are rev-
olutionizing problem-solving across domains. While existing
tools and frameworks provide partial support for prompt
creation, they often lack comprehensive coverage of the en-
tire prompt development lifecycle. This gap creates inef-
ficiencies and limits the ability of developers to streamline
workflows and achieve optimal outcomes.

In this study, we conduct a systematic literature review to
understand how developers engineer prompts and evaluate
the effectiveness of current tools. We formalize the prompt
development lifecycle, map existing tools to key activities
and identify significant gaps that hinder their usability and
effectiveness.

Our research includes an in-depth analysis of existing tools,
focusing on iterative refinement, collaborative workflows and
debugging features. Our findings reveal that current tools
fail to fully support these essential aspects of the prompt
development process.

To address these gaps, we propose actionable recommen-
dations including the development of IDE-like environments,
standardized libraries and collaborative platforms. These
insights not only highlight the limitations of current tools
but also provide a roadmap for future research and develop-
ment to enhance prompt engineering workflows and improve
developer productivity.

Keywords
Prompt Engineering, Prompt Engineering Tools, Prompt
Development Life Cycle

1. INTRODUCTION
LLMs are revolutionizing the field of problem-solving[3]

by producing output based on vast amounts of trained data
and learned knowledge[27]. Models like GPT3[5] have in-
tegrated themselves in various fields ranging from educa-
tion to software development, making it viable for a diverse

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2018/19 RWTH Aachen University, Germany.

audience. These models rely on natural language inputs,
which guide their reasoning processes to generate relevant
results[12, 21]. The quality of these outputs depend on two
critical factors, such as the structure[12] and clarity of the
prompts provided and the models’ internal parameters, like
weights. Consequently, understanding how developers craft
these prompts is vital[17]. Prompt engineering, an emerging
area of research, focuses on the creation, refinement and op-
timization of prompts to achieve specific outcomes[12, 21].
While various tools have been developed to aid in this pro-
cess, they often fail to provide comprehensive support across
all stages of the prompt engineering life-cycle. This study
aims to investigate the patterns and activities developers un-
dertake while designing prompts, evaluate the tools available
to support them and assess their effectiveness in addressing
developers needs while identifying limitations in prompt en-
gineering. Based on these objectives, two research questions
(RQs) were formulated:

• RQ1: Which activities are performed by prompt de-
velopers?

• RQ2: How are current tools supporting the defined
activities?

To address these questions, the paper is structured as fol-
lows: Section 2 outlines the methodology, including the sys-
tematic review process. Section 3 presents the derived re-
sults, discussing the definition of prompt engineering, roles
in prompt engineering, developer activities and tool evalua-
tions. Section 4 discusses the implications of these findings
and lastly Section 5 concludes the study by summarizing the
key aspects and proposing suggestions for future research in
the area of prompt engineering.

2. METHODOLOGY
This section describes the systematic literature review con-

ducted to explore the emerging field of prompt engineering.
The review process was guided by Parsifal, a web tool for
managing structured literature reviews 1. With the aid of
Parsifal, we systematically reviewed multiple databases, em-
ploying tailored prompts and assessment questions to iden-
tify relevant studies, followed by data collection, quantita-
tive analysis and lastly, evaluation.

2.1 Systematic Review Process
The systematic review process was conducted in several

stages, beginning with the definition of research objectives
1https://parsif.al/

and research questions. The PICOC framework (Popula-
tion, Intervention, Comparison, Outcome, Context) provided
a structured approach for formulating research terms, ensur-
ing the questions were well-supported by relevant literature
[7]. This framework also promoted the creation of database
queries and the refinement of searches using interchange-
able keywords. To thoroughly explore the activities, needs,
tools and challenges of prompt engineering, we developed a
detailed review protocol with specific questions and crite-
ria. Furthermore, a comprehensive literature search, apply-
ing inclusion and exclusion criteria, was conducted across
multiple databases to identify meaningful studies. Relevant
information was systematically collected and analyzed to de-
rive insights, which are presented in this study. The follow-
ing sections detail the search strategy, including methods,
search engines, data extraction and analysis.

2.2 Search Strategy
A core aspect of our methodology was the procedure used

to collect key references, applying various criteria to de-
termine whether the identified sources are essential for our
study.

2.2.1 Search Engine
Ensuring the correct selection of suitable search engines

is crucial for identifying beneficial academic papers that
provide comprehensive, reliable and credible sources. The
following sources were used as foundation for this study:
ACM Digital Library, Arxiv, IEEE, Science@Direct as well
as manually enriching the corpus with papers from Google
Scholar 2.

2.2.2 Search Strings
Search strings were used to query multiple databases, which

are listed in the Search Engine section 2.2.1. The structure
of a search string consists of AND, and OR which connect
keywords to find desired results. Creating an effective search
string is an important step in obtaining reliable and relevant
sources. The following search strings were respectively used
for each research question:

• RQ1:(”prompt engineering” OR ”prompt design” OR
”prompt optimization” OR ”prompt developer”
OR ”prompt programming” OR ”prompt programmer”
OR ”prompt engineer”) AND (”activities” OR ”tech-
niques” OR ”methods” OR ”strategies” OR ”practices”
OR ”process” OR ”life cycle”)

• RQ2:(”prompt engineering” OR ”prompt design” OR
”prompt optimization” OR ”prompt programming”)
AND (”tools” OR ”frameworks” OR ”IDE” OR ”devel-
opment kit”)

These two search strings formed the foundation for the
research conducted.

2.2.3 Inclusion and Exclusion Criteria
Since this is a new area of research, we had to apply a

couple criteria in order to extract the most relevant papers
for this study. Inclusion and exclusion criteria assist in the
search of papers by determining which papers to consider

2https://dl.acm.org/;https://arxiv.org/;
https://www.ieee.org/; https://www.sciencedirect.com/;
https://scholar.google.de/

in our selection or which papers should be excluded[7]. The
following inclusion criteria (IC) were chosen:

• IC1 The paper addresses one or more research ques-
tions

• IC2 The language is English

• IC3 The full paper is accessible

As for the exclusion criteria (EC) these were chosen:

• EC2 Paper dives too much into machine learning

• EC2 Paper with insufficient data to back up findings,
which lead to weak conclusions

• EC2 Excluding gray literature, which is not based on
scientific findings

Given the dynamic and rapidly growing nature of this re-
search field, we implemented stricter criteria to ensure selec-
tion of only high quality and relevant sources for our cause.
These criteria were designed to guide us in identifying and
including only the most suitable papers for our study.

2.3 Data Extraction and Analysis
After selecting suitable studies, we conducted a compre-

hensive review of all remaining papers that passed the pre-
vious filtering steps to determine which were relevant to our
research. Given the novelty of prompt engineering, as il-
lustrated by the rapid growth of interest in this field from
2021 to 2024 in Figure 1, extensive effort was required to
identify studies addressing our research questions. Before
2021, relatively few high-quality papers were available, fur-
ther emphasizing the emerging nature of the field. This
trend necessitated a thorough review of identified studies
and the manual inclusion of additional papers that met our
inclusion and exclusion criteria to ensure a robust dataset.
Following the selection process, we proceeded to the data
extraction and analysis phase using Parsifal. This step in-
volved systematically gathering detailed information from
each study, including their objectives, methodologies and
key findings relevant to our research questions. To answer
these questions, we identified and extracted activities per-
formed within the field of prompt engineering. These ac-
tivities were mapped to corresponding roles responsible for
their execution, with artifacts identified as the byproducts
of these activities. The extracted data was categorized into
themes such as documentation practices, challenges, exist-
ing gaps, future directions and tool improvements in prompt
engineering. Our extensive search across multiple databases
initially identified 98 papers, as shown in Figure 2. After
applying strict inclusion and exclusion criteria, 50 papers
were retained for in-depth analysis, culminating in a final
selection of 31 studies used in this research. This systematic
approach allowed us to extract valuable insights, identify
patterns and gaps and propose strategies to advance this
field of research within the domain of prompt engineering.

3. RESULTS
Our review of activities and tools in prompt engineering

reveals a rapidly evolving field with distinct challenges and
opportunities. The findings underscore the need for tai-
lored strategies to support developers in optimizing prompts

Figure 1: References distributed by year

Figure 2: Summary of the paper selection process

for LLMs. By examining the workflows and tools currently
employed by prompt developers in prompt engineering, we
identified best practices, gaps and emerging trends that cur-
rently define the field. This section is organized to address
the two research questions RQ1 and RQ2 and provides in-
sights into the activities performed by developers and the
effectiveness of existing tools.

3.1 Prompt Engineering
Prompt Engineering is the process of crafting and itera-

tively refining input prompts to optimize the output gener-
ated by LLMs. This involves using natural language to cre-
ate inputs that guide the LLMs towards solving a specific
task desired by the user, which can range in complexity[21,
16]. Furthermore, its main capability is addressing prob-
lems and generating desired results according to the given
task and giving an output in natural and understandable
language. Prompt engineering serves as a tool to bridge the
gap between a user’s intent and an LLM’s capabilities by sys-
tematically structuring prompts, employing techniques like
zero-shot, few-shot, Chain-of-Thought(CoT) prompting and
accounting for the models limitations[21, 22]. Part of this
process is defining the problem in a problem frame, refin-
ing the prompt iteratively and lastly evaluating of the out-
put. These steps are very similar to the way how LLMs are
trained. Essentially prompt engineering is used to improve,
refine and tune the output of LLMs[1, 12, 4].

3.2 Role of a Prompt Developer
A prompt developer is a specialist skilled in creating, re-

fining and tuning prompts to interact effectively with LLMs
by iteratively applying techniques to improve the prompts.
This role requires a good understanding of the used mod-
els capability, limitations and behavior in regard to vary-
ing inputs. Prompt developers engage in various activities
throughout the prompt development life cycle, each of which

align with their role specific task. This role emphasizes tasks
such as problem framing, LLM Selection, designing, execut-
ing and evaluating solutions. Furthermore, ensuring that
activities are systematically structured to achieve optimal
results. Engaging in these activities as a prompt developer
results in artifacts, as by product of each specific activity
in the development cycle [2]. Defining the role of a prompt
developer provides a clearer understanding of their respon-
sibilities and tasks, enabling us to more effectively address
the previously defined research questions.

In addition, an important aspect of a developers work flow
is documenting each step of the way in order to see what
step has to be improved on the path to the desired out-
put. The documentation may be in the form of a prompt
repository, templates and general documentation of behav-
ior, which benefits the developer in the long run to facilitate
iterative development and reproducibility. The expertise of
a prompt developer is essential in influencing the LLMs out-
put for different use cases, ranging from generating creative
content such as pictures, to solving complex computational
problems in areas of math and coding[28, 9].

3.2.1 Roles in Prompt Engineering
Part of our research was to identify the various roles in-

volved in prompt engineering and the terminology used to
describe them. While most studies we examined lacked a
precise definition for specific roles in prompt development,
they suggest that anybody who can speak and is fluent in
natural languages, primarily English since LLMs are trained
on English data sets, can be (prompt-) programmers [21].
The following Table 1, summarizes our most notable find-
ings:

Name Paper Frequency
Prompt Programmers [12, 19, 15] 3
GenAI users/ Users [23, 4, 6, 26, 14] 5

Researchers [23, 24, 10] 3
Technologist [23] 1
Programmers [11] 1

Prompt Engineers [3, 31, 30] 3
Developers [10] 1

Table 1: Frequency of role names in reviewed papers

The terms ”Researcher” and ”Technologist” in this con-
text refer to individuals who engage in activities such as
prompt hacking to test and uncover vulnerabilities in cer-
tain tools [23]. Interestingly, most studies refereed to people
interacting with prompts as ”Users” as reflected in Table 1.
Indicating, the lack of consensus on role definitions, which
furthermore underlines the novelty of this field. Addition-
ally, much of the research focuses on providing guidelines to
help improve prompts, further emphasizing the accessibility
of prompt engineering as a profession. Hereafter, we refer
to the individual interacting with LLMs to create prompts
as a prompt developer.

3.3 Prompt Development Life Cycle
The following section showcases the development cycle of

a prompt, with each major activity highlighted with the
corresponding artifacts generated through performing those
activities. In order to obtain the desired output, Prompt
developers often refine and test their prompts in an iterative

manner [25][8][17]. That is why we have to take a deeper
look into the performed activities and workflow of a prompt
developer.

3.3.1 Activities
The process of prompt engineering involves a series of it-

erative activities , which reach from framing the problem to
documenting every step, that developers continuously per-
form in order to achieve the desired output. Below in Figure
3 we introduce this process, which highlights the performed
activities throughout a prompt development life cycle in the
form of a process diagram:

1. Problem Framing: The first activity developers typ-
ically undertake is framing the problem. In this step,
they formalize the goal and define the scope of the
task they aim to address. This involves making key
decisions, such as determining the necessity of spe-
cific input data and acquiring the required informa-
tion. Depending on the problem’s nature, developers
may structure the desired output to meet specific re-
quirements[25, 28]. However, if the problem does not
necessitate a particular output format, developers may
allow the LLM flexibility in structuring the response,
provided it fulfills the intended purpose[8]. Addition-
ally, developers establish metrics to evaluate the ef-
fectiveness of the prompts, ensuring alignment with
defined objectives[17, 14, 1, 9, 16].

2. LLM Selection: After framing the problem, develop-
ers proceed to select the most suitable LLM for their
task[8]. This decision involves evaluating the capa-
bilities of different models to assure alignment with
the problems requirements[17]. In some cases, devel-
opers may experiment with multiple LLMs to compare
their performance. Moreover, developers carefully con-
sider the limitations of each model, such as token lim-
its, domain-specific expertise or response accuracy, to
make an informed choice[25].

3. Prompt Design: At this stage, developers select an
appropriate prompting technique, such as standard
prompting, zero-shot, few-shot prompting or CoT
prompting based on the task requirements [22, 12, 21].
Using the insights gathered during problem framing,
they craft a structured prompt that effectively inte-
grates the relevant data. Developers often include ad-
ditional explanatory text to clarify the task they want
the LLM to perform on the input data[8]. Prompt
templates are commonly employed to streamline the
design process and ensure consistency[1, 17]. In some
cases, developers may also include specific parameters
within the prompt to adjust the models behavior or
fine tune the output. The prompt design process is
guided not only by the tasks need, but also by the lim-
itations and capabilities of the chosen LLM[25, 28, 9,
29].

4. Prompt Execution: Once the prompt is designed,
it is executed by providing it to the selected LLM.
The execution process involves submitting the crafted
prompt, often alongside additional contextual informa-
tion or algorithmic hints, to obtain a solution from the

model[28, 17]. Prompt execution is not just about run-
ning a static query, but about engaging in a conversa-
tional and adaptive process to guide the LLM toward
producing a correct and optimal solution[8, 1, 9, 16,
19].

5. Output Evaluation: Once the model generates an
output, developers evaluate its quality using prede-
fined metrics established during the problem-framing
phase[25]. This involves analyzing the output to en-
sure it aligns with the desired objectives and identi-
fying any discrepancies or deviation from the desired
output[17]. The evaluation process often highlights ar-
eas where the prompt or parameters need refinement,
driving iterative improvements in the prompt develop-
ment cycle[8, 28, 1, 21, 9, 16, 6].

6. Documentation: This activity involves recording the
developed prompts, their generated outputs and the
corresponding evaluations of those outputs[8]. It also
includes recording successful final prompts descriptions,
versions, the failures of the engineered prompts and
also cross check with defined metrics. Documenta-
tion serves as a critical reference point for iterative
improvements and knowledge transfer, enabling devel-
opers to refine prompt design and ensure reproducibil-
ity. Additionally, structured documentation facilitates
the identification of effective prompt patterns, support
debugging process and contributes to the better under-
standing of model behavior in various contexts [25, 17,
28, 1, 4, 26].

3.3.2 Decision Points
During the prompt engineering process, developers face

several key decision points which influence the final outcome
of the prompt. These are outlined below:

1. Result Quality: Developers assess whether the out-
put meets their expectations and aligns with the de-
sired outcome. If the result is satisfactory, they ac-
cept the solution, otherwise they proceed to refine the
prompt for improvement. Which leads up to the next
key decision point[8, 17].

2. Refinement feasibility: Developers evaluate whether
the further refinement of the input prompt is feasi-
ble. Since refinement can be a time intensive aspect,
developers may decide to discontinue this process if
they think that it would not yield the desired improve-
ments[8, 25, 17]. Else the developer jumps back to the
Prompt Design Activity and starts remodeling their
prompt with the gained knowledge as seen in 3.

Prompt developers determine feasibility and quality by
assessing whether adjustments can be made, such as:

(a) Add or remove new words or update parameters
in the existing prompt [8, 17]

(b) Modify or explore new prompt structure or prompt-
ing techniques[25]

3.3.3 Artifacts
Artifacts are items that are produced during a develop-

ment process, in our case in the prompt engineering devel-
opment cycle. These can range from bug reports to gen-
eral information about the process. Each activity in a soft-
ware development process usually yields an artifact, which

Problem Framing LLM Selection Prompt Design Prompt Execution DocumentationOutput Evaluation no

yes

Result
quality?

no

yes

Refinement
feasibility?

Prompt
Template

Evaluation
Report

activity artifact

control flow

creates

Prompt
Repository

database

stores
LLM Output

Artifacts

Figure 3: Prompt engineering development cycle

then can be used to document and improve said process[18].
Thus, the development cycle for prompts produces the fol-
lowing artifacts:

• Prompt repository: Since prompt engineering is
an iterative process, multiple prompts are generated
across iterations. These prompts can be systematically
organized and maintained in a dedicated repository for
easy access and future reference.

• LLM Output artifacts: Depending on the nature of
the problems being addressed, developers often pro-
duce various output artifacts, capturing the results
generated by the LLM during the prompt engineer-
ing process. These artifacts will also be saved in the
prompt repository.

• Prompt templates: During the refinement process,
developers may design specific prompt structures that
consistently yield effective results. These structures
can evolve into reusable templates for future tasks, en-
hancing efficiency and standardization.

• Evaluation Report: This artifact documents the
analysis of outputs over multiple iterations, providing
insights into performance, areas of improvement and
the effectiveness of prompt adjustments.

3.4 Tool Evaluation
The input to LLMs being natural language simplifies the

interaction between developers and the models. However,
the iterative nature of this interaction presents several chal-
lenges. Structuring prompts effectively, understanding how
to prompt specific LLMs and evaluating output quality are
factors that can complicate the task of generating optimal
prompts[12, 4, 20]. To address these challenges, several tools
have been developed to aid in prompt generation. We eval-
uated these tools alongside the current state of art to assess
their applications and features. The following sections offers
a comprehensive overview of our findings.

3.4.1 Tools Overview
The central theme of prompt engineering tools revolves

around the idea of iterative prompt development and its re-
finement. These tools consider factors around this theme
and aim to simplify and accelerate prompt development.
Since developers can work on specific tasks like code gen-
eration[8] or image generation as studied in[17], we focused

on tools that are employed for use-cases namely text gener-
ation, image generation and code generation.

For text generation, we reviewed the Prompt-Deck[6] and
PromptLayer[20] tools. PromptDeck employs a card-based
system, where each card represents a specific task within a
larger project. These cards are interconnected to create a
cohesive workflow. Similarly, PromptLayer provides a com-
prehensive interface for managing the life cycle of prompt
development. In addition to its feature-rich user interface,
PromptLayer offers SDKs for streamlined development and
supports integration with multiple LLMs.

GenLine & GenForm[13] and CoPrompt[11] were reviewed
as code-generation use-cases. GenLine and GenForm are
built to be tools that interact with generative macros. Gen-
Line works on an in-line request while GenForm is a form
that allows input description and generates code. CoPrompt
revolves around the need of prompt co-engineering and is
built for developers to work together.

Finally, Promptify[4] and PromptCharm[28] are tools that
focus on image generation tasks. They provide a rich inter-
face to develop images based on Stable Diffusion. Promptify
allows clustering of images while PromptCharm provides ad-
ditional support like direct inpainting of images.

3.4.2 Tool Features
Based on our analysis of developer activities and the tools

they use, we have identified key features and gaps that sup-
port and enhance their efforts. The following section pro-
vides brief descriptions of these features and highlights their
relevance to the development process, alongside the Figure
4 for easier cross comparison.

• Problem Details: Developers start the prompt de-
velopment journey by framing the problem, as men-
tioned in the first activity. Thus, the Problem Details
feature is essential to document these details, serving
as a reference point throughout the development pro-
cess and ensuring alignment with the defined goal[6].

• Prompt Editor:Designing a prompt involves struc-
turing inputs and crafting a suitable text that aligns
with the tasks requirements. A powerful prompt editor
is essential for enabling developers to create, refine and
iterate on prompts efficiently[6, 20, 13, 11]. Advanced
capabilities such as improvement suggestions further
improve productivity while prompt developing[4, 28].

• LLM Selection: The selection of the most appro-
priate LLM is a crucial step as seen in the life cy-
cle, requiring tools to support integration with mul-
tiple LLMs[6, 20]. This feature allows developers to
compare models, cross evaluate their capabilities and
choose the best one suited for their objective, enhanc-
ing flexibility to switch between models, in order to
improve outputs.

• Iterative Refinement: Iterative prompt refinement
lies at the core of prompt engineering, enabling devel-
opers to continuously enhance their inputs prompt to
achieve more accurate and optimized results through-
out the development life cycle[4].

• Version Control: Given the iterative nature of the
prompt development life-cycle, it is essential to persist
artifacts such as prompts and their outputs. Version
control plays a critical role in managing these artifacts,
ensuring that both prompts and their corresponding
outputs are accurately stored and tracked throughout
the process. Developers can use the history to under-
stand their changes and look for improvements while
they develop prompts[11, 28].

• Collaboration: Prompt developers may need to co-
engineer prompts to solve complex problems. There-
fore, having a tool that enables collaboration during
prompt development is essential. This capability aligns
with the activities that developers undertake through-
out the development process[11].

• LLM Parameter Tuning: Certain LLMs require
parameter tuning to optimize their outputs alongside
the input text. During prompt design and refinement,
developers often adjust parameters to achieve better
results. Environments with integrated parametriza-
tion capabilities can significantly assist developers by
enabling faster and more efficient output optimiza-
tion[20].

• Evaluation: Evaluating output is a crucial step in the
prompt development life cycle as it decides necessity
of further refinement. It is essential for tools to sup-
port evaluation processes, with criteria varying based
on the use case. For instance, in image generation, de-
velopers need to visualize the output [17, 28], while in
text generation, the output must be assessed against
several criteria, as outlined in [6].

• Custom Prompt Templating: Prompt design and
refinement often reveal recurring patterns in input
prompts. Developers may wish to create templates
from these patterns to reuse in future projects or iter-
ations [17]. This feature facilitates developers to store
and manage prompt templates efficiently [20].

While the reviewed tools provide essential features support-
ing various aspects of prompt engineering, they often fall
short in addressing the entire development life cycle com-
prehensively. In particular, enhanced support for collabora-
tion and robust documentation features could significantly
improve developer workflows. On the other side, a critical
activity like prompt refinement which is part of the entire
development cycle is widely supported across most tools,
providing essential assistance to developers in one of the
most vital stages of the process.

4. DISCUSSION
The study highlights that prompt engineering is a rapid

-ly evolving field driven by its ability to address a wide va-
riety of problems with exceptional precision. The central
‘define-refine-test’ idea for prompting is widely recognized
and serves as the foundation of effective prompt engineer-
ing. Our analysis of RQ1 reinforces this concept but also
uncovers additional vital activities necessary for develop-
ers to achieve optimal results. Activities such as Problem
Framing and LLM Selection are critical for setting the tone
of prompt development while documentation emerges as a
cornerstone for enabling collaboration, facilitating faster de-
velopment and ensuring systematic refinement of prompts.

The analysis of tools based on different use cases demon-
strates that the central idea of prompt engineering is well
captured by all the tools. All tools have the features of
prompt editing and allow refinement of these prompts based
on results. These tools allow developers to initiate the prompt
development process, however they do not fully unlock the
potential of LLMs. Prompt engineering could be employed
for large-scale or complex projects. This requires features
like collaboration and version control, allowing several de-
velopers to work on projects. Many of the tools lack support
for such features as they are not directly pointed out by the
central idea of prompt engineering. Developers also require
the flexibility to select different LLMs. We saw that most
of the tools like PromptCharm or CoPrompt do not allow
this, which inhibits the options of developers.

Our study also identified that tools also come in differ-
ent structures and forms. Tools like PromptDeck, with its
web-based user interface, provide developers with flexibility
and ease of use while GenLine’s macros-like structure of-
fers targeted efficiency. These variations in tool structures
can help developers tailor their workflows to specific needs,
but also underscore the need for a unified platform that in-
tegrates essential features across use cases. Additionally,
most of the tools like GenLine and GenForm serve a single
use-case. While this can assist a certain population of de-
velopers, other developers also need tools that allow usage
of diverse modalities. We have recently seen that tools like
PromptLayer have started supporting multimodalities.

To address these gaps it is critical to revisit the findings
of RQ1 and leverage the identified development life-cycle
to support developers at every stage. Enhancing documen-
tation through shared repositories and integrating robust
collaboration tools could significantly improve the iterative
refinement process. Additionally, RQ2 reveals that while
tools like PromptLayer address many aspects of the life-
cycle, they still lack features such as comprehensive prob-
lem framing. Incorporating these features along with arti-
facts like structured evaluation reports and reusable prompt
templates would greatly enhance tool effectiveness.

4.1 Future Research
Advancing prompt engineering requires bridging gaps in

workflows and tools by focusing on integrated environments
that support the entire prompt engineering life cycle. Col-
laborative platforms with features like real-time co-editing,
context-aware suggestions and automated version control
could streamline workflows. Tools should also support multi-
modal capabilities and specialized use cases, such as health-
care or education, to enhance versatility and precision.

Improved documentation practices, including shared repos-

GenLine and
GenForm CoPrompt PromptCharm Promptify PromptDeck PromptLayer

Problem Details - - - - ✔ -

Prompt Editor ✔ ✔ ✔ ✔ ✔ ✔

LLM Selection - - - - ✔ ✔

Iterative Refinement ✔ ✔ ✔ ✔ ✔ ✔

Version Control - ✔ ✔ ✔ - ✔

Collaboration - ✔ - - - ✔

LLM Parameter Tuning - - ✔ ✔ - ✔

Evaluation - ✔ ✔ ✔ ✔ ✔

Custom Prompt Templating - - - - - ✔

Considered Use Case Code Generation Text to Image Generation Text Generation

Tools
Tool Features

Figure 4: Evaluation of tools based on existing features

itories and structured reports, can boost reproducibility and
collaboration. Ethical considerations must also be integrated
to ensure responsible AI usage and prevent misuse. These
advancements would make prompt engineering more acces-
sible, reliable and effective across diverse applications.

5. CONCLUSIONS
Advancements in LLMs, alongside the use of natural lan-

guage inputs, have enabled these models to address critical
problems. Moving beyond simple experimentation, prompt
developers now systematically engineer prompts, following
a defined set of actions to enhance the prompt engineering
process. This study explores the prompt development life
cycle and identifies key activities such as problem framing,
LLM selection and documentation, in addition to the itera-
tive process of prompt design and refinement.

The study also highlights the various artifacts generated
during prompt engineering and explains how they help op-
timize the process. Furthermore, we examine existing tools
that have been developed over time to streamline prompt
engineering, assessing how effectively these tools align with
developer activities based on their offered features. Due to
the novelty of this technology, these tools are still in their
early stages.

However, trends indicate that they are updated continu-
ously to incorporate features that keep pace with LLM ad-
vancements and evolving user interactions. For instance,
PromptLayer shows promise for more complex projects. By
analyzing prompt engineering activities, the study also iden-
tifies gaps in current tools. Finally, this paper serves as a
guideline for prompt developers and as a reference for im-
proving prompt engineering tools. By addressing the current
state of prompt engineering and the limitations of available
tools, this field can progress toward optimizing prompt engi-
neering and enhancing tools that help developers fully lever-
age LLMs.

6. REFERENCES
[1] A. Ahmed, M. Hou, R. Xi, X. Zeng, and S. A. Shah.

Prompt-eng: Healthcare prompt engineering:

Revolutionizing healthcare applications with precision
prompts. In Companion Proceedings of the ACM Web
Conference 2024, WWW ’24, page 1329–1337, New
York, NY, USA, 2024. Association for Computing
Machinery.

[2] J. M. Bass. Artefacts and agile method tailoring in
large-scale offshore software development programmes.
Information and Software Technology, 75:1–16, 2016.

[3] L. Beurer-Kellner, M. Fischer, and M. Vechev.
Prompting is programming: A query language for
large language models. Proceedings of the ACM on
Programming Languages, 7(PLDI):1946–1969, June
2023.

[4] S. Brade, B. Wang, M. Sousa, S. Oore, and
T. Grossman. Promptify: Text-to-image generation
through interactive prompt exploration with large
language models. In Proceedings of the 36th Annual
ACM Symposium on User Interface Software and
Technology, UIST ’23, New York, NY, USA, 2023.
Association for Computing Machinery.

[5] T. B. Brown, B. Mann, N. Ryder, M. Subbiah,
J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen,
E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei. Language models are few-shot
learners, 2020.

[6] A. Bucchiarone, M. Panciera, A. Cicchetti, N. Mana,
C. Castelluccio, and L. Stott. Promptdeck: A no-code
platform for modular prompt engineering. In
Proceedings of the ACM/IEEE 27th International
Conference on Model Driven Engineering Languages
and Systems, MODELS Companion ’24, page 895–904,
New York, NY, USA, 2024. Association for
Computing Machinery.

[7] A. Carrera-Rivera, W. Ochoa, F. Larrinaga, and
G. Lasa. How-to conduct a systematic literature
review: A quick guide for computer science research.

MethodsX, 9:101895, 2022.

[8] P. Denny, V. Kumar, and N. Giacaman. Conversing
with copilot: Exploring prompt engineering for solving
cs1 problems using natural language. In Proceedings of
the 54th ACM Technical Symposium on Computer
Science Education V. 1, SIGCSE 2023, page
1136–1142, New York, NY, USA, 2023. Association for
Computing Machinery.

[9] P. Denny, J. Leinonen, J. Prather, A. Luxton-Reilly,
T. Amarouche, B. A. Becker, and B. N. Reeves.
Prompt problems: A new programming exercise for
the generative ai era, 2023.

[10] I. D. Fagadau, L. Mariani, D. Micucci, and
O. Riganelli. Analyzing prompt influence on
automated method generation: An empirical study
with copilot. In Proceedings of the 32nd IEEE/ACM
International Conference on Program Comprehension,
ICPC ’24, page 24–34. ACM, Apr. 2024.

[11] L. Feng, R. Yen, Y. You, M. Fan, J. Zhao, and Z. Lu.
Coprompt: Supporting prompt sharing and referring
in collaborative natural language programming. In
Proceedings of the CHI Conference on Human Factors
in Computing Systems, CHI ’24, page 1–21. ACM,
May 2024.

[12] A. J. Fiannaca, C. Kulkarni, C. J. Cai, and M. Terry.
Programming without a programming language:
Challenges and opportunities for designing developer
tools for prompt programming. In Extended Abstracts
of the 2023 CHI Conference on Human Factors in
Computing Systems, CHI EA ’23, New York, NY,
USA, 2023. Association for Computing Machinery.

[13] E. Jiang, E. Toh, A. Molina, A. Donsbach, C. J. Cai,
and M. Terry. Genline and genform: Two tools for
interacting with generative language models in a code
editor. In Adjunct Proceedings of the 34th Annual
ACM Symposium on User Interface Software and
Technology, UIST ’21 Adjunct, page 145–147, New
York, NY, USA, 2021. Association for Computing
Machinery.

[14] T. Kraljic and M. Lahav. From prompt engineering to
collaborating: A human-centered approach to ai
interfaces. Interactions, 31(3):30–35, May 2024.

[15] J. T. Liang, M. Lin, N. Rao, and B. A. Myers.
Prompts are programs too! understanding how
developers build software containing prompts, 2024.

[16] Y. Liu, G. Deng, Z. Xu, Y. Li, Y. Zheng, Y. Zhang,
L. Zhao, T. Zhang, and K. Wang. A hitchhiker’s guide
to jailbreaking chatgpt via prompt engineering. In
Proceedings of the 4th International Workshop on
Software Engineering and AI for Data Quality in
Cyber-Physical Systems/Internet of Things, SEA4DQ
2024, page 12–21, New York, NY, USA, 2024.
Association for Computing Machinery.

[17] A. Mahdavi Goloujeh, A. Sullivan, and B. Magerko. Is
it ai or is it me? understanding users’ prompt journey
with text-to-image generative ai tools. In Proceedings
of the 2024 CHI Conference on Human Factors in
Computing Systems, CHI ’24, New York, NY, USA,
2024. Association for Computing Machinery.

[18] N. Nazar, Y. Hu, and H. Jiang. Summarizing software
artifacts: A literature review. Journal of Computer
Science and Technology, 31(5):883–909, 2016.

[19] S. Petridis, M. Terry, and C. J. Cai. Promptinfuser:
Bringing user interface mock-ups to life with large
language models. In Extended Abstracts of the 2023
CHI Conference on Human Factors in Computing
Systems, CHI EA ’23, New York, NY, USA, 2023.
Association for Computing Machinery.

[20] PromptLayer Team. Promptlayer: Prompt
management and experimentation for llms, 2024.
Accessed: 2024-12-14.

[21] L. Reynolds and K. McDonell. Prompt programming
for large language models: Beyond the few-shot
paradigm, 2021.

[22] P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal,
and A. Chadha. A systematic survey of prompt
engineering in large language models: Techniques and
applications. arXiv preprint arXiv:2402.07927, 2024.

[23] V. F. D. Santana. Challenges and opportunities for
responsible prompting. In Extended Abstracts of the
CHI Conference on Human Factors in Computing
Systems, CHI EA ’24, New York, NY, USA, 2024.
Association for Computing Machinery.

[24] S. Vatsal and H. Dubey. A survey of prompt
engineering methods in large language models for
different nlp tasks, 2024.

[25] A. Vijayan. A prompt engineering approach for
structured data extraction from unstructured text
using conversational llms. In Proceedings of the 2023
6th International Conference on Algorithms,
Computing and Artificial Intelligence, ACAI ’23, page
183–189, New York, NY, USA, 2024. Association for
Computing Machinery.

[26] B. Wang, J. Liu, J. Karimnazarov, and N. Thompson.
Task supportive and personalized human-large
language model interaction: A user study. In
Proceedings of the 2024 Conference on Human
Information Interaction and Retrieval, CHIIR ’24,
page 370–375, New York, NY, USA, 2024. Association
for Computing Machinery.

[27] J. Wang, Z. Liu, L. Zhao, Z. Wu, C. Ma, S. Yu,
H. Dai, Q. Yang, Y. Liu, S. Zhang, et al. Review of
large vision models and visual prompt engineering.
Meta-Radiology, page 100047, 2023.

[28] Z. Wang, Y. Huang, D. Song, L. Ma, and T. Zhang.
Promptcharm: Text-to-image generation through
multi-modal prompting and refinement. In Proceedings
of the 2024 CHI Conference on Human Factors in
Computing Systems, CHI ’24, New York, NY, USA,
2024. Association for Computing Machinery.

[29] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea,
H. Gilbert, A. Elnashar, J. Spencer-Smith, and D. C.
Schmidt. A prompt pattern catalog to enhance
prompt engineering with chatgpt, 2023.

[30] Q. Ye, M. Axmed, R. Pryzant, and F. Khani. Prompt
engineering a prompt engineer, 2024.

[31] Y. Zhou, A. I. Muresanu, Z. Han, K. Paster, S. Pitis,
H. Chan, and J. Ba. Large language models are
human-level prompt engineers, 2023.

The Role of Technical Debt in Legacy System
Modernization: A Systematic Literature Review

Maren Hanke
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

maren.hanke@rwth-aachen.de

Tsvetina Angelova
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

tsvetina.angelova@rwth-aachen.de

ABSTRACT
Managing legacy systems comes with challenges such as high
maintenance costs or a complex structure. The decision-
making process for modernizing legacy systems is often not
trivial, as financial and resource budgets are usually lim-
ited. Therefore priorities must be set on what to modern-
ize and in what order. One problem that often arises with
legacy systems is a large amount of technical debt. Technical
Debt (TD) describes the trade-off made by adopting sub-
optimal solutions for short-term benefits, potentially lead-
ing to higher costs and effort in the future. Modernization
of legacy systems is typically desired and the knowledge of
technical debt and the different types of TD that occur in a
software system can be used to make decisions when mod-
ernizing. Currently, there is research on TD prioritization
and legacy system modernization, however, there is no sum-
mary of TD prioritization approaches in legacy system mod-
ernization. Therefore, in this study, a systematic literature
review was conducted, focusing on real-world case studies to
systematically investigate the benefits of understanding TD
in legacy system modernization. Key types of TD that im-
pact modernization were identified, along with strategies for
mitigating them. This review provides an overview of the
current state of knowledge on the impact of TD on modern-
ization and possible links between modernization and tech-
nical debt.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhance-
ment

Keywords
legacy system modernization, technical debt, systematic lit-
erature review, software quality, refactoring, software main-
tenance, code smells, software evolution, maintainability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2024/25 RWTH Aachen University, Germany.

1. INTRODUCTION
In the rapidly evolving field of software development, Tech-

nical Debt (TD) has become a critical concept for under-
standing the relationship between short-term development
benefits and system sustainability. The term TD refers to
certain design or implementation choices that are made to
make software development faster [30]. However, while they
are beneficial in the short term, they often result in increased
costs and challenges in the future. Some TDs are inevitable
due to changing requirements or market pressures, and often
impact the software lifecycle, affecting maintenance, scala-
bility, and adaptability [15].

As the TD accumulates over time, it often leads to the
emergence of legacy systems. This term refers to older soft-
ware systems that, while essential to some business opera-
tions, become difficult to maintain, update, or integrate with
newer technologies [21]. Legacy systems are common across
industries due to their role in supporting critical operations.
However, they present significant challenges, such as mainte-
nance costs, reduced performance, and limited adaptability
[13]. To address these issues, organizations often undertake
modernization processes aimed at transforming legacy sys-
tems to meet current and future requirements.

Modernization involves improving the performance, adapt-
ability, and cost-effectiveness of software systems. While
modernization is a critical step in ensuring long-term soft-
ware systems, it is not without its disadvantages. Organi-
zations must navigate between achieving quality moderniza-
tion and managing costs [22]. Understanding the role of the
TD in this process is very important because it influences
the reason for modernization and the way it is implemented.

While numerous studies have explored TD in software de-
velopment [3, 6, 5, 9, 11], a comprehensive understanding of
how it influences legacy system modernization is still lack-
ing. In particular, the impact of different types of TD on
the modernization process and how a better understanding
of TD can support decision-makers in these projects has not
yet been systematically examined. Few well-defined, empir-
ically validated frameworks exist to guide practitioners in
identifying, managing, and prioritizing TD in this context.

This gap between TD in broader software development
and TD in legacy systems makes it difficult to define the spe-
cific causes and consequences of TD that obstruct modern-
ization or to adopt effective strategies for addressing them.
Without an understanding of this, decision-making in mod-
ernisation projects remains ad hoc and can increase the risk
of inefficient processes.

This paper addresses this gap by conducting a Systematic

Literature Review (SLR), exploring the role of TD in legacy
system modernization. To achieve this, the study identifies
key types of TD that influence the modernization process
and explores strategies to mitigate TD during moderniza-
tion. By addressing these objectives, this paper provides a
deeper understanding of TD’s impact.

The remainder of the paper is structured as follows. First,
in Section 2 a background on TD is given, followed by related
work on TD and on legacy system modernization. Next, in
Section 3 the methodology is described, detailing the re-
search strategy. This is followed by Section 4 where the
findings, which focus on the effects of TD on legacy sys-
tem modernization, are discussed. The Section 5 examines
possible implications that can be derived from the results.
Finally, the paper concludes in Section 7 by summarizing the
key findings and suggesting directions for future research.

2. BACKGROUND AND RELATED WORK
This section describes the core ideas of Technical Debt

(TD), followed by an overview of research in the field of TD
and legacy system modernization.

2.1 Background
In this Section, the term Technical Debt is explained to

provide a foundation for the following Sections.

2.1.1 Technical Debt
The metaphor of TD was first introduced by Cunning-

ham in 1992 [12]. Cunningham describes TD as a trade-off
between high-quality, maintainable code that requires more
effort initially but saves time in the future, and the short-
term goal of deploying software quickly. Achieving faster
delivery often means going into TD by sacrificing quality.
This TD accrues interest every time the low-quality code is
accessed since it requires more effort compared to working
with a TD-free system. One can decide to keep the debt or
to pay it off.

There are different views of what falls under the definition
of TD and different approaches to classifying TD. Robert C.
Martin [37] argues that a mess should not be considered be-
cause a TD has a benefit and a mess does not. Fowler [19]
argues similarly, but does not distinguish between a debt
and a mess, and instead focuses on categorizing TD into
reckless and prudent debt. A reckless debt is one that is
taken on lightly and without consideration and a prudent
debt is one that was well-considered and carefully evaluated
before being taken on. Fowler further distinguishes TD into
deliberate and inadvertent debt, forming a technical debt
quadrat. While deliberate debt is taken on knowingly, in-
advertent debt is taken on unaware. This study considers
all of Fowler’s TD categories when examining the interplay
between TD and modernization.

When discussing TD, one should also consider the related
concept of Code Smells (CS). CSs refer to parts of the code
that violate best practices and are easy to detect. However,
unlike TD, CSs are not always problematic themselves but
often rather indicate the presence of a problem. A very long
method is an example of a CS that is not in itself a problem
but can lead to problems [18].

2.1.2 Types of Technical Debt
In 2014, Li et al. [30] conducted a systematic mapping

study to understand TD and summarize current research on

its management. This study included publications between
1992 and 2013, analyzed 96 selected studies, and derived a
classification of TD into ten categories and additional sub-
categories from these studies. Three of these ten identified
categories are shown in Table 1. These three types will be
reconsidered and their importance for this paper will be dis-
cussed in Section 5.

TD Type Description
Architectural TD ”Architecture decisions that make
(ATD) compromises in internal quality aspects”.
Code TD Code violating best practices.
Documentation TD ”Insufficient, incomplete, or outdated

documentation in any aspect of software
development.”

Table 1: TD categories and descriptions as identified
by Li et al. [30].

2.2 Related Work
In the following, a brief overview of related work in the

field of TD and modernizing legacy systems is given, starting
with Systematic Reviews (SRs) on TD and followed by SRs
on the modernization of legacy systems.

2.3 Systematic Reviews of TD
Over the last decade, a significant amount of research on

TD has been conducted. In this subsection, the focus lies
on SRs on TD prioritization and management. Lenarduzzi
et al. [28] published in 2021 an SLR that summarizes the
TD prioritization approaches of 44 primary studies proposed
until 2020. During their background research, they identi-
fied eleven SRs. Of these eleven SRs ten are presented in the
following as one was not accessible. These are supplemented
by more recent publications.

The earliest identified work is the case study by Tom et
al. in 2012 [36], which proposed a theoretical framework for
understanding TD. Over the last ten years, various studies
have sought to identify TD identification approaches [5], cat-
egories of TD types [30, 33, 5], Technical Debt Management
(TDM) strategies [30, 33, 5] and TD prioritization strate-
gies [4, 27]. For instance, Becker et al. [8] conducted a
SLR on TDM to identify how trade-off decisions in TDM
are made in current literature. Meanwhile, Ampatzoglou
et al. [7] explored financial approaches to TDM in a SLR.
Fernández-Sánchez et al. [16] focused in their systematic
mapping study on identifying elements critical for TDM.
They grouped these elements into three categories, mapped
them to three stakeholders’ perspectives, and revealed that
TDM is highly context-dependent.
Other studies focused on TD in specific contexts. For ex-
ample, Behutiye et al. identified in a SLR 12 TDM strate-
gies in the context of agile software development, while the
systematic mapping study by Bogner et al. identified TD
types, antipatterns, and solutions for TD in the context of
AI-based systems. Toledo et al. conducted a multiple case
study to identify Architectural TD (ATD), its costs, im-
pacts, common solutions, and relationships in the context
of microservices. Besker et al. [10] developed a descriptive
model to characterize and explain ATD, aiming to spread
stakeholder awareness of ATD.

2.4 Systematic Reviews in Legacy System Mod-
ernization

This subsection reviews SRs and exploratory studies on
legacy system modernization, focusing on widely cited pub-
lications.

In 2014, Khadka et al. [25] conducted an exploratory
study by interviewing 26 industry practitioners to uncover
the key drivers and challenges of system modernization. Ag-
ilar et al. [2] followed with a mapping study in 2016, to
identify processes, techniques, and tools for system mod-
ernization. The SLR by Abdellatif et al. [1] developed
a taxonomy and classification of existing service identifica-
tion approaches for modernizing legacy systems to a service-
oriented architecture. Furthermore, Wolfart et al. [40] have
dedicated their study to creating a roadmap for moderniz-
ing monolithic legacy systems into microservices. Another
roadmap was developed by Khadka et al. [25] who advo-
cate a modernization framework to take advantage of cloud
computing.

2.5 Research Trends and Gaps
In their research, Holvitie et al. [23] found 31 publications

addressing the concepts of TD and legacy. Of these, five
publications explicitly highlighted the difference between TD
and legacy, while the remaining 26 publications compared
the two concepts, discussed legacy as a contributing factor
to TD, or indicated that legacy underscores the negative
effects of TD. This emphasizes the importance of further
exploring the interplay between these concepts and exam-
ining the potential use of the insights on their relation for
modernization purposes. While many SRs have explored
TD and legacy system modernization, there is a lack of ex-
ploration into their relation or the identification of suitable
TDM strategies for modernization projects. This SLR aims
to address this gap.

3. METHOD
To conduct this study, the guidelines for Systematic Lit-

erature Review (SLR) developed by Kitchenham [26] were
followed. A SLR provides a structured approach to iden-
tifying, evaluating, and interpreting all available research
relevant to a specific research question or topic area of in-
terest [26]. In addition, the Snowballing process, as defined
by Wohlin [39], was applied.

The research process is described in the following subsec-
tions. First, the research questions are provided, followed
by the search strategy, the inclusion and exclusion criteria,
and a quality assessment.

3.1 Definition of Research Questions
The purpose of this study is to identify, categorize, and

examine the role of TD in legacy system modernization, ac-
cording to recent literature. The study was guided by the
following research questions:

• RQ1: What types of TD accelerate a system’s transi-
tion to a legacy system?

• RQ2: What strategies are employed in existing projects
for considering TD during modernization?

• RQ3: What challenges exist in managing TD, and
how can they guide best practices for legacy system
modernization?

The first research question (RQ1) focuses on the types
of TD that accelerate the process of a system evolving into
a legacy system. The second aims to explore how TD can
be prioritized and what strategies exist to handle TD in
legacy system modernization projects successfully (RQ2),
while the last research question focuses on the challenges
and their possible solutions in TD management and what
insights they provide for modernization (RQ3).

These questions are addressed to provide insights into the
interplay between TD and legacy system modernization and
to identify TD management strategies that have been empir-
ically validated to be effective in real-world modernization
projects.

3.2 Search Process
The search process included identifying the most relevant

bibliographic sources and search terms, defining the crite-
ria for inclusion and exclusion, and outlining the selection
process for making inclusion decisions.

The databases in Table 2 were used for the search pro-
cess, as they are the most relevant for the field of computer
science.

Database Date of Search # Papers
dblp 01.11.2024 58
IEEExplore 31.10.2024 53
IET Digital Library 02.11.2024 38
Scopus 24.10.2024 183
SpringerLink 03.11.2024 26

Table 2: Databases used for the search process.

Due to the initial high number of search results in Springer-
Link, which were likely to contain many irrelevant entries,
the search in SpringerLink was restricted to the discipline
of computer science, using only the search term ”Technical
Debt Legacy System Modernization”and limiting the results
to conference papers and articles, resulting in more relevant
and manageable results. Furthermore, for all databases, the
option to display results containing all search term words
was applied. For the databases, the following search terms
were used:

• Technical Debt and Legacy System Modernization

• Technical Debt and Software Modernization

• Technical Debt and Legacy Systems

• Technical Debt Prioritization

Various search terms were initially tested in the databases,
and only those yielding results relevant to the topic were
retained.

3.3 Inclusion and Exclusion Criteria
The inclusion and exclusion criteria ensure the selection

of relevant and high-quality studies for this research. Stud-
ies that discussed strategies to handle TD, with a focus on
TD management and the effects on maintainability, were in-
cluded, as well as studies providing approaches for removing
or refactoring TD.

Studies were excluded if they did not fit the research topic,
did not provide answers to the research questions, were not
written in English, or did not contain peer reviews, such

as blog posts or forum discussions. Duplicate studies were
identified and only the most recent and comprehensive ver-
sion was included in the database. In addition, publications
where access to the full text was not possible were not in-
cluded. In cases where journal articles extended conference
papers based on the same dataset, only the most recent ver-
sion was included in the analysis.

3.4 Quality Assessment
After an initial review of the 358 works identified in the

search, each one was checked against the defined inclusion
and exclusion criteria. After this process, 14 studies re-
mained that met the requirements and provided insights into
the role of TD in legacy system modernization. The results
of this process are reported in Table 3, which includes the
number of papers excluded due to various criteria, along
with the number of papers that remained.

Step # Papers
Retrieved from databases 358
False positive 81
Discarded by language 1
Discarded by title 38
Discarded by abstract 28
No access or no pdf available 33
Duplicates 72
Remaining 105
Discarded by full-text 91
Remaining studies 14

Table 3: Results of search and application of quality
assessment criteria.

4. RESULTS
This section examines the findings from the analysis of the

14 primary studies. First, the potential of addressing TD to
mitigate some of the challenges of legacy system modern-
ization is explored. This is followed by a discussion of the
strategies for prioritizing TD. Finally, the challenges in TD
management and the sources of TD accumulation are evalu-
ated to understand how to prevent TD accumulation during
modernization.

Holvitie et al. [23, 24] found in their survey of 69 TD
instances, with 184 responses, that the origin of components
carrying TD was 76% perceived to be in software legacy and
only 15% not to be rooted in legacy, suggesting a strong
connection between TD and legacy software.

4.1 Challenges of Legacy System Moderniza-
tion

Khadka et al. [25] identified the challenges of legacy sys-
tem modernization. Some of these challenges are presented
below, along with a discussion of how reducing TD can po-
tentially mitigate them.

A complex architecture was identified as a challenge, which
also complicates testing, which is seen as another challenge
of modernization. This problem could potentially be miti-
gated by reducing ATD prior to modernization. Inadequate
documentation of the legacy system is also mentioned as a
problem, as this often leads to a lack of understanding of
the functionality of the components and makes it difficult to

extract the business logic. It is noted that it can be benefi-
cial to document the legacy system before starting the mod-
ernization, which is equivalent to reducing the documenta-
tion debt. Another challenge is to communicate the reasons
and consequences of legacy system modernization. Again,
the concept of TD could be helpful as it makes it easier to
communicate the consequences and benefits of retaining or
repaying TD. These challenges suggest that refactoring to
reduce certain types of TD prior to modernization could be
beneficial in mitigating some challenges of modernization.
Several studies report the successful reduction of TD during
refactoring, which are reviewed below.

4.2 Strategies for Addressing TD During Mod-
ernization

During the SLR, no studies were found that directly in-
vestigated the role of TD in legacy systems modernization.
Therefore, the focus is on studies that present strategies to
reduce TD during refactoring which can be applied prior to
modernization to mitigate the challenges of legacy system
modernization. Another area of focus is studies that exam-
ine the role of TD during refactoring or the transition to a
different architectural style.
First, studies focusing on TD in general are listed, followed
by studies that examine specific types of TD. Then, studies
on the influence of TD during architectural style transitions
are presented.

4.2.1 Overview of General TD Studies
During modernization, it can be useful to exchange one

debt for another with a lower interest rate. Buschmann [11]
gave an example where a company opted for poor software
modularization to speed up development. Unexpected per-
formance problems led to the interpreter being replaced by a
run-time compiler, which solved the performance problems
but reduced runtime flexibility. This is one example of a
debt being traded for another with a lower interest rate. It
illustrates that considering the concept of TD during mod-
ernization can help to choose a strategy that minimizes fu-
ture interest while focusing on the gains.

The study by Gupta et al. [21] provides an example of how
TD can be successfully reduced in a legacy system. They
continuously monitored and prioritized TD to pay back in-
curred and new TD. The approach was split into four steps:
First, the TD items are identified, then a strategy is de-
veloped to repay the TD and prevent new TD from arising.
This is followed by the execution, where the importance and
urgency of the TD items are determined, and in the second
step, the impact of each TD item on business value and
the effort required to address it are assessed. This was fol-
lowed by a validation phase. Although the focus was not on
modernization but on managing TD in a legacy system, it
demonstrates the need and benefits of considering TD when
dealing with legacy systems.

Chowdary et al. [20] recalled another successful reduction
of TD. They present a method for refactoring that signif-
icantly reduces the Self-Admitted Technical Debt (SATD),
which refers to TD explicitly reported by developers. They
introduce a framework that uses NLP word embeddings to
identify and prioritize SATD. The proposed method showed
higher accuracy, precision, detectability, and F1 score than
existing models, and after refactoring, SATD instances were
significantly reduced.

4.2.2 Specific Types of TD and Their Impact
Several studies focused on specific types of TD. In the pri-

mary studies reviewed, Architectural Technical Debt (ATD)
(21%) and Code Debt (7%) are the most commonly reported
types of TD. The following studies focused on recommending
guidelines for refactoring. Their findings have the potential
to provide valuable insights if refactoring is performed to
reduce TD prior to modernization.

An example of effective TD management in refactoring is
the Code Smell Intensity Index by Fontana et al. [17]. The
Code Smell Intensity Index prioritizes which CSs are most
critical and should be removed first. CSs are not a prob-
lem in themselves, but they indicate problems and can be
a source of TD. The experimental evaluation showed that
only 10% of the CSs are assigned to the highest of the five
defined intensity levels, which significantly reduces the num-
ber of instances to be inspected and thus saves time during
refactoring. However, the index does not consider whether
the smells are related. If smells are related or co-related,
they become more critical since they can lead to architec-
tural smells, therefore they require earlier analysis.

As we have seen, a key challenge in modernizing legacy
systems is a complex system architecture [25]. Reducing
ATD can potentially mitigate this challenge by improving
the system architecture. Sas et al. [35] examined which
Architectural Smells (AS) should be prioritized, providing
suggestions that can help with refactoring. They explored
AS in 524 versions across 14 different projects. As with CSs,
ASs are not a problem themselves but can indicate a prob-
lem and thus a TD. They considered three different types
of AS in their study: Unstable Dependency (UD), Hub-like
Dependency (HL), and Cyclic Dependency (CD). Sas et al.
concluded that small debt items should not be prioritized
during refactoring, as they are likely to be intentional. In-
stead, old complex TD items should be prioritized, as they
can have a negative impact on the important parts of the
system and their maintainability. Recently introduced CD
smells should also not be prioritized, as they will usually
disappear in future releases. CD smells are cyclic depen-
dencies formed by many components. Instead, the focus
should be on HL and UD smells as they tend to be more
persistent. UD smells are components that depend on many
less stable components. The more unstable components the
main component depends on, the more likely it is to change,
potentially causing a ripple effect, as components depen-
dent on the main component will probably also need to be
changed. HD smells are components with more ingoing and
outgoing dependencies than the median in the system. This
structure complicates maintenance and increases change ef-
fort, as highly coupled central components are overburdened
with responsibility. HL smells are a good choice for refac-
toring because addressing them helps to reduce complexity
and future maintenance efforts. Since refactoring of hub-
like dependencies typically focuses on one main component,
it is easier than addressing CD smells that affect multiple
components.

Martini et al. [31] discovered ATD elements that cause
other system parts to be contaminated with the same prob-
lem, which can lead to non-linear growth of interest. One
type of debt identified is contagious debt, which can be
caused by dependency violations and unrecognized depen-
dencies as the system grows. For instance, a database with-
out a standardized interface can spread debt to other compo-

nents that access the database. This rapidly increases costs
as the components grow, as refactoring requires changes to
all affected components. Regular monitoring and architec-
tural retrospectives are essential to identify ATD items early
and prevent them from spreading. According to Martini et
al., the most dangerous ATD items are hidden ATD and
incomplete refactorings. An example of incomplete refac-
toring is inconsistent communication patterns that should
be replaced by a new pattern, but due to hidden side ef-
fects and time pressure, the old patterns are left alongside
the latest pattern, leading to more ADT. Weak awareness of
debt and time pressure during refactoring can create cycles
of events that lead to accumulating TD.

4.2.3 TD in Architectural Style Transitions
The following studies focused on the effect of the transi-

tion to a different architectural style on the TD.
The following two studies [13, 29] reported a long-term

decrease in TD: Justino et al. [13] describe a process for
migrating legacy systems to a service-oriented architecture
that minimizes risk by applying the SPReaD process while
ensuring system quality improvement throughout the migra-
tion process. As a result, the TD was reduced by 47%.

Lenarduzzi et al. [29] observed a similar long-term reduc-
tion in TD in a four-year case study of a project transition-
ing from a monolithic architecture to microservices, the TD
was monitored in parallel. During the development of mi-
croservices, the TD initially increased. Afterward, the TD
grew slower than in the original monolithic system, resulting
in a long-term decrease in TD compared to the monolithic
system.

While transitioning to a different architectural style can
result in a long-term TD decrease [13, 29], the study by
Toledo et al. [14] emphasized that there is also a risk of
accumulating microservice-specific ATDs during the migra-
tion. Their case study of three large companies in the early
stages of migration to microservices explored the influence
on ATD. ATD can be costly if the debts are not or are too
late identified, avoided, or removed. During the early stages
of migration, microservice-specific ATDs (MS-ATDs) may
accumulate. For example, practitioners may continue us-
ing poorly defined APIs in microservices while attempting
to maintain compatibility with old functionalities. One of
the reasons for companies to migrate to microservices is to
repay known ATDs from their previous architectures while,
at the same time, obtaining the benefits of this new archi-
tectural style. This brings the risk of trading old known
ATDs for new unknown MS-ATDs. This reduces the bene-
fits and may prove to be more costly than previous debts.
Toledo et al. [14] identified misusing shared libraries, shar-
ing databases during migration, and microservice coupling
as the most important MS-ATD items to look out for and
suggest that MS-ATD needs to be identified and handled
early on to avoid accumulating costs.

One commonly mentioned reason for transitioning to a
new architecture is eliminating the TD of the old system.
However, while a long-term decrease of TD can be observed
in two studies [13, 29], Toledo et al. [14] highlighted the
risk of taking on new unknown TD during the process. This
underlines the importance of the awareness of TD during
the architecture transition and understanding the TD items
specific to the target architecture style.

4.3 Existing Challenges in Managing TD
In the following, an overview of existing challenges in TD

management and sources of TD accumulation is presented.
Awareness of the sources during modernization holds the po-
tential to mitigate TD accumulation during modernization.

Vogel-Heuser and Rösch [38] discuss the challenges of time
pressure in software installed in automated production sys-
tems, where tight deadlines and penalties can lead to com-
promised architectural principles. Time is a recurring chal-
lenge in dealing with ATD, as highlighted by Mo et al. [32],
who emphasize its importance in the management process.
Weak awareness of debt and time pressure during refactor-
ing can create circles of events that lead to accumulating TD
[31]. Several papers indicated that modernization comes at
the risk of increased TD if not done properly [14, 31]. TD
has to be identified early, hence an awareness during the
modernization of potentially introducing new TD is needed.
Regular monitoring is necessary for early detection and pre-
vention of the spreading of TD [31]. Early detection and
refactoring of ATD, as Xiao et al. [41] suggest, could sig-
nificantly reduce maintenance costs. Furthermore, during
modernization, it is essential to complete each refactoring,
since incomplete refactorings are a cause for the accumula-
tion of new TD [31].

Researchers focused on different perspectives on the causes
of TD. Ernst et al. [15] surveyed 1831 participants who re-
vealed architectural decisions as the most important source
of TD. Architectural issues are often caused by decisions
made early in the software lifecycle and may remain unno-
ticed until the late stages. This aligns with the findings
of Martini et al. [31] according to which one of the most
dangerous ATD items is hidden ATD. Leading to the as-
sumption that during a modernization it can be beneficial
to pay attention to architectural decisions and the hidden
ATDs they may introduce.

In the interview-based case study by Rios et al. [34] with
10 participants, the causes for the accumulation of TD were
analyzed. The most frequently cited causes were deadlines
which aligns with the concerns several researchers had re-
garding time pressure as discussed above [38, 32, 31], lack
of knowledge, inadequate planning, and lack of maturity to
follow the process. This indicates that during moderniza-
tion awareness of these causes can help in preventing TD to
arise during modernization.

Resuming, the main causes for the accumulation of ATD
are time pressure, lack of ATD awareness, lack of knowl-
edge, insufficient planning, and incomplete refactoring. In
addition, architectural decisions should be made carefully to
avoid the introduction of hidden ATD. Paying attention to
these causes during modernization could prevent TD accu-
mulation.

5. DISCUSSION
This section discusses the results and potential implica-

tions of which role TD should play in legacy system modern-
ization. Although this field appears to be relatively young
compared to established areas like software testing or soft-
ware quality, it seems like it has seen significant contribu-
tions over the past decade, with growing activity and interest
among researchers.

While there is no direct proof of the influence of TD on
modernizing legacy systems, we believe that taking TD into

account when modernizing legacy systems is beneficial be-
cause it helps gain additional insights as our findings indi-
cate. A strong connection between TD and legacy software
is suggestive since the origin of components carrying TD is
76% perceived to be in software legacy [23, 24].

Because of the challenges legacy system modernization
holds we assume that refactoring a system to reduce ATD
and Documentation TD before modernization could help in
reducing these challenges. We have seen several examples of
refactoring successfully reducing TD underlining that there
are TD management strategies that can be used for TD re-
duction prior to modernization. It was noticeable not all
TDs types introduced by Lie et al. [30] (see Section 2)
were addressed in the reviewed studies. We observed that
only Architectural, and Code Debt appeared, indicating that
these are the types of TDs that have been perceived by other
research as most important. The modernization challenges
summarized by Khadka et al. [25] let us imply that Code TD
has minimal impact in addressing modernization challenges.
This indicates that managing Code Debt is only beneficial
in refactoring but not in modernization. We assume that
the reason could be that Code Debts are paid back during
modernization but their appearance does not cause chal-
lenges like ATDs do. Repaying Documentation TD which
as repaying ATD has the potential to reduce modernization
challenges is not mentioned in the examined studies. We
suspect that the reason could be that removing Documen-
tation TD is more straightforward and hence did not raise
the researcher’s interest.

An example showed that legacy systems can benefit from
TD reduction [21] even when not being modernized, indicat-
ing that TD management should play a role when improving
legacy systems’ performance and maintenance.

Contagious debt and AS and ATD items with dependen-
cies on other components that potentially cause ripple effects
were perceived as problematic. These TD items can result
in high maintenance efforts and contagious debt can lead to
nonlinear growth of interest [31]. Based on this, we presume
that the accumulation of contagious debt and AS and ATD
items with cyclic dependencies should be closely monitored
and avoided during modernization. Furthermore, already
existing contagious debt should be managed to help prevent
TD from spreading and the system from degrading back to
a legacy system.

We found that the main causes of TD accumulation are
time pressure, lack of ATD awareness, lack of knowledge, in-
sufficient planning, and incomplete refactoring. We suspect
that awareness of these causes during modernization could
help to prevent TD accumulation and hence the need for
repeated modernization cycles.

Some legacy systems are migrated to other architectures.
Two examples we have seen are the mitigation to microser-
vices [29, 14] and to a service-oriented architecture [13].
These modernization efforts can initially increase TD. How-
ever strategic approaches such as early identification of TD
and applying structured migration processes like SPReaD
can reduce the TD in the long run [29, 14, 13]. But while
transitioning to a new architecture is eliminating the TD
of the old system it comes at the risk of introducing new
unknown TD items [14]. Hence we suspect that awareness
of TD during the architecture transition and understand-
ing the TD items specific to the target architecture style is
essential to ensure a long-term decrease of TD.

6. THREATS TO VALIDITY
This SLR may be subject to certain threads to validity.

One limitation is the relatively short research period of three
months, which limited the depth of the review process. To
manage the large number of search results, filters were ap-
plied and the search was restricted to a set of keywords,
potentially excluding relevant studies. Furthermore, to en-
sure the accuracy of the results, peer-reviewed publications
were prioritized, including journals and conference proceed-
ings. Despite these efforts, the quality of the results of this
SLR relies on the quality and completeness of the included
sources. This SLR focused on more recent papers to ensure
the reflection of the current research in the field.

7. CONCLUSION
This section summarizes the findings and provides recom-

mendations for future research.
From a software lifecycle perspective, it is important to

understand and proactively manage TD. This work aims to
provide in-depth research on the role of TD in legacy system
modernization. The analysis of significant contributions in
the field shows stable interest and activity among researchers
despite the relative youth of this subject compared to more
established fields like software development, testing, or qual-
ity.

This study investigated the role of TD in the moderniza-
tion of legacy systems. It was found that there is likely to be
a strong link between these areas and that eliminating ATD
and Documentation TD prior to modernization can poten-
tially reduce the overall challenges of modernizing legacy
systems. The study highlighted the main causes of TD ac-
cumulation to avoid during modernization to help prevent
repeated modernization cycles, as well as the TD elements
that are considered particularly problematic, and to which
developers, therefore, should pay particular attention dur-
ing modernization. The study also showed that migrating to
other architectures can reduce TD in the long term. How-
ever, awareness of TD during the architectural transition
and understanding the TD elements that are specific to the
style of the target architecture are essential. An example
showed that legacy systems can benefit from TD reduction
not only during modernization.

This research has investigated the findings from the inter-
play between TD and legacy system modernization, but it
also highlights several areas requiring further investigation.
There is still a lack of studies examining the benefits of con-
sidering TD during modernization. The observations of this
work and the implications for modernization derived from
them need to be tested in real-world case studies. Their
benefits need to be evaluated against time constraints and
the budget of modernization projects.

This study highlights the potential an awareness of TD
during modernization holds.

8. REFERENCES
[1] M. Abdellatif, A. Shatnawi, H. Mili, N. Moha, G. E.

Boussaidi, G. Hecht, J. Privat, and Y.-G. Guéhéneuc.
A taxonomy of service identification approaches for
legacy software systems modernization. Journal of
Systems and Software, 173:110868, 2021.

[2] E. Agilar, R. Almeida, and E. Canedo. A Systematic
Mapping Study on Legacy System Modernization. In

Proceedings of the 28th International Conference on
Software Engineering and Knowledge Engineering,
International Conferences on Software Engineering
and Knowledge Engineering, pages 345–350. KSI
Research Inc. and Knowledge Systems Institute
Graduate School, 2016.

[3] M. Albarak and R. Bahsoon. Prioritizing technical
debt in database normalization using portfolio theory
and data quality metrics. In Proceedings of the 2018
International Conference on Technical Debt, pages
31–40, 2018.

[4] R. Alfayez, W. Alwehaibi, R. Winn, E. Venson, and
B. Boehm. A systematic literature review of technical
debt prioritization. In Proceedings of the 3rd
international conference on technical debt, pages 1–10,
2020.

[5] N. S. Alves, T. S. Mendes, M. G. De Mendonça, R. O.
Sṕınola, F. Shull, and C. Seaman. Identification and
management of technical debt: A systematic mapping
study. Information and Software Technology,
70:100–121, 2016.

[6] N. S. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes,
and R. O. Sṕınola. Towards an ontology of terms on
technical debt. In 2014 sixth international workshop
on managing technical debt, pages 1–7. IEEE, 2014.

[7] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou,
and P. Avgeriou. The financial aspect of managing
technical debt: A systematic literature review.
Information and Software Technology, 64:52–73, 2015.

[8] C. Becker, R. Chitchyan, S. Betz, and C. McCord.
Trade-off decisions across time in technical debt
management. In R. L. Nord, F. Buschmann, and
P. Kruchten, editors, Proceedings of the 2018
International Conference on Technical Debt, pages
85–94, New York, NY, USA, 2018. ACM.

[9] W. N. Behutiye, P. Rodŕıguez, M. Oivo, and
A. Tosun. Analyzing the concept of technical debt in
the context of agile software development: A
systematic literature review. Information and Software
Technology, 82:139–158, 2017.

[10] T. Besker, A. Martini, and J. Bosch. Managing
architectural technical debt: A unified model and
systematic literature review. Journal of Systems and
Software, 135:1–16, 2018.

[11] F. Buschmann. To pay or not to pay technical debt.
IEEE software, 28(6):29–31, 2011.

[12] W. Cunningham. The wycash portfolio management
system. SIGPLAN OOPS MESS., 4(2):29–30, 1993.

[13] Y. de Lima Justino and C. E. da Silva. Poster:
Reengineering legacy systems for supporting soa: A
case study on the brazilian’s secretary of state for
taxation. In 2018 IEEE/ACM 40th International
Conference on Software Engineering: Companion
(ICSE-Companion), pages 125–126, 2018.

[14] S. S. De Toledo, A. Martini, P. H. Nguyen, and D. I.
Sjøberg. Accumulation and prioritization of
architectural debt in three companies migrating to
microservices. IEEE Access, 10:37422–37445, 2022.

[15] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and
I. Gorton. Measure it? manage it? ignore it? software
practitioners and technical debt. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE 2015, page 50–60, New York,
NY, USA, 2015. Association for Computing
Machinery.

[16] C. Fernández-Sánchez, J. Garbajosa, A. Yagüe, and
J. Perez. Identification and analysis of the elements
required to manage technical debt by means of a
systematic mapping study. Journal of Systems and
Software, 124:22–38, 2017.

[17] F. A. Fontana, V. Ferme, M. Zanoni, and R. Roveda.
Towards a prioritization of code debt: A code smell
intensity index. In 2015 IEEE 7th International
Workshop on Managing Technical Debt (MTD), pages
16–24. IEEE, 2015.

[18] M. Fowler. Code smell. https:
//www.martinfowler.com/bliki/CodeSmell.html,
02/12/2024.

[19] M. Fowler. Technical debt quadrant.
https://martinfowler.com/bliki/

TechnicalDebtQuadrant.html, 25/09/2024.

[20] S. M. C. G and P. K. R. Automated identification and
prioritization of self-admitted technical debt using nlp
word embeddings. In 2023 International Conference
on Self Sustainable Artificial Intelligence Systems
(ICSSAS), pages 963–971, 2023.

[21] R. K. Gupta, P. Manikreddy, S. Naik, and K. Arya.
Pragmatic approach for managing technical debt in
legacy software project. In Proceedings of the 9th India
Software Engineering Conference, pages 170–176,
2016.

[22] G. Hogan, P. Shalkauskaite, M. Zhu, M. Derwin,
M. Yilmaz, A. McCarren, and P. M. Clarke.
Investigating systems modernisation: Approaches,
challenges and risks. In European Conference on
Software Process Improvement, pages 147–162.
Springer, 2024.

[23] J. Holvitie, S. Licorish, A. Martini, and V. Leppänen.
Co-Existence of the’Technical Debt’and’Software
Legacy’Concepts. 2016.

[24] J. Holvitie, S. A. Licorish, R. O. Sṕınola,
S. Hyrynsalmi, S. G. MacDonell, T. S. Mendes,
J. Buchan, and V. Leppänen. Technical debt and agile
software development practices and processes: An
industry practitioner survey. Information and
Software Technology, 96:141–160, 2018.

[25] R. Khadka, B. V. Batlajery, A. M. Saeidi, S. Jansen,
and J. Hage. How do professionals perceive legacy
systems and software modernization? In P. Jalote,
L. Briand, and A. van der Hoek, editors, Proceedings
of the 36th International Conference on Software
Engineering, pages 36–47, New York, NY, USA, 2014.
ACM.

[26] B. Kitchenham. Procedures for performing systematic
reviews. Keele, UK, Keele Univ., 33, 08 2004.

[27] V. Lenarduzzi, T. Besker, D. Taibi, A. Martini, and
F. A. Fontana. Technical Debt Prioritization: State of
the Art. A Systematic Literature Review.

[28] V. Lenarduzzi, T. Besker, D. Taibi, A. Martini, and
F. A. Fontana. A systematic literature review on
technical debt prioritization: Strategies, processes,
factors, and tools. Journal of Systems and Software,
171:110827, 2021.

[29] V. Lenarduzzi, F. Lomio, N. Saarimäki, and D. Taibi.

Does migrating a monolithic system to microservices
decrease the technical debt? Journal of Systems and
Software, 169:110710, 2020.

[30] Z. Li, P. Avgeriou, and P. Liang. A systematic
mapping study on technical debt and its management.
Journal of Systems and Software, 101:193–220, 2015.

[31] A. Martini and J. Bosch. Towards prioritizing
architecture technical debt: information needs of
architects and product owners. In 2015 41St
euromicro conference on software engineering and
advanced applications, pages 422–429. IEEE, 2015.

[32] R. Mo, J. Garcia, Y. Cai, and N. Medvidovic.
Mapping architectural decay instances to dependency
models. In 2013 4th International Workshop on
Managing Technical Debt (MTD), pages 39–46, 2013.

[33] N. Rios, M. G. de Mendonça Neto, and R. O. Sṕınola.
A tertiary study on technical debt: Types,
management strategies, research trends, and base
information for practitioners. Information and
Software Technology, 102:117–145, 2018.

[34] N. Rios, R. Oliveira Spinola, M. G. de Mendonca
Neto, and C. Seaman. A Study of Factors that Lead
Development Teams to Incur Technical Debt in
Software Projects. pages 429–436. IEEE, 2018.

[35] D. Sas, P. Avgeriou, and F. A. Fontana. Investigating
instability architectural smells evolution: an
exploratory case study. In 2019 IEEE International
Conference on software maintenance and evolution
(ICSME), pages 557–567. IEEE, 2019.

[36] E. Tom, A. Aurum, and R. Vidgen. An exploration of
technical debt. Journal of Systems and Software,
86(6):1498–1516, 2013.

[37] Uncle Bob. Clean Coder - A Mess is not a Technical
Debt. https://sites.google.com/site/
unclebobconsultingllc/a-mess-is-not-a-

technical-debt, 10/12/2024.

[38] B. Vogel-Heuser and S. Rösch. Applicability of
technical debt as a concept to understand obstacles for
evolution of automated production systems. In 2015
IEEE International Conference on Systems, Man, and
Cybernetics, pages 127–132, 2015.

[39] C. Wohlin. Guidelines for snowballing in systematic
literature studies and a replication in software
engineering. In Proceedings of the 18th international
conference on evaluation and assessment in software
engineering, pages 1–10, 2014.

[40] D. Wolfart, W. K. G. Assunção, I. F. Da Silva,
D. C. P. Domingos, E. Schmeing, G. L. D. Villaca,
and D. d. N. Paza. Modernizing Legacy Systems with
Microservices: A Roadmap. In R. Chitchyan, J. Li,
B. Weber, and T. Yue, editors, Evaluation and
Assessment in Software Engineering, pages 149–159,
New York, NY, USA, 2021. ACM.

[41] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng.
Identifying and quantifying architectural debt. In
Proceedings of the 38th International Conference on
Software Engineering, ICSE ’16, page 488–498, New
York, NY, USA, 2016. Association for Computing
Machinery.

https://www.martinfowler.com/bliki/CodeSmell.html
https://www.martinfowler.com/bliki/CodeSmell.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://sites.google.com/site/unclebobconsultingllc/a-mess-is-not-a-technical-debt
https://sites.google.com/site/unclebobconsultingllc/a-mess-is-not-a-technical-debt
https://sites.google.com/site/unclebobconsultingllc/a-mess-is-not-a-technical-debt

Evaluating Automated Testing Methods for Microservice
Systems

Jonas Hartwig
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

jonas.hartwig@rwth-aachen.de

Ahmad Al Housseini
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

ahmad.al-housseini@rwth-aachen.de

ABSTRACT
Microservices (MS) are an architectural style in which ap-
plications are composed of small, independent services that
communicate over lightweight protocols, offering flexibility
and scalability, but also introducing challenges in testing due
to their distributed nature. To reduce the effort needed to
deploy changes within an microservice architecture (MSA)
system, automated testing paradigms may be used. They re-
duce the overall time developers have to spend on the testing
process as a whole.

In this paper, we compare the different automated test-
ing approaches used for MS and evaluate these approaches
on the basis of their ability to properly test MSA systems.
To achieve this comparison, we first provide an overview of
microservice architectures and their testing strategies. We
then examine the automation processes and assess these ap-
proaches in terms of robustness, efficiency, test coverage and
reusability. By applying this methodology, we generate a
ranking of some relevant testing methods. Unlike previ-
ous studies, this research focuses on identifying strengths
and weaknesses of each approach, highlighting that no sin-
gle testing methodology is universally superior. Instead, the
most effective strategy combines multiple testing paradigms.

Keywords
Microservice Systems, Automated Testing, MSA

1. INTRODUCTION
Microservice-based architecture (MSA) is driven by archi-

tectural principles and involves the construction of complex
systems from small loosely coupled components that com-
municate with each other through APIs. Each component is
an independent deployable service. Multiple individual com-
ponents are organised around specific business domains, pro-
viding flexibility, scalability and technological heterogeneity.
Each service encapsulates its unique functionality and data
while communicating with other services through APIs or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2018/19 RWTH Aachen University, Germany.

event-driven integration[14]. An example of microservices
architecture is presented in Figure 1. Independent services
interact with each other or even external services to realize
several functionalities within a distributed system.

Automated testing is an integral part of modern software
development, which enables the efficient, scalable and re-
producible evaluation of the software capabilities through-
out the complete development life cycle. Using specialized
tools, it runs and controls test scripts and cases which raise
the level of simplicity in some testing areas. Automated test-
ing saves manual effort and reduces the risk of errors due to
forgetting or wrongly executing test cases. This increases
reliability and stability. It is an important aspect because
the complexity of software systems is increasing steadily. [6]

However, the automatization of the test process is a com-
plicated matter. Microservice ecosystems and architectures
are very complex, with a production system comprising hun-
dreds of services. For instance, Netflix uses over 1,000 of
them. Moreover, there currently doesn’t exist an approach
that provides a satisfactorily reliable test result. Another
big issue is the lack of proper tools. (see Section 3 for more
info) [21]

This paper consists of multiple sections. First we present
our methodology in Section 2. In Section 3, we discuss the
challenges facing automated testing of microservices. In Sec-
tion 4 we provide an overview over some existing approaches.
In Section 5, we compare and evaluate these approaches.
Section 6 presents the threats to the validity of this work
and finally we conclude and summarise in Section 7.

2. METHODOLOGY
The main goal of this work is to assess the capabilities

of different automated testing approaches for microservice
systems. We therefore pull knowledge about these different
approaches from multiple papers. We then seek to assess
the viability each approaches given several metrics. The
assessment is purely based on the results of the application
of each method that we are able to find and our opinion on
how each approach could grant advantages or disadvantages
regarding each metric. The metrics we use are taken from an
IEEE glossary [1] and semantically adjusted to the context
of this work.

To find papers regarding different testing approaches, we
first seek to gain an overview over microservice testing. Pa-
pers about this topic will be searched for generally. They
can then be used as indicators for closer examination of sin-
gular methods. Table 1 contains a list of all papers that we

Figure 1: Multiple services work together as a system[4]

found by using queries on different search engines. These
papers are primarily used for the overview over the topic.
The papers used for the overview often already contain ref-
erences to other papers useful to us. Those are not included
in this table but listed in the end with all sources used.

We used IEEExplore and Google Scholar as search engines
and queried either with a focus on microservices or auto-
mated testing. We used the following queries represented as
regular expressions:

• microservice (architecture)? (pattern | testing | test
automation)

• automated testing (of microservice architecture | ro-
bustness)

Not all of the possible queries yielded new useful results in
either search engine used. Table 1 lists only the papers we
were able to identify as useful for this work.

Some of the papers used as overview, list a high number of
individual MSAs and testing approaches, often in combina-
tion with a number of uses in a certain context. We limited
our analysis only to approaches that occurred more often to
stay within the scope of this work.

After evaluating each testing method for our criteria we
assign ranks based on our perception of their viability. We
use these rank each criterion to calculate an overall score
and reason about possible future direction and effectiveness
of each method.

3. CHALLENGES IN AUTOMATED TEST-
ING OF MICROSERVICES SYSTEMS

Waseem et al. [21] summarized the most prominent chal-
lenges found in MSA applications by using several other pa-
pers and their results. They identified as main challenge for
automated testing a complex deployment, meaning that an
increasing number of services are used together, especially if
they are of different type. They further identify seven chal-
lenges which apply to MSA-based applications generally and
therefore also apply to automated test generation.

Inter-communication testing concerns correct data trans-
missions between a potentially large number of services which
in turn hinders proper integration and system-level testing.
Test feedback describes procedures with performance eval-
uations early in development. Existing testing frameworks
provide insufficient mechanism to reliably provide such feed-
back based an communication, file access and the underly-
ing database. The primary issue with integration testing
is generating effective integration test cases and analysing
the generated logs. Acceptance testing is troubled by tools
that support it for MSA applications in behaviour-driven
development. Granularity testing is subject to asynchronic-
ity complexity and managing chaining interfaces. Perfor-
mance testing as an evaluation attempt for system behaviour
and performance, not functionality, suffers from unclear or
changing metrics used. Runtime testing suffers from the
high flexibility inherent to MSA and the evolving nature of
an MSA system.

Abdelfattah et al. [7] conducted a study regarding test
coverage metrics for E2E (End-to-End) testing. They de-
scribe a problem regarding the discrepancy of perceived cov-
erage by a tester and the actual coverage of an MSA system.
Verification mechanisms for testing the complete state of a
system are often missing.

4. OVERVIEW OVER EXISTING TEST AU-
TOMATION APPROACHES

In this section we provide a small overview over some
of the existing test approaches. Waseem et al. [21] pro-
vided valuable literature and references, which were helpful
in defining the testing approaches.

Figure 2 shows the hierarchical structure of the differ-
ent test categories and how the system needs to maintain a
strong base of comprehensive tests, like unit and component
tests, for efficiency and reliability purposes while reducing
the number of integration and end-to-end tests for optimized
execution time and system coverage. The extents of a se-
lection of test approaches have been visualised in Figure 3.

Figure 2: Test pyramid with consumer-driven contract tests.
Adapted from [5]

4.1 Unit testing

Engine Query Cites
Google Scholar microservice architecture pattern [18, 19]
Google Scholar microservice testing [22]
IEEEXplore microservice test automation [20, 8]
Google Scholar microservice test automation [2]
IEEEXplore automated testing of microservice architecture [21]
Google Scholar automated testing robustness [9]

Table 1: Literature queries

Data 1

Data 2

...

Process 1

Process 2

...

I/O 1 I/O 2 · · ·

(a) Component Test

Data 1

Data 2

...

Process 1

Process 2

...

I/O 1 I/O 2 · · ·

(b) Contract Test

Data 1

Data 2

...

Process 1

Process 2

...

I/O 1 I/O 2 · · ·

(c) Integration Test

Data 1

Data 2

...

Process 1

Process 2

...

I/O 1 I/O 2 · · ·

(d) End-to-End Test

Figure 3: Exemplary extents for some Test Approaches

Unit testing is a method used to determine the efficiency
of individual components within a software system, such as
methods, modules or classes. It helps determine the effec-
tiveness of these practicular units in order to establish their
functionality as part of the larger software system. This pro-
cess involves testing how these units behave with specific
inputs and outputs without activating the entire system.
Usually, unit tests are conducted by developers in tempo-
rary contexts, often employing drivers to simulate certain
components. [17] Each programming language provides an
approach to unit testing. For example, JUnit is a unit test-
ing tool utilized in the context of Java.

4.2 Component Test
Component testing is a focused approach to test specific

parts of the system in isolation, unlike an end-to-end stack
trying to test the whole system. For isolation, this type of
testing actively avoids interactions between the system com-
ponents and often uses the internal code interfaces along
with test doubles to replicate the dependencies. Component
tests are usually faster to write, easier to maintain, and may
not show problems stemming from the interactions between
components. The effectiveness of a testing strategy is en-
sured by a fair balance of extensive component test coverage
with fewer broad-stack tests. [4] The extent of this testing
approach is visualised in Figure 3a.

4.3 Contract testing
Contract testing is a method of validating an integration

point by independently testing each application to confirm
that the message it sends or receives is in agreement with
the contract that defines the shared expectations. It is de-
signed to test the interfaces (”contracts”) of services in mi-
croservices. It ensures that a service (the provider) will meet
the expectations of its consumers. Consumers would define
the interface in terms of defined inputs and expected results
from the provider’s API. These are then validated against
the provider to ensure the provider’s compliance. This tech-
nique helps in loose coupling between services and allows
for early detection of integration issues, thus enabling in-
dependent development and deployment cycles. [16] There
are plenty of tools available for contract testing and one of
them is Pact. Pact is a code-first tool for testing integrations
using contract testing. Pact offers advantages like indepen-
dent execution and rapid feedback which ensures stability
and simplifies maintenance. [15] The extent of this testing
approach is visualised in Figure 3b.

4.4 Integration testing
Integration testing is an important step in ensuring the

reliability of microservices architectures by focusing on how
services interact and communicate with each other. It com-
bines individual microservices to test their ability to work to-
gether seamlessly, supporting complete workflows and busi-
ness processes. The primary goal is to detect problems like
data mismatches, communication breakdowns, or integra-
tion failures that might be missed during unit testing.

In MS, this type of testing becomes important because of
the decentralized nature of services and their dependence on
APIs for communication. Integration tests confirm that ser-
vices work together as intended in a larger system, resolving
issues such as mismatched service contracts, incorrect data
formats, or communication errors [2]

Integration testing comes with difficulties and challenges
specially in managing dependencies and handling data con-
sistency. To facilitate and solve those challenges mock ob-
jects are used. Mock objects or called as server stubs are
used in testing by reproducing needed dependencies as fake
objects, which have methods that return pre defined val-
ues. Additionally, to ensure proper interactions between the
software component being tested and its dependencies, mock
objects can be used to verify how the software component
interacts with them. One of the frameworks used for mock
objects is Mockito. It is popular for Java developement. It
provides an easy way for developers to implement mock test-
ing and offers an API to manage mocks. [13]. The usage of
this kind of testing in MS is based on function calls. The
extent of this approach is visualised in Figure 3c.

4.5 End-to-end testing (E2E)
End-to-end testing ensures that a complete and integrated

system behaves as specified, especially in complex archi-
tectures like MS architectures. E2E evaluates the interac-
tion of different components such as user interface, backend,
database, and external integrations by simulating real-world
scenarios. This testing method can detect integration issues,
data inconsistencies, and workflow errors that might go un-
noticed in other testing phases. Some methodologies like
Behavior-Driven Development (BDD) and automated test
scripts enhance its effectiveness. BDD focuses on user stories
and collaboration among team members to ensure business
requirements are met, while automated tests simulate user
interactions and provide feedback. The benefits of E2E is
the possibility of detecting integration problems early, reduc-
ing development defects, validating critical workflows, and
improving system reliability and quality. [2] As for every
testing method, some frameworks exist to make the testing
process easier. Selenium is an open-source testing frame-
work used for automating web applications and E2E. Devel-
opers can run tests with Selenium directly in various web
browsers. Selenium provides tools for acceptance testing,
regression testing. Selenium tests if MS-based applications
meet specific requirements. [3] The extent of this testing
approach is visualised in Figure 3d.

4.6 Automated black-box
Automated black-box testing for MSA enabled by Learning-

Based Testing (LBT), combines machine learning techniques
with model checking to support both functional accuracy
and resilience assessments of distributed systems. This ap-
proach use incremental learning, where test cases are itera-
tively generated and assessed to refine a model representing
the system under test (SUT). Model checking ensures that
the system meets well-defined requirements, making LBT
effective for high-throughput testing scenarios such as fault
injection and comprehensive validation. By scaling test case
generation and execution of complex distributed microser-
vices, LBT addresses challenges like non-determinism and
state management in distributed systems. Meinke and Ny-
cander demonstrated this approach using the LBTest version
1.3.2 tool in their paper. [12]

Figure 4: Scopes of different testing methods Adapted from
[10]

Figure 4 illustrates different testing approaches in mi-
croservices, including component tests using test doubles,
integration tests focusing on interactions between consumers

Criterion IEEE Definition [1]

Robustness “The degree to which a system or compo-
nent can function correctly in the presence
of invalid inputs or stressful environmental
conditions.”

Reusability “The degree to which a software module or
other work product can be used in more
than one computer program or software
system.”

Test Coverage “The degree to which a given test or set
of tests addresses all specified requirements
for a given system or component.”

Efficiency “The degree to which a system or compo-
nent performs its designated functions with
minimum consumption of resources.”

Table 2: Automated testing methodology criteria

and providers, end-to-end tests validating complete work-
flows, and consumer-driven contract tests ensuring compat-
ibility between consumers and providers through explicitly
defined contracts

5. COMPARATIVE ANALYSIS OF TESTING
APPROACHES

All the testing approaches mentioned provide different
coverage and applicability. From these differences the fol-
lowing research questions arise:

RQ1 How can each individual test automation approach be
evaluated given predefined defined criteria?

RQ2 Are there challenges that apply to automated testing
overall?

RQ3 Which testing strategies offer the best results at the
lowest cost?

RQ4 Which areas can potentially be improved?

5.1 RQ1
Before any ranking can be performed, some criteria need

to be set. Kropp et al. [9] discussed automated robustness
testing. They describe robustness as mentioned by the IEEE
[1]. This source also provides eligible definitions for other
criteria. They are listed in Table 2. Since all of these criteria
are hard to quantify in an absolute measurement, we rely
solely on the options provided implicitly by the structure of
each testing methodology.

Most of the demands stated by the four criteria are de-
pendent on the implementation of both the MSA and the
test mechanism involved which makes an absolute measure-
ment of criterion-alignment impossible. It is therefore the
difference in ease with which a developer can put testing
mechanisms in place that are being evaluated. As perform-
ing proper surveys is out of scope for this work, we will con-
struct a ranking for each criterion based on our perception of
the testing approach and how well we think each paradigm
enables conformance with each criterion. The overall rank-
ing can be seen in Table 3.

Methodology R
o
b
u
st

n
es

s

R
eu

sa
b
il
it

y

T
es

t
C

ov
er

a
g
e

E
ffi

ci
en

cy

End-To-End Testing 1 5 3 5

Integration Testing 5 4 1 4

Component Test 4 1 2 1

Automated Black-Box 3 3 5 3

Contract Testing 2 2 4 2

Table 3: Ranking each automated testing methodology for
each criterion

5.1.1 Robustness
Robustness in the context of this work is primarily con-

cerned with whether the automated testing implementations
can handle a bigger and more complex structure without
failing and whether they can manage errors induced by un-
planned interface changes which might lead to unusual re-
sponses from individual services during the testing process.

End-To-End Testing.
End-to-end testing is concerned with the input and out-

put of the entire system. Interface changes within the system
and inter-service communication are therefore out of reach
for the method and lead to errors within the testing algo-
rithm less frequently. Errors cascading through the entire
system can overwhelm End-to-End testing if not properly
managed but the overall risk seems to be minimal compared
to other testing methods as they are subject to more minor
interface changes within the architecture.

Contract Testing.
Second in this ranking is contract testing. This method

is more concerned with the interfaces of each individual ser-
vice. While E2E testing only looks at the in- and output of
services addressable by the user, every service can be consid-
ered here. This, of course, increases the overall risk to over-
whelm the capability of the test algorithm to catch errors
and unexpected behaviour. As this approach is only con-
cerned with the interface specifications, each contact with a
service is held shallow in comparison to other testing tech-
niques, where an in-depth analysis of the algorithm could
lead to more severe errors.

Automated Black-Box.
Automated black-box testing as an application of ma-

chine learning techniques and large data sets to apply to
the MSA is more prone to failures in its expected behaviour
as each new case introduces the possibility for unforeseen er-
rors within the output handling. The main issue regarding
robustness is the potential size of the test set. In combina-
tion with a potentially large system with many individual
services the overall time and resources needed for testing
might exceed the systems capabilities.

Component Testing.
Component testing is more concerned with the intricacies

of a service. Using knowledge about the algorithm within
a service, edge cases for its functions can be created and
tested. Minor unnoticed changes to the input and return
types of each function might therefore cause issues with the
algorithm. This hazard is not present for the testing meth-
ods of high ranking and therefore introduces robustness is-
sues if not monitored closely.

Integration Testing.
In last place of this list is integration testing. This paradigm

tests groups of services within the system for their collective
behaviour. The number of permutations that can be tested
here and potentially hazardous interface changes similar to
function declaration changes described for component test-
ing might cascade to form outputs the testing system is not
able to handle.

5.1.2 Reusability
Reusability is concerned with whether test cases, like input-

output pairs and algorithms to check for conformance with
predefined test cases, can be used multiple times in either the
same test run for different parts of a system or in different
test runs after for example changing a service implementa-
tion.

Component Testing.
When changing or upgrading certain services all compo-

nent tests for all the other services still continue to work
as they view each service in isolation. It is also possible
that the cases for a changed service still remain applicable if
the functions used stay the same regarding parameters and
return values and functionality. Only when these aspects
change then the tests need to be updated.

Contract Testing.
Contract tests are reusable in the sense that they apply

to all services with the same contract and can therefore be
used for prototype services aimed at replacing or improving
upon already existing services with the same functionality.
Similar to component testing, the existing tests for all non-
involved services remain applicable regardless of the changes
done to an altered service.

Automated Black-Box.
Automated black-box testing is applied to a specific ser-

vice after training a machine learning algorithm. Small
changes in the internal composition of the black-box can al-
ter the results in unforeseen ways, which makes a retraining
for an altered service necessary. This approach still retains
the third highest ranking as, again, one change to a service
does not alter tests for the others.

Integration Testing.
As integration is concerned with multiple services at once,

changes to only a few services require changing cases and
I/O for a larger number of cases. Changes to behaviour can
cascade through the workflow of the test algorithm which
invalidates existing cases.

End-To-End Testing.
End-to-end testing is often highly specific to a certain sys-

tem. It is to some extend the extreme case of integration

testing where all services are tested in unison. The issue
of integration testing, changes cascading through the be-
haviour of the entire system, is therefore only aggravated
when monitoring the biggest possible set of interacting ser-
vices.

5.1.3 Test Coverage
Each testing approach has other areas in which it excels

regarding test coverage. In total the three main areas that
have to be covered are correctness of each service, the com-
munication between services and the system as a whole. A
testing methodology scores higher if it covers more of these
areas than another.

Integration Testing.
Integration testing offers the highest test coverage due to

its versatility. While it does not check the fine grained mech-
anisms of each service, it is able to test any subset of ser-
vices in unison, separating small work groups or larger areas
regarding database management, user interaction, or pro-
cessing. It also implicitly tests the communication between
individual services during that process. As it exceeds in both
communication and system coverage, it is ranked highest for
this metric.

Component Testing.
Component testing acts in some sense as a complement

to integration testing. As it does look at each service in
detail individually, it covers cases which integration testing
is not able to handle. As this method evaluates internal
mechanisms of services it is able to offer great coverage on an
atomic level of the MSA. Some communication is tested as
component testing is also concerned with the I/O functions
of a service.

End-To-End Testing.
End-to-end testing covers the functionality of the entire

system. It does however not test individual services, sub-
sets, or communication patterns. While its coverage can be
argued to be the most important one, as it is closest to the
real-world user interactions, this method still lacks in ser-
vice and communication specific testing, leading to a lower
score.

Contract Testing.
Contract testing is only concerned with the output of each

individual service and therefore has the shallowest scope of
all the methodologies compared. It is not concerned with the
intricacies of an individual service, the system as a whole,
and only parts of the communication mechanisms.

Automated Black-Box.
At last place is automated black-box testing. Cases gener-

ated by machine learning algorithms have no working knowl-
edge of the algorithms used within the services and can
therefore not reliably generate edge cases. Edge cases might
have serious consequences for the user experience or the state
of the system as a whole. Missing them therefore inevitably
leads to bad coverage which is why this method is on the
fifth place.

5.1.4 Efficiency

Efficiency in terms of minimizing resource consumption
itself is again heavily reliant on the implementation for each
individual case. We will therefore evaluate the efficiency of
each testing approach by the amount of additional work that
is to be expected. Running a test on the entire system will
be more resource intensive then one that is performed on a
single service after for example only said service has been
altered.

Component Testing.
Component testing is the most efficient methodology. Af-

ter performing changes to only one service, it can be tested
individually for changed behaviour. Extensive testing of the
entire system is more resource intensive but as this approach
can cover remote test cases within each service, this addi-
tional resource consumption is well invested.

Contract Testing.
Contract testing is subject to the same benefits that com-

ponent testing has. It can test remote edge cases on start
up of a system but also re-test only select services when
changes are to be rolled out. As it does not offer the same
capabilities as component testing it places slightly behind.

Automated Black-Box.
Automated black-box can also be applied to select parts

of the system. The biggest issue regarding efficiency is the
potential need for a machine learning algorithm to be run
which can be a resource intensive task. The test application
on the other hand is fairly easy to execute once the cases
have been generated and can be applied to the black-box.

Integration Testing.
Integration testing can involve certain services multiple

times as part of different subsets of the entire system that
are to be tested. While it does provide coverage for differ-
ent applications for these cases, services are tested multiple
times, requiring additional resources and the need to gener-
ate cases with them in mind. When changing one of the ser-
vices, all subsystems that are a part of need to be retested in
their entirety, increasing the amount of duplicate work even
further.

End-To-End Testing.
End-to-end testing offers a good efficiency on startup of a

system in comparison to other methods as the entire system
needs to be tested either way. Any change made to a single
component after that requires the entire system to be tested
again, even if all of the other systems are not even involved
with the changed one. This results in a bad efficiency over
time, leading to last place on this ranking.

5.2 RQ2
All testing methods share some common issues regarding

the criteria used for evaluation. Robustness is in general
at risk when introducing large systems, especially earlier in
development, when quickly changing interface and function
specifications can result in datatype mismatches, or exceed-
ingly large loads placed onto the testing infrastructure. An-
other bigger issue regards the combination of efficiency and
test coverage. An in-depths analysis of a system requires
large sets of test cases for many different levels of operation

Methodology E Rank

End-To-End Testing 2.4 5

Integration Testing 3.3 3

Component Test 15 1

Automated Black-Box 2.7 4

Contract Testing 6 2

Table 4: Effectiveness Ranking of each Testing Methodology

from individual functions within services to the whole sys-
tem as a whole. Automating this process inevitably leads in
duplicate work, securing better test coverage at the cost of
efficiency.

5.3 RQ3
As this ranking is only subject to our own opinions, so

is this summary of all the ranking scores. To answer this
question, we first generate the combined score of robustness,
reusability, and test coverage as these are the metrics that
constitute what we called “best results”. We define a higher
score as better which is why we first invert the values of
robustness rob, reusability reu, and test coverage tes. We
do that by subtracting each value from the number 6. We
then divide the combined score by the efficiency value eff
to generate one combined value we call “effectiveness” E.

In our opinion not all of the ranks proposed are equally
important. We think, that the most important aspect for
a test methodology is the test coverage as a test that does
not cover enough cases or enough parts of a system is not as
useful even if it is for example robust. We therefore attach
a weight of 2 to that value. The remaining scores keep a
weight of one. Combined we generate equation 1.

E =
2 · (6− tes) + 1 · (6− rob) + 1 · (6− reu)

eff
(1)

The results then imply an overall ranking which is dis-
played in Table 4. Based on this evaluation, component
tests have the greatest effectiveness and E2E tests the low-
est.

5.4 RQ4
It is our opinion that no single test methodology can sat-

isfy an in depth test of a system, especially not when au-
tomated. It would therefore be reasonable to combine mul-
tiple approaches and only use them when necessary. This
is already a common approach. The study conducted by
Wasseem et al. [21] marked 33 articles as its primary stud-
ies but listed 79 individual applications of certain testing
methods in those studies. Therefore multiple methods had
to be used per study. Determining when a set of tests is
to be run is a question that would need to be answered to
minimize redundant work and improve upon resource usage.
A component test is for example mostly applicable when
changing a single service fundamentally. A full end-to-end
test run might be applicable too, but such an optimisation
would need to be made per system and cannot be generally
decided.

6. THREATS TO VALIDITY
This work has been conducted with the methodology de-

scribed above and the papers we considered useful for our

evaluation. It is unlikely that we provide a complete overview
since we only used two search engines. Our prompts too
could miss important papers which may not use any of the
keywords we were looking for, for example if a paper re-
ported on architectures resembling MSAs without mention-
ing them explicitly. We do not provide a description of all
architectures mentioned in the papers due to a low usage
rate or only nuanced differences between them.

The answers given to our research questions are primarily
based on our own perception of the status quo of automated
MSA testing. A more objective approach like conducting
surveys with MSA developers might yield different results
closer to the reality of this subject.

7. CONCLUSION
In this study, we analysed a set of automated testing

methodologies for microservice architectures regarding their
efficacy in terms of robustness, test coverage, reusability,
and efficiency. The results show that E2E testing is the best
in terms of robustness and good in test coverage because
it verifies the functionality of the whole system, but it still
remains resource intensive. Integration testing is superior in
Test coverage of a system by looking at the interaction be-
tween services, while component testing provides reusability
and allows for in-depth validation of each service. Contract
testing focuses on the evaluation of service interfaces, ensur-
ing loose coupling between services. Automated black-box
testing shows scalability potential but faces some challenges.
We have also seen that multiple test methods are being used
in unison to grant better coverage. One of our proposals was
to find a way to properly evaluate whether a test run of a
given method and test set is applicable after a change was
made and to therefore save resources.

Microservices has shown that they offer a strong archi-
tecture based on resilience and scalability. However, Mi-
croservices are still a complex system which comes with con-
straints and challenges. Artificial intelligence and machine
learning will play an important role in evolving the test-
ing process of MSA systems by generating automated test
cases, identifying edge cases, and predicting possible failures
of large-scale distributed systems. In our opinion artificial
intelligence will help facing some of the challenges discussed
in this paper, deliver a better test experience for the user,
and make automation processes more easily adaptable. Ar-
tificial intelligence also can help in the setup, orchestration
and optimization will result reduce testing time, improve
test coverage and improve the general reliability of MSA
systems. An article at Software testing magazine supports
our opnion by highlighting the role of artificial intelligence
and machine learning in software testing. [11]

We believe that, in the future, a hybrid approach will
be essential in combining the strengths of multiple testing
paradigms. The combination of End-to-End testing for over-
all system validation, integration testing for inter-service
communication, and component or contract testing for service-
level accuracy will give developers and testers a better and
more efficient testing strategy.

For a more accurate representation of the status quo in
MSA development we propose a repetition of this work using
surveys conducted with MSA developers to better represent
real world perceptions of the different test methodologies
presented.

8. REFERENCES
[1] Ieee standard glossary of software engineering

terminology. IEEE Std 610.12-1990, pages 1–84, 1990.

[2] V. R. R. Alluri, P. Katari, S. Thota, S. G. Reddy, and
A. K. P. Venkata. Automated testing strategies for
microservices: A devops approach. Distributed
Learning and Broad Applications in Scientific
Research, 4:101–121, 2018.

[3] A. Bruns, A. Kornstädt, and D. Wichmann. Web
application tests with selenium. IEEE Software,
26(5):88–91, 2009.

[4] T. Clemson. Testing strategies in a microservice
architecture. https://martinfowler.com/articles/
microservice-testing/, 2014. Accessed 9.12.2024.

[5] M. Cohn. Succeeding with Agile: Software
Development Using Scrum. Addison-Wesley
Professional, 1st edition, 2009.

[6] E. Dustin, J. Rashka, and J. Paul. Automated
Software Testing: Introduction, Management, and
Performance. Addison-Wesley Professional, Boston,
MA, 2009. Referenced pages 3–14.

[7] A. Elsayed, T. Cerny, J. Y. Salazar, A. Lehman,
J. Hunter, A. Bickham, and D. Taibi. End-to-end test
coverage metrics in microservice systems: An
automated approach, 2023.

[8] M. J. Kargar and A. Hanifizade. Automation of
regression test in microservice architecture. In 2018
4th International Conference on Web Research
(ICWR), pages 133–137, 2018.

[9] N. Kropp, P. Koopman, and D. Siewiorek. Automated
robustness testing of off-the-shelf software
components. In Digest of Papers. Twenty-Eighth
Annual International Symposium on Fault-Tolerant
Computing (Cat. No.98CB36224), pages 230–239,
1998.

[10] J. Lehvä, N. Mäkitalo, and T. Mikkonen.
Consumer-driven contract tests for microservices: A
case study. In X. Franch, T. Männistö, and
S. Mart́ınez-Fernández, editors, Product-Focused
Software Process Improvement: 20th International
Conference, PROFES 2019, Barcelona, Spain,
November 27–29, 2019, Proceedings, volume 11915 of
Lecture Notes in Computer Science, pages 497–512.
Springer Nature Switzerland, 2019.

[11] S. T. Magazine. The role of ai and machine learning in
modern software testing. 2025. Accessed: 2025-01-15.

[12] K. Meinke and P. Nycander. Learning-based testing of
distributed microservice architectures: Correctness
and fault injection. In Lecture Notes in Computer
Science, pages 1–12, 2015.

[13] S. Mostafa and X. Wang. An empirical study on the
usage of mocking frameworks in software testing. In
2014 14th International Conference on Quality
Software, San Antonio, Texas, USA, 2014. IEEE.

[14] S. Newman. Building Microservices: Designing
Fine-Grained Systems. O’Reilly Media, Inc.,
Sebastopol, CA, 2015.

[15] Pact Team. Pact documentation, 2025. Accessed:
2025-01-09.

[16] I. Robinson. Consumer-driven contracts: A service
evolution pattern. https://martinfowler.com/
articles/consumerDrivenContracts.html, 2018.

Accessed 9.12.2024.

[17] P. Runeson. A survey of unit testing practices. IEEE
Software, 23(4):22–29, 2006.

[18] D. Taibi, V. Lenarduzzi, and C. Pahl. Architectural
patterns for microservices: A systematic mapping
study. Closer, pages 221–232, 2018.

[19] J. A. Valdivia, A. Lora-González, X. Limón,
K. Cortes-Verdin, and J. O. Ocharán-Hernández.
Patterns related to microservice architecture: a
multivocal literature review. Programming and
Computer Software, 46:594–608, 2020.

[20] Y. WANG, L. CHENG, and X. SUN. Design and
research of microservice application automation
testing framework. In 2019 International Conference
on Information Technology and Computer Application
(ITCA), pages 257–260, 2019.

[21] M. Waseem, P. Liang, G. Márquez, and A. D. Salle.
Testing microservices architecture-based applications:
A systematic mapping study. In 2020 27th
Asia-Pacific Software Engineering Conference
(APSEC), pages 119–128, 2020.

[22] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and
G. Márquez. Design, monitoring, and testing of
microservices systems: The practitioners’ perspective.
Journal of Systems and Software, 182:111061, 2021.

https://martinfowler.com/articles/microservice-testing/
https://martinfowler.com/articles/microservice-testing/
https://martinfowler.com/articles/consumerDrivenContracts.html
https://martinfowler.com/articles/consumerDrivenContracts.html

Microservices Architecture

Insights into Benefits, Challenges, and Best Practices

Rares Eugen Marc
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

rares.marc@rwth-aachen.de

Muhammad Omar
RWTH Aachen University

Ahornstr. 55
52074 Aachen, Germany

muhammad.omar@rwth-aachen.de

ABSTRACT
Evolving from the ideas of service-oriented computing, the
microservices architecture has gained significant traction in
software engineering over the past decade and is now a widely
adopted approach among practitioners and researchers. Many
organizations are now choosing to build software by de-
composing it into small, independent services, each in a
business-bounded context, created and managed by small
autonomous teams. This paper explores the benefits and
challenges associated with adopting microservices, empha-
sizing some key technical and organizational considerations.

Through a comprehensive review of existing literature and
case studies, we identify key aspects. These include techni-
cal considerations of microservices – scalability, reliability,
maintainability, and security, as well as organizational im-
pacts – on team management, knowledge transfer, and rapid
iteration. We discuss these aspects individually, and go into
detail about the opportunities and challenges they present.
Then we look into how these aspects interrelate, highlighting
how the advantages of one can lead to challenges in another.

Finally, we provide practical advice for practitioners and
organizations considering the transition to microservices, giv-
ing heuristics for determining when microservices are a good
fit, and when they may not be. This discussion aims to
equip software engineers and organizational leaders with the
necessary insights to effectively navigate the complexities of
the microservices architecture in full-scale software engineer-
ing.

Keywords
Microservices, Microservice Architecture, Software Archi-
tecture

1. INTRODUCTION
The term ”microservices”was popularized by James Lewis

and Martin Fowler in their 2014 article [12], where they de-
scribe microservices as an approach to developing a single

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWC Seminar 2024/25 RWTH Aachen University, Germany.

application in terms of a collection of small, independent
services. Each service runs in its own process, and commu-
nicates with other services using lightweight mechanisms like
HTTP requests. These services are organized around busi-
ness capabilities and can be deployed through Continuous
Integration and Continuous Delivery/Deployment pipelines,
which reduces the need for centralized management of ser-
vices [12].

The shift from monolithic to microservices architecture
stemmed from the limitations of scaling and maintaining
large, single-unit applications. In a monolithic structure, all
components like the user interface, server logic, and database
are tightly integrated, making the entire system dependent
on atomic updates and deployments. While monolithic sys-
tems are straightforward and manageable when small, they
become difficult to scale and modify as they grow [2]. For
instance, a minor change requires redeploying the entire sys-
tem, and scaling demands the duplication of all components
rather than specific, high-demand areas. These constraints
made it challenging to adapt to the needs of cloud deploy-
ment and agile development cycles, pushing many organiza-
tions to explore microservices [12].

Microservices offered a new approach by splitting appli-
cations into loosely coupled, independently deployable ser-
vices. This structure allows teams to scale, deploy, and
maintain individual services more easily, even using differ-
ent programming languages where beneficial. However, over
time, microservices have presented new challenges, espe-
cially around managing inter-service communication, data
consistency, and increased complexity [5]. Engineers now
face issues like the overhead of managing numerous services,
the challenge of ensuring reliable communication, and trou-
bleshooting failures across a distributed system. These fac-
tors are leading some teams to reconsider aspects of mi-
croservices or explore hybrid approaches that combine the
simplicity of monolithic structures with the flexibility of mi-
croservices [10].

In this paper, we explore the benefits and challenges of
adopting the microservices architecture as the core princi-
ple of building large-scale software systems, focusing on both
technical and operational considerations. The paper is struc-
tured as follows: Section 2 describes the Research Method-
ology used to identify key aspects of microservices, drawn
from the perspectives of both practitioners and researchers.
Sections 3 and 4 detail the Technical Considerations and
Organizational Impacts of implementing microservices ar-
chitecture in large-scale software engineering. In Section 5
we provide a Discussion, offering insights and advice rele-

vant to practitioners who are considering the adoption of
microservices. Finally, Section 6 presents the Conclusion
and gives some potential directions for future work.

2. RESEARCH METHODOLOGY
In this section, we outline the research methodology we

used to investigate the advantages and disadvantages of mi-
croservices. We conducted a comprehensive literature re-
view, focusing on both technical and organizational aspects.
Key areas of investigation include scalability, reliability, main-
tainability, security, team management, skill diversity, and
rapid iteration. This multi-faceted approach should provide
a more nuanced understanding of the impact of microser-
vices on software systems and organizations.

2.1 Research Process and Approach
In order to effectively research and present the advantages

and disadvantages of microservices, we first needed to estab-
lish the key areas of the topic, namely the aspects of a system
which are the most impacted by this type of architecture.

We began by trying to understand how such a system
works and the differences to a classical monolith, so we thor-
oughly reviewed articles focusing on this topic, starting with
Fowler’s 2014 blog post [12]. Next were some success stories
of companies making the transition by way of necessity, not
a voluntary endeavor in order for their systems to fit into
this category. Such an example is Amazon [8], who made
this change naturally in order to adapt to their rapidly in-
creasing customer base, which also prompted them to work
based on the motto ”Get big fast”.

Next, we looked into the peer-reviewed literature around
microservices, focusing on keywords that allowed us insight
into the practice, such as ”design and architecture”, ”chal-
lenges”, ”pains and gains”, ”bad smells”, and ”trade-offs”. We
used IEEE Xplore and ACM Digital Library to find these
papers, using the built in search tool to filter papers.

Among the papers we found, Jamshidi et al. provided
a particularly comprehensive overview in their paper ”Mi-
croservices: The Journey So Far and Challenges Ahead”
[10]. In another paper focused on the industry perspective,
Bogner et al. [3] provided the results of a survey conducted
among software professionals. Their focus on the perceived
characteristics of microservices among experts [Figure 1]
helped us draft an outline of the most interesting aspects.

The promises presented in the literature and the needs
of the industry were clearly aligned, so in order to verify
our findings, we looked into systematic literature reviews,
such as the one by Vural [22], to confirm our hypothesis
using actual data. ”A Survey on the State of Practice” by
Ghofrani and Lübke [7] also offered us some insight from real
practitioners working in the field who already have a lot of
experience with the topic. They presented their challenges
and their reasoning when working with microservices, and
they summarized their findings in a bar graph [Figure 2].

Based on these steps, we were able to determine that sim-
ply a technical approach to the topic would not suffice, and
in order to have enough perspective, a non-technical view
is also necessary. Because such a system functions in a
very different way, the organizational impact it has on the
design, development, and management process cannot be
glossed over. Thus, we adjusted our approach when review-
ing the literature and extracted the fundamentals from both
aspects.

Figure 1: Impact of Microservices on Software Quality,
adapted from [3]

Figure 2: Goals when deciding on Microservices architec-
ture, adapted from [7]

2.2 Key Aspects
Scalability is decidedly at the forefront of technical con-

siderations, being of paramount importance in almost all
cases. Ghofrani and Lubke’s survey placed it as easily the
most wide spread end-goal of people who adapt this archi-
tecture. Since availability is a priority for most enterprises,
it is no surprise that reliability is also significant.

In their study involving software professionals from Ger-
many [3], Bogner et al. tried to determine the impact on
different software qualities by microservices; maintainabil-
ity came first, since the motivation to reuse and structure
services around business capabilities is the driving factor in
the design phase of such architectures. Security is a more
divisive topic, but because of this reason and the fact that
we believe it to be an aspect that must always be considered,
it is also included in our paper.

Regarding organizational matters, microservices have had
a significant influence on team management and struc-
ture, as well as their distribution and style of work; chal-
lenges in skill and tool diversity have therefore emerged
as a consequence. On the other hand, there are clear advan-
tages of these changes which reflect in a rapid iteration.
The importance of these aspects are confirmed in the afore-
mentioned studies through the performance, efficiency and
agility metrics.

The decision to concentrate on these features is, therefore,
grounded in the emphasis placed on them in existing liter-
ature, as well as their relevance in real-life contexts. This

dual-faceted view on microservices informs the reader on
practical benefits but also organizational complexities in-
volved in adopting this architecture.

3. TECHNICAL ASPECTS
Microservices architecture involves breaking down appli-

cations into smaller, independently deployable services. This
approach offers benefits like scalability, fault isolation, and
flexible technology choices. However, it also introduces chal-
lenges such as increased complexity, distributed data man-
agement, security concerns, and service orchestration. In
this section, we look into the scalability, reliability, main-
tainability, and security of microservice-based systems.

3.1 Scalability
The term ”scalability” is defined as the property of a sys-

tem which defines to which degree it can handle growing or
shrinking workloads or adapt its capacity to handle variabil-
ity [1].

Independent deployment is one of the biggest features
thrown around, which does indeed have a myriad of advan-
tages. Since all services act as self-contained units, updates
or fixes to one of them do not require redeployment of the
entire system. This also allows for a more precise scaling of
only the components that are actually facing problems. All
this can be done at runtime, since taking down one service
does not affect the whole application, leading to an efficient
use of resources and rapid reactions to changes.

”Smart endpoints, dumb pipes” - the colloquial term
for another benefit of this separation, named this way be-
cause of the following behavior: microservices receive a re-
quest, apply specific logic on it and forward a response -
they behave similarly to filters, which means there is very
little need for central control.

Different environments mean that developers are also free
to choose different databases depending on what is best
suited in each case, therefore obtaining significantly more
efficient storage. Not only that, but since services operate
within a bounded context, they can be safely worked on
without needing to be familiar with the rest of the applica-
tion’s architecture.

Cloud services have also become prevalent in dealing
with microservices; they can handle features common to
most components, such as managing servers, data stores and
handling errors. This innovation combined with indepen-
dent deployment made people recognize how well-suited the
architecture is for cloud development; it can take the most
advantage from the elasticity and on-demand characteristics
of such services. An argument can also be made for the abil-
ity to redeploy a service in another location in order to take
advantage of network positioning.

Drawbacks do exist when working with an interconnected
web of completely separate services, such as a larger con-
sumption of network and computing resources. Remote calls
are much more expensive than in-process calls used in a
monolithic application, therefore they need to be carefully
designed in order to be more coarse-grained and avoid chatty
communications. A different runtime environment also needs
to be maintained for each service.

Monitoring a dynamic network of microservices involves
difficulties: constantly having an overview of the whole sys-
tem can become quite challenging. The flow between an
ever-increasing number of units can become hard to control

and update, and track of all versions and compatibilities
between them must be kept. There is also difficulty when
performance testing - measuring the performance of each
service and also of the overall application can get compli-
cated.

Duplicate effort is also an unfortunate consequence of
separate infrastructures, since many similar issues will ap-
pear in different microservices. The effort wasted on man-
aging infrastructure is what led Amazon to transition to the
aforementioned cloud services.

Data management is an issue which cannot currently be
marked as resolved. Managing updates on multiple servers
does not have a clear solution, since distributed transactions
are not only hard to implement, but their key two-phase
commit feature damages the throughput of the application
due to the overhead introduced. The current consensus is
settling for eventual consistency, but this does not apply
when dealing with sensitive data. Another difficulty stems
from the previously mentioned possibility to use different
databases; creating queries which combine data from dis-
tributed and heterogeneous stores can be challenging.

3.2 Reliability
Reliability is achieved in microservices through a com-

bination of certain design principles and mechanisms that
maintain functionality even under failure conditions.

By design, the system is fault tolerant; flexibly adding
or removing services is possible without affecting the entire
system, since most of them can work independently, even if
others are not deployed. This also means that updates can
be made while the system is running, enabling the continu-
ous delivery of improvements.

Bounded contexts is another factor which aids greatly
in isolating faults and addressing failures without affecting
anything else. Services operate within their own separate
runtime environment, adding another layer of isolation and
preventing issues caused by shared resources. They are also
designed following the loose coupling principle, which en-
sures that dependencies are minimized, hence reducing the
risk of cascading problems.

The shotgun method is a practice which distributes
a single point of failure into multiple, essentially providing
many smaller instances of services which can quickly take on
the workload of one that failed [15]. Netflix leans heavily on
this method. Here also intervene load balancing and service
discovery mechanisms, which can use health checks to find
overloaded services and rebalance traffic by redirecting it to
healthy instances.

Containerization is leveraged to great a extent by this
architecture, making use of lightweight environments that
ensure quick and independent failure. Most services are
therefore designed to be stateless, in order for other in-
stances to be able to quickly take on their traffic or to quickly
be started and deployed again.

Some of these benefits can however be undermined if the
challenges they introduce are not addressed properly.

Cascading failures is an issue which appears when mi-
croservices are not properly isolated; the failure of one ser-
vice causes another one to fail due to the dependency be-
tween them, and so on. This usually happens when they are
too tightly coupled or if they have shared resources; thus
why a decoupled design is of paramount importance. The
boundaries of each service must also be well-defined, since

badly designed interfaces can lead to increased communica-
tion and therefore worse performance and more instability.

Communication issues are bound to occur more often
than in other architectures since a much larger number of
messages are being sent. On top of this, each service has its
own network connection, therefore problems with latency
and connectivity are more likely to appear.

These issues can however be addressed using different mon-
itoring mechanisms which detect failures and prevent them
from spreading. An example is circuit breakers; they are em-
ployed to ensure that, once a service starts failing, it stops
receiving requests and is permitted to slowly recover until it
becomes functioning again. The purpose is to allow services
to degrade gracefully instead of having them break totally.

Debugging is an activity heavily affected by this type of
architecture; the large number of microservices are operating
independently of each other and are therefore also writing
their own logs. Delving through distributed, extensive logs
is a difficult endeavor and makes it significantly harder to
identify problems.

3.3 Maintainability
Maintainability is often cited as the main migration driver

behind microservices [3], owing to its modularity by design
and bounded contexts.

Enforcing firm module boundaries makes it easier to
respect service separation and improves code modularity.
By organizing software systems around business capabilities
rather than technical layers, teams can more easily isolate
services, enabling more focused updates and clearer owner-
ship. This organization often aligns with Conway’s Law [4],
where the system’s structure mirrors the organization’s com-
munication and workflow patterns, thereby fostering main-
tainability. Despite these advantages, microservices also in-
troduce a risk of complexity in the form of an interconnected
death star dependency graph [14], where services depend on
one another in intricate, sometimes fragile ways.

However, limitations in service decomposition may
arise in certain contexts. While microservices promise flexi-
bility in design, not all software systems are easily split into
discrete services. Certain applications may not naturally
decompose along business capability lines, leading to diffi-
cult decisions about service boundaries. This issue is com-
pounded by the need to continually refactor and redesign
services to ensure they remain maintainable and aligned
with evolving business goals [20]. This means that microser-
vices are not a one-size-fits-all solution and significant effort
might be needed to ensure maintainability as the system
scales.

Communication challenges scale when more services
are added, increasing the complexity of communication be-
tween microservices. Each connection introduces potential
failure points and adds complexity. Instead of being elim-
inated, the inherent complexity of the domain might be
shifted to inter-component communication to simplify sys-
tem components. [12]. The challenge of maintaining co-
ordination can be mitigated by shared API, protocols, and
design principles. Clear inter-team communication via thor-
ough documentation and through mechanisms like scrum of
scrums [16] also help to align multiple teams as they work
on different services with different release cycles.

Maintaining non-functional qualities, such as scalabil-
ity, security, and performance, is also closely tied to the

overall maintainability of a microservices architecture. The
decentralized nature of teams and services can create gaps
in responsibility unless strong oversight and platform-level
teams are in place to manage cross-cutting concerns. [5]
These teams help ensure that non-functional qualities are
consistently maintained across all services, reducing the risk
of the system becoming fragmented or unreliable. If these
qualities are not actively managed, the system may face
increasing maintenance overhead as new issues arise post-
deployment.

3.4 Security
Security is not a core consideration in the comparison be-

tween traditional and microservices architectures, not being
heavily affected by the differences, but it is nonetheless an
important topic.

Finer-grained security policies represent the main ad-
vantage here; policies can simply be tailored to each and
every microservice to best suit its usage. This means very
detailed access controls and configurations specific to each
service’s needs, which allows a better application of the least
privilege principle than in a monolith. On the other hand,
automated security policies are also possible; developers can
create simple, abstract measures and apply them to multiple
services with similar reasonings regarding security. More im-
portant services with sensitive data can be designed to have
stricter access or dedicated measures such as encrypted com-
munication, token-based authentication and others. To this
end, firewalls can also be configured at multiple layers: in
API gateways, service meshes or individual containers.

Isolation is also significantly beneficial, since a compro-
mise is less likely to spread across the system. A vulnerabil-
ity which is exploited in one service does not mean that the
attacker can easily use the resources and data of another.

The challenges in this architecture are however also quite
significant.

Provenance and Authenticity of requests must quickly
and correctly be established at the level of each microser-
vice. This poses a few problems both for decentralized and
centralized access control systems; decentralization means
maintaining consistent authentication mechanisms across all
services, which becomes difficult due to each of them evolv-
ing at a different pace. Centralization however can easily
lead to bottlenecks and slow response times. On this topic,
due to the trust placed between services, if an attacker man-
ages to compromise one of them, he can then send malicious
requests to others and therefore extend the intrusion to an
entire cluster of services.

Updating authenticating information also presents a chal-
lenge whenever a new service or user is added, since either a
central authority must be kept up to date on every change,
becoming a maintenance burden, or individual services must
be updated consistently and at the same time, which is error-
prone and may lead to mismatched or outdated credentials.

The attack surface in microservices is significantly larger,
directly increasing the risk of intrusions. Endpoint prolifer-
ation is one of the causes; each service needs to open new
ports and expose more APIs, creating more possible entry
points for attackers. Another reason is that communication
between services often happens over a network, as opposed
to in-process calls of monolithic architectures, and messages
are therefore exposed to potential interception, tampering
or unauthorized access.

4. ORGANIZATIONAL ASPECTS
While the technical aspects of the microservices are often

the main topic of discussion, the organizational challenges of
moving to a microservices architecture must not be under-
estimated. We consider the aspects of team management,
knowledge continuity, tool diversity, and rapid iteration and
discuss their impact on an effective microservices implemen-
tation.

4.1 Team Management
”You build it, you run it”, the principle introduced by

Amazon’s CTO Werner Vogels in 2006 [8] is central to the
microservices architecture. It encourages small, decentral-
ized, cross-functional teams that assume end-to-end owner-
ship of their services. This aligns with Conway’s Law, which
says systems are shaped by the communication structures
of organizations [4]. Such teams align with the principles
of domain-driven design and bounded contexts [5], promot-
ing productivity and allowing teams to make independent
technology choices and deploy changes without waiting for
others.

Coordination challenges may pose a significant prob-
lem due to the decentralized nature of microservices teams.
Misalignment across teams can occur without strong work-
flows and effective communication, causing microservices to
risk not achieving their intended benefits and instead in-
troduce bottlenecks. [21]. Teams need more sophisticated
workflows for inter-service communication and data man-
agement. To reduce overhead, organizations must foster a
culture of robust DevOps, documentation, and knowledge
sharing. [5].

Structured workflows and regular communication help
to streamline processes and prevent inefficiencies. Establish-
ing cross-team communication, thorough documentation, and
standardized practices can help alleviate these coordination
challenges, allowing teams to operate independently while
supporting organizational goals [11]. Continuous integra-
tion and shared tooling should enable a more successful mi-
croservices implementation [3], creating a balanced ecosys-
tem where independence does not come at the expense of
fragmentation.

Maintaining system cohesion is a significant challenge
due to the high level of team autonomy. Standardization and
oversight are important, otherwise teams risk creating re-
dundant features or incompatible solutions, which can frag-
ment the system and complicate maintenance. Enforcing
shared APIs, protocols, and design principles helps ensure
interoperability across services, while a centralized platform
engineering team can manage cross-cutting concerns like au-
thentication, logging, and monitoring.

Technical standardization via solutions like shared APIs
and service mesh frameworks can prove valuable for main-
taining cohesion, as they simplify inter-service communi-
cation and enhance observability. Service meshes ensure
consistent routing, load balancing, and security protocols
across services, which is particularly beneficial in maintain-
ing seamless integration across autonomous teams [18]. These
strategies, combined with a culture of proactive communi-
cation and shared knowledge, ensure that teams retain their
autonomy while maintaining a cohesive and reliable system.

4.2 Tool Diversity and Knowledge Transfer
Tool proliferation can increase across services, as multi-

ple solutions may address similar needs in diverse ways. This
can cause redundancies and make it challenging for devel-
opers to adapt to new tools and frameworks when switching
services [17]. In a survey of practitioners [19], a majority
of experienced software engineers expected at least minor
problems stemming from increasing tool diversity [Figure 3].
Standardizing a subset of technologies and enforcing robust
documentation practices can help mitigate these drawbacks,
enabling teams to leverage the adaptability of microservices
without overwhelming them with unnecessary complexity.
Newman notes that organizations employing these best prac-
tices achieve smoother transitions between teams and better
maintainability of services [13].

Figure 3: Perceived number of problems caused by increas-
ing tool diversity, in the eyes of practitioners [19]

Skill diversity also introduces a challenge in microser-
vices, as teams require broader skill sets. Each team takes
on full responsibility for its service’s life cycle, so team mem-
bers must possess broader skill sets, including knowledge of
development, operations, and possibly multiple technology
stacks. This requirement can complicate recruitment and
increase the need for cross-functional training, leading to a
higher cognitive load for team members. While small, ag-
ile teams are generally efficient, having to put on multiple
hats may stretch the individual members, which can impact
overall efficiency [3].

Knowledge sharing and cross-team communication are
essential to ensure system cohesion and mitigate the cogni-
tive burden on team members [11]. As services may often
be added, modified, deleted, and may change ownership,
knowledge continuity via comprehensive documentation and
inter-team communication are necessary. When team mem-
bers switch roles or new teams assume responsibility for ex-
isting services, inconsistent or missing documentation can
impede knowledge transfer, leading to delays and reduced
productivity. Bogner et al. note that organizations success-
ful with microservices tend to allocate resources to training,
documentation, and shared tooling [3]

Figure 4: Number of live deployments and incidents per week at otto.de from 2014 to 2017. [9]

4.3 Rapid Iteration
Companies and projects that adopt microservices frequently

report reduced lead times and increased release frequency
[3], as the microservices architecture accelerates develop-
ment speed by enabling granular and independent updates
to individual services, allowing rapid innovation and adapt-
ability. Each service is designed to perform specific func-
tions, allowing development teams to release changes, ad-
dress bugs, or even rewrite the service without disrupting
the broader system.

In a 2017 case study, Hasselbring et al. [9] looked into
the E-Commerce company otto.de and found out that since
adopting the microservices architecture, the number of live
deployments they made per week rose from 40 to 500 [Fig-
ure 4]. Notably, there was no significant increase in live
incidents, which stayed at a relatively low level. They en-
sured reliability and quality via automation of DevOps
and testing pipelines, which increased agility and facili-
tated faster turnaround times.

The independence of services allows teams to adopt indi-
vidualized workflows and specialized languages or frame-
works that best suit each service’s requirements. As a result,
organizations can respond quickly to market demands and
introduce new features, contributing to a continuous deploy-
ment model that supports rapid iteration [12].

5. DISCUSSION
The microservices architecture presents a compelling propo-

sition for anyone looking to develop a modern software sys-
tem. By breaking down monolithic applications into smaller,
independent services, organizations can produce more scal-
able, reliable, and maintainable software, while achieving
greater agility and innovation.

However, the implementation of microservices does not
come without costs. The complexity of managing a dis-
tributed system, the overhead of inter-service communica-
tion, and the potential for cascading failures must be taken
into consideration, just to name a few. Organizations have
to carefully weigh the benefits against the costs before em-
barking on a microservices journey.

5.1 Challenges in Practice
Bogner et al. [3] noted in their survey of microservice-

based systems that, in practice, such systems are likely to
fall short of their intended architectural goals. DevOps and
automation practices were found to be rather mediocre in
the systems that they assessed, and only very few companies
strictly followed the ”you build it, you run it”principle. They
also found a lack of the high degree of technological diversity
that is commonly expected with microservices, which shows
a disconnect between what teams may plan to achieve from
microservices, and what is actually built at the end of the
day. Microservices certainly are not the silver bullet that
some advocates may make it seem.

When considering microservices, every decision must be
carefully weighed, keeping in mind that one step forward
in one direction can mean two steps backward in another.
By trying to increase the quality of one aspect of our ap-
plication, another one may be affected for the worse. In
terms of scalability, independent deployment offers great
benefits, but it demands communication through API calls;
this proves to be a disadvantage for the security of the
application, since it now introduces endpoint proliferation
and authentication challenges. Another example is the rela-
tionship between security and reliability; bounded contexts
mean better isolation of faults and a decrease in risk of cas-
cading failures. However, more effort needs to now be placed
in determining the provenance and authenticity of requests
to ensure safe calls - which in turn can introduce more com-
munication issues negatively impacting reliability.

The organizational impact must not be underestimated as
well. The microservices approach to building applications
creates new types of challenges and requires new technolo-
gies, such as service discovery, workload balancing, container
management, and strict DevOps and automation practices.
These all introduce a significant amount of complexity which
needs to be handled by a proportionate amount of expertise,
which may or may not be available on the teams responsi-
ble, due to a lack of training or an increase in cognitive load.
More coordination and communication is also required, since
each team is now almost oblivious of anything that is being

developed outside the scope of their respective services.

5.2 Recommendations
Microservices must be therefore be used on a case-by-case

basis, which of course prompts the question of how to rec-
ognize the appropriate situations. We have managed to ex-
tract some reliable practices from the literature and also
draw some conclusions:

Do not start with microservices Fowler gives us some
insight into this [6] where he cautions against the de-
liberate use of this architecture before it is actually
necessary. Only when the downsides of a monolith ap-
plication become too severe to handle should a transi-
tion be considered on a case by case basis. Well defined
module boundaries also offer some of the benefits that
people look for in microservices; this should rather be
the first recourse.

Take full advantage of the appropriate tools DevOps,
testing automation, and cloud services are also essen-
tial for an optimal use of microservices; distributed
systems are notoriously difficult, and the complexity
introduced by the new technologies and maintenance
tasks required needs to be handled properly with a
healthy measure of automation.

Consider the services’ size In short: avoid making mi-
croservices too small. Even though services are ideally
modeled around business capabilities, but this does not
always yield optimal separation. Going too ”micro”
can lead to large overhead in infrastructure manage-
ment and communication between services, which can
offset the advantages gained through this architecture.
Services should be split when they start having issues
similar to monolithic architectures, such as having dif-
ficulties scaling or suffering from slow deployment.

Plan for organizational changes Microservices introduce
significant organizational challenges, including increased
complexity, the need for specialized skills, and height-
ened coordination demands, which should be taken
into account when planning to move to this architec-
ture.

In ”The Journey So Far” by Jamshidi [10], he identified
a problem in the current literature on microservices: there
is a significant number of studies, but there has been very
little impact on the common practice. He posits that the
reason for this is researchers’ lack of access to industry-scale
applications using microservices.

In our research we have discovered a number of papers
presenting studies that include industry experts, which do
shed some light on the actual state of practice and align-
ment with the literature. There is not enough, however, for
us to take this as matter of fact and declare that the two
are perfectly in sync; it is entirely possible that there con-
tinues to be a gap between the two. There is likely still
much room to evolve, but in order to do so, a good amount
of coordinated effort between the two sides may be needed
until academia can continue finding solutions for some of the
issues identified here.

6. CONCLUSION
Over the years, the microservices architecture naturally

evolved from prior ideas like the Service-Oriented Architec-
ture (SOA) [23]. Popularized due to its promised benefits
in scalability, reliability, maintainability, and team manage-
ment, it has been widely adopted by the software industry
to build large-scale software systems. In this paper we re-
viewed existing literature and experiences from practition-
ers to provide an overview of the advantages, challenges, and
considerations associated with the adoption of microservices.

Our findings reveal that while microservices enhance sys-
tem flexibility, maintainability, and independent scaling of
components, they also introduce complexities in inter-service
communication, data management, and system monitoring.
There is also significant organizational impact, often lead-
ing to restructured teams aligned with business capabili-
ties, which can improve agility but may present coordination
challenges.

The relationship between different aspects of the microser-
vices architecture is complex. The scalability benefits may
lead to increased complexity in maintaining system-wide se-
curity policies, while the improved fault tolerance can com-
plicate debugging processes across distributed services. Hence
careful consideration is important when adopting microser-
vices, as without prioritization of needs, standardized work-
flows and platform-level oversight, the potential benefits of
microservices might not be fully realized.

Despite the challenges for researchers to access and study
industry-level systems, there is a distinct need for more peer-
reviewed literature on the effects of adopting microservices
in full-scale software engineering [10]. Further research can
unlock more insight into the long-term effects of microser-
vices by developing standardized metrics for evaluating the
effectiveness of a microservices implementation in reaching
its initial goals. Investigating long-term maintenance strate-
gies for evolving microservices systems, and studying the
impact on teams and organizational culture can help bridge
the gap between the promises and the realized outcomes of
microservices.

7. REFERENCES
[1] Iso/iec 25010.

https://iso25000.com/index.php/en/iso-25000-

standards/iso-25010?limit=5&start=7#:~:text=

Adaptability%20%2D%20Degree%20to%20which%20a,

its%20capacity%20to%20handle%20variability.

”Retrieved November 23, 2024”.

[2] G. Blinowski, A. Ojdowska, and A. Przyby lek.
Monolithic vs. microservice architecture: A
performance and scalability evaluation. IEEE Access,
10:20357–20374, 2022.

[3] J. Bogner, J. Fritzsch, S. Wagner, and
A. Zimmermann. Microservices in industry: Insights
into technologies, characteristics, and software quality.
In 2019 IEEE International Conference on Software
Architecture Companion (ICSA-C), pages 187–195,
2019.

[4] M. E. Conway. How do committees invent?
Datamation, April 1968.

[5] N. Dragoni, S. Giallorenzo, A. L. Lafuente,
M. Mazzara, F. Montesi, R. Mustafin, and L. Safina.
Microservices: Yesterday, Today, and Tomorrow,

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=5&start=7#:~:text=Adaptability%20%2D%20Degree%20to%20which%20a,its%20capacity%20to%20handle%20variability.
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=5&start=7#:~:text=Adaptability%20%2D%20Degree%20to%20which%20a,its%20capacity%20to%20handle%20variability.
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=5&start=7#:~:text=Adaptability%20%2D%20Degree%20to%20which%20a,its%20capacity%20to%20handle%20variability.
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=5&start=7#:~:text=Adaptability%20%2D%20Degree%20to%20which%20a,its%20capacity%20to%20handle%20variability.

pages 195–216. Springer International Publishing,
Cham, 2017.

[6] M. Fowler. Microservice premium.
https://martinfowler.com/bliki/

MicroservicePremium.html, 05 2015.

[7] J. Ghofrani and D. Lübke. Challenges of microservices
architecture: A survey on the state of the practice. 05
2018.

[8] J. Gray. A Conversation with Werner Vogels.
https://queue.acm.org/detail.cfm?id=1142065,
2006. Retrieved November 13, 2024.

[9] W. Hasselbring and G. Steinacker. Microservice
architectures for scalability, agility and reliability in
e-commerce. In 2017 IEEE International Conference
on Software Architecture Workshops (ICSAW), pages
243–246, 2017.

[10] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and
S. Tilkov. Microservices: The journey so far and
challenges ahead. IEEE Software, 35(3):24–35, 2018.

[11] V. Lenarduzzi and O. Sievi-Korte. On the negative
impact of team independence in microservices software
development. In Proceedings of the 19th International
Conference on Agile Software Development:
Companion, XP ’18, New York, NY, USA, 2018.
Association for Computing Machinery.

[12] J. Lewis and M. Fowler. Microservices: a definition of
this new architectural term. https://martinfowler.
com/articles/microservices.html/, 2014. Retrieved
November 11, 2024.

[13] S. Newman. Building Microservices. O’Reilly Media,
Inc., 1st edition, 2015.

[14] J. Nicholas. Death Star Architecture —
mrtortoise.github.io.
https://mrtortoise.github.io/architecture/

lean/design/patterns/ddd/2018/03/18/deathstar-

architecture.html, 2018. Retrieved November 14,
2024.

[15] R. Osowski. Introduction to microservices.
https://developer.ibm.com/tutorials/cl-ibm-

cloud-microservices-in-action-part-1-trs/, 07
2024.

[16] M. Paasivaara, C. Lassenius, and V. T. Heikkilä.
Inter-team coordination in large-scale globally
distributed scrum: Do scrum-of-scrums really work?
In Proceedings of the ACM-IEEE international
symposium on Empirical software engineering and
measurement, pages 235–238, 2012.

[17] C. Pahl and P. Jamshidi. Microservices: A systematic
mapping study. pages 137 – 146, Setúbal, Portugal,
2016. SciTePress.

[18] M. R. Saleh Sedghpour, C. Klein, and J. Tordsson. An
empirical study of service mesh traffic management
policies for microservices. In Proceedings of the 2022
ACM/SPEC on International Conference on
Performance Engineering, ICPE ’22, page 17–27, New
York, NY, USA, 2022. Association for Computing
Machinery.

[19] E. Sörensen. Language diversity in microservices: a
case study at skatteverket.
https://www.diva-portal.org/smash/record.jsf?

pid=diva2%3A1565803&dswid=490, 2021. ”Retrieved
November 23, 2024”.

[20] D. Taibi and V. Lenarduzzi. On the definition of
microservice bad smells. IEEE Software, 35(3):56–62,
2018.

[21] D. Taibi, V. Lenarduzzi, and C. Pahl. Processes,
motivations, and issues for migrating to microservices
architectures: An empirical investigation. IEEE Cloud
Computing, 4(5):22–32, 2017.

[22] H. Vural, M. Koyuncu, and S. Guney. A systematic
literature review on microservices. pages 203–217, 07
2017.

[23] Z. Xiao, I. Wijegunaratne, and X. Qiang. Reflections
on soa and microservices. In 2016 4th International
Conference on Enterprise Systems (ES), pages 60–67,
2016.

https://martinfowler.com/bliki/MicroservicePremium.html
https://martinfowler.com/bliki/MicroservicePremium.html
https://queue.acm.org/detail.cfm?id=1142065
https://martinfowler.com/articles/microservices.html/
https://martinfowler.com/articles/microservices.html/
https://mrtortoise.github.io/architecture/lean/design/patterns/ddd/2018/03/18/deathstar-architecture.html
https://mrtortoise.github.io/architecture/lean/design/patterns/ddd/2018/03/18/deathstar-architecture.html
https://mrtortoise.github.io/architecture/lean/design/patterns/ddd/2018/03/18/deathstar-architecture.html
https://developer.ibm.com/tutorials/cl-ibm-cloud-microservices-in-action-part-1-trs/
https://developer.ibm.com/tutorials/cl-ibm-cloud-microservices-in-action-part-1-trs/
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1565803&dswid=490
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1565803&dswid=490

	Cover and TOC
	FsSE-WS25-paper-1
	Introduction
	Methodology
	Systematic Review Process
	Search Strategy
	Search Engine
	Search Strings
	Inclusion and Exclusion Criteria

	Data Extraction and Analysis

	Results
	Prompt Engineering
	Role of a Prompt Developer
	Roles in Prompt Engineering

	Prompt Development Life Cycle
	Activities
	Decision Points
	Artifacts

	Tool Evaluation
	Tools Overview
	Tool Features

	Discussion
	Future Research

	Conclusions
	References

	FsSE-WS25-paper-2
	Introduction
	Background and Related Work
	Background
	Technical Debt
	Types of Technical Debt

	Related Work
	Systematic Reviews of TD
	Systematic Reviews in Legacy System Modernization
	Research Trends and Gaps

	Method
	Definition of Research Questions
	Search Process
	Inclusion and Exclusion Criteria
	Quality Assessment

	Results
	Challenges of Legacy System Modernization
	Strategies for Addressing TD During Modernization
	Overview of General TD Studies
	Specific Types of TD and Their Impact
	TD in Architectural Style Transitions

	Existing Challenges in Managing TD

	Discussion
	Threats to Validity
	Conclusion
	References

	FsSE-WS25-paper-3
	Introduction
	Methodology
	Challenges in Automated Testing of Microservices Systems
	Overview over Existing Test Automation Approaches
	Unit testing
	Component Test
	Contract testing
	Integration testing
	End-to-end testing (E2E)
	 Automated black-box

	Comparative Analysis of Testing Approaches
	RQ1
	Robustness
	Reusability
	Test Coverage
	Efficiency

	RQ2
	RQ3
	RQ4

	Threats to Validity
	Conclusion
	References

	FsSE-WS25-paper-4
	Introduction
	Research Methodology
	Research Process and Approach
	Key Aspects

	Technical Aspects
	Scalability
	Reliability
	Maintainability
	Security

	Organizational Aspects
	Team Management
	Tool Diversity and Knowledge Transfer
	Rapid Iteration

	Discussion
	Challenges in Practice
	Recommendations

	Conclusion
	References

