
The present work was submitted to
the Research Group
Software Construction

of the Faculty of Mathematics,
Computer Science, and
Natural Sciences

Master Thesis

A Large Scale Industrial Case
Study of Continuous Delivery

with JARVIS

Eine umfassende industrielle
Fallstudie in Continuous Delivery

mit JARVIS

presented by

Bastian Greber

Aachen, October 14, 2019

Examiner

Prof. Dr. rer. nat. Horst Lichter

Prof. Dr. rer. nat. Bernhard Rumpe

Supervisor

Dipl.-Inform. Andreas Steffens

Statutory Declaration in Lieu of an Oath

The present translation is for your convenience only.
Only the German version is legally binding.

I hereby declare in lieu of an oath that I have completed the present Master’s thesis entitled

A Large Scale Industrial Case Study of Continuous Delivery with JARVIS

independently and without illegitimate assistance from third parties. I have use no other than
the specified sources and aids. In case that the thesis is additionally submitted in an electronic
format, I declare that the written and electronic versions are fully identical. The thesis has not
been submitted to any examination body in this, or similar, form.

Official Notification

Para. 156 StGB (German Criminal Code): False Statutory Declarations
Whosoever before a public authority competent to administer statutory declarations falsely makes
such a declaration or falsely testifies while referring to such a declaration shall be liable to
imprisonment not exceeding three years or a fine.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to
Negligence
(1) If a person commits one of the offences listed in sections 154 to 156 negligently the penalty
shall be imprisonment not exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time.
The provisions of section 158 (2) and (3) shall apply accordingly.

I have read and understood the above official notification.

Eidesstattliche Versicherung

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Masterarbeit mit dem Titel

A Large Scale Industrial Case Study of Continuous Delivery with JARVIS

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

Aachen, October 14, 2019 (Bastian Greber)

Belehrung

§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche
Versicherung falsch abgibt oder unter Berufung auf eine solche Versicher ung falsch aussagt, wird
mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt
(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen
worden ist, so tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.
(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die
Vorschriften des § 158 Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen.

Aachen, October 14, 2019 (Bastian Greber)

Acknowledgment

I would first like to thank Prof. Dr. rer. nat. Horst Lichter for the possibility of writing
my master thesis at his chair. I also thank him and Prof. Dr. rer. nat. Bernhard Rumpe
for reviewing this thesis.

Special thanks go to my supervisor, Dipl-Inform. Andreas Steffens for his input and
continuous feedback.

Furthermore I thank everybody at KITERS AG for their support during the case study,
especially Lukas Schmidt and Andreas Kinderreich, who assisted me whenever possible.

Finally, I thank my parents for providing me with unfailing support throughout this
thesis. This accomplishment would not have been possible without them. Thank you.

Bastian Greber

Abstract

Motivated by current problems in continuous delivery the JARVIS continuous delivery
reference architecture was developed. Such problems are for example complex delivery
processes that are not efficiently supported by the delivery system. This thesis evaluates
the concepts of a JARVIS to cope with these problems in a real world productive
scenario. Hereby the available functions and usability is assessed and compared to the
underlying goals of JARVIS. In cooperation with the KISTERS AG, an extensive case
study was executed in such a productive environment. This case study is divided into
three individual smaller studies which each targeting specific aspects of JARVIS. First the
basic functionality of JARVIS was evaluated by modelling real world continuous delivery
solutions in the JARVIS system and comparing them to existing solutions. JARVIS was
able to provide the desired functionality and produced equivalent artifacts, compared to
the original solution. During the next study, the scope was extended to requirements
which are currently not fulfilled by the continuous delivery solution at KISTERS. For
this, first relevant continuous delivery stakeholders were identified. Here the whole
business unit was considered as potential stakeholders. In connection the stakeholders
were interviewed to identify their continuous delivery requirements. These requirements
were then evaluated against JARVIS. It is possible to satisfy almost all of the gathered
requirements with a JARVIS based system. Finally the third study investigated the
experimental modelling features of JARVIS. This was done via an expert evaluation of
those features which found these suitable for the desired tasks.

Contents

1. Introduction 1
1.1. Thesis Structure . 2

2. Background and Terminology 3
2.1. Continuous Delivery . 3
2.2. Deployment Pipeline . 5
2.3. JARVIS . 6
2.4. Empirical Software Engineering . 9

3. Case Study Design 13
3.1. Problem Statement . 13
3.2. Goals and Contributions . 14
3.3. Case Study Structure . 15
3.4. Objectives and Research Questions . 15
3.5. Case Studies . 17
3.6. Summary . 21

4. Related Work 23
4.1. Case Study: Introducing Continuous Delivery of Mobile Apps in a Corpo-

rate Environment . 23
4.2. Stakeholder Perceptions of the Adoption of Continuous Integration 24

5. Case Study 1: JARVIS In A Production Environment 27
5.1. Study Design And Execution . 27
5.2. KISTERS Reference Project . 29
5.3. Findings o1.R1 . 31
5.4. Findings o1.R2 . 35
5.5. Findings o1.R3 . 36
5.6. Findings o1.R4 . 40
5.7. Classification of activity services . 41
5.8. Composition of activities . 43
5.9. Discussion and Summary . 45

6. Case Study 2: CD Stakeholder And Requirements 49
6.1. Study Design And Execution . 49
6.2. Continuous Delivery Stakeholder . 50
6.3. Continuous Delivery Requirements . 53
6.4. Continuous Delivery Survey . 63

i

6.5. Discussion and Summary . 76

7. Case Study 3: Continuous Delivery Modelling 81
7.1. Study Design And Execution . 82
7.2. Process-Based modelling with BPMN . 83
7.3. Process-Based modelling with DSL . 84
7.4. State-Based modelling with DSL . 85
7.5. Discussion and Summary . 89

8. Summary and Future Work 91
8.1. Summary . 91
8.2. Future Work . 93

A. Interview Guides 95

Bibliography 101

List of Tables

5.1. Developed Activities during Case Study 1 46

6.1. Preferred notification methods . 65
6.2. Acceptable runtime for certain CD operations 75
6.3. Requirements mapped on the identified stakeholders 78
6.4. Requirements mapped to their Components from the Delivery Pipeline

Model . 79

iii

List of Figures

2.1. Relationship continuous integration and delivery [LIL17] 4
2.2. Relationship between Delivery Model, System and Process [Dör17] 6
2.3. JARVIS activity classification [SLD18] . 8
2.4. Holistic case study (left) and embedded case study (right) [RH09] 11

3.1. Decomposition of the thesis in sub-case studies 16
3.2. First study, multiple holistic case, mini case studies 18
3.3. Second study, embedded case study on general employee base 20
3.4. Third study, embedded case study with stakeholder 21

5.1. Design of the first case study regarding JARVIS general abilities 28
5.2. Reference project pipelines . 30
5.3. Pipeline for the backend component of the reference project 31
5.4. The commit stage of the reference project 32
5.5. KISTERS reference project pipeline in JARVIS 39
5.6. Architecture remote-activity service . 42
5.7. Architecture library-activity service . 43
5.8. Architecture shell-activity service . 44

6.1. Second study, embedded case study on general employee base 50
6.2. Organization chart of the KISTERS AG BU Energy 51
6.3. Results How importance is fast feedback for you if a pipelines fails? 64
6.4. Results What would be an acceptable feedback time by the CD system? . 64
6.5. Results How important is positive feedback for you? 65
6.6. Results How important is a reminder function by the CD system? 65
6.7. Importance visualize dependencies between different pipelines 67
6.8. Importance show pipelines as a sequence of steps 68
6.9. Importance provide information regarding pipeline runtime 68
6.10. Importance show the technical commands contained in a pipeline 68
6.11. Importance show trends regarding stability 69
6.12. Results How important are configurable dashboards? 69
6.13. Results How important is modelling system landscapes in CD? 71
6.14. Results How important is graphical modelling? 71
6.15. Results How important is textual modelling? 72
6.16. Results How important is self-service in CD for you? 72
6.17. Results How important are optional pipeline steps? 72
6.18. Results How important is multi-branch support through the CD? 73
6.19. Results How important are predictive builds? 73

v

6.20. Results How important is speed in the CD context? 74
6.21. Results How useful is caching artifacts to improve the pipeline runtime? . 74
6.22. Results How useful are APIs to test pipeline steps locally? 75

7.1. Third study, embedded case study with CD modelling as case 82
7.2. Unsolvable model for the smart planner 86
7.3. Pipeline for example application . 87

A.1. Interview Guides page 1 of 5 . 95
A.2. Interview Guides page 2 of 5 . 96
A.3. Interview Guides page 3 of 5 . 97
A.4. Interview Guides page 4 of 5 . 98
A.5. Interview Guides page 5 of 5 . 99

List of Source Codes

7.1. Extract from a JARVIS delivery model . 84
7.2. Pipeline Model for example project state-based 87

vii

1. Introduction

Contents

1.1. Thesis Structure . 2

The JARVIS research project was developed at the Research Group Software Con-
struction (SWC) of the RWTH Aachen. This development was performed over the
course of multiple theses and research papers. JARVIS is a continuous delivery reference
architecture which tries to provide solutions for current continuous delivery problems.
Such problems are for example the complexity of the pipeline descriptions or build scripts
[LIL17]. The defined goals of JARVIS are as follows. Firstly, a delivery system, following
the JARVIS blueprint, should be easy to maintain and operate. The second goal is to
simplify the modelling and interacting with the delivery process for the user [Dör17].
Up until now, no detailed validation of those goals was performed. During the work

of Döring a small case study with an example project was done, but the size of the
study was very limited and the example project was also used for developing further
JARVIS functionality. To improve on this situation, this thesis aims to investigate the
performance and usability of JARVIS in a productive scenario. This will not only validate
the concepts of JARVIS but also provide fresh feedback and ideas for future expansions.
To ensure good quality results, it is important that the current case study is executed in
an environment with no previous JARVIS work. By this we hope to achieve an unbiased
evaluation of the characteristics and features of JARVIS. The KISTERS AG provides
such an environment and is the cooperation partner for this work. KISTERS provides
software solutions in the energy and water market and is a long lasting partner of the
SWC. Additionally no previous research regarding JARVIS was done with their help.
Their motivation to support this work was the detailed assessment of their continuous
delivery solution. As a software company they already had a strong involvement with
CD and are always interested in improving their solutions. This case study will use
their existing productive projects and introduce them to a JARVIS system. During
that process their existing delivery solution is also investigated and feedback or possible
improvements can be identified. Furthermore, as part of this study continuous delivery
stakeholder are searched and their requirements evaluated. These requirements can then
be used us to test JARVIS concepts further and by the KISTERS AG to improve their
system. Another aspect of this study will the assessment of experimental features of
JARVIS. Features like automated delivery model optimization, creating delivery models
in BPMN notations [Wil18] or regression test [Nun18] optimization are mapped against
real world problems and their usefulness is tested.

1

1. Introduction

1.1. Thesis Structure
This thesis is structured as follows. First needed background information and terminology
is introduced in chapter 2. Next the goals and the overall design of the case study is
developed in chapter 3. To put the objectives and research questions into context, the
following chapter 4 introduces already existing research and information learned. This
case study is divided into three smaller sub-case studies. In chapter 5 the first case
study about JARVIS usability is executed. The next study is described in chapter 6 and
evaluates continuous delivery stakeholders and their requirements towards CD. Lastly
the third case study (see chapter 7) deals with the results of the third study. During this
study the modelling methods of JARVIS were evaluated and a new idea for continuous
delivery modelling found. This thesis then closes in chapter 3.6 with a summary of the
found results and inspiration for potential future work.

2

2. Background and Terminology

Contents

2.1. Continuous Delivery . 3
2.1.1. Principles of Continuous Delivery 4

2.2. Deployment Pipeline . 5
2.3. JARVIS . 6

2.3.1. Architecture . 7
2.3.2. JARVIS Activities . 7
2.3.3. Modelling with Smart Planner 8

2.4. Empirical Software Engineering . 9
2.4.1. Case Studies . 9
2.4.2. Semi-Structured Interviews 10

In this chapter multiple topics, which represent foundational work for this thesis, are
introduced. These topics are intended to help the reader get a better insight into the
subjects and provide a quick overview. The focus will be put exclusively on aspects
relevant for this thesis. For a more detailed understanding, further research in external
literature is advised.

2.1. Continuous Delivery
Continuous Delivery is software engineering approach which allows the user the release
of reliable software in short increments. One major factor of continuous delivery is
the ability to produce releases at almost any given time and still ensure a high quality
[Che15]. Multiple popular process models like rapid prototyping, incremental and
iterative software development or agile development [JH07] in general, are benefiting from
continuous delivery. To achieve the specified goals, the release process of a given software,
is executed automatically on every change (e.g. commit in a source code repository).
Analogous to Humble and Farley, this section defines the general release process as four
steps. The first step is the build step in which the artifact is created. The second step is
the deployment step to install the created artifact to a test system or artifact-repository.
This is then followed by the testing step. During this step the artifact is tested against
predefined quality gates it has to satisfy. Finally the software is released which marks the
end of the delivery process. To properly understand continuous delivery it is important to
know its relationship with continuous integration [LIL17] [Vir15]. Figure 2.1 shows that
relationship. During continuous integration changes are merged nonstop into the main
code-base. Hereby it is important to always maintain a runnable artifact. Continuous

3

2. Background and Terminology

Delivery now extends continuous integration with testing and automated deployment
into productive environments [DMG07]. Other stages can be included as well.

Version
Control

Commit-Stage Acceptance
Test Stage

Other Stages

Deploy to
Production

Continuous Delivery

Continuous Integration

Figure 2.1.: Relationship continuous integration and delivery [LIL17]

Following the argumentation of Chen, the user of continuous delivery try to achieve
the following benefits by following the CD approach.

1. Accelerate time to market

2. Building the right product

3. Improved productivity and efficiency

4. Reliable releases

5. Improved product quality

6. Improved customer satisfaction

2.1.1. Principles of Continuous Delivery

Based on the work of Humble and Farley, the basic principles of continuous delivery can
be formulated as follows [HF10].

Suitable Process As mentioned before, continuous delivery relies on the delivery process
of the software product. To get the most out of it, the process must be suitable
and optimized for continuous delivery. Mainly this means the process has to be
repeatable and executable by a machine. It must be predictable what the process
does and every run must yield the same results (if the input has not changed). This
also means the process has to be reliable.

4

2.2. Deployment Pipeline

High Automation The automation of tasks is key for continuous delivery. If it is possible,
everything should be automated. This comes with two major advantages. First the
process is executed in a repeatable fashion. Every time the task is performed, it is
done so in the same way. This grants the ability to fix errors easily and optimize
the process. The other aspect is the reduction of errors. By letting the machine
do the monotonous and repetitive tasks, the error rate decreases significantly. By
combining these aspects, a high degree of automation does increase the trust into
the delivery solution.

Version Control Everything related to the software project should be kept under version
control. This holds especially true for the source code itself. It allows the tracking
of changes and allowing a revert in case problems arise. In most cases the version
control is the starting point for the delivery process. The process itself is triggered
by any changes in the corresponding repository.

Frequent Execution Continuous Delivery is meant to be executed frequently. Therefore
it should be applied on every change to the code basis. If one step of the process is
problematic or error prone, it only means it is not executed often enough.

Build Quality In This principle aims at multiple aspects. Firstly errors should be found
as soon as possible. If the search for them is integrated into the process this can be
achieved more easily. The second aspect is the direct integration of tests into the
delivery process. Testing is not a separate action after the artifact is build but a
continuous activity.

Done means released An important aspect of continuous delivery is the definition of
done. A feature is completed if it was successfully released and shipped to the
client. Many developers do consider a feature "done" after the initial development is
completed but a finished feature requires the whole release process to be executed.

Responsibility In a continuous delivery scenario everybody is responsible for the delivery
process. The input of anybody related to the development is gathered and considered
in the delivery process.

2.2. Deployment Pipeline
In literature and research the term "Delivery Pipeline" gets used in manifold ways. Some
define it as process, other see it as model for a process or even as a software system. To
avoid confusion, the definition of those terms was adopted for this thesis from the work
of Steffens, Lichter, and Döring. The research paper [SLD18] splits the term delivery
pipeline in three parts and puts those parts in relation to each other. This relationship is
shown in figure 2.2.

Delivery Model The delivery model is an abstract representation of the delivery process.
It is maintained by the user and serves as input for the delivery system.

5

2. Background and Terminology

Delivery
Process

Delivery
Model

Delivery
System

configures

executesdescribes

Figure 2.2.: Relationship between Delivery Model, System and Process [Dör17]

Delivery System The delivery system is a software product which is used to execute the
delivery process. To be able to do so, the delivery model is used as configuration
for the system.

Delivery Process The delivery process is the manifestation of the delivery model and
gets executed by the delivery system.

2.3. JARVIS
This section provides an overview about the concepts and ideas behind the JARVIS
continuous delivery architecture. JARVIS was developed during the work of Döring at
the research group for Software Construction at RWTH Aachen University ([SWC]).
Since JARVIS is foremost a reference architecture for a delivery system, a reference
implementation was also developed to test the concepts. Over the course of two years,
JARVIS was continuously extended with new functionality. For example the integration
of a regression test framework [Nun18] or modelling delivery processes in BPMN notation
[Wil18]. As previously mentioned, JARVIS is a reference architecture for a continuous
delivery system. It serves as a blueprint for a real software system that utilizes the
JARVIS concepts. The reference architecture aims to provide the following benefits for
the user [Dör17].

Integration of heterogeneous technology To successfully develop software and solve
problems, it is essential to use the right tool for the job. The delivery system must
be able to support your technology decisions and allow easy transitions between
different solutions.

6

2.3. JARVIS

Modularity Modularity allows the user of the delivery system to add or subtract individual
features and functions as needed. This keeps the system small and allows for a
flexible evolution.

Activity Abstraction Continuous delivery systems provide actions (activities) which
represent the delivery process steps. To add or adapt actions, without influencing
the remaining infrastructure, an abstraction is necessary. This principle goes hand
in hand with the modularity requirement.

Self-Organizing The delivery system must provide support for the user and organize/op-
timize delivery models automatically. This reduces the knowledge needed by the
user of the delivery system.

Custom PDLs The delivery system must provide different approaches to describe the
delivery models. For example this can be a DSL or a even graphic modelling.

2.3.1. Architecture

To accomplish the modularity, as required in section 2.3, JARVIS utilizes a special
architecture. The architecture is composed as an multi-layered architecture with five
individual layers. Additionally each component of the architecture is developed self-
contained. This micro-service approach allows the user to easily adapt the system
with new functionality, without influencing the rest of the system. Every component
is connected to the infrastructure through a central messaging-system and components
in the top layer offer a variety of endpoints for external use. The bottom layer is the
activity-layer. Its purpose is to house the activity-services which provide the activities
that can be included in the delivery models. One layer above is the Delivery Process
Management layer. All functionality needed, from a system management perspective, is
located here. This layer (in combination with the infrastructure components) represents
the central command unit of a JARVIS system. Following the architecture upwards, next
is the access-layer. Components in this layer serve as gateways to external tooling and
aggregate information, which they then also publish. The top-layer is the visualization
layer. Here the aggregated information from the access-layer are visualized and eventual
tooling for the user, to interact with the system, is present.

2.3.2. JARVIS Activities

The activities represent the individual steps and actions a delivery process consists of.
For each step in a process an individual activity is developed in JARVIS and integrated
into an activity-service. An activity-service clusters activities which belong together
content-wise. Nevertheless each activity operates alone and provides it function separate.
In the following the three activity types, present in JARVIS, are presented. They are
also illustrated in figure 2.3.

7

2. Background and Terminology

TransformationTransformation

Input Operation Output

AssessmentAssessment

Artifact A1

Quality GateQuality Gate

P1

Policy

Artifact B1

Artifact A1 Report R1

Report R1Artifact A1
Artifact A1+
(promoted)

An

...

Figure 2.3.: JARVIS activity classification [SLD18]

Transformation This activity takes an input artifact (e.g. source code) and transforms
it into another artifact (e.g. compiled classes). The transformation activity is the
backbone activity of JARVIS.

Assessment The assessment is used to generate information about an artifact. Therefore
the input is an artifact (produced by some transformation activity) and the result
is a report about that artifact. An assessment could be for example the execution
of unit tests, the report being the number of failed tests.

Quality Gate The quality gate is used to ensure certain policies are uphold. If not, the
pipeline run is stopped. A policy can be something like a mandatory passed/fail
ratio for unit-tests. Therefore the quality gate get an artifact with the corresponding
report and compares this report to the applied policy. If the policy is uphold, the
artifact get promoted.

2.3.3. Modelling with Smart Planner

The smart planner was introduced to enable JARVIS systems to self-organize (see 2.3). It
works in combination with the orchestrator component and is responsible for supporting
the user in his modelling efforts. To accomplish this, the smart planner utilizes the
model abstraction present in JARVIS. The whole JARVIS infrastructure works on the
so called "internal model" which represents the delivery model in a way all components
understand. Additionally an external model exists, which is used by the user to encode

8

2.4. Empirical Software Engineering

the delivery-model. The external model is then translated into the internal model and
can be processed by JARVIS. With this foundation in place, the smart planner is able to
plan an optimize almost all delivery models. It takes the delivery model (in its internal
representation) and detects dependencies between encoded process steps. This extraction
(of the delivery process) is paired with an optimization regarding execution speed and a
maximum of parallel task execution. The optimized delivery process is then executed
by the orchestrator. Smart planning reduces the process knowledge the user is required
to have. By declaring input and output artifacts for needed artifacts, the planner can
construct a delivery process automatically.

2.4. Empirical Software Engineering

This thesis is a case study in the field of continuous delivery. Therefore the foundations
of case study design are explained in this chapter. Furthermore a general overview about
interviewing case study participants is given.

2.4.1. Case Studies

Following the argumentation of Runeson and Höst, research methods can be classified
into four general categories [RH09]. The first type is the exploratory research method.
Its purpose is to discover new insights and ideas for future work. Next is the descriptive
research. Here a situation or scenario is investigated and described. This description
can then be used in other research as a foundation or additional material. The third
method is the explanatory research method. During explanatory research a situation is
assessed and an explanation for that situation is searched and evaluated. Lastly there
is the improving research. It is targeted at improving certain aspects of the studied
subject. The case study, as research method, can be classified as exploratory [Fly06]
and descriptive [RH09]. During the course of the thesis it is used in an exploratory way,
since it is used to gather new insights into the usability of JARVIS (see 5) or continuous
delivery in general (see 6). Before the case study can be executed, a plan must be made.
This plan should contain at least the following elements [Rob02].

The Objective The objective is the overall goal of the study and answers the question
"what to achieve" [RH09]. It is important to specify this objective very clearly to
avoid ambiguity and misunderstandings during the study.

The Case The case is the research object. It is the entity under investigation and the
central component of each case study.

The Theory This element specifies the frame of reference for the case study. What
boundaries are there and in which context can the results be evaluated.

Research Questions These questions are a more concrete formulation of the objective.
These question specify the desired knowledge the researcher tries to gain. Other

9

2. Background and Terminology

than the objective, this is not seen in the greater context. A research question has
to be precise and only focused on one piece of information.

Methods The methods define how the researcher wants to answer the research questions
and reach the objective. For example if interviews are used to gather information.

Selection Strategy The element specified how the correct (or relevant) data is chosen
and how it is processed. Is lays the foundation for reporting of the results.

After the described elements are planned, the case study can be executed. For this,
Runeson and Höst splits the case study process in five individual steps [RH09]

Design In the first step the case study is designed and planned

Data Collection The data collection is planned and the collection procedure are specified

Execution In this step the case study is executed and the required data is gathered

Analysis The collected data gets analysed and structured

Reporting Data which was gained during the previous steps is prepared for presentation

The last relevant aspect in this short overview are the different types of case studies.
Following Yin, a case study can be modelled in two ways. In figure 2.4 the two designs
are illustrated. The first type is the holistic case study. This can be considered the
classical design which most people are familiar with. The context defines the environment
in which the study is executed and the boundaries to other areas. In this context a
specific case is under investigation. This is then further concretized by defining the
"unit of analysis" which produces the desired research data. In the embedded case study
context and case are the same as before. The only difference is the use of multiple "unit
of analysis" entities, to gain information.

2.4.2. Semi-Structured Interviews

As mentioned in the previous section, it is essential to chose a suitable data collection
method to successfully complete a case study. One of these methods is conducting
interviews with relevant test subjects and analyzing their feedback. Interviews are
considered an exploratory method of research [RH09], which aligns with exploratory
nature of this case study. Furthermore, it is suitable to gather stakeholder requirements
[Zsu00], which is one of the main goals during this thesis (see 6). The process of conducting
semi-structures interviews consists of six individual activities or phases [HA05]. These
phases are as follows.

Scheduling The first activity is concerned with the scheduling of the interviews. This
includes selecting the right participants and making appointments with them.

10

2.4. Empirical Software Engineering

Unit of Analysis

Unit of
Analysis

Unit of
Analysis

Context Context

Case Case

Figure 2.4.: Holistic case study (left) and embedded case study (right) [RH09]

Collecting of background information This activity can be optional and must not be
executed for every interview scenario. If a scenario demands for background infor-
mation about the participant (e.g. technical knowledge or CV), this is performed
during this activity.

Preparing interview guides This activity is used to prepare the interview and specify
which information are targeted. In some instances it can be useful to cluster the
participants and design individual guides for each target group [RD03].

Discussion/Meeting During this activity, which can be before or after the interviews,
the researchers discuss procedure or results of the interviews.

Summary Writing This activity is used to summarize the findings and information,
gained during the interviews.

Transcribing This activity is not performed in every scenario. Since working with text
is easier and faster than audio recordings, the recording is transcribed during
this activity to have textual representation. This is especially beneficial in larger
research groups.

Another important aspect of using interviews as data collection method, are the skills,
the interviewer needs to have. To receive as many information as possible (and in good
quality) three main skills need to be present in the person conducting the interviews
[HA05]. Firstly the interviewer needs to encourage the participant to talk freely and
make them feel comfortable. Additionally the participant needs to realize that her/his
opinion matters and is taken seriously. The next skill is related to background knowledge
of the researcher. It is important to have enough general knowledge about the topic
to ask relevant and insightful questions [HA05]. This is strongly coupled with the
ability to recognize interesting topics and follow up with them. The advantage of an

11

2. Background and Terminology

interview is the ability to integrate new information as they come and not be limited to
a fixed set of questions. Lastly it is important to make sure the participants know, no
negative consequences will arise if they answer the questions truthfully. Here especially
an anonymous approach is beneficial. Also letting the participant sign off on the final
transcript can improve confidence and thereby information quality. Multiple tools can be
used to conduct interviews. To close of this section the most important are explained
here. One tool is an audio recorder. Taping the interview and later evaluating it is good
practice because the attention of the interviewer is on the participant. Additionally the
taping can be listened to on a later date if some information went missing. As mentioned
above, the second tool ist the interview guide or questionnaire. It helps to stay on
topic and no important question is forgotten. Finally providing visual aids during the
interview can increase the value of the information because the participant has a concrete
object/representation to talk about.

12

3. Case Study Design

Contents

3.1. Problem Statement . 13
3.2. Goals and Contributions . 14
3.3. Case Study Structure . 15
3.4. Objectives and Research Questions 15
3.5. Case Studies . 17

3.5.1. Study 1: JARVIS in a Production Environment 18
3.5.2. Study 2: CD Stakeholder and Requirements 19
3.5.3. Study 3: JARVIS Innovations 20

3.6. Summary . 21

Following the general introduction in chapter 1 and a description of terms and concepts in
chapter 2, this chapter outlines the objectives, this thesis aims to work on. Additionally
the concepts, developed to achieve these objectives, are presented. This chapter is
structured as follows. First the problem statement is given. In the next section objectives
and research questions are specified. Finally the case study design is developed and
explained.

3.1. Problem Statement
Since continuous delivery can offer large benefits in enterprise scenarios [Che15] the
need for tailored CD towards stakeholder requirements is apparent. While the research
community is highly active in improving CD as a discipline itself and developing ways to
enhance CD for certain target groups (e.g. developer), the focus rarely favors the user
base in its entirety. Laukkanen et al. started to tackle this issue in his paper "Stakeholder
Perceptions of the Adoption of Continuous Integration - A Case Study" [LPA15]. Though
this paper was concentrated on the perception aspect of CD in business environments and
not general requirements in the field of CD. During the initial preparation of this thesis,
no exhaustive analysis regarding general continuous delivery requirements, targeted at
the whole organization as potential stakeholders, was found. Therefore executing such
an analysis is one of the tasks of this thesis. The other task is evaluating the JARVIS
continuous delivery system against these requirements. JARVIS was developed at the
research group for Software Construction at RWTH Aachen University (SWC) and
up to now, only tested in experimental scenarios. Til today, no study exists, which
investigated all of JARVIS features in a productive context and compares them to actual
user needs. Especially the user acceptance and general usability was not evaluated to

13

3. Case Study Design

this date. To close this information gap, evaluating JARVIS with the mentioned general
CD requirements is sensible. Not only would this support the future development of
JARVIS and point out eventual shortcomings of the system, a "hands on" examination
of the architecture, through real world stakeholders, would also substantiate the claims
made by the designers of JARVIS (see 2.3).

3.2. Goals and Contributions
Based on the formulated problems in section 3.1, there are three major goals which this
thesis aims to achieve. These goals are specified and described in this section. All goals
are dealt with in the context of a collaboration with an industry partner of the SWC
chair. A detailed introduction of this partner and the relevant context is provided in
chapter 3.5.

1. Assess JARVIS as CD solution During the development of JARVIS, respectively the
reference architecture, a small case study was executed to verify basic concepts
[Dör17]. This study was limited to only one project, which in addition was used as
an example during development of JARVIS. To be able to make a more qualified
statement about the usability and general abilities of JARVIS a larger and more
detailed case study is needed. While the objective of JARVIS [Dör17] were more
technical (e.g. evaluation of core domain and integrability of new technologies
Descriptions), this study will focus on the ability to provide continuous delivery in
a productive environment. The delivery solution of real world projects is modelled
in JARVIS to test its functionality outside the scientific context. Furthermore
the ability of JARVIS to fully replace existing CD solutions, like Jenkins [Jen], is
evaluated on multiple projects with heterogeneous technologies.

2. Identify stakeholders and requirements As stated by Laukkanen et al. [LIL17] the
empowerment of stakeholders is one of the key benefits of continuous delivery. To
take advantage of this benefit, it is essential to identify all relevant stakeholder and
their requirements towards CD. The second objective of this thesis is the identifi-
cation of classical (e.g. developer) stakeholders towards CD in the given context.
This objective is extended to investigate if the list of classical CD stakeholders is
exhaustive or if the requirements of the classical stakeholders are sufficient and
complete. Additionally JARVIS is evaluated against the found requirements and
assessed regarding its capabilities to satisfy them.

3. Assess JARVIS innovations Since the initial development of the JARVIS reference
architecture, additional innovative features like e.g. automated pipeline plan-
ning/optimization and CD modeling through BPMN [Wil18] were developed. Until
now, these features were only tested and evaluated on dedicated test scenarios and
projects. During this thesis these innovations will be evaluated in a large scale
productive environment. Again, the base for this evaluation will be the stakeholders
and their requirements identified during the analysis.

14

3.3. Case Study Structure

This section defined the goals of this thesis and the underlying challenges which led
to those goals. During this thesis, a large scale stakeholder analysis will be conducted.
Especially the requirements of non common stakeholders are focused. In a second step
the developed JARVIS reference architecture ([Dör17]) is evaluated as a possible solution
to satisfy the requirements found in the analysis. Additionally the general usability
as a fully functional CD alternative is evaluated. Finally the new innovative features,
introduced and made possible by the reference architecture, are evaluated in two separate
contexts. The first context is the classical evaluation within the group of well-known CD
stakeholders like developers and DevOps members. In addition the second context consists
of more unusual stakeholder like security teams or enterprise architecture engineers.

3.3. Case Study Structure
To solve the problems listed in chapter 3.1, a suitable scientific research strategy needs
to be chosen. Suitable in this context means able to produce the desired information
and findings. Aligning this thesis objectives with common selection criteria for research
strategies [Yin94], the case study was chosen to be a fitting method. A case study is
able to generate requirements and the reasons for them, without having to control the
behavioral events in the environment. This thesis understands itself as an exploratory
case study in the field of continuous delivery.

To solve the challenges described in the previous sections, this thesis will be split into
three different smaller case studies. Each study is dedicated to its own challenge and
corresponding goals. This approach puts this work in line with the guidelines for case
studies in software development, proposed by [RH09]. Like detailed in chapter 2.4.1, a
case study needs an specified objective and clear boundaries. These specifications ensure
the singular focus of each study regarding their respective challenge. Therefore, before
the studies are presented in detail, the objectives and research questions need to be
outlined. In a next step, the case and context of each study is defined. To complete the
study design, the used methodology is explained.

3.4. Objectives and Research Questions
As stated by Runeson et al. [RH09], to successfully execute a case study, the definition
of an overall objective in advance is necessary. This objective states the expected
achievements and aim of the study. Later it is refined into research questions which are
fed directly into the methodology. In this instance, there are multiple objectives present,
which are derived directly from the goals of this thesis (see section 3.2).

o1 Make a qualitative assessment regarding JARVIS as substitution for established
continuous delivery solutions

o2 Make a qualitative assessment regarding the usability of JARVIS on a comprehensive
list on stakeholders

15

3. Case Study Design

Study 1:
JARVIS In A Productive

Environment

Study 2:
CD Stakeholder And

Requirements

Study 3:
JARVIS Usability

A Large Scale Industrial
Case Study Of Continuous

Delivery With JARVIS

Figure 3.1.: Decomposition of the thesis in sub-case studies

o3 Make a qualitative assessment if the experimental features of JARVIS solve common
continuous delivery problems

After extracting the overall objectives for this thesis from the defined challenges, the
concrete research questions, asked during the examination must be specified. Referring
to Runeson and Höst, these questions need to satisfy two major demands. They need to
be clearly and precisely formulated. Additionally they need to be relevant to the research
objectives. The quality of the research questions is essential for the upcoming success
of the study, since the questions are the basis for eventual interview questions [RH09]
and they are used to evaluate the findings. Each research question is formulated to help
achieve a specific objective. In the case of this study, this equates to three groups of
questions, each assigned to one objective. The first objective o1 is concerned with the
general functionality of JARVIS and its abilities to perform as a productive continuous
delivery solution. Therefore the questions are focused more on the technical aspect of the
use of JARVIS in a business environment. The following research questions are under
investigation for objective o1:

o1.R1 Is it possible to develop and integrate basic CD stages compile, test, package and
deploy?

16

3.5. Case Studies

o1.R2 Is the integration of new technologies possible? Which obstacles arise from this
integration?

o1.R3 Is it possible to model pipelines, extracted from real world scenarios?

o1.R4 How does JARVIS compare to existing CD solutions?

The next objective o2 is engaged in the usability aspect of JARVIS. This time the user
experience is the focused topic and how JARVIS deals with different stakeholder needs.
To be able to answer that question, it is necessary to find relevant stakeholders first and
work out their requirements in continuous delivery area second. After this is done, the
found requirements can be evaluated against the provided experience in JARVIS. Hence
the research questions for o2 are as follows:

o2.R1 What are the stakeholder of continuous delivery?

o2.R2 What requirements do these stakeholders have regarding continuous delivery?

o2.R3 What concepts does JARVIS incorporate to deal with these requirements?

During the development of JARVIS, multiple experimental features were introduced
with the goal to solve common continuous delivery problems. For example the automated
optimization of pipelines. The task now is the evaluation of those features and determining
if they add value to the CD domain. In accordance with that, the research questions for
o3 are listed below:

o3.R1 Can the experimental modelling features be mapped on common problems in
continuous delivery?

o3.R2 Do the experimental features solve or improve on those problems?

3.5. Case Studies
Based upon the work of the last two sections, the questions to be answered during this
study are now clear. The next step is putting them into a context in which they can be
dealt with and also formulating a concrete case to satisfy the requirements for a formal
case study [RH09]. With context and case specified, the design for the studies is then
finished. Next the context for the studies is introduced.

Since the objectives of this study are praxis oriented, the investigation in a real-live
context is necessary. Therefore the chosen context for this endeavor is the KISTERS
AG. Founded in 1963 and now with over 500 employees the company provides leading
software solutions in the energy, water and air quality market. With more than 80 active
software development projects, greater than 500 pipelines and over 110000 builds since
2013, KISTERS presents itself as an ideal partner for the evaluation of a continuous
delivery solution. In addition, the KISTERS AG is in an active cooperation with the

17

3. Case Study Design

Research Group Software Construction (SWC) of the RWTH Aachen, at which this thesis
is written. Varying from case to case the context is expanded to the whole organization
or reduced to the energy software business unit.

After introducing the continuous delivery solution JARVIS in chapter 2 and KISTERS
in this section, the context for the planned studies is specified. As a next step, the
individual cases per study have to be defined and a complete study can be formulated.
A case can generally be anything, which is a "contemporary phenomenon in its real-life
context" [Yin94]. In this instance the cases vary between studies. To get an overview of
the planned case studies and each of their goals, they are introduced on a study by study
level in the following sections.

3.5.1. Study 1: JARVIS in a Production Environment

UnitOfAnalysis:
JARVIS

Context: energy@KISTERS

Case: Project A

UnitOfAnalysis:
JARVIS

Context: energy@KISTERS

Case: Project B

UnitOfAnalysis:
JARVIS

Context: energy@KISTERS

Case: Project C

Figure 3.2.: First study, multiple holistic case, mini case studies

Shown in figure 3.2 the first case study is designed as an holistic [Yin94] case study
which is divided into smaller sub-studies. As mentioned, the context is the energy
software business unit of KISTERS, which will provide the appropriate software projects.
The currently active continuous delivery solution of these projects is then modelled in
JARVIS to evaluate its general CD capabilities. The overall goal of this study is the work

18

3.5. Case Studies

on objective o1 and the derived research questions o1.R1 - o1.R4. The projects are
classified as the cases for each of the studies, since they represent the environment, the
unit of analysis operates in. As unit of analysis the current implementation of JARVIS is
chosen. A unit of analysis is regarded as the data source for the study [RH09] and in
this instance the expected data includes integration results and upcoming integration
challenges, while modelling the CD for these projects. To finalize the design of this study,
a methodology needs to be defined. The first step is to make an appropriate choice
regarding the projects under investigation. For this a set of requirements is needed to
evaluate the candidates against. These requirements are as follows:

p.req.1 A project needs to be under active development. The active development is
needed to evaluate the CD capabilities of JARVIS in a "living" environment where
code is modified and requirements are changing

p.req.2 The selection of projects (or the components in a project) should use a set of
heterogeneous technologies. This requirement derives from the research question
o2.R2 and is needed to evaluate technology flexibility

p.req.3 To increase the relevance for KISTERS, the architecture of the chosen project
should reflect the current design decisions made by them. Thereby the abilities of
JARVIS can be tested with the latest software architectures

p.req.4 To be able to compare JARVIS CD approach, there needs to be a counterpart in
the current CD solution. Hence the project used in this case study needs to have a
pipeline in the current KISTERS continuous delivery solution

After the project selection, the corresponding pipelines are modelled in JARVIS. During
this process, JARVIS is expanded with new services and activities [Dör17]. Findings,
regarding the defined research questions, are documented and subsequently evaluated.
The modelling of the pipelines is performed by an external individual to keep the results
unbiased.

3.5.2. Study 2: CD Stakeholder and Requirements
The second study is classified as an embedded case study [Yin94] and illustrated in
3.3. The purpose of this study is the identification of possible CD stakeholder and their
requirements. Furthermore it is evaluated how JARVIS deals with these requirements.
Therefore the context is defined as the whole KISTERS organization. Especially stake-
holder which are not typical for CD requirements but do participate in some form in the
software development process are examined. Here the case is continuous delivery itself,
since the research questions o2.R1 and o2.R2 are the primary target for this part. The
unit(s) of analysis are the individual employees of the KISTERS AG and the expected
data they deliver are identified stakeholders, their CD requirements and the way JARVIS
satisfies these requirements (or not).

To answer the research questions, associated with this study, the methodology consists
of two parts. First there will be an investigation into the KISTERS business structure to

19

3. Case Study Design

UnitOfAnalysis:
Employee A

UnitOfAnalysis:
Employee B

UnitOfAnalysis:
Employee C

Case: Continuous Delivery

Context: all@KISTERS

Figure 3.3.: Second study, embedded case study on general employee base

identify departments and roles, which may have interests or requirements in continuous
delivery. This results in a set of relevant stakeholders, which form the base of the following
analysis. The next step is the gathering of requirements for this group of stakeholder.
For this, qualitative interviews are performed. As basis for these interviews multiple
questionnaires will be developed. Each specific for a certain type of stakeholder (e.g.
active in software development or member in DevOps team). The interviews are recorded
and afterwards transcribed. The final transcript is then given to the participant to check
for correction and additional input. These results are handled and published anonymous,
to ensure no consequences for the participants if existing internal problems were discussed.
Finally the found requirements are compared to the functionality of JARVIS to make an
qualitative statement regarding its overall usability as a continuous delivery system.

3.5.3. Study 3: JARVIS Innovations

This last study is again an embedded study and based loosely on the requirements of
study 2. Figure 3.4 illustrates the structure of case study three. The key difference to the
previous is the chosen case (JARVIS Modelling approaches) and of course the underlying
research questions o3.R1 and o3.R2. This study is centered around the innovative ways
JARVIS provides, to work with delivery models. These include the process-oriented

20

3.6. Summary

UnitOfAnalysis:
Stakeholder A

UnitOfAnalysis:
Stakeholder B

UnitOfAnalysis:
Stakeholder C

Case: CD Modelling

Context: all@KISTERS

Figure 3.4.: Third study, embedded case study with stakeholder

modelling with BPMN and DSL, as well as a new modelling paradigm. This so called
state-based approach was developed during this thesis and shall be also evaluated during
this study. The methodology chosen was an experiment with expert CD users. These
user will model an example delivery solution in all three ways. Their feedback represents
the findings and results of this case study. It is used to make an qualitative assessment
of the modelling capabilities of JARVIS.

3.6. Summary
This chapter provided the concrete problem statement, as well as the overall design of
the superordinate case study. After stating the challenges, this thesis aims to solve (3.1),
the decisions to execute three individual studies was formulated. In the first case study
the capabilities of JARVIS in a productive environment are tested. This resulted in
insights about the real world use of JARVIS. Additionally a statement regarding the
possibility to use JARVIS as a replacement for existing delivery systems, will be possible.
The results are presented in form of a review by the author of this study. For the first
part of the second case study, the domain was switched to continuous delivery in general.
Stakeholders for continuous delivery were gathered and their requirements evaluated. This
resulted in a comprehensive list of stakeholders and their needs concerning continuous
delivery. The third case study investigated a single aspect of JARVIS in detail. Since
modelling is one of the key features in a delivery system, the methods present in JARVIS
were evaluated. The results are given in form of a review.

21

4. Related Work

Contents

4.1. Case Study: Introducing Continuous Delivery of Mobile Apps in a Corporate
Environment . 23

4.2. Stakeholder Perceptions of the Adoption of Continuous Integration . . . 24

The previous chapter introduced the objectives and the associated research goals for this
thesis. This chapter describes the current state of research, related to those research
questions. In the following, multiple studies in the context of continuous delivery
are presented. To our knowledge, there is currently no other case study, which is
directly targeted towards the research goals defined in chapter 3.4. Additionally no
other evaluation of the JARVIS continuous delivery reference architecture is present.
Nevertheless the presented studies can provide implicit information and insights towards
the goals of this thesis.

4.1. Case Study: Introducing Continuous Delivery of Mobile
Apps in a Corporate Environment

The first case study [Kle+15] was conducted by researchers from the TU Munich and
about their developed release management workflow "Rugby". This process was introduced
in the year 2014 and represents a lightweight process model for release management. It
was designed to support SCRUM based, agile development. One of the goals of Rugby
was the ability to ship an increased number of releases and handle feedback reports from
customers. All of this with the focus on mobile applications like iOS and Android apps.
Because of its lightweight design, it is also applicable for collaborative work in multiple
teams. The overall goal of the study was the evaluation of an extended Rugby workflow.
Rugby was modified for better supporting a continuous delivery approach with mobile
applications. This evaluation was done in cooperation with Capgemini SE. Capgemini
[Cap] is a consulting and IT service provider with multiple branches across the world.
During the study eight of their mobile apps project were managed by the extended Rugby
workflow and the findings documented. The chosen method to collect data was to survey
eight project managers by using informal interviews. Interesting for the current case
study are the implicitly formulated requirements towards continuous delivery and delivery
systems during the work of [Kle+15]. This is especially important since they represent
requirements in the context of mobile application development, which represents a major
share of todays development effort. These requirements were extracted and are presented

23

4. Related Work

in the following.

Feedback Feedback in the context of this study means the feedback which is given by
the customer regarding the application. This includes for example feature requests
and bug reports. This kind of feedback was prioritized very highly during the case
study. A continuous delivery solution must provide mechanics and concepts to help
the developers cope with the increased amount of feedback. For example receiving
crash reports and creating automated tickets for them.

Adaptibility It was made obvious during the study that the continuous delivery solution
must be highly adaptable towards new and changing process activities.

Integrated Tooling The Rugby process has identified several essential tools which need to
be integrated/available in a continuous delivery solution. This includes a ticketing
system, a version control system and of course the continuous integration and
delivery system.

Flexible In the context of several projects, the requirement for technology flexibility was
identified. Since the applications were partly cross-platform projects, this must be
supported by the continuous delivery solution (process as well as system).

Testing The need for automated testing during the continuous delivery process was
identified.

Privacy Data privacy is always a concern for software developers. Therefore the con-
tinuous delivery system must be able to be hosted on premise and not in the
cloud.

Distribution The development of some application was outsourced to offshore locations
to reduce costs. This resulted in the need to execute different process activities in
different physical location, which in turn requires the support of the continuous
delivery solution.

Manual Steps It was identified that the manual execution of process steps is occasionally
necessary. Hence the continuous delivery system must provide the ability to let the
user execute steps manually.

Branching Support Capgemini is utilizing multiple different branches in their software
development projects. A continuous delivery system should have the functions to
support the work with multiple branches in one project.

4.2. Stakeholder Perceptions of the Adoption of Continuous
Integration

This section introduces a case study [LPA15] which was executed by Laukkanen, Paa-
sivaara, and Arvonen in cooperation with the communications company Ericsson [Eri].

24

4.2. Stakeholder Perceptions of the Adoption of Continuous Integration

Like with the previous case study, the focus of this work was not to gather requirements
in the field of continuous delivery. The original focus was to adopt continuous integration
(and delivery) in a productive scenario and investigate the perception of this adoption.
Nevertheless it will be possible to extract continuous delivery requirements from the
stakeholder feedback and use it as foundation for this thesis. The case of this study was
a single XaaS platform with the related set of services. During the course of this case
study, 27 stakeholders were interviews and asked to provide feedback, related to the
introduction of continuous delivery in the project. Out of the four research questions
formulated, the feedback to RQ1 and RQ2 was used to extract relevant requirements
for this work. The research questions are listed below.

RQ1 [LPA15] What actions were done to adopt continuous integration? We asked this
question to understand the current perceptions of the adoption.

RQ2 [LPA15] What challenges were faced when adopting continuous integration? We
asked this question to understand what kind of challenges had occurred during the
adoption.

In the following the requirements, extracted from the feedback of the stakeholders, are
presented.

Automated Testing It is required for the continuous delivery solution to enable auto-
mated testing for the software artifacts.

Automated Deployment It is required for the continuous delivery solution to enable
automated deployment of the artifacts to different systems.

Distribution The development of this project was performed in multiple locations. A
continuous delivery solution must be able to handle distributed teams and process
activities.

Reduced Knowledge The development of automated tests was assessed as difficult and
much knowledge is needed to perform it. A continuous delivery solution can support
the user during the development of such tests.

Hidden Error During the adoption of continuous delivery the participants had problems
deducting the source of error during builds. It was sometimes unclear if the problem
was caused by failing test, problems with the testing framework or the delivery
system itself. The continuous delivery system must provide the information about
the source of an error in a clear way.

Speed The speed (especially for automated test execution) was assessed as important.
A continuous delivery system must provide its functionality as fast as possible to
increase productivity.

25

5. Case Study 1: JARVIS In A Production
Environment

Contents

5.1. Study Design And Execution . 27
5.2. KISTERS Reference Project . 29
5.3. Findings o1.R1 . 31

5.3.1. Compilation of source code 31
5.3.2. Testing the artifacts . 33
5.3.3. Packaging of artifacts . 34
5.3.4. Deployment of artifacts . 35

5.4. Findings o1.R2 . 35
5.5. Findings o1.R3 . 36
5.6. Findings o1.R4 . 40
5.7. Classification of activity services . 41
5.8. Composition of activities . 43
5.9. Discussion and Summary . 45

5.9.1. Answers to Research Questions 45
5.9.2. Observations . 46
5.9.3. Threads to Validity . 47

As detailed in chapter 3, this thesis is divided into three individual case studies. This
chapter now describes the execution and results of the first study. The overall goal was
the evaluation of JARVIS regarding its general usability and performance in a productive
environment. Additionally JARVIS is examined and assessed as a potential replacement
continuous delivery system for the KISTERS AG. First the research goals and the study
design is recapitulated in the next chapter. After that, the KISTERS reference project
and its meaning for this thesis is explained. Following this, the results of the study are
presented and the chapter then concludes with an overall evaluation and summary.

5.1. Study Design And Execution
Before the results are presented in the next chapter, a short recap regarding the research
questions and the case study design is needed. Additionally this section describes the
methods used during this study. As described in chapter 3 the research questions
associated with this study are as follows:

o1.R1 Is it possible to develop and integrate basic CD stages compile, test, package and
deploy?

27

5. Case Study 1: JARVIS In A Production Environment

o1.R2 Is the integration of new technologies possible? Which obstacles arise from this
integration?

o1.R3 Is it possible to model pipelines, extracted from real world scenarios?

o1.R4 How does JARVIS compare to existing CD solutions?

These questions are examined in the context of a cooperation with the KISTERS AG.
This partner was introduced in chapter 3. The overall design of the case study is shown
in figure 5.1.

UnitOfAnalysis:
JARVIS

Context: energy@KISTERS

Case: Project A

UnitOfAnalysis:
JARVIS

Context: energy@KISTERS

Case: Project B

UnitOfAnalysis:
JARVIS

Context: energy@KISTERS

Case: Project C

Figure 5.1.: Design of the first case study regarding JARVIS general abilities

To generate the required insights, the following approach was chosen: A subset of
relevant projects was selected and their respective pipelines modelled in JARVIS. What
qualifies as a relevant project is explained in chapters 3.5.1 and 5.2. The modelling
is performed by an external researcher to keep the results unbiased, since no previous
knowledge concerning the projects is present. The insights gained during this study can
be divided into two groups. Firstly insights regarding the modelling aspect of JARVIS and
secondly insights concerning the expandability (see 2.3) through development. During the
modelling it was permitted to change the projects in some small aspects to accommodate
for JARVIS specific requirements. But two rules were followed throughout the whole

28

5.2. KISTERS Reference Project

process. The resulting artifacts must be equivalent in function to the existing ones. In
addition the project modifications were limited to changes in build related resources (e.g.
adapting the POM.xml file for a maven project). With these boundaries in place, the
next step is the selection of projects. This is described in the next section.

5.2. KISTERS Reference Project
As mentioned before, a set of projects is needed to serve as cases for the active case study
(see 5.1). These projects must adhere to the four project selection criteria, defined in
chapter 3.5.1. Since modelling the CD for almost 100 software projects was unfeasible
during this thesis, an adequate clustering needed to be performed. Luckily the KISTERS
AG utilizes a so called reference project. This project is used to document architectural
designs, best practices and technology choices. It is also used as a template for future
projects. Because of this properties, the reference project was the ideal candidate for the
case study. By modelling the pipeline for this project, well over 60 percent of all software
projects of the KISTERS energy business unit could be modelled.

Before the reference project, and its CD solution, is introduced in more detail, the
project needs to be compared to the defined requirements (see 3.5.1) for project selection.

p.req.1 This requirement specifies that the project needs to be under active development.
The reference project is constantly under development as the used technologies
evolve and design decisions change. The goal for the reference project is always to
represent the latest choices made by the company regarding software development.
Hence this, the requirement is satisfied

p.req.2 This requirement demands a heterogeneous technology set for the project. The
reference project incorporates almost all technology decisions made by the KISTERS
AG and is therefore optimal for the current case study. The requirement is satisfied

p.req.3 This requirement focuses on the relevance for KISTERS, by choosing projects
with current architecture design decisions. As mentioned already, the reference
project represents the design state for many current and future projects. Therefore
the requirement is satisfied

p.req.4 This requirements demands an already existing pipeline or CD approach for the
selected projects. Since JARVIS needs a reference to compare to, an in place CD
approach is needed. The reference projects does not only define the architectural as
well as the technology decisions, it also is established as reference pipeline model for
the whole business unit. This results in a detailed and comprehensive CD solution
to use as a comparison. The requirement is thereby satisfied

After matching the specified requirements, it is time to present the reference project in
more detail. The reference project is a web-application and utilizes a classic client-server
architecture, which is shown in figure 5.2. To reduce the complexity during installation,

29

5. Case Study 1: JARVIS In A Production Environment

the two components are then bundled into a single distribution package. By that, only
one component needs to be rolled out. To further simplify the installation process, an
installer is used to install the distribution on the target machine. The creation of the the
installer is done via ChefIO [Che].

Frontend

Distribution

Backend

Figure 5.2.: Reference project pipelines

The client component is an Angular application, while the backend is written in
Java Spring Boot. The project is build via Apache maven [Mav] incorporates unit-,
integration- and system-tests. Currently the CD solution for the reference project is split
into three individual pipelines. The first pipeline builds the client component as well as
the distribution (the existence of the backend component is expected). Then the tests are
executed and the distribution is installed on a demo-system. The second pipeline functions
analogous to the first but builds the backend component. Lastly the third pipelines
expects the existence of client and backend artifacts and only builds the distribution
package (including tests and installation on the demo system). Each pipeline consists of
multiple stages, which are composed of different activities (e.g. maven commands). On
average each pipeline has around 14 stages with 1-5 individual commands per stage. The
content of each step is described in the next section in more detail. Another important
aspect of the CD solution is the chosen CD system itself and the way pipelines are
modelled. In this case Jenkins CI [Jen] is chosen as a CD solution and a custom JobDSL
was developed. The JobDSL works as follows. The user models a pipeline as text in the
groovy language. For that certain skills are predefined (called traits). With these traits
the whole pipeline is modelled and put into a generator. The generator then generates
XML files which are used by Jenkins CI to create the pipelines. A trait can be a single
command (e.g. git checkout action) or a composition of commands. Of course each
command must be executable through Jenkins CI. By having this abstraction between
the user and the CD system, KISTERS aims to gain multiple benefits. One benefit is the
composition of multiple commands to a an entirely new one. This reduces the complexity
of the models and increases the overall modelling speed. Another benefit is the reduced
knowledge the user needs to know about the CD system itself. Everything the JobDSL
offers is guaranteed to be valid for Jenkins CI and unnecessary functions are hidden.
The last benefit is the possibility to guarantee certain governance rules while creating

30

5.3. Findings o1.R1

releases and artifacts. An example for this would be the dependency check, which is
always executed when source code is getting compiled. This is encoded in the DSL as a
composed trait and can not be deactivated. The full pipeline for the backend component
is shown in figure 5.3. After this section introduced the reference project and establishes
its relevance for this case study, the next section presents the findings related to the first
research question o1.R1.

Figure 5.3.: Pipeline for the backend component of the reference project

5.3. Findings o1.R1
This section is about the first research question and the basic functionality of JARVIS.
The research question specifies four basic functions JARVIS needs to provide to be able
to be used in the productive context of the KISTERS AG. In the next sections the
current manifestations of those functions in Jenkins CI is detailed and the corresponding
implementation in JARVIS is presented. By that, the research question can be answered
and the resulting activities can be used as a basis for the next question o1.R2.

5.3.1. Compilation of source code
The commit-stage is the first stage of each reference project pipeline. It performs a
git-checkout and multiple maven commands to create an initial artifact. As the name
suggests, the stage is triggered by a commit on the respective project repository. Next
the commands are explained one by one and the realization in JARVIS is presented.

git:checkout This command is used to checkout the source code and get the workspace
ready. The tooling used for this is the git version control system. Since this
is a very basic function for a CD system, an activity providing the git-checkout
command was already included in the JARVIS reference architecture. Nevertheless
one modification was necessary since the reference project has a complex versioning
scheme. The existing checkout command was expanded in regards to publishing
more git information each time a checkout was performed. One of those information
was the commit-ID and the shorten git commit hash. These information were later
used for artifact naming and resolving and are explained in more detail in the
upcoming command descriptions.

cd-helper:parse version The cd-helper plugin is a custom maven plugin, KISTERS
developed to fullfil their versioning requirements. Used with the parse version goal,
it scans the (maven-)project regarding its versions. It then increases these versions
to the next major release version. This next version includes the current time stamp,

31

5. Case Study 1: JARVIS In A Production Environment

Figure 5.4.: The commit stage of the reference project

as well as the current git commit-hash. The git-hash (and timestamp) are provided
by Jenkins CI through a custom groovy script which is executed before the stage
starts. Since JARVIS does not provide these information, as previously mentioned,
the git-checkout activity was modified to do so. To realize the cd-helper function a
new service with the corresponding activity needed to be developed. The activity
was called "VersioningCmd" and the service "maven-service". As input artifacts,
this activity received the checkout repository and the git meta-information.

cd-helper:write info Again this command is provided by the custom KISTERS maven
plugin. Its task is to write the calculated artifact version (and other meta informa-
tion like the artifact name) into a property file, which in turn is injected into the
build environment of Jenkins CI. From then on, these information is available to
other commands via environment variables. In JARVIS this function was included
in a new activity that received the workspace as input artifact and produced the
property file as output. The activity was called "ProjectInfoCmd" and located in
the maven-service.

maven:install This command is a basic maven goal to compile the project sources. In
JARVIS a new transformation activity with the name "install" was developed. Since
this is again a maven activity is was put into the maven-service. For the naming
and versioning of the artifacts, the information from the "ProjectInfoCmd" are
used.

32

5.3. Findings o1.R1

maven:deploy Analogous to the last command this is a maven goal. Its purpose it to
publish the build artifact to the nexus for subsequent stages to retrieve (as well as
to archive the artifact for documentation purposes). To provide this functionality
an activity named "deploy" was developed in the maven service.

maven:dependency check The dependency-check is a mandatory command, every time
source get compiled at the KISTERS AG. It checks the external dependencies
defined in the project POM.xml for eventually existing security vulnerabilities and
exploits. This check is mandatory for KISTERS to keep their ISO certification.
Hence it must be executed and can not be declared optional. Because of the
importance of this command, an implementation in JARVIS must be possible. For
this an assessment activity was developed and located in the maven-service. Like
the maven activities before, the activity was designed to be able to execute terminal
commands on the host system.

5.3.2. Testing the artifacts

Testing is an important aspect in software development. Therefore the KISTERS reference
pipeline includes the stages to do so. Because the testing is spread over multiple stages
and there are many very similar actions with only minor differences, not all actions are
listed here. In the following the most relevant testing commands and their counterpart
in JARVIS are explained.

unit-tests Java unit tests are not modelled explicitly in the reference pipeline. They are
executed together with the maven install command. In the JARVIS environment
this was implemented analogously.

acceptance-tests Before the acceptance tests can be executed, the current version of
the reference project needs to be installed on a dedicated system. The command
necessary for this is introduced in section 5.3.4. The testing command itself
is performed via the maven verify goal. In JARVIS this is implemented as an
assessment in the maven-service.

chef-unit-tests The application is packaged and shipped in form of an installer. This is
created with the help of the ChefIO technology, which results in the development
of a chef cookbook. To ensure the correct functionality this cookbooks testing is
recommended. For that, unit-tests were implemented and are executed during the
pipeline run. In Jenkins this was realized with a new service (called chef-service)
and a new activity. Like the activities providing maven functions, this was designed
as an activity that executes chef commands in the runtime-environment.

chef-integration-test Next to unit tests, the chef cookbook is tested via integration tests.
Like the acceptance-tests from before, this requires an external system where the
cookbook is deployed to. The deployment command in general is explained in
5.3.4. Analogous to the chef-unit tests another assessment activity was developed

33

5. Case Study 1: JARVIS In A Production Environment

in JARVIS that received the cookbook as input and published the number of failing
tests.

5.3.3. Packaging of artifacts

As mentioned in the previous sections, the backend and client are packaged into a
distribution package and then packaged again in an installer. The distribution packaging
is again realized by maven and the installer is created with the help of the ChefIO
technology. To model the reference project pipeline the following commands were used.

maven:install As detailed before, the distribution package consists of backend and client
component. It is modelled as maven project with an dedicated POM.xml file.
Because of this, the maven command, to build the distribution, is very similar
to the maven install command above. Only difference is the use of the meta-
information that is produced by the cd-helper plugin. The information is used to
resolve the correct client and backend artifacts from the nexus repository and name
the distribution artifact correctly. In JARVIS the realization is also done in the
same fashion. A transformation activity was implemented, which uses the property
file from the "ProjectInfoCmd" to receive the required information. Since this is
again a maven based activity, it was integrated into the maven-service.

chef-foodcritic Since the Chef cookbook is essentially infrastructure as code, certain
coding guideline are useful. The KISTERS AG chose to govern these by using the
Chef "foodcritic" function before releasing the cookbook itself. It checks if certain
style-rules are followed. The JARVIS counterpart is an activity with the name
"chef-foodcritic". Because the activity is promoting an artifact (in this case the chef
cookbook), it was modelled as an assessment. The location of this command is the
chef-service.

chef-rubocop This command is essentially the same as the previous foodcritic command.
The major difference are the rules and styles that are checked. As above, a JARVIS
activity was developed and introduced into the chef-service (again the assessment
type was chosen).

rpm/msi-installer The rollout of the reference project is done by an installer, which is
created with ChefIO. For this, the rpm/msi-installer commands are present in the
reference pipeline. These commands execute a custom bash script (with ChefIO
omnibus commands) on a dedicated external system which represents the target
environment for the installer. This was mirrored in JARVIS with an transformation
activity. To be able to connect to the remote system, the chef-service was refactored
to an agent based services. The agent was run on the external system, while
the chef-service provided the interface for the JARVIS infrastructure. The design
pattern for this kind of service is presented in more detail in section 5.7.

34

5.4. Findings o1.R2

5.3.4. Deployment of artifacts
The last set of actions that are required by the research question o1.R1 are deployment
actions. In the current reference pipeline these were used to transfer the final installer-
artifact to the target system and execute the installation process. In the reference
pipeline this is done by executing a generic bash script through Jenkins. Since there is
no significant difference between deploying to the acceptance-test system or to the demo
system, only the deployment to the acceptance system is presented in detail.

deployment-acceptance As already mentioned, the application needs to be installed on
a remote system to execute the acceptance tests. In Jenkins CI this is realized via a
custom script that is executed in a generic bash step. Since the script is tailor made
for the remote system and the reference project, replacing it by an activity was not
sensible. Instead a new service was introduced and named "deployment-service".
Again an activity was developed, but this time with a more generic approach.
The activity takes the already existing bash-script and executes it in the correct
environment. By that, already existing logic and knowledge was reduces and the
implementation time decreased significantly. The activity was classified as an
transformation.

In this section the findings regarding the first research question were introduced. All
required actions were successfully implemented, integrated in JARVIS and performed as
expected. All in all 21 new activities and 4 new services were developed (see table 5.1)
to represent the reference project pipeline. The development process was straightforward
but revealed multiple aspects of JARVIS that need further exploration. One of these
aspects is the identification of service classes. All developed activities can be divided
into three classes and corresponding design patterns for these classes were introduced.
These patterns are further explored in section 5.7. To sum up this section, the research
question o1.R1 can be considered answered. JARVIS can provide all necessary activities
to model a productive pipeline. In the next section the integration of new technologies is
explored in detail.

5.4. Findings o1.R2
The second research question is concerned with the integration of new technologies in
JARVIS. Especially eventually occurring problems or challenges are focused. The findings
regarding this research question were produced during the development of new activities
in the last section. In sum, three new major technologies needed to be integrated, to
model the pipeline for the reference project. The first new technology was Apache
maven. It is used to compile the Java source code and execute plugins for versioning and
code quality. During the creation of JARVIS, a maven-service with basic activities was
already developed and used. Unfortunately this service could not be utilized because of
compatibility problems. It was using an integrated library to provide maven commands
in JARVIS. Because it was integrated, the Java version used, was the same as the Java

35

5. Case Study 1: JARVIS In A Production Environment

version the maven-service was executed in. In this instance this was Oracle Java 8. Since
the reference project was developed in Oracle Java 11 (and used version 11 features), a
compilation was not possible. One solution to this problem would have been an upgrade
of the maven-service to version 11. This was unfeasible, because the whole JARVIS
reference implementation would have had to be updated. To reduce time and effort
another solution was chosen. The maven service was redeveloped as an environment
service (see section 5.7 for service classes). The new maven-service can now use the Java
version of the execution environment and compile the reference project successfully. The
consequences following this problem were the identification of a new best practice:

Always separate the technology of the JARVIS activity-service from the artifact technol-
ogy. It should always be possible to change/switch the artifact version/technology
without rewriting the whole service.

The second technology integrated was ChefIO to create the installer. This technology
was not yet existing in the JARVIS eco-system. Therefore a new service was developed and
the required activities integrated. With this, another type of service was needed. Because
the installer needs multiple very specific environments to be build in, the utilization of
external systems was necessary. Hence a service was developed as an agent-based service.
More details about this type is provided in section 5.7. The last new technology was not
a technology in the classical sense. The deployment of artifacts to test- and demo-systems
was not yet present in JARVIS. Again a new service was created, which uses SSH access
to the target systems to execute scripts on those. These scripts then provisioned the
machine. Because the logic was encapsulated in the scripts, the size of the activity was
very small and the reusability of the service is very high.

Except the above mentioned problems, the integration of new technologies was possible
without major complications. Thanks to the micro-service architecture, the development
was only limited to one service at a time and no compatibility problems between services
occurred. In general the answer to the research question o1.R2 is as follows. The
technology integration concept of JARVIS is suitable for productive environments if
certain rules (see description above) are adhered to. By combining the findings from
o1.R1 and o1.R2, the prerequisite for the next research question is present. After all
necessary technologies and activities were introduced, the next relevant aspect is pipeline
modelling. This investigation is performed in the next section.

5.5. Findings o1.R3
After the basic building blocks for the reference pipeline were developed and integrated
into JARVIS, the next step is modelling the pipeline and answering research question
o1.R3. As a basis for this evaluation, a more concrete definition of the research question
is needed. Hereinafter, the criteria, which are under examination during this section, are
defined. They are directly derived from requirements of the reference project towards
the current CD solution (in this case Jenkins CI).

36

5.5. Findings o1.R3

c1:Artifact Versioning The current pipeline utilizes a complex versioning (and naming)
scheme. This was already addressed in section 5.3 during the implementation of
new activities. The versioning is used to provide artifacts for different pipelines
and stages. Artifacts are not transferred directly between those, but resolved by
an unique version identifier that is calculated every time the pipeline is executed.
Since this is also a pipeline modelling concern, an investigation regarding JARVIS
abilities to provide this function is needed.

c2:Knowledge Needed This aspect is concerned with the knowledge needed, to model
the pipeline. This includes knowledge about the CD system, as well as process and
implementation knowledge. Among other, the following questions will be answered.
Is it possible to model the reference project with the same (less/more) amount of
knowledge, compared to the original pipeline? Additionally, the modelling support
by the CD system is compared between the original and JARVIS.

c3:Modelling Support After discussing the general knowledge needed to model the
delivery process, this criteria deals with the support through the delivery system
itself. This includes functions which reduce the process knowledge and overall helps
to create the model for the reference project.

c4:Model Size An important aspect, when modelling pipelines, is the maintainability
and complexity of their underlying delivery models. This is directly influenced by
the size of the model itself. Hence the overall expressiveness for JARVIS models
needs to be accessed and put into context. In this instance this is done by comparing
lines of code (loc) between the JobDSL model and the new JARVIS model.

c5:Completeness As described in section 2.3, the delivery model configures the delivery
system. This is done through a modelling language or other concept. In the
following the modelling concept of JARVIS is evaluated regarding its functional
completeness. Can the building blocks, developed during section 5.3, be used to
produce the desired artifacts? Is it possible to model required dependencies between
steps and stages?

c6:Versioning of models In the current reference project CD solution, the models are
encoded in a custom JobDSL developed by the KISTERS AG. These JobDSL-files
are located in the project repositories and are under git versioning control. This is
done to ensure traceability of changes and allow eventual rollbacks. Since this is
an essential requirement in the KISTERS AG environment, this function is also
investigated in the JARVIS representation of the reference project pipeline.

In the next part, the refined research questions are investigated and answered in the
context of JARVIS and this study. These findings were generated during the modelling
process of the KISTERS reference project CD solution.

c1 In the original pipeline, the versioning was needed to address artifacts in the nexus
and transfer them between building steps. Additionally the versioning was used for

37

5. Case Study 1: JARVIS In A Production Environment

naming the releases. In JARVIS the versioning could be modelled as an individual
activity in the beginning of the pipeline. This activity calculated the required
information and provided those as an artifact to the rest of the pipeline. The
remaining activities can then use this information to name the artifacts accordingly.
The addressing and resolving functionality was not needed in JARVIS. In JARVIS
each activity declares its output artifacts and these can be referenced by other
activities directly through the model. Furthermore, the whole reference project
pipeline was modelled in one pipeline and not, as originally done, in three individual
pipelines. By that, no artifacts needed to be transferred between pipelines. All
in all JARVIS was able to model the versioning scheme and provide the required
functionality.

c2 This question investigates the knowledge needed, to encode the delivery model. In
the original pipeline, the user needs to know which operations he wants to perform
and additionally the sequence of those. Since the JobDSL is used, each operation
can be configured as needed for the scenario. Furthermore, every command in the
JobDSL encodes multiple Jenkins CI actions. For example the commit command
encapsulates the maven compile and the dependency-check command. The user
does not know what is included in a JobDSL command. Only the predefined
composition commands need to be known. In JARVIS this was not the case.
Because no composition or template mechanism exists, all actions need to be known
by the user to create the model. A possible solution for this problem is presented in
section 5.8. Due to the existence of the smart planner, the user was not expected to
know about the command sequence itself. In the next criteria the smart planning
function is explored in more detail.

c3 As hinted in c2, the smart planner was used to model the reference project pipeline in
JARVIS. It can resolve step dependencies on its own and deduce the correct sequence
of activities. The user only needs to specify the activities which should be executed
and the command graph is created by the system. In theory this feature would
thereby significantly reduce the knowledge needed by the user. Unfortunately the
smart planning is flawed with a conceptual problem. The current implementation is
only able to function on models where no activity is used twice. Since the reference
project pipeline reuses multiple activities (e.g. git checkout activities), the smart
planner was not able to plan the pipeline automatically. Why the smart planning is
not able to work with reused activities and how this can be avoided is explained in
chapter 7.4. Because the smart planning was not working as intended, the support
of the CD system while modelling the pipeline was very limited.

c4 To keep the complexity low and the maintainability high, a small pipeline model is
beneficial. While modelling the reference project pipeline, the JARVIS model was
357 lines of code long. Compared with the original 145 lines of code JobDSL file for
Jenkins, the discrepancy is significant. This is mainly due to the lacking template
mechanism in JARVIS. One command in the JobDSL can encode unlimited Jenkins
actions with very few lines of code. This limitation in JARVIS was already discussed

38

5.5. Findings o1.R3

in c2 and a concept to solve this is presented in section 5.8. In the current state,
the JARVIS models are, compared with existing solutions, very verbose.

c5 While the last criteria was concerned with the pure size of the JARVIS model, now
the overall expressiveness of is under investigation. For the most part, all activities
needed, could be modelled and connected into a pipeline, which produces the
desired artifacts. Nevertheless, two problems were made obvious during modelling.
On principle, JARVIS expects an artifact flow between activities. Dependencies
between activities without artifacts and only based on timing are not considered.
This resulted in a workaround to model time dependent steps. Dummy artifacts
needed to be introduced and modelled as input dependencies for the dependant
activity. These dummy artifacts have no function other than allowing to execute
two activities in a defined sequence. The second problem originated while modelling
quality gates. It was not possible to model stages that consists only of quality gates.
This again was caused by the missing artifact flow between the quality gates and
the fact that JARVIS automatically integrates quality gates in the pipeline. It was
not possible for JARVIS to determine the correct position in the activity graph
without artifacts between the quality gates. To solve this problem the modelling
was adapted. Quality gates had to be integrated into stages with transformation
activities, which enabled the artifact flow.

c6 JARVIS utilizes an abstraction between internal and external model. Because of this,
it is possible to model pipelines in manifold ways. In the reference architecture,
modelling is possible in declarative text form (YAML files with custom DSL). This
enables the possibility to put the models under version control and enable the
benefits accompanied with this (e.g. traceability).

Figure 5.5.: KISTERS reference project pipeline in JARVIS

In this section, the findings related to research question o1.R3 are presented. All
in all the modelling of the reference pipeline exposed some design oversights in the
JARVIS modelling concept. Mostly due to the missing template mechanism and the
smart planner problems. Despite these difficulties, it was possible to model the reference

39

5. Case Study 1: JARVIS In A Production Environment

project pipeline and produce a functional equivalent artifact in JARVIS (equivalent to
the original pipeline artifact). In the next section the research question o1.R4 compares
JARVIS with Jenkins CI.

5.6. Findings o1.R4
The last research question closes the first case study by drawing a comparison between
JARVIS and an established CD system. In this case, Jenkins CI is chosen, since it is the
delivery system for the KISTERS reference project. As handled with research question
o1.R3, the current question needs to be further specified. The following aspects will be
compared.

Performance Speed and performance are key characteristics for a delivery system. Un-
fortunately comparing two different systems with regard to these traits is not trivial.
Not only does the modelling of the pipelines influence the speed, the machines used
to host the system do as well. Because of this, a fair comparison between Jenkins
CI and JARVIS, regarding build and run times, would be very hard to accomplish,
if not impossible. Nevertheless the two solutions can be compared regarding aspects
that enable them to increase their performance and achieve better build speeds.
Jenkins CI, as well as JARVIS, do offer mechanisms to scale their system horizon-
tally. In Jenkins CI additional build slaves can be added to increase the number of
parallel pipeline runs. In JARVIS, a similar feature is present. Instead of adding
general purpose capacity, JARVIS lets you scale up individual activities. This is
achieved through deploying a second instance of the corresponding activity-service.
By that, the distribution of resources is more granular and targeted. Another
aspect, influencing performance, is the pipeline modelling. Especially the degree
of tasks executed in parallel can decrease the runtime of a pipeline greatly. After
fixing the problem, described in section 5.5, the smart planner was able to plan
and optimize the reference project pipeline. This resulted in a highly optimized
pipeline which utilizes a high degree of parallel activities. Jenkins CI on the other
hand does not provide this kind of optimization function. Therefore the original
pipeline relied more on sequential steps. The modelled reference project pipeline is
shown in figure 5.5. In summary, the performance aspects of JARVIS are as good,
if not better, than those of the compared CD system. Especially the automated
optimization feature for pipelines, provides hugh benefits.

Information Needs The display of information is important for most software systems.
This also holds true for continuous delivery systems. In the following, the informa-
tion provided by Jenkins CI and JARVIS is compared and the information needs
satisfied, evaluated. Jenkins CI does offer the user a wide range of information,
including a graphical representation of the pipeline and build trends. Additionally,
the pipelines can be modified via GUI. In JARVIS the pipelines are displayed as
an activity graph. Furthermore, statistics for each pipeline are calculated and
presented. Modifying or creating pipelines is currently only possible by directly

40

5.7. Classification of activity services

working with the model file. A current shortcoming for JARVIS is the presentation
of test results. While Jenkins CI, thanks to external plugins, displays test results
in a very comprehensive way, the visualization in JARVIS is reduced only to the
number of passed/failed tests. No graphical aid (like time graph or bar chart) is
used to help the user understand the information more easily. One advantage of
JARVIS, regarding the display of information, is again the underlying micro-service
architecture. Here especially the view-service, which collects and published all
generated information of the infrastructure. By leveraging this fact, adding new
information to the UI component is as simple as developing a new REST-API. The
operator has full control which information should be published and provided to
the user.

During the work on research question o1.R1-o1.R4 two findings were discovered,
which resulted in a further investigation during this case study. These findings, as well
as the developed concepts, are presented in the next sections.

5.7. Classification of activity services

As discovered in section 5.3, during the development of new activities, many activities/ser-
vices function in a similar way. Hereby three classes of activity-services were identified.
To reduce the implementation effort and increase the overall quality, design patterns
[FF06] for these three types were developed. In this section, the service types are detailed
and the underlying design pattern presented.

The first identified service type is named "remote-service". Its purpose is to provide
activities with the help of one or multiple external system(s). As shown in figure 5.6,
the service is split into two sub-services, which are located on different machines. The
activity-service itself acts as the interface to the JARVIS instance and realizes JARVIS
activities by calling an external agent to execute this action. The response of the agent is
then translated back into an artifact and published by the activity-service as result. For
the user, as well as for other infrastructure components, the use of the agent is transparent.
Only the activity-service itself knows about the agents existence and interfaces. This
type of service is needed, to provide activities like the msi-installer (see 5.3.3), where
the specific execution environment is needed and can not be integrated into JARVIS.
Additionally, this pattern can be used to outsource long running and work intensive
tasks to dedicated external machines. This is useful in case the system, running the
JARVIS instance, has some kind of resource limitations. Furthermore a strong technology
decoupling is inherit to this service type. The agent can be implemented (and use) any
technologies available, without having concerns regarding an integration into the JARVIS
infrastructure. One downside of this service type is the increased implementation effort
and the higher complexity. By essentially developing two individual applications, the
coding and maintenance effort is higher, than any other service type. Furthermore the
complexity is increased by orchestrating the service-agent communication. Because of

41

5. Case Study 1: JARVIS In A Production Environment

these drawbacks, the use of this service type is only advised in situations where the
former mentioned use cases are present. It is not a general purpose activity-service design
for JARVIS.

Activity-Service Agent

Host-Runtime Environment

JARVIS Remote System

Figure 5.6.: Architecture remote-activity service

The second type of service is designated as one of two general purpose service designs.
It is called "library-service" and the architecture is presented in figure 5.7. This service
provides JARVIS activities by utilizing an external library, which is integrated into the
service itself. An example for such a service would be the git-service, included in the
JARVIS reference implementation. It offers its functionality through the Eclipse JGit
[JGi] library, that was integrated into the spring service. The benefits of using such a
service design are as follows. Developing a library-service is on average the least amount
of work, since much functionality is outsourced to external libraries. This also effects the
overall maintenance effort for the service, because there is less code to maintain. On the
other hand, this design makes the service very dependant to an external source, which
can not always be controlled/influenced. If the development of the library goes in an
unwanted directions, or is canceled all together, major refactoring is needed. Also fixing
bugs or security vulnerabilities may not be possible through the JARVIS operator himself.
The use of this service design is also limited to the existence of a suitable library to begin
with. If no library exists, in a needed technology, this service-type can not be used.

The last service type is called "shell-service" and used as the second general purpose
service design. An architecture sketch is displayed in figure 5.8. As shown, the service
leverages the host environment it runs in. For this, a shell executor was developed, which
can be used to execute arbitrary bash commands on the the host and receive the output.
This type of service generates moderate development effort and complexity. An example
would be the maven service used to realize the KISTERS reference project pipeline. It
uses the maven environment of the docker-container, the service is shipped with. One
reason behind this decision was the incompatibility between the Apache Maven library
and the JARVIS Java version (explained in section 5.4). In general, the shell-service is

42

5.8. Composition of activities

JARVIS

Activity-Service

External-Library

JARVIS-Facade

Figure 5.7.: Architecture library-activity service

a service type that can be used if no library exists or many functions for a command
line tool are needed to realize the activity. The drawback of this design though is the
unstructured access to the host shell. No format is set for the commands or results from
the shell. Additionally the user has to know how the command line tool works, without
for example IDE support.

The goal of defining the described service types and their architectures, is to make the
development of activity-services easier, faster and more structured. To really gain the
benefit of this classification, the next step should be to develop code-templates for the
respective services. By that, the improvements made during one iteration are channeled
into the next version of services and hopefully reduces the failure rate and increases
overall quality. Unfortunately developing these templates was out of the scope of this
case study. But since it is a promising improvement for the JARVIS eco-system, a future
realization is probably. In the next section a concept for the composition of activities is
presented and explained.

5.8. Composition of activities

While modelling the reference project pipeline in JARVIS, the need for composed activities
was made obvious. Many build steps consist of sub-steps, which are also reused in other
composed activities. The main benefit of allowing the composition of activities are as
follows. Firstly, the model size can be reduced significantly, since one command block in
the model encodes multiple sub-commands. In the case of the reference project modelling

43

5. Case Study 1: JARVIS In A Production Environment

JARVIS

Activity-Service

Shell-Executor

JARVIS-Facade

Host-Environment

Figure 5.8.: Architecture shell-activity service

the commit stage resulted in six commands being executed (see section 5.3.1). Another
benefit is the possibility to enforce certain command combinations. In the mentioned
example this would be the rule to always execute the dependency-check command if code
gets compiled. As mentioned, JARVIS does not provide support for these composed
activities. To that end, a concept was developed during this thesis, which specifies the
integration of this mechanism in the JARVIS infrastructure.

There are two possible ways to integrate the composition of activities into JARVIS.
The first approach would be to encode the logic into one standard activity and make this
available to the user. Unfortunately there are multiple drawbacks with this approach. If
the whole logic was encoded in a single activity, it would be impossible for the Smart-
Planner function to plan the sub-activities. The activity could only be planned as a whole
unit and no performance optimization could be applied. Another problem is the reuse of
sub-activities. As shown, during the reference project modelling, the sub-activities are
reused in multiple compositions. This would not be possible if all of them are encoded as
one big activity. Resulting from these drawbacks, the second approach was developed
and evaluated. This approach specifies a new activity type which contains only links
to other activities. In that case the Smart Planner recognizes the composition-activity

44

5.9. Discussion and Summary

and resolves the contained sub-activities. Afterwards the activity-graph can be planned
and optimized. Since all sub-activities are in their own activities, they can be reused
by different composition-activities. The next step would be to implement the above
concept and test it in a productive environment. Unfortunately the implementation of
new features was out of the scope of this case study.

5.9. Discussion and Summary

This section is dedicated to summarize and discuss the gathered findings from the first
case study. It should also provide an overview about the made observations during the
study.

5.9.1. Answers to Research Questions

The first research question is concerned with the basic functionality of the JARVIS
reference architecture. To prove the functionality, JARVIS was used to model the
continuous delivery pipeline of the KISTERS reference project. To achieve that, the
activities in table 5.1 were developed and integrated into JARVIS. As you can see from
the table, all required actions, specified in the research question o1.R1, are present.
Hence o1.R1 can be answered positively. It is possible to develop and integrate basic
continuous delivery process steps in JARVIS.
The next research question deals with the integration of new technologies into a

JARVIS based system. Again this was investigated during the modelling of the reference
project continuous delivery solution. Three new technologies were introduced into the
system and subsequently used in the delivery process. These technologies were Apache
Maven, ChefIO and remote deployment to external systems. All three were successfully
integrated and provided their functionality. Therefore the answer to research question
o1.R2 is again positive. It is possible to integrate new technologies into JARVIS and
use them in a productive scenario.
The third research question examines the ability to model complex pipelines in a

JARVIS system. The KISTERS reference project utilizes a delivery pipeline with over 30
individual process steps, including unit-testing, system-testing, integration-testing and
deployment to test- and demo-systems. This pipeline was completely modelled in JARVIS.
After executing the JARVIS representation of the pipeline, the resulting artifact was
compared to the original and no differences could be found. Hereby o1.R3 is answered
again in a positive way. It is possible to model real world continuous delivery scenarios
successfully in JARVIS. Some observations made during the process are discussed in the
next section.

The last research questions evaluates the ability for a JARVIS based system to replace
an existing continuous delivery system (in this case Jenkins). JARVIS in its current state
is not suitable for productive use. While the foundations and basic concepts are valid, a
lot of functionality is still missing. This is mainly because JARVIS is still undergoing
active development and an ongoing research project. Especially regarding convenience

45

5. Case Study 1: JARVIS In A Production Environment

and satisfied information needs, more functions are needed. But no feature (present in
Jenkins) was found, that could not be integrated in JARVIS without violating the core
concepts and ideas. Based on this observation the answer to o1.R4 is as follows. JARVIS
in its current state can not replace an existing productive continuous delivery system.
Nevertheless with some additionally development the potential to do so is definitely
present.

Service Activity Type Description

Maven-Service

Clean Transformation Cleans the workspace of created artifacts
Compile Transformation Compiles the source code
Deploy Transformation Deploys the server to the repository
DeployClient Transformation Deploys the client to the repository
InstallerInfo Transformation Generates the installer meta-information
OmnibusInfo Transformation Generates the omnibus meta-information
Package Transformation Packages the compiled artifact
projectInfo Transformation Generates project meta information
Verify Assessment Executes unit tests for the artifact
Versioning Transformation Increases the version of the artifact
VersioningRpm Transformation Increases the version of the installer
DependencyCheck Assessment Checks for dependency vulnerabilities

Deploy-Service AcceptanceDeploy Transformation Deploy the build artifact to the acceptance system

Chef-Service

FoodCritic Assessment Checks Chef cookbook for style errors
RuboCop Assessment Checks the ruby elements of the cookbook
ChefSpec Assessment Executes integration test for cookbook
ChefTest Assessment Executes unit test for cookbook
buildInstallerRpm Transformation Builds the installer as RPM
chefRelease Transformation Creates a release for the chef cookbook

Git-Service gitCheckout Transformation Performs a checkout from version control
gitInfo Transformation Generates git commit information

Table 5.1.: Developed Activities during Case Study 1

5.9.2. Observations
During the work with JARVIS and modelling the KISTERS reference project continuous
delivery pipeline, some observations were made. These are presented and discussed in
this section.

While developing the activities needed for the pipeline, the similarities between activities
and services showed. Based on this observation, three individual service types were
identified. Additionally design patterns were developed for those types. These will be
used to reduce the effort needed to develop new services in the future and help with best
practices. The identified types are of course not exhaustive. It would be beneficial to
extend this list in future work with JARVIS. The identified types and their corresponding
design patterns are presented in section 5.7.
Another observation was made during the integration of new technologies. It is

advantageous to separate the technology of the build artifact from the technology the
service is developed in. In the initial implementation of the maven-service this was not

46

5.9. Discussion and Summary

the case and it was impossible to build the Java 11 artifacts with a service developed
in Java 8. To avoid this, there needs to always be an abstraction between the service
technology and the artifact.

The last observations were made during the modelling process of the reference project
pipeline. The modelling support through JARVIS smart planner functionality reduced the
needed process knowledge significantly. Furthermore the model size was quite extensive
in the current JARVIS DSL. For this a possible solution was designed. By composing
individual activities and creating new composite-activities, the model size can be reduced.
Especially in a scenario like the KISTERS reference project, many activities are always
executed after each other. Hence a virtual combination of those activity would not only
decrease model size, but also the complexity of the models.

5.9.3. Threads to Validity
If using some form of empirical evaluation, it is important to evaluate possible threads to
its validity [FM10]. Therefore the threads for this first case study are discussed in this
sections. The main thread to validity during this case study was an eventual existing
biased of the researcher. Additionally previously existing knowledge about JARVIS
or the case (reference project) could interfere with the results. To avoid both risks,
the researcher which modelled the reference pipeline with JARVIS, had no extensive
knowledge about both. JARVIS was introduced briefly before the project and absolutely
no foreknowledge was present about the reference pipeline.

47

6. Case Study 2: CD Stakeholder And Requirements

Contents

6.1. Study Design And Execution . 49
6.2. Continuous Delivery Stakeholder . 50
6.3. Continuous Delivery Requirements 53
6.4. Continuous Delivery Survey . 63

6.4.1. Notification by the continuous delivery system 63
6.4.2. Information needs in the continuous delivery system 67
6.4.3. Modelling in the continuous delivery system 71
6.4.4. Multi-Branch support in the continuous delivery system 73
6.4.5. Performance in the continuous delivery system 74

6.5. Discussion and Summary . 76
6.5.1. Answers to Research Questions 76
6.5.2. Observations . 77
6.5.3. Threads to Validity . 77

After evaluating the general capabilities of JARVIS in the first case study, this chapter
now presents the results of the second study. The second study is concerned with the
identification of continuous delivery stakeholder in general. Additionally the requirements
of those stakeholder, regarding continuous delivery, are identified and evaluated against
concepts introduced in the JARVIS continuous delivery solution. Of special interest is the
identification of potential new stakeholder roles in the continuous delivery environment.
This chapter is structured as follows. First the general case study design and the used
methodology is introduced. In the next section the identified stakeholders are presented
and a short summary for each stakeholder is given. After defining the stakeholders, the
found requirements are described and the concepts present in JARVIS, to solve those
requirements, explained. The next section is about an executed survey that was used to
further explore the found requirements. To finish the chapter, a summary of the gained
findings is given.

6.1. Study Design And Execution

To start of this case study, its design is presented and, the methodology used, explained.
As initially stated in chapter 3.4, the following research questions form the basis for this
case study.

o2.R1 What are the stakeholder of continuous delivery?

49

6. Case Study 2: CD Stakeholder And Requirements

o2.R2 What requirements do these stakeholders have regarding continuous delivery?

o2.R3 What concepts does JARVIS incorporate to deal with these requirements?

Analogous to case study one, these research questions are answered in the context
of the KISTERS AG (see chapter 3.5) and the underlying case study design is shown
in graphic 6.1. To answer research question o2.R1 - o2.R2, the chosen method was
structured interviews. The selection process of the interview participants is explained in
the next section in more detail. Basically three different questionnaires were developed
and used to identify potential continuous delivery requirements of the participants.
Each questionnaire was hereby targeting a different type of potential stakeholder. This
classification is further explained in the next section as well. After the stakeholders
and their respective requirements were identified, these requirements compared to the
concepts of JARVIS, to find out, how JARVIS can be used to potentially satisfy them.
Based on this evaluation the research question o2.R3 was answered. To further explore
some requirements and increase their meaningfulness (e.g. get acceptable time constraints
for certain actions), a survey was designed and executed in the whole KISTERS energy
business unit. These findings are presented in section 6.4 of this chapter. The survey
hereby was designed by the author of this study and ran for three weeks. In the next
section the process of identifying the relevant continuous delivery stakeholders and the
found roles is described.

UnitOfAnalysis:
Employee A

UnitOfAnalysis:
Employee B

UnitOfAnalysis:
Employee C

Case: Continuous Delivery

Context: all@KISTERS

Figure 6.1.: Second study, embedded case study on general employee base

6.2. Continuous Delivery Stakeholder
To identify continuous delivery stakeholders, employees of the KISTERS AG were
interviewed and questioned regarding their requirements towards CD. For this purpose,

50

6.2. Continuous Delivery Stakeholder

three individual questionnaires were designed, each tailored towards a special group of
employees. These questionnaires are attached to this thesis in the appendix (see A.5).
The first questionnaire was targeted at employees that do not participate directly in the
software development process and are potential new CD stakeholder. With the second
version, software developers and architects were targeted. The last questionnaire aims
to collect requirements from DevOps engineers and persons which directly and very
intensively work with the CD system itself. Next the selection process for interview
participants needs to be explained. To guarantee the consideration of every person as a
potential stakeholder, the organization chart of the KISTERS energy unit was taken as a
basis for the selection. This chart is displayed in figure 6.2.

Figure 6.2.: Organization chart of the KISTERS AG BU Energy

Based on this chart, the head of each column was identified as an interview partner, as
well as multiple subordinate employees. By choosing this rather neutral selection process,
it can be guaranteed not to exclude certain roles based on the researchers biased. This
helps to accomplish the goal to identify new stakeholders to the domain of continuous
delivery, which were potentially overlooked in other research projects. Furthermore the
research question o2.R1 is answered in general. After explaining the used method and
the selection process, the identified stakeholders are presented in the following.

Developer Frontend This role is considered a basic stakeholder for continuous delivery,
since the frontend developer directly participates in the software development.
The frontend developer is responsible for the design and development of graphical
user interfaces and components. As main contact point with CD, the automated
building and testing of software components was identified. A special concern for

51

6. Case Study 2: CD Stakeholder And Requirements

this role is the fast changing technology stack in the field of frontend development.
A CD solution must be able to quickly adapt and integrate new technologies. The
information needs for this role are build times, quality metrics and test results for
their projects.

Backend Developer Analogous to the frontend developer, this role is mainly concerned
with the development of corresponding backend applications. In contrast to the
frontend, the technology choices are more stable and change less frequent. Especially
important for this role is the stability and reliability of the software. This is mainly
achieved by big test suites which need to be executed by the continuous delivery
system. As with the frontend developer, the main requirement of this role is the
automated building and testing of their developed software. The information needs
are analogous to those of the frontend developer.

Software Architect This role is responsible for designing the overall software landscape
and the interfaces between different components. For this role, CD is important to
keep an overview about existing systems/projects and their dependencies between
each other. For example dependencies between different components to create
another artifact. Additionally the architect has information needs towards the
overall technical dept of a project and quality metrics.

DevOps Engineer The DevOps engineer is the closest role to the actual CD system.
They often operate the CD system and maintain/configure it. Another major
aspect is developing the actual pipelines for the projects (or components). This role
needs comprehensive insights into all aspects of the builds and the CD system itself.
Because they are the role responsible for creating and maintaining the pipelines,
their requirements include the modelling aspect of the CD system (e.g. graphical
vs. textual modelling). Their information needs include information like CPU and
RAM utilization of the operated CD system as well as all insights into the project
pipelines themselves.

Security Officer This role is concerned with the general security aspects of the software
products. It tasks include the monitoring of quality guidelines and/or company
specific rules. Continuous delivery is important for this role because these guidelines
or rules need to be checked constantly. Every time the software changes, the security
aspects need to be evaluated as well. Therefore the need for support through the
CD system itself is important for this stakeholder.

Cloud Manager The cloud manager is responsible for the cloud concept of a company
and operating the developed software as a service in the cloud. The main interest
regarding CD for this role is the modelling of cloud systems as continuous delivery
pipelines. This includes the provisioning and maintenance of those systems in the
CD system itself. The main benefit, this role hopes to gain by using CD, is an
increase in general automation and therefore less errors and more performance.
Regarding information needs this role is interested in active systems and their
current configurations.

52

6.3. Continuous Delivery Requirements

Quality Manager The quality manager is responsible for the overall quality of the
developed software. This includes testing all functions of the product and ensure
compliance to defined quality standards. These two aspects are the main interest of
the quality manager regarding continuous delivery and also represent his information
needs. The CD system must provide extensive testing support, while on the other
hand style guides and other compliance relevant requirements have to be enforced.
Since the quality manager is active in multiple projects, a configurable CD system
is required to structure the information regarding the already mentioned aspects.

Sales Manager This role does not participate directly in the software development and
is therefore an unconventional stakeholder. Its area of responsibility includes selling
the software solution of the company and provide general customer support. For
this reason the role has extensive information needs regarding features that are
currently in development and/or already finished. Additionally the general road
map for the development for a certain product is of interest. Since these information
can theoretically be derived from each build of a project, this role hopes to gain
support in its task by utilizing the CD system.

Project Manager The project manager is responsible for the successful completion and
execution of projects. This includes managing the staff used in the project and
the overall resources bound. Additionally this role acts as a translator between
customer and developers. The project manager takes feedback from the customer,
processes and integrates it into the daily work. Furthermore he is tasked with the
planning of new features. For this work he needs an overview about the current
development state and what features are done or in progress.

6.3. Continuous Delivery Requirements

In the last section the stakeholders for continuous delivery in the KISTERS BU Energy
were identified and presented. To answer research question o2.R2 - o2.R3 this section
describes the found continuous delivery requirements of these stakeholders, as well as the
concepts/solutions JARVIS offers to deal with them. Before this, a more detailed look
into the performed interviews is needed. As mentioned in the last section, three different
questionnaires were used to target employee groups more individually. The interviews
were conducted as follows. First the participant was emailed the questionnaire in advance
to prepare for the interview. Next the participant was ensured that the answers and
information provided during the interview were handled confidentially and published
in an anonymous way. It was stressed that no negative consequences would arise from
participating in these investigation. This process mimics the approach described in
[HA05]. The interviews themselves were recorded and later transcribed by the author of
this thesis. After the results were extracted and summarized, the protocol was send to
the participants to give them a chance to correct eventual misunderstandings. Finally
the results were aggregated and formulated into the requirements stated in this section.

53

6. Case Study 2: CD Stakeholder And Requirements

Next the found requirements are discussed and presented in the following format.
Firstly the requirement is formulated as a statement and described in more detail. This is
then proceeded by a list of stakeholders which issued the requirement and their motivation
for it. Next the requirement is mapped onto the continuous delivery pipeline components,
defined in chapter 2.3 (delivery model / delivery process / delivery system), and possible
ways to solve it are put forth. Finally the concepts and/or solutions offered by JARVIS,
that can solve this requirement, are discussed.

Req.01 The continuous delivery solution must enable and allow fast releases. This
requirement includes multiple aspects. Firstly the individual build steps must be
executed quickly and without delay. Secondly it must be possible to scale up the
CD system if the need arises. Especially important was the absence of so called
"overnight" builds, where developer commit their work and the result is presented
to them the next day. This requirement was specified by the developers (frontend
and backend), DevOps engineers and the quality manager. All of them aim to
increase their productiveness by speeding up the build time and thereby allowing
fast releases. Another motivation is the rise of agile development methods, which
demand for more frequent releases. Lastly these stakeholders wish to work with
experimental features. Such features need to be produced and released and replaced
quickly since they only represent ideas and experiments. This requirement concerns
the delivery model as well as the system and the process in the same way. The
model must be suitable to a fast release cycle and reduce overhead operations
which in turn results in a slim delivery process. On the other hand the delivery
system must be able to scale up if needed and execute the delivery process as fast
as possible. In JARVIS all of the described aspects are present. By using the
smart planner the pipeline model is optimized and the resulting process is as fast as
possible. Of course the process can be executed by the delivery system (JARVIS)
and because of the micro-service architecture, it is possible to scale up each activity
individually, if needed.

Req.02 The continuous delivery solution must guarantee the compliance to certain quality
criteria. This requirement ensures that the developed software complies to defined
corporate style and security guidelines. The stakeholders for this requirement are
the DevOps engineers and security managers especially. To satisfy this requirement
the delivery system, as well as the delivery model, are essential. The model must
provide the ability to include the quality ensuring steps while the system must
execute them and provide appropriate reports. In JARVIS this is accomplished
by using so called assessment activities in combination with quality gates. A more
detailed explanation of this concept is provided in chapter 2.3.

Req.03 The continuous delivery solution must be able to execute predictive builds. These
builds are used to test changes without the risk of breaking the current pipeline,
because they are executed in an isolated environment. The relevant stakeholders for
this requirement are software developers (frontend/backend) and quality managers.

54

6.3. Continuous Delivery Requirements

To satisfy the requirement, a suitable delivery system must be used which can
execute these kind of builds. In JARVIS there is no dedicated feature to handle
predictive builds. Nevertheless, the concept of isolated build environments is a
fundamental feature of JARVIS, since every pipeline run is isolated from each other.

Req.04 The continuous delivery solution must be able to support the use of multiple
branches for one project. This includes merging branches automatically during
the pipeline run and not having to duplicate the delivery model every time a new
branch is created. Relevant stakeholders for this are mainly frontend and backend
developers. To satisfy the requirement, firstly it must be able to model the use of
multiple branches for a project. Additionally the delivery system must provide the
functions to work with branches and perform the required operations. JARVIS
has currently no function to realize multi branch support. A possible extension
point, to realize this feature, would be the internal model. It has to be extended to
support multi branches for one pipeline. Furthermore the smart-planner needs to
be modified to plan and optimize pipelines with multiple branches.

Req.05 The continuous delivery solution must be able to define optional quality gates.
In certain situation the pipeline requires a quality gate which does not block the
entire development process but provides valuable information. For example a
dependency check to show outdated external dependencies. It must be possible
to model these kind of optional steps. This requirement was motivated by the
frontend and backend developers. Analogous to requirement Req.04 this can be
achieved by adapting the model and use a delivery system that can work with this
model. In JARVIS the declaration of optional quality gates can be easily achieved.
Since the concept for quality gates is already existing, the internal model needs to
be extended for an optional flag. Additionally the orchestrator needs to be modified
not to stop if a pipeline step is marked optional.

Req.06 The continuous delivery must be extendable with new technologies. Since
technologies and libraries, used in software development, change frequently, the
delivery solution needs to function in this moving environment. Another important
aspect is the extension with new technologies, without affecting the existing pipelines.
This requirement was provided by the DevOps engineers, which have to maintain
the CD system and realize eventual technology changes. In the concept of the
general delivery pipeline, this requirement can be mapped to the delivery system
component since it depends solely on its capabilities. One of the key concepts of
JARVIS is the seamless integration of new technologies into the system. This is
achieved by the use of a micro-service architecture, which gets a new micro-service
for each technology. Through separating the different technologies in individual
services, no incompatibilities between technology choices can arise.

Req.07 The continuous delivery solution must provide a graphical representation of
the delivery model/process. Traditionally, pipelines are modelled as a process
and the resulting graphical representation is a command graph. This kind of

55

6. Case Study 2: CD Stakeholder And Requirements

visualization is useful for the stakeholders to identify individual build steps, get
an general overview and track the progress of the current run. The stakeholders
which required this feature are developers (frontend/backend), DevOps engineers,
architects and quality managers. To satisfy this requirement, the delivery system
must be able to provide the needed information and display them accordingly. By
utilizing the PipelineViewService (that gathers and provides the needed information)
and the custom frontend with activity-graph representation of the pipeline, JARVIS
satisfies this requirement.

Req.08 The continuous delivery solution must be expandable by providing hooks for
custom scripts. Current CD systems (e.g. Jenkins CI) provide a lot of support
via plugins and build in features. In some cases these features do not suffice to
model a CD project and developing an own plugin is too time consuming. In such
cases the stakeholders must have the ability to execute "general purpose" code to
quickly provide functions. This was mainly demanded by the DevOps engineers,
which have to create and maintain different CD projects. This requirement can be
mapped onto the delivery system component of the pipeline model. In JARVIS
this can be achieved by developing a custom activity which takes a shell script as
input and executes it.

Req.09 The continuous delivery solution must offer dedicated information regarding the
origin of an error. Since delivery systems are complex constructs, the origin of an
error is not always easy to deduct. For example if the error is caused by the CD
system itself, which often is mistaken for an error in the CD model of the project.
The stakeholders which are mostly concerned with this are the DevOps engineers.
If errors arise, the DevOps engineers are the stakeholder which have to fix it most
of the time. To reduce effort and enable the fix, a clear source of error is needed.
This is a problem that can be mapped to the delivery system component. JARVIS
tackles this by having extensive logging capabilities and all information can be
published by extending the PipelineViewService.

Req.10 The continuous delivery solution must produce traceable and immutable artifacts.
To enable traceability and document each pipeline run, each run must produce a
dedicated artifact which is stored and versioned. This is especially needed to ensure
compliance with ISO certifications or customer requirements. This requirement was
issued by the DevOps engineers and the developers, frontend as well as backend
and can be mapped on the delivery system component. One of the core concepts of
JARVIS is the flow of artifacts between activities. JARVIS thereby exceeds the
requirement by providing an immutable artifacts not only per pipeline run, but
after each individual activity.

Req.11 The continuous delivery solution must provide the ability to update the system
without modifying existing delivery models. In the environment of this case study,
hundreds of pipelines are used and update adapt all of the, if the delivery system
gets updated, is much effort. To prevent this, the DevOps engineers formulated

56

6.3. Continuous Delivery Requirements

this requirement. As can be extracted from the requirement itself, this is solved by
using a delivery system that has some form of backwards compatibility regarding its
models. In the JARVIS system this can be solved by introducing version numbers
in the models and releasing different model parser for each version. The backwards
compatibility can hereby be as comprehensive as needed.

Req.12 The continuous delivery solution must provide operational information about
the delivery system. This information need includes for example RAM and CPU
usage of the delivery system as well as a list of all active instances. As operator of
the delivery system this requirement was requested by the DevOps engineers to
help them manage the system. As Req.11, this requirement can be mapped to the
delivery system component of the pipeline model. In JARVIS such information are
currently not gathered or displayed. A possible solution would be to let activity-
services publish their performance information via the data-bus. Analogous to
other information needs, the PipelineViewService can collect these information and
offer them via an API to the frontend component.

Req.13 The continuous delivery solution must visualize the pipeline in a domain specific
way. This includes displaying the component itself and the order in which they are
build. Relevant stakeholders for this requirement are the backend developer and
the software architects. By using this kind of visualization, dependencies between
components can be made clear and a greater overview can be achieved. Furthermore
the amount of technical knowledge is reduced by not displaying the pipeline as
sequence of technical steps. In JARVIS the current graphical representation is
graph that displays the executed activities. If the activities are named accordingly,
the required domain specific representation can be achieved. Another way would
be to add the possibility to model domain concepts to the modelling capabilities
and fully implement a second representation.

Req.14 The continuous delivery solution must provide textual and graphical modelling
for the user. Creating and maintaining delivery models can be achieved by writing
text files or using some kind of graphical notation. This is dependant on the
current scenario and the abilities of the user. Offering both possibilities increases
the flexibility and user acceptance of the delivery system. This requirement was
specified by the developers (frontend/backend), architects and DevOps engineers.
It can be satisfied by using a delivery system that can handle multiple forms of
input models and additionally offers tooling to create them. Furthermore the basic
concept of the delivery model must allow for varying representations. JARVIS
utilizes an internal and external model approach. The external model will always
be transformed into the internal and the delivery system itself only works on the
internal model. This abstraction allows for almost any external model representation.
Currently the user can encode the delivery model in YAML files or create them via
BPMN editor.

Req.15 The continuous delivery solution must provide the ability to model system

57

6. Case Study 2: CD Stakeholder And Requirements

landscapes and manage them through the delivery system. This requirement
occurred in the context of cloud based software and was requested by the cloud
manager as well as the DevOps engineers. The main benefit, these roles hope to
gain by utilizing CD, is an increase in performance and less errors by automating
more tasks. Again this requirement can be solved by using a delivery model which
can express system landscapes and a delivery system with the needed operations.
In JARVIS this feature can be used by developing appropriate activities and maybe
adding a more specific external model.

Req.16 The continuous delivery solution must provide immediate feedback if an error
occurs. Stakeholders for this requirement are all already presented stakeholders
except the sales and security managers. This requirement is solely solvable through
the delivery system itself, which needs to notify the user if defined events occur.
JARVIS currently has one feature which provides active feedback by the delivery
system. This feature was developed as part of the chat ops (continuous delivery
controlled via chat messages) expansion. More feedback can be introduced by
expanding the JARVIS environment with a new micro-service, dedicated for this
task. The new "feedback-service" would be connected to the data-bus and push
messages to the relevant recipient.

Req.17 The continuous delivery solution must offer support for multiple testing mecha-
nisms. This includes unit-, integration-, system-tests. The requirement was issued
by the developers (frontend and backend) and the quality managers. Both roles need
this feature to increase the confidence after each change regarding eventual error
or failures. Additionally they want to make sure that features, demanded by the
client, work as expected. To realize this features, the delivery system must provide
the actions needed to test in multiple ways. Also a graphical representation for
test results is needed. By encoding assessments as regular activities, JARVIS does
support all kinds of different testing methods. The results of the tests are displayed
by clicking on the corresponding quality gate in the activity-graph. Further result
graphics can be added by utilizing the PipelineViewService and the client.

Req.18 The continuous delivery system must provide the option to declare pipeline steps
"manual". If a step is declared "manual", the pipeline execution is paused until
a user triggers manually the defined pipeline step. This feature was required by
frontend/backend develops, software architects and DevOps engineers. Not all
operations can be decided by machines. For example the deployment to a demo-
system may be included in the pipeline as the final step, but not every commit
should update the demo system. Like the requirement Req.05, this function needs
to be intended in the model, as well as the delivery system. It must be possible to
model manual steps in the pipeline declaration and execute these in the system.
The system also needs to provide some form of interface to trigger the manual step.
As with Req.05, the requirement is currently not satisfied by JARVIS. It can be
achieved by extending the current internal model to include manual steps. In the
next step the pipeline orchestrator needs to be modified to stop until the step is

58

6.3. Continuous Delivery Requirements

triggered manually. Lastly the client needs to be adapted, to allow the user to
interact with the pipeline run.

Req.19 The continuous delivery solution must provide interfaces to execute singular
pipeline steps outside of a pipeline run. This feature was requested by the fron-
tend/backend developers and the quality managers to be able to test individual
pipeline steps without committing any changes to the repository and trigger a
pipeline run. To solve this challenge the delivery system must offer extension points
or APIs, where the user can upload artifacts. After executing the operation, the
system must then provide a method to download the result. JARVIS encodes oper-
ation in individual activities. Each activity connects to the JARVIS environment
via REST API endpoints. These endpoint can be used to accomplish the required
functions.

Req.20 The continuous delivery solution must be able to speed up builds by allowing
parallel task execution. The motivation behind this requirement was solely to
increase the performance of every CD user. Stakeholders for this requirement
are developers, DevOps engineers and architects. To solve it, firstly the model
must allow the use of parallel tasks. Secondly the delivery system must have the
capabilities to execute these tasks and manage the parallel processing. By using the
smart planner component, JARVIS models do not need to consider parallel tasks
execution. The smart planner does automatically optimize the model regarding
execution speed. This optimized process is then executed and managed by the
orchestrator service.

Req.21 The continuous delivery solution must offer individually configurable dashboards
to monitor projects. These dashboard must be able include only projects where
the user is currently active and it must be able to reduce displayed information
(e.g. hide test results for a project). The need for a configurable dashboard was
formulated by the developers and the quality managers. They are often active in
different projects and need to reduce the received information to gain more focus. To
achieve this functionality, the delivery system must enable/allow configurable user
views and an user authentication. In the current state, JARVIS has no configurable
dashboards. To achieve the requirement, an user authentication method must be
included and the client needs to be modified to allow for those dashboards.

Req.22 The continuous delivery solution must visualize dependencies between different
process steps. This information is used to simplify the maintenance of delivery
models by increasing the overview. Relevant stakeholders for this requirement are
developers and DevOps engineers. To satisfy the requirement, the delivery system
must offer a suitable graphical representation of the delivery process, defined by
the delivery model. JARVIS does this with its current graphical representation as
activity graph in the client component.

Req.23 The continuous delivery solution must provide the user with active feedback if
defined steps in the delivery process are finished. This feature is used for example

59

6. Case Study 2: CD Stakeholder And Requirements

to notify stakeholders if the test-system deployment is ready for manual testing or
if the demo-system is ready for a presentation. It represents a manual handover
between the delivery system and the user. The stakeholders are analogous to
Req.16 and the relevant component is again the delivery system. As with the
former requirement, JARVIS does currently not offer this feature. Again it could be
satisfied by developing and integrating a new feedback-service in the basic JARVIS
infrastructure.

Req.24 The continuous delivery solution must not influence/dictate the project setup.
To allow the developers a maximum of freedom during development, the delivery
system should work on any project setups with no or very little modification,
to accommodate for the system. This requirement was issued by the frontend
developers and can be solved by using a suitable delivery system. In JARVIS
this characteristic is ensured by using self-programmed activities. These activities
can be developed to work on generic project setups without the need for project
adaptation.

Req.25 The continuous delivery solution must provide test execution optimization. To
increase overall build runtime, test-suites must not always be executed completely
or in the same order. The quality managers and developer (frontend/backend)
require optimization methods for the partially very large test-suites. This kind
of requirement can be resolved by using a delivery-system that performs test
execution optimization. During the work of [Nun18] JARVIS was extended by such
a regression test optimization function. This work integrated the regression test
optimization framework of [Ple15] into JARVIS and allowed assessment activities
to leverage the functionality. Currently one optimization strategy is implemented.
The strategy tracks the failed tests during a run and changes the execution order
for the next run. Tests which have previously failed, are executed first in the
consecutive build.

Req.26 The continuous delivery solution must cache pipeline steps and result artifacts.
To decrease average build runtime the delivery system must recognize process steps
which are the same as already executed steps. This would be especially beneficial if
a previous run has failed and the caching can speed up the subsequent run. Uttered
was this requirement by the frontend developers, but having this feature would
provide benefit for every user of the delivery system. To realize the function, the
delivery system must be able to recognize identical steps and have means to save
results from previous runs. In JARVIS a caching mechanism is currently under
development and will be included in later versions. If the delivery system and model
have not changed and furthermore the input is the same, the resulting artifact is
directly used as activity result. Thanks to the artifact-oriented approach, described
in Req.10, this can be achieved by calculating hash numbers for the produced
artifacts and storing this information in the artifact store.

Req.27 The continuous delivery solution must remind the user to fix failed pipelines. In

60

6.3. Continuous Delivery Requirements

the case that the user participates in multiple development projects, it can happen
to forget or overlook a broken pipeline. To ensure this state does not persist,
the delivery systems continuously reminds the user to fix broken builds. Like the
Req.26 requirement, this was specified by the frontend developers as needed for
their daily work. In JARVIS this reminder function is not implemented at the
moment, but could be achieved by developing (or expanding) a feedback-service
(as described in Req.23).

Req.28 The continuous delivery solution must offer delivery models which can be main-
tained without expert CD knowledge. To increase everyday productivity, multiple
stakeholders want to create and maintain their delivery models on their own. This
holds true for the frontend/backend developers, architects and quality managers. To
solve this requirement, the delivery model must be simple and (best case scenario)
domain specific. Furthermore it must provide an abstraction over the technical
implementation of the delivery process, since not all stakeholders have a technical
background. JARVIS offers an general abstraction between internal and external
model, which allows the use of almost any external model suited for the purpose.
If chosen appropriately, the external model can be used by any of the former
mentioned stakeholders.

Req.29 The continuous delivery solution must allow splitting the model in sub-models
and display them graphically. To decrease overall model complexity and be able
to assign different parts of the model to different teams, subdividing the pipeline
is needed. This was required by the architects, motivated by their top down view
on projects and planning interests. To accomplish this requirement, all aspects of
the pipeline model need to be modified. The delivery model must define handover
points between parts of the model. Futhermore the process must be adapted to
consider the breakdown of the model. Finally the delivery system must support
this requirement by executing the resulting processes, represent them graphically
and support the modelling. In JARVIS, there are no sub-pipelines possible at the
moment. Introducing this would require an extension of the internal model and
modifying the planner, as well as the orchestrator.

Req.30 The continuous delivery solution must offer versioned models. To trace model
changes and revert them eventually, the use of versioned models is required. This
was declared by the backend developers and the DevOps engineers. This is a
requirement which can be satisfied by a suitable delivery system that saves each
version of a delivery model in addition to other meta information (e.g. author or
date). For JARVIS this was introduced partially. By having multiple external
models, the versioning is only available for textual models. JARVIS loads its textual
model generally from a git repository, which in turn guarantees versioning of the
delivery model.

Req.31 The continuous delivery solution must show features which are currently under
development for a project. Additionally is must be possible to see the current road-

61

6. Case Study 2: CD Stakeholder And Requirements

map. This requirement was specified by the sales and project manager role in order
to gain insights in the current state of a product. These departments needs to know
which features are ready to be sold to customers and which are near completion.
Since these information are theoretically available in the delivery system, it should
be adapted to satisfy the information need. For solving this requirement als three
components of the pipeline model must be taken into consideration. In JARVIS
this feature is not present and no obvious solution to implement it exist. Therefore
some research into this topic is needed.

Req.32 The continuous delivery solution must be able to integrate remote systems into
the deliver process. Mainly this is targeted at managing systems at a remote
location (e.g. at a clients side) and updating software there. The cloud manager
needs this requirement for customers which require (or insist) on an on premise
solution. By integrating the remote machines in the general CD environment the
maintenance effort can be lowered to a degree, which compares to a local installation.
In a best case scenario this requirement only needs the delivery system adapted,
without any modification to the model (it is transparent if the operation is executed
locally or remote). In JARVIS this can be directly accomplished by developing a
suitable activity.

Req.33 The continuous delivery solution must display security information about software
components. These includes access rights and currently used external tooling. For
the external tooling, known security vulnerabilities are searched, as well as used
licenses. This was required by the security managers, that have to ensure the
compliance to defined company standards. As with general quality criteria (like
required in Req.02), the delivery model and system have to be able to realize the
requirement. In JARVIS these security concerns can be realized by developing
corresponding assessment-activities and integrating them into the delivery model.

Req.34 The continuous delivery solution must be able to be audited. Again this require-
ment was specified by the security manager who needs this function to ensure ISO
compatibility for the company/software. This is solely solvable by a delivery system
that keeps track of the necessary information. JARVIS, in its current state, does not
track any information related to audit events. By using the central communication
bus, to collect information from the whole infrastructure, this requirement can
nevertheless be satisfied.

By collecting and analyzing the requirements, the research question o2.R2 was an-
swered and by that our understanding of continuous delivery was deepen. In the next
step, the concepts and ideas included in JARVIS, to cope with those requirements were
introduced. This helped answering the last research question of this chapter (see o2.R3).
In summary JARVIS is able to satisfy almost all identified requirements or at least have
a clear concept how to achieve it. This was mainly possible thanks to the modular
architecture and use of micro-services. Expansions with new technologies or functions can
be achieved without influencing or modifying the existing environment. Additionally the

62

6.4. Continuous Delivery Survey

split between external and internal delivery model allowed for a very flexible modelling
approach. Of course not all of the mentioned requirements are currently satisfied in
the reference implementation. Especially regarding information needs there is a huge
potential for improvements and addons. But since the basic concepts of JARVIS sup-
port the integration of the required functions, JARVIS can be considered as a suitable
replacement CD system for productive use. In the next section, a selection of the found
requirements is further concretized to gain more insights and increase the insights into
continuous delivery stakeholder requirements.

6.4. Continuous Delivery Survey
After interviewing the stakeholders, described in 6.2 and collecting their continuous
delivery requirements, this section aims to further investigate and concretize some of
those requirements. To accomplish this, first the selection criteria for the requirements
in the survey need to be defined. Selected were such requirements which are either
formulated unclear by the stakeholders or provided room for interpretation. Furthermore,
this survey was used to evaluate priorities between requirements. These priorities can be
used to help the KISTERS AG improve their continuous delivery solution and form a
basis for decision for eventual expansions of JARVIS.

The survey was active for three weeks and had a total of 57 participants. Of those
57 participants, 42 fully completed the survey and are thereby relevant for the result.
Potential participants came from the KISTERS BU energy and were selected with the
same priorities as the interview partners in 6.3. The selected persons were notified via
email and the survey was executed via the online tool LimeSurvey [Lim]. To gain the
required insights, five categories of questions were developed with 18 questions in total.
The results are presented in the following in the context of their respective question
category.

6.4.1. Notification by the continuous delivery system
This question group is concerned with the feedback aspect of continuous delivery and the
way the user receives notifications. This was motivated by requirements like Req.16,
Req.23 and Req.27. Also, like explained in 6.3, JARVIS is currently missing a
concrete concept for user feedback. The gained information can be used to develop and
integrate such a concept successfully into the JARVIS eco-system. In this category, five
different questions were asked, which were focused around preferred feedback methods and
acceptable feedback times. Furthermore it was evaluated if the user likes to be notified
actively by the delivery system or prefers a passive approach. During the interviews the
importance of feedback was mentioned multiple times and various forms of feedback were
required. This overall significance was confirmed by the survey, as shown in figure 6.3.
Furthermore the survey evaluated the acceptable reaction time of the CD system, in
case an error occurs. Three time intervals were given to chose from, representing general
reaction times for computer systems. The majority of the participants are satisfied with

63

6. Case Study 2: CD Stakeholder And Requirements

a reaction time between 3-5 minutes after the event has happened. For the complete
distribution see the graph 6.4. Next, the two requirements Req.23 and Req.27 were
investigated. During the interviews it was stated that an active notification by the CD
system is required and also a reminder function for failed pipelines. Contrary to the
interviews, the survey results showed only an average interest in those features and ranked
their perceived importance only at 2.21 and 3.24 out of 5.0. The respective information
are visualized in 6.5 and 6.6. After supporting the general importance of feedback by
the continuous delivery system, the user were finally asked to rank feedback methods
according to their preferences. The result of that ranking is displayed in table 6.1 with
notification via email as preferred method.

0 5 10 15 20 25 30

1

2

3

4

5

How important is fast feedback for you?

Figure 6.3.: Results How importance is fast feedback for you if a pipelines fails?

0 5 10 15 20 25 30

Feedback within a minute

Feedback between 3-5 minutes

Feedback longer than 5 minutes

What would be an acceptable feedback time by the CD system?

Figure 6.4.: Results What would be an acceptable feedback time by the CD system?

64

6.4. Continuous Delivery Survey

0 2 4 6 8 10 12 14 16 18 20

1

2

3

4

5

How important is positive feedback for you?

Figure 6.5.: Results How important is positive feedback for you?

0 2 4 6 8 10 12

1

2

3

4

5

How important is a reminder function by the CD system?

Figure 6.6.: Results How important is a reminder function by the CD system?

Method Count Percentage

Notification via Email 20 47.62%
Notification via chat message (e.g. Skype) 7 16.67%
Notification via hardware (e.g. lamp) 7 16.67%
Display with dashboard in the hallway 4 9.52%
Not completed or not displayed 4 9.52%

Table 6.1.: Preferred notification methods

65

6.4. Continuous Delivery Survey

6.4.2. Information needs in the continuous delivery system
After discussing feedback requirements in the last section, this section now tries to
concretize information needs the continuous delivery system must satisfy. Requirements
related to unsatisfied information needs, or their graphical representation, were issued
multiple times and by different stakeholders. Such requirements were Req.07, Req.09,
Req.12, Req.13, Req.21, Req.22, Req.31, Req.33, Req.34. In this question
group, participants were asked to evaluate and rate the importance of those requirements.
Furthermore, the priority of configurable dashboards is determined. The charts 6.7, 6.8,
6.9, 6.10 and 6.11 show the perceived importance of each information need up for debate.
Having the information which pipeline is dependant to which other pipeline was stated as
the most important need (4.1 out of 5). This was followed by the graphical representation
of pipelines as sequence of steps, as provided by most established CD systems. Despite
being required by multiple stakeholders, the need for a configurable dashboard in the CD
system was not rated as important. With 3.46 as the arithmetic mean, it scores worse
than suggested by the conducted interviews. The full distribution is displayed in the
chart 6.12

0 2 4 6 8 10 12 14 16 18 20

1

2

3

4

5

No answer

Information: Visualize dependencies between different pipelines

Figure 6.7.: Importance visualize dependencies between different pipelines

67

6. Case Study 2: CD Stakeholder And Requirements

0 2 4 6 8 10 12 14 16 18

1

2

3

4

5

No answer

Information: Show pipelines as a sequence of steps

Figure 6.8.: Importance show pipelines as a sequence of steps

0 2 4 6 8 10 12 14

1

2

3

4

5

No answer

Information: Provide information regarding pipeline runtime

Figure 6.9.: Importance provide information regarding pipeline runtime

0 2 4 6 8 10 12 14

1

2

3

4

5

No answer

Information: Show the technical commands in pipeline stages

Figure 6.10.: Importance show the technical commands contained in a pipeline

68

6.4. Continuous Delivery Survey

0 2 4 6 8 10 12 14

1

2

3

4

5

No answer

Information: Trends regarding pipeline stability

Figure 6.11.: Importance show trends regarding stability

0 2 4 6 8 10 12 14

1

2

3

4

5

No answer

How important are configurable dashboards for you?

Figure 6.12.: Results How important are configurable dashboards?

69

6.4. Continuous Delivery Survey

6.4.3. Modelling in the continuous delivery system
The next question group is about the modelling aspect of the continuous delivery solution.
This was motivated by requirements like Req.05, Req.14, Req.15 and Req.18. The
first requirement, which was confirmed by the survey, was Req.15. Modelling system
landscapes and environments in the delivery system was generally perceived as important
and useful (see chart 6.13). Next the preferred modelling approach was evaluated. During
the interviews, stakeholders were often unsure if they benefit more from graphical or
textual modelling. So the survey was used, to get a deeper understanding of this question.
As shown in figures 6.14 and 6.15, the textual approach was favored slightly but the
differences were rather small (3.08 vs. 3.26). This supports the requirement Req.14,
which states that a continuous delivery system must offer both approaches. Another
requirement, that was supported by the survey, was the importance of self-service for
pipelines through the user themselves. Users want to be able to create and maintain their
pipelines, without the need to contact the delivery team. The corresponding graph is
shown in figure 6.16. Finally, as seen in figure 6.17, the requirement for optional pipeline
steps was confirmed.

0 2 4 6 8 10 12 14 16 18

1

2

3

4

5

No answer

How important is the modelling of entire systems in CD?

Figure 6.13.: Results How important is modelling system landscapes in CD?

0 2 4 6 8 10 12 14

1

2

3

4

5

No answer

How important is graphical modelling?

Figure 6.14.: Results How important is graphical modelling?

71

6. Case Study 2: CD Stakeholder And Requirements

0 2 4 6 8 10 12 14 16

1

2

3

4

5

No answer

How important is textual modelling?

Figure 6.15.: Results How important is textual modelling?

0 2 4 6 8 10 12 14 16

1

2

3

4

5

No answer

How important is self-service in CD for you?

Figure 6.16.: Results How important is self-service in CD for you?

0 2 4 6 8 10 12 14 16 18 20

1

2

3

4

5

No answer

How important are optional pipeline steps?

Figure 6.17.: Results How important are optional pipeline steps?

72

6.4. Continuous Delivery Survey

6.4.4. Multi-Branch support in the continuous delivery system
The next requirements which were investigated were Req.03 and Req.04. These
requirements are concerned with the ability of the continuous delivery system to support
multi-branch projects. As see in 6.18 and 6.19, both features are rated very highly
regarding their overall importance and perceived usefulness. This strongly supports the
first impressions made during the interviews.

0 2 4 6 8 10 12 14 16 18

1

2

3

4

5

No answer

How important is multi-branch support in the CD system?

Figure 6.18.: Results How important is multi-branch support through the CD?

0 2 4 6 8 10 12 14 16 18 20

1

2

3

4

5

No answer

How important are predictive builds?

Figure 6.19.: Results How important are predictive builds?

73

6. Case Study 2: CD Stakeholder And Requirements

6.4.5. Performance in the continuous delivery system
Finally, the last question group was about the performance of the continuous delivery
system. This was due to numerous requirements which demanded the speedup of certain
CD activities. To start of, the general importance of speed in the context of continuous
delivery was evaluated. As hinted by the interviews, the perceived importance was
overwhelming (see 6.20). In the next step, two particular features were put up for
discussion. The first feature was specified by the requirement Req.26 and concerned
with caching of pipeline steps. This was rated with an average importance, like displayed
in graph 6.21. Requirement Req.19 on the other hand was prioritized high (see 6.22).
It demands the availability of APIs to execute pipeline steps locally to speed up the
development process. During the interviews, the stakeholders demanded fast actions but
were mostly unable to quantify the desired performance increase. To fill this knowledge
gap, the participants were collectively asked, what they would consider an acceptable
runtime for certain activities. The results of this are shown in table 6.2 and can be used
to improve the delivery solution at the relevant places.

0 5 10 15 20 25

1

2

3

4

5

No answer

How important is speed in the CD context?

Figure 6.20.: Results How important is speed in the CD context?

0 2 4 6 8 10 12 14

1

2

3

4

5

No answer

How useful is caching artifacts to improve the pipeline runtime?

Figure 6.21.: Results How useful is caching artifacts to improve the pipeline runtime?

74

6.4. Continuous Delivery Survey

0 2 4 6 8 10 12 14 16 18

1

2

3

4

5

No answer

How useful are APIs to test pipeline steps locally?

Figure 6.22.: Results How useful are APIs to test pipeline steps locally?

Operation Count Min Max Avg

Checkout and compile source code 27 0.5 120 10.28
Execute unit tests 27 1 60 7.48
Execute integration tests 27 1 120 18.81
Execute system tests 27 1 240 33.41
Deploy artifact to demo system 27 1 60 10.96
Runtime complete pipeline 30 5 600 75.63

Table 6.2.: Acceptable runtime for certain CD operations

75

6. Case Study 2: CD Stakeholder And Requirements

6.5. Discussion and Summary
This section is dedicated to summarize and discuss the gathered findings from the second
case study. It includes an evaluation of the collected requirements and the results of the
survey.

6.5.1. Answers to Research Questions

The first research question is targeted at the identification of continuous delivery stake-
holders. To find these stakeholders, employees of the KISTERS AG were interviewed and
questioned regarding their continuous delivery requirements. If requirements exists, the
role of the employee was added as a stakeholder. Furthermore the whole business unit
was taken into consideration as potential stakeholder. By that, roles with no (known)
or limited connection to the software development process were also considered. All in
all, nine different stakeholders were identified and their requirements collected. Next to
known continuous delivery stakeholders like software developers and DevOps engineers,
multiple new roles were added. Firstly the security manager or security department. They
would benefit by continuously evaluating the security aspects of the software during each
build. For example checking external dependencies for security vulnerabilities. Another
unconventional stakeholder is the cloud manager. This role aims to use the continuous
delivery solution to enable cloud operation for the developed software. Next to automatic
deployment, also the automatic management of cloud systems is required. This includes
the provisioning and maintenance of nodes in a cluster. The desired goal is achieving
"rapid elasticity" and "measured services" [BWZ15]. With rapid elasticity the capabilities
or resources can be scaled up or down as demanded by the situation. Measured services
is targeted at optimizing the available resources. Only provide resources (e.g. machines)
which are needed to ensure operation. Lastly the sales department and project manage-
ment were identified as new stakeholders. Booth roles are interested in the current state
of the software regarding completed or upcoming features. Since the delivery system
reevaluates the software during each build, continuous delivery could be extended to help
these roles.
The second research question is concerned with the continuous delivery requirements

of the stakeholders. Again these findings were gathered during the interviews (34
requirements were identified). In this section the requirements and stakeholders are
investigated in a comprehensive way. For a list containing the individual requirements,
see section 6.3. Table 6.3 provides a mapping between requirements and stakeholders.
From this overview multiple conclusions can be made. First lets explore the stakeholder
correlations. The developer stakeholders are the main target group for continuous delivery
(20 requirements for each developer type). They get the most value out of it and use it
in their everyday work. As shown in 6.3 there is almost no difference between frontend
and backend developer present. The only variation in requirements is related to different
graphical representations for information needs and testing methods. The next biggest
stakeholder group is the DevOps engineers. Their requirements have more supporting
characteristics since they are responsible is keeping the continuous delivery system up and

76

6.5. Discussion and Summary

running. The requirements for the software architect are almost all related to information
needs and their representation. Most of the new stakeholders (cloud, security, project
and sales management) only issued very specific and few requirements. They are not
fully involved in the software development process and only need support through the
continuous delivery system rarely. But this does not diminish the benefit they would
get from using CD. It only states the limited area of applicability. The requirements
that were stated the most were Req.16, Req.23, Req.07 and Req.01. Two of these
requirements were concerned with the feedback functionality of the continuous delivery
system, which highlights the importance of feedback for the stakeholders. This is then
followed by the need for a graphical representation of the delivery process. Finally the
speed of the delivery system and the ability to provide fast releases was demanded.

To support an eventual realization of the requirements, they were mapped with their
relevant components from the pipeline delivery model (see 2.2). This mapping is shown in
table 6.4. As shown, most of the requirements can be satisfied by adapting the continuous
delivery system itself. This mostly includes adding the required function or information.
It also suggests, the preference of stakeholders to formulate their needs in a functional
way. Another observation can be made regarding the relation between delivery model
and process. Requirements that involve the process, also concern the model but not vice
versa. In general the delivery process itself is related to the least amount of requirements.

6.5.2. Observations

These observations were made during the survey which was executed after the interviews.
With this survey the most prominent requirements were further explored and additional
findings gained. Main findings of the survey were the confirmation of feedback and speed
as the most important aspects of a delivery system. Contrary to the high number of
stakeholders which demanded the requirement Req.16 during the interviews, the survey
showed a reduced need for it. Another important aspect of the survey is the evaluation
of acceptable system response times. Many stakeholders stated a speed increase for the
continuous delivery system is needed. But they rarely could quantify the amount of
the increase. The survey asked the participants to specify acceptable times for certain
pipeline steps and activities. These results are shown in 6.2 and can now be used to
adapt the existing CD solution accordingly.

6.5.3. Threads to Validity

As with the first case study, the threads to validity need to be investigated. The first
thread is a possible bias while selecting the interview participants. Especially if new
continuous delivery stakeholder should be identified. To counter this, the selection
included the whole business unit as a whole (see 5.1 for selection strategy). It increased
the amount of work, but no possibly interesting employee could be overlooked. Another
thread was the evaluation and interpretation of the interview results by the researcher.
While performing these tasks, the researcher could introduce his opinions and biases into

77

6. Case Study 2: CD Stakeholder And Requirements

Req. Frontend Backend Architect DevOps Security Cloud Quality Sales Project Sum
Req.01 X X X X 4
Req.02 X X 2
Req.03 X X X 3
Req.04 X X 2
Req.05 X X 2
Req.06 X 1
Req.07 X X X X X 5
Req.08 X 1
Req.09 X 1
Req.10 X X X 3
Req.11 X 1
Req.12 X 1
Req.13 X X 2
Req.14 X X X X 4
Req.15 X X 2
Req.16 X X X X X X 6
Req.17 X X X 3
Req.18 X X X X 4
Req.19 X X X 3
Req.20 X X X X 4
Req.21 X X X 3
Req.22 X X X 3
Req.23 X X X X X X 6
Req.24 X 1
Req.25 X X X 3
Req.26 X 1
Req.27 X 1
Req.28 X X X X 4
Req.29 X 1
Req.30 X X 2
Req.31 X X 2
Req.32 X 1
Req.33 X 1
Req.34 X 1
Sum 20 20 8 17 3 4 10 1 1

Table 6.3.: Requirements mapped on the identified stakeholders

the results. To avoid this, the final transcripts were send to the participants and they
had to confirm the answers and feedback.

78

6.5. Discussion and Summary

Requirement Delivery Model Delivery System Delivery Process Sum of Components
Req.01 X X X 3

Req.02 X X 2

Req.03 X 1

Req.04 X X 2

Req.05 X X 2

Req.06 X 1

Req.07 X 1

Req.08 X 1

Req.09 X 1

Req.10 X 1

Req.11 X 1

Req.12 X 1

Req.13 X 1

Req.14 X X 2

Req.15 X 1

Req.16 X 1

Req.17 X 1

Req.18 X X 2

Req.19 X 1

Req.20 X X X 3

Req.21 X 1

Req.22 X X 2

Req.23 X 1

Req.24 X 1

Req.25 X X 2

Req.26 X 1

Req.27 X X 2

Req.28 X 1

Req.29 X X 2

Req.30 X 1

Req.31 X X X 3

Req.32 X 1

Req.33 X X 2

Req.34 X 1

Sum 13 30 7

Table 6.4.: Requirements mapped to their Components from the Delivery Pipeline Model

79

7. Case Study 3: Continuous Delivery Modelling

Contents

7.1. Study Design And Execution . 82
7.2. Process-Based modelling with BPMN 83
7.3. Process-Based modelling with DSL 84
7.4. State-Based modelling with DSL . 85

7.4.1. State-Based modelling . 86
7.4.2. Evaluation State-Based Modelling 88

7.5. Discussion and Summary . 89
7.5.1. Answers to Research Questions 89
7.5.2. Threads to Validity . 90

To finalize this thesis, the third case study was used to gain more information about
pipeline modelling in general and especially the modelling paradigms present in JARVIS.
As described in chapter 2.3, process oriented modelling is currently implemented in
JARVIS. This paradigm sees the pipeline as a process of steps that are executed in
sequence (or parallel if possible). Produced artifacts are used as input for the following
steps and the last artifact is considered the result of the pipeline. To create delivery
models in this process oriented way, JARVIS offers two different modelling techniques.
The first technique is creating the model in text-form via custom DSL. This was the
first method implemented in JARVIS and is considered the standard modelling approach.
Based on this, the next extension was graphical modelling with BPMN. With this method,
models are created by declaring different activities as nodes and connecting them to result
in an execution graph. The first method is supported by the smart planning component
of JARVIS, which links dependent activities automatically and optimizes the pipeline in
regard to runtime. During this chapter, these functions are now investigated and mapped
onto real world continuous delivery challenges. Additionally it is evaluated if they provide
added value to that challenges. While modelling the reference project pipeline in chapter
5, multiple shortcomings in the smart planning function were discovered. To counter
these, a new modelling paradigm was designed. The so called state-based modelling is
also evaluated in this study. In the next section the overall case study design is presented,
followed by the results for each individual modelling method. Finally a summary is given
to conclude the chapter.

81

7. Case Study 3: Continuous Delivery Modelling

7.1. Study Design And Execution
This chapter starts of by describing the overall case study design and the methodology
used to generate the findings. This case study is concerned with the evaluation of the
the experimental modelling features of JARVIS and their performance in a productive
environment. To that end, the following research questions were defined and worked on
during this case study.

o3.R1 Can the experimental modelling features be mapped on common problems in
continuous delivery?

o3.R2 Do the experimental features solve or improve on those problems?

As with the previous case studies, the chosen context for this was the KISTERS AG.
Due to time constraints, not all experimental features of JARVIS were evaluated in this
study. Because of their central position in continuous delivery, the modelling paradigms
and methods, present in JARVIS, were chosen for evaluation. This includes process
based modelling by DSL, as well as process based modelling with the help of the BPMN
notation. Furthermore the so called state-based modelling is evaluated as a potential new
paradigm in JARVIS. More information about state-based modelling is provided in the
following sections. As shown in figure 7.1 this case study was designed as an embedded
case study on the case "CD Modelling".

UnitOfAnalysis:
Stakeholder A

UnitOfAnalysis:
Stakeholder B

UnitOfAnalysis:
Stakeholder C

Case: CD Modelling

Context: all@KISTERS

Figure 7.1.: Third study, embedded case study with CD modelling as case

To evaluate the approaches and answer the research questions o3.R1 - o3.R2, the
following process was executed. First, suitable stakeholders were selected to perform
the evaluation. Out of the stakeholders found during the second case study (see 6), the
DevOps engineers were selected to participate in this study. The reasoning behind this
was the heavy involvement of these persons in creating and maintaining delivery models.
This increased knowledge was needed, to investigate the modelling methods in every

82

7.2. Process-Based modelling with BPMN

detail and especially the ability, to compare them to existing solutions, was helpful. The
participants were then asked to model the KISTERS reference project (see 5.2), which
they were familiar with, with the help of all three methods. Each approach was then
individually evaluated and rated by the participants. This feedback then was collected
and processed by the author of this thesis. It represents the answers to the specified
research questions.

7.2. Process-Based modelling with BPMN

To start of, the participants had to model the reference project CD process oriented
by using the BPMN notation. During the work of [Wil18], JARVIS was extended by
the possibility to model pipelines with BPMN. The goal of this work was the reduction
of complexity for delivery models, which in turn reduces the maintenance effort for
those models. Additionally the common knowledge of BPMN should improve the user
acceptance and decrease the initial hurdle to work with the delivery model for new user.
To answer the research question o3.R1, the participants were initially asked to specify
the continuous delivery challenge/task they would try to tackle with this method. In this
instance, the DevOps engineers stated that they would use this method to gain more
insight and overview regarding their delivery models. Furthermore, they assessed this
method would enable more/new stakeholders to customize their models and participate
in the CD process. Lastly the resulting activity graph makes it easier to talk about the
model. Contrary to a textual representation, the model is directly encoded in a visual
form, which is more suitable for discussions or meetings. Resulting of this feedback, the
method was mapped on two continuous delivery challenges by the participants. The first
problem is the complexity of the delivery models. Representing the models in the BPMN
notation was recognized as a way to reduce that complexity and enable easier access
for new user. The other problem was a missing graphical representation of the delivery
model itself. If process oriented modelling with BPMN improves on those challenges is
evaluated in the next section.

Finding out, if BPMN modelling offers any contributions for solving the previously
mentioned challenges, required the participants to model the KISTERS reference project
pipeline in JARVIS with the help of BPMN. The first finding is related to the general
overview, the BPMN models provide. When the model gets larger, the participants
reported a significant decrease in clarity of the model. This was mainly caused by the
fact that the implementation uses the same shape for each activity. Even with labeled
shapes, finding the correct activity was a hard tasks. In general, modelling the whole
process was assessed as very time intensive work. Especially configuring every activity
with the required parameters is very time consuming. The participants rated the process
modelling with BPMN as slower than using a traditional DSL. Another feedback the user
reported was regarding the use of the smart planner. If a pipeline is modelled via BPMN
the user does not expect the system to modify the resulting process in any way. If BPMN
is used, the smart planner should not intervene and optimize the model. This results

83

7. Case Study 3: Continuous Delivery Modelling

in the maximum knowledge, required by the user regarding the delivery process of all
existing modelling methods. Nevertheless the participants rated the BPMN method as
suitable for beginner users, since the notation is well known and no syntax or commands
need to be learned. Additionally the graphic models were very suitable for visualizing the
models and identifying eventual problems. The first answer to research question o3.R2
is as follows. Modelling CD with the help of BPMN and in a process oriented way, does
reduce the complexity of the delivery models slightly. But since every step of the process
has to be included by the user, the resulting graphs can get big and confusing. Also the
process knowledge needed, by the user, must be very large, since support through the
smart planner is not possible. BPMN models show their strength in smaller projects and
when multiple persons are involved. The ability to visualize and then discuss the models
was evaluated as very important by the participants. Another improvement could be to
use a custom editor for the creation of the models. Currently a generic BPMN editor
[Cam] is used, which has a lot of unnecessary features. Reducing this to the essentials and
eventually introducing custom shapes for activities could help with the general overview.

7.3. Process-Based modelling with DSL

This section is about the second modelling method, which is process-based modelling
with the custom JARVIS DSL. In JARVIS a custom DSL was introduced which utilizes
the YAML syntax. This was introduced as the default approach to create delivery models.
Listing 26 shows an extract of such a model.

1 planner:
2 expand: false
3 stages:
4 - name: buildClientServer
5 transformations:
6 # --- Server --- #
7 - server-checkout
8 - server-versioning
9 transformations:

10 ### ---- Server ---- ###
11 - name: server-checkout
12 service: git-service
13 command: checkout
14 tag: "server"
15 parameters:
16 repositoryUri: https://myRepoUrl.de
17 branch: master
18 credentials:
19 type: plain
20 username: myUserName
21 password: myPwd
22 - name: server-versioning
23 service: kisters-maven-service

84

7.4. State-Based modelling with DSL

24 command: versioning
25 tag: "server"

Source Code 7.1: Extract from a JARVIS delivery model

Analogous to the previous method, first the research question o3.R2 is worked on. The
participants stated that they would map this method to the general requirement to specify
the delivery model. The specific challenges behind this are the resulting size, complexity
and comprehensibility of the delivery models. In the next step the participants modelled
the reference project pipeline again. This time they created the delivery model with the
DSL in a processed based approach. They observed the same problem regarding the size
of the model as with BPMN modelling. If every step of the process has to be explicitly
stated, the models get larger and thereby harder to understand and maintain. To counter
this, a composition functionality for activities was proposed by the participants. A
possible extension of JARVIS with such a function was already described in chapter 5.8.
Furthermore the need for tooling support was highlighted. Productive modelling with a
DSL requires autocomplete and syntax highlighting to increase productivity. This can be
achieved through a custom editor or an IDE. Again the process knowledge needed, to
work with the delivery models, is significant. But it was assessed as less than with BPMN
modelling. This was due to the fact that the smart planner was used. Only the activities
needed where specified in the models, but their execution order and dependencies were
determined by the smart planner. The comprehensibility was assessed as very high
and as an improvement to existing modelling methods. Here the declarative approach,
inherit with the use of the YAML syntax, helps to structure the models. No conditional
commands or loops are present which also decreases the complexity. All in all the process
based modelling with the JARVIS DSL was evaluated as a slight improvement to the
specified challenges. By using the YAML syntax and the combination with the smart
planner the complexity of delivery models decrease and the comprehensibility increases.

7.4. State-Based modelling with DSL

While executing the first case study (see 5), a problem with the smart planner was made
obvious. The automatic chaining of activities based on their input and output types only
worked on simple delivery models. If, for example in the KISTERS reference project
model, an activity is used twice, the smart planner can not resolve which following
activity to connect. Figure 7.2 illustrates this problem. Activity A1 and A2 are the
same activity used twice in the delivery model. Both produce an artifact of type A.
The receiving activity B1 on the other hand needs an artifact of the type A as input.
Normally the smart planner would chain the activities based on their input/output
signature to help the user create the optimal delivery process. Because of ambiguity
this is not possible in the shown case. Possible solutions would include duplicating the
activities and defining new input/output types. This was discarded due to increased
model size and development effort to create the activities. To solve this problem a new

85

7. Case Study 3: Continuous Delivery Modelling

modelling paradigm was designed. It is described in this section, followed by a theoretical
evaluation in the context of this case study.

Activity A1 ArtifactTyp A

Activity A2 ArtifactTyp A

Activity B1ArtifactTyp A

Figure 7.2.: Unsolvable model for the smart planner

7.4.1. State-Based modelling
In this section the idea of state based modelling is introduced and the concept explained.
Most continuous delivery models are designed with a process in mind. The user knows
what actions should be applied and the order in which they are executed. This is
transferred directly into the respective model. State-based modelling tries to shift this
focus away from the process and towards the artifact itself. Instead of describing the
way to reach the desired result, the user models the desired state of the final artifact
and not the process to get to it. The process is not encoded in the model but in the
implementation of the JARVIS activities. Since JARVIS works with custom activities
anyway, this is no overhead. In the following, the concept is explained by means of
a small example. An application consisting of two individual components which are
bundled into one final artifact. Both components are JAVA applications which are build
by maven with the same JARVIS activities. The component C is considered as the final
artifact after the "Maven Package" activity was executed. Figure 7.3 shows a graphical
representation of the pipeline that is used to illustrate the state-based approach.

In state-based modelling, the model is divided into components. Each of this component
can have multiple states and each state is produced by an activity. In this example the
component C can achieve the states "workspace" and "packaged". The state "workspace"
is produced by the checkout activity and "packaged" by "Maven Package". To model this
pipeline, only the desired final state needs to be specified. Because the state "package"
is dependant to "workspace", the user does not need to model the checkout activity
explicitly. This is different to process based modelling where the whole process must
be outlined. Important for state-based modelling is the use of some kind of planning
service, like integrated into JARVIS. This service is responsible for resolving all needed
previous states to reach a desired end-state. In listing 31 the whole state-based model

86

7.4. State-Based modelling with DSL

Maven
Compile

Checkout

Component A

Maven
Compile

Checkout

Component B

Maven
Package

Checkout

Component C

Figure 7.3.: Pipeline for example application

for the pipeline in 7.3 is given. The model includes each component that the pipeline
contains. Since component C in state "packaged" is the desired result artifact for this
pipeline, it is also stated. As mentioned (and shown in 7.3) C consists of the component
A and B. These dependencies must also be declared to help the planner resolve them.
In this case the "Maven Package" activity has two input parameters which demand
artifacts with the state "classes". This state is produced by the "Maven Compile" activity,
which is present in both components A and B. By using the artifact states, the smart
planner can now backtrack to determine which activity from the component A (and B)
produces the needed state. In this case the "Maven Compile" activity would be chosen,
which in turn requires an input artifact with the state "workspace" (produced by the
Checkout activity). Following this approach, the smart planner can resolve huge parts of
the pipeline automatically, resulting in minimal process knowledge required by the user.
Additionally the problem with duplicated activities is solved. The "Checkout" activity
was used three and the "Maven Compile" activity two times. But this concept also has
some limitations. For example activities can only be used once per component. This was
assessed as an acceptable trade against using them only once per pipeline.
1 - name: componentA
2 source:
3 git:
4 repositoryUri: https://repoA.de
5 branch: master
6 credentials:
7 username: userName
8 password: gitPwd

87

7. Case Study 3: Continuous Delivery Modelling

9
10 - name: componentB
11 source:
12 git:
13 repositoryUri: https://repoB.de
14 branch: master
15 credentials:
16 username: userName
17 password: gitPwd
18
19 - name: componentC
20 source:
21 git:
22 repositoryUri: https://repoC.de
23 branch: master
24 credentials:
25 username: userName
26 password: gitPwd
27 state:
28 package:
29 firstComponent: componentA
30 secondComponent: componentB

Source Code 7.2: Pipeline Model for example project state-based

7.4.2. Evaluation State-Based Modelling
As previously mentioned, the state-based modelling approach was only designed as a
concept during this thesis. Subsequently there was no possibility for the participants
to fully test the approach in this case study. Therefore the evaluation was limited to a
theoretical modelling session without support through JARVIS. The participants were
told what the ideas behind state-based modelling is and how its suppose to work. Based
on this information, they were asked to model the reference project in a state-based
way. The findings related to the research questions of this study are presented in this
section. As with the first two methods, the initial step is investigating research question
o3.R1. For this, the participants mapped state-based modelling with a DSL onto the
following CD challenges. The first challenge was the size and complexity of the delivery
models. At first glance it seems the approach could reduce those attributes and make
working with delivery models more easy. Another aspect of CD, that could be improved
by state-based modelling, is the needed process knowledge. The less internal knowledge
the user need to create their delivery models, the more they are incited to work with
them. After the targeted CD challenges were identified, the participants started with
the theoretical modelling of the KISTERS reference project delivery model. Hereby the
following findings were gained, related to research question o3.R2. Initially the new
modelling method requires rethinking on the users part. Normally user think in processes
while creating pipelines. To see the pipeline as a state description for components is a new

88

7.5. Discussion and Summary

way to interact with delivery models. If the initial hurdle was passed, the modelling was
assessed as less complex by the participants (in comparison to process based modelling).
The user does not need to know each step of the process involved to get the artifact in
the desired state. It suffices to know "what" to get and in which state. By that, even
unexperienced user can be able to use the CD on their own. Another finding was about
the success to reduce overall model complexity. As seen in 31, the models are relative
small in relation to what they represent. Especially the scalability of those models is very
good. If more pipeline-steps are introduced, the model does not necessary get bigger.
All steps inserted before the final state can be resolved automatically and need not
to be mentioned in the delivery-model. Based on this evaluation, the second research
question is considered answered for state-based modelling. Of course this needs further
investigation after the real implementation was introduced in the JARVIS eco-system.

7.5. Discussion and Summary

This section is dedicated to summarize and discuss the gathered findings from the third
case study. Since the answer to the research question was largely the result of an
observation, no dedicated section for the observations is present.

7.5.1. Answers to Research Questions

Both research questions are concerned with the experimental features of JARVIS and how
they perform in a real world scenario. Because of time limitations, only the modelling
approaches, present in JARVIS, were evaluated. This included the process oriented
modelling with BPMN and custom DSL as well as a new paradigm. The new paradigm
is called state based modelling and was designed during this thesis. To evaluate the
paradigms, they were first mapped on common continuous delivery problems/challenges
by experts. These experts then used the approach to model the reference project pipeline
from the first case study and give feedback regarding the viability of these methods.
The process based modelling with BPMN was assessed as suitable solution for small to
medium sized delivery models. Furthermore it was rated as time intensive and required a
lot of process knowledge. The advantages of this method were a graphical representation
of the model which enables the user to talk about and discuss it. This can be especially
useful if multiple persons are involved in maintaining the delivery model.

The next method was the process based modelling with a custom JARVIS DSL. This
was evaluated as a suitable general purpose way to work with delivery models. It was
faster than BPMN and the provided help of the smart planner reduced the needed process
knowledge significantly. One identified drawback of this methods was again the size
and complexity of the delivery models. For large models (like the reference project) the
textual representation has limits. After reaching a certain size the model becomes hard
to maintain and understand. All in all the approach was assessed as suitable for most
scenarios if enough tooling support is present.
The new paradigm is the state-based modelling. The core idea is not to model the

89

7. Case Study 3: Continuous Delivery Modelling

delivery process itself but the desired end-state of an artifact. The needed process to
reach this artifact, is resolved by a planning component and only needs human input for
dependencies between components. By using this method the required process knowledge
was reduced significantly and also the model size was decreased. Nevertheless a new
way of thinking continuous delivery is required by the user. User traditionally think
in process steps and using a state-based approach took some time getting use to. But
after the initial hurdle was taken, the user were able to work faster with the state-based
method than with the process-based counterparts. Therefore the initial evaluation of
state-based modelling was a success and further research into this topics is required.

7.5.2. Threads to Validity
There are two main threads to validity in this case study. The first ist the choice regarding
the experts performing the study. Like in the second study, the participants were chosen
on a non personal basis. Persons that were identified as DevOps engineers were chosen
to perform this study. Additionally they had no previous knowledge about JARVIS
and therefore went into the study unbiased. The next thread was the introduction of
JARVIS by the researcher. It had to be as neutral as possible and only the necessary
information about the modelling were given. Still the chance to have given too much (or
little) background information is not zero. But this was accepted for this study because
it was only considered initial research into the experimental features of JARVIS.

90

8. Summary and Future Work

Contents

8.1. Summary . 91
8.2. Future Work . 93

This chapter is used to provide a summary about the performed case study and the
gained results. Additionally is present ideas for future work in the field of the JARVIS
continuous delivery reference architecture.

8.1. Summary
During the thesis the continuous delivery reference architecture JARVIS was evaluated
regarding its productive performance and usability. To achieve this, a case study was
designed to investigate JARVIS. Following the generals rules [RH09] for case study
design, three objectives for this study were specified. These objectives are listed below.
Furthermore the case study was executed in collaboration with an industrial partner of
the SWC. The KISTERS AG (see 3) provided the productive environment and context
for this work.

o1 Make a qualitative assessment regarding JARVIS as substitution for established
continuous delivery solutions

o2 Make a qualitative assessment regarding the usability of JARVIS on a comprehensive
list on stakeholders

o3 Make a qualitative assessment if the experimental features of JARVIS solve common
continuous delivery problems

To further structure the thesis, the overall case study was divided into three smaller case
studies. Each targeting one individual objective. The first case study was investigating
the basic functionality of JARVIS and ultimately the ability to replace an existing
delivery system with one following the JARVIS architecture. The way to determine this
ability was to take a fully functional delivery solution and reconstruct it in a JARVIS
based system. For this the KISTERS reference project was chosen as a suitable test
subject since it represents all technology and design choices made by the company.
It current continuous delivery solution (currently managed by Jenkins CI) was then
modelled in JARVIS. During the process multiple relevant aspects for a delivery system

91

8. Summary and Future Work

were evaluated to answer the designated objective. Firstly the capability of JARVIS
to provide basic delivery process steps (activities) and integrate new technology into
the infrastructure. All needed activities (for the reference project) were developed
and integrated into JARVIS in addition to the required technologies. Therefore this
requirement was confirmed. The next requirement JARVIS needed to satisfy was the
ability to handle complex delivery models and provide ways to work with them. As shown
in 5.5 the full reference project delivery pipeline was modelled in JARVIS and produced
the same final artifact than the original. Hence this requirement was also satisfied. Lastly
the answer towards the ability to use JARVIS as a productive delivery system was worked
on. Because of the current development state of JARVIS an unconditional use in a
productive scenario can not be suggested. All the concepts needed to achieve the core
functions (and more) of a system like Jenkins CI are present and working as expected.
But many convenience functionality for every day work, like displayed information and
user management, are missing. But from a conceptual point of view, a JARVIS based
system provides all necessary features/functions to be used productively. Only the current
reference implementation needs to be extended. During this first case study two major
observations regarding working with JARVIS were made. The first is the identification
of service classes. Three service types/classes were identified and design patterns for
this services were designed. This should improve the overall quality of activity-service
implementation. The next observation was related to the modelling. Because the reference
project delivery-models are extensive, the need for activity composition was found. Future
implementations of JARVIS should enable the user to compose individual activities into
new activities. This reduces model size and provides huge usability benefits.

While the first case study investigated if the current solution could be represented in
JARVIS, the next study was about possible improvements to that solution. But before
the JARVIS system could be evaluated against these improvements it was necessary to
know what there was to improve. To answer this, the second case study firstly identified
continuous delivery stakeholder in a productive context like the KISTERS AG. This
was done by interviewing key personnel from the business unit and gathering their
continuous delivery requirements. These interviews were then evaluated and processed
into a comprehensive list of stakeholders and requirements (see 6). Following this, the
requirements were evaluated against JARVIS to identify concepts in which a JARVIS based
system would solve those. For most of the requirements a concept or solution was present
to satisfy them. So the overall assessment of JARVIS usability was positive. To further
increase the knowledge regarding these requirements a survey was designed and executed
to gain even more information. This survey was used to specify acceptable response time
for a continuous delivery system and evaluate the value of certain requirements, identified
during the interviews.

The last case study looked into one experimental feature of JARVIS. This feature was
the modelling of delivery processes in JARVIS. Currently two approaches are present
in a JARVIS based delivery system. These approaches are process based modelling
with BPMN notation and custom JARVIS DSL. Both approaches were evaluated by

92

8.2. Future Work

experts regarding their real world applicability and usability. These experts modelled the
reference project pipeline with those methods and then gave feedback. Both methods were
found suitable but not without flaw. The handling of large delivery models was confusing
and complex also the process knowledge required by the user was significant. To improve
on these problems, a new paradigm for modelling delivery processes was developed. It is
called "state-based" modelling and was also evaluated in the same scenario. In state based
modelling a pipeline is not described as a process. So no sequence of steps is modelled
or declared. A state based delivery model consists of components and only the desired
state of the final artifact is declared (in addition to component state dependencies). The
underlying process to bring the artifact in this state is automatically resolved by the
delivery system. The result of that evaluation was very positive. The knowledge decrease
to work with the models was noticeable and additionally the size of the models was also
reduced. State based modelling was assessed as a suitable alternative to the already
existing solutions and offers potential which has to be explored in future work.

8.2. Future Work
Because of the scope of this thesis and the time available, not all concepts or ideas
could have been implemented during this thesis. This section provides suggestions and
inspiration for future work building on the results of this case study.

Service Starter Based on the identified activity-service classes in 5.7 and the designed
patterns for them, a service starter would further decrease the effort to develop
activity-services. Because the current reference implementation of JARVIS is
developed in Spring Boot, a Spring Boot Starter could be developed for each service
type. If the implementation is changed to a different base technology the another
template-solution to quickly develop new services based on the found patterns
should be introduced.

Composite Activities As stated in 5.8 the composition of activities would reduce the
size of the delivery models and also decrease the complexity. A possible concept for
integrating this functionality was designed during this work. The next step would
be the development and integration of this feature.

Confirm Requirements The found requirements (during the study and interviews) were
collected in one productive environment. To further increase the quality of the
research and identify eventual patterns or contradictions, the study should be
repeated in a different company. These second study would act as a control group
and maybe produce further requirements and stakeholders.

State Based Modelling The idea of state-based modelling was only introduced during
this thesis. So more research into this topic is needed to grasp the full benefits and
identify eventual limitations. During the evaluation in chapter 7.4.1 no concrete
implementation was present in JARVIS. The modelling was performed without

93

8. Summary and Future Work

executing the resulting process at the end. The next step should be the implemen-
tation of state-based modelling into JARVIS. After this is done, more research into
its capabilities with other projects should be conducted.

94

A. Interview Guides

Interview Guide 1 Stakeholder Analyse

Durchgeführt von: Bastian Greber

Requirements Continuous Delivery

Procedure: Explain the method and goals of this interview. Also inform about the fact that notes are
taken, and the interview is being taped. Ask general information (name, email, position) and start
interview.

Name:

Email:

Position:

G1: Do you know what continuous delivery is? If yes, please give a short description about
anticipated uses.

Questions for participants that do not already use continuous delivery

Q1.1 Do you participate in the KISTERS software development process in any way?

Q1.2 If a new software version is released, do you need to perform some tasks or actions as part
of your work? Is this a reoccurring event?

Q1.3 What kind of actions/tasks do you need to perform? Please elaborate

Q1.4 Can this task be structured or described as a process?

Q1.5 Is there a possible grouping for these actions?

Q1.6 Could you imagine automating these actions?

Q1.7 How important is reproducibility for your task?

Q1.8 How important is speed in your process?

Q1.9 Are there continuously unsatisfied information needs regarding the KISTERS software? If yes
which are there?

Q1.10 Do you have experience with formal process modeling? If yes, please elaborate

Q1.11 Do you prefer a visual or textual modeling approach?

Q1.12 If your task is automated would you prefer to administer it yourself or could you imagine
outsourcing it to the CD department?

Figure A.1.: Interview Guides page 1 of 5

95

A. Interview Guides

Interview Guide 2 Stakeholder Analyse

Durchgeführt von: Bastian Greber

Requirements Continuous Delivery

Procedure: Explain the method and goals of this interview. Also inform about the fact that notes are
taken, and the interview is being taped. Ask general information (name, email, position) and start
interview.

Name:

Email:

Position:

G1: Please characterize and describe what continuous delivery is for you. What goals do you want
to achieve with continuous delivery?

Questions for participants that are active in software development

Q2.1 In which software development projects are you active? Please describe the projects shortly

Q2.2 How often do you release a new version for your software?

Q2.3 Please describe the current release process for your software project?

Q2.4 Do you currently use continuous delivery. If yes, please describe the pipeline

Q2.5 If you don’t use CD in any case please give an explanation/reason why not

Q2.6 How do you install/deploy your software? Is CD important for this?

Q2.7 Does the current CD solution satisfies your needs? Are there problems/challenges in the
current state? If yes, please describe the problems

Q2.8 Do you maintain your pipeline yourself or do you outsource this to the CD department

Q2.9 How do you model your CD? Do you prefer textual or graphical modeling? How would you
rate the modeling experience?

Q2.10 How often do you change/switch technologies?

Q2.11 Does this technology change impact your pipelines?

Q2.12 If you have already change technologies with CD impact, how was the experience? Was the
modification of existing CD easy? How long did this migration process took?

Q2.13 Do you have some information needs regarding your CD or your software in general?

Q2.14 How important is speed for you? Is there a time sensitive aspect in your CD environment?

Q2.15 Do you ever need to quickly access your CD system for information/actions?

Q2.16 Can you think of a use for a temporary non formal pipeline? If yes, in which way would you
prefer to interact with such a CD system?

Figure A.2.: Interview Guides page 2 of 5

96

Interview Guide 2 Stakeholder Analyse

Durchgeführt von: Bastian Greber

Q2.17 Are there automated tests for your software?

Q2.18 Are there big test suites for your project? What is the outcome/behavior of the pipeline if
one or more of these tests fail?

Q2.19 If a test out of a suite failed, what is the behavior of the pipeline for the next run? Are all
tests executed in the same order? How would you assess this situation?

Q2.20 Do you perform blue/green or canary deployment in your projects?

Q2.21 If blue/green/canary deployment is used, does your CD solution supports this? If yes, in
which way and how is the experience? If no, how would you qualify the use of CD for this kind of
actions?

Figure A.3.: Interview Guides page 3 of 5

97

A. Interview Guides

Interview Guide 3 Stakeholder Analyse

Durchgeführt von: Bastian Greber

Requirements Continuous Delivery

Procedure: Explain the method and goals of this interview. Also inform about the fact that notes are
taken, and the interview is being taped. Ask general information (name, email, position) and start
interview.

Name:

Email:

Position:

G1: Please characterize and describe what continuous delivery is for you. What goals do you want
to achieve with continuous delivery?

Questions for participants that are part of the continuous delivery team

Q3.1 What are the most important aspects/characteristics for a good continuous delivery solution
in your mind?

Q3.2 How many pipelines and/or projects are currently under your management in the continuous
delivery system?

Q3.3 How often do you create new pipelines for projects? What actions are involved, and which
problems occur?

Q3.4 How much effort is the pipelines maintenance? What actions are involved, and which
problems occur?

Q3.5 Who is developing and maintaining the delivery model and who has the process knowledge?
How is that knowledge transferred between the CD and project teams?

Q3.6 In which form is the current continuous delivery service provided to the development teams?
(e.g. via ticketing system or e-mail). How do they access/interact with their solution?

Q3.7 Did occur major technology changes in the CD environment recently? If yes, which one? How
much effort was it to solve these? How was the overall process?

Q3.8 Which current continuous delivery solution is used? Please elaborate on the reasons why.

Q3.9 Are there problems or challenges with the current continuous delivery solution? If yes,
please elaborate. Are there reoccurring errors/problems while providing the service for the rest of
the company?

Q3.10 Does the current continuous delivery solution provide all the information you need, or are
there unsatisfied information needs? Is the current representation of the continuous delivery
process or the state of the CD-system satisfying?

Figure A.4.: Interview Guides page 4 of 5

98

Interview Guide 3 Stakeholder Analyse

Durchgeführt von: Bastian Greber

Q3.11 Are there any planned improvement/expansions to the current continuous delivery system?
If yes, please describe them and explain the anticipated added value.

Q3.12 How important would you rate the speed-aspect of continuous delivery? Consider this first
for yourself and then for the development team.

Q3.13 How high would you assess the acceptance for managed continuous delivery solution?
(Management only done by the CD team)

Q3.14 How would you assess the possibility of project members to administer and create their
own pipelines and model their own processes? What would be a requirement to do so?

Q3.15 Please discuss graphical vs textual modeling of continuous delivery processes.

Q3.16 Can you think of any other tasks or environments where continuous delivery could be
useful, but is not currently in performed?

Q3.17 Please assess the following idea: The provisioning and management of whole systems is
performed via continuous delivery. Beginning from the provisioning of the required resources and
expanding to management of installed software.

Q3.18 Please assess the usefulness of non-formal (maybe temporary) pipelines. Consider the
usefulness for yourself and for the development teams

Q3.19 Please assess the usefulness of alternative communication methods with the continuous
delivery system. The focus here is a non-formal control and information flow (e.g. via chat).
Consider the usefulness for yourself and for the development teams

Figure A.5.: Interview Guides page 5 of 5

99

Bibliography

[BWZ15] L. Bass, I. Weber, and L. Zhu. DevOps: A Software Architect’s Perspec-
tive. SEI Series in Software Engineering. New York: Addison-Wesley, 2015.
isbn: 978-0-13-404984-7. url: http://my.safaribooksonline.com/
9780134049847 (cited on page 76).

[Cam] Camunda. Camunda. url: https://camunda.com/de/ (cited on page 84).
[Cap] Capgemini. Capgemini. url: https://www.capgemini.com (cited on

page 23).
[Che] ChefIO. ChefIO. url: https://www.chef.io/ (visited on 10/02/2019)

(cited on page 30).
[Che15] L. Chen. “Continuous delivery: Huge benefits, but challenges too”. In: IEEE

Software 32.2 (2015), pp. 50–54. issn: 07407459. doi: 10.1109/MS.2015.27.
arXiv: arXiv:1011.1669v3 (cited on pages 3, 4, 13).

[DMG07] P. Duvall, S. M. Matyas, and A. Glover. Continuous Integration: Improving
Software Quality and Reducing Risk. Addison-Wesley Signature Series. Upper
Saddle River, NJ: Addison-Wesley, 2007. isbn: 978-0-321-33638-5. url: http:
//my.safaribooksonline.com/9780321336385 (cited on page 4).

[Dör17] J. S. Döring. “An Architecture for Self-Organizing Continuous Delivery
Pipelines”. PhD thesis. 2017 (cited on pages 1, 6, 14, 15, 19).

[Eri] Ericsson. Ericsson. url: https://www.ericsson.com (cited on page 24).
[FF06] E. Freeman and E. Freeman. Entwurfsmuster von Kopf bis Fuß. Köln: O’Reilly,

2006. isbn: 3-89721-421-0 (cited on page 41).
[Fly06] B. Flyvbjerg. “When I first became interested in in-depth case-study research”.

In: Qualitative Inquiry 12.2 (2006), pp. 219–245. url: http://flyvbjerg.
plan.aau.dk/MSFiveMis9.0SageASPUBL.pdf (cited on page 9).

[FM10] R. Feldt and A. Magazinius. “Validity threats in empirical software engineering
research - An initial survey”. In: SEKE 2010 - Proceedings of the 22nd
International Conference on Software Engineering and Knowledge Engineering
(2010), pp. 374–379 (cited on page 47).

[HA05] S. E. Hove and B. Anda. “Experiences from conducting semi-structured
interviews in empirical software engineering research”. In: Proceedings - Inter-
national Software Metrics Symposium 2005.October 2005 (2005), pp. 203–212.
issn: 15301435. doi: 10.1109/METRICS.2005.24 (cited on pages 10, 11,
53).

101

http://my.safaribooksonline.com/9780134049847
http://my.safaribooksonline.com/9780134049847
https://camunda.com/de/
https://www.capgemini.com
https://www.chef.io/
https://doi.org/10.1109/MS.2015.27
https://arxiv.org/abs/arXiv:1011.1669v3
http://my.safaribooksonline.com/9780321336385
http://my.safaribooksonline.com/9780321336385
https://www.ericsson.com
http://flyvbjerg.plan.aau.dk/MSFiveMis9.0SageASPUBL.pdf
http://flyvbjerg.plan.aau.dk/MSFiveMis9.0SageASPUBL.pdf
https://doi.org/10.1109/METRICS.2005.24

Bibliography

[HF10] J. Humble and D. Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. 2010, p. 497. isbn: 978-
0-321-60191-9. doi: 10.1007/s13398-014-0173-7.2. arXiv: arXiv:
1011.1669v3 (cited on pages 3, 4).

[Jen] Jenkins. Jenkins CI. url: https://jenkins.io/ (visited on 10/02/2019)
(cited on pages 14, 30).

[JGi] JGit. JGit. url: https://www.eclipse.org/jgit/ (cited on page 42).
[JH07] Jochen Ludewig and Horst Lichter. Software Engineering: Grundlagen, Men-

schen, Prozesse, Techniken. Dpunkt.Verlag GmbH, 2007 (cited on page 3).
[Kle+15] S. Klepper et al. “Introducing Continuous Delivery of Mobile Apps in a

Corporate Environment: A Case Study”. In: Proceedings - 2nd International
Workshop on Rapid Continuous Software Engineering, RCoSE 2015 (2015),
pp. 5–11. doi: 10.1109/RCoSE.2015.9 (cited on page 23).

[LIL17] E. Laukkanen, J. Itkonen, and C. Lassenius. “Problems, causes and solutions
when adopting continuous delivery—A systematic literature review”. In:
Information and Software Technology 82 (2017), pp. 55–79. issn: 09505849.
doi: 10.1016/j.infsof.2016.10.001 (cited on pages 1, 3, 4, 14).

[Lim] LimeSurvey. LimeSurvey. url: https://www.limesurvey.org/ (cited
on page 63).

[LPA15] E. Laukkanen, M. Paasivaara, and T. Arvonen. “Stakeholder Perceptions
of the Adoption of Continuous Integration-A Case Study”. In: Proceedings
- 2015 Agile Conference, Agile 2015 Ci (2015), pp. 11–20. doi: 10.1109/
Agile.2015.15 (cited on pages 13, 24, 25).

[Mav] Maven. Maven. url: https://maven.apache.org/ (cited on page 30).
[Nun18] T. Nuntapramote. “Adapting Regression Test Optimization for Continuous

Delivery”. PhD thesis. 2018 (cited on pages 1, 6, 60).
[Ple15] C. Plewnia. “A Framework for Regression Test Prioritization and Selection

Ein Framework für die Priorisierung und Selektion von Regressionstests”.
PhD thesis. 2015 (cited on page 60).

[RD03] R. W. Root and S. Draper. “Questionnaires as a software evaluation tool”.
In: December (2003), pp. 83–87. doi: 10.1145/800045.801586 (cited on
page 11).

[RH09] P. Runeson and M. Höst. “Guidelines for conducting and reporting case study
research in software engineering”. In: Empirical Software Engineering 14.2
(2009), pp. 131–164. issn: 1382-3256. doi: 10.1007/s10664-008-9102-8.
url: http://link.springer.com/10.1007/s10664-008-9102-8
(cited on pages 9–11, 15–17, 19, 91).

[Rob02] C. Robson. “Real World Research, 2th Edition”. In: 2002 (cited on page 9).

102

https://doi.org/10.1007/s13398-014-0173-7.2
https://arxiv.org/abs/arXiv:1011.1669v3
https://arxiv.org/abs/arXiv:1011.1669v3
https://jenkins.io/
https://www.eclipse.org/jgit/
https://doi.org/10.1109/RCoSE.2015.9
https://doi.org/10.1016/j.infsof.2016.10.001
https://www.limesurvey.org/
https://doi.org/10.1109/Agile.2015.15
https://doi.org/10.1109/Agile.2015.15
https://maven.apache.org/
https://doi.org/10.1145/800045.801586
https://doi.org/10.1007/s10664-008-9102-8
http://link.springer.com/10.1007/s10664-008-9102-8

Bibliography

[SLD18] A. Steffens, H. Lichter, and J. S. Döring. “Designing a next-generation con-
tinuous software delivery system”. In: (2018), pp. 1–7. issn: 02705257. doi:
10.1145/3194760.3194768 (cited on pages 5, 8).

[SWC] SWC. SWC Aachen. url: https://www.swc.rwth-aachen.de/ (visited
on 10/04/2019) (cited on page 6).

[Vir15] M. Virmani. “Understanding DevOps & bridging the gap from continuous
integration to continuous delivery”. In: 5th International Conference on
Innovative Computing Technology, INTECH 2015 Intech (2015), pp. 78–82.
doi: 10.1109/INTECH.2015.7173368 (cited on page 3).

[Wil18] N. Willig. “Implementierung von Continuous Delivery mittels BPMN Im-
plementation of Continuous Delivery through BPMN”. PhD thesis. RWTH
Aachen, 2018 (cited on pages 1, 6, 14, 83).

[Yin94] R. K. Yin. “CASE STUDY RESEARCH Design and Methods Thousand
Oaks: Sage Publications (second edition)”. In: (1994). url: http://www.
madeira-edu.pt/LinkClick.aspx?fileticket=Fgm4GJWVTRs{\%
}3D{\&}tabid=3004 (cited on pages 10, 15, 18, 19).

[Zsu00] R. B. Zsuzsa Varvasovszky. “How to do (or not to do) A Stakeholder Analysis”.
In: Health Policy and Planning (2000) (cited on page 10).

103

https://doi.org/10.1145/3194760.3194768
https://www.swc.rwth-aachen.de/
https://doi.org/10.1109/INTECH.2015.7173368
http://www.madeira-edu.pt/LinkClick.aspx?fileticket=Fgm4GJWVTRs{\%}3D{\&}tabid=3004
http://www.madeira-edu.pt/LinkClick.aspx?fileticket=Fgm4GJWVTRs{\%}3D{\&}tabid=3004
http://www.madeira-edu.pt/LinkClick.aspx?fileticket=Fgm4GJWVTRs{\%}3D{\&}tabid=3004

Bibliography

105

	Introduction
	Thesis Structure

	Background and Terminology
	Continuous Delivery
	Deployment Pipeline
	JARVIS
	Empirical Software Engineering

	Case Study Design
	Problem Statement
	Goals and Contributions
	Case Study Structure
	Objectives and Research Questions
	Case Studies
	Summary

	Related Work
	Case Study: Introducing Continuous Delivery of Mobile Apps in a Corporate Environment
	Stakeholder Perceptions of the Adoption of Continuous Integration

	Case Study 1: JARVIS In A Production Environment
	Study Design And Execution
	KISTERS Reference Project
	Findings o1.R1
	Findings o1.R2
	Findings o1.R3
	Findings o1.R4
	Classification of activity services
	Composition of activities
	Discussion and Summary

	Case Study 2: CD Stakeholder And Requirements
	Study Design And Execution
	Continuous Delivery Stakeholder
	Continuous Delivery Requirements
	Continuous Delivery Survey
	Discussion and Summary

	Case Study 3: Continuous Delivery Modelling
	Study Design And Execution
	Process-Based modelling with BPMN
	Process-Based modelling with DSL
	State-Based modelling with DSL
	Discussion and Summary

	Summary and Future Work
	Summary
	Future Work

	Interview Guides
	Bibliography

