
The present work was submitted to
the Research Group
Software Construction

of the Faculty of Mathematics,
Computer Science, and
Natural Sciences

Master Thesis

An Architecture for
Self-Organizing Continuous

Delivery Pipelines

presented by

Jan Simon Döring

Aachen, January 4, 2018

Examiner

Prof. Dr. rer. nat. Horst Lichter

Prof. Dr. rer. nat. Bernhard Rumpe

Supervisor

Dipl.-Inform. Andreas Steffens

Statutory Declaration in Lieu of an Oath

The present translation is for your convenience only.
Only the German version is legally binding.

I hereby declare in lieu of an oath that I have completed the present Master’s thesis entitled

An Architecture for Self-Organizing Continuous Delivery Pipelines

independently and without illegitimate assistance from third parties. I have use no other than
the specified sources and aids. In case that the thesis is additionally submitted in an electronic
format, I declare that the written and electronic versions are fully identical. The thesis has not
been submitted to any examination body in this, or similar, form.

Official Notification

Para. 156 StGB (German Criminal Code): False Statutory Declarations
Whosoever before a public authority competent to administer statutory declarations falsely makes
such a declaration or falsely testifies while referring to such a declaration shall be liable to
imprisonment not exceeding three years or a fine.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to
Negligence
(1) If a person commits one of the offences listed in sections 154 to 156 negligently the penalty
shall be imprisonment not exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time.
The provisions of section 158 (2) and (3) shall apply accordingly.

I have read and understood the above official notification.

Eidesstattliche Versicherung

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Masterarbeit mit dem Titel

An Architecture for Self-Organizing Continuous Delivery Pipelines

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

Aachen, January 4, 2018 (Jan Simon Döring)

Belehrung

§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche
Versicherung falsch abgibt oder unter Berufung auf eine solche Versicher ung falsch aussagt, wird
mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt
(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen
worden ist, so tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.
(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die
Vorschriften des § 158 Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen.

Aachen, January 4, 2018 (Jan Simon Döring)

Acknowledgment

I would first like to thank Prof. Dr. rer. nat. Horst Lichter for the possibility of writing
my master thesis at his chair. I also thank him and Prof. Dr. rer. nat. Bernhard Rumpe
for reviewing this thesis.

Special thanks go to my supervisor, Dipl-Inform. Andreas Steffens for his input and
continuous feedback.

Furthermore I thank everybody at Traveltainment for their support during the case study,
especially Manual Tilp, Oliver Dickmeis and Arne Czerwinksi, who assisted me whenever
possible.

Finally, I thank my parents for providing me with unfailing support throughout this
thesis. This accomplishment would not have been possible without them. Thank you.

Jan Simon Döring

Abstract

Attracted by the competitive advantages of being able to release software quickly and
reliable, many organizations have adopted Continuous Delivery (CD) practices in recent
years. However, both academia and industry have reported on several adoption challenges.
One major challenge are the infrastructure and tools supporting Continuous Delivery with
existing delivery systems being inflexible and require lots of technical and process-related
knowledge. This thesis introduces a microservice-based architecture for flexible and
maintainable delivery systems which provides means to reduce the knowledge required
through analyzing, complementing and optimizing the delivery model. While at the same
time providing extensive validation support. A case study in an industrial context showed
promising results and confirmed the practicability of our approach. The prototype’s
delivery process adoptions thereby provided up to 3,31 times faster feedback times as
compared with the manually modeled process. Overall, the architecture provides a
flexible foundation for further research in various areas, ranging from modeling tools
with auto-completion and recommendation support over smell and anti-pattern detection
mechanisms to the development of a holistic delivery ecosystem.

Contents

1. Introduction 1
1.1. Thesis Structure . 2

2. Foundations 5
2.1. Software Delivery Process . 5
2.2. Continuous Delivery . 6
2.3. Terminology . 10
2.4. Activity Classification . 14
2.5. Summary . 15

3. Problem Statement 17
3.1. Challenges & Scope . 17
3.2. Architectural Requirements . 19
3.3. Summary . 20

4. Related Work 21
4.1. Spinnaker . 21
4.2. Concourse . 24
4.3. GitLab CI/CD . 28
4.4. Summary . 32

5. Domain Driven Design 35
5.1. Strategic Design . 35
5.2. Tactical Design . 49
5.3. Summary . 56

6. Architecture Overview 59
6.1. Logical View . 60
6.2. Development View . 61
6.3. Process View . 64
6.4. Summary . 72

7. Core Components & Services 73
7.1. Activity Specification Registry . 73
7.2. Model Service . 75
7.3. Process Planner . 80
7.4. Orchestrator . 87
7.5. Activity Service . 90

i

7.6. Summary . 99

8. Implementation 101
8.1. Prototype - Scope & Technologies . 101
8.2. Pipeline Description Language . 104
8.3. Process Planner . 107
8.4. Activity Service Framework . 111
8.5. Delivery System Management . 113
8.6. Summary . 119

9. Evaluation 121
9.1. Case Study . 121
9.2. Architectural Requirements . 131
9.3. Discussion . 134

10.Conclusion & Future Work 139
10.1. Conclusion . 139
10.2. Future Work . 141

A. Appendix 145
A.1. TT Web Service - Manual Model . 145
A.2. TT Web Service - Model-Planner Model 147
A.3. TT Web Service - Project-Planner Model 149

Bibliography 151

List of Tables

2.1. Software Delivery Process Activities . 13

4.1. Requirement fulfillment analysis . 32

5.1. Delivery Process Activities . 39

9.1. Manual vs Project-planned Delivery Process execution duration 128
9.2. Test Failure Seeding - Execution effects 129

iii

List of Figures

2.1. ISO 9001 Core Delivery Processes (cf. [Som11]) 5
2.2. Relations between Software Delivery Process, Model and System 6
2.3. Static relation between Software Delivery terms 11
2.4. Delivery Process Building Blocks according to [Her15] 15

4.1. Spinnaker Continuous Delivery (from [Net15]) 22

5.1. Delivery System Core Domain . 36
5.2. Activity Classification - Overview . 38
5.3. Core Domain - Explanatory Model . 43
5.4. Delivery System - Context Map . 46
5.5. External Delivery Model Aggregate . 49
5.6. Delivery Process Aggregate . 50
5.7. Delivery Process Execution Aggregate . 51
5.8. Domain Event Hierachy . 52
5.9. Activity Specification . 56

6.1. Logical View - Bounded Context Service Mapping 60
6.2. Layers and services in the delivery system architecture 63
6.3. Architecture Control Flow . 64
6.4. Simplified Message Flow in the Delivery System 65
6.5. External Model Registration Process . 67
6.6. Abstract Import Process . 68
6.7. Abstract Planning Process . 69
6.8. Delivery Process Execution Process . 70

7.1. Activity Specification Registry - Component View 74
7.2. Model Service Component View . 76
7.3. Model Service - Model Registration . 78
7.4. Model Service - Model Execution . 79
7.5. Process Planner Component View . 83
7.6. Process Planner - Planner Selection . 84
7.7. Process Planner - Planning . 86
7.8. Orchestrator Component View . 88
7.9. Delivery Process Execution Overview . 89
7.10. Activity Service Component View . 91
7.11. Activity Service - Activity Design . 92
7.12. Activity Service - Orchestrator Polling Consumer 95

v

7.13. Activity Service - Activity Worker . 97

8.1. Prototype Overview - Technologies and Frameworks 102
8.2. Project-based Planning . 110
8.3. Process Planner - Validation . 111
8.4. Management Tool - Activity Inventory . 113
8.5. Management Tool - Activity Specification 114
8.6. Management Tool - Model Import . 115
8.7. Management Tool - Model Preview . 116
8.8. Management Tool - Plan Preview . 116
8.9. Management Tool - Execution Overview 117
8.10. Management Tool - Execution Failed . 118

9.1. IBE Web Service - Maven Module Dependency Tree 122
9.2. Case Study - Delivery Process . 125
9.3. Model-planned Delivery Process . 126
9.4. Project-planned Delivery Process . 126

List of Source Codes

1.1. Jenkins Pipeline as Code Example (taken from [HP17]) 2

4.1. Concourse PDL . 25
4.2. Gitlab - Pipeline Description Language . 29

5.1. At least one transformation must exist . 42
5.2. No circular dependencies between activities 43
5.3. Logical dependency constrains stage . 43

7.1. DeliveryModel Command API specification 77
7.2. Activity Service Execution API . 94

8.1. Sample Delivery Model Instance . 107
8.2. Manual Delivery Model . 108
8.3. Self-Organized Delivery Model . 108
8.4. Assemble Input Schema . 109
8.5. Checkout Result Schema . 109
8.6. Maven - Activity Starter Dependency . 111
8.7. Example Activity Implementation using our framework 112
8.8. Activity Configuration and Result Class 113

9.1. Exemplary difference between manual and self-organizing 127

A.1. Manual external pipeline model . 145
A.2. Model Planner external pipeline model . 147
A.3. Project Planner external pipeline model 149

vii

1. Introduction

Contents

1.1. Thesis Structure . 2

An important activity in the Software Development Life Cycle is the delivery of the
developed software [IEE02]. Depending on the software development approach used, it
can be performed iteratively. Agile Software Development (ASD) is such an iterative
approach to gain short customer feedback cycles and to quickly respond to changing
requirements. As stated in the Agile Manifesto, working software should be delivered
frequently, "from a couple of weeks to a couple of months" [Bec+01]. With the increasing
adoption of ASD, practices like Continuous Integration became more and more main-
stream [Rod+12]. A recent evolutionary step called "Continuous Software Engineering"
[Bos14], extends ASD to approaches, which allow organizations "to develop, release and
learn from software in rapid parallel cycles, such as hours, days or very few weeks" [Ber15].
Central to this holistic approach is Continuous Delivery (CD), "a software development
discipline where [...] software [is built] in such a way that the software can be released to
production at any time" [Mar13b]. A survey from 2015 finds an increasing adoption of
Continuous Delivery by organizations, calling Continuous Delivery "the new normal for
software development" [Per15].

However, adopting Continuous Delivery is challenging. One major challenge are the
infrastructure and the tools supporting Continuous Delivery as reported by literature
([CBA15], [LIL17]) and indicated by the continuous development of new delivery sys-
tem. Especially big, successful companies like Pivotal, Netflix, Facebook and Google
build specific systems and toolchains tailored for their needs ([Pivd], [Neta], [Faca], [Goo]).

From a technological perspective, delivery systems need to integrate lots of different tools
and technologies and need to cope with evolution, which is a major challenge for existing
system. The ThoughtWork Technology Radar highlights the in-maturity of existing
delivery systems and suggests to not use a single system across teams in order to prevent
conflicts arising from shared tooling and infrastructure [Tho17].

From a modeling perspective, i.e. the definition of the delivery process activities to be
executed, existing delivery systems in principle force users to copy and paste shell snippets
into the GUI. This not only introduces serious problems in terms of maintainability and
reuseability, but also leads to SnowflakeServer [Mar12]. The second generation delivery

1

1. Introduction

systems tackle those problems by following the infrastructure as code [Mar16] movement
and keep all delivery process modeling related information in a single, version-controlled
file. Thereby calling this approach pipeline as code.

Taking a look at listing 1.1, an example pipeline as code model from Jenkins [Clo],
a popular delivery system, indicates still existing problems with this approach:

1 node {
2 stage(’checkout git’) {
3 git branch: ’master’, credentialsId: ’GitCredentials’,

url: ’ssh://git@myScmServer.com/repos/myRepo.git’
4 }
5
6 stage(’build’) {
7 sh ’mvn clean package’
8 }
9

10 stage(’deploy dev’){
11 sshagent([’RemoteCredentials’]) {
12 sh "scp target/*.jar

root@${devServer}:/opt/jenkins-demo.jar"
13 sh "ssh root@${devServer} nohup java

-Dserver.port=${devServerPort} -jar
/opt/jenkins-demo.jar &"

14 }
15 }
16 }

Source Code 1.1: Jenkins Pipeline as Code Example (taken from [HP17])

Beside some basic abstractions, users must define every detail. Thereby, they not only
need to have deep technical tool knowledge as they are primarily forced to define raw
shell commands (see line 13 for example), they are also required to have profound process-
related knowledge to define the right execution order.

Considering that the delivery process already is defined "as code", fundamental soft-
ware development practices like validation, code completion or refactoring support are
completely missing, which ultimately makes the delivery process modeling error prone
and hard to maintain. Therefore, this thesis tries to tackle the aforementioned issues
by means of a flexible and maintainable delivery system architecture that allows both
to reason about and to optimize a modeled delivery process, which, as a consequence,
enables validation support and reduces the required amount of technical knowledge.

1.1. Thesis Structure
Clear terminology is important for discussing a topic. Therefore, chapter 2 introduces
required foundations and defines central terms. In the course of this, the ambiguity of

2

1.1. Thesis Structure

the Deployment Pipeline term is highlighted and alternative terms are defined. Based
on the clear terminology, chapter 3 then summarizes the problems mentioned above,
identifies related challenges and defines the thesis scope. Guided by these challenges and
the scope, it derives requirements which need to be met in order to tackle the challenges.
Chapter 4 then evaluates existing delivery systems against these requirements. Taking
into account that they were derived from problems which existing delivery systems face,
chapter 4 only evaluates bleeding edge delivery systems to see if the requirements still
impose problems. Considering the complexity and ambiguity in the software delivery
domain, chapter 5 then identifies and details important domain concepts incorporating
on the terminology defined in chapter 2. Chapter 6 maps these concepts to a high-level
architecture, whose central software components are then detailed in chapter 7. Based on
the proposed design, chapter 8 provides a corresponding prototypical implementation and
a description language for defining a delivery process. In chapter 9 both the prototype and
the description language are used to conduct a case study and to evaluate the concepts
against the requirements. Chapter 10 concludes this thesis.

3

2. Foundations

Contents

2.1. Software Delivery Process . 5
2.2. Continuous Delivery . 6

2.2.1. Principles . 7
2.2.2. Benefits . 7
2.2.3. Deployment Pipeline . 8
2.2.4. Software Delivery System Requirements 8
2.2.5. Principles . 9

2.3. Terminology . 10
2.3.1. Stages & Activities . 12

2.4. Activity Classification . 14
2.5. Summary . 15

This chapter introduces required foundations for the remainder of this thesis.

2.1. Software Delivery Process

Product delivery
processes

Business
acquisition

Design and
development

Test

Service and
support

Production and
delivery

Figure 2.1.: ISO 9001 Core Delivery Processes (cf. [Som11])

Fundamental to this thesis is the Software Delivery Process, which this section therefore
defines. The ISO 9001 standard specifies five core processes related to product delivery as
depicted in figure 2.1. These processes match the software life cycle phases (requirements
phase, design phase, implementation phase, test phase, installation and checkout phase)

5

2. Foundations

Software Delivery
Process

Software Delivery
Process

Software Delivery
Model

Software Delivery
Model

Software Delivery
System

Software Delivery
System

executesdescribes

configures

Figure 2.2.: Relations between Software Delivery Process, Model and System

(cf. [LL10]). Thus, the software delivery process can be defined as the process of getting a
software product to market. Since this thesis only considers certain phases of the software
life cycle, i.e. from implementation to installation in production, we - similar to [Bar+10]
- slightly adapt the definition to our purpose and define:

The Software Delivery Process is the process comprising the build, deploy,
test and release process to get a software product from development to
installation in production.

Furthermore, we define

A Software Delivery System (SDS) is an integrated software system
implementing one or multiple software delivery processes.

Software Delivery Systems usually do not statically implement a single software delivery
process. Instead, they provide variability to allow for different delivery processes, i.e.
they can be configured. This configuration is done by means of a Software Delivery
Model. We define

A Software Delivery Model describes a Software Delivery Process.

Following DevOps practices like infrastructure-as-code [BWZ15], modern Software De-
livery Systems use a domain specific language to define the Software Delivery Process
as-code. This language can be both declarative or imperative. We call such languages
Software Delivery Process Description Languages (SDPDL). Figure 2.2 provides
summarizes these definitions by providing their static relations.

2.2. Continuous Delivery
Humble and Farley coined the term Continuous Delivery with their book Continuous
Delivery - Reliable Software Releases Through Build, Test and Deployment automation
(see [HF10]). The book title already provides a glimpse what Continuous Delivery is:

6

2.2. Continuous Delivery

Continuous Delivery is a set of practices (see section 2.2.1) that aims to deliver
value to customers rapidly, reliably and repeatedly with minimal manual
overhead (cf. [HF10]).

Continuous Delivery thereby bases on Continuous Integration (CI), an agile practice
that provide means to ensure to have a shippable product available that passed at least
unit and integration tests [FS14].

2.2.1. Principles

At it’s heart, Continuous Delivery relies on five principles [HF10]:

Automation As much as possible of the Software Delivery Process should be automated.
If it is not automated, it is not repeatable. In addition, manual steps are error-prone.
Therefore automation helps to delivery value reliably and repeatably.

Work in small batches Small batches help to keep both the amount of changes small
and the duration between releases short, i.e. the overall delta between the old and
the new version is small, which reduces the risk associated with releasing since it is
easier to overlook changes and to roll back in case of a problem.

Build quality in Adopted from the lean movement, "build quality in" advocates to use
Continuous Integration and comprehensive automated testing in order to catch
defects as early as possible in the process to reduce follow-up costs.

Everyone is responsible for the Delivery Process This principle is similar to the Dev-
Ops driven encouraging of collaboration. It states, that enterprises make money by
delivering their products to customers, thus everybody should care for the Delivery
Process. Blaming each other, when something goes wrong does not help to deliver
the product.

Continuous Improvement The delivery process evolves with the application. Similar
to the Deming cycle (plan, do, study, act), the whole team should retrospect the
delivery process.

2.2.2. Benefits

Following Continuous Delivery principles provides several benefits. Rodriguez et al.
identified the following in their systematic mapping study [Rod+17]:

Shorter time-to-market Continuous Delivery practices allow to deliver features faster,
which helps in responding to changing conditions.

Improved release reliability Continuous Delivery practices detect errors early in the
development process, which allows to quickly fix them. In combination with
repeatability it helps to release more reliability.

7

2. Foundations

Improved developer productivity Developers have fewer struggles in releasing software
since Continuous Delivery enables the to release by means of pushing a button.
Thus, developers can concentrate on other tasks.

Continuous feedback Releasing features early and often allows to gather feedback from
customers frequently.

2.2.3. Deployment Pipeline

The Deployment Pipeline is a central part of Continuous Delivery (cf. [Mar13c]). Humble
and Farley coined the term as "an automated manifestation of your process for getting
software from version control into the hands of your users." [HF10], i.e. the deployment
pipeline is a software project that automates the process. At other places, Humble
and Farley describe the deployment pipeline as a model ("the process modeled by the
deployment pipeline"[HF10]). Bass et al. identify similar dimensions: First, the DevOps
pipeline itself is a piece of software [...]. Second, the DevOps pipeline has characteristics
of a process. [BWZ15].

We think that these different dimensions lead to ambiguity and thus complicate
understanding when using the deployment pipeline term as is. In addition, the pipeline
metaphor is to linear in our opinion and does not embrace the potential parallelization
of software delivery process activities. Therefore, we try to stick to our dedicated terms
defined in section 2.1 in the remainder of this thesis. Thereby, we use Software Delivery
and Delivery interchangeable. Since literature uses the term pipeline, we sometimes need
to fall-back to this term too. Summing up, a Deployment Pipeline has three dimensions:

• A deployment pipeline models a delivery process. Here, we use Software Delivery
Model (see section 2.1), abbreviated as Delivery Model, instead of deployment
pipeline.

• A deployment pipeline is a software product. Here, we use Software Delivery
System (see section 2.1), abbreviated Delivery System, instead of deployment
pipeline.

• A deployment pipeline itself has characteristic of a process. Here, we use Software
Delivery Process, abbreviated Delivery Process, instead of deployment pipeline.

In Section 2.1 we introduced the term Delivery Process Description Language (cf.
section 2.1). To ease understanding outside this thesis context, we use Pipeline Description
Language (PDL) as a synonym.

2.2.4. Software Delivery System Requirements

Humble and Farley define the following requirements for a Software Delivery System
[HF10]:

8

2.2. Continuous Delivery

Provide visibility The Software Delivery System implements the Software Delivery pro-
cess. One important requirement of the Software Delivery System therefore is to
make this process visible both statically and dynamically to everyone involved
(Bass defines developers and operators as delivery system stakeholder [BWZ15]).
This supports collaboration and eases process improvement. [HF10]

Provide feedback The Software Delivery System executes the Software Delivery Process
on every commit while automating as much as possible. Thus, problems can be
identified early on in the process. Important goal of the Delivery System therefore
to provide feedback on the execution to enable teams to resolve problems as fast as
possible.

Enable deployment at will A third requirement of the Software Delivery System is
to enable Continuous Delivery, i.e. to provide the capability of deploying in a
self-service manner.

Generalizing these requirements, a Software Delivery System provide means to both
improve the Software Delivery Process (feedback and visibility) and to improve the
product quality (deployment at will requires to build quality in).

2.2.5. Principles

This section briefly discusses important Software Delivery practices & principles:

Build artifact once [HF10] In the previous section a central Delivery System quality
was discussed, namely to gain confidence that a modification is ready for release.
Therefore a series of tests is performed. If they do not test exactly the same artifact,
but instead built the artifact repeatedly, there is no confidence in the artifact’s
release fitness, as each built might introduce some differences.

Deploy the same way to every environment [HF10] Beside gaining confidence about
the artifact release fitness (cf. build once principle), it is also important to gain
confidence in the deploy process. Therefore the Delivery System should deploy the
same way to every environment to minimize the error potential.

Keep everything in version control [HF10] Everything required to re-create or rollback
the entire system (delivery system configuration & related environments) to a
certain snapshot should be stored in version control. This way the delivery process
is controllable and potentially reproducible and snowflake-servers [Mar12] are
prevented.

Smoke-Test the deployment [HF10] When the Delivery System deploy an application,
Humble advocates to smoke-test the application and services the application depends
on, to make sure that the application is in a stable state.

9

2. Foundations

Propagate changes instantly [HF10] Continuity and speed are central continuous de-
livery themes (cf. section 2.2. Therefore it is necessary that every change instantly
propagates through the Delivery Process activities instead on relying on a fixed
schedule.

Fail Fast [Mar13a] In system design fail fast is the property of the system to abort
normal operation if some unexpected conditions occurs instead of trying to continue
the execution in a possibly flawed stated [Sho04]. This property is important for
Delivery Systems. They shouldn’t waste resources. Instead they should run tests
as early as possible to detect defects.

Parallel Workflow, keep critical path short [Ken15] [Her15] A requirement for the pre-
vious principle (propagate changes instantly) is to parallelize as much as possible
to keep the delivery process duration short and to provide fast feedback.

Immutable infrastructure [Kim17] The idea of immutable infrastructure is to produce
images, that do not change during runtime. If a change should be made to this
image, a new version is deployed. This way, the delivery process is as deterministic
as possible, greatly improving reproducibility and traceability.

Use deployment strategies [Kim17] The Delivery System is not only about orchestra-
tion of tools. One important aspect is the deployment itself. A delivery system
should offer different deployment strategies taking advantage of the cloud. The
following briefly describes the two common ones:
Blue / Green deployment : This strategy assumes two independent stacks with

a load balancer in front. One stack serves the currently deployed version of
our system and the other one is idle. With a release, the new version gets
deployed to the idle stack and the traffic is switched to this stack, so that the
previously active stack becomes idle. To rollback, one just has to adapt the
load balancer and switch traffic to the old stack. (cf. [Mar10])

Rolling Upgrade : The rolling upgrade strategy incrementally replaces instances
of the old version with instances of the new versions and shifts the traffic
accordingly. For example, first 5% of the instances are replaced, then 20%,
50% and finally 100%. Between each cut-over a validation gate can decide if
the new instances are working as expected. (cf. [Kim17], [BWZ15])

Operational integration [Kim17] During the delivery process execution, lots of data
(e.g. relevant commits, configuration changes, which tests were run) is generated,
which might help operations in resolving issues that occur during runtime. This
practice therefore requires the delivery system to make these data easily accessible.

2.3. Terminology
Figure 2.3 distills central Software Delivery concepts and their static relations based on
our definition of a Software Delivery System and the Software Delivery Model. Because

10

2.3. Terminology

Software Delivery
System

Software Delivery
System

Software Delivery
Process

Software Delivery
Process

StageStage

ActivityActivity

contains

consists of

ArtifactArtifact

producesproducesproduces

automatesautomates

EnvironmentEnvironment

DeploymentDeployment

ExecutionExecution

Figure 2.3.: Static relation between Software Delivery terms

few research exists in this area, the concepts were extracted from field reports and existing
tools [Tho][EBM16][Pivc][Spi][FFB13].

Activity Activities are the units of work in the Software Delivery Process. They constitute
relevant functions in the delivery process like compiling or testing. Activities might
be performed in parallel or sequentially depending on their dependencies on each
other and the capabilities of the Software Delivery System.

Stages Stages are a collection of activities that semantically belong together. Each
stage is uniquely identifiable by its name. Borrowed from stage-gate processes
[Cam], a stage in the Software Delivery Process should end with a decision point
to ensure that certain requirements (e.g. quality related) are met. This (manual
or automatic) decision point is called quality gate [And14]. A typical stage is the
build stage that comprises compile and unit tests activities. Section 2.3.1 discusses
further stages.

Artifacts As the Software Delivery System automates the Software Delivery Process, its
activities inherently deal with artifacts, e.g the source code or the compiled binary.
Depending on the activity the Software Delivery System infrastructure either stores
(if the activity execution produces an new artifact) or provides the artifact.

11

2. Foundations

Environment In Software Delivery an environment describes the context to which an
artifact is deployed. An environment is defined through the servers hardware
configuration and configuration of the operating system and supporting infrastruc-
ture (e.g. messaging systems, logging) [HF10]. Bass differentiates four different
environments [BWZ15]:
Pre-commit : The pre-commit environment is the developer’s computer. Often

only a certain module of the system is used and external systems are mocked.
Build and integration testing : The build and integration testing environment is

used to build and integrate the system and to perform integration testing.
UAT/staging/performance testing : The staging environment is as similar to the

production environment as possible. It is used to perform user acceptance or
stress testing.

Production : The production environment reflects the production / live system,
which serves the end-users, respectively clients.

Following Continuous Delivery practices, these environment should get increasingly
(from pre-commit to staging) more similar to production. In addition, they should
be easily reproduceable (cf. infrastructure as code).

2.3.1. Stages & Activities
Stages and activities are central concepts in the Software Delivery domain. As described
above, a stage represents a certain phase in the software delivery process (cf. section 2.1)
and activities represent the corresponding process activities for this phase. While the
stages and activities vary between projects and organization from an implementation
perspective, they are similar on a conceptual level [HF10]. Bass argues, that Software
Delivery systems standardizes the application life cycle [BWZ15]. Therefore a common
stage sequence can be defined. Table 2.1 depicts these stages and their related activities
extracted from literature (cf. [HF10] [AM16] [Leh+15] [Rod+17] [BWZ15]).

Build Stage The build stage ensures that the system to be delivered works at the
technical level. For this reason, the build stage compiles the code, runs unit tests
and statically analyses the code (cf. [HF10]). Finally a deployable assembly is baked.
Baking integrates the compiled binary and configuration and bootstraps them onto
a self-contained package with all required dependencies. Bass differentiates four
types of packaging possibilities [BWZ15]:
Runtime-specific packages require a runtime to be executed. Examples are Java

Archives (they need the Java Virtual Machine) or Web Application Archives
(they require an Application Server).

Operating System Packages are Operating System-specific as the name implies.
They cannot be installed or executed on an operating system different from
the target one. Examples are Debian (.deb) packages or a Microsoft Installer
(.msi).

12

2.3. Terminology

Number Stage Activity
1 Build Compile

Bake
Unit Tests
Static Analysis

2 System Testing Integration & System Testing
Environment Provision
Deployment of binaries
Acceptance testing

3 Capacity Performance Testing
Security Testing
Environment Provision
Deployment of binaries

4 User Acceptance User Acceptance Testing
Exploratory Testing
Environment Provision
Deployment of binaries

5 Release Environment provision
Configuration of supporting infrastructure (e.g.
Monitoring)
Data Migration
DNS Modification

6 Teardown Undeployment

Table 2.1.: Software Delivery Process Activities

13

2. Foundations

VM images are Operating System independent. They virtualize the hardware,
contain everything required to run the application and isolate the process and
files from the host system. They can also be used as a template for other
virtual machines. However, they require an compatible hypervisor to run.

Lightweight containers are like VM images, i.e. they are self-contained and isolate
the application from the host system. In contrast to VM images, they do not
require a hypervisor. Instead, they make use of certain kernel features, which
reduces overhead, load and size.

System Testing Stage The system testing stage assures compliance with (mainly) func-
tional requirements by performing automated integration and system tests. Since
these kind of tests require a running system, the system testing stage also contains
activities to configure, respectively to provision an environment for executing these
tests.

Capacity Stage The capacity stage asserts that the system fulfills non-functional require-
ments [HF10]. In this stages, eventual long running (but still automated) capacity
(e.g. performance) tests are executed.

User Acceptance Stage While the previous two stages dealt with verification, i.e. the
product conformance with its specification, the User Acceptance Stage primarily is
about validation, i.e. the product conformance with the customer’s expectation (cf.
[Boe79]). This stage therefore comprises User Acceptance tests as well as manual
system tests, e.g. exploratory tests.

Release Stage The release stage is about delivering the system to users. How the delivery
is realized depends on the domain, e.g. the system might be shipped as packaged
software, or it is deployed into an environment.

Teardown Stage After the new system has been released in the previous stage, the old
system can be torn down. Activities in the teardown stage are responsible for these
clean-up tasks. Depending on the context, these activities might be realized in
different ways. In the cloud context, for example, the old stack gets undeployed,
while for packaged software the release might be deleted from content-delivery
networks.

2.4. Activity Classification

As the general stage and activity abstraction (cf. section 2.3) makes it difficult to
reason about Software Delivery Processes, Hermanns introduced an activity classification
[Her15]. Our concept (cf. section 5.1.1) is inspired by this classification, therefore we
briefly introduce Hermanns classification here. Figure 2.4 depicts the classification based
on a sample delivery process.
Hermanns introduced two types of (data-flow related) activities:

14

2.5. Summary

Legend

TransformationTransformation MeasurementMeasurement Quality GateQuality Gate

Fan inFan inFan outFan out

R1R1

A1A1

A2A2 A2A2

A2+A2+

TransformationTransformation

TransformationTransformation
A2+A2+

A2+A2+ A4A4

A3A3

A4A4

A3A3

An

N-th Artifact

An+

N-th promoted Artifact

Rn

Report for Artifact n

Coordination BlockCoordination Block

ActivityActivity

Figure 2.4.: Delivery Process Building Blocks according to [Her15]

Transformations accept one or multiple artifacts as input and produce a new artifact by
applying operations on the input. A typical transformation is the compile activity,
i.e. the translation from source code into executable machine code.

Measurements determine quality-related characteristics of their input artifact in a report.
They output this report and the original input artifact.

Furthermore, he differentiated two types of coordination (control-flow related) activities:

Quality Gates are a means to abort the delivery process execution if certain quality
criteria are not met. They accept an input artifact, related measurement reports
and a policy describing the expected quality attributes. If the reports meet the
policy, the quality gate promotes and outputs the input artifact. If the policy is
not fulfilled, the quality gate fails and the delivery process execution gets aborted.

Fan in/out activities enable the parallel execution of activities. Fan out activities fork
the execution flow and Fan in activities synchronize these forked activities, i.e. Fan
in activities wait until their previously forked activities are finished and output all
results.

2.5. Summary
This chapter introduced required foundations for the remainder of the thesis. We
introduced the Software Delivery Process, and defined related terms. We motivated
Continuous Delivery and detailed related principles. These principles will serve as
requirements in the course of the thesis. We also provided an overview of the terminology.
Thereby we explored the ambiguous dimensions of Deployment Pipelines: A deployment
pipeline simultaneously is a software product, models a process and itself is a process.

15

2. Foundations

To avoid misunderstandings, we clearly address each dimension individually by means of
our definitions. A Software Delivery Model reflects the process model characteristics of
deployment pipelines, a Software Delivery System the software product dimension and
Software Delivery Process reflects the process dimension. We use these definition in the
remainder of the thesis. The next chapter details the problems we identified and want to
tackle with this thesis.

16

3. Problem Statement

After chapter 1 introduced the thesis and chapter 2 discussed the foundations, this chapter
details the problem this thesis tries to tackle. For this reason, the following introduces
the main challenges related to delivery systems, afterwards we define the thesis’s scope
and deduce top-level requirements from the identified challenges.

3.1. Challenges & Scope
Continuous Delivery (CD) offers huge benefits as discussed in the previous chapters. But
adopting these practices is difficult [CBA15]. Laukkanen et al. identified six recurring
problem themes in their systematic literature review [LIL17]. The themes are build
design, system design, integration, testing, release, and human and organizational resource
related problems. Following the build design theme, Chen postulates the need for a new
"CD platform", since existing tools are inhibitory in achieving CD [Che17]. A systematic
mapping study by Rodriguez et al. found, that only 7% of their analyzed publications
contribute to this Delivery System area [Rod+17]. We therefore want to concentrate on
the Delivery System problems in this thesis. The identified Delivery System problems
are:

P1 - Modifiability "The build system cannot be modified flexibly" [LIL17]

P2 - System Complexity "The build system [..] [is] complicated or complex" [LIL17]

P3 - Model Complexity "The build [..] scripts are complicated or complex" [LIL17]

Overall, Laukkanen et al. find both technical, architecture-related issues (the delivery
system is complex and inflexible) and functional, delivery model related issues (the
delivery models are complicated). Our findings in chapter 1 confirm the delivery model
related issues.

These problems indicate two major challenges for building delivery systems:

C1 - Project Evolution A delivery system has to cope with evolution. Following the
Law of Continuing Change [Leh80], a software project will change and evolve 1. As
the delivery system realizes the project’s delivery process (cf. section 2.1) it needs
to reflect these changes. Similar to our differentiation between delivery system,
delivery process and delivery model (cf. section 2.1), the evolution has multiple
dimensions:

1Assuming the program is an P- or E-Program [Leh80]

17

3. Problem Statement

C1.1 - Technical Evolution The software project architecture might evolve, which
imposes new functional requirements on the software delivery system. For
example new technologies might be integrated into the software project, which
require the delivery system to cope with heterogeneous technologies.

C1.2 - Process Evolution The software project’s delivery process might evolve,
e.g. a testing activity is integrated. The delivery system needs to reflect such
changes.

C1.3 - Organizational Evolution From an organizational perspective, new non-
functional requirements or policies might emerge that affect the delivery
process but also the delivery system itself.

Overall, the evolution challenge requires delivery systems to be flexible and main-
tainable.

C2 - Modeling Usability ISO 25010 defines Usability as the "degree to which a product
or system can be used by specified users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use" [ISO15]. The identified
usability challenge relates to the modeling context. Generalizing Laukkanen’s
finding, the delivery model is complex and difficult to understand. This problem
has several related challenges:
C2.1 - Minimize required technical knowledge Currently, users need to provide

lots of technical details which complicates the modeling. The Delivery System
should minimize the amount of technical knowledge required to define a
delivery model.

C2.2 - Minimize required process knowledge The Delivery System should mini-
mize the amount of process knowledge required to define a delivery model.
Users should not be concerned with parallelization respectively defining an
explicit order.

C2.3 - Support modeling activities Delivery Systems should assist users in defin-
ing the delivery model as much as possible. They need to offer extensive
validation support and support-mechanisms like activity auto-completion or
recommendation of matching activities.

Research suggests that build maintenance account for 27% of code development and
44% of test development effort (cf. [McI+11]). Therefore it is of great importance
to tackle the modeling usability challenge.

3.1.1. Scope
In this thesis we try to tackle the aforementioned challenges from an architectural view.
To tackle section 3.1 flexibility is important, i.e. the capability to adapt when external
changes (in our case technology changes, delivery process changes, organizational changes)
occur. We focus on flexibility of the delivery system architecture and extensibility of
new (heterogeneous) technologies. For section 3.1 we focus on accessibility and user

18

3.2. Architectural Requirements

error protection. Both are sub-qualities of usability ([ISO15]). Accessibility is defined as
the "degree to which a product or system can be used by people with the widest range of
characteristics and capabilities" [ISO15], which means we want to reduce the required
knowledge for defining a delivery model. User error protection is the "degree to which
a system protects users against making error" [ISO15], i.e. we also want to provide
validation support for the delivery model.

3.2. Architectural Requirements
The previous section identified challenges relevant for this thesis scope. Based on these
challenges, this section derives requirements necessary to tackle the challenges.

Following our scope (section 3.1.1), we do not consider specific functional requirements
for a concrete delivery process (e.g. the delivery system needs to compile java code).
Instead, we focus on providing a framework architecture, that has dedicated hot-spots for
tailoring to a concrete project. The following provides (top-level) requirements for this
framework architecture. Because of C2 - Modeling Usability, some requirements tailor
the delivery model. Since these requirements also influence the architecture by requiring
certain components, we list them here. With each requirement we list the addressed
challenge from above.

Req-1: Integration of heterogeneous technology The architecture needs to support
easy integration of different tools and services ranging from version control systems,
build and test tools, infrastructure provisioning tools and deployment tools. (C1 -
Project Evolution)

Req-2: Modularity Modularity is an important strategy to improve the flexibility of a
design which also aids maintainability [BCK12]. Given our focus on flexibility to
cope with evolution the architecture therefore should be modular. (C1 - Project
Evolution)

Req-3: Activity Abstraction The architecture should introduce abstractions for the
delivery process activities. From a technological perspective this eases to provide new
activities (extensibility). From a modeling perspective it results in encapsulation of
technical details, reducing the amount of knowledge required to define a delivery
model. (C1 - Project Evolution, C2 - Modeling Usability)

Req-4: Self-Organizing The architecture should support mechanisms to gather infor-
mation relevant for the delivery process and use these additional information to
analyze, complement and optimize the delivery model. From a modeling perspective,
this reduces the amount of information required and eases to meet Req-7: Best
practices. From a technical perspective, the system can more easily cope with
evolution (C1 - Project Evolution, C2 - Modeling Usability)

Req-5: Custom PDLs The architecture should support different, custom pipeline de-
scriptions languages. This allows to users to introduce PDLs tailored for their

19

3. Problem Statement

context. For example, if their projects predominantly use Amazon EC2 for deploy-
ment, it might makes sense for an enterprise to introduce a Amazon-specific PDL
to improve further improve usability. (C2 - Modeling Usability)

Req-6: Model Validation A sub-quality of usability in ISO 25010 is user error protection.
Important requirement for user error protection is validation. Thus, the architecture
should enforce mechanisms to validate a delivery model. The validation should
not only be technical (syntax) but also functional (e.g. compatibility of modeled
activities) (C2 - Modeling Usability)

Req-7: Best practices The architecture should support and conform to Continuous
Delivery principles & best practices (cf. 2.2.5), e.g. build once. Best practices
ease flexibility and maintainability, thus allowing the architecture to more easily
cope with evolution. In addition, they improve usability as they are founded on
experiences others made. (C1 - Project Evolution, C2 - Modeling Usability)

Req-8: Traceability Visibility, i.e. to provide insight into every step in the delivery
process, is an important delivery system requirement (cf. section 2.2.4). From an
architecture perspective, traceability, i.e. the capability the backtrack what action
produces which result, is important for visibility. In the delivery system context,
traceability means to determine how a system got to into production (cf. [BWZ15]),
i.e. the delivery system needs to track the executed activities and needs to make
their results (including produces artifacts) available. These results can then also
assist debugging or to evolve the delivery system. (C1 - Project Evolution)

3.3. Summary
This chapter set the thesis’s scene. It introduced several problems existing Delivery
Systems face. Given our missing large-scale experience of existing Delivery System,
these problems were primarily taken from literature reviews. We identified two related
challenges: First challenge is the project evolution. As stated by the Law of Continuing
change, a software project will change and evolve. As the delivery system realizes the
project’s delivery process it needs to reflect these changes. The second challenge we
identified is usability, more preciously usability in defining a delivery model. Existing
delivery models require a lot of technical information and do not provide validation
support. Based on these challenges we then defined this thesis scope, which is geared
towards a framework architecture that is independent of specific functional requirements
for a concrete delivery process. For the usability challenge we restricted ourselves on
the usability sub-qualities of accessibility and user error protection. Having defined our
scope, we introduced requirements the architecture needs to meet. In the next chapter
we then evaluate existing delivery systems against these requirements. Since literature
already reports problems of existing systems in this chapter, we thereby only evaluate
bleeding-edge delivery systems.

20

4. Related Work

The previous chapter identified challenges Software Delivery Systems face and deduced
architectural requirements. This chapter evaluates existing Software Delivery Systems
against these requirements. Since the requirements were derived from problems existing
Delivery Systems have (cf. chapter 3), we only evaluate bleeding-edge Software Delivery
Systems in this chapter to verify if the reported problems still exist.

4.1. Spinnaker
Spinnaker [Netd] is a cloud-deployment-focused delivery system, open-sourced by Netflix
in November 2015 [Net15]. Google actively supported the development. Since then, many
other companies like Microsoft or Oracle have joined the Spinnaker community. Key
focus of Spinnaker is to decouple deployment activities from a certain cloud provider.
The deployment to provider A should work the same way as to provider B. As of today
AWS EC2, Kubernetes, Google Compute Engine, Google Kubernetes Engine, Google
App Engine, Microsoft Azure, and Openstack are supported, with Oracle Bare Metal
and DC/OS support coming soon [Netd]. Spinnaker thereby follows Continuous Delivery
best practices like immutable infrastructure and usage of deployment strategies (cf.
section 2.2.5). Spinnaker originated from Netflix’s previous cloud-deployment focused
delivery system, Asgard ([Net12]). The Netflix team noticed that Asgard was not flexible
and extensible enough to support their growing needs [Net12], thus they chose to design
Spinnaker using the microservice architectural style. Overall, spinnaker consists of the
following microservices [Neta]:

Deck is Spinnaker’s browser-based frontend

Gate is the API gateway of Spinnaker. It is the entrypoint to Spinnaker and mediates
requests of Deck and all other api consumers to the corresponding microservice.

Orca is Spinnaker’s orchestration engine

Clouddriver keeps track of all deployed resources and realizes the interaction with cloud
providers

Front50 is Spinnaker’s metadata store. It persists all relevant metadata (application,
delivery model, project and notifation metadata).

Rosco produces machine images for the bake stage. As of today, it wraps packer 1

1https://www.packer.io/

21

4. Related Work

Figure 4.1.: Spinnaker Continuous Delivery (from [Net15])

Igor integrates Jenkins, Travis and Git repositories into Spinnaker. It triggers the delivery
process in Spinnaker whenever something has changes remotely.

Echo is the eventing bus of Spinnaker. Igor sends information to Echo if something has
changed. Echo is also used for sending notifications to Slack, Hipchat, etc.

Fiat is Spinnaker’s identity service. It handles user authentication and authorization.

Halyard is Spinnaker’s configuration service. It provides a command line interface for
configuring, installing and updating Spinnaker’s services.

Spinnaker handles only a part of the delivery process. As figure 4.1 depicts, it is
deployment-focused. Therefore a dedicated Continuous Integration Tool (e.g. Jenkins) is
required to handle the build stage. Having a binary in place, Spinnaker then handles the
remaining activities. The atomic building blocks of a delivery model are called stages
in Spinnaker. Stages can be sequenced in any order. A stage encapsulates functionality.
Users select and parametrize available stages using Spinnaker’s web-interface to describe
the delivery process. Beside providing abstraction, stages are the means to extend
Spinnakers functionality. Developers can create new stages by implementing a new stage
class in Orca, by adapting Clouddriver if required and by making front-end changes to
Deck. In Deck developers basically provide a view for configuring instances of this new
stage. This view is required as Spinnaker delivery models are configured either through
the UI or via API calls. The netflix team is actively working on a declarative pipeline
description language [Rob17] to allow for pipeline as code, but as of today this is still a
beta feature.

4.1.1. Requirement Fulfillment

The following briefly discusses which of our architecture requirementd (section 3.2) are
met by Spinnaker.

Req-1: Integration of new technology

Rating Fulfilled (+)

Rationale Spinnaker extension mechanism is similar to a plugin-based architecture.
Developers need to realize custom stages, which can be used to add new functionality.
The functionality needs to be realized in Java and is limited to the execution
environment of Orca. Basically, the primarily focus are cloud-provider related

22

4.1. Spinnaker

operations. All in all, the integration of new technologies is possible in theory,
although it might be challenging depending on the use case.

Req-2: Modularity

Rating Fulfilled (+)

Rationale The Netflix team purposefully designed Spinnaker as a Microservice
architecture since their previous cloud-deployment focused delivery system was not
flexible and extensible enough. Considering the microservice architecture, Spinnaker
fullfills the modularity requirement.

Req-6: Model Validation

Rating Hardly fullfilled (-)

Rationale The design of Spinnaker indirectly allows for some validation. Primar-
ily, the delivery process, respectively its stages are configured graphically. The
configuration frontend is realized by developers who also implemented the stage
functionality. Thus, they can define which input values are acceptable through
the user interface. This allows for some basic validation support. But a delivery
process can also be configured via API calls. Then, an invalid input parameter
would only be detected during execution time. In addition, the compatibility of
stages is not validated. So overall, the validation requirement is hardly met.

Req-3: Abstraction

Rating Fulfilled (+)

Rationale Key abstraction are stages in Spinnaker. They encapsulate all technical
details to realize cloud provider deployment functionality. Users only need to
configure required input parameter, which represent the interface of a stage. Thus,
we consider the abstraction requirement to be fulfilled.

Req-4: Self-Organizing

Rating Not fulfilled at all (--)

Rationale Users need to configure the delivery process stages with all required
information. Spinnaker executes these stages with the exact given config and in
the exact specified order. Spinnakers design does not allow to dynamically adapt
the delivery model.

23

4. Related Work

Req-7: Best practices

Rating Partially Fullfilled (o)

Rationale Spinnaker follows many Continuous Delivery best practices like usage
of deployment strategies (e.g. red / black or canary) or immutable infrastructure.
But as introduced, so far it has no support for pipeline as code. This violates the
best practice to keep everything in version control, as the delivery model is stored
internally.

Req-5: Custom PDLs

Rating Not fulfilled at all (-)

Rationale Spinnaker primarily allows to define the delivery process via its GUI.
Thus, there only is one (graphical) pipeline description language. In theory, a
delivery process can be defined through API calls, which would allow to implement
a dedicated software entity that translates custom pipeline descriptions languages.
But Spinnaker does not provide such entity, thus we consider this requirement not
to be fulfilled.

Req-8: Traceability

Rating Fullfilled (+)

Rationale Traceability in the delivery system context requires to be able to follow
what has happened and what the result was. Spinnaker visualizes every step
performed and provides means to access the results including produced artifacts.
In addition, ts uses Echo to publish important events which aids traceability.

4.2. Concourse
Concourse [Pivd] is a Pivotal sponsored delivery system. Its focus is to be simple and
scalable. Thereby, it follows the pipeline as code principle. Each delivery process is
defined in a single declarative delivery model file. Under the hood, concourse natively
uses docker to encapsulates and run all delivery process activities. Overall concourse uses
three core concepts [Piva]:

Resource Key abstraction in Concourse are resources. A resource is any entity that
can be checked for new versions, pulled down at a specific version, and/or pushed
up to idempotently create new versions [Piva]. Thus, resources are Concourse’s
concept to interact with the outside world (e.g. with Version Control Systems or
notification tools). They are used to model all external dependencies that enter
or exit the delivery process. Each resource must implement a generic interface
by means of a container image with three scripts: a check script to check for new
versions of the resource, an in script to download the resource and an out script

24

4.2. Concourse

for upload a new version of the resource. Each script basically needs to accept
arbitrary JSON-objects (source & version for the check script, source & version &
params for the in script and source & params for the out script). Out of the box,
concourse officially supports 13 resource types ranging from version control over a
time resource for scheduling to S3 buckets. But there are many more community
resource types and custom resource types can also be implemented.

Task Tasks are the atomic unit of work in Concourse delivery process. Conceptually,
they define a function from input to output. Each task references a shell script
to execute in a docker container. Thereby, Concourse pulls the required input
resources and mounts them into the docker container working directory. The task
script then needs to produce its output in the corresponding output directory also
mounted by Concourse.

Job Jobs define actions to execute when dependent resources change. They orchestrate
multiple tasks and their depending resources.

Using these three concepts, listing 4.1 provides an example delivery model. It contains a
time resource, which emits a new version every minute. The greet job is triggered by
this resource and performs the greet task. We defined the task inline. Concourse also
allows to define tasks in a separate .yml file, which the job definition then references.

resources:
- name: every-1m

type: time
source: {interval: 1m}

jobs:
- name: greet

plan:
- get: every-1m

trigger: true
- task: greet

config:
platform: linux
image_resource:
type: docker-image
source: {repository: ubuntu}

run:
path: echo
args: ["Hello World"]

Source Code 4.1: Concourse PDL

Defining tasks separately has the advantage of being able to trigger tasks outside the
delivery process execution context via Concourse Command Line Interface (see FlyCLI
[Piva]).

25

4. Related Work

Since resources are used to model the artifact flow through a delivery process, users do
not need to explicitly define the execution order or job dependencies. Instead, Concourse
automatically schedules the execution based on the job’s resource dependencies.

4.2.1. Requirement Fulfillment
The following briefly discusses which of our top level requirement (section 3.2) are met
by Concourse.

Req-1: Integration of new technology

Rating Fulfilled (+)

Rationale Concourse natively uses docker which allows to integrate almost arbitrary
technologies by defining the corresponding docker image. The integration of new
technologies for the task execution (e.g. new build tools) then is just a matter of
providing a docker image which contains the build tool. For the integration of new
resource types, one has to provide a docker image which implements the generic
resource interface.

Req-2: Modularity

Rating Partially Fulfilled (o)

Rationale In principle, Concourse is build up from two subsystems. One subsystem
is the web subsystem comprising the ATC and the TSA. The ATC ("air traffic
control" [Piva])orchestrates the delivery processes across workers and provides an
web-based UI. The TSA is a custom-built SSH server for registering workers with
the ATC. The second subsystems are workers which provide the docker container
runtime and cache management. Internally, a worker contains Garden for the
container runtime management and Baggageclaim for resource caching. Overall,
Concourse divides responsibilities into several subsystems and components. But
these components do not have the granularity to easily extend or modify the
architecture (e.g. when comparing the architecture to the microservice architecture
of Spinnaker (cf. section 4.1)). We therefore consider the modularity requirement
to be partially fulfilled.

Req-6: Model Validation

Rating Hardly fulfilled (-)

Rationale The concourse command line interface provides a validate-pipeline com-
mand to validate a given delivery model. The validation primarily comprises
syntactic checks. Since tasks perform arbitrary shell scripts and the resource inter-
face (check, in and out) accepts arbitrary parameters no functional validation can
be performed. Thus, concourse hardly fulfills the validation requirement.

26

4.2. Concourse

Req-3: Abstraction

Rating Partially Fulfilled (o)

Rationale At its heart, Concourse is built upon three concepts. Resources, jobs
and tasks. Resources are the central abstraction to encapsulate the interaction with
external systems. Users do not need to deal with all their details. Instead, they
can use the generic resource interface. Task definitions on the other hand contain
raw shell commands 2. Thus, we consider the abstraction requirement to be partly
fulfilled.

Req-4: Self-Organizing

Rating Hardly fulfilled (-)

Rationale Concourse automatically plans the delivery process job execution order
based on the jobs resource dependencies. So users do not need to define an explicit
order which is a first step into fulfilling the Self-Organizing requirements, but not
more.

Req-7: Best practices

Rating Partially Fullfilled (o)

Rationale Concourse Resource abstraction allows to easily follow some Continuous
Delivery best practices like build once. But Concourse does not enforce these
practices. It is up to users to model their delivery process accordingly. But the
resource abstraction is a measure in the right direction. We therefore consider this
requirement to be partly fulfilled.

Req-5: Custom PDLs

Rating Not fulfilled at all (--)

Rationale Concourse does not support custom descriptions languages. However,
it could be easily extended to support other description languages as it relies on
pipeline as code.

Req-8: Traceability

Rating Partially Fullfilled (o)

Rationale Concourse Resources are the only way to archive flow in the delivery
process. These resources can be decorated with arbitrary meta data for traceability.
The Concourse UI provides a graph-based UI to visualize this flow and meta data.

2or a reference to a shell script. But as these scripts need to be part of the project, there basically is no
information hiding

27

4. Related Work

But as Concourse does not provide an artifact store, it’s up to users to store their
artifacts somewhere externally, which hinders traceability in the delivery process
context. Overall, we consider the requirement to be partially fulfilled.

4.3. GitLab CI/CD

Initially developed as a web-based git repository manager, Gitlab evolves to - as they call
themselves - the leading integrated product for the entire software development lifecycle
[Gita]. In Q3 2017 the Forrester Wave report elected GitLab as the leading Continuous
Integration Tools [Git17]. Beside a git repository, wiki and issue tracking features, GitLab
also offers an integrated delivery solution - GitLab CI / CD.

Delivery Processes in GitLab CI / CD are defined declaratively via pipeline as code.
Thereby, GitLab expects a gitlab-ci.yml file in the root path of the GitLab project.
The delivery model contains a set of jobs with constraints specifying certain execution
conditions (e.g. only execute on master branch). Per job shell scripts are defined, which
are executed sequentially. To execute such a job, Gitlab uses several independent GitLab
Runners. These runners are external agents that register themselves at GitLab. Each
Runner can be configured to use one or several executors. Among the available executors
are a shell executor, a docker executor, a VirtualBox executor, a kubernetes executor
or a ssh executor. The delivery process activities are executed in the selected executor
context. Thus, executors provide means to integrate new technology. In case of the
docker executor arbitrary docker images can be used to integrate new technologies. In
case of the shell executor, new technologies must be installed in this runners context.

Listing 4.2 provides an example gitlab delivery model. It comprises two stages: compile
and test. Stages are executed sequentially. A stage then comprises jobs which are executed
in parallel. Listing 4.2 defines two jobs: compileDummy and testDummy. Each job
definition contains some shell commands under the script directive. The compileDummy
job also contains an image definition and a tag. Tags are used to constrain the executor
selection. In this concrete case, only executors with the docker tag should execute the
job. Since the tags corresponds to a docker executor, the job definition requires an image
definition (ubuntu:17.04). The compileDummy job also contains an artifacts section
defining file system locations to be stored by the executor on completion of the job
execution. GitLab automatically provides depending jobs with the specified artifacts (e.g.
the testDummy job).

28

4.3. GitLab CI/CD

stages:
- compile
- test

compileDummy:
image: ubuntu:17.04
stage: compile
script:

- echo ’Hello World’ > hello.txt
artifacts:

paths:
- hello.txt

tags:
- docker

testDummy:
stage: test
dependencies:

- compileDummy
script:

- cat hello.txt | grep -q ’Hello world’

Source Code 4.2: Gitlab - Pipeline Description Language

With release of version 10.0 GitLab introduced a beta feature called Auto DevOps.
Auto DevOps is their vision of automatically building, testing, deploying and monitoring
applications with minimal to zero configuration [GIt]. The idea is to automatically detect
the project technologies and to generate an opinionated delivery process based on best
practices. Thereby, 7 stages are generated:

Auto Build Auto build bakes the application into a docker image. Either there is a
Dockerfile in the project’s root directory or GitLab will leverage Herokuish 3 which
supports all languages and frameworks that are available as Heroku buildpacks
like, for example, Java, Python or Node. Gitlab also supports to use a custom
buildpack.

Auto Test Auto tests also leverages Herokuish to run tests appropriate for the project.
The tests to be performed must be part of the project. GitLab only uses Herokuish
to determine which tests to execute.

Auto Code Quality The auto code quality stage runs the codeclimate docker image 4

which performs static analysis on the projects source code. The report is thereby
uploaded as an artifact to GitLab for later usage and analysis.

Auto SAST The auto static application security testing (SAST) stage runs a custom
3https://github.com/gliderlabs/herokuish
4https://hub.docker.com/r/codeclimate/codeclimate/

29

4. Related Work

gitlab docker image 5 to check for potential security issues using static analysis.
The image supports JavaScript, Python, Ruby and Ruby on Rails. Its reports are
uploaded as an artifact to Gitlab for later usage and analysis.

Auto Review Apps Auto Review Apps is a stage that uses Kubernetes to temporarily
run the docker image built in the build stage. Thereby, each started container is
unique accessible. When the corresponding project branch is deleted (e.g. after the
merge request), the auto review app stage deletes the container.

Auto Deploy When changes are merged to the master branch, the auto deploy stage
uses Kubernetes to deploy the application to a production environment.

Auto Monitoring After deploying the application, auto monitoring allows to collect
certain metrics from the running application. The auto monitoring stage thereby
uses Prometheus to access Kubernetes metrics directly.

Overall, the Auto DevOps feature is based on a delivery model template. To adapt
the delivery process, one can change the template or copy it directly to the projects root
directory for usage as a normal gitlab delivery model.

4.3.1. Requirement Fulfillment

The following briefly discusses which of our top level requirement (section 3.2) are met
by Gitlab CI / CD.

Req-1: Integration of new technology

Rating Fulfilled (+)

Rationale Depending on the executor used for executing jobs, the integration of
new technology is met in different ways. The docker executor or the kubernetes
executor allow to integrate new technologies by using a docker image which supports
the technology. Both the shell executor and the ssh executor require to install
new tools or required dependencies in the runner’s context or the ssh context,
respectively, to be accessible via shell commands. The virtual-box executor requires
a corresponding virtual machine which supports the new technology.

Req-2: Modularity

Rating Hardly Fulfilled (-)

Rationale The GitLab architecture primarily comprises the GitLab Workhouse,
Gitaly and GitLab Pages (cf. [Gitb]). They communicate via Unix sockets. We do
not consider the Gitlab coarse-grained architecture being modular.

5gl-sast: https://gitlab.com/gitlab-org/gl-sast

30

4.3. GitLab CI/CD

Req-6: Model Validation

Rating Not fulfilled at all (--)

Rationale The only validation support provided by Gitlab is by means of a model
linter, that allows to validate the delivery model syntactically. But as the delivery
model contains arbitrary script sequences, the validation is restricted to basic syntax
checks, which we consider as not fulfilling the requirement.

Req-3: Abstraction

Rating Hardly fulfilled (-)

Rationale GitLab barely provides any abstractions. Users need to define almost
all delivery process details. Since the pipeline description language is declarative, at
least some aspects do not need to be defined. Therefore we consider the abstraction
requirement to be hardly fulfilled.

Req-4: Self-Organizing

Rating Hardly fulfilled (-)

Rationale Based on production-ready features GitLab does not offer any Self-
Organizing capabilities at all. Users even need to define the execution order in
terms of stages and jobs. There is a beta-feature called Auto DevOps (see above).
But this feature basically provides an opinionated delivery model as a template.
There is no smartness or organization involved. But still, this feature indicates the
need for Self-Organizing or assisting the modeling. Since Auto DevOps at least
eases the modeling a little bit, we consider the requirement to be hardly fulfilled.

Req-7: Best practices

Rating Hardly fulfilled (-)

Rationale Since GitLab hardly provides any abstraction, it’s up to users to define
their delivery process in such a way that follows best practices. The Auto DevOps
feature at least provides hints how to structure a delivery process. But overall, the
requirement is hardly fulfilled.

Req-5: Custom PDLs

Rating Not fulfilled at all (--)

Rationale GitLab does not support custom pipeline description languages. Though,
it could be easily extended to support other languages as it relies on pipeline as
code.

31

4. Related Work

Req-8: Traceability

Rating Partially fulfilled (o)

Rationale GitLab visualizes every job and stage in the delivery process. GitLab
runners provide logs of currently running jobs almost instantly. In addition, GitLab
stores the result and logs of every job. Using its artifact store, GitLab can also
provide the artifact results of a job. But as it is up to users to define those artifacts,
some intermediate results might be untracked.

4.4. Summary

This chapter provided an overview of related work. Considering the identified issues of
existing delivery systems in chapter 3, we decided to only evaluate bleeding-edge delivery
systems against our architecture requirements. Concretely, we evaluated Spinnaker,
Concourse and GitLab. Table 4.1 summarizes our findings. All things considered, the
presented delivery systems only meet individual requirements. In particular, they have
difficulties with the usability related requirements, i.e. Req-4: Self-Organizing, Req-5:
Custom PDLs and Req-6: Model Validation.

Requirement Spinnaker Concourse GitLab

Req-1: Integration of new technology + + +
Req-2: Modularity + o -
Req-6: Model Validation - - --
Req-3: Abstraction + o -
Req-4: Self-Organizing -- - -
Req-7: Best practices o o -
Req-5: Custom PDLs -- -- --
Req-8: Traceability + o o
-- Not fulfilled at all
Hardly fulfilled

o Partially fulfilled
+ Fulfilled

Table 4.1.: Requirement fulfillment analysis

Interesting though, they seemingly identified our challenges, but yet struggle to tackle
them. GitLab for example has a Auto DevOps - feature to model the delivery process
with minimal to zero configuration, which in some aspects is similar to our idea of self
organization. Concourse introduces resources as a central abstraction providing a unified
interface, hiding technical details and allowing for scheduling with resources. Scheduling
with resources thereby is Concourse concept to automatically determine the execution
order of activities. This concept also is similar to our idea of self organization. Spinnaker

32

4.4. Summary

relies on microservices to tackle the evolution challenge. Thereby it encapsulates the
realization of delivery process activities in dedicated software entities (abstraction). Be-
cause of Spinnakers internal structure, these activities then allow for validation at least
at the User Interface level. But as the evaluation shows, neither Spinnaker, Concourse
or GitLab tackle the challenges adequately. To allow for profound self-organization and
validation support, they would require great conceptual and architectural changes. To
this reason we think a custom development is reasonable, which the following chapters
introduce. Since we primarily need to operate on green-field, we use a Domain-Driven
Design approach in the next chapter to gain a solid domain understanding.

33

5. Domain Driven Design

Contents

5.1. Strategic Design . 35
5.1.1. Core Domain . 36
5.1.2. Explanatory Model . 43
5.1.3. Subdomains . 44
5.1.4. Bounded Contexts . 45
5.1.5. Resulting Design Decisions 47

5.2. Tactical Design . 49
5.2.1. Aggregates . 49
5.2.2. Domain Events . 51
5.2.3. Event Sourcing . 53
5.2.4. CQRS . 54
5.2.5. Delivery Process Activity . 54

5.3. Summary . 56

Chapter 3 identified challenges delivery systems face in the context of build design.
The identified challenges are C1 - Project Evolution and C2 - Modeling Usability. Among
the reasons for these challenges is complexity (see section 3.1). The key to controlling
(business) complexity is a good domain model ([Eva03]). Based on the principles of
Domain-Driven Design [Eva03], the next section therefore introduces the core domain
and other important subdomains (cf. [Eva03]). With a solid domain understanding
chapter 6 then introduces our architecture trying to meet the requirements and tackle
the aforementioned challenges.

5.1. Strategic Design

In Domain Driven Design, Strategic Design provides bigger-picture semantics. It highlights
what is strategically important to the business, how to divide work by importance and
how to best integrate (cf. [Ver16]). In section 5.1.1 we therefore distill the core of our
problem domain, then divide the domain by importance (section 5.1.3) and define the
integration between these boundaries (section 5.1.4). We then address the technical
aspects of strategic design (cf. [Ver16]) and provide resulting, high-level design decisions
in section 5.1.5.

35

5. Domain Driven Design

Delivery ProcessDelivery Process

StageStage

ActivityActivity

1..*1..*

1..*1..*

Activity
Specification

Activity
Specification

conforms toconforms to

Configuration
Model

Configuration
Model

Result
Model
Result
Model

Activity
Result

Activity
Result

Logical
Dependency

Logical
Dependency

Functional
Dependency
Functional

Dependency

dependent ondependent on

Activity
Execution
Activity

Execution

instance ofinstance of

Activity
Configuration

Activity
Configuration

instance ofinstance of
configured

by
configured

by

producesproduces

*
has

*
has

onon

ArtifactArtifact

External
Delivery Model

External
Delivery Model

CommandCommand

triggerstriggers

describesdescribes

ViewsViews

hashas

TransformationTransformation Quality GateQuality GateAssessmentAssessment

Execution
Precondition

Execution
Precondition

definesdefines

instance ofinstance of

Internal Delivery Modell Execution Reasoning Support External Delivery Modell

ExecutionResultExecutionResult

Execution Result: Technical Result (EnvInfo, Logs, ..)
vs

ActivityResult: Functional Result

Execution Result: Technical Result (EnvInfo, Logs, ..)
vs

ActivityResult: Functional Result

DeliveryProcess
Execution

DeliveryProcess
Execution

1..*1..*

instance ofinstance of

Figure 5.1.: Delivery System Core Domain

5.1.1. Core Domain

Central aim of a domain model is to be an asset in solving and understanding a business
problem [Eva03]. As a full-blown domain model for a delivery system would not provide
value because of it’s complexity, we distill the core, i.e. the essential part of the problem
domain (cf. [Eva03]). Following our challenges and the thesis scope (see section 3.1),
two aspects are of great importance. First to identify stable concepts that allow for
extension (C1 - Project Evolution and second to provide means for reasoning about a
delivery model (C2 - Modeling Usability).
Figure 5.1 depicts the core domain. We modeled few cardinalities as we focus on

the general concept relations in this chapter. We developed the core domain iteratively
starting from our concepts described in section 2.3. Simplifying the core domain figure, it
consists of four areas. The turquoise area (Internal Delivery Model) depicts our internal
representation of a delivery process. The light-blue area (Execution) is about the delivery
process execution. The dark-blue area (Reasoning support) represents concepts for
reasoning about a modeled delivery process and the gray area (external delivery model)
depicts concepts for the external delivery model. The following details the concepts
according to their area in the following order: internal delivery model, reasoning support,
execution, external delivery model. Since Section 2.3 already introduced the Delivery
Process and stages, we do not detail them here. For the Delivery Process Aggregate we

36

5.1. Strategic Design

refer to section 5.2.1.

Activity

The units of work in the delivery process are called activities (cf. section 2.3). As the
project evolution influences the delivery process (cf. chapter 3), the delivery system must
be both flexible and maintainable. To design a flexible and maintainable delivery system
(C1 - Project Evolution) while yet being able to reason about the delivery process (C2
- Modeling Usability) requires to classify the different activities in a flexible but also
meaningful manner. Section 2.4 provided such an activity classification. We modify it as
follows:

No fan in/out : J.Hermanns introduced fan in/out activities to parallelize the execution.
We argue that these technical activities are necessary, but not as part of the core
domain. The core domain focuses on the functional relations between activities
and their validation. Execution constraints can be easily deduced via activity
dependencies (cf. section 5.1.1).

Assessment instead of Measurement : Conceptually, our assessment activity type is
identical to Hermanns measurement. Hermanns defined measurement as activities
that analyze the degree to which their input artifact possesses a attribute. This
is the characteristic of a metric ("a quantitative measure of the degree to which
a system, component, or process possesses a given attribute" [IEE02]). A metric
can either be a base metric, i.e. independent of others, or a derived metric, i.e.
combination of multiple base metric quantify attributes that cannot be directly
measured [LL10]. The application of a metric is called measurement [Via16]. Thus,
this activity type performs measurements to be able to make a statement about
certain attributes of the input artifact. Overall, we therefore think that assessment
is more adequate to express this activity type.

Quality Gate as a special transformation : Hermanns defined quality gates as a control
activity, which aborts the execution if the input artifact does not meet certain
quality criteria. But quality gates not only abort the execution, i.e. reject artifacts,
they also promote artifacts in the positive evaluation case. As the quality gate
output, i.e. the promoted artifact, conceptually differs from the input artifact, we
consider quality gates as a special transformation that alway produces an artifact,
although input and promoted artifact are equal on a binary level. With this
classification, an exit condition of a delivery process execution would be a missing
output artifact, which conceptually matches an interruption of the software delivery
value stream [HF10].

Overall, this results in three different activity types, which figure 5.2 summarizes.

Transformations are the core activity type of a delivery process. They take one or
multiple artifacts as input and transform these artifacts, i.e. mutate, translate or

37

5. Domain Driven Design

TransformationTransformation

Input Operation Output

AssessmentAssessment

Artifact A1

Quality GateQuality Gate

P1

Policy

Artifact B1

Artifact A1 Report R1

Report R1Artifact A1
Artifact A1+
(promoted)

An

...

Figure 5.2.: Activity Classification - Overview

merge them into a new artifact, which is the output of the transformation. An
example for a typical transformation is compilation, which transforms source code
into executable machine code. As transformations are the only activity type to
participate in the delivery value stream, a delivery process must at least comprise
one transformation. Some activities do not require a binary artifact as input to
produce another artifact (e.g. checkout from version control) or their result does
not reference a binary artifact (e.g. the output of a deployment transformation
might just be an URL). Conceptually, we consider these activities still to be a
transformation.

Assessments perform measurements to be able to evaluate certain attributes of the input
artifact. They publish these results as a report. The assessment realization decides
which measurements are performed and to which scale type (allowed metric scale
types are ordinal, interval, rational or absolute scale (cf. [LL10])) they are mapped.
An example is a unit test assessment which performs unit tests on its input to
calculate passed test rate and test coverage. Each assessment accepts exactly one
artifact (to keep the quality gate promotion simple) and produces a single report
for this artifact. The report might contain multiple measurement results.

Quality Gates represent decision points in the delivery process to ensure quality criteria
are met. They promote or reject transformation artifacts either by a manual user
approval or automatically based on a given policy and corresponding assessment
reports. In case of a manual approval, a user interprets the reports and promotes
or accepts the input artifact. In case of an automatic evaluation, the quality gate
interprets the result and evaluates if the reported quality characteristics fulfill the
expected values specified in a policy. If so, the artifact is promoted. Otherwise, the

38

5.1. Strategic Design

Activity Activity Type Input Output
Compile Transformation Source Code Compilation
Unit Tests Assessment Compilation Unit Test Report
Code Analysis (com-
pliance)

Assessment Source Code /
Compilation

Analysis Report

Bake Transformation Compilation Deployable Image
Acceptance Testing Assessment Deployed System Acceptance Report
Integration & Sys-
tem Tests

Assessment Deployed System Integration Report

Performance Testing Assessment Deployed System Performance Report
Security Testing Assessment Deployed System Security Report
Environment provi-
sioning

Transformation Env specification Provisioned Env

Deploy to Env Transformation deployable image deployed system
User Acceptance
Testing

Assessment Deployed System User Acceptance Re-
port

Setup operation ser-
vices

Transformation Base System Provisioned System

DNS Modification Transformation DNS Spec Updated DNS
Data Migration Transformation Migration Spec Migrated data
Undeploy from Env Transformation Deployed System Clean system

Table 5.1.: Delivery Process Activities

artifact is rejected and the execution aborted. As the delivery process follows the
idea of a stage-gate process, quality gates are typically performed at the end of a
stage.

After introducing our different activity types, it remains to show these abstractions
are suitable for modeling a delivery process. To this reason table 5.1 classifies delivery
process activities identified in section 2.3.1 according to our task classification.

Activity Dependencies

Activities encapsulate delivery process behavior. According to the classification above
(section 5.1.1) they either transform, assess or promote artifacts. To represent flow
between activities, there are two dependency types:

Logical Dependencies are dealing with the control flow. They express execution condi-
tions. If activity a2 has a logical dependency on activity a1, activity a1 needs to be
executed before activity a2.

39

5. Domain Driven Design

Functional Dependencies represent data flow. They realize data passing. After an
activity has been performed, its output is passed as input to the next activity.
Functional Dependency also implies logical dependency: If activity a1 has a func-
tional dependency on activity a2, the output of activity a1 is passed as input to a2
and a2 is logical dependent on a1.

Execution Precondition

Activities are not necessary side-effect free. A typical example are deployment transfor-
mation. It is therefore necessary to be able to reverse the effect of activities or to provide
counter measures, e.g. in case of a failure during execution. Such reversal operations
could be realized by means of the same activity. But we want to provide more flexibility
in freely deciding on counter measures. To this reason, our core domain knows the
concept of an execution precondition which defines a condition under which the activity
is executed. Possible variants are:

onFailure The activity should be performed if the previous activity failed. If there is no
previous activity, this activity should not be performed

onSuccess The activity should be performed if the previous activity was successful. If
there is no previous activity, this activity should be performed

allways The activity should be performed independently of the result of the previous
activity.

In combination with the activity dependency concept, the execution preconditions
supports fine-grained control when to execute an activity.

Activity Specification

The delivery system requires detailed information about all available activities in the
system to be able to tackle C2 - Modeling Usability. As introduced in the previous section
our activity classification differentiates between assessment and transformation activities.
Conceptually, they can be both described as functions. Therefore, the delivery system
must at least know the interface of its activities to reason about them. The interface of
an activity is described through the corresponding activity specification. The activity
specification consists of an activity identifier, a configuration model and a result
model. The activity identifier allows to uniquely identify activities. The configuration
model specifies the admissible configuration range and the result model defines permitted
results.

Using the activity specifications the delivery system can reason about the compatibility
of consecutive activities in the delivery process. It also allows to automatically calculate
functional dependencies between activities (assuming a single activity provides the
required value type). The details of the activity specification are provided in section 5.2.5.
Section 7.3.1 provides some background on the automatic dependency calculation.

40

5.1. Strategic Design

Activity Execution

Activities are units of work in a delivery process. Their performance is represented as
a dedicated concept, namely activity execution. This explicitness is both advised
([Ver12]) and reasonable as the activity and its execution are conceptually different. In
principle, an activity execution is an active instance of an activity. The activity execution
is configured by an activity configuration, which must be an instance of the activity
specifications configuration model. The activity execution produces an execution result.
The execution result contains both technical information and the functional result. The
technical information contain environment information and logs. The functional result,
represented as activity result in the core domain model must be an instance of the
activity specification result model.

Other activities can reference the result of an activity. From a model perspective, this
functional dependency references the corresponding result model. During execution, the
activity execution gets the referenced result as part of its activity configuration.

Delivery Process Execution

Similar to the activity and activity execution instance-of relation, there is an instance-of
relation between the delivery process and the delivery process execution itself. The
delivery process execution comprises several related concepts like a state and the activity
executions. Section 5.2.1 details the delivery process execution aggregate.

Artifact

An activity execution typically produces one artifact. Thereby, an artifact can be either
a binary artifact or a machine interpretable. Our core domain does not differentiate
between them, as the artifacts are transparent to the delivery system and only relevant
for individual activities. To provide a consistent terminology, we nevertheless introduce
Report as a specific artifacts here. Reports are machine-interpretable files that are
produces by assessments. Quality Gates use Reports for their decision making.

Command

To bridge the gap between activity and activity execution, our core domain provides the
command concept. Each command encapsulates all information required to trigger the
activity execution. This allows for an unified execution interface as detailed in section 7.5.
Section 7.5.2 provides more details about both the activity and its execution.

External Delivery Model

An important Continuous Delivery principle is to keep everything in version control (cf.
2.2.5). This also includes the delivery model (cf. pipeline as code chapter 1). Existing
delivery systems use the same delivery model for both modeling and execution concerns,
i.e. they directly execute the model provided by the user. This conflicts with Req-3:

41

5. Domain Driven Design

Abstraction, it makes Req-6: Model Validation challenging and couples the delivery
system to a certain model type making Req-5: Custom PDLs impossible. Our core
domain therefore provides the concept of an internal and an external delivery model to
separate the modeling and execution concerns.
The internal delivery model represents the delivery process as depicted in the core

domain, i.e. a graph-based representation consisting of activities with dependencies on
each other. The external model can be an arbitrary model optimized for the concrete use
case. The only requirement for the external model is to be translatable into the internal
model. Given the quite generic structure of our internal model, this requirement only has
a small impact on external models. Section 5.2.1 details the external model aggregate.
Overall, the separation into external and internal model then allows to meet Req-6:

Model Validation and Req-3: Abstraction since small, concise external models with an
explicit language scope can be defined. Section 8.2 provides an example language to
describe external delivery models.

Views

To visualize a delivery process in its external model representation, the core domain
introduces different views. Each view corresponds to the representation of the delivery
process in a certain model - including the internal model. Although not part of the
core domain, we briefly want to mention one aspect here: The delivery process itself is
represented by means of the internal delivery model, thus a representation in an external
model might be challenging since the internal to external model transformation might be
lossy.

Constraints

This section briefly introduces important business rules not possible to express in the
UML class-diagram representation of the domain model (figure 5.1). We formulate these
rules in OCL ([OAB12]).

At least one transformation A valid delivery model must perform at least something to
contribute the value stream. As section 5.1.1 elaborated, transformations are the
designated activity to supply the value stream. Thus, a minimal delivery process
must at least comprise a transformation activity.
context Activity
inv: Activity.allInstances()->exists(self.oclIsTypeOf(

Transformation))

Source Code 5.1: At least one transformation must exist

No circular dependencies between activities The internal delivery model uses a graph
structure to represent a delivery process. Based on this structure, the execution
order of the modeled activities is determined. To be able to determine a valid
execution order, the activity graph must be a directed acyclic graph (DAG).

42

5.1. Strategic Design

context Activity
inv: self->closure(activity |

activity.dependencies->select(dependentOn))->isUnique(self)

Source Code 5.2: No circular dependencies between activities

Logical dependency constrains stage Analogously to the delivery process, stages are
executed sequentially. Thus, if activity a1 has a logical dependency on activity a2,
a2 must belong to the same stage as a1 or to a previous stage.
context DeliveryProcess
inv: Activity.allInstances()->forAll(activity |

activity.dependency.dependentOn->forAll(dependentOn |
self.stages->indexOf(dependentOn.stage)

<= self.stages->indexOf(activity.stage)
)

)

Source Code 5.3: Logical dependency constrains stage

5.1.2. Explanatory Model

TransformationTransformation

AssessmentAssessment

AssessmentAssessment

...

TransformationTransformation...

AssessmentAssessment

AssessmentAssessment

...

QS GateQS Gate

PolicyPolicy

A1

...

...

...

Nth Transformation
Artifact

 Nth Promoted
Transformation
 Artifact

A
ss

es
sm

en
t

Le
ve

l
A

rt
if

ac
t

Le
ve

l

A2 A2+ An-1 An

An An+

En
vi

ro
n

m
en

ta
l

Le
ve

l

ConfigConfig

R2

Report for
Transformation
Artifact n

Rn

TransformationTransformation

TransformationTransformation

...

Optional execution path

Optional execution path

Figure 5.3.: Core Domain - Explanatory Model

To ease understanding of a domain model, Evans suggests to present the concepts in
an explanatory model [Eva03]. This model must not correspond in every detail with the
domain model [Eva03].
Figure 5.3 provides an explanatory model for our core domain presented above (cf.

section 5.1.1). It thereby focuses on the general delivery process building blocks and

43

5. Domain Driven Design

dynamics. Although they might be represented differently, these elements must be part
of every external delivery model.

At its heart the modeled delivery process consists of a series of transformations, which
constitute the artifact value stream. The transformation activities can be parametrized
with configuration from the environmental level. In case of a quality gates, this configu-
ration typically comprises a policy defining artifact acceptance criteria. Following our
activity classification, the quality characteristic of an artifact are evaluated by assessments
in the assessment level. Based on their reports, the quality gate decides to promote or
reject the artifact. Although not depicted in the explanatory model, an assessment can of
also be configured. But as assessments are optional, a minimal delivery process consists
of at least one transformation.

Overall, each external delivery model must at least to contain a representation of the
presented elements to be mappable to our internal delivery model.

5.1.3. Subdomains

The previous section introduced our core domain for a delivery system. It provided
concepts and their relations essential for this thesis scope. Cohesive parts that are required
for the full expression of the model are factored out into (supporting) sub domains if they
add complexity without communicating specialized knowledge (cf. [Eva03]). The following
briefly introduces different subdomain types as defined by Eric Evans. Afterwards we
decompose the delivery system domain into subdomains.

Subdomain Types

Evans differentiates three types of subdomains [Eva03]:

Core Domain The core domain reflects the part of the overall problem domain that is
central to the purpose of the intended application. It is where the most investment
is made as a well-defined core domain provides the means to have an advantage
over all competitors.

Supporting Subdomain Supporting subdomains assist the core. The core domain cannot
be successful without them. But supporting subdomains do not require such heavy
investment as the core domain. They might be outsourced as they are strategically
not as important as the subdomain. However, they still require custom development.

Generic Subdomain For generic subdomains an off the shelf solution might be considered.
They reflect a modeling situation which requires the least investment amount as
they do not require custom development.

Domain Decomposition

Our delivery system domain can be decomposed into five subdomains. Besides the already
introduced core domain (see above), the following subdomains exist:

44

5.1. Strategic Design

Model Subdomain (Supporting) The core domain differentiates between two delivery
model types. An internal delivery model which is contained in the core domain
(activities & dependencies) and an external model which the core domains defines
as an abstract concept. That is because concepts related to the external model
are factored out into a subdomain - the modeling subdomain. Thus, the modeling
subdomain is concerned with the import of external models, different external
model languages and the translation of external to the internal delivery model. As
custom development is required in this domain, the model domain is a supporting
subdomain.

Activity Subdomain (Supporting) Key concept in the core domain model are activities.
They represent delivery process building blocks. While the concept of an activity
and its specification is stable, each concrete activity has several related concepts
not relevant for the core domain. If we take a deployment activity to Amazon
EC2 for example, there might be concepts like buckets. Another example would
be a java compile activity which might have maven specific concepts. Overall, the
activity specifics span the activity subdomain, which also is a supporting one as it
must be compatible with the core concepts.

Orchestration Subdomain (Generic) The core domain models different execution as-
pects of delivery process activities. But it does not explicitly introduce process
control related aspects, i.e. the orchestration and monitoring of delivery process
activities. These aspects are factored out into an orchestration subdomain. Since
they represent well-known concepts which are not tight to the delivery system
domain, an off the shelf solution can be considered (cf. process manager [HW03]).
Thus, the orchestration subdomain is a generic one.

Artifact Storage Subdomain (Generic) The core domain model introduced the concept
of an artifact. Related to artifacts are storage concepts. Thus we consider a
the artifact storage a dedicated subdomain. As we do not have storage-specific
requirements, the artifact storage subdomain is a generic one.

5.1.4. Bounded Contexts

Related to subdomains is the concept of a bounded context. Vernon describes bounded
context as a conceptual boundary where a domain model is applicable [Ver12]. A bounded
context is part of the solution space, i.e. where the software is implemented, while a
domain model is part of the problem space, i.e. the business challenge to be solved
(cf. [Ver12]). Thus, a domain model can have multiple bounded contexts. But when
applying DDD, a bounded context should align one-to-one with a subdomain [Ver16],
i.e. to build the software in a way we understood the domain. Sometimes they diverge
because legacy software is being used [Lev14]. Considering the greenfield character of
our delivery system, the bounded contexts align one-to-one with the aforementioned
subdomains. Figure 5.4 visualizes the different bounded contexts and their relations.

45

5. Domain Driven Design

Self-Organizing
Context

Self-Organizing
Context

Activity
Specification

Activity
Specification

Internal
Delivery
Model

Internal
Delivery
Model

Model
Context

Model
Context

Activity
Context

Activity
Context

Orchestration
Context

Orchestration
Context

Artifact
Storage Context

Artifact
Storage Context

External Delivery
Model

External Delivery
Model

ActivityActivity

Delivery Process
Execution

Delivery Process
Execution

ArtifactArtifact

A
C

L
A

C
L

conforms

ACLACL

OHSOHS

Anticorruption Layer

Open Host Service

Figure 5.4.: Delivery System - Context Map

Self-Organizing Context The Self-Organizing context encapsulates the core subdomain
and ensures its consistency. Components of the self-organizing context realize the
activity specification concept and provide the internal delivery model.

Model Context The modeling bounded context defines the boundary of the modeling
subdomain and ensures that the language is consistent inside this boundary. For
example, the core domain provides the concept of an external delivery model but
the details of the external model are out of scope of the core domain. The bounded
context thus ensures that the scope and meaning of an external model is consistent
inside this boundary. Main responsibility of components in the model context is to
import different external models. To make use of these models across the delivery
system, the model context integrates with the storage context to be able to store
these models. This integration is realized by means of an anti-corruption layer
[Eva03], that translates the language of the storage context into the language of the
model context. In addition, the model context integrates with the self-organizing
context to provide the internal delivery model by translating its external model via
an anti-corruption layer.

Activity Context The activity context encapsulates the activity subdomain. Components
in the activity context realize the activity concept. The activity context heavily rely
on core concepts, e.g. on the activity specification. Because of this close relation and
because the activity context has no special requirements regarding the core concepts
we modeled the relationship between the self-organizing context and the activity
context as a conformist relation [Eva03] to have a reasonable implementation
effort. A conformist relation indicates that the activity context uses the activity
specification and other core models as they are. Since components in the activity

46

5.1. Strategic Design

context realize activities, they also need to deal with storage concerns (retrieval
or storage of artifacts produced during an activity execution). This integration
is realized by a more defensive approach, namely an anti-corruption layer as the
activity context should not deal with all the storage model details.

Orchestration Context The orchestration context is the conceptual boundary of the
orchestration subdomain. Its components realize process-control related aspects, i.e.
the monitoring and triggering of executions. The underlying domain is a generic
subdomain. Thus, the language of the orchestration context is translated to the
language of the self-organizing context via an anti-corruption layer.

Artifact Storage Context The artifact storage context defines the boundary where the
storage domain is applicable. Its components offer services related to the storage
and retrieval of artifacts. The model context and the activity context both integrate
with the storage context through an anti-corruption layer.

5.1.5. Resulting Design Decisions

The previous section introduced several bounded contexts. This section provides an
overview of top-level design decisions that help to cleanly map these boundaries to the
delivery system.

Microservices

Given the focus on providing an framework architecture focusing on flexibility and
maintainability (cf. section 3.1.1), it is important to provide strong boundaries enforcing
autonomy. Because a monolithic architecture can only provide logical boundaries, we
want our delivery system to be polylithic. It should be decomposed by means of cohesive
services that reflect our bounded contexts. This approach is known as microservice
architectural style. Martin Fowler and James describe it as [MJ14]:

In short, the microservice architectural style is an approach to developing a
single application as a suite of small services, each running in its own process
and communicating with lightweight mechanisms, often an HTTP resource
API. These services are built around business capabilities and independently
deployable by fully automated deployment machinery. There is a bare mini-
mum of centralized management of these services, which may be written in
different programming languages and use different data storage technologies.

This architectural style naturally fits with important design principles that improve
both flexibility and maintainability when applied. These principles are summarized
under the acronym SOLID. SOLID subsumes the Single Responsibility Principle, the
Open-Closed Principle, Liskov Substitution Principle, the Interface Segregation principle
and the Dependency Inversion principle [Bai09]. Although these principles originate
from object-oriented programming, some of them can be applied to (macro) architecture.

47

5. Domain Driven Design

James Hugh describes the architecture when applying these princinples exactly as a
microservice architecture [Jam13]:

Micro Service Architecture is an architectural concept that [...]. Think of it
as applying many of the principles of SOLID at an architectural level, instead
of classes you’ve got services.

Overall, the microservice architectural style seems to be a natural fit for tackling our
requirements. Another key advantage of a microservice-based architecture is its support
of heterogeneous technology. Each service can be realized with the technologies best
suited for its task. This allows to meet Req-1: Integration of new technology in a way
that supports maintainability and flexibility. Section 5.2.5 provides more details about
this decomposition. The general rationale is that the functionality offered by a single
tool is closely related while the functionality across different tools has little in common.
Thus, introducing a microservice per tool leads to high cohesion in a service and low
coupling across services, which supports our goals of maintainability and flexibility.

Chapter 6 provides an overview of the architecture decomposed by means of microser-
vices.

Messaging

Section 5.1.4 provided a context map detailing the different bounded contexts. Some of
these contexts have integration points. In the context of DDD basically three 1 integration
types are possible: Remote procedure call (RPC), RESTful HTTP and messaging [Ver16].
These communication style can be differentiated by two dimensions. One dimension is
about the nature of the protocol, i.e. if it is synchronous or asynchronous. The other
dimension reflects the receiver semantics, i.e. if there is a single or if there are multiple
receivers. RPC is synchronous with a single receiver, RESTful HTTP has a single receiver
and is typically synchronous, but can also be realized asynchronously. Messaging is
asynchronous with multiple receivers.
Communication with a single receiver couples sender and receiver. The sender needs

to know the receivers location and depends on its availability. In addition, it is difficult
to introduce changes or extension. In the delivery domain many processes could also be
long-running. Given the focus on flexibility and maintainability, we therefore rely on
messaging [HW03] for the integration between the context reflecting the core domain and
the other dependent contexts. In the context of DDD the messages are Domain Events
[Ver16]. Section 5.2.2 provides more details about the domain events.

For the communication between components of either the model context or the activity
and the storage context, we decided to use RESTful HTTP as the underlying storage
domain is a generic one and off the shelf solutions typically offer a REST-based interface.

1file system or database integration are considered bad practice

48

5.2. Tactical Design

<<Value Object>>

ModelID
<<Value Object>>

ModelID
<<Entity>>

ModelReference
<<Entity>>

ModelReference

<<Entity>>

LocalReference
<<Entity>>

LocalReference
<<Entity>>

RemoteReference
<<Entity>>

RemoteReference

<<Aggregate Root>>

External Delivery Model
<<Aggregate Root>>

External Delivery Model

resolveModel()
triggerExecution()

<<Value Object>>

LastImportInfo
<<Value Object>>

LastImportInfo

Figure 5.5.: External Delivery Model Aggregate

5.2. Tactical Design

After the previous section provided a coarse-grained overview of important concepts
and their relation, this section details these concepts by using an important DDD tool:
the aggregate pattern (see section 5.2.1). Since DDD is all about modeling the domain
as explicit as possible (cf. [Ver16]), section 5.2.2 introduces Domain Events that help
to model explicitly and share business-relevant incidents. Subsequently, section 5.2.3,
section 5.2.4, Section 7.5.2, section 5.2.5 and section 5.2.5 introduce more fine-grained
design decisions.

5.2.1. Aggregates

An aggregates in DDD is a pattern that clusters related domain objects [Mar]. Each
aggregate has a single root object which might be referenced by other objects in the
domain. Any access must go through the aggregate root. That way, the aggregate root
can ensure consistency of the whole aggregate. Following the DDD terminology, an
aggregate is composed of entities and value objects [Eva03]. An entity represents an
individual thing that has a unique identity. Often an entity is mutable and changes
state over time. A value objects represents an immutable encapsulation of attributes.
Its identity is determined by comparing the attribute values. Typically, entities are
composed of value objects. [Ver16].

This sections introduces important aggregates from the core domain in the following.

External Delivery Model Aggregate

The external delivery model aggregate clusters domain objects related to the external
delivery model concept as presented in the core domain (cf. section 5.1.1). Figure 5.5
depicts the aggregate root with its related domain object. Since the delivery system
follows Continuous Delivery best practices (Req-7: Best practices) to keep everything

49

5. Domain Driven Design

<<Value Object>>

ModelID
<<Value Object>>

ModelID

<<Entity>>

Activity
<<Entity>>

Activity

<<Value Object>>

Execution
Precondition

<<Value Object>>

Execution
Precondition

<<Aggregate Root>>

DeliveryProcess
<<Aggregate Root>>

DeliveryProcess

planProcess()
triggerProcess()
apply(DeliveryProcessEvent e)

1..*1..*

<<Value Object>>

DeliveryProcessID
<<Value Object>>

DeliveryProcessID

<<Value Object>>

Dependency
<<Value Object>>

Dependency

<<Value Object>>

Activity
Configuration

<<Value Object>>

Activity
Configuration

<<Value Object>>

ActivityID
<<Value Object>>

ActivityID

<<Entity>>

Stage
<<Entity>>

Stage

{ordered}1..* {ordered}1..*

Figure 5.6.: Delivery Process Aggregate

in version control, the external model aggregate primarily consists of a modelReference
entity. The modelReference expresses that external delivery models are stored somewhere
else and not necessarily inside the delivery system context. The reference can either be a
LocalReference meaning that the external delivery model is stored somewhere natively
accessible by the delivery system (e.g. file system) or it is a RemoteReference expressing
that application services are required to retrieve the model. Central responsibility of the
external model aggregate is to retrieve the external delivery model. The external delivery
model describes a concrete delivery process. As the external model is not controlled by
the delivery system, the resulting delivery process might be different on every import
of the external model. Thus, we decided to invert the control and enable the model
aggregate to trigger the process execution by providing the external model. Section 7.2
provides more details about the inversion of control and the external model aggregate.

Delivery Process Aggregate

Figure 5.6 depicts the delivery process aggregate. It clusters domain objects that relate
to the internal delivery model as presented in the core domain (cf. section 5.1.1). To
this reason, we do not detail the concepts here. Important about the delivery process
aggregate is that it is only concerned with the static, modeling-related aspects. A
dedicated aggregate - the delivery process execution aggregate - deals with the execution
of the delivery process. This clear separation of modeling and execution concerns improves
maintainability and allows for greater flexibility. To allow for Req-8: Traceability the
delivery process aggregate has a reference on the external model aggregate. Also, each

50

5.2. Tactical Design

<<Value Object>>

DeliveryProcessID
<<Value Object>>

DeliveryProcessID

<<Aggregate Root>>

DeliveryProcess Execution
<<Aggregate Root>>

DeliveryProcess Execution

startExecution()
stopExecution()
pauseExectution()
abortExection()
apply(ExecutionEvent e)

<<Value Object>>

ExecutionID
<<Value Object>>

ExecutionID

<<Entity>>

Activity Execution
<<Entity>>

Activity Execution
<<Value Object>>

State
<<Value Object>>

State

1..*{ordered} 1..*{ordered}

InProgressInProgress

FailedFailed

CompletedCompleted

CancelledCancelled

PausedPaused
<<Value Object>>

Execution Index
<<Value Object>>

Execution Index

<<Value Object>>

Activity
Configuration

<<Value Object>>

Activity
Configuration

<<Value Object>>

ExecutionResult
<<Value Object>>

ExecutionResult

<<Value Object>>

ActivityResult
<<Value Object>>

ActivityResult

<<Value Object>>

Meta
<<Value Object>>

Meta

<<Value Object>>

ActivityID
<<Value Object>>

ActivityID

Figure 5.7.: Delivery Process Execution Aggregate

activity in the delivery process aggregate references the activity specification via the
activityId. This allows the delivery process aggregate to meet Req-4: Self-Organizing.
Section 7.3 details this model optimization.

Delivery Process Execution Aggregate

The delivery process execution aggregate is depicted in figure 5.7. It encapsulates domain
objects related to the delivery process execution concept as presented in the core domain
(cf. section 5.1.1) and ensures their consistency. Central part of the delivery process
execution is the activity execution. We designed it as an entity and not a separate
aggregate to avoid eventual consistency issues. Both the delivery process execution
and the activity execution have a state. The different states already indicate what
business operations on the delivery process execution are possible: The execution can
be started, stopped, paused and aborted. Similar to the activity entity in the delivery
process aggregate, the activity execution comprises configuration values and references
the corresponding activity through the activityId. The delivery process execution should
not be concerned with logically structures like stages, therefore it only comprises activity
executions. The order when to execute an activity is defined through the execution index.
This allows to execute activities in parallel while still providing a flexible data structure.
Each executed activity has a result which comprises meta data (e.g. logs, metric). If the
activity did not fail, its result additionally contains an output value object. Section 7.4
details these execution aspects.

5.2.2. Domain Events
Section 5.1.5 motivated the use of messaging to integrate our bounded contexts. In DDD
the messages are Domain Events [Eva03], i.e. the integration of bounded contexts is

51

5. Domain Driven Design

ModelRegisteredModelRegistered

ModelDeletedModelDeleted

ModelUpdatedModelUpdated

ProcessPlannedProcessPlanned

ProcessTriggeredProcessTriggered ExecutionStartedExecutionStarted

ExecutionPausedExecutionPaused

ExecutionResumedExecutionResumed

ExecutionTerminatedExecutionTerminated

ExecutionFailedExecutionFailed

ActivityStartedActivityStarted

ActivityProgressedActivityProgressed

ActivityCompletedActivityCompleted

ActivityFailedActivityFailed

Execution EventExecution Event
Delivery Process

Event
Delivery Process

Event
External Model

Event
External Model

Event

Domain EventDomain Event

Delivery Process
Execution Event
Delivery Process
Execution Event

Activity Execution
Event

Activity Execution
Event

ModelTriggeredModelTriggered

ProcessPlanning
Failed

ProcessPlanning
Failed

ExecutionStartFailedExecutionStartFailed

Figure 5.8.: Domain Event Hierachy

realized by means of event notification (cf. Observer Pattern [Gam+02]). Vernon defines
a Domain Event as "a record of some business-significant occurence in a Bounded Context"
[Ver16]. Business-relevant processes are realized by means of aggregates, thus aggregates
produce domain events. Interesting parties receive domain events and trigger an action in
response. These actions are triggered by means of commands. Semantically, the difference
between a command and an event is historical. A command expresses the intention to
perform something, while an event indicates that something has happened. Thus, a
command can be rejected, an event cannot. Syntactically, a command is formulated in
present tense, while an event is formulated in past tense.
The previous section introduced central aggregates. As they are the domain event

producers, the different domain events provided in figure 5.8 correspond to them.

External Model Events External Model events relate to the external model aggregate.
Thus, they basically reflect the external delivery model life cycle, i.e. they comprise
of a ModelRegistered Event, which signals the successful registration of an external
model reference at the delivery system, a ModelDeleted Event notifying the deletion
of a previously registered model reference and a ModelUpdated Event signaling that
the model reference (see section 7.2) has been updated. In addition aModelTriggered
Event exists indicating that the model should be planned and executed.

Delivery Process Events Delivery Process Events correspond to the delivery process

52

5.2. Tactical Design

aggregate. Two different delivery process events exist. A ProcessPlanned Event
being triggered when an internal delivery model has been planned and a Pro-
cessPlanned Event notifying when the execution of a previously planned internal
model has been triggered. For the failure handling (cf. section 6.3.7) there is an
ProcessPlanningFailed Event.

Execution Event The execution domain differentiates between to different execution
event types. Both are produced by the delivery process execution aggregate. Deliv-
eryProcessExecution Events notify observers about updates regarding the overall
delivery process execution (i.e. started, paused, resumed, terminated and failed
events) and ActivityExecution Events signal updates of a single command execu-
tion as part of the delivery process execution. Beside the obvious ActivityStarted,
ActivityCompleted and ActivityFailed event, there is an ActivityProgressed Event
which is published whenever the activity execution (cf. section 7.5) has progress
while still running. This enables the delivery system to trace the activity execution
and to provide snapshot mechanisms even on activity execution level.

5.2.3. Event Sourcing

Event Sourcing is the concept of persisting all domain events which have occurred for
an aggregate [Ver16]. Thus, in contrast to traditional state handling techniques (e.g.
Active Record [Fow02]) where only the aggregate state as a whole would be persisted,
this results in a sequence of state-changing events that determine the current aggregate
state. This event stream allows to have a complete history over every aggregates state
change.
Considering our requirements, event sourcing allows to meet Req-8: Traceability. In

addition, event sourcing allows to put the system in any prior state by replaying the events
to a certain moment in time, which greatly eases debugging. Given the importance of a
delivery system for the whole organization the ease of debugging is quite important in the
delivery system context and also improves maintainability. Another great advantage of
event sourcing is that no information is discarded. Traditional state handling techniques
only persist information which are required for current or expected business interest. If
unforeseen business interests occur, the persisted state must be extended to accommodate
the new required information. In the traditional approach the business interest can
only be answered starting from the point of time when the persisted state has been
extended. In the event sourcing approach the event projection must also be adapted,
but the business interest can then be answered from the beginning of time by replaying
all persisted events. Transferring this benefit to our problem domain, event sourcing
enables great possibilities for example in improving the self-organizing capabilities (see
section 7.3) by applying machine learning to all stored events (see section 10.2).
Overall, we decided to apply event sourcing as a means to meet Req-8: Traceability

while simultaneously easing the reproducibility (event replay) to improve maintainability.

53

5. Domain Driven Design

5.2.4. CQRS

Command-Query Responsibility Segregation (CQRS) is an architectural pattern that
applies the command-query separation (CQS) [MA89] design principle on architecture
level [Ver12]. The CQS principle states "every method should be either a command that
performs an action, or a query that returns data to the caller, but not both". Transferring
this idea to our domain, aggregates normally would have command and query methods.
As described in the detailed design (chapter 7) there also would be repositories [Fow02]
with different methods to query and filter the data. CQRS segregates the concerns of
reading and writing by means of separated models, i.e. the aggregate only has command
methods and the corresponding repository only a simple find method that returns the
aggregate by id. This is the command model. The query concerns are handled by a
dedicated query model, which may be denormalized and optimized for queries.
The rationale behind this approach is as follows: In complex domains users typically

are interested in data that is spread across several aggregates. This requires clients to
query multiple repositories and condense their information into a data transfer object
[Fow02] which requires them to have detailed domain knowledge. In addition it introduces
a strong coupling and requires aggregates to also consider query concerns making them
less optimized for their write concerns. CQRS allows aggregates to concentrate on the
write concerns, while their domain events are projected into one or multiple optimized
query models. Of course, this separation into two models adds complexity, thus it really
depends on the use case whether applying CQRS provides benefits.
In our case, users are primarily interested in the delivery process as a whole, i.e. an

integrated view of the external delivery model, the planned process and its execution.
Thus, there only is one central query model. Applying CQRS then allows to integrate
the different domain events to provide a unified view, while simultaneously reducing the
complexity of each aggregate. Meeting Req-5: Custom PDLs, i.e. visualizing the delivery
process in multiple external models can then be easily archived by providing a specialized
projection of the domain events. Overall, we therefore apply CQRS in the design of the
delivery system.

5.2.5. Delivery Process Activity

Given the importance of our decision to encapsulate the delivery process activities into
typed activities to meet Req-3: Abstraction and Req-6: Model Validation and to improve
the overall architecture of a delivery system (C1 - Project Evolution), this section explains
the design decision and provides details.
As already motivated, existing delivery systems have few semantic in their activities.

Their activities represent arbitrary shell commands which the delivery system delegates to
the operating system. While this approach offers maximal flexibility, the activity basically
is transparent to the delivery system. Thus, the delivery system hardly can validate
the shell commands (Req-6: Model Validation) neither provide meaningful execution
feedback nor hide technical details (Req-3: Abstraction). Basically, it heavily couples the
delivery system and the delivery model to its environment. This leads to very fragile

54

5.2. Tactical Design

systems, as a change in the delivery model or the environment can immediately break
the delivery process.
We therefore decided to encapsulate the functionality into activities, which encode

the required steps to be performed. To provide more semantics, we introduced an
activity classification improving the reasoning capabilities of the delivery system. Thus,
beside describing it’s interface (activity specification) each activity conveys its abstract
functionality (transformation or assessment). Overall, as everything required to perform
an activity is encapsulated in the activity itself, they realize information hiding [LL10],
thus providing a stable interface making the delivery system more robust and less sensitive
to changes. The interface allows a unified way of executing an activity, which allows for
extensibility of new activities.

Service Encapsulation

The previous section motivated our decision to encapsulate functionality into typed,
self-describing activities. These activities need some software components to realize
their functionality. The functionality typically is provided by third-party tools or service
providers. Thus, the architecture needs to allow their easy integration (Req-1: Integration
of new technology). In section 5.1.4 we identified the delivery activity context as a
boundary for the activity details. Strictly speaking, each tool or service provider has
its own bounded context, as the concepts and software components might be totally
different. Similar to our microservice decomposition argumentation (cf. section 5.1.5)
this suggests to realize each tool, respectively service provider context, by means of a
dedicated microservice, which then also allows to support heterogeneous technologies.
Each service then offers cohesive activities relating to this tool or service provider. Taking
a look at some service principles [Erl05] and mapping them to our scenario, suggests that
microservices are a natural fit to integrate the different tool and service providers:

Abstraction Services introduce abstraction, which means that (implementation) details
not required for the usage of the provided functionality are hidden. This reduces
coupling, therefore improves maintainability and eases the delivery process modeling
as fewer knowledge is required.

Standardized contract Services have standardized contract. This allows to consume the
offered activities and provide means for Req-4: Self-Organizing.

Discoverability Services are discoverable. To be able to use the offered activities, they
need to be discoverable in the first place.

Autonomy Services have a high level of control over their execution environment. This
allows to reduce the coupling between the delivery system and its environment,
thus reducing fragility.

The service encapsulation then also allows to reuse the offered activities outside the
software delivery context.

55

5. Domain Driven Design

PropertyProperty

name: String

DataTypeDataType

name: String

ComplexComplex SimpleSimple

ConstraintConstraint

Length ConstraintLength Constraint

1..*1..*

ArtifactArtifact

allowedConstraintsallowedConstraints

...

PropertyModelPropertyModel
1..*1..*

ActivitySpecificationActivitySpecification

configurationModelconfigurationModel resultModelresultModel

ActivityTypeActivityType

**

Figure 5.9.: Activity Specification

Activity Specification

Important concept to allow for Req-6: Model Validation and Req-4: Self-Organizing it
the activity specification. It describes both the possible configuration values of an activity
and its result scheme. Figure 8.5 provides the activity specification design. In principle, it
is all about describing properties with their data type. Our activity specification provides
three different data types. A simple data type expresses basic data types. The delivery
system already provides String, Numeric and Boolean. But of course, custom data types
can be defined. Complex data types represent objects consisting of other properties. The
special artifact data type is due to the fact that conceptually the delivery system focuses
on the artifact delivery stream, thus transformations consume and produce different
artifact. The propertyModel also contains constraints to not only allow for syntactically
validation (property names & data type), but also semantically, for example, if a string
has a certain length. These constraints are used for the self-organizing capabilities.
Especially for the artifact type, as we differentiate them based their concrete artifact
type. Section 7.3 provides more details about the self-organizing capabilities.

5.3. Summary

This chapter used Domain Driven Design to model the Software Delivery Domain as
explicitly as possible. We decided to use Domain Driven Design since this thesis tries to
provide a framework architecture for Software Delivery Systems. Designing a framework
requires to have a deep domain understanding in order to incorporate appropriate hot-
spots. As chapter 4 identified, existing delivery systems have fundamental problems to
meet our requirements. Therefore, we started from scratch by modeling the domain using
Domain Driven Design.

56

5.3. Summary

First, Strategic Design tools assisted in identifying coarse-grained concepts and re-
sponsibilities. Most importantly, we identified and designed our core domain during the
strategic design. Thereby, we introduced an delivery process activity classification. Each
activity either is a transformation, an assessment or a quality gate (which in fact is a
special transformation). Transformations mutate, translate or merge their input artifacts
into a new artifact. Assessments perform measurements to be able to evaluate certain
attributes of their input artifact, which they publish as a report. Quality Gates consume
artifacts, corresponding reports and policies to decide which artifact is promoted or
rejected. Each activity thereby has an activity specification that defines both the input
and the output model. This specification allows to validate activities defined in a delivery
model.

Based on our core domain, we identified several supporting domains which we restricted
by defining bounded context. The next chapter uses these contexts to map them to
software-technical units.
In addition to strategic design, we detailed some identified concepts in tactical de-

sign and made important design decisions. Most importantly, we decided to use the
microservice-architectural style because it provides great flexibility and allows to easily
integrate new technology. To decouple these services, we use messaging. Following our
Domain Driven Design the messages correspond to domain events of our core aggregates
identified during tactical design. Another important decision we made is to use Event
Sourcing as a means to meet traceability and CQRS to reduce the complexity of each
core service. The next chapter uses these design decisions to present an architecture for
our delivery system framework.

57

6. Architecture Overview

Contents

6.1. Logical View . 60
6.2. Development View . 61
6.3. Process View . 64

6.3.1. Architecture Control Flow . 64
6.3.2. Message Flow Overview . 65
6.3.3. Model Registration . 66
6.3.4. Import . 66
6.3.5. Planning . 68
6.3.6. Execution . 69
6.3.7. General Design Decisions . 71

6.4. Summary . 72

Central part of this thesis is to introduce an architecture which tackles the identified
challenges and meets the requirements. The previous chapter introduced important
concepts following domain driven design principles. Based on these concepts, this chapter
provides an overview of our architecture. Thereby it is structured according to the 4+1
View Model [Kru95]. We address the following views:

Logical View The logical view provides high level abstractions of the architecture based
on functional requirements and logical concepts identified in chapter 5

Development View The development view presents the architecture from a technical
perspective. It contains the different layers and their components.

Process View The process view focuses on important dynamic aspects of the architecture,
i.e. it describes how the different components of the architecture interact.

We do not discuss the physical view 1 because considering our microservice design (cf.
section 5.1.5) this mapping can be arbitrary and thus without providing any value in
this thesis context. All microservices could be deployed on the same node, each on it’s
own node or any combination in between. Also we do not discuss scenarios, as the scope
of this thesis is to tackle C1 - Project Evolution and C2 - Modeling Usability. The first
challenge basically deals with improving the architecture of existing delivery system, thus
the scenarios should be sufficiently known. The second challenge is a concrete scenario,
which does not require further explanation in our opinion.

1The physical view describes how the different components are mapped to physical nodes in the network

59

6. Architecture Overview

Activity
Context

Activity
Context

Model Context

Model Context

Artifact Storage
Context

Artifact Storage
Context

Activity
Context

Activity
Context

Orchestration
Context

Orchestration
Context

Self-Organizing
Context

Self-Organizing
Context

Activity RegistryActivity Registry

Activity
Specification

Activity
Specification

View Service
(CQRS)

View Service
(CQRS)

Activity ServiceActivity Service

ActivityActivity

Storage ServiceStorage Service

ArtifactArtifact

OrchestratorOrchestrator

Delivery Process
Execution

Delivery Process
Execution

Model ServiceModel Service

External Delivery
Model

External Delivery
Model

via Ubiquitous Language of
Self-Organizing Context
via Ubiquitous Language of
Self-Organizing Context

Process PlannerProcess Planner

Model EventsModel Events

Process EventsProcess Events

Execution EventsExecution Events

Internal Delivery
Model

Internal Delivery
Model

EventEvent
Async Communication

via Event

Figure 6.1.: Logical View - Bounded Context Service Mapping

6.1. Logical View

Chapter 5 applied Domain Driven Design and presented strategic and tactical design
decisions. Main contribution were several bounded context that decompose the overall
domain. This section maps these bounded contexts to software entities. Thereby, we
share the view of some others that a microservice might be much smaller than a DDD
bounded context [Ver16]. A microservice might only model one concept of the bounded
context. Following this idea, multiple microservices will still logically be in the same
bounded context.
Figure 6.1 provides the context mapping. As depicted, most bounded contexts map

one-to-one to a microservice. The model context is realized through the model service,
the storage context through a storage service and the orchestration context through an
orchestrator service. As discussed in section 5.2.5 there is one activity context per tool (cf.
Req-1: Integration of new technology), thus there are multiple activity contexts with each
one comprising a single activity service. The Self-Organizing context is realized by means
of a process planner which deals with the internal delivery model, an activity registry
which provides the activity specification concept and a view service which projects the
events of our core aggregates (cf. 5.2.1). As stated, these services logically correspond
to the same bounded context and share its concepts. But considering the focus on
maintainability and flexibility, design practices (single responsibility principle) suggest
to decompose the context into multiple services. Planning the delivery process and
managing available activity specifications are separate concerns.

Figure 6.1 also depicts the service relations. These relations are similar to the bounded
context relations (cf. section 5.1.4). We won’t go into much details here, as section 6.3

60

6.2. Development View

provides the dynamic aspects. But for clarity reasons, we want to highlight the following:
Taking a look at the relation between the activity service and the orchestrator service
and comparing it to the relations of their bounded contexts, there is a difference: While
the contexts have no relation, there is a relation between the activity service and the
orchestrator. This is on purpose. Since the context map provides the integration points
of bounded contexts, i.e. an overview about how a context uses concepts of another
context and figure 6.1 depicts the communication between services. Such a scenario
can occur, if the communication is based on the language of another bounded context.
In this concrete case, the activity service communicates with the orchestrator via the
language of the self-organizing context. This has the following rationale: We designed
the orchestrator to be generic. If the activity services would use the language of an off
the shelf orchestrator, we cannot change the orchestrator without adapting the activity
services. Therefore they both use the core language, which conceptually provides loose
coupling between them.

6.2. Development View

Figure 6.2 (page 63) provides an overview of our technical architecture. It highlights
several key components. As discussed in section 5.1.5 and indicated above, the architecture
uses the Microservice Architectural Style which meets Req-2: Modularity.

Because the development view also contains technical services, we couldn’t arrange the
already identified services according to their bounded contexts while still keeping the
model readable. Instead figure 6.2 (page 63) organizes the microservices in layers [Fow02].
To prevent misunderstandings we explicitly want to highlight that each depicted service
is isolated and individually deployable.

The following introduces our different layers from bottom to top. The lowermost layer
(External Provider) is not part of the architecture itself. To provide an holistic overview,
figure 6.2 (page 63) nevertheless depicts this layer.

Activity Layer The activity layer houses Activity Services that realize coherent activities
in a self-contained manner (cf. section 5.2.5). Typically, each activity microservice
encapsulates the functionality of a tool (Req-1: Integration of new technology). But
it might also be reasonable to split the functionality into multiple activity services.
Each activity service registers its offered activities during startup by means of
publishing his activity specifications (cf. section 5.2.5) at the activity specification
registry (delivery process management layer). Activity services might interact
with external tools or services to realize their activities. As these providers are
external, we do not discuss them in further details. Following our core domain (cf.
section 5.1.1) each activity either is a transformation or an assessment. Typically,
an activity service provides only activities of a certain type. If an activity service
only provides transformations it is a transformation service. Analogously, it’s
an assessment service if he only provides assessment activities. The service can
also provide activities of both types. We then consider him a hybrid service.

61

6. Architecture Overview

Overall, the activity layer provides means to tackle Req-1: Integration of new
technology because integrating new technology is a matter of providing a new activity
service (cf. section 5.2.5). An activity service itself tackles Req-3: Abstraction (cf.
section 7.5.2. They also enable Req-6: Model Validation by means of providing
activity specifications. Section 7.5 details the architecture of activity services.

Delivery Process Management Layer The delivery process management layer contains
services required for managing and executing delivery models. From a domain driven
design perspective this includes the model context, the orchestration context and the
self-organizing context (cf. section 5.1.4). Thus, we consider the management layer
as our core layer. It houses the model service which imports, validates and translates
external delivery models into the internal delivery model (cf. section 5.1.1), the
process planner which plans and optimizes a given internal delivery model, and the
orchestrator which is a process manager (cf. [HW03]) that controls the execution of
the aforementioned activity services. The activity specification registry (cf. registry
pattern [Fow02]) from the Self-Organizing context is also part of this layer. It
keeps track of all available activities and their activity specifications provided
by the activity services. As only the model service, the process planner and the
orchestrator deal with our central aggregates (cf. section 5.2.1), we abbreviate these
three services (and not the registry) as core services in the remainder of this thesis.
Summing up, the separation of concerns between the import, the planning and the
execution control increases the robustness and allows to easily extend and modify
each aspect and to use off-the-shelf solutions for example for the orchestrator. To
employ isolation, loose coupling and location transparency between these services,
they communicate asynchronously via domain events as motivated in section 5.2.2.
Overall, the delivery process management layer is responsible for Req-6: Model
Validation, Req-4: Self-Organizing and Req-5: Custom PDLs. Section 7.1 provides
details about the activity specification registry, section 7.2 details the model service,
section 7.3 details the process planner and section 7.4 details the orchestrator.

Infrastructure Layer This layer provides microservice that offer general purpose func-
tionality (for transport and persistence) required by other microservices in the
architecture. Beside the artifact storage service contained in this layer which was
functionally motivated (cf. section 5.1.4), all other services in this layer are techni-
cally motivated. They comprise of an event store, which allows the core services
to use event-sourcing (cf. section 5.2.3) and event notification (cf. section 5.2.2),
a monitoring service to assist the operation and a discovery service to allow peer
to peer communication without knowing the location of every service (e.g. for the
API gateway).

Access Layer Motivated by microservice best practices [New15], the access layer contains
an API Gateway to provide clients in the visualization layer a single entrypoint
into the system and to deal with crosscutting concerns like caching and security. In
addition, this layer contains the view service (cf. 6.1). As motivated in section 5.2.4,
our core services apply CQRS. The view service maps and integrates domain data

62

6.2. Development View

Delivery System
Management Tool

Delivery System
Management Tool

<<Transformation>>
Activity
Service

<<Transformation>>
Activity
Service

OrchestratorOrchestratorModel ServiceModel Service

Process
Planner
Process
Planner

Event StoreEvent Store

Event Bus

Events

API GatewayAPI Gateway

Visualization

Access

Delivery Process Management

Activity

Activity
Specification

Registry

Activity
Specification

Registry

NotificationNotification

External Provider

Infrastructure

...

Task Queue

Artifact
Storage
Artifact
Storage

MonitoringMonitoring

Commands Queries

View ServiceView Service

Internal Model
Representation
Internal Model
Representation

External Model
Representation
External Model
Representation

View Service

Internal Model
Representation

External Model
Representation

<<Assessment>>
Activity
Service

<<Assessment>>
Activity
Service

Model ImporterModel Importer

...

Service
Discovery

Service
Discovery

Deployment
Tool

Deployment
Tool

Notification
Tool

Notification
Tool

Static Analysis
Tool

Static Analysis
Tool ...

Technical Service
Functional Service

(motivated by DDD)

Figure 6.2.: Layers and services in the delivery system architecture

across our central aggregates section 5.2.1. Thus, it subscribes to external model,
delivery process and execution domain events (cf. section 5.2.2) to build a query
model integrating all relevant aspects across the delivery domain. To support
Req-5: Custom PDLs different model representation services or components can be
provided that provide a projection of domain events into their dedicated model.

Visualization Layer Similar to a 3-tier design [Gor06] our top layer is the visualization
layer. It houses frontend services. As no special requirements regarding the
visualization exist, only one frontend, the Delivery System Management Tool
is necessary right now. Following the CQRS approach of our core service, the
management tool offers a task-based user interface which allows to import new
delivery models, visualizes existing ones and allows to trigger their execution. The
future work discusses another possible visualization tool, namely a graphical delivery
model modeler (see section 10.2).

Summing up, our microservice-based architecture for delivery systems provides several

63

6. Architecture Overview

Import Planning Execution

Figure 6.3.: Architecture Control Flow

hot spots. New technology can be integrated by means of adding an activity service,
additional pipeline description languages can be added by providing a corresponding
model service, new Self-Organizing capabilities can be realized by means of additional
process planner services, different off-the-shelf orchestrator can be added and even new
delivery process representations can be provided.

6.3. Process View
This section provides insights into the dynamic aspects of the delivery system architecture.
First, section 6.3.1 defines the overall control flow, which affects all our core aggregates
(cf. section 5.2.1). Section 6.3.2 then introduces how this flow is integrated into the
delivery system architecture. Section 6.3.4, Section 6.3.5 and Section 6.3.6 respectively
then provide an overview of each individual phase of the control flow. The control flow
thereby describes the execution of a delivery process starting with the import of a delivery
model. Prerequisite for execution a delivery model is to register it at the delivery system
first. Section 6.3.3 details how external delivery models are registered at the delivery
system.

6.3.1. Architecture Control Flow
As section 6.2 stated, the delivery system architecture provides several hotspots to adapt
functionality because of its microservice structure. To control the flexibility at individual
service level, the architecture defines a higher-level control flow, which manifests from
the Domain Driven Design (cf. chapter 5). We call this flow Architecture Control Flow.
Figure 6.3 depicts its three phases. It starts with controlling the import of an external
delivery model, i.e. the download from version control or wherever it is stored. The
import process is realized by the model service (model context), which downloads and
transforms the external delivery model to the internal delivery model. After importing,
the internal delivery model gets planned and optimized by means of process planners
(self-organizing context). Then the orchestrator starts executing the delivery process
defined by the optimized internal delivery model.

Overall, the Architecture Control Flow is at the heart of the delivery system architecture.
It extends the architecture towards a delivery system framework by realizing Inversion
of Control [Fow05].

Following the event driven approach, the architecture realizes the Architecture Control
Flow by means of a Choreography [New15], i.e. each core service knows how to react
on certain events. This has one central implication: Each core service can influence the

64

6.3. Process View

Event StoreEvent Store

Event Bus Events

Model ServiceModel Service

Model
Events
Model
Events

Process
Planner
Process
Planner

OrchestratorOrchestrator

Delivery
Process Events
Delivery
Process Events

Execution
Events
Execution
Events

View ServiceView Service

Delivery
System

Management
Tool

Delivery
System

Management
Tool

Queries

Commands

Control Flow Data Flow

External Delivery
Model

External Delivery
Model

Delivery ProcessDelivery Process
Delivery Process

Execution
Delivery Process

Execution

Import phase of
Architecture Control Flow

Planning phase of
Architecture Control Flow

Execution phase of
Architecture Control Flow

Figure 6.4.: Simplified Message Flow in the Delivery System

control flow by not not publishing the corresponding event. Similar to a Detour [HW03],
a core service could integrate an arbitrary sequence of steps in between or could abort
the flow completely.

To enforce the control flow, one could use a designated central component that monitors
progress and instructs services to execute certain commands. We decided against such an
orchestrated approach to allow for tailoring by means of integrating custom services. To
be able to enforce the control flow, the core services need to be fixed. Other planners or
model importer then can be added to each individual core service by means of an adapter
[Gam+02]. Each core services then orchestrates its adapters or internal components.

6.3.2. Message Flow Overview

Figure 6.4 provides an overview how the architecture control flow is integrated into the
delivery system architecture. Recapitulating chapter 5 we use messaging for publishing
domain events of our core aggregates, i.e. of the external model aggregate, the delivery
process aggregate and the delivery process execution aggregate. Section 5.2.2 provided
an overview of their domain events.
Considering how our aggregates are distributed across the core services, the model

service publishes and consumes model events, the process planner consumes both model
events and delivery process events and publishes delivery process events and the orches-
trator consumes both delivery process events and delivery process execution events and
publish delivery process execution events.

The architecture control flow then is realized as follows 2: The model service publishes
2see section 5.2.2 for the individual event types

65

6. Architecture Overview

an ModelTriggered event, the planner service consumes this events, plans the delivery
model and publishes a ProcessTriggered event. The orchestrator consumes this event
and starts executing the modeled delivery process, thereby publishing delivery process
execution events.
Figure 6.4 also illustrates the CQRS pattern applied across our core services (cf.

section 5.2.4): The delivery system management tool triggers state changes via CQRS
commands. The core services perform the changes and publish domain events in response.
Instead of querying the core services, the management tool requests these information
from the view service, which uses the published events to build an integrated, read-only
query model. The event store depicted in figure 6.4 provides the required infrastructure
for this approach, i.e. an event bus (cf. message bus [HW03]) to communicate events via
messaging and a persistence mechanism to store these events. The core services use the
stored events to determine their aggregate state (cf. event sourcing section 5.2.3).

6.3.3. Model Registration

Clearly, most important scenario for a delivery system is the execution of a delivery
process as this provides value to the user. But such a delivery process must be defined
in the first place. Meeting Req-7: Best practices requires to keep everything in version
control which also includes the delivery model. Recalling chapter 5 we call this model
external delivery model. As this model is not controlled by the delivery system, future
changes would be ignored, if the model is imported to the delivery as a whole. Thus, the
delivery system only stores a reference onto this external model. This reference then
allows to trigger the delivery process execution while reflecting the latest model content.
We call this process model registration. This section provides an overview of the model
registration dynamics. Section 6.3.4 then provides an abstract view on the import process
in context of the fundamental architecture control flow.

Three services are involved in the import process. Starting with the user requesting the
import of an existing external model, the management tool issues an importDeliveryModel
command to the model services. This command comprises all information required to
fetch the external model (e.g. file path, url, etc.). The model services validates the
command. If all required command parameters are set and in their bounds, the model
service tries to reach to specified model location. If the referenced model can be reached,
the model service publishes a modelRegistered event which contains meta information
about the model (location, hash sum, etc.). The view service listens to this event and
creates a corresponding representation for the management tool (cf. CQRS section 5.2.4).

6.3.4. Import

The first phase initiated by the architecture control flow is to download the latest model
version and to convert it into the internal delivery model. We call this process import.
Prerequisite for importing a model is that the delivery system knows about it.
Figure 6.6 depicts the high-level steps of the import process as an UML activity

diagram. These steps are performed by the model service. Section 7.2 provides more

66

6.3. Process View

Management
Tool

Management
Tool

Model ServiceModel Service Event StoreEvent Store View ServiceView Service

registerDelivery
ModelCmd

validateRequest

checkModelAvailability

create ExternalModel
Aggregate

ModelRegistered
Event

ACK

External model view data

persist view data

Register

Figure 6.5.: External Model Registration Process

67

6. Architecture Overview

Exists?Exists?
Receive Trigger
Model Request

Lookup model
Reject trigger

request
NoNo

Resolve
model reference

YesYes

Resolveable?Resolveable?

NoNo

Validate model
syntax

YesYesValid?Valid?

NoNo

Convert to
internal model

YesYes

Send ModelTriggered
Event

Store external
model in artifactstore

Contains internal
delivery model
(event enrichement)

Contains internal
delivery model
(event enrichement)

Figure 6.6.: Abstract Import Process

details on the model service. The import process starts on receiving a delivery model
trigger command from the delivery system management tool. The trigger command
contains the id of the corresponding external model aggregate (cf. section 5.2.1). If
the referenced aggregate exists, the model aggregate downloads the referenced delivery
model and validates it syntactically (the process planners provide more sophisticated
validation). Afterwards, the model aggregate converts the external delivery model into
an internal delivery model, to allow process planners to plan independently from the
concrete model. For meeting Req-8: Traceability, it then uploads the external delivery
model to the artifact store, and publishes an modelTriggered event. This event contains
the internal delivery model (we decided to use event enrichment (cf. section 6.3.7)) and
the artifact id of the uploaded external delivery model.

6.3.5. Planning
The second phase initiated by the architecture control flow is planning, i.e. the completion
and optimization of an internal delivery model. The first phase imported the external
delivery model and translated it into the internal delivery model. On receiving this
internal delivery model, the planning process starts. Figure 6.7 depicts the high-level
steps of the planning process as an UML activity diagram. These steps are performed
by the process planner service. Section 7.3 provides more details on the process planner
service. Following defensive programming practices, the planner service first validates
the received delivery model. Since the model typically is incomplete at this early stage
in the process, the validation only is of technical nature (e.g. syntax). Key requirement
for planning is a knowledge base. Thus after basic validation, the planner service fetches
the available activity specifications. Next, matching planners are selected. Following
section 7.3.2, the process planner service internally uses multiple planners. Thereby we

68

6.3. Process View

Receive model
triggered event

Validate
Model

Fetch activity
specification

<< Loop >>

[For all model planners]

Plan delivery
model

Select planners

Send Process Planning
Failed Event

<< Loop >>

[For all project planners]

Plan delivery
model

Valid?Valid?

yesyes

NoNo

Download
project sources

Send Process Planned
Event

Send Process Triggered
Event

Only syntactically as model is
unplanned (might be incomplete)
Only syntactically as model is
unplanned (might be incomplete)

Includes more
sophisticated validation
Includes more
sophisticated validation

Separate events allow to trigger
actions individually (e.g. Execution
of already planned delivery model)

Separate events allow to trigger
actions individually (e.g. Execution
of already planned delivery model)

Figure 6.7.: Abstract Planning Process

differentiate between model planner and project planner. Depending on the delivery
model different planner are applicable. During the planning process matching planners
are therefore dynamically selected. After matching planners have been selected, the
actual planning starts. Thereby, the planning is divided into two phases, which results
from project planners being more expensive then model planners. Project planners
require the project sources for planning. After the model planner have finished their
planning, the planner service therefore downloads all project sources (which are referenced
by the delivery model). Then, all selected project planner start their planning. After
the planning has finished, both an process triggered and an process planned event are
published to decouple both operations from each other and allow to trigger each one
individually later on. Section 7.3 provides further details on the planning.

6.3.6. Execution
Last phase initiated by the architecture control flow is the execution of the previously
planned delivery model. Figure 6.8 provides an overview of the execution process as an
UML sequence diagram. Recalling section 5.1.4 the delivery model is expressed by means
of the core language, i.e. in the internal delivery model. The orchestrator translates
the internal delivery model into his orchestrator model. This indirection is required as

69

6. Architecture Overview

OrchestratorOrchestrator Activity ServiceActivity Service

convert model
to orchestrator

model

add starting
activities

to task queue

Execution
Started Event

pollActivity

execute

complete
ActivityExecution

add subsequent
activities to queue

loop

foreach activity in queue

loop

foreach activity in queue
ActivityExecution
Progressed Event updateActivity

Execution

ActivityExecution
Completed Event

Execution
Completed Event

Artifact StoreArtifact Store

uploadArtifacts

artifactId

DeliveryProcess
TriggeredEvent

Figure 6.8.: Delivery Process Execution Process

we want to support different orchestrator realizations (we classified the orchestration
subdomain to be a generic one). A different orchestrator can then be used by simply
providing a corresponding adapter. Section 7.4 provides more details on this. Having
translated the internal model to the orchestration model, the orchestrator starts the
execution. Following the execution order the orchestrator adds activities to its queue. The
activities services consume these activities and execute them. Section 7.5 details why we
designed the activity services as polling consumers. During execution the activity services
can update their progress at the orchestrator at any time. This allows to provide users
with feedback during long running activity executions. Any update to the orchestrator
leads to the corresponding event (ActivityStarted, ActivityProgressed, etc.). If all delivery
process activities have completed, the orchestrator publishes an ExecutionCompleted
event.

70

6.3. Process View

6.3.7. General Design Decisions

The above description of the architecture control flow contained some design decisions,
which we want to briefly discuss.

Query-back vs. Event Enrichment

When dealing with domain events, there are two possibilities [Ver16], regarding the
amount of information included in a domain event: Either the domain events are kept
thin which requires the consumer to query back for more data or the domain event is
enriched with enough data to satisfy the needs of its consumers. From the autonomy
perspective, enrichment is favorable as the dependent receivers can only rely on the event
itself. On the other hand it is difficult to predict which information might be needed.
Providing too much information then also imposes a security risks as the access cannot
be as effectively controlled as in the querying back approach. Overall, both approaches
have their pros and cons. Vernon therefore advocates to individually decide per use case
[Ver16].

In our concrete use case one driving requirement is autonomy, as we focus on maintain-
ability and flexibility. Moreover, the amount of information required is clearly defined,
namely the internal delivery model. Thus, we decided to use the event enrichment
approach for the aforementioned events.

Failure Handling

So far, we primarily considered successful execution branches in the process descriptions.
Of course, failure will happen (especially in a distributed system) and one should explicitly
design for it ([Jin11]). As providing alternative paths in the sequence diagram (figure 6.8)
would have lead to a complexity explosion, we decided to present our general approach
to failure handling in this section.

In principle, there are two ways of triggering an action. Either by issuing a command
directly to a core service or by publishing an domain event which in response causes
a core service to react by performing an action (cf. choreography [New15]). In the
first scenario the command request can simply be rejected if something fails (e.g. by
throwing a meaningful exception). In the second scenario we are already in the context
of a running business process. Anything that happens therefore is of interest for the
domain. Thus, our core services publish a corresponding failure event in that case.
Considering the delivery process execution process, a failure during the running business
process can happen through an error in the process planning or through an error in the
delivery process execution (orchestrator). Our domain events (cf. section 5.2.2) provide
a ProcessPlanningFailed and a ProcessExecutionStartFailed event for these cases.

71

6. Architecture Overview

6.4. Summary
This chapter provided an overview of our architecture by means of the Logical View,
the Development View and the Process View from the 4+1 View Model. In the Logical
View we mapped bounded context identified in chapter 5 to microservices. Overall, we
introduced a model service that tackles Req-5: Custom PDLs, by importing different
external delivery model types and translating them to the internal delivery model. An
artifact storage service, which in combination with our event-sourced approach allows for
Req-8: Traceability. An orchestrator to manage several activity services, which allow
toReq-1: Integration of new technology by encapsulating delivery process activities, which
also allows for a unified execution interface (Req-3: Abstraction), thereby hiding technical
details and providing activity specifications in order to meet Req-6: Model Validation.
We also introduced a process planner that completes and optimizes internal delivery
models to allow for Req-4: Self-Organizing and Req-7: Best practices. In the process view
we then provided an overview of the architecture dynamics. The dynamics highlighted
the architecture framework characteristic. At its core, the architecture controls a process
consisting of a resolving, a planning and an execution phase. Its microservice architecture
thereby provides many hotspots to change each phase realization. But the overall process
is given by the architectures inversion of control. In the next chapter, central components
and services are detailed.

72

7. Core Components & Services

Contents

7.1. Activity Specification Registry . 73
7.1.1. Component View . 74

7.2. Model Service . 75
7.2.1. Component View . 75
7.2.2. Delivery Model Command API 76
7.2.3. Model Registration . 77
7.2.4. Model Execution . 78

7.3. Process Planner . 80
7.3.1. Self-Organizing . 81
7.3.2. Planner Types . 82
7.3.3. Component View . 83
7.3.4. Planner Selection . 84
7.3.5. Planning . 85

7.4. Orchestrator . 87
7.4.1. Component View . 87
7.4.2. Delivery Process Execution 89

7.5. Activity Service . 90
7.5.1. Component View . 91
7.5.2. Activity Design . 92
7.5.3. Execution API . 94
7.5.4. Execution . 94
7.5.5. Quality Gate Service . 98

7.6. Summary . 99

The previous chapter provided an overview of the architecture. This chapter details
central services. In principle, these services correspond to the identified bounded contexts
(cf. section 6.1). We do not detail the artifact store, as its subdomain is a generic one,
thus detailing the realization wouldn’t provide much value regarding the thesis scope.

7.1. Activity Specification Registry

The activity specification registry provides the delivery system with the means to meet
Req-6: Model Validation and Req-4: Self-Organizing. It thereby realizes the Activi-
tySpecification concept from the core domain section 5.1.1. Like a service registry (cf.
[Erl05]), it stores descriptions for discovery of the available capabilities. But instead of
services descriptions it stores the specifications of all delivery process activities available

73

7. Core Components & Services

Activity Registration APIActivity Registration API

Search APISearch API

Validation APIValidation API

Search
Controller

Search
Controller

Validation ControllerValidation Controller

Activity Specification ModelActivity Specification Model

Activity Specification
Repository

Activity Specification
Repository

In-Memory

Validation EngineValidation Engine

Registration
Controller

Registration
Controller

Monitoring
Service

Monitoring
Service

Activity Specification RegistryActivity Specification Registry

Figure 7.1.: Activity Specification Registry - Component View

in the delivery system. Storing the specifications at a central location has the great
advantage of decoupling specification consumers and specification providers. Recalling
section 6.2 the specifications are provided by activity services which realize the corre-
sponding activity. The process planner consumes these specifications to reason about a
given delivery model. In future, more consumers are possible. Because of the activity
specification registry, these consumers are autonomous from activity services, which
improves flexibility and maintainability.

The idea of a registry is of course not new. Having references service registry from the
SOA world above, the following briefly justifies why we designed our own registry. The
solution for service discovery in SOA is Universal Discovery, Description and Integration
(UDDI) [Erl05] which contains a xml-based registry. The registry stores information
about the discovered services using their WSDL description. As Vianden [Via16] pointed
out, UDDI was quite successful in the early 2000 year but several large companies
(Microsoft, SAP and IBM) discontinued their UDDI support in 2006. Following Vianden’s
argumentation, UDDI failed because it tried to solve the discovery and integration problem
on a too general level. In our scenario we do not need to discover and integrate arbitrary
services. We are only interested in discovering activity services, thus we know their
APIs and can ensure their technical compatibility. Consequently, we decided to design a
solution specifically tailored to our needs.
The following provide an overview of the activity specification registry components.

7.1.1. Component View

Figure 7.1 depicts the internal components of the activity specification registry. Cen-
terpiece is an implementation of the activity specification model (see section 5.2.5).

74

7.2. Model Service

All other components provide functionality regarding this model. Overall, the activity
specification registry is designed as a microservice, thus providing only limited, tailored
functionality. This functionality first an foremost comprises an Activity Specification
Repository which handles the persistence concerns. To keep the stored information up to
date, the Monitoring Service continuously verifies if the corresponding activity service
is alive and yet provides activities matching the stored specification. Activity services
can register new activity specifications via the Activity Registration API. The Search
API allows consumers (e.g. the process planner) to find available activity specifications
matching certain criteria (e.g. service name).
The activity specification registry also provides validation support. The Validation

API allows to check a given object against the activity configuration model respectively
the activity result model. We decided to integrate the validation capability in the activity
specification registry as this functionality is closely related to the activity specification
itself. If an off-the-shell solution for the registry should be used, this aspect could be
easily separated in another microservice. Right now, the separation wouldn’t provide
much value. Overall, the validation support not only is used by the process planner but
also allows to realize for example a graphical delivery process modeler (see section 10.2).

7.2. Model Service

The model service is the entry point for external delivery models into the delivery system.
It realizes the ExternalDelivery Model concept from the core domain (section 5.1.1).
Req-7: Best practices requires among others to keep everything in version control including
the delivery model. The external model aggregate therefore contains a model reference.
Using this reference the model service resolves the model on demand, i.e. when the
delivery process execution is triggered. To meet Req-5: Custom PDLs, the model service
translate the external model into the internal delivery model. Supporting a new external
model type can then be realized locally by extending the model service and without
affecting the remaining delivery system.

The following sections detail the model service both from a static (section 7.2.1) and a
dynamic perspective (section 7.2.3).

7.2.1. Component View

Figure 7.2 depicts the components of the model service. At it’s heart is the ExternalDe-
liveryModel aggregate from the core domain (section 5.1.1). As a service dealing with a
central aggregate, it applies the CQRS pattern and uses Event Sourcing for persistence (cf.
section 5.2). CQRS Commands enter the service through the Delivery Model Command
API. Section 7.2.2 details this API. In principle, two CQRS commands are supported: An
import command to add a new model reference and a command to trigger the execution
of the delivery process described by the external model. Each command is handled by a
dedicated Command Handler that validates the command request and orchestrates the
command execution. Following our domain driven design approach, the command handler

75

7. Core Components & Services

External Model AdapterExternal Model Adapter

Command
Handler

Command
Handler

Model
Repository

Model
Repository

<<AggregateRoot>>

ExternalModel
<<AggregateRoot>>

ExternalModel

Delivery Model
Command API
Delivery Model
Command API

Event StoreEvent Store

Event Bus

Events

Model ServiceModel Service

Model
Adapter Registry

Model
Adapter Registry

ModelResolverModelResolver

Local ResolverLocal Resolver

Remote ResolverRemote Resolver

Concrete External ModelConcrete External Model
Model

Transformator
Model

Transformator

Internal Delivery ModelInternal Delivery Model

Event
Publisher

Event
Publisher

Figure 7.2.: Model Service Component View

loads or creates the corresponding ExternalModel aggregate via the ModelRepository and
performs the requested operations on it which produces domain events. The command
handler uses the ModelRepository to load the aggregate. The Event Publisher allows to
publish domain events in the event store (cf. section 5.2.3). Section 7.2.3 details the
dynamics based on the model import scenario.
As mentioned above, central entity of the external model aggregate is the model

reference. The model service uses the reference to resolve the external model on demand.
This behavior is encapsulated in the ModelResolver component which provides different
resolving strategies (cf. strategy pattern [Gam+02]) depending on the model reference
type. The referenced model can have different types (Req-5: Custom PDLs). The model
services uses corresponding model adapters managed in the model adapter registry. This
follows the Open-Close principle [LL10] and eases flexibility and maintainability. Each
adapter encapsulates the specifics of a concrete external model and has the means to
translate it into the internal delivery model for usage independent of the external model.

7.2.2. Delivery Model Command API

The model service provides both the means to import a delivery model into the delivery
system and to trigger the execution of such a model. Section 6.3 outlined this process.
We therefore consider model service the entrypoint into the delivery system. As such, it
API should be detailed. The following specifies the command API of the model service
using a well known interface description language, Corba IDL ([Obj17]). Each method is
described after the listing.

76

7.2. Model Service

module DeliveryModelAccess {
interface DeliveryModelCommandAPI {

string importDeliveryModel(in ModelImportRequest
importRequest);

void triggerDeliveryModelExecution(in string modelId);
};
interface ModelRegistrationRequest {

readonly attribute string modelName;
};
interface LocalModelRegistrationRequest:

ModelRegistrationRequest {
readonly attribute string path;

}
interface RemoteModelRegistrationRequest:

ModelRegistrationRequest {
readonly attribute string serviceName;
readonly attribute string commandName;
readonly attribute Map parameters;

}
};

Source Code 7.1: DeliveryModel Command API specification

registerDeliveryModel triggers the creations of a new delivery model aggregate based on
the registration request and returns the aggregate id to enable the caller to trigger
further commands (e.g. the model execution) on the aggregate. The command
handler either instantiates a local or a remote model reference depending on the
import request and persists a ModelRegistered event (cf. section 5.2.2).

triggerDeliveryModelExecution invokes the execution of a delivery model. The com-
mand handler loads the aggregate, resolves the model reference (i.e. downloads
and stores the references external model in the artifact store) and publishes an
ModelTriggered event (cf. section 5.2.2) which then triggers the delivery process
execution.

7.2.3. Model Registration
Figure 7.3 provides an overview of the model registration dynamics. For clarity rea-
sons some details are not modeled (e.g. the command validation performed by the
registrationCommandHandler).
The model registration is triggered with a corresponding registration request at the

API (see section 7.2.2). The API delegates the call to a dedicated application service,
the RegistrationCommand Handler, which orchestrates the command execution. Since
a registered model logically represents an aggregate, the registration command handler
instantiates a new external model aggregate, which handles all domain logic regarding
the external model (registration) and ensure its consistency. For the import of a new

77

7. Core Components & Services

Registration
CmdHandler
Registration
CmdHandler

APIAPI ExternalModelExternalModel

create

handle(registrationCmd)

addReference

registrationCommand

EventPublisherEventPublisher ModelRepositoryModelRepositoryModelResolverModelResolver

resolve with
matching strategy

resolve(reference)

altalt

[reference
invalid]

[reference
valid]

publish(modelRegisteredEvent)

Invalid Reference
Exception

persist

error

success

model
id

error msg

new ModelRegisteredEvent(reference)

Figure 7.3.: Model Service - Model Registration

model the domain logic is straightforward. As long as a physical file exists at the location
referenced by the registration request, the model reference is added to the delivery
system. The model service does not perform a model validation upfront or does not
verify if a corresponding model adapter exists. The rationale behind this decision is that
the referenced model is subject to change. Thus, all validation related operations are
performed when the model is fixed, i.e. when the execution of a model is triggered.
Concretely, the external model aggregate uses the ModelResolver domain service to

verify if the reference model exists. If the model exists, the aggregate publishes an
ModelRegisteredEvent containing the reference. If the reference is invalid, i.e. if the
specified location cannot be accessed or no physical file exists at the specified location,
the external model aggregate throws an exception. If the aggregates domain operation
executes successfully, the registration command handler persists the aggregate using
the ModelRepository and returns the outcome to the API. In case of an invalid model
reference, the registration command handler returns the corresponding error to the API.

7.2.4. Model Execution

Figure 7.4 details the model execution operation of the model service. For clarity reasons
some details are not modeled. Recapitulating section 6.3.6 the model execution resolves
an external model references by an external model aggregate and thereby triggers the
execution of the delivery process described by this model.
The model execution is triggered with a request at the API (see section 7.2.2). The

request needs to contain the id of an existing model aggregate. The API then delegates

78

7.2. Model Service

A
P

I
A

P
I

Tr
ig

ge
rC

o
m

m
an

d
H

an
dl

er
Tr

ig
ge

rC
o

m
m

an
d

H
an

dl
er

tr
ig

ge
rM

o
de

l(
id

)

h
an

d
le

(t
ri

gg
er

C
om

m
a

nd
)

M
o

de
lR

ep
os

it
or

y
M

o
de

lR
ep

os
it

or
y

lo
ad

M
o

de
l

A
gg

re
ga

te
(i

d
)

lo
ad

Ev
en

ts

Ex
te

rn
al

M
od

el
Ex

te
rn

al
M

od
el

lo
o

p

[f
o

r
ea

ch
 e

ve
n

t]

lo
o

p

[f
o

r
ea

ch
 e

ve
n

t]

ap
pl

y(
ev

en
t)

Ex
te

rn
al

M
od

el
ag

gr
eg

at
e

M
o

de
lR

es
ol

ve
r

M
o

de
lR

es
ol

ve
r

tr
ig

ge
rE

xe
cu

ti
o

n
re

so
lv

e(
re

fe
re

n
ce

)

re
so

lv
e

w
it

h

m
at

ch
in

g
st

ra
te

gyM
o

de
lA

da
pt

er
R

eg
is

tr
y

M
o

de
lA

da
pt

er
R

eg
is

tr
y

ge
tM

o
de

lA
d

ap
te

rF
o

r(
m

o
de

l)

Co
nc

re
te

M

o
de

lA
da

pt
er

Co
nc

re
te

M

o
de

lA
da

pt
er

co
n

ve
rt

To
In

te
rn

a
lM

o
de

l(m
o

de
l)

Ev
en

t
Pu

bl
is

he
r

Ev
en

t
Pu

bl
is

he
r

p
ub

lis
h(

m
o

de
lT

ri
gg

er
ed

Ev
en

t)

n
ew

 M
o

d
el

Tr
ig

ge
re

d
Ev

en
t(

in
te

rn
a

lP
M

od
el

, a
rt

if
ac

tI
d)

A
rt

ifa
ct

St
o

re
A

rt
ifa

ct
St

o
re

u
pl

oa
d

(m
od

el
)

ar
ti

fa
ct

Id

ex
ec

ut
io

n
Tr

ig
ge

re
d

va
lid
a
te
(m
o
d
el
)

co
n
v
er
t(
m
o
de
l)

Fi
gu

re
7.
4.
:M

od
el

Se
rv
ic
e
-M

od
el

Ex
ec
ut
io
n

79

7. Core Components & Services

the call to the TriggerCommand Handler application service that orchestrates the domain-
independent execution logic. Following our DDD approach, the domain logic is handled
by the ExternalModel aggregate. To handle the request, the command handler first
instructs the ModelRepository to load the aggregate referenced by the request. Since were
are using event sourcing (cf. section 5.2.3) the aggregate state needs to be constructed
from the event stream. Thus, the model repository loads the events and applies them in
the order of their occurrence to the aggregate.

The trigger command handler then passes control to the external model aggregate root
to handle the business logic of the model execution. Similar to the model registration (cf.
section 7.2.3 the model aggregate resolves it’s model reference using the ModelResolver.
It then uses the ModelAdapter registry to determine the correct model adapter for the
resolve (binary) model. The adapter provides both the syntactically validation and the
conversion to the internal delivery model. The adapter does not perform any semantic
validation, e.g. if the modeled delivery process activities are compatible. This decision
is made by the process planner (see section 7.3) since the semantic validation contains
business rules outside the model service context. For example, the modeled delivery
process might only consist of placeholders that are substituted by the planner, such
that an semantic validation would be not possible. After the adapter has syntactically
validated the external model and successfully converted it into the internal delivery model,
the external model aggregate stores the binary external model artifact in the artifact
store to provide means for Req-8: Traceability. It then publishes an ModelTriggeredEvent
contained the internal delivery model and the artifact id of the upload model by using
the Event Publisher. Finally, control is passed to the trigger command handler which
returns success or failure to the API depending if the aggregates execution was successful
or threw an exception.
Overall, Figure 7.4 only modeled a successful execution path. For insight into the

failure handling we refer to section 6.3.7.

7.3. Process Planner

The process planner is the key component that enables the delivery system to tackle
C2 - Modeling Usability. The process planner thereby realizes the DeliveryProcess
aggregate from our core domain (cf. section 5.1.1). The general idea is to separate the
concerns of delivery process modeling and delivery process execution, i.e. to use different
models (external and internal model, cf. chapter 5) for them. This not only allows to
support Req-5: Custom PDLs for describing a delivery process, but also allows to keep the
external models concise and easy maintain as many information might be automatically
deduced and do not need to be modeled in the external model. But the process planner
not only reduces the amount of information required to describe a delivery process. It
also allows the delivery system to meet Req-7: Best practices, as the delivery system
respectively the planner can freely adapt a given delivery model. Of course the delivery
system thereby still needs to meet Req-8: Traceability.

As expressed by Req-4: Self-Organizing we call the capability of the delivery system to

80

7.3. Process Planner

adapt a given delivery model self-organizing. The following section details the concept of
self-organization and provides concepts for the process planner. With this conceptual
background section 7.3.2 briefly introduces related work. Afterwards we introduce our
process planner design both from a static (section 7.3.3) and from a dynamic perspective
(section 7.3.5).

7.3.1. Self-Organizing
One important challenge this thesis tries to tackle is C2 - Modeling Usability (cf. sec-
tion 3.1). This means that the delivery system should make the delivery process modeling
as straightforward and as easy as possible. Section 3.2 introduced several aspects to
tackle this challenge. One important aspect is by providing self-organizing capabilities
(cf. Req-4: Self-Organizing). In the context of artificial intelligence and system engineer-
ing self-organizing is defined as "global order emerging from local interactions" [HG03].
Thereby, self-organizing has the goal to reach a stable (optimal) state. In the delivery
system domain, we define self-organizing as the process consisting of

1. Information retrieval through Self-Analysis

2. Self-stabilization using the retrieved information, i.e. to reach a valid delivery
model

3. Self-optimization, i.e. adaption of a delivery model towards a specific goal

Self-Organizing then allows to fulfill Req-7: Best practices by specifying the correspond-
ing goal. From a software-technical perspective, a dedicated component, the process
planner, realizes the self-organization capability. We define planning as the process of
self-organizing. Thereby, we differentiate two planning strategies, which have different
scopes:

Model-based planning The model-based planning only relies on meta information (e.g.
the delivery model, activity specifications) to plan the delivery model.

Project-based planning The project-based planning additionally uses project sources
and other external sources (e.g.external services) as the source of truth.

Both planning strategies operate on the internal delivery model. Thereby, the following
operations are allowed:

Adding a stage New stages can be added to the internal delivery model

Modifying a stage Planners may rename a stage or change related activities

Removing a stage Planners can completely remove a stage. Removing a stage
does not necessarily imply the removal of related activities. Planners may move
them to another stage

Adding an activity New activities may be added to the delivery model

81

7. Core Components & Services

Modifying an activity The activity configuration or the executionPrecondition can
be modified

Adding a dependency Planners may add dependencies to existing activities in the
delivery model. This includes both logical and functional dependencies

Removing an activity Existing activities can be removed from the internal delivery
model

Postconditions of the planning process is a valid, i.e. executable, delivery model.
Because of the architectural focus of this thesis, we do not provide formal foundations
here (see future work (section 10.2).

7.3.2. Planner Types
Section 7.3.1 classified two planning strategies, namely the model-based and the project-
based planning. They both differ in their knowledge base. While model-based planning
only considers meta-information directly or indirectly contained in the delivery model,
the project-based planning also uses information derived from for example project sources.
Planners realizing either of the strategies have different characteristics as described in
the following:

Model Planner use the model-based planning strategy. More precisely, they analyze the
modeled delivery process activities, compare them to their activity specification
and derive dependencies between those activities by e.g. performing constraint
solving based on the artifact constraints defined in the activity specification (cf.
section 5.2.5). That way, they eventually arrive at a valid delivery model. Overall,
model planner are independent of the project and thus technology-agnostic.

Project Planner apply the project-based planning strategy. As such, they are typically
technology-specific. An example for a project planner would be a maven multi-
module planner that first detects if the project is a maven multi-module project
and then substitutes parent project activities with subproject activities according
to the project dependency tree. Each project planner requires the project sources a
priori. Executing a project planner therefore is more expensive than model-based
planning. On the other hand a project planner is also more powerful as it uses a
larger knowledge base (project sources).

Related Work

To further motivate project planners (see above), this section briefly introduces a tool
proposed by Google [Vak+15]. They identified a dependency problem of software builds,
which they call underutilized targets. Typically, a software build comprises multiple
targets that form a dependency structure. An underutilized target is a build target that
contains files not required by some of its dependents. As such, it reduces modularity
and negatively affects the build performance. To tackle the issue, they proposed two

82

7.3. Process Planner

Planner
Registry
Planner
Registry

Plan
Command API

Plan
Command API

Command
Handler

Command
Handler

Delivery Process
Repository

Delivery Process
Repository

<<Aggregate Root>>
Delivery Process

<<Aggregate Root>>
Delivery Process

Event HandlerEvent Handler
Specialized PlannerSpecialized Planner

Plan EnginePlan Engine

Process Planner ServiceProcess Planner Service

Event StoreEvent Store

Events
Event Bus

Event PublisherEvent Publisher
Activity SpecificationActivity Specification

Activity Specification
Registry

Activity Specification
Registry

dependentOn
Planners

dependentOn
Planners

ActivitySpec
RegistryClient
ActivitySpec

RegistryClient

Figure 7.5.: Process Planner Component View

tools decomposer and refiner. Decomposer identifies underutilized targets and proposes
decompositions for them and refiner provides the means to perform the refactorings.
Using their tools Google found that at least 50% of the total execution time of tests
could be saved as many test triggers could be saved.
Decomposer and refiner actively refactor the project sources (semi-automatically).

They are therefore not directly applicable for our delivery system. But as they operate
on project sources (build files), a project planner could incorporate their findings to
decompose delivery process (build) activities into cohesive subactivities e.g. one per
submodules which then help to meet an important delivery system principle: to provide
fast feedback (cf. section 2.2.5).

Overall, their proposal suggests the great optimization potential project based planning
can provide beside tackling C2 - Modeling Usability.

7.3.3. Component View
Figure 7.5 provides an overview of the process planner components. At it’s heart is the
delivery process aggregate (cf. section 5.2.1) which realizes the business logic. As a
core service (cf. section 6.2) the process planner service applies the CQRS pattern (cf.
section 5.2.4) and uses event sourcing (cf. section 5.2.3) for the persistence of delivery
process aggregates. Thus, it’s structure is similar to other core services. The Delivery
Process Repository loads delivery process aggregates and applies the stored event stream
on them. An Event Publisher enables the aggregate to publish new domain events and

83

7. Core Components & Services

Collect Model Planner
Model

planners
Model

planners

 Select Project Planner Select Project Planner

Collect all
project planner sorted

<<Loop>><<Loop>>

 for all planners in ProjectPlanners

Accepts?Accepts?

Add planner
to planners

Project
Planners
Project

Planners

Project
Planners
Project

Planners

Project planner
enabled?
Project planner
enabled?

nono

Download
project

yesyes

nono

Concat planners All plannersAll planners

Check planner
acceptance

yesyes

Figure 7.6.: Process Planner - Planner Selection

dedicated Command Handler orchestrate the non-business logic related execution of
commands (e.g. transaction handling). As the process planner microservice is specifically
tailored to our needs, it offers two commands: The planning of an internal delivery model
and the execution trigger of an already planned delivery model.
Overall, central concern of the process planner obviously is to plan, i.e. organize

and optimize a given delivery model. To keep the planning flexible and maintainable,
we designed it to be hierarchical (cf. hierarchical planning [BC89]). The idea is to
distribute the planning across a dynamically determined hierarchy of planners that are
specialized in a certain area. The planners need to be determined dynamically as it
depends on the project which planners are applicable. In general, there is a Planning
coordinator that acts as the root planner. It is a model planner (see section 7.3.2) that
calculates eventually missing dependencies between the modeled activities and checks
the graph spanned by the activity dependencies for satisfiability. Considering our DDD
approach, the delivery process aggregate itself acts as the coordinator. It then delegates
the planning to specialized (project) planners. Each Specialized Planner can act as a
coordinator too and use other sub-planners, thereby building a hierarchy with multiple
levels. Section 7.3.5 provides more details about the dynamic planner selection and the
planning process itself.

Since the design and the components of each planner depend on it’s concrete planning
scenario, figure 7.5 does not provide details for specific planners. Instead, each planner
contains a Planning Engine which can be realized differently. One approach for the
realization of planners are expert systems ([HMM88]). A planner would then comprise of
a knowledge base and an inference engine. For simple process planners an alternative
might also be a hard-coded handling, it depends on the use-case.

7.3.4. Planner Selection
Figure 7.6 details the planner selection process as performed by the planning coordinator
(cf. section 7.3.3). In principle, it consists of two phases. First to collect all model

84

7.3. Process Planner

planners (cf. section 7.3.2) from the planner registry and then to select matching project
planners. The planning coordinator uses all model planner because they are project
agnostic and therefore always applicable. Of importance is is their ordering. As depicted
in figure 7.5 each concrete planner can specify other planners on which the planner
depends. The planning coordinator must obey these dependencies while collecting the
model planners. Technically, topological sort can be used to order the model planners
in a correct sequence. After the model planners have been collected, matching project
planners need to be selected. We divided the planner selection into these two phases
as model and project planners have completely different runtime characteristics. While
model-based planning only has minimal influences on the execution time, project-based
planning can take a long time depending on the projects size. To this reason each delivery
model can selectively enable or disable project-based planning to improve the planning
performance.

If project-based planning is enabled, the procedure continue as follows: The planning
coordinator initiates the project resource download. After all resources have been
downloaded and extracted, the planning coordinator builds a file tree and collects all
available project planner in the same way as described above. Each project planner then
decides using the file tree if he is applicable for this project. In the positive case, the
planning coordinator adds the project planner to the list of selected planners. Overall,
the planning coordinator arrive at a valid planner sequence in the end.

7.3.5. Planning
Figure 7.7 provides an overview of the planning process. To have a holistic view, it also
contains the execution trigger of a planned delivery model. Of course, the planning
of a delivery model can be triggered without triggering it’s execution (e.g. via the
API). The event handler triggers both as this is the required behavior. It reacts to
the ModelTriggered domain event of the external model aggregate and initiates the
corresponding actions. Following our DDD approach, the business logic is encapsulated in
the delivery process aggregate. The event handler acts as a process manager (cf. [HW03])
and orchestrates the business process activities. The modelTriggered business process
requires to first plan the delivery process represented by the model and then to trigger
the execution of this planned delivery model. Since the delivery process aggregate is
scoped to a single delivery model, the event handler instantiates a new delivery process
aggregate based on the received internal delivery model and initiates the planning, i.e.
the event handler passes control to the delivery process aggregate. The delivery process
aggregate acts as the planning coordinator (see above). First of all, it retrieves all
activity specifications to allow for model-based planning. It then selects all applicable
planners as described in the previous section. During this selection process the delivery
process aggregate triggers the download of all project resources to allow for project-based
planning.
The actual planning is divided into two phases. The first phase is devoted to model-

based planning, as the model-based planning is far superior performance-wise compared
to project-based planning. The delivery process aggregate hierarchically delegates the

85

7. Core Components & Services

Event
Handler

Event
Handler

DeliveryProc
Aggregate

DeliveryProc
Aggregate

ModelTriggered
Event

create
(IntModel)

plan

Model
Planner
Model

Planner
Project
Planner
Project
Planner

planner
selection

loop

[modelPlanner
in planners]

loop

[modelPlanner
in planners]

plan(model))

changedModel

ActivitySpec
Registry

ActivitySpec
Registry

getSpecifications

applyModel

loop

[projectPlanner
in planners]

loop

[projectPlanner
in planners]

plan(model, projectArtifactId)

changedModel

applyModel

Event
Publisher

Event
Publisher

new ProcessPlannedEvent(model)

publish(plannedEvent)

new ProcessTriggeredEvent(model)

publish(plannedEvent)

DeliveryProc
Repository

DeliveryProc
Repository

persist(aggregate)

triggerExecution

Figure 7.7.: Process Planner - Planning

86

7.4. Orchestrator

planning to its model planners. Each planner gets the currently planned delivery model
and the available activity specification. It is completely up to the planners to which
scope they perform the planning. The delivery process aggregate only requires them
to return a list of changes. The planners do not apply these changes themselves, they
only return an updated model. This way, the delivery process aggregate can ensure
consistency. Moreover, the delivery process aggregate also could publish planning domain
events to allow for Req-8: Traceability even for the planning itself. As this is not required
right now, we didn’t modeled this aspect. After all model planners are done, the delivery
process aggregate continuous planning using all applicable project-based planners. The
planning itself works analogously to the model-based planning. When the project-based
planning has finished, the delivery process aggregate published a ProcessPlanned event
(cf. section 5.2.2) to indicate the successful planning. The delivery process aggregate does
not need to validate the delivery before publishing the event as it consistently ensures
validity when applying proposed changes by the planners.

After planning the event handler triggers the next activity which is the execution
trigger of the just planned delivery model. Since the execution only need to be signaled,
the delivery process aggregate publishes a ProcessTriggered event. Finally, the event
handler persists the aggregate using the model repository.
Figure 7.7 only provided a successful model trigger sequence. In case of a failure,

the event handler would publish a ProcessPlanningFailed event (cf. section 5.2.2).
Section 6.3.7 provides more details on failure handling in general.

7.4. Orchestrator

The orchestrator provides the delivery process execution backbone. It thereby realizes
the DeliveryProcessExecution aggregate from the core domain (section 5.1.1). Con-
ceptually, the orchestrator is a Process Manager [HW03] that maintains the execution
state of delivery process respectively of their individual activities and determines the
next execution steps based on intermediate results. Instead of deciding for a centralized
design, we could have opted for a decentralized, choreographed (cf. [New15]) approach.
Section 9.3.5 discusses the rationales behind this decision and compares their advantages
respectively disadvantages. The following details the internals of the orchestrator both
from a static (section 7.4.1) and dynamic perspective (section 7.4.2).

7.4.1. Component View

Figure 7.8 depicts the orchestrator components. At it’s heart is the DeliveryProcessExe-
cution aggregate (cf. section 5.2.1), which encapsulates the delivery process execution
business logic. In section 5.1.3 we identified the underlying subdomain as a generic
one. Therefore the orchestrator is specifically designed to exploit this characteristic. Its
design comprises three layers. One layer meets our specific requirements (e.g. Req-8:
Traceability), another layer realizes the generic orchestration aspects and the third layer is

87

7. Core Components & Services

ActivityExecution Query APIActivityExecution Query API

Execution Control APIExecution Control API

Trigger start and
other operations on
Delivery process
execution

Trigger start and
other operations on
Delivery process
execution

Query ControllerQuery Controller

Command
Handler

Command
Handler

Delivery
Process Execution

Repository

Delivery
Process Execution

Repository

Event HandlerEvent Handler

<<AggregateRoot>>

DeliveryProcess Execution
<<AggregateRoot>>

DeliveryProcess Execution

Orchestrator ServiceOrchestrator Service

ActivityExecution Control APIActivityExecution Control API

Query for activities to
be executed
Query for activities to
be executed

Trigger updates and
other operations on
Activity executions

Trigger updates and
other operations on
Activity executions

Event PublisherEvent Publisher
Orchestrator Engine AdapterOrchestrator Engine Adapter

Execution
Mapper

Execution
Mapper

Event StoreEvent Store

Event Bus

Events

Orchestrator EngineOrchestrator Engine

Task Queue Execution ModelExecution Model

Figure 7.8.: Orchestrator Component View

an anti-corruption layer mediating between them. This design allows to use an arbitrary 1

orchestration engine, while still meeting our requirements. Figure 7.8 details our specific
layer and the mediation layer. The mediation layer is realized by means of an adapter
[Gam+02] depicted at the bottom of figure 7.8. Above the adapter are components
belonging to the specific layer.
Everything enters the orchestrator through the first layer. It is structured similar

to the CQS pattern ([MA89]). On one side commands trigger state changes. On the
other side queries, i.e. read-only operations are provided. Although this sound like the
CQRS pattern (section 5.2.4), internally the same model (with data transfer objects
(DTO [Fow02]) for the query side) is used since all read and write concerns deal with the
delivery process execution aggregate.

The command side comprises two API component. The Execution Control API allows
to trigger operations regarding the delivery process execution itself, e.g. start, stop or
pause. The ActivityExecution Control API allows to trigger updates on the activity
execution, e.g. to start or complete an activity. Recapitulating chapter 6 activity services
perform the activity execution, thus they are the primary consumers of this API. To
query for new activities to be executed they consume the ActivityExecution Query API.
This API directly is fed by the orchestrator engine adapter. This allows to let the specific
orchestration engine handle concern like retry strategies or parallel execution. Since the

1as long as the concepts of the first layer can be mapped to concepts of the orchestration engine

88

7.4. Orchestrator

Event
Handler

Event
Handler

DelivProcess
Execution

DelivProcess
Execution

ProcessTriggered
Event

create
(activities)

startProcess

Orch. Engine
Adapter

Orch. Engine
Adapter

register

map to
engine model
 + register at engineid

Event
Publisher

Event
Publisher

publish(execStartedEvent)

start(id)

Activity
Service
Activity
Service

QueryAPI +
Controller

QueryAPI +
Controller

Command
API+Handler

Command
API+Handler

nextActivity
(name)

next
Activity

peek(name)

load(pid)

DelivExec
Repository
DelivExec

Repository

start(activity)

start

publish(activityStartedEvent)

persist(processExecAggregate)

loop

[for each activity in
processExecution]

loop

[for each activity in
processExecution]

start(pid, activity)

execute...
complete

publish(execCompletedEvent)

Figure 7.9.: Delivery Process Execution Overview

API is read only, the delivery process execution aggregate still can ensure consistency
and use event sourcing, while the query side uses concepts for fast access (e.g. a queue).

Overall, the orchestrator design is decoupled from a concrete orchestration engine while
meeting Req-8: Traceability which improves both flexibility and maintainability.

7.4.2. Delivery Process Execution

Figure 7.9 provides an overview of the delivery execution process. Following the inversion
of control approach, the ProcessTriggeredEvent (section 5.2.2) containing the planned
delivery model triggers its execution. Each execution of a delivery model corresponds
to a new instance of a delivery process execution aggregate (cf. chapter 5). Thus, the
corresponding event handler listening on processTrigger events creates a new aggregate
instance when he receives such an event and delegates the business logic related to this
aggregate. The delivery process execution aggregate first adds the model process to the

89

7. Core Components & Services

orchestration engine by using the corresponding adapter and then starts the execution.
Since the activity execution itself is performed by activity services, starting the execution
basically means to assign activity service with their activities. Since the orchestration
service is independent of a concrete orchestration engine, we do not provide details
here. Typically, the first activities of the delivery process will be added to some kind
of activity queue. After the delivery process execution has been started, the delivery
process execution aggregate publishes a corresponding ExecutionStarted domain event
and returns control back the the event handler. The handler finally persists the aggregate
via the repository.

As mentioned above, the activity services are designed as polling consumers. Section 7.5
provides rationales for this decision. As such, they continuously request the orchestration
service if some of their activities should be performed. Following our domain driven design
approach, all state changing operations are handled by the delivery process aggregate.
Polling for activities therefore does not change the state. The orchestration engine
influences which activities should be performed next. The delivery process execution
aggregate does not and shouldn’t know if the engine supports parallel execution for
example. The activity services therefore directly poll the orchestration engine adapter. If
they decide to execute an activity they need to update (acknowledge) the corresponding
activity execution at the delivery process aggregate. That way, all state changing
operations are handled through the aggregate which ensures consistency. When an
activity service requests to update an activity execution, the corresponding command
handler loads the matching delivery process aggregate via its repository and triggers
the appropriate action on the aggregate which publishes domain events in response. As
these events range from starting to progress over completion events, figure 7.9 does not
detail them. When all activity executions have been completed, the delivery process
execution aggregate publishes an ExecutionCompleted domain event. In case of a failure
the execution aggregate publishes corresponding failure events.

7.5. Activity Service

Activity services are the central architectural components to meet Req-1: Integration of
new technology while supporting Req-3: Abstraction. As motivated in section 5.2.5 each
activity (micro-) service encapsulates the coherent functionality of a single tool or service
provider, thus focusing on a single concern providing loose coupling and high cohesion.

The activity services provide these functionalities based on the Activity concept from
the core domain (section 5.1.1). Each activity is realized by means of the command
pattern ([Gam+02]). It thereby either implements the Transformation or Assessment
concept from the core domain. Section 7.5.2 provides more details about the activity
realization.
Depending on the offered activities, an activity service is either a transformation, an

assessment or a hybrid service.
Section 7.5.1 details static aspects of activity services and section 7.5.4 detail dynamic

aspects.

90

7.5. Activity Service

Execution APIExecution API

Discover & Health APIDiscover & Health API

Activity
Controller

Activity
Controller

Local
ActivityRegistry

Local
ActivityRegistry

Registry
Client

Registry
Client

Activity Specification ModelActivity Specification Model

<<PollingConsumer>>
OrchestratorClient

<<PollingConsumer>>
OrchestratorClient

ActivityActivityReceiverReceiver

instantiatesinstantiates
Concrete
Activity

Concrete
Activity

Activity
Configuration

Activity
Configuration

Activity
Worker
Activity
Worker

Activity
Specification

Registry

Activity
Specification

Registry

OrchestratorOrchestrator

TaskQueue

Activity ServiceActivity Service

Figure 7.10.: Activity Service Component View

7.5.1. Component View

Figure 7.10 provides an overview of the activity service components. At it’s heart are
Activities (section 5.1.1). Each activity encapsulates a concrete functionality (e.g. git
checkout) and has an activity specification (section 5.1.1) describing it’s input and output
schema. The activity service is responsible for providing the delivery system (more
precisely the activity specification registry) with these activity specifications and to
execute a concrete activity on demand. To be able to execute multiple activities in
parallel the activity service uses Activity Workers. Each worker executes an activity in its
own thread. The concrete activity thereby is transparent to the worker. A worker only
knows the general activity interface. To archive this decoupling, an activity is realized by
means of the command pattern. Thus, each activity contains all required information for
execution including a realization of the ActivityConfiguration concept (section 5.1.1) and
its Receiver, i.e. the object providing the required functionality. Section 7.5.2 provides
more details about the underlying command pattern. Overall, it allows to easily extend
an activity service with new functionality (activities).

To handle activity execution requests, an activity service has an ActivityController. The
activity controller instantiates the requested activity and passes it to the activity worker
for execution. Therefore, the activity controller needs to know all available activities
and their specifications. The ActivityRegistry is responsible for this concern. It stores all
activities the activity service provides. Using this registry, the RegistryClient registers all
activity specifications at the ActivitySpecification registry (cf. section 6.2). Overall, the
local activity registry decouples components that need to know all activity specifications
from the concrete activities allowing to easily add new activities (cf. Open-close principle
[LL10]).
The activity service has two interfaces to trigger the execution of activities. One is

the Execution API to manually trigger the execution of activities. Section 7.5.3 details
this API. The other one is the Orchestrator Client. It continuously polls the orchestrator

91

7. Core Components & Services

<<Command>>
<<Subject>>
<<abstract>>

Activity

<<Command>>
<<Subject>>
<<abstract>>

Activity

execute()
executePrimitive()
teardown()
stop()

Activity
Configuration

Activity
Configuration

instantiatesinstantiates

<<ConcreteCommand>>

ConcreteActivity
<<ConcreteCommand>>

ConcreteActivity

executePrimitive()

<<Receiver>>

Receiver
<<Receiver>>

Receiver

action()

<<Client>>

ActivityController
<<Client>>

ActivityController

activityQueue

1..*

workers

1..*

workers

triggerExecution(ExecutionRequest req,
List<ExecutionObserver> observers)

<<Invoker>>

ActivityWorker
<<Invoker>>

ActivityWorker

run()

<<Interface>>
<<Observer>>

ExecutionObserver

<<Interface>>
<<Observer>>

ExecutionObserver

notifyStart()
notityProgress()
notifyStopped()

ExecutionResultExecutionResult

result: Object

StatusStatus MetaMeta

receiver.action()

EnvironmentInfo,
Logs, Metrics, ..

Figure 7.11.: Activity Service - Activity Design

if some activities should be executed. We decided to use polling, as this enables the
activity service to decide on his own, when he is ready to accept new execution requests
(cf. Polling Consumer [HW03]).

Since it is of great importance that the activity specifications stored at the Activity
specification registry are up-to date, activity services offer an Discover & Health API.
This API allows for health checks by the activity specification registry and to manually
request the offered activity specifications.

7.5.2. Activity Design

The different activities of an activity service are realized by means of the command pattern
[Gam+02]. Figure 7.11 details the design and provides the corresponding stereotypes.
Each concrete activity encapsulates an execution request, e.g. git checkout. It contains the
required configuration data (e.g. for our git example: repository URL and credentials) and
knows what steps to perform. It then delegates the step execution to the corresponding
receiver (e.g. gitClient). Overall, the encapsulation of an execution request with all
required dependencies prevents hard-wiring the execution logic (decoupling of invoker
and concrete command), allows to compose activities from others, provides an unified
execution API and the possibility to asynchronously execute activities by using a queue

92

7.5. Activity Service

for example. This property is utilized by the ActivityController. The activity controller
handles execution requests triggered at the execution API or triggered by the polling
orchestrator consumer. It translates the requests into the corresponding activity thereby
validating the request against the activity specification and providing the activity with
its requirements (receiver & configuration). The activity controller itself doesn’t execute
the activity. The execution is performed by means of ActivityWorkers which process the
activity controller’s activity queue. Beside instantiating the concrete activity, the activity
controller also acts as a guard to prevent to much executions from being requested. If
the activity queue reaches a certain threshold, the activity controller rejects incoming
execution requests.

We designed the activity execution asynchronously since activities in the delivery process
are typically long-running. Important aspect of asynchronous execution is to provide
feedback. Especially in our concrete scenario the activity service needs to communicate
execution updates to the orchestrator. Each activity therefore accepts one or multiple
observers (cf. observer pattern [Gam+02]) to notify them about updates. The observers
are passed from the calling context to the execution request at the activity controller.
This allows to decide dynamically whom to notify about updates (e.g. orchestrator).
This dynamic handling is required because it depends on the context whom to notify. In
case of a manual trigger via the Execution API, i.e. outside a delivery process context,
the orchestrator shouldn’t be notified. Instead, the user might want to receive feedback
directly. In case of a trigger through the OrchestratorConsumer, other observers are
required to notify the orchestrator on updates. To ensure that the orchestrator is notified
about the start and stop of an activity, the abstract activity base class applies the
template method pattern ([Gam+02]). It’s execute method notifies potential observers
about the start, then calls the hook method of the concrete activity (executePrimitive)
and finally notifies about the execution finish. That way, the concrete activity only needs
to deal with the progress notification and it is ensured that the orchestrator gets notified
independent on the concrete activity realization. Section 7.5.4 provides more details on
this.

The execution of an activity produces an ExecutionResult which directly implements the
ExecutionResult concept from the core domain (section 5.1.1). As depicted in figure 7.11,
the ExecutionResult provides structured data, which eases its processing. Beside the
result payload corresponding to the result schema of the activity specification, it also has
a status (scheduled, running, failed, completed) and provides meta information. These
meta information can contain environmental infos (e.g. for the git checkout scenario:
commit message, author, etc.), metrics (e.g. checkout duration, repository size, etc.) and
logs. All these information provide value to the user and follow directly from the core
domain (section 5.1.1).

Beside offering an execute method, each activity could also implement a tear-down
operation. This fact is especially useful for non side-effect free transformations (especially
deployment related).

93

7. Core Components & Services

7.5.3. Execution API
Central functionality of the activity service is to provide and execute activities. These
activities can either be triggered through the orchestrator consumer (cf. section 7.5.1)
or manually through the execution API. The manual trigger allows to use the offered
functionality outside the delivery system context e.g. to support developers in their daily
work. The following specifies the execution API using a popular interface description
language, Corba IDL ([Obj17]). Each method is described after the listing. Overall, the
execution API allows to trigger activities as a remote procedure call ([HW03].

module ExecutionAPI {
interface ActivityServiceExecutionAPI {

ExecutionResult executeActivity(in
ActivityExecutionRequest executionRequest);

string triggerActivityExecution(in
ActivityExecutionRequest triggerRequest);

ExecutionResult getProgress(in string executionId);
};
interface ActivityExecutionRequest {

readonly attribute string activityName;
readonly attribute Map configuration;

};
};

Source Code 7.2: Activity Service Execution API

executeActivity triggers the activity execution specified in the executionRequest and
blocks the request until the activity has been completed. Thereby, the activity is
identified by its activity name. Since the activity execution always is performed
asynchronously (cf. section 7.5.2), the API acts as an observer to block the request
until the activity has finished. It then returns the activity result (cf. section 7.5.2).

triggerActivityExecution triggers the activity execution specified in the executionRequest
and returns an execution id to allow for progress tracking.

getProgress allows to track the progress of the execution corresponding to the given
execution id. It returns the execution result. Recalling section 7.5.2 the execution
result can also be an intermediate result if the execution is still running.

7.5.4. Execution
This section details important dynamic aspects of activity services. Main concern of
activity services is to provide activities for execution in the delivery system context.
Relating to the execution is the announcement of activity specifications for the offered
activities. As the announcement is relatively self-explanatory (scanning for activities &
calling the registration API (section 7.1.1)) we do not provide further details here. Instead,
we focus on the activity execution aspects. As described above, we use the command

94

7.5. Activity Service

Orchestrator
Client

Orchestrator
Client

Activity
Controller
Activity

Controller
Activity
Registry
Activity
RegistryOrchestratorOrchestrator

readyToAccept?

isActivityAvailable
(serviceName)

executionRequest

trigger
Execution

find(activityName,
configPayload)

addToQueue(activity)

reject

altalt

[invalid]

[valid]

accept

pollLoop

[using exponential
backoff]

pollLoop

[using exponential
backoff]

Concrete
Activity
Concrete
Activity

create

Figure 7.12.: Activity Service - Orchestrator Polling Consumer

pattern for the activity realization. This not only decouples the relevant software
components, but also allows to describe the initialization and the execution procedures
for the same reasons separately. The activity execution can be triggered both manually
and by the orchestrator (cf.). Since the procedure works analogously, Section 7.5.4
details the initialization of activities (commands) triggered by the orchestrator. The
manual triggering works analogously. Section 7.5.4 then describes how these activities
are executed.

Activity Initialization

Figure 7.12 details the orchestrator polling process. The activity services thereby contin-
uously checks via the orchestrator’s Query REST API (section 7.4.1) if new activities to
be executed are available. We designed the communication to be synchronous and in a
polling based manner for two reasons. One the one hand we want the activity service to
decide both the interval and the point of time when to poll, namely when the service is
ready. Hohpe and Woolf define this type of consumer Polling consumer. On the other
hand we want to have minimal requirements when developing an activity service because
activity services are the central architectural unit which allow to extend the offered
functionality of the delivery system. Given the popularity of REST-based APIs ([New15])
most developers are familiar with this communication style.
As section 7.5.1 mentioned and detailed in the following, the activity services uses

95

7. Core Components & Services

an worker queue internally to manage the activity executions, thus the orchestrator
communication could easily be adapted to use message or another asynchronous style.
The polling process is depicted in figure 7.12. The orchestrator consumer ensures

that the activity controller is ready to process new activity execution requests. In the
positive case, the orchestrator consumer queries the orchestrator for new activities to
be executed. Thereby the activity service of course only queries for activities targeted
to himself by providing it’s service name. The orchestrator uses this name to filter
matching activities. If the activity controller is not ready to process further requests,
the orchestrator consumer aborts the aborts polling loop and tries the same procedure
again in the next next loop. To prevent overflowing the orchestrator, the orchestrator
consumer uses exponential back-off in case of a failure of the orchestrator.

If the orchestrator activity query returns an activity execution request, the orchestrator
consumer triggers the execution at the activity controller. The activity execution request
contains the same data as the manual request (cf. section 7.5.3), i.e. activity name
and configuration payload. The controller queries the activity registry if an activity
exists with the given name and with a configuration model (cf. activity specification
section 7.1 accepting the given payload. If an activity matching the request exists, the
activity controller instantiates the corresponding activity and provides it with all required
dependencies (configuration and receiver, cf. section 7.5.1). The activity controller then
adds the activity to his activity queue for processing by activity workers. Section 7.5.4
details the worker execution process.
If no matching activity (different name or configuration model) exists, the activity

controller rejects the execution trigger. Since the orchestrator query API is read only and
does not actually remove execution request from the orchestrator queue, the orchestrator
consumer does not need to initiate further actions. Another activity service with the
same name (maybe in another version) might accept the execution request. Otherwise
the orchestrator detects that a request is not being processed and reacts accordingly.

Activity Execution

The previous section detailed the process on how incoming activity execution requests are
handled. The following resumes this process from the activity worker perspective. In the
concrete scenario depicted by Figure 7.13 we assume that the activity to be executed has
an orchestrator client as observer, i.e. it was requested by the orchestration consumer.
This allows to model the interaction with the orchestrator.

The process is as follows: Each activity worker tries to take an activity from the activity
controller execution queue. The take operations blocks until an activity is available.
When an activity is available, the corresponding worker starts the execution by invoking
the activities execute method. As described in section 7.5.1 the activity execute method is
designed as a template method to ensure that observers are notified about start and finish.
Thus, the activity first notifies its observer about the execution start. The observer tries
to acknowledge the activity execution start at the orchestrator. The observer could reject
the start since another activity service might have already been started the execution. In
case of a rejection, the observer immediately stops the activity execution by calling the

96

7.5. Activity Service

Activity
Worker
Activity
Worker

loop

[for each worker
in workers]

loop

[for each worker
in workers]

Activity
Controller
Activity
Controller

takeActivity()
activity

ActivityActivity

execute()

Orchestrator
ActObserver
Orchestrator
ActObserver OrchestratorOrchestratorReceiverReceiver

notifyStart(result)
start

ACK / NACK

executePrimitive()

action()

notifyProgress(result)
progress

notifyFinish(result)

finish

Orchestrator ResponseOrchestrator Response

[NACK]

[ACK]

stopExecution()

Figure 7.13.: Activity Service - Activity Worker

97

7. Core Components & Services

activity stop method to save resources. If the orchestrator acknowledges the execution,
the observer does not intervene. Since typically the observer will acknowledge the request,
we decided not to wait for the confirmation to improve the execution performance. In
case of a rejection, the activity reverts its changes, thus not waiting on the orchestrator
provides more benefits in our opinion. The approach is similar to optimistic execution
[Get+04].

After having notified its observers, the activity base class calls the hook method of its
specializations. During the execution of the hook method, the activity might notify it’s
observer about updates. Contrary to the observer pattern, we decided to pass the data
along with the notification as each activity produces the same result respectively has the
same result data structure. This then ensures that observers get consistent data. In our
modeled scenario, the observer communicates the progress to the orchestrator. When the
hook method is finished, the activity base class notifies about its observers and passes
control back the the activity worker, which starts querying the activity queue again 2.

7.5.5. Quality Gate Service

Our core domain provides the concept of a Quality Gate (section 5.1.1). Conceptually,
a quality gates is a relatively generic function: It accepts an artifact, a report containing
interpretable characteristic of this artifact and a policy defining admissible characteristics
(cf. section 5.1.1). The function then either accepts or rejects its input artifact based on
the characteristic interpretation.

As part of our architecture we provide a default quality gate service, which can handle
four different interpretations. It thereby assumes, that the characteristics are at least on
an ordinal scale, i.e. they can be ordered. The quality gate service supports the following
interpretations:

• Equality: The reported value must be equal to the given policy value

• Non-Equality: The reported value must not be equal to the given policy value

• Threshold(+): The reported value must be larger (with respect to the scale type)
than the given policy value.

• Threshold(-): The reported value must be smaller (with respect to the scale type)
than the given policy value.

From an implementation point of view, the quality gate is a normal activity service,
thus we don’t provide further details here. The quality gate activity input thereby is
realized by means of the ActivityConfiguration concept.

2figure 7.13 does not contain this loop to prevent cluttering the figure

98

7.6. Summary

7.6. Summary
The chapter detailed important core components & services. Most importantly, it
provided insights into our core microservices, i.e. the model service, the process planner
and the orchestrator. These service assemble the core of the architecture. They all rely
on Event-Sourcing for their persistence, which eases Req-8: Traceability. To reduce their
complexity, they apply the CQRS pattern, which allows them to only focus on write,
i.e. state-changing concerns. The view concerns are handled by a dedicated service not
detailed is this chapter that integrates all their domain events. Beside the advantages of
being able to easily add another view representation without changing the core services,
this approach reflects the user demands best in our opinion, namely to have an integrated
representation across the whole delivery process.
Main responsibility of the model service is to import external delivery models into

the delivery system. It thereby converts these models into internal delivery models
to decouple the process planners from concrete external delivery models. To prevent
information loss during this model transformation, the process planner can still access
the external model via project-planners. Project planners were introduced as specific
components of the process planner that uses the project sources as their knowledge base
for planning. Beside project planners there are model planners. Model planners only
rely on meta information, i.e. the internal delivery model and activity specification to
perform planning. Overall, the planning process then is a two phase - process consisting
of a model-based planning phase to rudimentary plan a given delivery model a project-
based planning phase that allows for more sophisticated optimizations. After planning,
the orchestrator microservice, which wraps a generic orchestration engine, executes the
modeled process. The execution thereby is perform by means of activity service, which
this chapter also introduced. Activity Service provide abstraction for activities of the
delivery process. Each activity service thereby encapsulates the coherent functionality
of a single tool, thus focusing on a single concern providing loose coupling and high
cohesion. The functionality is exposed by means of activities that can be referenced in
the delivery model. Since activity services provide the architectural hotspot to integrate
new technologies, our design tries to expose minimal requirements. Therefore, activity
service neither use messaging nor event sourcing in their design. Only requirement
is a REST-based communication with the orchestrator and the activity specification
registration, which both can be accessed through a discovery service.
Using the presented design of the core services, the next chapter will describe our

prototypical implementation. In addition it details a pipeline description language to
define external delivery models and provides a java-based activity service framework to
quickly bootstrap new activity services.

99

8. Implementation

Contents

8.1. Prototype - Scope & Technologies 101
8.1.1. Scope . 101
8.1.2. Technologies . 102

8.2. Pipeline Description Language . 104
8.2.1. Model Example . 107

8.3. Process Planner . 107
8.3.1. Model-based Planning . 108
8.3.2. Project-based Planning . 109

8.4. Activity Service Framework . 111
8.5. Delivery System Management . 113

8.5.1. Activity Inventory & Activity Specifications 113
8.5.2. Model Import . 114
8.5.3. Existing Model . 116
8.5.4. Plan Preview . 116
8.5.5. Execution . 116

8.6. Summary . 119

Following a Domain Driven Design approach Chapter 6 and chapter 7 presented an
architecture design for a Self-Organizing Delivery System. This chapter presents an
implementation of these concepts. Thereby, we not only built a prototype for evaluation
purposes in chapter 9, we also defined a pipeline description language (section 8.2) and
realized a framework for quickly bootstrapping new activity services in a Spring (Java)
context. Section 8.4 provides details the framework. Section 8.1 details the scope and
technical details of our prototype.

8.1. Prototype - Scope & Technologies
This section briefly introduces our prototype we implemented based on the design
detailed in the previous chapters. Section 3.1.1 defines the prototype scope, as we did
not implement all concepts and section 8.1.2 presents the technologies we used for the
realization.

8.1.1. Scope
section 3.1.1 Because of the limited scope of this thesis, we could not implement all
concepts and components presented in the previous chapters. We focused on being able to

101

8. Implementation

Delivery System
Management Tool

Delivery System
Management Tool

Maven ServiceMaven Service

OrchestratorOrchestratorModel ServiceModel Service Process PlannerProcess Planner Event StoreEvent Store

API GatewayAPI Gateway

Visualization

Access

Delivery Process Management

Activity

Activity Specification RegistryActivity Specification Registry

External Provider

Infrastructure

Artifact StorageArtifact Storage

Commands Queries

View ServiceView ServiceView Service

Jmeter ServiceJmeter ServiceGit ServiceGit Service Docker ServiceDocker ServiceQuality
Gate Service

Quality
Gate Service

Figure 8.1.: Prototype Overview - Technologies and Frameworks

evaluate our requirements. Therefore, we did not implement advanced concepts like the
execution precondition (section 5.1.1), which for example provides semantics to tear-down
provisioned system in case of a failure. We also did not implement a notification service.
For the realization of the activity specification we use JSON schema 1, which is similar
but not equivalent to our activity specification design. Regarding the Self-Organization
made several assumptions to ease implementation of planners. We assume that each
delivery model only has one project repository and that the providing activity of a
specific artifact datatype (e.g. java-classes) is unique. Overall, some design concepts
emerged during development of the prototype or later during the thesis, thus the realized
prototype should not be seen as a one-to-one realization of our concepts.

8.1.2. Technologies

Figure 8.1 provides an overview of our prototypical delivery system. Primarily, the
microservices are realized with Spring Boot [Pivb]. Each service is packaged in a docker

1http://json-schema.org/

102

8.1. Prototype - Scope & Technologies

[Doc] container. The following details each service from a technological perspective.

Delivery System Management Tool The delivery system management tool is the re-
act.js [Facb] based frontend application of our delivery system. We chose react.js
as it allows to create responsive, interactive user interfaces. Since delivery process
activities might be long running we use websockets to provide the user with up-to
date information without distracting the users workflow. Following the CQRS
approach (cf. section 5.2.4) the UI provides a task-based structure. Section 8.5
provides screenshots of the delivery system management tool.

API Gateway An API Gateway is a typical pattern in a microservice architecture to
provide clients with a single entry point. We decided to use components from the
well-known and battle-tested Netflix OSS stack. Thus, we use Netflix Zuul as our
our API gateway and the service registry is realized by means of Netflix Eureka.

View Service The view service is a spring-boot based application. It uses mongoDb for
persistence since document-oriented storage fits nicely with aggregates and provides
good performance. So far, the view service only supports the delivery process
visualization in the internal delivery model.

Model Service As all our custom developed microservices, the model service is realized
with Spring Boot. In the current configuration stage, the model services supports the
import of external delivery models from local file system and from git. But since the
remote resolving is implemented by means of activity services, any transformation
service could be used to resolve a remote model. So far, the model service supports
our external model described in section 8.2.

Process Planner The Spring Boot based process planner service comprises several plan-
ner components. So far, we realized two model planners and one project planner
(cf. section 7.3.2). One model planner automatically determines the parameter
mapping between two given activities and the more sophisticated model planner
automatically determines dependencies between activities without requiring the user
to specify them. The project planner is a maven planner that detects sub-projects
and automatically expands the delivery model for these sub-projects. In addition,
the realized process planner service provides validation capabilities based on the
activity specification. Section 8.3 provides more insight into both the different
planner types and the validation.

Activity Specification Registry Foundation of the activity specification registry is Netflix
Eureka from the Netflix OSS [Netc] which we extended by our activity specification.
Because of the limited scope of this thesis we utilize the activity specification
registry also as the discovery service (cf. section 6.2).

Orchestrator The Spring Boot based orchestrator uses Netflix Conductor [Netb] as
its orchestration engine (section 7.4). Conductor is a java application, thus we

103

8. Implementation

embedded conductor into the orchestrator service to save resources. In a productive
scenario we advice to run a dedicated conductor instance.

Event Store For the event store we rely on the Eventuate Local stack [Eve]. It provides
an event bus realized with kafka [Apaa] and a mysql database for persisting the
events [Orab]. We chose eventuate as is provides a spring framework which allows
to build application based on event-sourcing and CQRS.

Artifact Store The artifact store relies on mongoDB for both persisting file meta infor-
mation and the files itself. We rely on mongoDB’s GridFS to store the binary data.
Although there is no limit in the file size, we advise to store files directly on the file
system for better performance in production. In this prototypical context we used
GridFS for convenience reasons.

Quality Gate Service The quality gate services also is a Spring Boot based microservice.
Right now, it supports the same policy interpretations as specified in the external
model (treshold+, treshold-, equality, non-equality cf. section 8.2).

Git Service The Git Service is a transformation service. It is based on Spring Boot
and uses JGit internally to provide git-related functionality. So far, it provides a
preview activity (get content of file in remote repository), a search activity (find file
matching the glob pattern in a remote repository) and a checkout activity (checkout
specified branch and upload it to the artifact store).

Maven Service The maven service is a hybrid service, i.e. it both provides transforma-
tions and assessment activities. Internally, it uses MavenEmbedder for the maven
related functionality. It offers three transformation: A compile activity, an assemble
activity and a deploy activity. For the assessments it provides a code coverage
activity.

JMeter Service The jmeter service is an assessment service based on Spring Boot. It
provides both a general purpose jmeter activity to perform specified jmeter tests
against a specified target and a specialized jmeterTT activity which only requires
some special parameter. We developed this tailored activity for our case study in
chapter 9.

Docker Service Another transformation service we developed is the spring boot based
docker service. It requires a docker socket to perform it’s functionality. Right now
it offers two activities tailored for chapter 9. BuildTTGateway builds several docker
containers for our evaluation project and provisionTTGateway starts all required
container while waiting for dependent containers. Chapter 9 provides more details.

8.2. Pipeline Description Language
Section 5.1 identified the separation of a delivery model into an external and an internal
model as an important concept to allow for self-organizing capabilities (Req-4: Self-

104

8.2. Pipeline Description Language

Organizing) and to support different pipeline description languages (Req-5: Custom
PDLs).
This sections details such an external model by presenting a pipeline description

language (PDL). We choose to align it narrowly with the core domain to be able to more
easily reason about the system in chapter 9. The following defines the language in BNF
(Backus-Naur-Form):

〈deliveryprocess〉 |= stages: 〈stages〉 transformations: 〈activities〉 |
stages: 〈stages〉 transformations: 〈activities〉 assessments:
〈activities〉 qualityGates: 〈qgates〉

〈stages〉 |= - 〈stage〉 | - 〈stage〉 〈stages〉
〈stage〉 |= name: 〈name〉 transformations: 〈transformationlist〉

〈transformationlist〉 |= - 〈name〉 | - 〈name〉 〈transformationlist〉
〈activities〉 |= - 〈activity〉 | - 〈activity〉 〈activities〉

〈activity〉 |= name: 〈name〉 ref: 〈name〉 configuration: 〈configuration〉 |
name: 〈name〉 ref: 〈name〉 dependsOn:
〈dependencies〉 | name: 〈name〉 ref: 〈name〉
dependsOn: 〈dependencies〉 configuration: 〈configuration〉

〈dependencies〉 |= - 〈dependency〉 | - 〈dependency〉 〈dependencies〉
〈dependency〉 |= alias: 〈name〉 ref: 〈ref〉

〈configuration〉 |= 〈parameter〉 | 〈parameter〉 〈configuration〉
〈parameter〉 |= 〈name〉:〈name〉

〈qgates〉 |= - 〈qgate〉 | - 〈qgate〉 〈qgates〉
〈qgate〉 |= strategy: 〈strategy〉 policy: 〈rules〉
〈rules〉 |= - 〈qgate〉 | - 〈qgate〉 〈qgates〉
〈rule〉 |= name: 〈name〉 interpretation: 〈interpretation〉

assessmentRef: 〈ref〉 valueRef: 〈name〉
setPoint: 〈name〉

〈strategy〉 |= auto
〈interpretation〉 |= threshold+ | threshold+ | equality | non-equality

〈ref〉 |= p://〈path〉
〈path〉 |= 〈name〉 | 〈name〉/〈name〉

〈name〉 |= 〈char〉 | 〈num〉 | 〈char〉〈name〉
〈char〉 |= a . . . z | A . . .Z
〈num〉 |= 0 . . . 9

A delivery model begins with the definition of stages. At least one stage must be
defined. Each stage has a name and a list of transformation names. These transformations
names reference transformation defined later in the model. We choose not to inline
transformations in the stage definition to allow easy inheritance from other models. The

105

8. Implementation

stage definition must at least reference one transformation. After the stage definition,
transformation are defined indicated with the keyword transformations. At least one
transformation is required. Each transformation has a name to reference it in the model
and to visualize it later on. In addition each transformation references a certain activity
with the keyword activityRef. Optional, dependencies of this transformation can be
specified (dependsOn). Each dependency has an alias to be able to easily reference it.
The references activity is specified via the ref keyword. Here a valid URI is expected
to be able to reference activities defined in other delivery models. Configuration for a
transformation is defined via configuration. Each configuration entry consists of key-value
pairs separated with a colon. After transformations have been defined, assessments can
be specified optionally. They are defined identically to transformations. Finally, quality
gates can be defined with the keyword qualityGates. The pipeline description language
originated from an earlier prototype version without process planners, thus quality gates
are defined differently than transformations or assessments. A quality gate comprises
a strategy that defines how the model processing should determine the execution order.
Following our quality gate service (cf. section 7.5.5), each quality gate directive has a
policy comprising of at least one rule. Each rule has a name, an interpretation (treshold+,
treshold-, equality, non-equality) which defines how to compare set-point (specified by
setPoint) and actual value. The actual value is defined by referencing an assessment via
an URI (assessmentRef) and by defining the name of the measurement produced by the
assessment (valueRef).

106

8.3. Process Planner

8.2.1. Model Example

stages:
- name: analyse

transformations:
- checkout

transformations:
- name: checkout

service: git-service
activity: checkout
configuration:

repositoryUri: https://github.com/...git
assessments:

- name: java-linecount
service: utility-service
activity: file-linecount
dependsOn:

- alias: repo
ref: p://this/transformations/checkout

configuration:
files: @repo
filter: *.java

qualityGates:
- strategy: auto

policy:
- name: AvgJavaFileLength

interpretation: threshold-
assessmentRef: p://this/assessments/java-linecount
valueRef: avgLines
setPoint: 100

Source Code 8.1: Sample Delivery Model Instance

Listing 8.1 shows an example delivery model. It models a single analyse stage, which
performs a checkout of files from git (transformation), calculates the average line count
of java files in this repository (assessments) and promotes the repository artifacts, if their
average line count is below 100.

8.3. Process Planner

We developed three planners during the prototype development: Two model-based
planners and one project planner. These planners are detailed in section 8.3.1 and
section 8.3.2, respectively. Important responsibility of the planners is Req-6: Model
Validation (cf. section 7.3). Section 8.3.2 briefly discusses the validation support of our
prototype.

107

8. Implementation

8.3.1. Model-based Planning

We developed two model planners during the prototype development. In principle they
function the same way, thus we only present the more sophisticated model planner.
Listing 8.2 provides an external delivery model excerpt. In the depicted situation, the
user provided all dependencies and the configuration mapping, e.g. the user assigned the
workspace property of the assemble activity to the workspace output field of the checkout
activity (dependsOn: repo.. and workspace: @repo/workspace).

transformations:
- ...

- name: assemble
service: maven-service
activity: assemble
configuration:

workspace: @repo/workspace
classes: @compile/classes

dependsOn:
- alias: repo

ref: p://this/transformations/checkout
- alias: compile

ref: p://this/transformations/compile
- ...

Source Code 8.2: Manual Delivery Model

transformations:
- ...

- name: assemble
service: maven-service
activity: assemble

- ...

Source Code 8.3: Self-Organized Delivery Model

Our developed model planner uses the activity specification to automatically determine
this configuration, i.e. listing 8.2 and listing 8.3 describe the same delivery process.
The model planner analyses the specification of all activities defined in the external

model to determine which activity provides data of a certain datatype that another
activity requires. Listing 8.4 provides an excerpt of the maven assemble activity input
specification. As depicted, it requires a workspace property of type artifact with a
workspace constraint. The model planner analyses all other activities defined in the
model. In our case there is a git checkout activity. Its activity result specification is
provided in listing 8.5. As depicted, git checkout provide a property of type artifact
with the same workspace constraint. Thus, the model planner automatically relate both
activities. Overall, our model planner applies basic constraint solving using the specified

108

8.3. Process Planner

types and constraint in the activity specification.

"paramSchema": {
"$schema": "...",
"title": "Maven Assemble In",
"type": "object",
"additionalProperties": false,
"properties": {

"workspace": {
"type": "string",
"ptype": "artifact",
"constraint": {
"type": "workspace"

}
},

...
}

}

Source Code 8.4: Assemble Input Schema

"returnSchema": {
"$schema": "..."
"title": "Git Checkout Result",
"type": "object",
"additionalProperties": false,
"properties": {
"workspace": {

"type": "string",
"ptype": "artifact",
"constraint": {
"type": "workspace"

}
}

}
}

Source Code 8.5: Checkout Result Schema

8.3.2. Project-based Planning

For evaluation purposes we also developed a project-based planner. As stated in sec-
tion 7.3.2 they analyze the referenced project and are therefore typically technology-
specific. In our case, we developed a maven planner which analyzes maven project on
potential submodules and their dependencies. If submodules are found, the maven project
planner splits the project parent activities into multiple activities (one per submodule)
and adapts the dependencies following the maven dependency tree. Figure 8.2 provides
an example. The depicted delivery model describes a basic build process. It comprises
five activities. First, the current project sources need to be checked out, afterwards the
project is compiled, tested and packaged. Finally, there is a quality gate to promote or
reject the packaged artifact(s). The underlying maven project comprises 10 submodules
(common, communicator, cds, core, bridge, gmanagement, web-v1, web-v1-1, web-v2 and
ear) where some modules depend on others. The maven project planner analyzes their
dependencies and adapts the delivery model correspondingly as depicted in the lower
part of figure 8.2. It thereby not only adapts the compile, assemble and test activity
but also introduces new quality gates to follow shift-left best practices to provide fast
feedback (cf. chapter 2). We further elaborate this characteristic in chapter 9.

Validation

An import goal of the delivery system is to meet Req-6: Model Validation. Thus, we
also included validation capabilities in our prototype. At the current stage, validation
errors only show up in the log. The user is presented a generic error message in the

109

8. Implementation

	

	

	
	

	

	

Figure 8.2.: Project-based Planning

110

8.4. Activity Service Framework

Figure 8.3.: Process Planner - Validation

delivery system management tool. Figure 8.3 depicts an example validation error. In
the modeled case we tried to reference a parameter that does not exist. Future work is
of course required to improve the validation experience, but it suffices to evaluate the
validation capabilities in chapter 9.

8.4. Activity Service Framework

Activity services play a key role in the delivery system. They not only provide means
for Req-3: Abstraction and Req-6: Model Validation, but they are also the key to meet
Req-1: Integration of new technology. To integrate a new tool or service provider an
activity services needs to be developed. Thus, it is of great importance to make the
development as easy as possible.

To this reason we realized a Spring framework to take the heavy lifting. This framework
enables developers to concentrate on the business logic instead of implementing delivery
system specifics. Recalling section 7.5 an activity service needs to provide the specifications
of its activities, register them at the activity specification registry, provide health check
support and poll the orchestrator for tasks. If a task is available, the activity service
needs to instantiate the corresponding activity, execute it, provide progress and finally
must return the result to the orchestrator. At best, the activity service should also be
able to execute multiple activities in parallel. Our frameworks tackles all these concerns.
Only requirement is to include the frameworks jar for example via maven (see listing 8.6).

<dependencies>
...

<dependency>
<groupId>doering.thesis</groupId>
<artifactId>pipeline-service-starter</artifactId>
<version>1.7</version>

</dependency>
...
</dependencies>

Source Code 8.6: Maven - Activity Starter Dependency

If the library dependency is included, the only missing part is to implement the business
logic. Listing 8.7 provides a sample activity implementation. Most importantly, the
developer need to annotate his class with @PipelineActivity and provide the activity
name and type (cf. line 1). The framework uses reflection to find all classes annotated

111

8. Implementation

with this annotation. The class needs to implements the generic Activity interface with
a type parameter matching it’s execution result class. (cf. line 2). Using this class,
the framework can automatically determine the activities return schema. To determine
the configuration schema, the classes constructor needs to contain a specialization of
ActivityConfiguration (cf. line 6). If the activity realization requires other dependencies
(e.g. a git client (line 6), they be provided in the constructor too. Our framework uses
dependency injection to provide a matching instance during instantiation.
As the class implements the activity interface, it needs to implement an execute

method returning the parametrized type (cf. line 12). The execute method has an
ExecutionMonitor to allow to provide feedback and meta information during execution.
Basically this is everything which is required to implement an activity. The framework
automatically registers this activity at the activity specification registry, polls the orches-
trator, instantiates the activity with all required dependencies and triggers the execute
method and submits the result to the orchestrator. Listing 8.8 details the configuration
and result class.
1 @PipelineActivity(name = "checkout", type =

ActivityType.TRANSFORMATION)
2 public class GitCheckoutCmd implements

Activity<GitCheckoutResult> {
3 private final GitCheckoutConfiguration configuration;
4 private final GitClient git;
5
6 public GitCheckoutCmd(GitCheckoutConfiguration

configuration, GitClient git) {
7 this.configuration = configuration;
8 this.git = git;
9 }

10
11 @Override
12 public GitCheckoutResult execute(ExecutionMonitor

monitor) {
13 // implement me
14 }
15 }

Source Code 8.7: Example Activity Implementation using our framework

To enable the framework to generate an meaningful activity specification, the developer
has to provide some more information on the configuration or result class itself. As stated
above, the framework uses reflection to analyze the classes. Thus, it automatically can
detect the property data types for the activity specification. But for certain constraints,
additional information need to be provided via annotations. Such a constraint could be
for example to mark a property as being required. This can be done via @JsonProper-
ties(required = true) as depicted in Listing 8.8 (line 2). Beside constraints, the activity
specification model supports custom data types (cf. section 5.2.5). These custom data
types are heavily used by model planners to determine dependencies between activities

112

8.5. Delivery System Management

(cf. section 7.3.2). Such an information is also provided via annotation. Developer can
either rely on predefined annotations or can define their own. In line 9 of Listing 8.8 the
predefined workspace annotation is used to define the data type as an artifact of type
workspace.
1 public class GitCheckoutConfiguration implements

ActivityConfiguration {
2 @JsonProperty(required = true)
3 private String repositoryUri;
4 private String branch;
5 //more properties
6 }
7
8 public class GitCheckoutResult implements ExecutionResult {
9 @Workspace

10 private String workspace;
11 }

Source Code 8.8: Activity Configuration and Result Class

8.5. Delivery System Management
To get an impression of the functionality of our prototype, we present screenshots of the
central functionalities in the following.

8.5.1. Activity Inventory & Activity Specifications

Figure 8.4.: Management Tool - Activity Inventory

Beside offering administrative tasks for delivery processes, one important functionality
of the delivery system management tool is to provide an overview of available activities
and their specifications. Although not further elaborated in this thesis, a delivery

113

8. Implementation

Figure 8.5.: Management Tool - Activity Specification

system has different stakeholders. Developers provide activity services and pipeline
engineers use the offered functionality to realize delivery process. Thus, it is important
for pipeline engineers to have an inventory of available activities in the delivery system
which helps in tackling C2 - Modeling Usability. Figure 8.4 depicts the activity inventory
of our prototype. The offered activities are grouped under their corresponding activity
service. When expanding for example the git service, all it’s activities and their activity
specification are listed. Figure 8.5 illustrates the specification of the checkout activity.
As depicted, it’s configuration model is relatively comprehensive. The only mandatory
parameter is a repository URI though (as indicated by the red star). The branch, (path)
prefix or checkout format are optional. In addition credentials can be provided. As
depicted, the prototype only supports UsernamePassword credentials in its current stage.

8.5.2. Model Import

Figure 8.6 depicts the subsequent dialogs when a user wants to import an external model
into the delivery system. First the user needs to select a model provider. Recalling
section 7.2 the model service differentiate between local and remote references. Since the
prototype only has a single service to import remote resources - the git service - the user
therefore can select git-service or local import. As illustrated in the second dialog, the
user has to provide some configuration details. The delivery system management tool
thereby dynamically generates the corresponding form based on the activity specification.
When the user confirms the configuration, the delivery system searches for compatible
models from which the users needs to select one (third dialog). Finally, the delivery
system presents an overview of all provided data and requests the user to provide a model

114

8.5. Delivery System Management

Figure 8.6.: Management Tool - Model Import

115

8. Implementation

Figure 8.7.: Management Tool - Model Preview

Figure 8.8.: Management Tool - Plan Preview

name to easily identify the reference later on. The user then can trigger the import.

8.5.3. Existing Model
All imported models are listed under Pipelines in the delivery system management tool.
Each model card provides four tabs. An overview which basically provides the import
information, an model preview, a plan preview and an execution tab. Figure 8.7 depicts
the model preview tab. Here, the user can initiate an external model fetch to see the
external model in its current version.

8.5.4. Plan Preview
Another tab of a model card (cf. section 8.5.3) is the plan preview (see figure 8.8). It
presents a preview of the planned delivery process for the current external model. This
enables users to easily verify if the delivery process is planned as intended. Each node in
the delivery process graph can be selected to get further information about the planned
activity.

8.5.5. Execution
The final tab of a model card is the execution tab. It provides a list of all executions
for this model reference. Figure 8.9 depicts a successful execution. Beside the delivery

116

8.5. Delivery System Management

Figure 8.9.: Management Tool - Execution Overview

117

8. Implementation

Figure 8.10.: Management Tool - Execution Failed

processes graph-based representation, the execution view also contains detail information
like the timings for example. To allow for Req-8: Traceability, the user can download the
exact external model used. To get more information, the user can select each activity in
the delivery process graph. In figure 8.9 the cobertura activity is selected. Its details are
depicted below the delivery process graph. Basically, the provided information correspond
to the executionResult (cf. section 7.5.2) and the input configuration. As input the
cobertura activity got two artifact ids. The output comprises downloadable surefire and
cobertura reports. Moreover it details the test count, the number of failure and skipped
tests and also the test passed rate as well as coverage values. Below the output are
metrics. The cobertura activity published one metric, namely the upload duration of
it’s artifacts. These metrics could be used for example to detect issues with the delivery
system itself but also might serve as an indicator for delivery process issues. At the
bottom are log entries the cobertura activity published during execution. This especially
helps for root cause anlysis.

Of course, a delivery process also might fail. Figure 8.10 depicts such a situation.
In that case, the delivery system management tool highlights the failed activity and
provides reason for the failure. In the concrete scenario, a policy was not fulfilled: "Policy
PassedTestRate is not fullfilled: ActualValue (0.9859154929577465) is smaller than
setPoint (1.0)").

118

8.6. Summary

8.6. Summary
In this chapter we provided a small glimpse of our practical work performed during the
thesis. Major part was the implementation of a prototype that realizes great parts of
the architecture design. During the prototyp development, we additionally implemented
an activity service framework to ease the development of new activity services. This
framework allows to bootstrap new Spring-based activity service basically by means
of an annotation. Thereby, it automatically generates activity specifications by using
reflection and registers these specifications at the activity specification registry. In
addition it provides the orchestrator integration. Therefore, developers can concentrate
their development effort on the activity logic, which eases development of new activity
services significantly. To be able to evaluate our architecture and concepts by means
of the prototype in the next chapter, we also designed a pipeline description language.
This language is closely aligned to our core domain to ease evaluation. As a means
to explore Self-Organizing capabilities, we developed multiple model-based and one
project-based planner. The model-based planners can automatically derive dependencies
between activities and adapt the delivery model accordingly. The project-based planner
is a maven planner, that incorporates maven submodules into the delivery model of the
project’s parent. The planner thereby optimizes the delivery model in terms of fail-fast.
Using our prototype, we conducted a case study to evaluate our requirements, which the
next chapter presents.

119

9. Evaluation

Contents

9.1. Case Study . 121
9.1.1. Context . 122
9.1.2. Objective . 123
9.1.3. Collected Data . 124
9.1.4. Conclusion . 130

9.2. Architectural Requirements . 131
9.3. Discussion . 134

9.3.1. Activity Classification Compliance 134
9.3.2. Limitations of Self-Organization 134
9.3.3. Delivery Model Transformations 135
9.3.4. CQRS and Event Sourcing 136
9.3.5. Orchestrator Design . 136

C1 - Project Evolution and C2 - Modeling Usability are two major challenges delivery
systems face (cf. chapter 3). Following a domain driven design approach (cf. chapter 5),
we proposed an architecture (cf. chapter 6) and detailed important core services (chapter 7)
to tackle those challenges. Based on this design, we built a prototype (cf. chapter 8) which
this chapter uses to evaluate our concepts and design, i.e. to assess their applicability and
quality. The IEEE defines quality as the degree to which a system, component, or process
meets specified requirements [IEE02]. Therefore, section 9.2 evaluates the architecture in
terms of our top level requirements (section 3.2). To gain insights, we conducted a case
study, which section 9.1 details. Section 9.3 discusses observations made during the case
study which are not directly applicable to the case study objectives.

9.1. Case Study

A case study is an exploratory research methodology, i.e. it’s purpose is to find out what
is happening, to seek new insights and to generate new input for further research [RH09].
The following presents our case study. Thereby we follow the reporting structure as
recommended by P. Runeson and M. Höst [RH09].

121

9. Evaluation

Common communicator

CoreCDS

BridgeWeb V1 Web V1-1 Web V2 Management

EAR

A BDepends on

1 1

2 3

4 4 4 4 4

5

A
n

Maven Module A, could be executed at position n

Figure 9.1.: IBE Web Service - Maven Module Dependency Tree

9.1.1. Context

We conducted the case study in an industrial context at TravelTainment 1. Traveltainment,
a company of the Amadeus IT Group SA with about 400 employees, develops software
solutions for travel sales. One of their products is the Internet Booking Engine (IBE)
which allows customers and travel agencies to search for and book travel offers. The
functionality is provided by the IBE Web Service. It offers an XML-based API to search
for and filter travel offers, to check their availability directly at the tour operator and to
book offers. In peak times, the IBE Web Service handles about 20 millions requests per
day. Internally, about 18 employees work on the IBE web service.
The IBE Web Service is written in Java EE and has dependencies to three external

systems. A database persisting hotel information, a search engine to perform the search
requests and keycloak for identity and access management. As of today, the project
comprises of about 65 000 lines of code. The entire IBE Web Service project is built
with maven by means of 10 maven modules (common, communicator, cds, core, bridge,
management, web-v1, web-v1-1, web-v2 and ear). Since this module structure plays an
important role in section 9.1.3, figure 9.1 provides an overview of their dependencies. It
also indicated the potential execution index when parallelizing the build.

The IBEWeb Service is bundled as an enterprise application archive (ear) to be deployed
on an application server (JBoss Wildfly). The IBE Web Service project contains multiple
unit tests and several junit tests, which are primarily used for functional integration
testing. In the beginning of our case study, the jmeter testing was performed manually.

1http://www.traveltainment.de

122

9.1. Case Study

The IBE Web Service team formulated certain requirements to automate this activity (by
means of docker). Before evaluating our prototype, we therefore introduced the required
changes. Section 9.1.1 details the adapted delivery process.

Delivery Process

The IBE Web Service delivery process consists of two phases. A build phase and a
deployment phase. In the build phase, the software is built and tested (by means of
junit and jmeter tests) and published in an artifact repository. In the deployment phase
the published artifacts are deployed to production. The build phase is performed in a
continuous manner. The deployment phase is performed on demand.
For internal reasons, we only could study the build phase. But since the build phase

described above can be seen as its own delivery process (compile, test, deploy) and the
thesis focuses on the build problem theme (cf. section 3.1), the chosen projects offers
great potential for a case study.
Technically, the IBE Web Service team uses Hudson [Oraa], a web-based Continuous

Integration (CI) System to carry out their delivery process. Hudson was discontinued
and superseded by Jenkins in 2016. The IBE Web Service team defined several Hudson
jobs for their delivery process phases. The build phase job which is triggered by commits
to version control executes maven to build the project, to unit test them and to publish
them to artifactory (Traveltainments global artifact repository). As stated, the junit
test were performed manually. Thus, the Hudson job does not execute them. Following
traveltainments requirements, we introduced a docker build and a docker publish activity
to the delivery process, which build and run the IBE Web Service and its dependencies
(database, keycloak). Using this provision mechanism, the jmeter tests can be automated.

9.1.2. Objective

Having defined the case study context in the previous section, this section describes our
objectives. We summarize each objective and detail which data we collect to answer the
objective.

Applicability of Core Domain

Descriptions & Rationale The prototype realizes central parts of our core domain
(cf. section 5.1.1). Before exploring specific properties, we have to inspect if the
overall concepts are applicable.

Required Data To provide evidence for the applicability of the core domain, we
measure how much of the the IBE Web Service delivery process we can cover with
the concepts of our core domain. Moreover, we count the amount of adoptions
required to the core domain (in case we cannot cover the whole process).

123

9. Evaluation

Integratability of new technologies

Descriptions & Rationale One major challenge our delivery system tries to tackle
is C1 - Project Evolution (cf. section 3.1). Central related requirement to this
challenge is Req-1: Integration of new technology. Given the importance of this
requirement, we want to explicitly explore if it is met.

Required Data To be able to qualitatively indicate if heterogeneous technologies
can be integrated, we have to try their integration. Thereby, we need to count
required changes on the delivery system to be able to give evidence about the
integratability.

Impacts of Self-Organization

Descriptions & Rationale The second challenge our delivery system tries to tackle
is C2 - Modeling Usability (cf. section 3.1). Beside the activity abstraction already
assessed with our first objective (section 9.1.2), the key to tackle this challenge
is meeting Req-4: Self-Organizing. Self-Organizing promises to ease the delivery
process modeling and to automatically stick to best-practices. We want to explore
the impacts of using a self-organized approach.

Required Data To explore the impacts of self-organizing, we need to model the
IBE Web Service delivery process both with and without planners and compare
them. Measures for comparing them are their lines of code, their complexity and
also their transparency. Since there are two types of planners (cf. section 7.3.2),
we also need to compare their resulting delivery processes.

9.1.3. Collected Data

We collected the following data during the case study:

Coverage of Delivery Process

Approach To determine the coverage of the IBE Web Service Delivery Process,
we modeled the process using only concepts from our core domain. Figure 9.2
depicts the resulting delivery process. We thereby used the same notation as for our
explanatory model in section 5.1.2. Overall, we were able to classify each activity
either as a transformation or an assessment, thus we can cover the delivery process
to 100% with our core domain.

Value 100% coverage

Related Objective Applicability of Core Domain

124

9.1. Case Study

Maven
Compile
Maven

Compile

Maven
Test

Maven
Test

Maven
Package
Maven

Package

Jmeter
Tests

Jmeter
Tests

QS
Gate 1

QS
Gate 1

A
ss

es
sm

en
t

Le
ve

l
Tr

an
sf

o
rm

at
io

n
Le

ve
l

Project
Sources

Java
Classes

Surefire Reports
Cobertura Reports

Java
Classes

Docker
Build

Docker
Build

Docker
Provision

Docker
Provision

Quality
Gate 2
Quality
Gate 2

Deploy to
Artifactory
Deploy to
Artifactory

Git
Checkout

Git
Checkout

Jmeter Reports

Gateway
Ear

Docker Container
Names

Project
Sources

Ip +
 Ports

Gateway
Ear

Gateway
Ear

New activityNew activity
Previously performed manually

by web service team
Previously performed manually

by web service team

Teardown
Docker

Teardown
Docker

ConceptualConceptual

Figure 9.2.: Case Study - Delivery Process

Model-Induced domain changes

Approach Having defined the conceptual delivery process for the IBE Web Service
Delivery Process, we used our pipeline description language to express this process
in order to collect evidence for the applicability of our domain. Since this language
is closely aligned to our domain, shortcomings in the language might signal domain
problems. The appendix (Appendix A.1) provides the delivery model definition
in our PDL. We thereby modeled each aspect manually without relying on self-
organizing capabilities in order to explore the language expressiveness. Overall, we
were able to define each aspect of the IBE Web Service delivery process without
adapting the language or our core domain.

Value No changes required

Related Objective Applicability of Core Domain

Delivery System adoptions

Approach To gain evidence about the integratability of new technologies into
the delivery system, we realized two activity services. A docker service providing
functionality to build and provision docker containers and a jmeter service allowing
to execute jmeter tests. Previous to the case study we also implemented a maven
and a git service.

Value Developing and integrating a new activity service into the delivery system
didn’t require to adapt the delivery system or other activity service. Each integration
was isolated thus offering high locality.

Related Objective Integratability of new technologies

125

9. Evaluation

Figure 9.3.: Model-planned Delivery Process

Figure 9.4.: Project-planned Delivery Process

Technological-Induced domain changes

Approach During the integration of new activity services (see above) we count
if any changes are necessary to core domain to being able to accommodate the
activity service.

Value No changes to the core domain were required to integrate new technologies

Related Objective Applicability of Core Domain

Equivalence of Delivery Processes

Approach To provide evidence for the impacts of self-organizing, we modeled
the delivery process in three different ways: manually, i.e. without relying on
self-organizing capabilities, model-planned, i.e. with relying on model planners to
determine the dependencies between activities section 8.3.1 and project-planned, i.e.
with both model-planners and project-planners enabled. Appendix A.1 provides
the manual model definition, appendix A.2 the model-planned definition and
appendix A.3 the project-planned definition. We then compared the resulting
delivery processes of these models. Figure 9.3 and figure 9.4, respectively depict
them to get an impression.

Value The delivery processes defined by the manual model and the model-planned
model are equivalent, i.e. they comprises identical activities including same de-
pendencies and configuration. The delivery processes of the model-planned and
project-planned model are semantical equivalent, i.e. their resulting artifacts are
identical, but the differ in the way or reaching their result. Since we realized a
maven project-planner (cf. section 8.3.2) which knows about maven modules, the
project-planned delivery process has more intermediate steps and quality gates.
Altogether, the project-planned delivery process comprises 24 transformations, 11
assessments and 6 quality gates, while the model-planned delivery process has 6
transformations, 2 assessments and 2 quality gates.

126

9.1. Case Study

Related Objective Impacts of Self-Organization

LOC of Delivery Models

Approach We compared the different delivery models (manual, model-planned and
project-planned, see above) in terms of their lines of code to collect evidence on
the impact of self-organizing on the delivery process modeling.

Value The manual model comprises 124 lines of code. The model-planned and
project-planned models are semantically almost identical. The only difference is a
flag enabling or disabling project-planning. They both have 66 lines of code. The
overall savings correspond to 46,77 %. Listing 9.1 exemplify the reason for this
enormous saving potential: No dependsOn nor related configuration properties
must be provided.

name: compile
service: maven-service
activity: compile
below is only mandatory for manual model
dependsOn:

- alias: repo
ref: p://this/.../checkout/workspace

configuration:
workspace: "@repo"

Source Code 9.1: Exemplary difference between manual and self-organizing

Related Objective Impacts of Self-Organization

Complexity of Delivery Models

Approach We also compared the different delivery models (manual, model-planned
and project-planned, see above) in terms of their complexity. As a measure for
complexity we use a similar approach as the McCabe Cyclomatic Complexity
metric [LL10] defined for software components: We count all dependencies and
cross-references (e.g. in policies) on other activities in the delivery model. Thus,
we define the complexity of a model as:

c(x) = 1 + d(x) + rpolicies(x)

where:

d(x) = amount of dependsOn declarations in x
r(x) = amount of references in policy definitions in x

127

9. Evaluation

Execution of Delivery Manual-defined / Model-
Planned Delivery Process

Project-Planned Delivery Pro-
cess

Run 1 298,466s 310,933s
Run 2 251,732s 295,606s
Run 3 306,027s 329,857s
Average 285,408s 312,132s

Table 9.1.: Manual vs Project-planned Delivery Process execution duration

Value Using our complexity measure, the manual delivery model has a complexity
of 18. Both the model-planned and the project-planned model have a complexity
of 1.

Related Objective Impacts of Self-Organization

Execution overhead of Self-Organization

Approach To further investigate the effects of self-organizing, we compared the
execution behavior of the resulting delivery processes by measuring their execution
durations. We couldn’t compare the execution durations of our delivery system
with the hudson setup, as the provided hardware differs from the hudson system. To
indicate the execution overhead, we performed several runs of the delivery processes
defined by the manual model and the delivery process defined by the project-
planned model. Although our sample size isn’t big enough to provide statistically
relevant insights, at least they provide an indication. Since our prototype uses
caching, the execution durations do not include the checkout duration required for
project-planning. This duration nevertheless heavily depends on the project size
and the bandwidth.

Value As already indicated (cf. section 9.1.3), the resulting delivery processes of
the manual and the model-planned are equivalent. The model-planning itself didn’t
introduce a noticeable overhead (around 2ms). The execution durations of the
delivery process expressed by the manual delivery model and the project-planned
delivery model respectively are provided in table 9.1. The management overhead
(copying of artifacts, tracking, etc.) of 31 additional activities outbalanced the
improved parallelization degree. On average, the project-planned delivery process
execution duration exceeded the manual defined delivery process by 9,14 %.

Related Objective Impacts of Self-Organization

128

9.1. Case Study

Defect Seeding Project-Planned Normal SpeedupRun 1 Run 2 Avg Run 1 Run 2 Avg

Level 1 Common 36,6s 32,8s 35,6s 128,1s 110s 117,7s 3,31Communic. 37s 36,1s 121,7s 111s

Level 3 Core 67,9s 69,4s 68,65s 113,7 111,2s 112,45s 1,64

Level 4
web-v1 97,5s 92,8s

95,7s
109s 112s

111,3s 1,16web-v1.1 96s 96,7s 110,9s 111,2s
web-v2 95,5s 95,5s 112s 112,5s

Table 9.2.: Test Failure Seeding - Execution effects

Project-Planning Impacts

Approach Self-Organization promises to help to stick to best practices (cf. sec-
tion 3.2). Having implemented a maven project planner for our prototype, we
explored this feature for the fail fast best practice (cf. section 2.2.5). The maven
planner adapts the delivery model based on the maven module structure (see
figure 9.4 (page 126)). Thus, in principle defects should be detected earlier than
in the manual delivery process. Similar to Defect Seeding [LL10] we applied Test
Failure Seeding to be able to selectively control when the delivery process should
fail. Thereby, we added failing tests (e.g. assertTrue(false)) in modules of the IBE
Web Service that contain tests (common, communicator, core, web-v1, web-v1.1,
web-v2) to explore an realistic effect. With the defects in place, we executed both
the project-planned and the manually defined delivery process and measures their
execution times. Both delivery processes use the exact same maven command as
the Hudson build to demonstrate concrete saving potentials. Thus, there is no
maven optimization in place (e.g. skipAfterFailureCount [Apab]).

Value Table 9.2 provides the execution durations until failure of the project-planned
and the normal (manually defined) delivery process. Each level thereby corresponds
to the execution index provided in figure 9.1 (page 122). If we add a defect in a
module of level 1, the project-planned delivery process fails on average 3,31 times
faster than the normal delivery process. For level 3 the speedup constitutes 1,64 and
for level 4 we have at least 1,16. Of course these values only provide an indication,
as a sample size of 2 does not provide any statistical substantiated evidence.
Nevertheless the measurements indicate an enormous potential of project-based
planning.

Related Objective Impacts of Self-Organization

129

9. Evaluation

9.1.4. Conclusion

We conducted a case study at traveltainment to explore if our proposed delivery system
tackles related requirements of both our challenges C1 - Project Evolution and C2 -
Modeling Usability. More concretely, our case study was driven by three objectives
detailed in section 9.1.2: The applicability of the core domain to verify our concepts
and understanding, the integratability of new technologies and to explore the impacts of
Self-Organizing. These objectives are discussed in the the following:

Applicability of Core Domain The collected data indicates that the core domain is
applicable. We were able to cover the complete IBE Web Service delivery process
without making changes to the core domain. The core domain also remained stable
when integrating different technologies. Thus, is not only is applicable but also
supports evolution.

Integratability of new technologies Because of the microservice architecture, new tech-
nologies could easily be integrated by means of developing new activity services
without affecting other services or the delivery system itself. No adaption were
required to integrate a new activity service. This emphasizes the high degree of
isolation and locality the architecture provides. Using the activity service framework
(cf. section 8.4), the activity service realization can only focus on business logic.

Impacts of Self-Organization Major focus of the case study were the impacts of self-
organization. The results indicate great potential: The model-based planning
allowed to reduce the lines of code of the external delivery models by almost 47
%. These reduced models were also less complicated 2. Basically following a
Convention over configuration approach, a reduced model has the risk of reduced
comprehensiveness as certain configuration and dependencies are applied automati-
cally (planned). But the fact of being able to define the delivery model in different
level of details (manually, or self-organized or anything in between) highlights the
adaptability of our delivery system. The user can freely combine what fit his needs
and skill level best.

The results also indicate great potential of project-based planning. Although the
project-planned delivery process could not benefit from its increased parallelization
degree as the execution in the positive case needed 9,4 % longer, the potential in
terms of fail fast is promising: The project-planned delivery process provided up to
3,31 times faster feedback of occurred failures. Considering the great importance of
providing fast feedback for delivery systems (cf. section 2.2.4), this factor indicates
the great potential of project-planning. In addition, the project planning provided
detailed insights into the delivery process.

2in terms of our complexity measure

130

9.2. Architectural Requirements

9.2. Architectural Requirements
The following briefly discusses if the proposed architecture meets its requirements.

Req-1: Integration of new technology

Summary Key requirement for C1 - Project Evolution is to support easy integration
of new technologies. The integration is easy when heterogeneous technologies can
be added without requiring to introduce major changes to the delivery system.

Evaluation New technologies are integrated by means of activity services. Each
activity service encapsulates functionality related to a certain technology. Following
the service principles, each activity service has high autonomy. Each activity service
is realized as a microservice, thus supporting arbitrary technologies and enforcing
loose coupling. The case study supports this theory. Overall, the integration of
a git service, maven service, jmeter service and a docker service could be easily
realized. The only requirement for an activity service is to register its activity
specifications at the activity specification registration and to poll the orchestrator
for new tasks. The service registry thereby decouples activity services from a
concrete registry and orchestrator instance. When introducing a new activity
service, no existing components of the architecture needed to be adopted, which
highlights the locality property of the architecture. In addition, the delivery system
can even be extended during runtime. Summing up, the proposed architecture
supports the easy integration of new technologies by means of providing an unified
activity interface.

Req-2: Modularity

Summary Following the law of continuing change [Leh80], a software project will
change and evolve. As the software evolves, its delivery process evolves too. The
delivery system architecture should therefore be flexible. Important strategy to
improve flexibility of a design is modularity [BCK12]. The architecture therefore
should be modular

Evaluation The architecture is designed by means of the microservice architectural
style, which by definition is modular. Since each microservice was scoped according
to identified bounded contexts in Domain Driven Design, we consider them to be
right-sized.

Req-3: Abstraction

Summary Related to C2 - Modeling Usability is the requirement to ease the
delivery process by introducing abstractions. The delivery model should not
contain every (technical) detail. The architecture should enforce information hiding
and encapsulation by means of abstractions.

131

9. Evaluation

Evaluation The proposed architecture encapsulates the delivery process steps in
activities. Each activity corresponds to a unit of work. These activities thereby
have a defined interface hiding the technical details. Users only need to reference
these activities (or more precisely their interface) in the delivery model without
the need to know each and every aspect, which meets the requirement. Overall,
the activities realize information hiding and assist reuseability and composition.

Req-4: Self-Organizing

Summary Central requirement in assisting the modeling (cf. C2 - Modeling
Usability) is Self-Organization. The architecture should not require a fully-fledged
delivery model as input. Instead, the architecture should infer information to
handle incomplete models. This eases the modeling as the user does not have to
provide each aspect. In addition to architecture should also be able to reorganize a
delivery model.

Evaluation The proposed architecture enables planners to transform the given
delivery model. Model-Planners rely on meta-information to gradually plan and
complete the delivery model. Project-Planners use project specific information
(source code) to adapt the defined delivery process. Overall and as indicated by our
case study, this planning process allows to meet the Self-Organizing requirement.
Our case study also provided evidence on the great potential of self-organization
(see section 9.1.4). Section 9.3.2 discusses potential limitations of Self-Organization.

Req-5: Custom PDLs

Summary The architecture should support different pipeline description languages.
This allows users to introduce models according to their needs and context improving
the accessibility of the delivery model.

Evaluation The proposed architecture separates the concerns of modeling and
execution by means of two different models (external and internal model). This
property allows to introduce any type of external model as long as it can be
converted to the internal model. Since this model to model transformation might
loose information, a project-planner could always use the original external model to
incorporate these information in his planning process, which mitigates the risks of
primarily relying on the internal model. The event driven nature of the proposed
architecture enables the view service to provide different visualizations for different
model types. The view service thereby projects the execution domain events into
the different external models. Overall, the architecture supports multiple model
types both as input and as visualization target.

132

9.2. Architectural Requirements

Req-6: Model Validation

Summary The second, major challenge is C2 - Modeling Usability. The architecture
needs to validate the delivery model which both assists the user in modeling and
improves the robustness of the architecture. The validation should comprise both of
syntactic validation of the model itself, but also of semantic validation if the modeled
activities exist and if their configuration matches their activity specification.

Evaluation The architecture employs a two phase validation process. First, the
delivery model service validates the external delivery model syntactically before
converting it into the internal delivery model. The process planner service uses its
planners to validate the internal delivery model semantically. Model-based Planner
validate modeled activities against their activity specification detecting compatibility
and configuration issues. Project-based planner extends the semantic validation by
project-specific concerns. They can for example validate, if an assessment activity
can be performed, or if the project does not contain any tests at all. Overall, this
provides a really powerful validation mechanism.

Req-7: Best practices

Summary The architecture should enforce Continuous Delivery best practices (cf.
2.2.5).

Evaluation The Self-Organization property of the architecture allows to adapt a
delivery model. Assuming there is a planner for a concrete Continuous Delivery
best practice, the self-organization process would ensure that this best practice is
enforced. In our case study we realized a maven project planner that obeys the
fail fast principle. Many best practices therefore can be reached by providing the
corresponding planner. But similar to the discussion in section 9.3.1 the architecture
information hiding imposes certain difficulties. When considering the build once
principle (cf. section 2.2.5) for example, a planner could only assure that a single
build activity is present in the delivery model. But he has no control over the
internals of other activities. They could internally rebuild the artifact as they
like. Since these problems hardly can be tackled on architecture level and require
organizational measures, we still consider Req-7: Best practices to be met. In
addition, the best practice requirement targets C2 - Modeling Usability, which is
not about intentionally violating best practices.

Req-8: Traceability

Summary An important delivery system requirement is to provide visibility for
every step in the delivery process as this improves the stakeholder collaboration (cf.
section 2.2.3). Central for visibility in the delivery process context is the ability
to backtrack, i.e. to trace which action produced which result. Given the great
responsibility of a delivery system, traceability is also required to assist debugging,

133

9. Evaluation

especially for issues regarding the deployment to production or issues that might
occur when evolving the delivery model

Evaluation The proposed architecture relies on Event Sourcing to tackle the trace-
ability requirement. Thereby, each business relevant incident is expressed as a
domain event. The core services (more precisely their aggregates) use these events
to determine state. This guarantees that every state change is published as an event.
Ordering all events then allows to determine what happened. Another important
aspect of the traceability requirement in the CD context is to have all binary results,
i.e. the artifacts available. The architecture solves this by persisting all artifacts in
the artifact store. Overall, the traceability requirement is met as long as all activity
services stick to their classification. As discussed in section 9.3.1, activities that
violate their classification (e.g. assessments that also perform a transformation)
could produce results and artifact not recorded by the delivery system, which would
violate the traceability requirement.

9.3. Discussion
Given the narrow focus of our case study presented in section 9.1, we made some
observations not directly applicable to the case study objectives. As these observations
still contribute to the evaluation, this section discusses them. In addition it discusses
rationales to important design decisions.

9.3.1. Activity Classification Compliance

The implementation of activity services in the case study context showed us that the
prototype doesn’t enforce the activity classification. It’s up to developers to strictly
differentiate between transformations and assessments. In principle, the architecture
allows to violate this classification by for example realizing an assessment that also
performs an transformation (e.g. running docker containers). This introduces serious
problems in terms of Req-8: Traceability. In addition, it violates the single responsibility
principle, thus increasing maintenance effort and reducing reuseability. To tackle such
risks, one differentiates between technical and organizational measures. The information
hiding enforced by the architecture makes is difficult to realize technical measures against
such smells as the activity realization is transparent to the delivery system. Instead,
organizational measures could be easily applied to govern the activity classification
compliances. Overall, this demonstrates both the flexibility of the architecture, as almost
arbitrary activities can be realized, but also the potential trade-offs.

9.3.2. Limitations of Self-Organization

Although not investigated explicitly, the prototype and the case study indicate some
limitations of Self-Organization. From a conceptual point of view, the planner requires
knowledge to plan a delivery process. Either this knowledge is directly part of the

134

9.3. Discussion

external model, it can be derived from the context (activity specification) or it is part
of a specialized planner. To deduce enough information from the context, the modeled
delivery process activities must be very specific. While these activities are easy to validate,
specialized activities are hardly reuseable. More generic activities make the validation
harder and require a detailed external model or specialized planners. A detailed external
model might conflict with the requirement to ease modeling. The last possibility of using
specialized planners in combination with reuseable activities would restrict the delivery
system to handling a concrete project as otherwise the amount of planner would explode.
Overall, there is no concluding answer, instead every approach has a tradeoff and it
heavily depends on the context what approach to choose.
Beside these conceptual tradeoffs, anectodal evidence collected during the case study

suggests that the external model shouldn’t be too minimalistic and abstract. Especially for
production use, the external model should be as explicit as possible. So while theoretically
self-organizing is only limited by decideability, practically the context decides on the
self-organizing scope.

9.3.3. Delivery Model Transformations
Rumpe discusses that model transformation do not necessarily preserve semantics in all
details [Rum17]. This might introduce problems as discussed in the following:
In the delivery system architecture, there are two types of model transformations:

During the import of an external delivery model, there is an exogenous [MV06] (external-
to-internal) delivery model transformation. During the planning, there is an endogenous
[MV06] (internal-to-internal) delivery model transformation.
The import transformation typically will loose information considering the distilled

character of our internal delivery model. From a planning perspective the information loss
is without problems, as a specialized project planner still could use the external delivery
model to incorporate missing aspects. From a visualization perspective though, it might
introduce problems. Recalling chapter 6, the view service provides multiple views on a
delivery process, typically one view per external model type. Since the execution domain
events processed by the view service only occur for elements of the internal delivery
model (delivery process and activities), the view service might be unable to provide a
visualization matching the external delivery model.

For the planning transformation, different semantics might lead to nonequivalent
planning results. To motivate planning equivalence related problems, we revisit our case
study. Thereby, policies were defined globally (e.g. code coverage). The project-planning
introduced additional quality gates and at the same time separated the project code
modules. As a result, the policy was evaluated for each individual module, while in the
model-planned process the policy was evaluated against the complete set of modules.
Regarding code coverage this lead to a different behavior of the delivery system: For the
individual policy evaluation the delivery process failed, while for the global evaluation
the delivery process succeeded.

Considering the architectural scope of this thesis, we do not cover this aspect in further
details. However, planning plays such an important role for tackling C2 - Modeling

135

9. Evaluation

Usability that future work should define a formal model to be able to reason about
planning and related transformation.

9.3.4. CQRS and Event Sourcing

The core services rely on both CQRS and Event Sourcing. Since these decisions have a
major impact on the architecture, the following discusses the rationales for using them.

The main rationale behind applying CQRS was to meet Req-5: Custom PDLs. Another
possibility would be that the planner provides the visualization for different models. But
since the visualization also includes execution aspects (e.g. execution status), this would
violate the Single Responsible Principle [Mar02]. An obvious disadvantage of CQRS
is the replication lag, i.e. because of the asynchronous nature it may take some time
until changes are reflected in the query model. But since we do not require real-time
information in the delivery process context the replication lag is acceptable. Another
disadvantage of CQRS is the potentially increased complexity [Mar11] if there is some
overlap between the command and query sides. In such cases, sharing a model might
be easier. Since we designed the architecture from scratch by applying domain driven
design, there only is a minimal overlap between the query and command sides. The
core services separate the concerns of importing, planning and executing, while the view
service integrates all events providing a query model for visualization. Overall, this
separation leads to a minimal model overlapping such that the additional complexity
concern of CQRS does not apply in our context. We even argue, that CQRS reduces
complexity in our scenario as the core services do not need to deal with the visualization.
Central rationale behind applying event sourcing was to meet Req-8: Traceability.

The traceability requirement demands to backtrack which activity produces which result.
This can also be realized by using a correlation identifier (cf. [HW03]) for example.
But having the self-organizing aspect in mind, it is foreseeable that the traceability
requirement will be tightened. Moreover, and as section 10.2 hints, the event log also
offers many possibilities for further improving the delivery system. Thus, we decided to
use event sourcing for our core services. Central disadvantage of event sourcing is that all
events need to be replayed to determine the current application state. Depending on the
number of events this might introduce performance issues. To cope with this problem,
we require our core services and the event store to support snapshotting mechanism such
that only events newer than the snapshot need to be applied.

9.3.5. Orchestrator Design

The design decision to use an orchestrator for the execution management has a big impact
on the overall architecture as it enforces a hub and spoke architecture (cf. [HW03]) for
the delivery process execution. Thus, this section briefly discusses the rationales for this
decision.

The potential disadvantages of a hub and spoke architecture are driven by the danger
of a central processing unit, namely single point of failure and a performance bottleneck.
To overcome these disadvantages a decentralized architecture is required which leads

136

9.3. Discussion

to a command choreography (cf. [New15]). An architecture pattern employing this
choreography are distributed pipes and filters (see. [HW03]). Since this architecture has
no central management unit, the process must be embedded into the application. This
makes it difficult to change the process. In addition, it is a great challenge to answer what
the progress of an execution is, as each underlying process might be different. A solution
to overcome the embedded process problem is to use a Routing Slip ([HW03]), which
basically means that the process information are attached to the message triggering the
execution. Using this information each receiver can determine the next receiver without
the need to hard-code the routing behavior. But because the process information is
attached to the message which is passed around, only linear processes are supported. This
conflicts with Req-7: Best practices: Parallel Workflow. Overall, an orchestrated approach
has the disadvantages of a single point of failure and the choreographed approach embeds
the process logic in the application making it difficult to change and to track progress.
Given that visibility is an important goal of continuous delivery (cf. section 2.2.4) and
our architecture should focus on flexibility and maintainability (cf. section 3.1.1), we
decided to follow the orchestrated approach. For similar reasons, the netflix team decided
the same (see [Net17]). Moreover, the internal design decisions (see above) allow to scale
the orchestrator horizontally and thereby tackle the disadvantages of a centralized unit.

137

10. Conclusion & Future Work

Contents

10.1. Conclusion . 139
10.2. Future Work . 141

10.1. Conclusion

This thesis presented an architecture, more precisely an application framework, for Self-
Organizing Delivery Systems. Central goal of this architecture is to provide a foundation
for Software Delivery Systems, that are flexible and maintainable both technically, but
also from a delivery process modeling perspective. Based on related work in the literature
and our experience, we identified these aspects as major challenges existing delivery
systems face. More precisely, our first identified challenge is the evolveability of the
delivery system itself to cope with changing requirements introduced by evolving software
projects. The second challenge is related to the delivery process itself. Existing delivery
systems do not separate the delivery model from the execution model, they directly
execute the delivery process modeled by the user. This requires users to have deep
technical as well as process-related knowledge.

From these challenges we deduced important requirements that need to be met in
order to tackle those challenges. Our subsequent analysis of existing delivery systems
indicated that there is an awareness for these kind of problems, but no one sufficiently
tackles the challenges. Moreover, we believe that the struggle of existing solutions results
from conceptual problems and the complexity of the problem domain which is inherent
since delivery systems deal with large parts of the Software Development Life Cycle. The
problems are even more intensified by ambiguous definitions. Therefore, we first defined
consistent terminology and explored and defined important domain concepts which we
distilled in our core domain. Continuing this Domain Driven Design approach, we define
contexts and responsibilities and motivated microservices and messaging as our major
design decisions. After that strategic design, we transitioned into tactical design refining
the concepts and further motivating fine-grained design decisions like event sourcing and
the activity encapsulation to tackle individual requirements.

Guided by our requirements, our central design decisions and with a clear domain
understanding, we transferred the concepts into an architecture, i.e. the solution space.

139

10. Conclusion & Future Work

Based on a top down approach, we gave an overview of the overall system, detailed
dynamic aspects and then discussed important components. We presented a framework
architecture, that isolates delivery process activities in dedicated activity microservices.
Each activity encapsulates its related business logic and provides access via a simple
to use unified interface. The microservice architectural thereby allows to integrate new
technologies in an easy and robust manner.

Central aspect of the framework architecture is a three-staged process that controls
the execution of a delivery process: First, the model service imports the delivery model,
for example from version control. It translates the model into our internal delivery model,
which we distilled as part of our core domain. Then different planners hierarchically
validate, complement and optimize the delivery model. This not only reduces the amount
of knowledge users need to have, it also allows to optimize a delivery model for a dedicated
target. Additionally, it enables the delivery system to automatically stick to best practices
and to realize organizational policies. After planning, the delivery system executes the
planned delivery process by means of an orchestrator, controlling and monitoring the
execution of corresponding activity services.

To validate our concepts and architecture, we developed a prototype based on the
proposed design. We conducted a case study in an industrial context. Beside exploring
the applicability of our concept, an important goal of the case study was to explore the
impacts of Self-Organization, i.e. the ability of the delivery system to adapt and optimize
a given delivery model. The case study indicated great potential of our approach. We
could easily implement multiple, heterogeneous activity services that realize a complex
delivery process, consisting of a build and unit test stage, a docker bake stage, a functional
testing stage which temporarily deployed the built containers and performed junit tests
and finally a deploy stage, that deployed the artifacts to artifactory.

Our prototypical planners thereby were able to optimize the delivery model in terms of
fail fast, providing up to 3,31 times faster feedback than in the manual defined delivery
process. Additionally, the planning capabilities nearly halved (47 %) the lines of code
required to describe the delivery process in the delivery model. As anecdotal evidence,
collected during the case study suggests, one needs to balance the model explicitness and
its convenience.

Overall, we conclude that our architecture with its focus on isolation and explicitness of
activities in combination with planning capabilities, provides both great flexibility and
tremendously eases delivery process modeling, thereby reducing the modeling primarily
on functional aspects and providing great potential for further process optimizations.
On the downside, however, are the increased development effort for making activities
explicit. But with dedicated activity service frameworks, like the one we developed for
our prototype, the effort is manageable and provides long-term saving potentials. The
inherent separation between activity development and delivery process modeling thereby
allows to treat the delivery system as what it is, namely a first class citizen of the software

140

10.2. Future Work

development process.

10.2. Future Work
Considering the application framework nature of our architecture and its focus on
flexibility, there are many great possibilities for future work:

Modeling Tools The activity specification registry and the amount of delivery process
related information stored in the event store enable great possibilities for modeling
tools:
Graphical Modeling Tool Using the activity specification registry, a graphical

modeling tool could be developed to further improve the modeling usability.
Editor with Autocompletion The activity specification registry could also assist

in developing DSL-based model editors with autocompletion support and live
validation

Smart Tooling The stored events could be analyzed to develop smart tooling, like
recommenders

Smells and anti-pattern detection, policy-based validation So far, the delivery system
architecture provides validation support based on the activity specifications. This
allows for technical validation (e.g. parameter names correct) and functional
validation (e.g. parameters in valid range, compatibility of activities). Thereby,
the validation is performed only on activity-level. Future work could extend the
validation to consider the overall delivery process. Delivery model smells and
anti-pattern could be defined and detected. Policies could be used to validate if,
for example, required assessments are present in the model.

Learning from Event Store During operation the delivery system produces many domain
events. Resulting from the event sourced approach, each state change is captured
in an event. This amount of data employs a whole range of possibilities for learning
and making data-driven decisions. For example, planners can incorporate historical
data for test selection or to prioritize their execution. Or usage-related data can be
used to scale services pro-actively.

Cloud-Native The delivery system architecture consists of multiple microservices. Fol-
lowing our event-driven approach, they can be easily scaled since every service
is stateless (beside the event store). Nevertheless, the architecture only is cloud-
compatible. Future work could extend the architecture to support cloud-native
principles like elasticity, i.e. the capability to dynamically start and stop services.
Currently, this would not be possible since the delivery system capabilities (activity
services) register themselves dynamically. If they are stopped, the delivery system
does not know about them. In a similar veign, future work could explore the
possibilities of serverless architecture.

141

10. Conclusion & Future Work

Dynamic (Re-) Planning Central feature of the architecture is the Self-Organizing ca-
pability which manifests in planners adapting and optimizing the delivery model.
Right now, planning and executing a delivery process is performed sequentially:
The delivery model is first planned and the resulting delivery process then executed.
This limits planning to static aspects as the delivery process cannot be dynamically
adapted based on runtime events. For example, dynamic planning would allow to
add additional assessments if the deployment takes longer than usual. Of course,
one still has to keep the traceability requirement in mind. Taking Maven for
example, they re-factored their life cycle planning in version 2.1 to be mapped out
completely, before it is executed (cf. [Joh08]).

Supporting Continuous Experimentation A recent evolutionary step of Agile Software
Development is called Continuous Software Engineering [Bos14]. It extends Con-
tinuous Delivery with Continuous Experimentation, which basically is the notion
of continuously performing controlled experiments. The delivered product is in-
strumented and techniques like A/B testing then help to directly get feedback and
learn. Future work could explore how to integrate Continuous Experimentation
into the delivery system architecture. The first step could be the development of
an experimentation planner, but central concern of continuous experimentation is
to collect data, thus further mechanisms are required.

Activity & Delivery Process Templates During the case study we experienced the need
to use specialized activities in order to have a high degree of Self-Organization.
This required to implement activities that realize a facade to other activities. In
order to reduce implementation effort, future work could extend the architecture
to define such facade activities as a template. Process planners then map this
template to a general purpose activity using the mapping defined in the template.
Similarly, future work could also add support of delivery process templates in
general or support for combining delivery models to further improve the usability.

Delivery Ecosystem Our delivery system is not agnostic to the projects it operates on.
To be able to build and handle them, it requires activity services that provide
functionality related to the project’s technologies. To be able to handle many
different heterogeneous projects, lots of different activity services are required. This
introduces great effort as each project needs to implement customized activity
services for general purpose functionality. To improve the acceptance and ease
of use of the delivery system, future work could explore possibilities to provide
a delivery ecosystem, where everybody can contribute general purpose activity
services, which then can be tailored for specific use cases (e.g. via activity templates,
see above).

Additional Delivery Models Our prototype so far supports models defined in our pipeline
description language. A delivery process can be considered a business process. Thus,
one could, for example, make use of the extensive support around the Business
Process Modeling Notation (BPMN) to define delivery processes.

142

10.2. Future Work

Multi-Target Planning The delivery system architecture supports multiple planners.
Currently, they plan the delivery model sequentially, which makes it difficult to
plan for different optimization targets. Basically, the last planner determines what
the optimization target is, as it can overwrite the model adoptions of other planners.
Future work could integrate other planner, e.g. for optimizing energy efficiency and
explore how to reach consensus on different (maybe even conflicting) targets.

External Activities & Manual approval The delivery system architecture assumes that
activities, respectively activity services are in control of performing their actions.
Considering other domains, like IoT (Internet of Things), activity services might
need to wait on external agents that might only be partially available. Such
scenarios could be realized by specialized activity services, but might impose
additional requirements like statefulness of activity services. Manual approval
activities have similar challenges. Future work could explore possibilities to integrate
such activities while still having stateless activity services that can be dynamically
started & stopped (see cloud native above).

Formal Planning Framework The thesis focused on architectural concerns. Therefore,
we did not provide formal foundations of the planning process. To be able to
ensure certain properties like model equivalence or to analyze and compare different
planners, future work could explore and define the formal foundations of the
planning process.

Development Process Integration Important for the usage of our delivery system is
its integration into the Software Development process. As stated, we designed a
framework architecture. This framework must be tailored to the projects it delivers
(e.g. regarding activity services). Since the evolution of a software project influences
the delivery system, future work could analyze how to seamlessly integrate the
delivery system tailoring into the software development process.

Delivery System SDKs Making activities explicit, has the downside of increased initial
development effort, which amortizes itself quickly, considering the maintainability
effort in the non-explicit case. Nevertheless, similar to our java-based activity service
framework, future work could develop SDKs to allow for seamless development of
activity services in other technologies.

All in all, this extensive list shows the great potential of our delivery system architecture.
It provides lots of possibilities to be extended and improved to realize software delivery
as best as possible.

143

A. Appendix

A.1. TT Web Service - Manual Model

1 stages:
2 - name: buildTTGateway
3 transformations:
4 - checkout
5 - compile
6 - assemble
7 - name: bakeTTGateway
8 transformations:
9 - buildContainer

10 - provisionContainer
11 - name: deployTTGateway
12 transformations:
13 - deployToArtifactory
14 transformations:
15 - name: checkout
16 service: git-service
17 activity: checkout
18 configuration:
19 repositoryUri: https://git.../ttgateway.git
20 branch: pipeline
21 - name: compile
22 service: maven-service
23 activity: compile
24 dependsOn:
25 - alias: repo
26 ref: p://this/transformations/checkout/workspace
27 configuration:
28 workspace: "@repo"
29 - name: assemble
30 service: maven-service
31 activity: assemble
32 configuration:
33 workspace: "@repo"
34 classes: "@compile"
35 dependsOn:
36 - alias: repo
37 ref: p://this/transformations/checkout/workspace
38 - alias: compile
39 ref: p://this/transformations/compile/classes

145

A. Appendix

40 - name: buildContainer
41 service: docker-service
42 activity: buildTTGateway
43 configuration:
44 workspace: "@repo"
45 javaPackage: "@assemble"
46 dependsOn:
47 - alias: repo
48 ref: p://this/transformations/checkout/workspace
49 - alias: assemble
50 ref: p://this/transformations/assemble/assembly
51 - name: provisionContainer
52 service: docker-service
53 activity: provisionTTGateway
54 configuration:
55 wildflyImageName: "@buildContainer/wildflyImage"
56 databaseImageName: "@buildContainer/databaseImage"
57 keycloakImageName: "@buildContainer/keycloakImage"
58 dependsOn:
59 - alias: buildContainer
60 ref: p://this/transformations/buildContainer
61 - name: deployToArtifactory
62 service: maven-service
63 activity: deploy
64 configuration:
65 workspace: "@repo"
66 assemblies: "@assemble"
67 classes: "@compile"
68 dependsOn:
69 - alias: repo
70 ref: p://this/transformations/checkout/workspace
71 - alias: assemble
72 ref: p://this/transformations/assemble/assembly
73 - ref: p://this/transformations/compile/classes
74 alias: compile
75 - ref: p://this/assessments/jmeter
76 assessments:
77 - name: cobertura
78 service: maven-service
79 activity: cobertura
80 configuration:
81 workspace: "@repo"
82 classes: "@compile"
83 dependsOn:
84 - alias: repo
85 ref: p://this/transformations/checkout/workspace
86 - alias: compile
87 ref: p://this/transformations/compile/classes
88 - name: jmeter

146

A.2. TT Web Service - Model-Planner Model

89 service: jmeter-service
90 activity: jmeterTT
91 configuration:
92 wildflyIp: "@provision/wildflyIp"
93 wildflyPort: "@provision/wildflyPort"
94 keycloakIp: "@provision/keycloakIp"
95 keycloakPort: "@provision/keycloakPort"
96 jmeterTestsRef: "@repo"
97 dependsOn:
98 - alias: provision
99 ref: p://this/transformations/provisionContainer

100 - alias: repo
101 ref: p://this/transformations/checkout
102 qualityGates:
103 - strategy: auto
104 policies:
105 - name: PassedTestRate
106 interpretation: threshold-
107 actualValue: passedRate
108 setPoint: 1
109 assessmentRef: p://this/assessments/cobertura
110 - name: LineCoverage
111 interpretation: threshold-
112 actualValue: lineCoverage
113 setPoint: 0
114 assessmentRef: p://this/assessments/cobertura
115 - name: AvgResponseTime
116 interpretation: threshold+
117 actualValue: avgResponseTimeMs
118 setPoint: 400
119 assessmentRef: p://this/assessments/jmeter
120 - name: ResponseSuccessRate
121 interpretation: threshold-
122 actualValue: successRate
123 setPoint: 0.26
124 assessmentRef: p://this/assessments/jmeter

Source Code A.1: ManualModel.yml

A.2. TT Web Service - Model-Planner Model

1 planner:
2 projectPlanning: false
3 stages:
4 - name: buildTTGateway
5 transformations:
6 - checkout
7 - compile

147

A. Appendix

8 - assemble
9 - name: bakeTTGateway

10 transformations:
11 - buildContainer
12 - provisionContainer
13 - name: deployTTGateway
14 transformations:
15 - deployToArtifactory
16 transformations:
17 - name: checkout
18 service: git-service
19 activity: checkout
20 configuration:
21 repositoryUri: https://git.../ttgateway.git
22 branch: pipeline
23 - name: compile
24 service: maven-service
25 activity: compile
26 - name: assemble
27 service: maven-service
28 activity: assemble
29 - name: buildContainer
30 service: docker-service
31 activity: buildTTGateway
32 - name: provisionContainer
33 service: docker-service
34 activity: provisionTTGateway
35 - name: deployToArtifactory
36 service: maven-service
37 activity: deploy
38 assessments:
39 - name: cobertura
40 service: maven-service
41 activity: cobertura
42 - name: jmeter
43 service: jmeter-service
44 activity: jmeterTT
45 qualityGates:
46 - strategy: auto
47 policies:
48 - name: PassedTestRate
49 interpretation: threshold-
50 actualValue: passedRate
51 setPoint: 1
52 - name: LineCoverage
53 interpretation: threshold-
54 actualValue: lineCoverage
55 setPoint: 0
56 - name: AvgResponseTime

148

A.3. TT Web Service - Project-Planner Model

57 interpretation: threshold+
58 actualValue: avgResponseTimeMs
59 setPoint: 400
60 - name: ResponseSuccessRate
61 interpretation: threshold-
62 actualValue: successRate
63 setPoint: 0.26

Source Code A.2: ModelPlannerModel.yml

A.3. TT Web Service - Project-Planner Model

1 planner:
2 projectPlanning: true
3 stages:
4 - name: buildTTGateway
5 transformations:
6 - checkout
7 - compile
8 - assemble
9 - name: bakeTTGateway

10 transformations:
11 - buildContainer
12 - provisionContainer
13 - name: deployTTGateway
14 transformations:
15 - deployToArtifactory
16 transformations:
17 - name: checkout
18 service: git-service
19 activity: checkout
20 configuration:
21 repositoryUri: https://git.../ttgateway.git
22 branch: pipeline
23 - name: compile
24 service: maven-service
25 activity: compile
26 - name: assemble
27 service: maven-service
28 activity: assemble
29 - name: buildContainer
30 service: docker-service
31 activity: buildTTGateway
32 - name: provisionContainer
33 service: docker-service
34 activity: provisionTTGateway
35 - name: deployToArtifactory
36 service: maven-service

149

A. Appendix

37 activity: deploy
38 assessments:
39 - name: cobertura
40 service: maven-service
41 activity: cobertura
42 - name: jmeter
43 service: jmeter-service
44 activity: jmeterTT
45 qualityGates:
46 - strategy: auto
47 policies:
48 - name: PassedTestRate
49 interpretation: threshold-
50 actualValue: passedRate
51 setPoint: 1
52 - name: LineCoverage
53 interpretation: threshold-
54 actualValue: lineCoverage
55 setPoint: 0
56 - name: AvgResponseTime
57 interpretation: threshold+
58 actualValue: avgResponseTimeMs
59 setPoint: 400
60 - name: ResponseSuccessRate
61 interpretation: threshold-
62 actualValue: successRate
63 setPoint: 0.26

Source Code A.3: ProjectPlannerModel.yml

150

Bibliography

[AM16] B. Adams and S. McIntosh. “Modern Release Engineering in a Nutshell:
Why Researchers should Care”. In: Proc. of the International Conference on
Software Analysis, Evolution, and Reengineering (SANER). 2016, pp. 78–
90. isbn: 978-1-5090-1855-0. doi: 10.1109/SANER.2016.108 (cited on
page 12).

[And14] Andreas Grabner. Software Quality Metrics for your Continuous Delivery
Pipeline – Part I | Dynatrace blog. 2014. url: https://www.dynatrace.
com/blog/software-quality-metrics-for-your-continuous-
delivery-pipeline-part-i/ (visited on 10/03/2017) (cited on page 11).

[Apaa] Apache Software Foundation. Apache Kafka. url: https : / / kafka .
apache.org/contact%7B%5C#%7D (visited on 12/17/2017) (cited
on page 104).

[Apab] Apache Software Foundation. Maven Surefire Plugin – Skipping Tests Af-
ter Failure. url: http://maven.apache.org/surefire/maven-
surefire-plugin/examples/skip-after-failure.html (visited
on 12/23/2017) (cited on page 129).

[Bai09] D. Bailey. “S.O.L.I.D. Software Development, One Step at a Time”. In:
CODE Magazine, 2010 Jan/Feb (2009). url: http://www.codemag.
com/article/1001061 (cited on page 47).

[Bar+10] M. J. A. Barturen et al. Integrated system and method for the management
of a complete end-to-end software delivery process. 2010. url: https://
www.google.com/patents/US7735080 (cited on page 6).

[BC89] D. C. Brown and B. Chandrasekaran. Design problem solving : knowledge
structures and control strategies. Pitman, 1989, p. 199. isbn: 0934613079
(cited on page 84).

[BCK12] L. Bass, P. Clements, and R. Kazman. “Software Architecture in Practice”.
In: Vasa 2nd (2012), pp. 1–426. issn: 03008495. doi: 10.1024/0301-
1526.32.1.54. arXiv: arXiv:1011.1669v3 (cited on pages 19, 131).

[Bec+01] K. Beck et al. Agile Manifesto. 2001. doi: 10.1177/004057368303900411.
url: http://agilemanifesto.org/ (cited on page 1).

[Ber15] ICSE ’15: Proceedings of the 37th International Conference on Software
Engineering - Volume 1. Piscataway, NJ, USA: IEEE Press, 2015. isbn:
978-1-4799-1934-5 (cited on page 1).

151

http://dx.doi.org/10.1109/SANER.2016.108
https://www.dynatrace.com/blog/software-quality-metrics-for-your-continuous-delivery-pipeline-part-i/
https://www.dynatrace.com/blog/software-quality-metrics-for-your-continuous-delivery-pipeline-part-i/
https://www.dynatrace.com/blog/software-quality-metrics-for-your-continuous-delivery-pipeline-part-i/
https://kafka.apache.org/contact%7B%5C#%7D
https://kafka.apache.org/contact%7B%5C#%7D
http://maven.apache.org/surefire/maven-surefire-plugin/examples/skip-after-failure.html
http://maven.apache.org/surefire/maven-surefire-plugin/examples/skip-after-failure.html
http://www.codemag.com/article/1001061
http://www.codemag.com/article/1001061
https://www.google.com/patents/US7735080
https://www.google.com/patents/US7735080
http://dx.doi.org/10.1024/0301-1526.32.1.54
http://dx.doi.org/10.1024/0301-1526.32.1.54
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1177/004057368303900411
http://agilemanifesto.org/

Bibliography

[Boe79] B. W. Boehm. “Guidelines for Verifying and Validating Software Require-
ments and Design Specifications”. In: Euro IFIP 79 1 (1979), pp. 711–719.
issn: 0740-7459. doi: 10.1109/MS.1984.233702 (cited on page 14).

[Bos14] J. Bosch. Continuous software engineering. Vol. 9783319112. 2014, pp. 1–226.
isbn: 9783319112831. doi: 10.1007/978-3-319-11283-1 (cited on
pages 1, 142).

[BWZ15] L. Bass, I. Weber, and L. Zhu. DevOps: A Software Architect’s Perspective.
1st. Addison-Wesley Professional, 2015. isbn: 0134049845, 9780134049847
(cited on pages 6, 8–10, 12, 20).

[Cam] Cambridge Dictonary. stage-gate Meaning in the Cambridge English Dic-
tionary. url: http://dictionary.cambridge.org/dictionary/
english/stage-gate (visited on 10/03/2017) (cited on page 11).

[CBA15] G. G. Claps, R. Berntsson Svensson, and A. Aurum. “On the journey to
continuous deployment: Technical and social challenges along the way”. In:
Information and Software Technology. Vol. 57. 1. 2015, pp. 21–31. isbn:
09505849. doi: 10.1016/j.infsof.2014.07.009 (cited on pages 1,
17).

[Che17] L. Chen. “Continuous Delivery: Overcoming adoption challenges”. In: Journal
of Systems and Software 128 (June 2017), pp. 72–86. issn: 01641212. doi: 10.
1016/j.jss.2017.02.013. url: http://linkinghub.elsevier.
com/retrieve/pii/S0164121217300353 (cited on page 17).

[Clo] Cloudbees Inc. Jenkins. url: https://jenkins-ci.org/ (visited on
12/27/2017) (cited on page 2).

[Doc] Docker Inc. Docker - Build, Ship, and Run Any App, Anywhere. url: https:
//www.docker.com/ (visited on 12/17/2017) (cited on page 103).

[EBM16] Ed Bukoski, Brian Moyles, and Mike McGarr. How We Build Code at Netflix –
Netflix TechBlog – Medium. 2016. url: https://medium.com/netflix-
techblog/how-we-build-code-at-netflix-c5d9bd727f15 (vis-
ited on 10/02/2017) (cited on page 11).

[Erl05] T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design.
2005, p. 760. isbn: 0131858580. doi: 10.1109/SAINTW.2003.1210138
(cited on pages 55, 73, 74).

[Eva03] E. Evans. “Domain-Driven Design: Tackling Complexity in the Heart of Soft-
ware”. In: Folia primatologica international journal of primatology 70.5
(2003), p. 560. issn: 00155713. doi: 10 . 1159 / 000067454 (cited on
pages 35, 36, 43, 44, 46, 49, 51).

[Eve] Eventuate Inc. Using Eventuate™. url: http://eventuate.io (visited
on 12/17/2017) (cited on page 104).

[Faca] Facebook Inc. Buck: A fast build tool. url: https://buckbuild.com/
(visited on 01/03/2018) (cited on page 1).

152

http://dx.doi.org/10.1109/MS.1984.233702
http://dx.doi.org/10.1007/978-3-319-11283-1
http://dictionary.cambridge.org/dictionary/english/stage-gate
http://dictionary.cambridge.org/dictionary/english/stage-gate
http://dx.doi.org/10.1016/j.infsof.2014.07.009
http://dx.doi.org/10.1016/j.jss.2017.02.013
http://dx.doi.org/10.1016/j.jss.2017.02.013
http://linkinghub.elsevier.com/retrieve/pii/S0164121217300353
http://linkinghub.elsevier.com/retrieve/pii/S0164121217300353
https://jenkins-ci.org/
https://www.docker.com/
https://www.docker.com/
https://medium.com/netflix-techblog/how-we-build-code-at-netflix-c5d9bd727f15
https://medium.com/netflix-techblog/how-we-build-code-at-netflix-c5d9bd727f15
http://dx.doi.org/10.1109/SAINTW.2003.1210138
http://dx.doi.org/10.1159/000067454
http://eventuate.io
https://buckbuild.com/

Bibliography

[Facb] Facebook Inc. React - A JavaScript library for building user interfaces. url:
https://reactjs.org/ (visited on 12/17/2017) (cited on page 103).

[FFB13] D. G. Feitelson, E. Frachtenberg, and K. L. Beck. “Development and De-
ployment at Facebook”. In: IEEE Internet Computing 17.4 (July 2013),
pp. 8–17. issn: 1089-7801. doi: 10.1109/MIC.2013.25. url: http:
//ieeexplore.ieee.org/document/6449236/ (cited on page 11).

[Fow02] M. Fowler. Patterns of Enterprise Application Architecture. Vol. 48. 2. 2002,
p. 560. isbn: 0321127420. doi: 10.1119/1.1969597. arXiv: arXiv:
1011.1669v3 (cited on pages 53, 54, 61, 62, 88).

[Fow05] M. Fowler. Inversion of Control. 2005. url: http://martinfowler.
com/bliki/InversionOfControl.html (cited on page 64).

[FS14] B. Fitzgerald and K.-J. Stol. “Continuous software engineering and beyond:
trends and challenges”. In: Proceedings of the 1st International Workshop
on Rapid Continuous Software Engineering - RCoSE 2014. New York, New
York, USA: ACM Press, 2014, pp. 1–9. isbn: 9781450328562. doi: 10.
1145/2593812.2593813. url: http://dl.acm.org/citation.
cfm?doid=2593812.2593813 (cited on page 7).

[Gam+02] E. Gamma et al. Design Patterns – Elements of Reusable Object-Oriented
Software. 2002, p. 334. isbn: 9780201715941. doi: 10.1093/carcin/
bgs084. arXiv: dd (cited on pages 52, 65, 76, 88, 90, 92, 93).

[Get+04] V. Getov et al. Performance Analysis and Grid Computing : Selected Articles
from the Workshop on Performance Analysis and Distributed Computing
August 19-23, 2002, Dagstuhl, Germany. Springer US, 2004, p. 306. isbn:
9781461503613 (cited on page 98).

[GIt] GItlab Inc. Auto DevOps - GitLab Documentation. url: https://docs.
gitlab.com/ee/topics/autodevops/%7B%5C#%7Doverview (vis-
ited on 12/26/2017) (cited on page 29).

[Gita] GitLab Inc. GitLab Continuous Integration & Deployment | GitLab. url:
https://about.gitlab.com/features/gitlab-ci-cd/ (visited
on 09/20/2017) (cited on page 28).

[Gitb] Gitlab Inc. GitLab Architecture Overview - GitLab Documentation. url:
https://docs.gitlab.com/ce/development/architecture.
html (visited on 12/31/2017) (cited on page 30).

[Git17] Gitlab Inc. GitLab Continuous Integration named a Leader in the Forrester
Wave™ | GitLab. 2017. url: https://about.gitlab.com/2017/
09/27/gitlab-leader-continuous-integration-forrester-
wave/ (visited on 12/26/2017) (cited on page 28).

[Goo] Google Inc. Bazel - a fast, scalable, multi-language and extensible build
system" - Bazel. url: https://bazel.build/ (visited on 01/03/2018)
(cited on page 1).

153

https://reactjs.org/
http://dx.doi.org/10.1109/MIC.2013.25
http://ieeexplore.ieee.org/document/6449236/
http://ieeexplore.ieee.org/document/6449236/
http://dx.doi.org/10.1119/1.1969597
http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/arXiv:1011.1669v3
http://martinfowler.com/bliki/InversionOfControl.html
http://martinfowler.com/bliki/InversionOfControl.html
http://dx.doi.org/10.1145/2593812.2593813
http://dx.doi.org/10.1145/2593812.2593813
http://dl.acm.org/citation.cfm?doid=2593812.2593813
http://dl.acm.org/citation.cfm?doid=2593812.2593813
http://dx.doi.org/10.1093/carcin/bgs084
http://dx.doi.org/10.1093/carcin/bgs084
http://arxiv.org/abs/dd
https://docs.gitlab.com/ee/topics/autodevops/%7B%5C#%7Doverview
https://docs.gitlab.com/ee/topics/autodevops/%7B%5C#%7Doverview
https://about.gitlab.com/features/gitlab-ci-cd/
https://docs.gitlab.com/ce/development/architecture.html
https://docs.gitlab.com/ce/development/architecture.html
https://about.gitlab.com/2017/09/27/gitlab-leader-continuous-integration-forrester-wave/
https://about.gitlab.com/2017/09/27/gitlab-leader-continuous-integration-forrester-wave/
https://about.gitlab.com/2017/09/27/gitlab-leader-continuous-integration-forrester-wave/
https://bazel.build/

Bibliography

[Gor06] I. Gorton. Essential software architecture. 2006, pp. 1–283. isbn: 3540287132.
doi: 10.1007/3-540-28714-0. arXiv: arXiv:1011.1669v3 (cited on
page 63).

[Her15] J. Hermanns. “Artifact Promotion with Deployment Pipelines in the Context
of Continuous Delivery”. Bachelor Thesis. RWTH Aachen University, 2015
(cited on pages 10, 14, 15).

[HF10] J. Humble and D. Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. 2010, p. 497. isbn: 978-
0-321-60191-9. doi: 10.1007/s13398-014-0173-7.2. arXiv: arXiv:
1011.1669v3 (cited on pages 6–10, 12, 14, 37).

[HG03] F. Heylighen and C. Gershenson. The Meaning of Self-organization in Com-
puting. 2003. doi: 10.1109/MIS.2003.1217631 (cited on page 81).

[HMM88] P. Harmon, R. Maus, and W. Morrissey. Expert systems : tools and appli-
cations. Wiley, 1988, p. 289. isbn: 0471839507. url: https://dl.acm.
org/citation.cfm?id=576204 (cited on page 84).

[HP17] Hendrik Brinkmann and Philip Stroh. Jenkins 2 in der Praxis: So en-
twickelt man Pipelines. 2017. url: https://jaxenter.de/pipeline-
jenkins-2-61568 (visited on 12/31/2017) (cited on pages vii, 2).

[HW03] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions. 2003, p. 736. isbn: 0321200683. doi:
10.1525/vs.2009.4.3.toc. arXiv: 1011.1669v3 (cited on pages 45,
48, 62, 65, 66, 85, 87, 92, 94, 136, 137).

[IEE02] IEEE. IEEE Standard 610.12-1990 Glossary of Software Engineering Ter-
minology (Reaffirmed 2002). Vol. 121990. 1. 2002, p. 1. isbn: 155937067X.
doi: 10.1109/IEEESTD.1990.101064. url: http://ieeexplore.
ieee.org/xpls/abs%7B%5C_%7Dall.jsp?arnumber=159342 (cited
on pages 1, 37, 121).

[ISO15] ISO 25000. ISO 25010. 2015. url: http://iso25000.com/index.php/
normas-iso-25000/iso-25010 (cited on pages 18, 19).

[Jam13] James Hugh. Micro Service Architecture. 2013. url: https://yobriefca.
se/blog/2013/04/29/micro-service-architecture/ (visited on
11/29/2017) (cited on page 48).

[Jin11] Jinesh Varia. “Architecting for the Cloud: Best Practices”. In: (2011).
url: https://media.amazonwebservices.com/AWS%7B%5C_
%7DCloud%7B%5C_%7DBest%7B%5C_%7DPractices.pdf (cited on
page 71).

[Joh08] John Casey. Deterministic Lifecycle Planning - Maven - Apache Software
Foundation. 2008. url: https://cwiki.apache.org/confluence/
display/MAVENOLD/Deterministic+Lifecycle+Planning (vis-
ited on 12/27/2017) (cited on page 142).

154

http://dx.doi.org/10.1007/3-540-28714-0
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1007/s13398-014-0173-7.2
http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1109/MIS.2003.1217631
https://dl.acm.org/citation.cfm?id=576204
https://dl.acm.org/citation.cfm?id=576204
https://jaxenter.de/pipeline-jenkins-2-61568
https://jaxenter.de/pipeline-jenkins-2-61568
http://dx.doi.org/10.1525/vs.2009.4.3.toc
http://arxiv.org/abs/1011.1669v3
http://dx.doi.org/10.1109/IEEESTD.1990.101064
http://ieeexplore.ieee.org/xpls/abs%7B%5C_%7Dall.jsp?arnumber=159342
http://ieeexplore.ieee.org/xpls/abs%7B%5C_%7Dall.jsp?arnumber=159342
http://iso25000.com/index.php/normas-iso-25000/iso-25010
http://iso25000.com/index.php/normas-iso-25000/iso-25010
https://yobriefca.se/blog/2013/04/29/micro-service-architecture/
https://yobriefca.se/blog/2013/04/29/micro-service-architecture/
https://media.amazonwebservices.com/AWS%7B%5C_%7DCloud%7B%5C_%7DBest%7B%5C_%7DPractices.pdf
https://media.amazonwebservices.com/AWS%7B%5C_%7DCloud%7B%5C_%7DBest%7B%5C_%7DPractices.pdf
https://cwiki.apache.org/confluence/display/MAVENOLD/Deterministic+Lifecycle+Planning
https://cwiki.apache.org/confluence/display/MAVENOLD/Deterministic+Lifecycle+Planning

Bibliography

[Ken15] Ken Mugrage. 5 Key Deployment Pipeline Patterns | GoCD Blog. 2015.
url: https://www.gocd.org/2015/08/28/pipeline-patterns/
(visited on 08/10/2017) (cited on page 10).

[Kim17] S. Kim. Spinnaker: continuous delivery from first principles to production
(Google Cloud Next ’17). 2017 (cited on page 10).

[Kru95] P. Kruchten. “The 4+ 1 view model of architecture”. In: Software, IEEE
November 1.November (1995), p. 9. issn: 0740-7459. doi: 10.1109/52.
469759. url: http://ieeexplore.ieee.org/xpls/abs%7B%5C_
%7Dall.jsp?arnumber=469759 (cited on page 59).

[Leh+15] T. Lehtonen et al. “Defining metrics for continuous delivery and deployment
pipeline”. In: CEUR Workshop Proceedings. Vol. 1525. 2015, pp. 16–30 (cited
on page 12).

[Leh80] M. M. Lehman. “Programs, Life Cycles, and Laws of Software Evolution”.
In: Proceedings of the IEEE 68.9 (1980), pp. 1060–1076. issn: 15582256. doi:
10.1109/PROC.1980.11805 (cited on pages 17, 131).

[Lev14] Lev Gorodinski. Sub-domains and bounded contexts in Domain-Driven Design
(DDD) - Lev Gorodinski. 2014. url: http://gorodinski.com/blog/
2013/04/29/sub-domains-and-bounded-contexts-in-domain-
driven-design-ddd/ (visited on 10/10/2017) (cited on page 45).

[LIL17] E. Laukkanen, J. Itkonen, and C. Lassenius. “Problems, causes and solu-
tions when adopting continuous delivery—A systematic literature review”.
In: Information and Software Technology 82 (Feb. 2017), pp. 55–79. issn:
09505849. doi: 10.1016/j.infsof.2016.10.001. url: http://
linkinghub.elsevier.com/retrieve/pii/S0950584916302324
(cited on pages 1, 17).

[LL10] J. Ludewig and H. Lichter. Software Engineering: Grundlagen, Menschen,
Prozesse, Techniken. dpunkt-Verlag, 2010. isbn: 9783898646628. url: http:
//books.google.de/books?id=Wa3qQgAACAAJ (cited on pages 6, 37,
38, 55, 76, 91, 127, 129).

[MA89] B. Meyer and P. America. “Object-oriented software construction 2nd Ed.”
In: Science of Computer Programming 12.1 (1989), pp. 88–90. issn: 01676423.
doi: 10.1016/0167-6423(89)90034-8. arXiv: arXiv:1011.1669v3
(cited on pages 54, 88).

[Mar] Martin Fowler. DDD_Aggregate. url: https://martinfowler.com/
bliki/DDD%7B%5C_%7DAggregate.html (visited on 12/06/2017) (cited
on page 49).

[Mar02] R. C. Martin. Agile Software Development, Principles, Patterns, and Prac-
tices. 2002. doi: 10.1007/BF03250842 (cited on page 136).

155

https://www.gocd.org/2015/08/28/pipeline-patterns/
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1109/52.469759
http://ieeexplore.ieee.org/xpls/abs%7B%5C_%7Dall.jsp?arnumber=469759
http://ieeexplore.ieee.org/xpls/abs%7B%5C_%7Dall.jsp?arnumber=469759
http://dx.doi.org/10.1109/PROC.1980.11805
http://gorodinski.com/blog/2013/04/29/sub-domains-and-bounded-contexts-in-domain-driven-design-ddd/
http://gorodinski.com/blog/2013/04/29/sub-domains-and-bounded-contexts-in-domain-driven-design-ddd/
http://gorodinski.com/blog/2013/04/29/sub-domains-and-bounded-contexts-in-domain-driven-design-ddd/
http://dx.doi.org/10.1016/j.infsof.2016.10.001
http://linkinghub.elsevier.com/retrieve/pii/S0950584916302324
http://linkinghub.elsevier.com/retrieve/pii/S0950584916302324
http://books.google.de/books?id=Wa3qQgAACAAJ
http://books.google.de/books?id=Wa3qQgAACAAJ
http://dx.doi.org/10.1016/0167-6423(89)90034-8
http://arxiv.org/abs/arXiv:1011.1669v3
https://martinfowler.com/bliki/DDD%7B%5C_%7DAggregate.html
https://martinfowler.com/bliki/DDD%7B%5C_%7DAggregate.html
http://dx.doi.org/10.1007/BF03250842

Bibliography

[Mar10] Martin Fowler. BlueGreenDeployment. 2010. url: https://martinfowler.
com/bliki/BlueGreenDeployment.html (visited on 09/26/2017)
(cited on page 10).

[Mar11] Martin Fowler. CQRS. 2011. url: https : / / martinfowler . com /
bliki/CQRS.html (visited on 11/20/2017) (cited on page 136).

[Mar12] Martin Fowler. SnowflakeServer. 2012. url: https://martinfowler.
com/bliki/SnowflakeServer.html (visited on 10/04/2017) (cited on
pages 1, 9).

[Mar13a] Mark Chang. Model everything to fail fast | ThoughtWorks. 2013. url:
https://www.thoughtworks.com/de/insights/blog/model-
everything-fail-fast (visited on 12/23/2017) (cited on page 10).

[Mar13b] Martin Fowler. ContinuousDelivery. 2013. url: https://martinfowler.
com/bliki/ContinuousDelivery.html (visited on 08/08/2017) (cited
on page 1).

[Mar13c] Martin Fowler. DeploymentPipeline. 2013. url: https://martinfowler.
com/bliki/DeploymentPipeline.html (visited on 10/03/2017) (cited
on page 8).

[Mar16] Martin Fowler. InfrastructureAsCode. 2016. url: https://martinfowler.
com/bliki/InfrastructureAsCode.html (visited on 01/03/2018)
(cited on page 2).

[McI+11] S. McIntosh et al. “An empirical study of build maintenance effort”. In:
Proceeding of the 33rd international conference on Software engineering -
ICSE ’11. 2011, p. 141. isbn: 9781450304450. doi: 10.1145/1985793.
1985813. url: http://portal.acm.org/citation.cfm?doid=
1985793.1985813 (cited on page 18).

[MJ14] Martin Fowler and James Lewis. Microservices. 2014. url: https://
martinfowler.com/articles/microservices.html (visited on
10/09/2017) (cited on page 47).

[MV06] T. Mens and P. Van Gorp. “A Taxonomy of Model Transformation”. In:
Electronic Notes in Theoretical Computer Science 152 (Mar. 2006), pp. 125–
142. issn: 1571-0661. doi: 10.1016/J.ENTCS.2005.10.021. url:
https : / / www . sciencedirect . com / science / article / pii /
S1571066106001435 (cited on page 135).

[Neta] Netflix Inc. Architecture - Spinnaker. url: https://www.spinnaker.
io/reference/architecture/ (visited on 12/25/2017) (cited on pages 1,
21).

[Netb] Netflix Inc. Introduction - Conductor. url: https://netflix.github.
io/conductor/ (visited on 12/17/2017) (cited on page 103).

[Netc] Netflix Inc. Netflix Open Source Software Center. url: https://netflix.
github.io/ (visited on 12/17/2017) (cited on page 103).

156

https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/SnowflakeServer.html
https://martinfowler.com/bliki/SnowflakeServer.html
https://www.thoughtworks.com/de/insights/blog/model-everything-fail-fast
https://www.thoughtworks.com/de/insights/blog/model-everything-fail-fast
https://martinfowler.com/bliki/ContinuousDelivery.html
https://martinfowler.com/bliki/ContinuousDelivery.html
https://martinfowler.com/bliki/DeploymentPipeline.html
https://martinfowler.com/bliki/DeploymentPipeline.html
https://martinfowler.com/bliki/InfrastructureAsCode.html
https://martinfowler.com/bliki/InfrastructureAsCode.html
http://dx.doi.org/10.1145/1985793.1985813
http://dx.doi.org/10.1145/1985793.1985813
http://portal.acm.org/citation.cfm?doid=1985793.1985813
http://portal.acm.org/citation.cfm?doid=1985793.1985813
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
http://dx.doi.org/10.1016/J.ENTCS.2005.10.021
https://www.sciencedirect.com/science/article/pii/S1571066106001435
https://www.sciencedirect.com/science/article/pii/S1571066106001435
https://www.spinnaker.io/reference/architecture/
https://www.spinnaker.io/reference/architecture/
https://netflix.github.io/conductor/
https://netflix.github.io/conductor/
https://netflix.github.io/
https://netflix.github.io/

Bibliography

[Netd] Netflix Inc. Spinnaker. url: https://www.spinnaker.io/ (visited on
12/25/2017) (cited on page 21).

[Net12] Netflix Inc. Asgard: Web-based Cloud Management and Deployment – Net-
flix TechBlog – Medium. 2012. url: https://medium.com/netflix-
techblog/asgard-web-based-cloud-management-and-deployment-
2c9fc4e4d3a1 (visited on 12/25/2017) (cited on page 21).

[Net15] Netflix Inc. Global Continuous Delivery with Spinnaker – Netflix TechBlog
– Medium. 2015. url: https://medium.com/netflix-techblog/
global-continuous-delivery-with-spinnaker-2a6896c23ba7
(visited on 12/25/2017) (cited on pages 21, 22).

[Net17] Netflix Inc. Introduction - Conductor. 2017. url: https://netflix.
github.io/conductor/ (visited on 11/26/2017) (cited on page 137).

[New15] S. Newman. Building Microservices. 2015, p. 280. isbn: 978-1-491-95035-7.
doi: 10.1109/MS.2016.64. arXiv: 1606.04036 (cited on pages 62, 64,
71, 87, 95, 137).

[OAB12] H. H. Olsson, H. Alahyari, and J. Bosch. “Climbing the "Stairway to Heaven"
– A Mulitiple-Case Study Exploring Barriers in the Transition from Agile
Development towards Continuous Deployment of Software”. In: 2012 38th
Euromicro Conference on Software Engineering and Advanced Applications.
IEEE, Sept. 2012, pp. 392–399. isbn: 978-0-7695-4790-9. doi: 10.1109/
SEAA.2012.54. url: http://ieeexplore.ieee.org/document/
6328180/ (cited on page 42).

[Obj17] Object Management Group. OMG IDL. 2017. url: http://www.omg.
org/gettingstarted/omg%7B%5C_%7Didl.htm (visited on 11/24/2017)
(cited on pages 76, 94).

[Oraa] Oracle Inc. Hudson Continuous Integration. url: http://hudson-ci.
org/ (visited on 12/20/2017) (cited on page 123).

[Orab] Oracle Inc. MySQL. url: https : / / www . mysql . com/ (visited on
12/17/2017) (cited on page 104).

[Per15] Perforce Software Inc. “Continuous Delivery: The New Normal for Soft-
ware Development”. In: (2015). url: http://www.perforce.com/
continuous-delivery-report (cited on page 1).

[Piva] Pivotal Inc. Concourse Documentation. url: https://concourse.ci/
single-page.html (visited on 12/26/2017) (cited on pages 24–26).

[Pivb] Pivotal Inc. Spring Boot. url: https : / / projects . spring . io /
spring-boot/ (visited on 12/17/2017) (cited on page 102).

[Pivc] Pivotal Software Inc. Concepts. url: https://concourse.ci/concepts.
html (visited on 10/03/2017) (cited on page 11).

[Pivd] Pivotal Software Inc. Concourse: CI that scales with your project. url:
https://concourse.ci/ (visited on 12/26/2017) (cited on pages 1, 24).

157

https://www.spinnaker.io/
https://medium.com/netflix-techblog/asgard-web-based-cloud-management-and-deployment-2c9fc4e4d3a1
https://medium.com/netflix-techblog/asgard-web-based-cloud-management-and-deployment-2c9fc4e4d3a1
https://medium.com/netflix-techblog/asgard-web-based-cloud-management-and-deployment-2c9fc4e4d3a1
https://medium.com/netflix-techblog/global-continuous-delivery-with-spinnaker-2a6896c23ba7
https://medium.com/netflix-techblog/global-continuous-delivery-with-spinnaker-2a6896c23ba7
https://netflix.github.io/conductor/
https://netflix.github.io/conductor/
http://dx.doi.org/10.1109/MS.2016.64
http://arxiv.org/abs/1606.04036
http://dx.doi.org/10.1109/SEAA.2012.54
http://dx.doi.org/10.1109/SEAA.2012.54
http://ieeexplore.ieee.org/document/6328180/
http://ieeexplore.ieee.org/document/6328180/
http://www.omg.org/gettingstarted/omg%7B%5C_%7Didl.htm
http://www.omg.org/gettingstarted/omg%7B%5C_%7Didl.htm
http://hudson-ci.org/
http://hudson-ci.org/
https://www.mysql.com/
http://www.perforce.com/continuous-delivery-report
http://www.perforce.com/continuous-delivery-report
https://concourse.ci/single-page.html
https://concourse.ci/single-page.html
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/
https://concourse.ci/concepts.html
https://concourse.ci/concepts.html
https://concourse.ci/

Bibliography

[RH09] P. Runeson and M. Höst. “Guidelines for conducting and reporting case study
research in software engineering”. In: Empirical Software Engineering 14.2
(2009), pp. 131–164. issn: 13823256. doi: 10.1007/s10664-008-9102-8.
arXiv: 9809069v1 [arXiv:gr-qc] (cited on page 121).

[Rob17] Rob Zienert. Codifying your Spinnaker Pipelines – The Spinnaker Com-
munity Blog. 2017. url: https://blog.spinnaker.io/codifying-
your-spinnaker-pipelines-ea8e9164998f (visited on 12/25/2017)
(cited on page 22).

[Rod+12] P. Rodríguez et al. “Survey on agile and lean usage in finnish software
industry”. In: Proceedings of the ACM-IEEE international symposium on
Empirical software engineering and measurement - ESEM ’12. New York,
New York, USA: ACM Press, 2012, p. 139. isbn: 9781450310567. doi: 10.
1145/2372251.2372275. url: http://dl.acm.org/citation.
cfm?doid=2372251.2372275 (cited on page 1).

[Rod+17] P. Rodriguez et al. “Continuous deployment of software intensive products
and services: A systematic mapping study”. In: Journal of Systems and
Software 123 (2017), pp. 263–291. issn: 01641212. doi: 10.1016/j.jss.
2015.12.015 (cited on pages 7, 12, 17).

[Rum17] B. Rumpe. Agile modeling with UML: Code generation, testing, refactoring.
2017, pp. 1–388. isbn: 9783319588629. doi: 10.1007/978-3-319-58862-
9 (cited on page 135).

[Sho04] J. Shore. “Fail fast”. In: IEEE Software 21.5 (2004), pp. 21–25. issn: 07407459.
doi: 10.1109/MS.2004.1331296 (cited on page 10).

[Som11] I. Sommerville. Software Engineering. 2011, p. 773. isbn: 9780137035151.
doi: 10.1111/j.1365-2362.2005.01463.x. arXiv: 0321313798
(cited on page 5).

[Spi] Spinnaker. Concepts - Spinnaker. url: https://www.spinnaker.io/
concepts/ (visited on 10/03/2017) (cited on page 11).

[Tho] Thoughworks Inc. Introduction · GoCD User Documentation. url: https:
//docs.gocd.org/current/ (visited on 09/20/2017) (cited on page 11).

[Tho17] Thoughworks Inc. A single CI instance for all teams | Technology Radar
| ThoughtWorks. 2017. url: https://www.thoughtworks.com/de/
radar/techniques/a-single-ci-instance-for-all-teams
(visited on 10/02/2017) (cited on page 1).

[Vak+15] M. Vakilian et al. “Automated Decomposition of Build Targets”. In: Proceed-
ings of the 37th International Conference on Software Engineering - Volume
1. ICSE ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 123–133. isbn:
978-1-4799-1934-5. url: http://dl.acm.org/citation.cfm?id=
2818754.2818772 (cited on page 82).

158

http://dx.doi.org/10.1007/s10664-008-9102-8
http://arxiv.org/abs/9809069v1
https://blog.spinnaker.io/codifying-your-spinnaker-pipelines-ea8e9164998f
https://blog.spinnaker.io/codifying-your-spinnaker-pipelines-ea8e9164998f
http://dx.doi.org/10.1145/2372251.2372275
http://dx.doi.org/10.1145/2372251.2372275
http://dl.acm.org/citation.cfm?doid=2372251.2372275
http://dl.acm.org/citation.cfm?doid=2372251.2372275
http://dx.doi.org/10.1016/j.jss.2015.12.015
http://dx.doi.org/10.1016/j.jss.2015.12.015
http://dx.doi.org/10.1007/978-3-319-58862-9
http://dx.doi.org/10.1007/978-3-319-58862-9
http://dx.doi.org/10.1109/MS.2004.1331296
http://dx.doi.org/10.1111/j.1365-2362.2005.01463.x
http://arxiv.org/abs/0321313798
https://www.spinnaker.io/concepts/
https://www.spinnaker.io/concepts/
https://docs.gocd.org/current/
https://docs.gocd.org/current/
https://www.thoughtworks.com/de/radar/techniques/a-single-ci-instance-for-all-teams
https://www.thoughtworks.com/de/radar/techniques/a-single-ci-instance-for-all-teams
http://dl.acm.org/citation.cfm?id=2818754.2818772
http://dl.acm.org/citation.cfm?id=2818754.2818772

Bibliography

[Ver12] V. Vernon. Implementing domain-driven design. Addison-Wesley Professional,
2012. isbn: 0321834577 (cited on pages 41, 45, 54).

[Ver16] V. Vernon. Domain-driven design distilled. Addison-Wesley, 2016. isbn:
0134434420 (cited on pages 35, 45, 48, 49, 52, 53, 60, 71).

[Via16] M. Vianden. “Systematic Metric Systems Engineering: Reference Architec-
ture and Process Model”. PhD thesis. 2016 (cited on pages 37, 74).

159

Bibliography

161

	Introduction
	Thesis Structure

	Foundations
	Software Delivery Process
	Continuous Delivery
	Terminology
	Activity Classification
	Summary

	Problem Statement
	Challenges & Scope
	Architectural Requirements
	Summary

	Related Work
	Spinnaker
	Concourse
	GitLab CI/CD
	Summary

	Domain Driven Design
	Strategic Design
	Tactical Design
	Summary

	Architecture Overview
	Logical View
	Development View
	Process View
	Summary

	Core Components & Services
	Activity Specification Registry
	Model Service
	Process Planner
	Orchestrator
	Activity Service
	Summary

	Implementation
	Prototype - Scope & Technologies
	Pipeline Description Language
	Process Planner
	Activity Service Framework
	Delivery System Management
	Summary

	Evaluation
	Case Study
	Architectural Requirements
	Discussion

	Conclusion & Future Work
	Conclusion
	Future Work

	Appendix
	TT Web Service - Manual Model
	TT Web Service - Model-Planner Model
	TT Web Service - Project-Planner Model

	Bibliography

