
The present work was submitted to
the Research Group
Software Construction

of the Faculty of Mathematics,
Computer Science, and
Natural Sciences

Master Thesis

Continuous Compliance
Testing

Continuous Compliance Testing

presented by

Marco Moscher

Aachen, September 18, 2017

Examiner

Prof. Dr. rer. nat. Horst Lichter

Prof. Dr. rer. nat. Bernhard Rumpe

Supervisor

Dipl.-Inform. Andreas Steffens

Statutory Declaration in Lieu of an Oath

The present translation is for your convenience only.
Only the German version is legally binding.

I hereby declare in lieu of an oath that I have completed the present Master’s thesis entitled

Continuous Compliance Testing

independently and without illegitimate assistance from third parties. I have use no other than
the specified sources and aids. In case that the thesis is additionally submitted in an electronic
format, I declare that the written and electronic versions are fully identical. The thesis has not
been submitted to any examination body in this, or similar, form.

Official Notification

Para. 156 StGB (German Criminal Code): False Statutory Declarations
Whosoever before a public authority competent to administer statutory declarations falsely makes
such a declaration or falsely testifies while referring to such a declaration shall be liable to
imprisonment not exceeding three years or a fine.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to
Negligence
(1) If a person commits one of the offences listed in sections 154 to 156 negligently the penalty
shall be imprisonment not exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time.
The provisions of section 158 (2) and (3) shall apply accordingly.

I have read and understood the above official notification.

Eidesstattliche Versicherung

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Masterarbeit mit dem Titel

Continuous Compliance Testing

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

Aachen, September 18, 2017 (Marco Moscher)

Belehrung

§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche
Versicherung falsch abgibt oder unter Berufung auf eine solche Versicher ung falsch aussagt, wird
mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt
(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen
worden ist, so tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.
(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die
Vorschriften des § 158 Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen.

Aachen, September 18, 2017 (Marco Moscher)

Acknowledgment

First and foremost, I would like to thank my supervisor Andreas Steffens for his constant
support and valuable feedback throughout the whole period of my thesis. He was always
available and offered his knowledge for discussions, explanations and further valuable
ideas. All these aspects significantly influenced the proposed approach.

I would also thank Prof. Dr. rer. nat. Horst Lichter for the opportunity to pursue this
thesis at the Research Group Software Construction in cooperations with KISTRERS in
Aachen. Furthermore, my thanks goes to Prof. Dr. rer. nat. Bernhard Rumpe who has
kindly agreed to be the second examiner of this thesis.

Special thanks are in order for Dr. Heinz-Josef Schlebusch for his cooperation and for
Oliver Farr for spending the time introducing me to ProCoS and providing all requested
material to conduct the case study. Additionally I would like to thank all colleagues from
KISTERS for their support during the complete thesis.
I thank Jan Pennekamp for proofreading this work. Last but not least, I want thank

to my parents, family and especially Marie-Louis Mersch for their continuous support
during my whole studies.

Marco Moscher

Abstract

A correct system configuration is a crucial aspect to yield a secure Environment because
insufficient or even wrong system configuration can impact the overall systems and
application’s security as reported in the Top 10 Application Security Risks paper by
the OWASP Foundation [OWAb]. Countermeasure, such as Compliance Testing or
Compliance as Code, exist and support to reveal Environment misconfiguration. However,
the designated usage of the Environment is not tackled, i.e., operated applications are
unlikely to be considered nor explicitly tested for configuration compliance.

To support software vendors in defining, creating, modeling, executing and evaluating
compliance requirements of their products against their operating Environments, we
conduct research on Compliance Testing from a product-point-of-view.
We propose a generally applicable, incremental and continuous process model, i.e.,

Continuous Compliance, to determine the process of crafting compliance requirements in
the context of product (software) related configuration. Furthermore, we present a more
practical, tool-supported extension of this process, i.e., Continuous Compliance Testing,
to enable a straightforward adaptation of this new approach.

Pursuing a model-driven approach of creating Compliance for a modeled Product and
the usage of Data-Driven-Testing principles, we facilitate a high Test reusability and
context-sensitive parametrization.

Finally, with our Compliance Management Tooling, we create the opportunity to
define, inspect and evaluate product-centric compliance requirements across different
Environments and reveal issues with system or product specific configurations.

Contents

1. Introduction 1
1.1. Motivation . 2
1.2. Contributions . 2
1.3. Structure of this Thesis . 3

2. Background 5
2.1. Software Testing . 5

2.1.1. Whitebox Testing . 5
2.1.2. Blackbox Testing . 6
2.1.3. Data Driven Testing . 6

2.2. Compliance Testing . 7
2.2.1. Benchmarks . 8
2.2.2. Compliance as Code . 8

2.3. Software Development Life Cycle . 10
2.4. Capability Maturity Model . 13

3. Problem Statement 15

4. Related Work 19
4.1. Security Engineering . 20

4.1.1. DevOps and Security . 20
4.1.2. Benchmarks . 21

4.2. Compliance As Code . 21
4.2.1. SCAP . 21
4.2.2. Chef InSpec . 22

4.3. Infrastructure Compliance Automation . 22

5. Conceptional Foundation 27
5.1. Domain Model . 27
5.2. Continuous Compliance . 30

5.2.1. Phases . 31
5.2.2. Responsibilities . 32
5.2.3. Roles . 33
5.2.4. Roles – Responsibilities Mapping 36

5.3. Summary . 36

6. Continuous Compliance Testing 39
6.1. Continuous Compliance Phase Support . 39

i

6.2. Software Requirements Specification . 41
6.3. Meta-Model . 43
6.4. Technical Concepts . 50

6.4.1. Reusability . 50
6.4.2. Inspection . 55
6.4.3. Reporting . 56

6.5. Summary . 61

7. Software Architecture & Realization 63
7.1. Software Architecture . 64
7.2. Configuration Management Tool . 68

7.2.1. Technologies . 68
7.2.2. Compliance Model . 69
7.2.3. Test Genericity . 76
7.2.4. Whitelisting . 79
7.2.5. Compliance Testing . 83
7.2.6. Summary . 88

7.3. Execution Tooling . 88
7.4. Reporting . 90

8. Evaluation 93
8.1. Verification . 94
8.2. Validation . 94

8.2.1. Continuous Compliance – Elaborate 95
8.2.2. Continuous Compliance – Develop 100
8.2.3. Continuous Compliance – Evaluate 106
8.2.4. Conclusion . 107

8.3. Reusability . 108
8.4. Integration in Process Models . 109
8.5. Code Quality . 112
8.6. Discussion . 114

9. Conclusion 115
9.1. Summary . 116
9.2. Future Work . 117

A. Model Derivation Graphs 119

Bibliography 123

Glossary 131

List of Figures

2.1. Data Driven Testing . 6
2.2. Software Development Life Cycle . 10
2.3. Rational Unified Process . 11
2.4. Open Software Assurance Maturity Model (SAMM) 13

4.1. DevOpsSec . 20

5.1. Continouse Compliance – Domain Model 28
5.2. Continouse Compliance - Process Model 30

6.1. Continouse Compliance Testing - Process Model 40
6.2. Continouse Compliance Testing - Meta Model, Generalized 43
6.3. Continouse Compliance Testing – Meta Model, Test 44
6.4. Continouse Compliance Testing – Meta Model, Compliance 45
6.5. Continouse Compliance Testing – Meta Model, Artifact 46
6.6. Continouse Compliance Testing – Meta Model, Execution 47
6.7. Continouse Compliance Testing - Meta Model 49
6.8. Whitelisiting Concept, Meta Model partial sample instance 53
6.9. Maximum Compliance Violation, Exemplary Meta Model Instance 59

7.1. Compliance Management Tooling – Software Architecture 67
7.2. Compliance Management Tooling – UML Generated Entites 70
7.3. Compliance Management Tooling – UML Domain Entites 72
7.4. Compliance Management Tooling – UML Visitor Pattern 73
7.5. Compliance Management Tooling – UML Transformation Component . . 76
7.6. Compliance Management Tooling – UML Filter Pattern 79
7.7. Compliance Management Tooling – UML Placeholder Component 81
7.8. Compliance Management Tooling – UML Test Plugin Component 84
7.9. Compliance Management Tooling – Compliance Execution Screen 85
7.10. Compliance Management Tooling – UML Simulation Component 86
7.11. Compliance Management Tooling – UML CLI 89
7.12. Compliance Management Tooling – UML Reporting Component 91

8.1. Modeling Attempt – Maximum Reuse . 101
8.2. Modeling Attempt – Naive . 102
8.3. Modeling Attempt – Balanced . 104
8.4. Modeling Attempt – Overview . 105
8.5. Compliance Management Tooling – Reporting Screen 106

iii

8.6. Reusability Distribution . 109
8.7. Code Quality – Overview . 112
8.8. Code Quality – Detailed . 113

A.1. Modeling Attempt – Maximum Reuse, Graph 119
A.2. Modeling Attempt – Naive, Graph . 120
A.3. Modeling Attempt – Balanced, Graph . 121

1. Introduction

Real programmers don’t comment
their code. It was hard to write,
it should be hard to understand.

Anonymous

Contents
1.1. Motivation . 2
1.2. Contributions . 2
1.3. Structure of this Thesis . 3

This thesis is primarily motivated by the technical debt of security aspects, which arise
due to increasing software and environment complexity. Besides the challenges of growing
pace in software development, e.g., the automation process of different stages, such as
building, testing, and deployment, to continuously provide reproducible artifacts [Hue12],
the utilized environment and its configuration management becomes a considerable aspect
[Wat99].

As stated in the Top 10 Application Security Risks report for by the OWASP Foundation
[OWAb] and outlined by Tenable [Gar15], a well-known vendor for security software,
System Misconfiguration is a crucial issue for today’s environment. A missing accurate
system configuration leading to security issues strengthens the assertion of technical debt
regarding security aspects.
To assess this problem and to ensure accurate configuration, first attempts such as

Compliance Testing and Compliance as Code exist. Adopting these concepts lets a
tester utilize Compliance standards which are technically ensured through Whiteboxtest
tests. However, current strategies in the field of Compliance Testing do not face the
designated use of the Environment, i.e., considering the concrete operated application,
nor do approaches or tooling exist which facilitate or ensure a product related system
configuration. For this very reason, we establish a guideline on how to design and ensure
Compliance of system configuration from a product-point-of-view.

To further motivate this thesis, we present a more detailed overview on our intention in
Section 1.1. In Section 1.2, we outline our main contributions and in the last Section 1.3,
we give a brief overview about the upcoming chapters.

1

1. Introduction

1.1. Motivation
To extend the sight of an Environment while facing system configuration, i.e., considering
concrete Product related system configuration requirements, we presented the approach
of Compliance Testing from a product-point-of-view. We intended to model Compliance
independently from the executing system, i.e., the Environment, which is acceptable
since the accurate configuration arises from the operated Product.
We present a novel process model (Continuous Compliance) to clarify all activities

required to derive Compliance from a product-point-of-view. This process is based on a
specially crafted domain (cf. Section 5.1), which allow the separation of a Product its
Compliance and the required Tests needed to ensure compliance. To this end, we adopt
the principle of separation of concerns and indirectly yield reusability. Furthermore, a
software vendor should obtain the possibility to define Compliance once and reuse them
to describe environment related requirements for other Products.

Given an Environment independent modeling of Compliance requirements, we further
attempt to tackle the separation of Tests and the accurate Test Data, which is derived
from its context, i.e., the operating system, during test execution. For example, certain
configuration requirements could vary between the operating Environments, e.g., on one
environment the log directory is located under /var/log/ whereas another Environment
uses /opt/applications/log/. To support this variation, we follow the principles of
Data Driven Testing and intend to represent the actual System Under Test (SUT) as
ApplicationSystem, i.e., the combination of Product and Environment.

Our research attempt should lead to a solution which allows the creation of vendor
specific compliance and should be applicable in different contexts, e.g., on different
Environments. Additionally, such Product related Compliance should yield the ability
to establish quality gates as part of a Continuous Delivery pipeline. For example, the
operating environment which operates a product could be checked.
All contributions are explained in more detail in the next section.

1.2. Contributions
The overall goal of this thesis is to submit a process model blueprint and to develop a
domain-driven software concept to tackle the non-existing ability to define, model, and
execute compliance requirements from a product-point-of-view. Therefore, we outline our
two main contributions of this thesis, which lead to the final contribution.

The first contribution of this work is a process model blueprint (Continuous Compliance)
which outlines three central phases, i.e., Elaborate, Develop and Evaluate. We describe
required roles together with their responsibilities and relate them to the created process
model. Besides, we present a mapping of our phases and activities to an existing
incremental model, i.e., the Software Development Life Cycle (SDLC).
Our second contribution is a more technical motivated process, based on Continuous

Compliance, to promote its practical adaptation, i.e., Continuous Compliance Testing
yielding a tool support of this process. We present a novel black-box framework realization

2

1.3. Structure of this Thesis

which allows modeling and execution of Compliance against (customer-) Environments,
called Compliance Management Tooling. To reach a high reusability of already imple-
mented compliance test, we present a concept for Test Genericity on test code level.
Such generic test are then instantiated during compliance test execution in by means of
its context, i.e., the ApplicationSystem. We discuss, evaluate, and compare our concept
against exiting solutions, such as Chef Automate, to clearly state the difference and
innovations of our approach. Additionally, we conduct a case study with a software
vendor partner to evaluate our tooling approach against their needs. We collect and
analyze their received feedback and propose further improvements and future work.
To summarize, this thesis yields two significant contributions: a novel process model

for Continuous Compliance and a tool support to facilitate the adaptation of Continuous
Compliance Testing.

1.3. Structure of this Thesis
First, we introduce all relevant background information in Chapter 2 needed to com-
prehend our proposed solution. Starting with basic information and techniques on
compliance testing to support the fundamental idea. We introduce software engineering
related topics, such as SDLC, RUP, and CMM, which we use to classify and evaluate our
concept, afterward.
In Chapter 3, we formulate and explain the central problems which we are tackling

with this thesis and explain their origin in detail.
To isolate our proposed solution from exiting approaches on security/compliance testing

and infrastructure compliance automation, we present Related Work in Chapter 4. We
focus on the three main fields of related work: Security Engineering, Compliance as Code,
and Infrastructure Compliance Automation. For each field, we introduce, discuss, and
clarify their problems concerning software related compliance modeling.
The novel process model, i.e., Continuous Compliance, presented in Chapter 5. First

we establish the overall domain model in Section 5.1. Afterward, we present required
roles, responsibilities, and a mapping towards SDLC.
To promote the practical adaptation of our process model, we present the approach

of Continuous Compliance Testing in Chapter 6. First, we present a rough mapping
towards the process model and define technical aspects in more detail as part of the
software requirement specification in Section 6.2. Based on this, we outline a meta model
to allow modeling of our particular domain and present further, more technical, concepts
to facilitate Resuability (cf. Section 6.4.1) and enable Reporting (cf. Section 6.4.3) of
collected results.

In Chapter 7, we present a blueprint software architecture to obtain the novel blackbox
framework to accomplish Continuous Compliance Testing. We outline detailed aspects
of the implementation, applied design patterns, used tool and frameworks. Finally,
we describe our proposed Command Line Interface (CLI) (cmt-cli) to support remote
execution and present the realization of the previously defined Reporting concept.
We evaluate our presented approaches, i.e., the Continuous Compliance process, the

3

1. Introduction

Compliance Management Tooling, and the concept of Reusability, based on a case study
in Chapter 8. More precisely, we present and discuss the results of a case study enrolled
at KISTERS in Aachen. Furthermore, we mention problems and pitfalls we struggled
during our evaluation.
Finally, we conclude our work and propose possible future work and improvements

Chapter 9.

4

2. Background

Don’t panic!

Douglas Adams

Contents
2.1. Software Testing . 5

2.1.1. Whitebox Testing . 5
2.1.2. Blackbox Testing . 6
2.1.3. Data Driven Testing . 6

2.2. Compliance Testing . 7
2.2.1. Benchmarks . 8
2.2.2. Compliance as Code . 8

2.3. Software Development Life Cycle . 10
2.4. Capability Maturity Model . 13

In the following, we introduce and explain the required background.
The first sections Software Testing (Section 2.1), and Compliance Testing (Section 2.2)

introduce the fundamental testing idea and the objective under test, namely the in-
frastructure. These foundations are essential to comprehend the Problem Statement
(Chapter 3) and the Related Work (Chapter 4) on which this thesis builds upon.

Afterward, in Section 2.3, we introduce variants of the Software Development Life
Cycle (SDLC), which are elements of the presented concept (Chapter 5) and fundamental
of the concept classification as part for the evaluation (Chapter 8).
Finally, we conclude this chapter by explaining the concept and idea of Capability

Maturity Models (Section 2.4). Variants of this model are used in the conclusive Chapter 8
covering the evaluation and classification of our presented solutions.

2.1. Software Testing
In the field of dynamic software testing as part of the Quality Assurance (QA), two main
approaches exist which represent different actions for test case derivation. However, since
we mainly focus on the field of compliance testing, we only present a brief classification
and outline differences between Whitebox and Blackbox testing.

2.1.1. Whitebox Testing
Whitebox or Glassbox testing focuses on the internal structure and states of function,
objects or systems. Thus, a tester needs to have full access to the Unit under test (UUT),

5

2. Background

i.e., its source code. Before applying a whitebox testing approach, the tester needs to
have a significant understanding of the software architecture and has to use her knowledge
about the internal structure to design the test cases [PM04]. The most common whitebox
testing approaches are State-Coverage testing and Data-Flow testing [LL13].

2.1.2. Blackbox Testing
Blackbox testing, also known as Functional testing, focuses on the action and its result of
a function or system under test. It refers to analyzing a running UUT by probating with
its inputs [PM04]. Therefore, a tester does not need to know the concrete structure of
the UUT. The only required knowledge to design a Blackbox test case is the expected
behavior (result) of a function or method which can depend on certain input values.
To obtain those parameters, the requirement specification or other related documents
can be conducted [LL13]. Finally, a test simply simulates the functionality using the
pre-defined input values and compares the received result to the expected one. The best
know approach, based on the Blackbox testing strategy, are Equivalence-Class testing
and Boundary-Value testing [LL13].

2.1.3. Data Driven Testing
Data-Driven testing (DDT) describes the approach of testing a UUT or SUT using a
predefined set of test data. As testing is often a repetitious task, one might be interested
on running essentially the same test with slight different system inputs and verify that
the actual output varies accordingly [Mes07]. This ability is made possible with the
approach of DDT.

Figure 2.1.: Exemplary illustration of the Data-Driven-Testing approach [Mes07].

As shown in Figure 2.1 the identically test run, i.e., Setup, Execute, Verify and
Teardown, is take for each input data. The used test data for each run is provided by an
data set yielding an Input and Verification set.

To this end the approach of Data-Driven-Testing leads to the concept if parametrized
testing which we use in our upcoming concept to support test reusability.

6

2.2. Compliance Testing

2.2. Compliance Testing
Compliance Testing, also known as Conformance Testing, Regulation Testing or Standards
Testing, is part of the non-functional software testing field [Int; Sof; Tec]. It is used to test
and to verify that given standards in form of non-functional requirements are fulfilled
by the software itself, the development process, or the system hosting this software.
The phase in which the test should be applied is defined by the standard, e.g., the CIS
Benchmarks on infrastructure compliance should be preformed between the build and
deployment phase. To this end, Compliance Testing can be performed to ensure that
deliverable artifacts are in a compliant state during each phase of the development life
cycle [Sof].
Due to legislation enhancement, e.g., the data security standard for Banking and

Financial Service Payment Card Industry Data Security Standard (PCI-DSS) [Cou], the
relevance of compliance testing and its amount of application increases. Compliance
Testing supports a software vendor to certify certain standards, e.g., PCI-DSS, ISO-270011

or ITIL2. Alternatively, it enables to adhere on standards recommended by appropriate
institutions, such as BSI and CSI, to ensure infrastructure quality in general.
Particularly in the area of security conformance testing, the amount of existing stan-

dards which could be applied and certified is high. To derive a fundamental baseline
testing set, we explain some of them in more detail in the following. Afterward, we
introduce a relatively new approach, called Compliance as Code, which allows compliance
testing in an automated manner.
Finally, we report that the fundamental testing approach – Compliance Testing – is

a blackbox testing approach as well, since we are not interested in the realization but
rather in the correct configuration of UUT. However, on a higher level of abstraction, i.e.,
focusing on the infrastructure and not the software configurations, one would perform a
whitebox test, because the environment itself and not its configuration is tested. This
situation allows us to execute more fine-granular tests on the UUT, because one is able to
verify significant more configuration settings from the inside rather than guess-checking
them from the outside, e.g. set of users which are allowed to login via SSH.

Definition For this thesis and its related domains and concepts we defined the term of
Compliance as set of precisely formulated definition of infrastructure demands to ensure
correct system configuration, i.e., to reveal system misconfiguration. A Compliance
requirement denotes one item of this set. In short, we always refer to infrastructure
configuration. For example a compliant infrastructure fulfills all its demand configuration,
i.e., those defined due to its designated usage.

1https://www.iso.org/isoiec-27001-information-security.html
2https://www.axelos.com/best-practice-solutions/itil/what-is-itil

7

https://www.iso.org/isoiec-27001-information-security.html
https://www.axelos.com/best-practice-solutions/itil/what-is-itil

2. Background

2.2.1. Benchmarks
In the field of compliance, regarding law appropriated standards or especially cyber-
security, different organizations offering benchmarks exists, e.g. CIS and BSI. These
standards are a collection of best practices and recommendation for system and software
configuration to gain as much security as possible. Furthermore, they can be classified as
complex guidelines (requirement specifications) for compliance testing. Two very popular
organizations offering security compliance standards are the Center of Internet Security
(CIS) and Federal Office for Information Security (BSI) [Cen17; ISb].

CIS Benchmarks are available for download in electronic, textual form, i.e., PDF. They
collect and describe various aspects for an objective under test, e.g., mobile device,
network device or a server operating system, for security compliance (CIS Level)
[IS17]. As part of a paid membership, the CIS also offers hardened images as well
as remediations scripts to easily apply the proposed configuration. However, those
guidelines are not part of our work.

BSI Grundschutz is published in textual form, collects and describes security configura-
tions as well. Certainly, the BSI Grundschutz is much more complex and covers
more general and different areas of interest for an IT Company compared to the
CIS Benchmark. For example, the BSI provides guidelines for rescues and plans for
natural hazards, such as fire. In the scope of this thesis, we only focus on subset of
categories B3 (Sicherheit der IT-Systeme) and B5 (Sicherheit in Anwendungen).

Since these guidelines are designed for a group of different skilled people, i.e., from
Chief Security Officer (CSO), Product Owner (PO) up to the Software Developer (SD)
and Business Manager (BM), they are mostly written in informal language to be easily
read- and understandable. However, this design decision makes them difficult to be
implemented because no concrete test or checking method/script is given and linguistic
failures, such as generalization or redemption, could lead to misinterpretation. Therefore,
a satisfying and exact implementation of the required compliance rules quickly results in
a difficult task. For an enhancement, Compliance as Code was published and tries to
close this existing gap between the compliance awareness and realization.

2.2.2. Compliance as Code
Compliance as Code (CaC) can be seen as the process of building compliance into
development and operations [Bir16a]. Even more, it brings different roles, which are
involved into a software project, i.e., manager, internal audit, project management office,
and developer, to “one table” to define compliance requirements and rules upfront [Bir16a].
The enhancement of CaC is the reduction of overhead and paperwork which is nowadays
required during specification and definition of compliance requirements. The definition
in form of code makes it easier to test a system for compliance since existing code can
be executed, shared, and reused. Compared to already established approaches, such
as Compliance Management System (CMS), the approach of CaC attempts to improve

8

2.2. Compliance Testing

the pace and opens the domain of compliance testing to other domain experts, such as
developers or release managers. Furthermore, having executable compliance as code,
enables automatic tests as part of a continuous delivery pipeline. The most up to date
and important tool which supports a simple definition and execution of compliance as
code is InSpec3.

InSpec by Chef was founded back in 2016 and is based on the idea of the well-known
Serverspec. However, it was fully (re-) written from scratch to improve the design
and better usability [Che16b]. Compared to Serverspec, InSpec tries to add more
resources for testing and implements its own domain specific language, i.e., InSpec
DSL. Besides using the well-designed language, all InSpec tests could be written in
plain ruby as well. Due to the easy read- and understandable DSL, InSpec tests
also serve as a baseline documentation for compliance tests, which is required by
most audit processes. Using InSpec, enables a tester to easily check the correct
configuration of a resource. For example, Listing 2.1 shows a compliance test for a
ssh-daemon which should be configured to listen on port 22.

1 describe sshd_config do
2 its(’Port’) { should eq(’22’) }
3 end

Source Code 2.1: Sample InSpec source code ensuring that the SSH service port is
configured to 22.

3https://www.inspec.io/

9

https://www.inspec.io/

2. Background

2.3. Software Development Life Cycle
The Software Development Life Cycle (SDLC) describes a unified process for planning,
developing, testing, and deploying software or information systems. The life cycle tries to
separate the overall development process into unique, distinct and chronological activities
[Win05]. Each defines its preconditions and outcomes, which are used in the preceding
activity. Overall, each life cycle starts with the phase of planning and analysis, i.e.,
collecting all customer requirements, and ends with the delivery [LL13].

Figure 2.2.: Diagram illustrating all six relevant phases of the Software Development
Life Cycle [Hus16].

A very common segmentation and flow is shown in Figure 2.2 and consists of six activ-
ities Planning, Analysis, Design, Implementation, Test & Integration, and Maintenance.
Depending on the planned kind of usage, different and more concrete instances of this
model exist. Agile methods, such as Scrum and Extreme Programming (XP), incremental
or iterative methods, such as Rational Unified Process (RUP) or “custom” extensions,
i.e., with the aspect of security.

In the following, we introduce the RUP and a security-extended SDLC in more detail.

10

2.3. Software Development Life Cycle

Figure 2.3.: General process illustration of the Rational Unified Process. The header
shows the four main phases along with the different disciplines on the left
side [GFL06]

Rational Unified Process Similar to the SDLC and many other process models, the RUP
is separated in single chronological phases [Win05; LL13]. As shown in Figure 2.3, the
RUP distinguishes between four main phases, i.e., Inception, Elaboration, Construction,
and Transition. Each of those phases can be repeated iteratively, which justifies the
classification as an iterative process model, and consists of a set of core-workflows as
illustrated on the left side in Figure 2.3. These workflows can be grouped, more general
workflows: Requirements, Analysis, Design, Implementation and Test, as described in
the Unified Process Model [LL13]. The distribution for each core-workflow at each phase
indicates the time effort which should be spend on this desired task. E.g., during the
Initial Iteration and during the Inception Phase, one should spent the most time effort
on the Business Modeling (cf. Figure 2.3).
Due to its iterative basis and separation in different phases, the RUP is suitable to

support a continuous and repeatable process [Win05].

11

2. Background

Security in SDLC Lately, two organizations, namely Microsoft and the Open Web
Application Security Project (OWASP), presented an SDLC extended with different
aspect concerning secure software development since the importance of secure software
development increases. Both propose such a process models to encourage an increased
and early application of security-relevant actions as well as to reduce the amount of
security issues [OWA17b].
In 2004, Mircosoft proposed the Security Development Lifecycle (SDL) to address

security compliance requirements during software development [Mic04]. SDL is very
similar to the basic SDLC model with two additional phases. At the very beginning,
SDL describes a Training phase which should be enrolled to train all involved persons on
core security topics, e.g., threat modeling or secure coding. Furthermore, it introduces
the Verification phase after the Implementation phase. This phase extends the standard
Testing phase with additional security-related testing disciplines, such as Attack Surface
Review [Mic04].

The Secure Software Development Life Cycle (S-SDLC) by the OWASP Foundation
[OWA17b] – which is still in development – presents a guideline about how to integrate
and combine any SDLC process model with their Security Assure Maturity Model (Open-
SAMM, cf. Section 2.4). The S-SDLC, therefore, defines security software development
process as well as guides, tools, checklists, and templates of activities in each phase
[OWA17b]. To this end, each step of the fundamental SDLC process model is extended
with particularly security related activities. For example, the common Design phase
is renamed to Security Design and additionally conducts the discipline of Application
Threat Modeling. Alongside with the enlargement of typical phases, new phases at the
beginning of the SDLC are added, i.e., Overall Flow and Security Awareness Training
which are similar to the initial phase in the SDL.

12

2.4. Capability Maturity Model

2.4. Capability Maturity Model
Capability Maturity Model (CMM) is a development model in the field of software
development which aims to improve and to rate existing software development process
[Pau93]. The best known derivate of this model is the Capability Maturity Model
Integration (CMMI), which defines five different level of maturity, i.e., Initial (Level 1),
Repeatable (Level 2), Defined (Level 3), Managed (Capable) (Level 4), and Optimizing
(Level 5) [Pau93]. Each level outlines different aspects on how an individual aspect
of the software development process, e.g., Project Management (Level 1), should be
implemented and realized. To be adopted, each level requires the previous level to be
entirely implemented as they mostly build upon the previously required aspects.
Besides this well-known derivate (CMMI), various other maturity models in the area

around software development and its process exist. Particularly in the field of security,
some models gain significant publicity since most vendors are interested in proving
that they stick to certain, well established, security practices during their software
development.

Open Software Assurance Maturity Model The Open Software Assurance Maturity
Model (OpenSAMM) defines itself as open framework to help organizations to formulate
and to implement a strategy for software security [OWA17a]. Similar to CMMI, Open-
SAMM is split into different Business Functions as illustrated in Figure 2.4. However,
theses four fields, i.e., Governance, Construction, Verification, and Deployment, are
independent from each other and can be realized separately as compared to CMMI.

Figure 2.4.: OpenSAMM overview on Business Functions and Security Practices [OWAa]

Each Security Practices relates to one Business Function and is then split into three
different sub-levels (Level 1-3) which describe concrete objects and activities to reach
a certain degree of security on the chosen practices. For example, the security practice
Environment Hardening (EH) as part of the Operations business function (cf. Figure 2.4)
is split into levels EH1 - EH3 (EH1 - Baseline Operations, EH2 - Applications Operations
and EH3 - Application Health). The objective on every level varies and requirements
increase the higher the level gets (cf. [OWAa]). E.g., EH1 focuses on understanding the

13

2. Background

baselines of the operational environment, whereas EH3 requires validating application
health and status against known best practices. To adopt or reach these objectives, short
and helpful descriptions of the related actives are given, e.g., to obtain E1 Level one has
to “Maintain operational environment specification” and to “Identify and install critical
security upgrades and patches” [OWAa].

Based on this theoretical foundations, we continue with the central Problem Statement
and its detailed source of origin in Chapter 3.

14

3. Problem Statement

Indicated trough the OWASP Top 10 Application Security Risks [OWAb] and moreover
endorsed by Tenable [Gar15], System Misconfiguration is a crucial issue leading to security
vulnerabilities. Approaches, such as Compliance Testing or Compliance as Code, exist
and support the discovery of flawed configuration settings of an environment. Adapting
tools, such as Chef InSpec [Che16b], UpGuard [UpG], or ServerSpec [Gos13], combined
with available security guidelines, such as the CIS Benchmark [IS17] or the BSI catalog of
measures for hard- and software security [ISb], the overall effort and process of compliance
testing is very straightforward and well-elaborated.
However, nowadays none of these approaches covers creating and testing of product

related configuration which seems insufficient since the designated usage of an Environment
has to be somehow conducted. The relevance of such a product-point-of-view on system
configuration settings was motivated in Section 1.1. Although defining Compliance for
once specific Environment (single) is very straightforward, enlarging the scope towards
Environment independent representation increases the difficulty, i.e., reusing and altering
Compliance to fit the actual context (ApplicationSystem). Hence, a modular approach
of defining, assigning and testing has to be elaborated to reduce the overall complexity
of product-related compliance testing. As a result, the extending view, i.e., tackling
product-related configuration, on Compliance Testing creates the central set of problems.
Additionally, integrating product-related configuration requirements becomes ques-

tionable, i.e., Compliance form a product-point-of-view, into the already established
process of Compliance Testing. Furthermore, how to craft and document all resulting
Compliance demands related to its origin, i.e., the Product, has to be considered. The
previously described set of problems is categorized into three general sub issues, i.e.,
System Misconfiguration, Information Magnification and Management Inexperience. The
concrete problem and their relation between each other is outlined in the following.

System Misconfiguration First and foremost, System Misconfiguration is one high risk
with respect to system security nowadays. Since large software vendors and developers
often rely on external dependencies or use multiple, smaller, own software components
simultaneously, a complex software is quickly created. This situation leads to, mostly,
unconsciously created security vulnerabilities [OWAb]. Especially large software projects,
consisting of multiple vendor specific components, require proper configuration and
system settings. Each of those components mostly relies on certain system functionality
to provide its service. To check an existing system for compliance, concerning the required
configuration and prerequisites, one needs to have the possibility to model and finally
execute the software-related Compliance requirements. This requirement indicates a
central problem regarding system misconfiguration for software products, since a solution

15

3. Problem Statement

to model security related polices from a product-point-of-view is missing so far and
not supported by existing compliance testing system (cf. Section 4.2) or Infrastructure
Compliance Automation systems (cf. Section 4.3). The next problem occurs when trying
to manage and to document the created compliance requirements for varying Products.

Information Management The problem of Information Management surfaces due to
the huge amount of compliance requirements which need to be managed, versioned, and
documented. Besides System Misconfiguration, this problem is likewise crucial since
information management is the key point to facilitate reusability of already created
documents, i.e., Compliance. Yet, no possibility exists which allows defining compliance
requirements and reusing them for different Products. To enable a later audibility for
certifications of various kinds (cf. Section 4.1), a repeatable, fully documented process is
required.

Management Inexperience Besides the problem of how to model and manage compli-
ance polices from a product-point-of-view, the persons and roles involved in this process
have not been clearly identified. Due to the thematically relation between Security
Testing and DevOps area, because Security Testing deals with certain aspects applied
during development as well as operations (DevOps), certain roles are involved. For now,
trying to realize compliance requirements for a specific software product, the approach
will leads to obscurities in the field of responsibility.

This effect introduces the problem of Management Inexperience since no model exists
which describes the allocation of responsibilities. Furthermore, as the field of Compliance
Testing from a product-point-of-view is new, no concrete role assignment exists nor the
required awareness is given. To define cooperate-like compliance requirements including
all involved stakeholders is a necessity. It is to clarify which roles are required and how
the responsibility for certain tasks – during compliance modeling – is mapped.

Scope

The scope of this thesis includes all three outlined problem statements. First, we propose
an overall proceeding to create a baseline for Compliance Testing from a product-point-
of-view, i.e., we implement a process model based on established procedure models.
Additionally, to primarily tackle the problems of Information Management and System
Misconfiguration we create a tooling. On the one hand, this tooling should support the
user in fulling the implied tasks, i.e., defining, modeling, executing and documenting
Compliance. On the other hand, it should allow a practical adaptation of the novel
process model.
However, we deliberately do not intend to fully solve each outlined problem. For

example, as part of System Misconfiguration we refrain from considering any actions
concerning environment hardening or remediation processes, nor do to elaborate on further
security related approaches, such as Static Code Analysis or Security Scanning. The main
scope is Security auditing of predefined Compliance modeled from a product-point-of-view.

16

Being aware of these centric problems, their origin and possible options to tackle them, we
present Related Work on the topic of Compliance Testing and discuss their opportunities
and inadequacy in the next Chapter.

17

4. Related Work

Don’t panic!

Douglas Adams

Contents
4.1. Security Engineering . 20

4.1.1. DevOps and Security . 20
4.1.2. Benchmarks . 21

4.2. Compliance As Code . 21
4.2.1. SCAP . 21
4.2.2. Chef InSpec . 22

4.3. Infrastructure Compliance Automation 22

In the current field of research, the topics of Compliance As Code and Continuous
Compliance Testing are relatively new and barely researched. Paper and literature about
scope-extension/-transformation from DevOps to SecDevOps, DevSecOps or DevOpsSec
exists [McG16; Bir16a; VO10; Sch15; Sto15] and all claim that security needs to be
embedded into the current approaches of DevOps. To this extend, first attempts facing
Compliance As Code emerged and enable security testing and compliance verification in
an automated manner [Bir].
Tools, such as Chef InSpec[Che16b], RedHat OpenScap[Red08], and Nessus[Ten16],

implement the idea of Compliance As Code and allow the definition as well as the
execution of compliance tests. Unfortunately, these tools just cover the general definition
of compliance rules mainly focusing on the infrastructure. However, they do not allow
conjunction or other kinds of modeling to represent certain software product and their
implied compliance running on specific infrastructure. Consequentially, a software vendor
can not model its software related compliance requirements, i.e., from a product-point-of-
view, and can not test those requirements in a continuous manner using existing tools
and build pipelines.
In the following, we outline the prime related work in the fields of Security Engineer-

ing (Section 4.1), Compliance As Code (Section 4.2), and Infrastructure Compliance
Automation (Section 4.3), since all these topics are in-cooperate with our presented work.

19

4. Related Work

4.1. Security Engineering
The scope of Security Engineering focuses on different aspects, such as tools or processes,
and methods required to design, implement, and test complete systems. One central, but
not sufficient, required skill is proper Software/System Engineering, i.e., business process
analysis, evaluation, and testing [And10]. Thus, we focus on related topics in this area
and argue their relevance for our proposed solution.

4.1.1. DevOps and Security
The interaction of DevOps and Security is a relatively new intermediate-discipline
describing how to combine Security and DevOps. Already in 2015, Storms [Sto15]
discussed and outlined approaches on how to integrate the aspect of security in the
process of agile software development and DevOps. In 2016, Mohan et al. [MO16]
examined the abbreviation SecDevOps and showed how to combine Security and DevOps.
They outlined that the most need for security in DevOps is raised through the lack of
compliance concerns. The most recent publication is by Jim Bird [Bir16b] where he
describes DevOpsSec and how to secure the whole development process while adopting
security to DevOps.

Figure 4.1.: Conjunction of all three different disciplines and its activities, resulting in
the new intermediate-discipline DevOpsSec [Von16]

The uncertainty regarding the correct term, e.g., may it be SecDevOps, DevSecOps or
DevOpsSec, is sufficient discussed and depends on the moment when to use security in a
DevOps process. As termed by Stroms [Sto15], Bird [Bir16b], and Tischart [Tis], we also
rely on DevOpsSec. This, means that Security is the last step in the overall process.

20

4.2. Compliance As Code

We have shown that the approach of integrating security into DevOps (DevOpsSec) is
not new and well researched. Thus, introducing and linking compliance requirements
against software artifacts in an early stage of development, e.g., to receive security tests
at the end of development, is acceptable.

4.1.2. Benchmarks
In the discipline of security engineering, reporting and risk calculation is an important
part [Jan10]. It allows the manager or any other responsible person to classify and
estimate the current security risks. To gain a first fundamental classification, various
standards exist. These standards are often used to implement and reach a minimal
essential security of a system or process. The most common institutions proposing
such standards are Center for Internet Security (CIS) and Federal Office of Information
Security (BSI) as stated in Section 2.2.
The CIS proposes many different standards for various fields and each condenses a

set of best practices and known security flaws which need to be checked. For example,
benchmarks for Linux, Windows, or Mac operating systems (OS) alongside with mobile
OS’s, such as Android and Apple iOS, are available for download [Cen17].

In the field of compliance testing from a product-point-of-view, evaluating the hosting
system (operating system) is necessary. Thus, to compile a proper, very straightforward
set of baseline tests, one should rely on the existing CIS Benchmarks for Windows
and Linux. The CIS Benchmark for Microsoft Windows Desktops1 and Distribution
Independent Linux 2 provide essential documentation on how to check and remediate
“classic” and well-known Windows or Linux security flaws. We use both, primarily the
Windows 10, during the evaluation of our proposed solution to create a fundamental
(compliance) baseline test which is then extended or softened due to product specific
requirements.

4.2. Compliance As Code
To test a system or infrastructure for compliance in an automated manner, i.e., during
deployment, one should rely on Compliance As Code. As explained in Section 2.2, this
approach offers various advantages, which is why we also rely on existing standards in
this field. The most public standards in this area are briefly outlined in the following.

4.2.1. SCAP
The Security Content Automation Protocol (SCAP), proposed by the National Institute
of Standards and Technology in 2006 [ST09], currently exists in four major versions (1.0
- 1.3). The basic idea of SCAP is to combine various (existing) standards used to test
for software security flaws and configuration issues. Since version 1.0, the eXtensible

1https://www.cisecurity.org/benchmark/microsoft_windows_desktop
2https://www.cisecurity.org/benchmark/distribution_independent_linux

21

https://www.cisecurity.org/benchmark/microsoft_windows_desktop
https://www.cisecurity.org/benchmark/distribution_independent_linux

4. Related Work

Configuration Checklist Description Format (XCCDF) and the Open Vulnerability and
Assessment Language (OVAL) (OVAL) languages are supported [ST09]. Compared to
other standards, SCAP is one of the few specifications, which is officially accepted and
approved by the National Institute of Standards and Technology.

The XML based specification, due to the usage of XCCDF and OVAL, allows modularity
and reusability of existing rules. This characteristic enables a generative approach of test
case derivation, and is the reason why we suggest SCAP as one standard to be used in
combination with our upcoming solutions.

4.2.2. Chef InSpec
Chef InSpec is a relatively new approach in the field of Compliance As Code, as stated
in Section 2.2. Its tests are written in a separate domain specific language (InSpec DSL),
hence so far no huge community exists and all existing tests, e.g. (Open)SCAP definitions
- which are far older - need to be rewritten when adopted.

The approach introduced by Chef3, i.e., InSpec DSL, focuses on high combination
of already existing compliance profiles and is realized by Meta Profiles [Har17]. For
example, an existing profile checking the Windows patch level, which is public available
on GitHub4, can be easily adopted in a separate test suite. Besides external dependencies
inclusion, local test can be used as well [Har17].

These capabilities, i.e., inclusion and dependencies management, are ideal when follow-
ing a generative and modular test case design and justify the usage and integration in
our compliance management tooling.

4.3. Infrastructure Compliance Automation
With the help of Infrastructure Compliance Automation (IaC), automatically checking
an infrastructure for compliance is possible. As the popularity of Infrastructure as
Code (IaC) increased in the past years, compliance automation was not neglected, and
various tools/scripts were presented, which allow more or less Infrastructure Compliance
Automation.

In the following, we outline the most important tools in this field. Chef Automate,
OpenSCAP by RedHat and Nesuss should be mentioned beforehand since they are the
most well known-open source tools (compared through GitHub ranking). We briefly
describe their functionality and argue to which extend these tools could or could not
solve or reduce the outlined problem. This listing raises no pretense of completenesses, is
ordered alphabetically, and represents the result of our research at the current time.

3Vendor of InSpec - http://www.chef.io
4https://github.com/dev-sec/windows-patch-benchmark

22

http://www.chef.io
https://github.com/dev-sec/windows-patch-benchmark

4.3. Infrastructure Compliance Automation

Chef Automate is a full-featured enterprise service based on Chef InSpec to manage,
deploy, and verify infrastructure defined as IaC using Chef [Che16a]. Using Chef
Automate, one can continuously test its infrastructure against a set of defined
InSpec Rules and therefore check it for compliance regarding these rules. Since the
vendor Chef provides both tools used alongside with Chef Automate itself, namely
Chef and InSpec, the integration works well.
Chef Automate can be used to check an Infrastructure for existing System Miscon-
figuration, since it fully relies on InSpec, whereas this problem (cf. Section 3) can
be solved. The other two, main, problems are not tackled yet. On the one hand,
modeling the utilization of one or more infrastructure is not supported (Information
Management), i.e., the product-point-of-view, and on the other hand Management
Inexperience is not fully solved as well. The management (stockholder) is supported
through various reports, but due to the missing generality and abstraction, the
management can not yet handle change or compliance requirements well.

Docker Bench for Security is a set of bash scripts which are designed for Docker con-
tainers to check them for compliance. The implemented compliance tests are aligned
with the tests proposed by CIS for Docker Container Security [Doc16; Cen16].
However, Docker Bench Security is not meant to be used as continuous compliance
testing, but one could argue that it is easily automatable through build-pipeplines
and pre-deployment phases, i.e., Jenkins [Cir16]. This conjunction would help to
tackle our identified problem of Security Misconfiguration but would overlook the
other two problems (Information Management, Management Inexperience).

Greenbone and OpenVAS are vulnerability scanner based on the OpenVAS Framework
[Com09]. Greenbone represents the Enterprise Version of OpenVAS and offers
additional (paid) customer support. Both tools can run black- and whitebox tests
on a system under test. The latter one enables these tools to be used for compliance
testing and field tests defined through NVT, SCAP, or similar formats.
Greenbone and OpenVAS can continuously check SUTs for compliance, which
solves the problem of Security Misconfiguration in some way. Through its built-in
reporting and monitoring capability, Greenbone and OpenVAS can reduce the
Management Inexperience and support user with information. However one can not
use these systems to model a software-landscape which is operating on a given host
whereas the problem of System Misconfiguration and Information Management are
not yet fully solved.

Nessus is a top-rated and widely used software for vulnerability scanning founded by
tenable [Ten16]. Due to its general functionality (scanning) Nessus is mostly
categorized as blackbox testing tool since it scans the infrastructure (SUT) from
the outside. But Tenable has discovered the growing trend in compliance testing
from a security point of view and has extended Nessus (version 5 and higher) with
a new plugin mechanism which allows running additional tests on the system site

23

4. Related Work

(whitebox) as stated in their report from January 2017 [Ten17]. Using one or more
of the client-specific plugins, Nessus supports compliance tests as well.
Nessus compliance tests can be based on the standard XCCDF/SCAP format,
which allows a high reusability of existing standards and compliance tests [Ten14].
However, by its nature, Nessus is not designed for extensive compliance testing
whereas the stated problems can not or only be partially solved. System Miscon-
figuration can be checked but not modeled from a product-point-of-view. For the
same reason, the problem of Information Management could not be tackled. Even
more, since Nessus is a vulnerability scanner, no guidelines yet exists which outlines
a process required to be applied by management to allow compliance testing from
a product-point-of-view.

OpenSCAP is a toolset family founded by RedHat and mainly focuses on security
compliance and vulnerability assessment [Red08]. The main tools presented by
OpenSCAP are OpenSCAP Base, OpenSCAP Daemon, SCAP Workbench, SCAP-
Timony, and OSCAP Anaconda Add-on. As the naming of this product family
reveals, the fundamental testing framework (OpenSCAP Base) relies on the public,
NIST certified, compliance testing standard SCAP (cf. Section 2.2).
With existing and self-defined XCCDF/OVAL benchmarks and test definitions,
the detection of a System Misconfiguration is possible. Nevertheless, the generic
modeling aspect is missing and the dynamic derivation of compliance requirements
from a product-point-of-view are not yet respected. OpenScap in its fundamental
functionally only focuses compliance testing from an infrastructure-point-of-view.

Rudder is a software founded by Normation in 2011 to run compliance tests against a
given SUT and create to a descriptive report on a regular, e.g., daily, basis [Nor11].
Additionally, it supports continuous configuration and allows auto-healing of a
given node when one or multiple tests fail. However, Rudder is not yet well known
(cf. GitHub Ranking compared to InSpec) by which the tester/expert has to write
Techniques (concept naming for test) manually with the help of generic, predefined
test-pattern and can not rely on a huge community background. Rudder supports
system- and user- defined variables which allows users to write more generic test
in general. These variables allow a reuse of information system wide [Nor16], but
can not be overwritten by hierarchy or a particular technique. However, the idea
of Rudder’s variables is not comparable to our concept of Test Genericity (cf.
Section 6.4.1) since no redefinition or conjunction of values is supported.
With its massive support regarding technique modeling and continuous config-
uration (auto healing), Rudder solves the problem of System Misconfiguration.
Additionally, with the support of great reporting capabilities Rudder tries to break
down the necessary information required by management as much as possible and
therefore lessen the Problem of Management Inexperience. Nevertheless, the issue of
Information Management remains unsolved since (so far) no modeling of compliance
requirements from a product-point-of-view is possible.

24

4.3. Infrastructure Compliance Automation

Security Monkey is a tool, presented by Netflix in 2014, to automatically monitor various
cloud service instances for policy or configuration changes [NSM14]. It primarily
focuses on plain monitoring, i.e., analysis and reporting. To this end, whitebox
tests are executed on the hosting system (system under tests), whereas providing
credentials is necessary. Apart from the analysis, Security Monkey stores the
previous state of a policy or configuration and reports a warning to a specific user
[Net14]. Due to its architecture, Security Monkey can be extended, which allows
further implementation of custom security tests, i.e., a realization of technical BSI
Grundschutz 5 requirements. Moreover, Security Monkey is running in a continuous
manner whereby it can be classified as some kind of Continuous Compliance Testing
Tool.
Compared to the previously outlined problem statement, Security Monkey can help
to tackle the problem Security Misconfiguration since it can detect false configuration
parameters. However, Information Management can not be solved using Security
Monkey, because one is not able to precisely model the system’s configuration based
on previously created compliance rules or similar. Netflix’s Security Monkey only
checks all linked hosts against a given set of auditors or watchers [Net14]. Dynamic
test generation based on placeholders is not yet supported, hence, correctly handling
multiple systems is impossible.

Serverspec is the fundamental idea behind Chef InSpec, which is the core of Chef
Automate as described in Section 4.3. The functional scope of Serverspec is similar
to InSpec and allows the tester to run own or predefined tests on the SUT [Gos13].

We have considerably outlined the related work in the field of Compliance Testing.
Furthermore, we have presented related tools and clearly outlined why each of them is
not fully capable in tackling the present set of problems.
Based on these foundations, we propose our solutions to entirely tackle the existing

problems in Chapter 5.

5https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html

25

5. Conceptional Foundation

There are no facts,
only interpretations.

Friedrich Nietzsche

Contents
5.1. Domain Model . 27
5.2. Continuous Compliance . 30

5.2.1. Phases . 31
5.2.2. Responsibilities . 32
5.2.3. Roles . 33
5.2.4. Roles – Responsibilities Mapping 36

5.3. Summary . 36

In this chapter, we outline a process-oriented and tool supported-concept to solve the
central problem statement, i.e., modeling compliance from a product-point-of-view.
First and overall, we briefly introduce the elementary domain which we apply in all

later concepts and realizations. Afterward, in Section 5.2, we present our applicable
process model (Continuous Compliance) which creates the overall context for various,
more fine-grained, activities and concepts.

5.1. Domain Model
To sketch our fundamental and viral domain for Continuous Compliance as well as
Continuous Compliance Testing (cf. Chapter 6), we present central aspects and their
relation in Figure 5.1. This domain model comprises all necessary aspects required to
precisely define and introduce our overall domain and its terminology.

The most crucial part of our domain is the partition of three distinct aspects Product,
Compliance, and Test (marked with a blue square in Figure 5.1) which express the funda-
mental modeling domain, i.e., the way how we intend to model compliance requirements
from a product-point-of-view. We want to describe each compliance requirement for an
ApplicatioSystem (the SUT) – a combination of Infrastructure and Product – by the use
of a Product in the first place. A single Product is then capable of demanding certain
Compliance. In a final modeling step, each Compliance can be implemented by the usage
of a functional Test. This segmentation yields the central domain of our further concepts.
To state each aspect and its purpose, we describe them in more detail in the following.

27

5. Conceptional Foundation

Figure 5.1.: The fundamental domain model defining the central aspects for modeling
and describing compliance requirement from a product-point-of-view. It
emphasizes the crucial partition of Product, Compliance, and Test through a
blue rectangle.

ApplicationSystem describes the final SUT and moreover the concrete context for each
modeled product and its compliance requirements. An ApplicationSystem is the
conjunction of an Environment, e.g., a bare-metal server or virtual box, and the
Product which is executed on this system.
This aspect allows further abstraction between the modeled product and its oper-
ating system. To this end, any product and its compliance requirements can be
modeled in a more general way and rely on later, concrete, instantiation by means
of Environment information.
Thus, when referring to a concrete context or SUT for a Product and its related
compliance requirements or tests, we implicitly reference an ApplicationSystem.

Environment represents the system used to operate a product, i.e., the machine and its
operating system. An Environment is required to model and describe the concrete
context used to instantiate the (abstract) modeled compliance requirements, i.e.,
the ApplicationSystem.

Product is the most central point of this domain model. It is used to model a specific
software and yields the “entry-point” to model or derive (from an existing model) all
Compliance requirements and Tests. Furthermore, a Product demands on various
Compliance which needs to be satisfied by the executing ApplicationSystem. To
formulate these requirements, a Product it is associated with a Compliance element.

28

5.1. Domain Model

By means of a Product we introduce an additional modeling layer and apply the
product-point-of-view on top of the Compliance aspect. To this end, we decouple
the aspects of Compliance and Infrastructure as CaC usually does.
Eventually, a Artifact (cf. Section 6.3) is referred to as a Product as part of the
presented Software Meta-Model.

Compliance describes a certain standard which needs to be satisfied for a Product.
Furthermore, an additional impact is used to score which violation accrues if this
compliance is not satisfied. To be executed, each compliance is implemented by one
or more functional Test.

Test represents the domain of a functional test, i.e., the code used for execution. It
is used to define certain tests as general as possible and uses those in different
Compliances. To yield certain reusability of such a Test, each one can use variables
to create variability of specific properties, i.e., test parameterization is enabled.
The separation of code (Test) and demanded standard (Compliance) yields a tech-
nology’s independence of the modeled Compliance. Thus, when using Compliance
to demand Product standards, no or less knowledge on the concrete Test is required.
Later such elements are also often referred to as Compliance Test.

Audit outlines the final test execution. It reviews an ApplicationSystem to be compliant
with the modeled Compliance derived through the operating Product. To ensure
compliance, an Audit generates and executes specific Tests which are used to
technically evaluate the formulated compliance, i.e., using code.

Report comprises the domain of reporting the results of a compliance test which was
adapted, i.e., executed, on an ApplicationSystem. To this end, it needs to be aware
of each Compliance and its respective results. Furthermore, the Report is used to
document an taken Audit.

Based on this domain and its seven different aspects, we describe our Continuous Com-
pliance process model in the following. In later sections, we refer to this general domain
model and introduce a more detailed and technically motivated meta model for the
Continuous Compliance Testing tool support (cf. Section 6.3) synthesizing this domain.

29

5. Conceptional Foundation

5.2. Continuous Compliance – Process model

Elaborate

Develop

Evaluate

Figure 5.2.: An overall incremental and repeatable process model illustrating our pro-
posed approach to solve the presented problems in a continuous manner.

Towards a Continuous Compliance process from a product-point-of-view as well as to tackle
the central outlined problems, i.e., System Misconfiguration, Information Management
and Management Inexperience (cf. Chapter 3), we propose a process model which is
introduced in Figure 5.2. The main goal of this process is to formulate a guideline and
activities on how to derive and verify product related compliance requirements.
We claim that this process, i.e., determining and crafting compliance tests from a

product-point-of-view, needs to be realized with incremental and repeatable steps. This
claim is justifiable since new compliance requirements can arise posterior or during a
software development life cycle. Consequentially, we represented the process as a circular,
self-repeating flow of phases to allow a continuous and incremental proceeding. It includes
three central phases, i.e.: Elaborate, Develop, and Evaluate. Each phase has a set of
activities which leads to a defined outcome required to succeed with the next phase.

We now explain each of those phases in more detail. To further strengthen our assertion
of an incremental process, we additionally argue how each of these phases can be mapped
to the Software Development Process Life Cycle (SDLC) (cf. Section 2.3). Afterward, in
Section 5.2.2, we define and clarify each of the activities utilized to describe the phases
and emphasize the mapping to an SDLC likewise. Next, we claim and define the required
stakeholder and their Roles to conduct all activities. To conclude, we relate the presented
responsibilities and roles in an superficial mapping which we present in Section 5.2.4.

30

5.2. Continuous Compliance

5.2.1. Phases
To define the Continuous Compliance process model illustrated in Figure 5.2 more
precisely, we briefly explain the purpose of each phase. Furthermore, to be able to
perform each phase, we reference the required activities which are defined afterward.
Finally, we discuss the mapping of each phase and its activities, i.e., the responsibilities
to fulfill, towards SDLC stages.

Elaborate

The first phase, Elaborate, is applied to create the fundamental set of compliance
requirements. Thus, the central assignment of this phase is to state and compile a
set of all compliance requirements for the considered Product only and not the tested
ApplicationSystem. That is, only product related compliance requirements independent
from its operating infrastructure, i.e., product-point-of-view, should be created. This phase
partially tackles the System-Misconfiguration and Information Management problems.
On the one hand, concrete requirements, i.e., Compliance, are elaborated to ensure correct
configuration, and on the other hand, such rules are defined and documented which
reduces the problem of Information Management.

The Compliance requirements should be revealed as part of the CCR-Analysis activity
and precisely defined as well as synthesized during the CCR-Definition. However, if
similar compliance requirements occur which were part of the previous utilization of this
process (or phase), reusing existing definitions is highly recommended. Reusability of
Compliance definitions is legit, since the actual context, i.e., the final ApplicationSystem,
is not yet considered or modeled (as demanded).

This phase and its activities, i.e., CCR-Analysis and CCR-Definition, can be mapped to
the Planning and Analysis stages of an SDLC. During these stages, certain requirements
(functional and non-functional) are defined. Thus, as we are interested in non-functional
requirements as well (cf. Section 2.2), the Elaborate phase can be mapped to these stages.

Develop

The second phase, which we claim as part of the overall process model, is the Develop
phase. Its central activity is to model the Product and all previous derived compliance
policies (CCR-Modeling) on the one hand. On the other hand, this phase requires
implementing (or reusing) the concrete, functional, Tests which are implemented to
ensure the defined Compliance (CCR-Implementation). To this end, this phase aims to
create the Product and Test aspects (cf. Section 5.1) of our model and relates those with
the Compliance defined in the previous phase.
Due to accurate modeling, i.e., relating Compliance and Product, this phase reduces

the problem of System-Misconfiguration since a demanded Product configuration is
modeled. Furthermore, the issue of Information Management is reduced because relevant
information from the product-point-of-view are modeled and thus documented.

31

5. Conceptional Foundation

The modeling (CCR-Modeling) activity of this phase can be mapped to the Design
and Implementation stage of an SDLC. This claim is justifiable since, during the ex-
ecution of these stages, certain product related design decision are taken which can
be readopted to the Product modeling activity. The implementation of concrete Tests
(CCM-Implementation) is similar to “normal” testing activities, and thus, mapping it to
the Testing and Integration stage is a legitimate approach. Summarized, our Develop
phase is covered by the Design, Implementation, and Testing and Integration stage.

Evaluate

Evaluate represents the last phase of our introduced process model. The prime task of
this phase is to consider the results received by a compliance test execution (Audit), i.e.,
performing all derived Test modeled by a Product. First, the modeled Product needs to
be adapted, i.e., test execution or simulation should be carried out (CCR-Adaptation).
Afterward, the gained results need to be interpreted, and further consequences based on
those results should be discussed (CCR-Remediation).
This phase comprises the Audit and Report aspects of the presented domain model

and provides information on how compliant a reviewed ApplicationSystem is towards all
involved stakeholder, e.g., the management. To this end, this phase primarily tackles the
problem of Management Inexperience.

Our last phase can be mapped to the Testing and Integration and Maintenance stages
of an applied SDLC. During the Testing and Integration stage, our CCR-Adaptation
activity would take place and our remediation would be part of the further Maintenance.
In accordance with CCR-Remediation, a next process iteration would be initiated,

e.g., if the modeled compliance information seems to be insufficient, or the considered
ApplicationSystem needs to be fixed regarding its failing compliance requirements.

To conclude, the presented phases of the Continuous Compliance process model are capa-
ble of reducing and partially solving the outlined (central) problems. Additionally, each
phase can be mapped to the very fundamental SDLC process model, which strengthens
the assertion of an incremental and iterative process. Additionally, it allows a more
concrete responsibility and role definition on which we elaborate in the next sections.

5.2.2. Responsibilities
For a well-defined utilization of the proposed Continuous Compliance process model, we
claim six different Continuous Compliance Responsibilities (CCR) categories, i.e.: CCR-
Analysis, CCR-Definition, CCR-Modeling, CCR-Implementation, CCR-Adaptation, and
CCR-Remediation. Their naming indicates that these categories are similar to existing
activities in the SDLC (cf. Section 2.3). Hence, the relation to an applied SDLC-based
process model is more comprehensive, and an integration is justifiable. The numbering is
used for reference as part of the roles and responsibilities mapping in Section 5.2.4.

32

5.2. Continuous Compliance

CCR-Analysis groups all activities related to the fundamental analysis of the considered
Product. It needs to be defined (1), and further general, vendor specific, compliance
policies should be added (2). Moreover, the importance (impact) of all related
software entities needs to be defined (3) to enable a meaningful violation score
calculation and reporting. Finally, the violation remediation plan needs to be
outlined to handle test fails accordingly (4).

CCR-Definition summarizes the task of formulating and defining Compliance require-
ments. It should precisely describe what policy is required (5) and which violation
impact this characteristic on system misconfiguration or security has (6).

CCR-Modeling comprises all modeling related actions. The considered Product should
be described and modeled (7). Thereby, a possible ruse of already defined Products
and its composition should to be considered (for reuse) (8). Furthermore, when
reusing Products and therewith its Tests, the Test context needs to be (re-) defined
to terminate the test genericity (cf. Test Genericity Section 6.4.1), i.e., a redefinition
of placeholder values (9).

CCR-Implementation focuses on the responsibilities and tasks on preparing executable
Tests to ensure certain Compliance. First and foremost, all required test functionality
needs to be implemented (10) and equipped with placeholders to enable test
genericity (cf. Test Genericity Section 6.4.1) (11). Those tests than need to be
linked to existing compliance policies to facilitate their adaptation (12).

CCR-Adaptation comprises of the competencies of the final compliance-test adaptation.
Primarily, the test execution has to be planned and carried out (13). However, to
be able to check a hosting system for compliance, the related infrastructure needs
to be defined (14) and linked to the considered Product, i.e., the ApplicationSystem
(SUT) is modeled.

CCR-Remediation describes certain activities which face the result evaluation and their
rating. First and foremost, the reporting of one test execution needs to be conducted.
Based on these result, i.e., the maximum compliance violation, the compliance index
and detailed test results (cf. Section 6.4.3), further actions have to be considered
(15). Besides, a possible infrastructure remediation should be taken (16).

5.2.3. Roles
In the following, we claim a set of involved roles to derive product related compliance
requirements successfully, i.e., those roles and stakeholders which can yield the previous
(indirectly) noted information on the Product and its Compliance.

The resulting set represents a narrowed superset of various roles – involved into the
field of product security – defined in an incremental and iterative software development
life cycle like SDLC or SDL (cf. Section 2.3). Even more, we evaluated public standards,
such as ITIL or ISO 27001, and CMMs facing software security, such as BSIMM or

33

5. Conceptional Foundation

OpenSAMM. For example, the OpenSAMM claims that the roles Manager, Business
Owner, Architects, Developers, Security Auditor and QA Tester [OWA17a] are part of
the overall process to reach a certain security level. Thus, to allow a simple integration in
existing processes and an assistance of security standards (cf. Evaluation in Chapter 8),
we specified those roles.

Next, we briefly introduce each synthesized role, mention its tasks during Continuous
Compliance and indicate possible substituting roles, i.e., if the described role is not (yet)
adopted.

Chief Security Officer (CSO) covers the physical security of a company. The central
assignment is to protect people, assets, infrastructure and the technology. The
CSO takes over the leadership required to identifying, assessing and prioritizing
violations. In large scale organizations, the CSO often works in close collaboration
with the Chief Information Security Officer (CISO) (cf. [Tec17]).
In the process of determining compliance requirements for software products, the
roles assignments are to outline and describe the vendor’s overall compliance. Thus,
the CSO contributes to the fundamental Compliance every Product has to adhere
to. Further specific requirements, which are not familiar to the development team,
should be documented.
If the CSO is not yet established its responsibilities should be passed to the Product
Owner.

Product Owner (PO) is a development role as part of the incremental and iterative
process Scrum. This person is responsible for working with different, participating,
groups to determine which features should be implemented (cf. [Tec17]).
In the process of determining compliance requirements for software products, the
roles assignments are to define the compliance policies implied by each product
feature. Moreover, a PO should be responsible for the organizational processes, i.e.,
collecting all other relevant compliance requirements from the SA, SD or QA for
its specific product.
If the PO is not yet established its responsibilities should be passed to the next
higher management level, i.e., the person who accounts for the product/software.

Software Architect (SA) is an expert role in the overall software development team.
The roles main task is to establish the high-level design decision for the system
architecture and to decide technical standards as well as fundamental concepts
regarding the software components interactions. The perspective of an SA is more
abstract than those of an SD.
In the process of determining compliance requirements for software products, the
roles assignments are to define and to model the software architecture with the
help of our proposed Compliance Management Tooling, e.g., software components
should be created and combined as described in the architecture. Additionally,

34

5.2. Continuous Compliance

the SA should add further policies which are applied to certain architecture or
communication constraints.
If the SA is not yet established its responsibilities should be passed to the devel-
opment team (SD) as they are accounting for the software architecture in this
case.

Software Developer (SD) describes those persons who are involved in the concrete
realization of a software component or artifact, i.e., designing, programming, and
testing. To this end, a software developer has very detailed knowledge about the
software/system’s functionality and its dependencies. The roles detailed tasks could
vary in terms of the position in the overall development team.
In the process of determining compliance requirements for software products,
the roles assignment is to add specific policies which are implied throughout the
implementation, e.g., the availability of special third-party libraries or tools.
The role of the SD is not replaceable since each software has at least one developer.
However, its duties could be broadened if certain other roles, e.g., SA or PO are
not available.

Qualitiy Assurance (QA) is a group of persons who undertake administrative and pro-
cedural activities to prevent failures or defects in the resulting software. Thus, they
are responsible for the overall software quality. Usually, this role is associated with
the software tester which has to define and execute certain tests to check and verify
the correctness of a software artifact.
In the process of determining compliance requirements for software products, the
roles assignment is to outline software quality properties which could have an impact
on the security. For example, non-functional constraints, such as responsiveness,
should be expressed if they are necessary to guarantee certain functionality.
If the QA is not yet established its responsibilities should be passed to the develop-
ment team (SD) as they are accounting for the software quality in this case.

Build / Release Manager (BM/RM) supports the software development team in terms
of managing changes to the IT infrastructure, such that these changes are performed
in a secure, documented, and efficient manner. Moreover, planning and observing
of (final) software roll-outs are parts of the roles responsibilities (cf. [IT]).
In the process of determining compliance requirements for software products, the
roles assignment is to compile all the needs the software requires from on the
hosting infrastructure, e.g., driver or network protocols, and vice-versa. Besides
infrastructure related policies, additional policies required through roll-out and
delivery process demands, e.g., configuration parameters, should be added as well.
If the BM/RM is not yet established its responsibilities should be passed to the SA
since its knowledge on the infrastructure is most detailed in the project.

35

5. Conceptional Foundation

5.2.4. Roles – Responsibilities Mapping
Finally, in Table 5.1, we present our recommended mapping between the defined roles and
responsibilities. Since all single parts are previously outlined in detail, we refrain from
presenting a detailed argumentation on this mapping. Instead, this mapping serves as a
short and accurate summarizing of the previously described roles and its responsibilities.
To summarize, all presented roles and responsibilities can be mapped to each other.

However, this mapping can vary if certain roles are not yet deployed in a company
(cf. substituting roles in Section 5.2.3).

5.3. Summary
In this chapter, we have presented our broad concept for an incremental process, i.e.,
Continuous Compliance, and outlined its assistance to tackle the introduced problems.

First, in Section 5.1, we introduced and defined the overall process domain. We
explained the general concepts of Product, Compliance, and Test. Furthermore, we
described the adaptation of the separation of concerns principle, i.e., additional modeling
layer (Product) and the option to reusability, and declared the ApplicationSystem, i.e.,
the resulting context for each model.
In Section 5.2, we presented our general process model to derive, create and test

compliance requirements from a product-point-of-view. To specify each phase in more
detail, we discussed and claimed roles and responsibilities which are required to successfully
derive compliance requirements for an SUT. It is to conclude that, Continuous Compliance
from a product-point-of-view is a complex (and reoccurring) assignment, including different
departments and individuals. Nevertheless, with the support of the provided roles and
their responsibilities, the accomplishment of this process should be clearer and more
straightforward. To simplify its adoption, we have presented an exemplary mapping
to the Software Development Life cycle (SDLC) which emphasizes the applicability
of Continuous Compliance. Further integration and support are shown as part of our
Evaluation (cf. Chapter 8).

To promote the practical application of this process called “Continuous Compliance
Testing”, we present a more technical motivated concept, i.e., a tool support for our
process and its specific modeling domain (separation of concerns, cf. Section 5.1), in the
following.

36

5.3. Summary
R
es
po

ns
ib
ili
ti
es

CCR-Analysis
(1) ... defines customer-project - 3 - - - -
(2) ... defines general, vendor specific, policies 3 3 - - 3 3

(3) ... defines violation impact of involved artifacts 3 3 - - 3 -
(4) ... describes violation remediation 3 - - - 3 3

CCR-Definition
(5) ... precisely describes policies 3 3 3 3 3 3

(6) ... defines violation impact of compliance 3 3 - - 3 -
CCR-Modeling
(7) ... models Product - - 3 3 - -
(8) ... considers reuse of already modeled Products - 3 3 - - -
(9) ... placeholder (re-)definition for artifact - 3 3 3 - -
CCR-Implementation
(10) .. implements functional tests - - - 3 3 3

(11) .. improves genericity by use placeholder - - - 3 3 3

(12) .. links tests to compliance entities - - - - 3 3

CCR-Adaptation
(13) .. plans and execute Tests 3 - - - 3 -
(14) .. setups environments for customer-projects - - 3 - - 3

CCR-Remediation
(15) .. considers test results and plan further actions 3 3 - - - -
(16) .. suitable infrastructure remediations - - - - 3 3

R
ol
es

Chief Security Officer
Product Owner
Software Architect
Software Developer
Quality Assurance
Release Manager

Table 5.1.: Roles and Responsibility Mapping – A checkmark (3) indicates that this
task is part of the responsibilities of the linked role. A single task can be
delegated or distributed to multiple roles, which corresponds to more than one
check mark in a row. A dash (-) indicates the opposite, e.g. due to missing
knowledge or range of duty, that the role should not be mapped to this task

37

6. Continuous Compliance Testing

There are no facts,
only interpretations.

Friedrich Nietzsche

Contents
6.1. Continuous Compliance Phase Support 39
6.2. Software Requirements Specification . 41
6.3. Meta-Model . 43
6.4. Technical Concepts . 50

6.4.1. Reusability . 50
6.4.2. Inspection . 55
6.4.3. Reporting . 56

6.5. Summary . 61

To yield a practical adaptation of Continuous Compliance, we present a more technical
concept leading to a tool support and briefly describe how to support each phase. The
resulting procedure, i.e., the tool-supported application, is called Continuous Compliance
Testing, where “testing” indicates the active adaptation of Continuous Compliance.

The proposed tooling, Compliance Management Tooling (CMT), should support all
involved individuals (roles, later often referred to as user) during each phase. Thus, it
needs to be likewise capable of defining, modeling, and executing compliance requirements.
In Section 6.1, we briefly outline the tool support for every phase to highlight the mapping
between both concepts, i.e., the general Continuous Compliance process model and its
tool-supported application (Continuous Compliance Testing). The concrete needs for this
tooling are explained using natural language in Section 6.2, and afterward, in Section 6.3,
we use those requirements to define the fundamental (more technical) meta model.

6.1. Continuous Compliance Phase Support
To accomplish a tool support for the previously presented Continuous Compliance process
model, an accurate mapping and realization of each process phase is required. To this
end, we extended the general model with additional, more precise, activities. These
extensions are indicated with a small, named subcircle in Figure 6.1. We describe how
each of those activity helps to perform the more general phase, e.g., how the Defining
activity supports the Elaborate phase, in the following.

39

6. Continuous Compliance Testing

Elaborate

Develop

Evaluate

Defining

Inspection

Reporting

Modeling

Figure 6.1.: The Continuous Compliance process model extended with sub-activities
highlighting the tool-supported fields.

Elaborate During the Elaborate phase, a primary tooling needs to support the user
in defining compliance requirements. For example, it needs to provide functionality to
create and manage various compliance requirements. Additionally, it should support the
reusability of previously created compliance tests. To this end, the single and briefly
described activity during this phase is the Definition.

Develop During this phase, a tool should support the modeling and implementation
of Tests, indicated by the second subcircle (Modeling, cf. Figure 6.1). In particular, it
should support the user in modeling the relations between the central aspects of our
modeling domain. For example, adding certain Compliance requirements to an existing
Product should be supported. To enable an efficient modeling, the tool should provide a
proper support for reusability, i.e., reusing already existing elements in other (maybe
varying) contexts1. Moreover, a tooling should encourage the functional implementation
of Tests to ensure the Compliance validity. Thus, creating and adding Tests to already
modeled Compliance requirements is a necessity.

To provide the essential input for the next phase, i.e., results of an compliance test, a
proper tooling should provide an ability to execute the required tests which is indicated
by the third activity, i.e., Inspection, in the process model.

1At this point, context does not reference the ApplicationSystem but rather another Product or Compli-
ance reusing already existing Compliance or Tests.

40

6.2. Software Requirements Specification

Evaluate To assist the evaluation and its related decision making, a Reporting func-
tionality is somehow needed. Thus, a tooling supporting the Continuous Compliance
process should have the functionality to present the test results, i.e., which of the defined
Compliance requirements passed or failed. Furthermore, it should report the resulting
violation score calculated on the basis of the previously modeled impacts. In more detail,
we claim that an appropriate tooling should support the reporting classes of Quality
assurance, i.e., trying to eliminate security vulnerabilities, and Technical Oversight, i.e.,
security status or posture of an IT system, as defined by [Jan10; Sav07; VHS03].

To conclude, a tooling should support the decision and remediation process with data
condensed by the existing test results.

Based on this rough overview on how to support the process more technically, we describe
additional and more fine grained requirements for the Compliance Management Tooling
in the next section.

6.2. Software Requirements Specification
To provide a tool support which tackles the lack of non-existing software for modeling
compliance requirements from a product-point-of-view (cf. Section 3), we propose the
Compliance Management Tooling (CMT). To enable a practical application of the previous
introduced Continuous Compliance process model, the tooling has to support each phase
with various functionalities (cf. Section 6.1). We describe all requirements in natural
language [Poh10] indicate certain requirements with an marker, i.e., [CMT-Req-X] where
X is ongoing numeration, to support an easier cross-referencing, e.g., to assist the
verification as part of our evaluation (cf. Section 8.1).

Using the CMT, a user should be able to model Compliance for a Product to gain the
ability to ensure compliance from a product-point-of-view. To model a Product in more
detail, i.e., more fine-grained elements to reinforce Reusability of partial Products, the
user should be able to represent it through Artifacts, such as Software Components and
Software Landscapes [CMR-Req-1]. For example, a LAMP web server could be modeled
as a Software Landscape using a Linux, Apache, MySQL, and PHP Software Component.
This segmentation yields higher reusability since one Software Component can be used in
other Products, e.g., PHP as part of another WAMP2 server, and decreases the problem
of Information Management as existing information can be reused. Likewise, these more
fine-grained Artifacts can demand certain Compliance.
To unfold the required Compliance domain (cf. Section 5.1), the tool should allow

linking this compliance against existing Artifact entities [CMR-Req-2]. Furthermore,
it should provide more fine grained entities to describe the Compliance at all and similar
to the Artifact entities reduce the problem of Information Management.

In particular, the tooling should supply Compliance Profiles, Compliance Rule Sets and
Compliance Rules to support an excellent modular construction of certain Compliance

2Windows, Apache, MySQL, PHP

41

6. Continuous Compliance Testing

[CMR-Req-3]. In general, Compliance Rules should be groupable as Compliance Rule
Sets and further as Compliance Profile. This aggregation should allow the usage of atomic
Compliance Rules, i.e., exactly enforcing one requirement. For example, the previously
mentioned PHP Software Component demands a running php-fpm service which needs
to be installed as well. To achieve the best Traceability, i.e., being able to spot the failing
compliance easily, this dependency has to be modeled with two distinct and atomic
Compliance Rules, each enforcing one requirement (installed or running). To finally
model the specific service requirements (installed and running) in a more simple way,
both atomic Compliance Rules can be aggregated into one Compliance Rule Sets.
To ensure that each demanded Compliance is satisfied by the ApplicationSystem, the

tooling should provide the ability to define and link functional Tests [CMR-Req-4].
This feature finally resolves the problem of System-Misconfiguration as a user has now
the ability to model and to check a system for compliance.

Each Test should encapsulate certain security tests and evaluation functions as code to
test its implementing Compliance. Further, it should allow using variables [CMR-Req-
5], e.g., a variable (Placeholder) for an expected result of an evaluation function, which
could be defined on a higher level. That is, in terms of to the previous presented domain
model, the level of Compliance and Product. Exemplary, this feature should allow the
user to verify a certain value which is defined in the concrete Product context, e.g., an
existing file. Thus, the user is able to define Tests in a general manner and can reuse
them in different contexts.

Finally, beside modeling the compliance requirements for a certain product using Tests,
Compliance and Artifacts, the user should be able to create the concrete ApplicationSystem.
Therefore, the CMT needs to provide a Customer Project entity, which allows the
combination of a Product and Environment [CMR-Req-6]. Using this entity the user
should be able to execute or simulate the compliance test [CMR-Req-7]. Besides
the self-explaining execution, the model simulation should be considered to simulate a
compliance test and to check for certain properties, e.g., if at least one modeled Tests per
Artifact exists or if all used Placeholder are defined through linked Placeholder Values.

To determine the violation score impact if such a Compliance fails, the user should have
the ability to define an impact on Compliance and Artifact level [CMR-Req-8]. The
accumulation of this impact values should yield the final violation score for a particular
test. Then, the CMT should be able to report on those compliance violation score and
further test results, e.g., which Compliance failed or passed. More precisely, a Reporting
functionality is necessary [CMR-Req-9] to support the Management Inexperience

42

6.3. Meta-Model

6.3. Meta-Model
Models are powerful tools to express the structure, behavior, and other properties [Spr+10].
To yield such a powerfull tool and to express the permitted structure to which all following
models must adhere to [Spr+10], we us the well-know Unified-Modeling-Language [Boo05]
to craft our modeling language. To be able to model all previously defined aspects, the
meta model is based on the claimed requirements for the Configuration Management
Tool (CMT) in Section 6.1 and Section 6.2.

By its origin this meta model relies on the domain model of the Continuous Com-
pliance process model (cf.Section 6.3) which was introduced in the previous chapter.
Thus the overall meta model can be generalized – for the sake of simplicity of further
characterizations – in four major areas illustrated in Figure 6.2.

C
om

pl
ia
nc
e

Ar
tif
ac
t

Te
st

Execution

Figure 6.2.: Generalized Compliance Management Tooling Meta Model containing the
four major areas and its interconnection

As shown in Figure 6.2, the central meta model aspects, namely Test, Compliance and
Artifact3 reoccur and are horizontally interconnected between themselves which indicates
the similarity (and usage of the outlined domain model). Furthermore, Test and Artifact
are vertically connected to a (new) Execution domain, which contains the aspects of
compliance test: execution and simulation. Each single aspect, its specific modeling
elements, and interconnection to other aspects are explained in detail in the upcoming
paragraphs. The resulting and fully composed meta model is summarized at end of this
section (cf. Figure 6.7).

3Previously referred to as Product

43

6. Continuous Compliance Testing

CMT Meta Model – Test

The most crucial part of the domain model is represented by the Test field. It contains
the whole testing domain and all its required information to model and finally generate
one concrete, executable compliance test.

Placeholder

Test

1

*

Concrete Rule
Implementation which
can be executed

Testcode

Figure 6.3.: Test aspect of the CMT meta model. To introduce the variables in Testcode
the aspect Placeholder is presented

The prime element, which is used by the Compliance and Execution domain, is the
Test entity. It serves as a single representative for a test and depends on a Testcode entity
used to formulate the specific test code. To describe a Testcode as general as possible, it
could include as many Placeholders as needed. For example, a port test4 could be more
generalized by replacing the concrete port number with a placeholder.

CMT Meta Model – Compliance

The Compliance domain encapsulates the information (impact, significance and classifi-
cation, cf. attributes of Figure 6.4) required for violation score calculation and reporting.
Moreover, it acts as intermediate domain and establishes the link between the Tests and
Artifacts. The domain includes three different manifestations of the compliance entity,
namely Compliance Profile, Compliance Rule Set, and a Compliance Rule. This split
enables a high degree of reusability and various level of granularity. Furthermore, compli-
ance information can be aggregated and shared between these different manifestations
through a hierarchical-like structure. With this Generalization Hierarchy, a result of the

4For example, testing whether port 80 is opened to serve standard HTTP requests.

44

6.3. Meta-Model

hierarchical decomposition design principle, the overall complexity of this data structure
is reduced.

Compliance Profile

Defined by CSO.
 More abstract/general,

not yet executable

Compliance Rule Set

Compliance Rule

/ derivedPlaceholder

1..*

Metadata

+ title

+ description

Compliance Metadata

+ type: Classifcation

Compliance

/ derivedPlaceholder

1..*

1

<<enumeration>>
 Classififcation

+ Optional
 + Recommended

+ Required

1..*

Compliance Violation

Figure 6.4.: Compliance aspect of the CMT meta model. It illustrates the composition
of Compliance. Additionally, the used Metadata and Compliance Violation
are shown.

For example, a basic Compliance Rule, e.g., testing correct port configuration for a
network service, could be used in multiple Compliance Rule Sets, e.g., Apache and Nginx
services. These Compliance Rule Sets can likewise be aggregated into one (or more)
Compliance Profile(s), e.g., a web service using an Apache and FTP service.

This domain area is connected to all three other domain areas and represents one
essential field as well. The Test domain area is associated throughout the Compliance
Rule entity, since every rule describing a certain compliance requirement needs some or
at least one test to accomplish the evaluation. Since these Compliance, modeled with
the help of this domain area, are used to described Artifact compliance policies, each
Artifact can have as many Compliances as needed.

CMT Meta Model – Artifact

The primary application of the Artifact domain is to define the context for each derived
Test (through the intermediate Compliance domain) and to model the software and its
components for which the compliance requirements should be defined. Though each
Artifact is linked to various compliance entities (Compliance Rule, Compliance Rule Set

45

6. Continuous Compliance Testing

or Compliance Profile), which describe the demanded compliance requirements. This
inter-domain connection allows a later derivation of compliance requirements based on
the input a single software artifact.

Metadata

+ title

+ description

Software Landscape

Software Component

Customer Project

1..*

*

Artifact Metadata

+ artifactId

Artifact

1

Placeholder Value

*

1..*

Environment

+ title

+ address
1

Compliance Violation

Figure 6.5.: Artifact aspect of the CMT meta model. It illustrates the composition of
Artifact and the used Metadata as well as the Compliance Violation are
shown. Additionally, to be able to define a value for derived Placeholder the
Placeholder Value aspect is presented.

Similar to the Compliance domain, the Artifact domain introduces a hierarchical-like
structure to reduce the complexity. Three manifestations of Artifact exist as well and each
is associated to one or more Compliance entities to establish a software-compliance relation.
Software Components, Software Landscapes, and Customer Project are introduced to
represent the software and its underlying structure. For example, a Software Landscape
can have and reuse arbitrary many Software Components. To this end, a compliance
requirement needs to be modeled only once and can be reused as often as required.
Depending on the traced modeling approach, a single Software Component can be

interpreted as a system or software component which owns a process on the hosting system.
Accordingly, a Software Landscape is an accumulation of various “stand-alone” processes
which are used to accomplish the desired functionality. For example, a ssh-service could
act as a Software Component as part of a web server Software Landscape.

46

6.3. Meta-Model

As the Artifact precisely defines the context for the (indirectly) linked Tests, allowing
the definition for the previously – in the Test aspect – introduced Placeholder is necessary.
This necessity is realized through an entity Placeholder Value, which itself is linked
to one Placeholder Value entity from the Test domain. To counter an ambiguous
definition of placeholder values, which can arise through hierarchical inheritance, the
latest artifact defining the Placeholder Value overrides all previous values. This central
idea (Reusability) and the derivation, as well as the overwriting process, are described
detailed in Section 6.4.1.

CMT Meta Model – Execution

AuditTest Run Test Result

+ ResultType type 1 .. *

Result

+ ResultType type

1 .. *

Compliance ViolationGenerated Testcode

1

1

<<enumeration>>
 ResultType

Report

Figure 6.6.: Execution aspect of the CMT meta model. It illustrates the composition of
an Audit. Additionally, aspects to store and report the tests results (Test
Run, Test Result) are shown.

The Execution domain model encapsulates all required information which are needed
during and after a compliance test run. Artifacts, Compliance Rules and Tests are snap-
shotted and represented through the Entities Audit, Result and Test Result accordingly.
This domain holds all kinds of information and thus relies on all three, previously

introduced, domains Test, Compliance and Artifact. However, this additional domain area
is required and should be separated due to the conception of auditable and repeatable
compliance reports. Those reports are possible as the “status-quo” is stored (snapshotted)
during a test and can be used to repeated the test-run under the same conditions.
Generated Tests, which rely on Test, Compliance and Artifact domain information, are
stored and linked by a single Audit. Besides the generated tests, further information on
the environment-under-test needed to be persisted as well, which is achieved by an Audit
entity as well.

CMT Meta Model

The entire meta model which describes the central aspects of our proposed Compliance
Management Tool is summarized in Figure 6.7. It shows all four, previously explained
parts, i.e. Test, Compliance, Artifact and Execution, and their connection between
themselves.

47

6. Continuous Compliance Testing

In further section of this thesis, a model is an full or partial instantiation of aspects
from the presented meta-model illustrated in Figure 6.7. This implies that we make
use of the ability to specify and adopt selective visualizations (also known as aspects
or viewpoints) of our meta-model [Spr+10], i.e., we omit certain parts of the modeling
language like the Execution part.

48

6.3. Meta-Model

C
om

pliance Profile
Placeholder

Test

1 1 .. *

*

C
oncrete R

ule
Im

plem
entation w

hich
can be executed

C
om

pliance R
ule Set

C
om

pliance R
ule

/ derivedPlaceholder

1..*

M
etadata

+ title

+ description

Softw
are Landscape

Softw
are C

om
ponent

C
ustom

er Project

1..*

*

C
om

pliance M
etadata

+ type: C
lassifcation

Artifact M
etadata

+ artifactId

1

Artifact
C

om
pliance

/ derivedPlaceholder

1..*

*

1
1

<<enum
eration>>

C
lassififcation

+ O
ptional

+ R
ecom

m
ended

+ R
equired

Placeholder Value

*

1..*

Audit
Test R

un

Testcode

Environm
ent

+ title

+ address

Test R
esult

+ R
esultType type

1 .. *

1

1..*

<<enum
eration>>

R
esultType

1

1

R
esult

+ R
esultType type

1

*

1

+ Valid
+ Invalid

1

1 .. *

C
om

pliance Violation

G
enerated Testcode

1

1

R
eport

1

Figure 6.7.: Entire CMT meta model to precisely define the modeling domain. The blue
swim-lanes indicate the previously defined aspects, i.e., Test, Compliance,
Artifact and Execution

49

6. Continuous Compliance Testing

6.4. Technical Concepts
In this last section, we define further, more technical oriented, concepts to match the
Compliance Management Tooling as supporting tool for the Continuous Compliance
Testing process. To this end, we rely on the previously outlined software meta model (cf.
Section 6.3) and describe functionalities based on its aspects.

First and foremost, we present a concept to increase the reusability of already created
Tests. Next, we briefly describe the Execution of compliance test in Section 6.4.2 and
continue with the concept of Reporting.

6.4.1. Reusability
Due to the problem of Information Management, i.e., handling a large amount of similar
information, we introduce the concept of Reusability. Given our proposed software
meta model, certain reusability is given implicitly. For example, one can create and
model a Compliance Rule once and reuse it – due to a separation of concerns (cf.
Section 5.1 and Section 6.2) – in other Product scopes simultaneously. However, as
certain concrete compliance properties, such as filename, port, settings, or locations, can
change across different ApplicationSystems, one needs the option to somehow “redefine”
certain attributes in the according to test code. The simplest solution is to create a
specific test for each changing property. However, this approach leads to an enormous
test code redundancy. To this end, we mentioned the usage of Placeholder (variables) to
allow test code parameterization (cf. Section 6.2). We present three minor concepts Test
Genericity, Whitelisting, and Blocking to precisely clarify the application and cancellation
of variables in test code.

Test Genericity

To accomplish a high reusability of already implemented Compliance Test we introduce
our concept Test Genericity. We describe its Basic Idea and the Concrete Concept in
the following.

Basic Idea The basic idea of Test Genericity is to allow custom, user-defined and
overwriteable values in the compliance test code. These Placeholders could be compared
to regular variables used in common programming language. However, to increase the
flexibility even more, Placeholder can be instantiated with an expression to define a range
or a set of certain values.

A context for one or more Placeholders is defined through the superiorly linked Artifact
entities (cf. Section 6.3). The instantiation, i.e., deriving the actual values for a given
Placeholder, should be performed during the test generation process.

Concrete Concept To yield Test Genericity, a test can have arbitrary many Placeholder
entities linked. Each Placeholder is then defined with the help of a PlaceholderValue,
which belongs to an Artifact (cf. Test and Artifact meta model in Section 6.3). In

50

6.4. Technical Concepts

addition, defining a very general test and instantiating it (defining its variables) later is
possible, e.g., when the (runtime) context is known.

A Placeholder Value is represented through a Compliance Management Tool – Expres-
sion (CMT-Exp). The CMT-Exp is described using a Context Free Grammer (CFG)
(Equation Set 1). As defined, the CMT-Exp allows recursion at certain points, which
allows fine-grained value description. Creating Ranges of values (..), creating Sets of
values ([]), and using value Exclusion (!) is supported. For example, the expression [a,

b, 0 .. 9, !3] is evaluated to the set {a,b,0,1,2,4,5,6,7,8,9} and is similar to
the (more complex) set definition [a, b, 0, 1, 2, 4, 5, 6, 7, 8, 9]. Applying
this example Placeholder Value on a Placeholder defined for a test would then result in
11 unique tests instances.

Symbols = Set of all alphabetic and numeric characters

G = ({Exp, Set, SetItem, V alue, Character}, Symbols,R,Exp)
R = {

Exp→ V alue | Set

Set→ [SetItem]
SetItem→ Item, SetItem | !Item, SetItem | ε

Item→ V alue | V alue .. V alue

V alue→ CharacterV alue

}

Character ∈ Symbols
G over the alphabet A = { [] , . ! ε }

Equation Set 1: A Context Free Grammar (CFG) representing the expression
(CMT-Exp) used to define placeholder values.

This concept supports to rely on one test, e.g., a test checking for open ports, in multiple,
different contexts, e.g., web-server on port 80 and ssh-server on port 22. Furthermore,
the ability to override Placeholder Values is created. In the next section, we elaborate
on how overwriting should be handled and how overwriting creates the foundation for a
whitelisting of tests.

51

6. Continuous Compliance Testing

Context PlaceholderValue as CMT-Exp

A [8080, 8081]

B [0 .. 1024, !22, !443]

C [0 .. 1024, !22]

Table 6.1.: Compiled set of all three contexts A, B, and C, for the Test CT3. For each
context the derived PlaceholderValue expression is given.

Whitelisting

To extend the practicalness of Test Genericity, we present a concept on Placeholder
overwriting, called Whitelisting. We describe its Basic Idea and the Concrete Concept in
the following.

Basic Idea Whitelisting allows the definition and modeling of new CustomerProjects
more simplified. In a common scenario, all tests for one, unique CustomerProject are
properly defined for this explicit case with no reusability in mind, e.g., a J-Unit test for
a specific class. Furthermore, all vendor related policies, i.e., those independent from the
specific CustomerProject and applicable, need to be readopted each time.
To simplify and speed up the process of defining a new CustomerProject, we present

the concept of Whitelisting. The idea is to create a set of ComplianceTests (Baseline
Tests) as strictly as possible once, i.e., blacklisting as much as possible. Next, these
Baseline Tests should be part of any CustomerProject. To be applicable in any context,
the support for whitelisting is required, i.e., relaxing certain values. Thus, Whitelisting
denotes the process of PlaceholderValue relaxing through CMT-Exp (cf. Section 6.4.1).

Concrete Concept The concrete concept on Whitelisting is defined and illustrated
through a fictional test scenario which is partially modeled in Figure 6.8 using the
previously defined meta model (cf. Section 6.3). The figure shows the three central
aspects, i.e., Artifact, Compliance and Test, illustrated as different layers. It represent
the full derivation tree of tests for one CustomerProject P. Each layer represents another
partial domain (cf. Section 6.3), starting with Artifacts on top (Layer 1), followed
by Compliances (Layer 2) in the middle and finished with the Test domain at the
bottom (Layer 3). The highlighted paths represent all possible derivation paths from
CustomerProject P to a Test CT3, which models a port test in this scenario.

Applying Whitelisting in this scenario will result in three disjoint contexts (highlighted
paths) for the inherited ComplianceTest CT3, context A (leftmost), B (center) and C

(rightmost). The derived Placeholder Values are complied in Table 6.1. Their derivation
is explained in detail in the following three steps.

52

6.4. Technical Concepts

CT3:TestCT3:TestCT3:Test

pValue = [8080, 8081]

P:CustomerProjectP:CustomerProject

SL1:SoftwareLandscapeSL1:SoftwareLandscape SL2:SoftwareLandscapeSL2:SoftwareLandscape

SC1:SoftwareComponentSC1:SoftwareComponent SC2:SoftwareComponentSC2:SoftwareComponent SC3:SoftwareComponentSC3:SoftwareComponent

CR1:ComplianceRuleCR1:ComplianceRule CR2:ComplianceRuleCR2:ComplianceRule

CT1:TestCT1:Test CT2:TestCT2:Test CT4:TestCT4:Test

placeholder = portNumber

pValue = 8080 pValue = [0 .. 1024]

Legend

= irrelevnat for placholder resolving= irrelevnat for placholder resolving

pValue = [0 .. 1024, !22]

pValue = [0 .. 1024, !22, !443]

Figure 6.8.: An exemplary partial model defining a sample CustomerProject P crafted
on basis of the defined CMT meta model. It contains the central its aspects,
i.e., Artifact, Compliance and Test, and illustrates the (finally) derivable
tests. Highlighted paths correspond to all possible derivation paths for
ComplianceTest CT3. Each path has, if needed, an annotated CMT-Exp to
define or relax the PlaceholderValue on this unique path.

53

6. Continuous Compliance Testing

Step 1 - Derivation Starting at the CustomerProject P, all possible ComplianceTests
need to be derived, i.e., simply traversing down the data-tree. Since one test,
e.g. CT3, can be reached through multiple paths, the most accurate path needs
to be stored for a unique (context) identification. For example, the rightmost
derivation yields the path-id p.sl2.sc3.cr2.ct3. After visiting a leaf-node, i.e.,
ComplianceTest, the backwards traversal (revisiting all parents) is used to determine
possible PlaceholderValues, i.e., Determination.

Step 2 - Determination This step accomplishes the PlaceholderValue determination,
which is conducted during the backwards traversal. When (re-)visiting a parent
artifact entity all defined PlaceholderValues are checked. If one parent entity defines
a value for the Placeholder, it overwrites all already existing PlaceholderValues
on this path. This step can result in a more general definition (generalization)
or a more specialized definition – depending on the CMT-Exp. However, all
previous defined PlaceholderValues are overwritten and, explicitly, not extended
to preserve the principle of locality defined by Denning et al. [Den05]. Otherwise,
if inheriting all previous defined PlaceholderValues, changes to lower-level entities
would unintentionally also change the parent’s behavior/context. This effect would
dissent the Generalization Hierarchy introduced in the conceptual meta model
(cf. Section 6.3).
An exemplary overwrite is illustrated by SoftwareLandscape SL2 and its right outer
derivation path, which overwrites the PlaceholderValues defined on SoftwareCom-
ponent SC3. Since the context path for SL2 (p.sl2) is more general than the one
for SC3 (p.sl2.sc3), this proceeding is named generalization.

Step 3 - Instantiation In the last step, the concrete test instantiation is performed. For
each resolved PlaceholderValue (through Determination) one test case is generated.
Afterward, the generation process has to evaluate the defined CMT-Exp and for
each value of the expression on a single test should be created and attached to
the test case. The chosen example (ComplianceTest CT3) yields three test cases.
Furthermore, for the test case of context B (cf. Table 6.1) 1023 tests are generated
and attached due to the defined expression.

With the presented concept and the ability of Test Genericity we extend the approach
of Data-Drive-Testing [Mes07] towards an “Generative-Data-Driven-Testing” attempt.
More precisely we substitute the static test data source with an dynamic derivation
process as defined above. To this end, we state that adopting this concept to our
defined domain, i.e., the Product, on is able to model different software products, their
components and compliance requirements in a modular and reusable way.

54

6.4. Technical Concepts

Blocking

The fundamental and straightforward idea behind Blocking is to support finalization of
PlaceholderValue at certain stages (Test, Compliance or Artifact) in the model, i.e., to
prevent further definition or overriding in a higher context. Thus, this concept yields the
contrary functionality as proposed by the Whitelisting concept.

However, this feature yields, even more, test reusability since one can write as general
tests as possible and specify their semantic meaning on Compliance level. For example,
writing a single Test while ensuring different file modes is possible, i.e., defining a
Placeholder for the specific file mode property. By applying the concept of Blocking,
one is now able to reuse this test and repeatedly instantiate this Placeholder, e.g., with
“read” to check if a certain file is readable. This approach results in a more accurate
and atomic compliance requirement which only checks whether a file is readable. The
adaptation of such a compliance requirement requires less knowledge about the concrete
test functionality and thus improves the applicability of Test Genericity.

To strength the continuousness, e.g., using the CMT in an automated manner, we
introduce further tooling as part of the Execution activity next.

6.4.2. Inspection – Test Execution and Simulation
] To satisfy the second phase of the Continuous Compliance process, i.e., Develop, and
its defined Inspection activity the CMT needs to be capable of generating and executing
the modeled compliance requirements. As we want to encourage a high adaptability of
our tooling, we propose the creation of external Test Plugins which rely on existing test
frameworks, e.g., InSpec or OpenSCAP.

The central task is to derive and instantiate all modeled compliance tests for an SUT.
These tests then need to be transformed and executed. Next, the CMT has to collect
all outcomes to support further evaluation and reporting. However, as the fundamental
functionality needs to be performed by the appropriate implemented Test Plugin, we do
not define any concrete concept and rather rely on existing functionality of the used test
framework.

Simulation Besides the actual execution of Compliance on an Environment, we propose
the idea of Compliance Simulation. Given the previously defined modeling approach,
it is possible to simulate the compliance testing using the model itself. For example,
the model could be instantiated and validated against certain constraints proving its
correctness. More precisely, we purpose the concept of Compliance Validation and
Placeholder Validation.

Compliance Validation should validate if each modeled ComplianceRule is at least
implemented by one Test. Otherwise a compliance test run would yield improper results
as not every demand Compliance could be ensured.

55

6. Continuous Compliance Testing

Placeholder Validation should check if each Test is instantiable, i.e., each used
Placeholder has at least one PlaceholderValue definition. Otherwise, when executing
unresolved Tests, it would lead to unexpected behavior in the Test Runner.

External Accessibility To further support the integration into an external automation
system, we introduce the CMT - Command Line Interface (CMT-CLI).

The CMT-CLI represents a command line interface which is able to remotely control
the CMT. To this end, the tool or script should be able to search and trigger (for
execution) all available compliance tests. As a consequence, the CMT-CLI needs to be
able to authenticate against the CMT and should be capable of communicating with
the CMT in a certain way. Furthermore, it requires the ability to fetch all available
results and outcomes once a compliance test run has terminated. Summarized, the
CMT-CLI should cover all fundamental functionality, i.e., searching, listing and execution
of compliance tests, and simplify the remote interaction.
Utilizing the CMT-CLI in conjunction with an automation system, e.g., Jenkins,

performing compliance testing in an continuous manner is desirable, i.e., Continuous
Compliance Testing.

6.4.3. Reporting
To accomplish the last outlined requirement for a tooling support, i.e., Reporting, we
present metrics based on the previously gathered test results. As metrics are an important
factor in making sound decisions on the efficiency of security (or similar) operations
[Jan10], we claim that such reports and their metrics support the management and
reduce the problem of Management Inexperience. To this end, we present and elaborate
on different Key Performance Indicators (KPIs) used for visualizations and outline the
concrete concept towards a calculation of the current violation score, i.e., the Maximum
Compliance Violation.

To report the tests results in a simplified manner, but as fine grained as possible, we
suggest three different KPIs, i.e., the Compliance Index, a Compliance Violation and
Derivation Graph.

Compliance Index represents the relation between all passed and failed compliance. This
relation should be visualized by a simple chart which allows a quick and simple
interpretation of how compliant the ApplicationSystem is.

Compliance Violation represents the violation classification of failed tests. It should
interactively visualize the three different violation states (Low, Moderate and
High) and indicate the current violation score based on the Maximum Compliance
Violation of all failed tests.

Derivation Graph shows a partial model, i.e., Product, Compliance, and Test, of the
meta-model domain including all derivation paths starting with the top-level domain,
i.e., the Product.

56

6.4. Technical Concepts

This visualization helps to comprehend all modeled relation and inherited tests used
for this particular test execution. Furthermore this visualization allows to track the
inter-model relation easier and indirectly leads to a fundamental documentation of
the modeled Product.

The detailed Maximum Compliance Violation calculation required for the Compliance
Violation reporting is described with the help of a fictional scenario in the following.

Maximum Compliance Violation To provide a Compliance Violation report, a somehow
calculated violation value for each test is required. Due to the general test derivation,
which is the of Test Genericity and Whitelisting (cf. Section 6.4.1), a context-sensitive
calculation is necessary. The resulting violation score for a single test should represent all
its inherited impact factors of its superior modeling elements, i.e., those factors defined
by Compliance and Artifact parent entities (cf. Section 6.3). Furthermore, the Maximum
Compliance Violation, should only include the violation score of those tests which failed.
To this end, an score of 0 (zero) represents a compliance test with only valid tests.

In Table 6.2 all factors, which are part of the particular test violation score calculation,
are explained. The foundation for the derived values are those properties defined in the
domain model. The utilized values in Table 6.2 are derived from a fictional scenario
CustomerProject P and its modeled dependencies shown in Figure 6.9. The final outcome
(90%) represents the Maximum Compliance Violation for P.

To specify the calculation, we define a set of equations next, which are sufficient to
implement the defined Maximum Compliance Violation.
Equations 5.2, 5.3 and 5.4 correspond to the maximum value of all possible impacts,

significances and types along the derivation path. Furthermore, the type categorization
(REQUIRED, RECOMMENDED, OPTIONAL) is mapped on thirds (1

3) using Equation
5.1. The Compliance Violation (CV) per test is expressed by Equation 5.6. It results
from adding the weighted share to its basic offset (Type). The final Maximum Compliance
Violation calculation, expressed in Equation 5.7, is derived by taking the maximum over
all CV. Hence, only the highest violation score is reported.This is justifiable as we only
intend to present the Compliance Violation foreseeable due to missing compliance.

Result Interpretation To facilitate a result interpretation for our presented Maximum
Compliance Violation metric a mapping or similar is required. To this end, we provide
an interpretation function from the numeric scale to an ordinal scale, i.e., a measurement
scale on which the subjects can be compared in order [Kan02]. In detail, we map the
numerical scale 0− 100 to the ordinal scale Low < Medium < High defined as follow:

Interp(cv) =

Low, if 0 ≤ cv < 33
Medium, if 33 ≤ cv < 66
High, if 66 ≤ cv ≤ 100

57

6. Continuous Compliance Testing

TestA TestB TestC

Artifcat Significance Significance Significance

Project 7 7 7

Landscape 6 5 3

Component 8 3 –

Significance(T) 8 7 7

Compliance Impact Type Impact Type Impact Type

Profile 2 Req – – 10 Req

Rule-Set 4 Opt 4 Opt – –

Rule 5 Rec 5 Rec 6 Rec

Impact(T) 5 5 10

Norm(Type) 662
3 331

3 662
3

Compliance Violation (CV) 462
3 45 90

Maximum CV 90

Table 6.2.: Exemplary violation score calculation per tests and the overall Maximum
Compliance Violation result. Values used for calculation are based on a
fictional scenario shown in Figure 6.9. For the sake of simplicity we assume
that all three tests cases failed. Req, Opt and Rec are abbreviations for the
ClassificationTypes introduced in the CMT domain model (cf. Figure 6.7)

58

6.4. Technical Concepts

P:CustomerProjectP:CustomerProject

SL1:SoftwareLandscapeSL1:SoftwareLandscape SL2:SoftwareLandscapeSL2:SoftwareLandscape

SC1:SoftwareComponentSC1:SoftwareComponent SC2:SoftwareComponentSC2:SoftwareComponent

CR1:ComplianceRuleCR1:ComplianceRule CR2:ComplianceRuleCR2:ComplianceRule

TestA:TestTestA:Test TestB:TestTestB:Test

significance = 8

Legend

= Compliance Entites= Compliance Entites

SL3:SoftwareLandscapeSL3:SoftwareLandscape

CP1:ComplianceProfileCP1:ComplianceProfile CP3:ComplianceProfileCP3:ComplianceProfile

CRS1:ComplianceRuleSetCRS1:ComplianceRuleSet

significance = 6

significance = 7

significance = 5

significance = 3

significance = 3

Impact = 2
type = REQUIRED

Impact = 4
type = OPTIONAL

Impact = 5
type = RECOMMENDED

Impact = 6
type = RECOMMENDED

Impact = 10
type = REQUIRED

Figure 6.9.: An exemplary partial, incomplete model defining a sample Customer-
Project P with all its derived Artifacts, Compliances and Tests. Each
entity shows their associated impact on the violation score, i.e. signifi-
cance, impact and type. As a result of the derivation process, three differ-
ent ComplianceTest instances will be generated for the CustomerProject
P, i.e., P.SL1.SC1.CP1.CRS1.CR1.TestA, P.SL2.SC2.CRS1.CR1.TestA,
and P.SL3.SC3.CP3.CRS3.CR3.TestB

.

59

6. Continuous Compliance Testing

CT = Set of all parent-related Compliance entities of Test T

AT = Set of all parent-related Artifact entities of Test T

TCP = Set of all Tests for one Customer-Project CP

NormType(Type) =

0, if Type = Optional

331
3 , if Type = Recommend

662
3 , if Type = Required

(6.1)

Impact(T) = maxc∈CT
(Impact(c)) (6.2)

Significance(T) = maxa∈AT
(Significance(a)) (6.3)

Type(T) = maxc∈CT
(NormType(c)) (6.4)

TypeShare = 1
3 (6.5)

CV (T) = Type(T) + TypeShare ∗ Impact(T) ∗ Significance(T) (6.6)

MaxCV (CP) = maxt∈TCP
(CV (t)) (6.7)

However, we intentionally do not claim this calculation as a Security Metric for the
ApplicationSystem due to following circumstances. First and foremost, research so far
does not yield a sound definition regarding Security Metrics although it constitutes one
major research challenge in information security [Jel00; Sav07]. Further, developing
generally applicable security metrics is almost impossible as the organization’s objectives
regarding security can widely vary, which impacts the interpretation and validity of
metrics [Jel00]. To this end, we remain with “‘simple” KPIs, i.e., Compliance Index, Test
Amount, and Maximum Compliance Violation,to support the management in making
further decisions.

60

6.5. Summary

6.5. Summary
Finally, in Chapter 6 we explained the practical adaptation of the general process model
and introduced the concept of Continuous Compliance Testing. We described various
requirements for a tool supporting the process and presented our novel ideas for the
Compliance Management Tooling in Section 6.2. To conclude this definition, we defined
a meta model which contains all necessary aspects to successfully create a tooling for our
process model, i.e., the Software Meta-model (cf. Section 6.3).
We successfully defined a more technical motivated process model, i.e., Continuous

Compliance Testing, and requirements for a Compliance Management Tooling to support
the adaptation. Afterward, we present further, more technical and engineering related
concepts, which are relevant to realize such a tooling and respect the significance of
entity (Test, Compliance and Artifact) Reusability (cf. Section 6.4.1). Furthermore, we
described technical concepts to allow test Execution (cf. Section 6.4.2) and Reporting
(cf. Section 6.4.3) about the gathered test results.

61

7. Software Architecture & Realization

I don’t know
if it’s what you want,
but it’s what you get. :-)

Larry Wall

Contents
7.1. Software Architecture . 64
7.2. Configuration Management Tool . 68

7.2.1. Technologies . 68
7.2.2. Compliance Model . 69
7.2.3. Test Genericity . 76
7.2.4. Whitelisting . 79
7.2.5. Compliance Testing . 83
7.2.6. Summary . 88

7.3. Execution Tooling . 88
7.4. Reporting . 90

In this chapter,we describe a proof-of-concept realization of our previously defined tool
support to enable Continuous Compliance Testing.
First and foremost we elaborately explain our taken approaches, ideas and applied

patterns to create a (re-)usable Compliance Management Tool in Section 7.2. We start
with a precise characterization of the fundamental technology stack, followed by more
detailed description of the implemented Compliance Model in Section 7.2.2, as a realization
of the Domain Model (cf. Section 6.3). Afterward, we present our implementation of
the two central functional concepts, i.e., Test Genericity and Whitelisting. Finally, in
Section 7.2.5 we present the essential patterns and techniques applied to implement
compliance test generation and execution with the help of an exemplary Test Plug-in
(cf. Section 7.1) implementation, i.e., InSpecTestRunner.

63

7. Software Architecture & Realization

7.1. Software Architecture
Considering the previous mentioned meta model and the further technical motivated
concepts, we present a resulting software architecture for our novel framework. It follows
a classical three-layer architecture style. Similar to the three main-layered architecture
blueprint submitted by Fowler et al. [Fow02], we likewise relay on three semantical
different layers as illustrated in Figure 7.1. First, on the bottom, a Data Source layer is
used to cover all transactional communication with data-related system, e.g., database
management system. It consists of the Repository component and the RDBMS, VCS,
and File- system.
Next, in the mid layer, we applied the pattern of a Domain or Business layer, i.e.,

grouping all business related functionality and components. This layer is composed of
the Domain, Core, Adaptation, Test, Test Plugin, and Reporting components.
The top-most layer represents our Presentation layer and provides all services which

are required for information derivation and manipulation. Furthermore, it includes the
components used to offer user interaction with the system. This layer consists of the
Communication and User Interface component.

In the following, we present all previous components, their central functionality, their
provided service and interaction with other components in detail. For that, we peruse the
architecture blueprint illustrated in Figure 7.1 from bottom to top and simultaneously
from left to right.

Repository Component provides all necessary functionality required to store and fetch
the data from a rational database management system (RDBMS). To this end, this
component has to adopt certain interfaces from the chosen RDBMS.

Domain Component enfolds the four central aspects required for modeling the SUT and
their related data-objects. Its central functionality is to provide all domain related
data as well as its management. For that reason, it is strictly aligned with our meta
model presented in Section 6.3 and contains the main aspects Artifact, Compliance,
Test, and Environment. Additionally, this component provides interfaces to the
Communication and Core component to allow those to use and operate on the data.

Core Component is the central component and provides all necessary functionality to
apply the wanted business-logic, i.e. testing or reporting, on the stored domain
entities. To this end, it allocates further components, such as Filter and Traversal.
As their names indicate they supply basic functionality to filter entities in a model
and to traverse the whole data structure moreover, e.g., to derive all linked Tests for
a Customer Project. Furthermore, the Core Component includes components which
model the Job and Placeholder domain. We deliberately decided to separate those
“domain” entities from the Domain Component. As they only rely on the Domain
Component and do not contribute the functionality of the overall components we
split those concerns into distinct features (cf. “Separation of Concerns” [Dij82])
The Core Component builds upon the provided functionality of the Domain and

64

7.1. Software Architecture

Repository component. Moreover, it provides interfaces to its functionalities for the
Communication, Adaptation and Test Component.

Adaptation Component represents the “anchor” component to trigger the compliance
test run. It contains two separated components Execution and Simulation. One
component wraps the functionality to initiate (execute) a full compliance test run
and the other provides techniques for simulating a compliance test. To this end,
the Execution component additionally depends on interfaces offered by the Test
Component. Both rely on the Core Component to access central functionality, such
as filter and traverse. Summarized this component delegates certain duties during
compliance test execution/simulation, e.g., creating Job entities.
The only interface provided by this component is associated to the Communication
Component to allow compliance test execution/simulation via an external interface.

Test Component focuses all duties required for compliance test execution and further-
more their generation. It enfolds four main components, i.e., Runner, Evaluation,
Transformation, and Export. The key component is Runner which should be used to
execute the compliance test run. For this propose the executable test artifacts needs
to be generated with the help of the Transformation component and evaluated
with the aid of functionality provided by the Evaluation component, afterward.
Although this component includes various components to provide its functionality
it only acts as a template and just defines the particular function flow. To this end,
it should remain as a semi-finished component [Wol94]. The primary functionality,
e.g., test execution, needs to be provided by one or more Test Plugins and the
implementation of the appropriate interface. This separation generates a Hot Spot
(cf. [Wol94]) and turns our overall software architecture into a Blackbox-Framework.
As outlined by Fayad et al. a Blackbox frameworks support extensibility by defining
interfaces for components that can be plugged into the framework via object
composition [FS97]. In our architecture, this feature is realizable through Test
Plugin Components which are described next.

Test Plugin Component warps the interfaces required for external plug-in development.
The Test Plugin itself implements the actual functionality to execute, evaluate,
transform and export a test-case. It only offers its interfaces to the Test Component
and is completely independent of the overall architecture. As argued above this
plug-in mechanism realizes a blackbox framework accordingly to Fayad et al. [FS97].

Reporting Component provides functionality for generating a report based on a finished
compliance test run. This component encapsulate to core functions Reporting and
Compliance Violation Calculation which we outline detailed in Reporting concept
(cf. Section 6.4.3). To receive the required information it relies on the interfaces of
the Evaluation component provided by Test Component. Since this component does
not offer certain functionality requested by the framework itself it only provides one
interface which is associated with the Communication component to allow external
retrieval of the reporting results.

65

7. Software Architecture & Realization

Communication Component comprises the framework core, i.e.,Domain, Core, Adap-
tation, Test, and Reporting from the presentation layer, e.g., the User Interface
component. Thus, it provides three central resources which are all accessible
through any communication method, e.g., REST or similar. Those components act
as abstraction and delegation towards the main business-logic. To this end, the
Communication Component does not introduce new functionality.

User Interface Component interacts with the Communication Component only and
enfolds different presentation technique for user interaction. We provide two main
components, i.e., Web Application and Command Line Interface, which should cover
two essential interaction possibilities. First and foremost the operation through a
full-featured webinterface and furthermore a simplified interaction through systems
command line, e.g., to allow integration or interaction with headless systems1.

Summarizing it is to say that the finally proposed Software Architecture blueprint,
illustrated in Figure 7.1, enfolds the fundamental meta models, concepts, and functionality
required to realize the proposed Compliance Management Tooling as supporting tool for
Continuous Compliance Testing. Furthermore, we have outlined the central components
which turn the architecture and its resulting system into a conceptual Blackbox Framework
with certain Hot Spots for further extension (cf. definition of Test Component).

Based on this architecture blueprint and its implicitly defined data model we present a
possible realization of this tooling next. We outline the most relevant aspects needed to
accomplish the previously outlined engineering concepts.

1A headless system is a computer that operates without a monitor, graphical user interface (GUI) or pe-
ripheral devices, such as keyboard and mouse. http://internetofthingsagenda.techtarget.
com/definition/headless-system

66

http://internetofthingsagenda.techtarget.com/definition/headless-system
http://internetofthingsagenda.techtarget.com/definition/headless-system

7.1. Software Architecture

A
rtifact En

titie
s

C
om

p
lian

ce
 En

tities

Te
st En

tity

Eva
lu

atio
n

Tran
sform

atio
n

W
eb

 A
pp

licatoin
C

om
m

an
d Lin

e In
terfa

ce

R
D

B
M

S

File
system

R
ep

o
sito

ry

T
est

R
u

nn
e

r

Trave
rsal

Job

A
u

d
it

C
o

re

V
C

S

C
o

n
tin

u
o

u
s In

teg
ra

tio
n

En
viro

n
em

en
ts

R
e

p
o

rtin
g S

yste
m

s

T
est P

lu
gin

Execute

Evaluate

Tran
sfo

rm

C
o

m
m

u
n

ica
tio

n

M
a

na
gem

en
t R

esou
rce

R
ep

o
rtin

g R
e

so
urce

Te
st R

esou
rce

Filter
P

la
ceh

o
ld

e
r

Execu
tio

n

Sim
u

latio
n

Figure 7.1.: Compliance Management Tooling Software Architecture Blueprint – A three-
layered architecture is illustrated and all relevant components as well as their
interfaces are shown. Furthermore, adaption to external systems like Jenkins
is sketched.

67

7. Software Architecture & Realization

7.2. Configuration Management Tool
Like specified in the software architecture blueprint (cf. Section 7.1) the CMT should
follow a three-tier architecture. We omit a detailed description of the lowest layer, i.e.,
the database layer since those are nowadays easily realizable with production-ready
components. To this end, we only focus the Domain layer (afterward also referred to as
Backend) and the Presentation (afterward also referred to as Frontend) in greater detail.

7.2.1. Technologies
The fundamental technology stack for the CMT is (indirectly) specified through the
applied generator JHipster, which allows generating an extensive and executable bedrock
for web-based applications including a Java backend and Angular frontend quickly [DS16].

We intentionally decided to use a generator for the fundamental code and functionality
to decrease the time effort spent on project setup, configuration and implementation of
common functionality like database access and so forth. The resulting technology stack
is outlined next, distinct by its field of application.

Backend The backend of our tooling is completely based on Java. Given JHipster,
the main components and frameworks used in our realization are part of the Spring
framework eco-system. For example, Spring Boot is used to simplifying the application
configuration and Spring Security is included to provide customizable authentication
and access-control [DS16; Piv02]. Furthermore, the Spring Data JPA, i.e., enhanced
support for the Java Persistence API, for data management and the Spring MVC REST
in conjunction with Jackson are applied. To this end, the CMT uses Representational
State Transfer (REST) to implement the Communication component.

Utilizing these frameworks and libraries further assure continuous use and development
of our first, proof-of-concept, implementation, since these libraries are widely known and
still under active development.
Summarized on can say, that the overall backend, i.e., the data management, core

business application logic and the communication endpoint, are fully based on Java
Platform, Enterprise Edition (J2EE) in conjunction with the Spring Framework.

Frontend Similar to the backend the main frontend technologies are addicted to those
given through the JHipster generator. Angular in version 4 founded by Google [Goo10] is
used to realize the Web Interface component as part of the presentation layer. Its funda-
mental technology is TypeScript by Microsoft a superset of JavaScript, e.g.,introducing
type-safety, that compiles to plain JavaScript. Using Angular allows to follow a modular
design approach in the frontend as well. With TypeScript, i.e., the ability to define classes,
interfaces, and inheritance, we were able to replicate the data structure defined in the
backend. This makes the comprehension of the frontend component even easier.
To realize a state-of-the-art visualization and interaction, we rely on HTML5 and

furthers frameworks like jQuery and Bootstrap. Additionally, we utilized the D3.js library

68

7.2. Configuration Management Tool

to implement a visualization of the full model and its siblings as part of the reporting
interface (cf. Section 7.4).
To summarize, the applied frontend techniques engender a Single-Page Application

(SPA) which conforms to one trend in the field of web development.

As barely described above the CMT technology stack is comprehensive but allows a very
straightforward and modern development process. Because we only intend to prove our
outlined concept with the help of a proof-of-concept implementation, we skip further
evaluation or classification of the used technologies at will.

Our central, most important, attribute was a simple application bootstrapping at high
velocity to spend as much time as possible on business-logic implementation. This was
reached with the adaptation of JHipster.

7.2.2. Compliance Model
To implement the data structure aligned with domain model presented previously, we used
the JHipster Domain Language (JDL). With it, we were able to model all required entities
and their properties in an ordinary way. Listing 7.1 outlines the self-explaining definition
of the ComplianceRule entity. However, JDL is not yet capable of model-inclusion or
definition abstract entities, whereas we needed to include the general properties defined
through the abstract Compliance entity (cf. Figure 6.7) as well.
1 entity ComplianceRule {
2
3 // Abstract Metadata
4 title String required,
5 description String,
6
7 // Compliance Metadata
8 type Classification required,
9 impact Integer required min(0) max(10)

10 }

Source Code 7.1: Model defintion for domain entity ComplianceRule

Furthermore, using JDL, we were able to describe various kinds of relation likewise.
The relationship model in Listing 7.2 defines Many-to-Many relationships between
ComplianceRule and other entities. Despite the defined relations in our concept, we
had to fall-back to Many-to-Many relations since JHipster does not yet provide the
ability to model and generate unidirectional One-to-Many relations [DS16]. For the
sake of simplicity and possible later revision of our model, we adapted the most-general
Many-to-Many relationship for all entity relations. If required one could limit those with
hand-coded context conditions on model level.

69

7. Software Architecture & Realization

1 relationship ManyToMany {
2 ComplianceProfile{rule} to ComplianceRule{profile},
3 ComplianceRuleSet{rule} to ComplianceRule{ruleSet},
4
5 ComplianceRule{test} to ComplianceTest{rule}
6 }

Source Code 7.2: Relation defintion for domain entity ComplianceRule

With these data models were able to generate a full Create, Read, Update and Delete
(CRUD) application including a backend and frontend easily. For each entity, the JHipster
generates a database table, a liquibase change set to perform database migrations, a
JPA entity, a Spring Data JPA Repository and a Spring MVC REST Controller which
implements the basic CRUD operations. The resulting classes and interfaces – six in
total – of the exemplary ComplianceRule entity (cf. Listing 7.1, Listing 7.2) is depicted
in Figure 7.2. The two major classes, which are relevant for later adaptation, are
ComplianceRule and ComplianceRuleService. The former one implements the
plain (data-) model, e.g., the accurate mapping of the defined entity in Listing 7.1. The
CRUD functionality is implemented through the latter one.

To conclude, using JHipster, we do not had to implement all database related operations
and can construct our own, business-logic on basis of this.

ComplianceRule

+ getTests() : List<Test>

ComplianceRuleResource

+ create() : ResponseEntity

+ update(id) : ResponseEntity

+ delete(id) : ResponseEntity

+ getAll() : List<ComplianceRule>

«interface»
 JPARepository

«interface»
 ComplianceRuleRepository

ComplianceRuleServiceImpl

<<interface>>
ComplianceRuleService

+ find(id) : ComplianceRule

+ update(id) : ResponseEntity

+ delete(id) : ResponseEntity

+ getAll() : List<ComplianceRule>

<<use>>

Figure 7.2.: UML class diagram illustrating the central interfaces and classes generated
by the JHipster for the ComplianceRule entity.

70

7.2. Configuration Management Tool

However, due to the missing adaptation of Genericity, i.e., through non-existing ab-
stract classes or interfaces, the resulting data structure is not modular nor supports it
an appropriate adaptation. For example, to search or filter certain entities in a model,
e.g., Placeholder extraction, a significant amount of type-specific code is required since
we could not rely on super-classes or interfaces. To this end, we decide to introduce
additional, hand-coded, abstraction for each entity (cf. Figure 7.3). The highest level of
abstraction is given through the implementation of Entity interface, which provides
some basic functionality. Slightly more specific are the interfaces ComplianceEntity,
PlaceholderValueDefiningEntity and ArtifactEntity, each extending the su-
perior interface Entity. Depending on the entity functionality it inherits one or two of these
interfaces. For example, the SoftwareComponent inherits the ArtifactEntity in-
terface as its more abstract type is an Artifact. Furthermore it inherits the interface
PlaceholderValueDefiningEntity, because it is used to define a value for de-
rived placeholders. The design and implementation of this abstraction, their general
functionality and inheritance relations are shown in Figure 7.3.
To make use of the added value, i.e., abstraction, and improve easy data handling

(traversing and filtering) we further implemented the Visitor-Pattern. This pattern allows
us an later definition of further operations without changing the classes of the elements on
which it operates [Gam+95]. Due to double-dispatch, i.e., double dispatching the call until
the actual operations gets executed which is indicated by accept(EntityVisitor v)

method, every operation is executed in the actual object context.
The adaptation of the Visitor-Pattern and its concrete realizations its illustrated

in Figure 7.4. To specify the responsibility for traversing the object structure, which
is not clearly stated by the Visitor-Pattern, i.e., it could be realized by through the
visitor, the object-structure itself or an additional iterator [Gam+95], we implemented
the fundamental traversal functionality with an abstract BasicEntityVisitor. Thus
we put the responsibility for traversing within the visitor as well.

The BasicEntityVisitor templates the handle methods for each entity and thus
implements the EntityVisitor interface. A default handle methods performs the
visit (this.visit(entity)), specific traversal (this.travers(entity)) and termi-
nates the visit (this.endVisit(entity)). These nested methods are scaffold by the
BasicEntityVisitor as well and reduce the effort required to implement new opera-
tions. On the basis of this, we created three specific visitors which realize a variety of
function.

71

7. Software Architecture & Realization

<<interface>>
Entity

+ getId() : long

+ getTitle() : string

+ getShorthandName() : string

+ accept(EntityVisitor v) : void

<<interface>>
ComplianceEntity

+ getImpact() : int

+ getType() : Classification

<<interface>>
ArtifactEntity

+ getSignificance() : int

+ getRules() : Set<ComplianceRule>

+ getProfiles() : Set<ComplianceProfiles>

+ getRuleSets() : Set<ComplianceRuleSet>

<<interface>>
PlaceholderValueDefiningEntity

+ getPlaceholders() : Set<PlaceholderValue>

CustomerProject

SoftwareLandscape

SoftwareComponent

ComplianceProfile

ComplianceRuleSet

ComplianceRule

Test PlaceholderValuePlaceholder

Generated Domain Entites

Handcoded Generalization

 v.handle(this);

Figure 7.3.: UML class diagram illustrating all generated entities (bottom) and all
hand-coded interfaces (top). It emphasizes the achieved simplicity, i.e.,
describing all entities with three distinct interfaces. The most general
interace, i.e., Entity, indicates the entry-point for various EntityVisitor, i.e.,
accept(EntityVisitor v)

72

7.2. Configuration Management Tool

<<interface>>
EntityVisitor

+ handle(SoftwareComponent entity) : void

+ handle(SoftwareLandscape entity) : void

+ handle(ComplianceRuleSet entity) : void

+ handle(ComplianceProfile entity) : void

+ handle(PlaceholderValue entity) : void

+ handle(CustomerProject entity) : void

+ handle(ComplianceRule entity) : void

+ handle(ComplianceTest entity) : void

+ handle(Placeholder entity) : void

<<abstract>>
BasicEntityVisitor

+ handle(CustomerProject entity) : void

+

+ visit(CustomerProject entity) : void

+ travers(CustomerProject entity) : void

+ endVisit(CustomerProject entity) : void

+

+ visitEntity(Entity entity) : void

+ visitArtifactEntity(ArtifactEntity entity) : void

+ visitComplianceEntitiy(ComplianceEntitiy entity) : void

+

 this.visit(entity);
 this.travers(entity);
 this.endVists();

 this.visitEntity(entity);
 this.visitArtifactEntity(entity);

ParentAwareVisitor EntityTypeCountVisitor TreeNodeTransformationVisitor

Figure 7.4.: UML class diagram illustrating the fundamental interfaces and classes
implemented to adopt the Visitor pattern. A abstract implementation is
given by BasicEntityVisitor.

73

7. Software Architecture & Realization

ParentAwareVisitor serves as visitor and traversal implementation with additional aware-
ness of all parent elements. To do so it ”pushes” the current entity to a stack during
the visit methods and ”pops” the topmost entry during endVisit.
This very straightforward implementation, it requires only four line of relevant
code as complied in Listing 7.3, yields an enormous key functionality for further
realization, e.g., placeholder derivation or test code generation. The most notable
benefit given through this visitor is the derivable context for each entity, i.e.,
iterating the parents dequeue yields the unique entity context.

EntityTypeCountVisitor implements a simple counting functionality to receive the
amount of used or inherited entities. This visitor is useful for metric calcula-
tion on a model. For example, this visitor is used to count the amount entity
utilization as part of the reporting (cf. Section 7.4).

TreeNodeTransformationVisitor implements a transformation function to transform the
object structure from a Polyhierarchy to a Monohierarchy structure, i.e., tree-like
structure. We use this visitor to generated the data structure required for further
visualization or documentation.

1 public class ParentAwareVisitor extends BasicEntityVisitor{
2
3 protected Deque<Entity> parentEntities;
4
5 public ParentAwareVisitor() {
6 this.parentEntities = new ArrayDeque<>();
7 }
8
9 @Override

10 public void visitEntity(Entity entity) {
11 super.visitEntity(entity);
12 this.parentEntities.push(entity);
13 }
14
15 @Override
16 public void endVisitEntity(Entity entity) {
17 this.parentEntities.pop();
18 super.endVisitEntity(entity);
19 }
20 }

Source Code 7.3: Code required for ParentAwareVisitor implementation. It emphasizes
the excellent and straightforward implementation of custom
operations.

74

7.2. Configuration Management Tool

To conclude, we were able to create our underlaying data-structure, including various
rudimental functionality (database adaptation, REST interface, etc.), at velocity using
the well-known generator, i.e., JHipster. However, the generated data-structure was not
as general as it could be for what reason we added a hand-coded abstraction (Entity
interface cf. Figure 7.3). With this abstraction, we were able to use the Visitor-Pattern
to achieve an easy implementation of operations on our data-structure without altering
the generated code further. The created EntityVisitor interface and furthermore its
abstract implementation realized by the BasicEntityVisitor enable a very simple
and straightforward realization of further operations, i.e., we only needed to implement
four lines of functional code to realize our vital ParentAwareVisitor.
The resulting generic visit- and traversable traversable data-structure, as well as the

three visitors, build the fundamental functionality for further implementation. Synthe-
sizing this, we present the implementation of our two functional key concepts in the
following, i.e., Test Genericity and Whitelisting.

75

7. Software Architecture & Realization

7.2.3. Test Genericity
We realized the concept of Test Genericity by Placeholder, an entity representing
a variable-like object inside the test-code, and a PlaceholderValue, an entity defin-
ing the value for instantiation. Next, we describe our approach to implementing the
value-resolving-process (further called “placeholder resolving”), i.e., replacing all place-
holder with their appropriate value. Therefore this process relies on a set of already
derived placeholder values, given though PlaceholderDerivation (cf. Figure 7.5).
The derivation process of PlaceholderValues is part of the Whitelisting concept.
Since we describe this approach afterward, we postpone the detailed explanation of the
PlaceholderDerivation and take it for granted.

<<interface>>
PlaceholderResolve<T>

+ resolve(PlaceholderDerivation<T> pD, String code)

<<interface>>
TemplateTransform

+ transform (ComplianceTest) : void

 ...

PalceholderResolveSimple

NumericRangeExpression

PlaceholderExpression
PlaceholderExpressionConfig

- delimiterEnd : string = "]"

- delimiterStart : string = "["

- itemSeperator : string = ","

- rangeIndicator : string = ".."

- negationIndicator : string = "!"

PlaceholderExpressionMatcher

<<uses>>

PlaceholderEvaluateExpression

de.cmt.core.placeholder.resolve

ComplianceTransform

de.cmt.test.transform

<<uses>>

Figure 7.5.: UML class diagram illustrating the two main packages and their components
which realize the code/template transformation functionality, i.e., placeholder
expression resolving (top) and template transformation (bottom)

76

7.2. Configuration Management Tool

Placeholder resolving is applied during test code generation and transformation process
(Transform component, cf. Section 7.1) to compile a “placeholder free” test code. Since
these functionalities, i.e., a transformation of code and resolving of placeholder values,
are independent of each other they should be coupled as loosely as possible. Thus we
decided to apply to the Strategy-Pattern. This pattern allows us to define one or a set
of algorithms, make them interchangeable and vary independently from the client that
use it [Gam+95]. To this end, we created a generic interface PlaceholderResolve
which itself acts as Strategy. We added genericity to this interface (<T>) to facilitate
an appropriate adaptation of this functionality suitable to its context of usage. For
example, one could be interested in resolving the placeholder value to string values
(instantiation of T with string) or in resolving the object, i.e., instantiation of T with
PlaceholderValue. Further, to fully apply the pattern, we defined a concrete strategy
with PlaceholderResolveSimple. The context for PlacholderResolve primary
is given through the ComplianceTransform located in de.cmt.test.transform

(cf. Figure 7.5).
PlaceholderResolveSimple implements the PlaceholderResolve interface

and instantiates the generic type T with String. It aims to resolve all included
Placeholder to string values. In Section 6.4.1 we proposed to allow a CMT-Exp
for PlaceholderValues, whereas this particular strategy needs the functionality to
evaluate those. Because of this, the PlaceholderResolveSimple class is associated
to a PlaceholderExpressionMatcher and PlaceholderEvaluateExpression.
The former approach allows to extract all existing CMT-Exps from a given input string,
and the latter instantiates all values for each matched expression, i.e., deriving a list of
strings.
1 @Override
2 public void visit(ComplianceTest test) {
3 super.visit(test);
4 this.transform(test);
5 }

Source Code 7.4: Extending the ParentAwareVisitor visit function with an additional
transform function.

This concept is realized by ComplianceTransform class, which acts as the strategy
context and implements the transformation of test code.
ComplianceTransform extends the ParentAwareVistor, introduced in the pre-

vious section, to context-sensitively traverse the data structure. Each visit method,
inherited through the ParentAwareVistor, is extended with an additional transform
operation (cf. Listing 7.4). To support a plug-in based, CMT independent, transforma-
tion of each modeled entity the interface TemplateTransform is publicity offered as
HotSpot. Thus a concrete implementation of the final transformation, e.g., file-based
export or similar, is not done at this point. Nevertheless, as the plug-in should not derive
and resolve the placeholder on its own, it is necessary to execute this beforehand. Thus
the interface transform(Test test) implements the derivation and resolving process

77

7. Software Architecture & Realization

and alters the entity accordingly. In Listing 7.5 the conjunction of operations is shown.
Similar to the creation of the ParentAwareVisitor, we required only few code

for this realization which justifies the previous abstraction and emphasizes the great
adaptation of the Visitor Pattern.
1 @Override
2 public void transform(ComplianceTest test) {
3 if(test.getPlaceholders().size() > 0) {
4
5 HierachiePathUniqueDerivation pDerivation =
6 new HierachiePathUniqueDerivation(

this.getParentEntities()
7);
8 test.setCode(
9 this.placholderResolver.resolve(pDerivation,

test.getCode())
10);
11 }
12 }

Source Code 7.5: Hooking into the transform interface function to alter the test code
and replace all placeholder with appropriate values.

However, it should be mentioned that providing this default implementation the plug-in
has to call the super method (super.transform(entity)) when implementing its
specific transformation. Unfortunately, this could lead to misbehavior when used wrong.
To consolidate, we have implemented the proposed Test Genericity concept with the

help of the Strategy-Pattern. Furthermore, we have outlined the creation of Placeholder
ResolveSimple to implement placeholder resolving and the test code transformation,
its plug-in interface and implementation as part of the ComplianceTransform.
Next, we present the implementation of the suggested Whitelisting concept. This

implementation includes the definition of the PlaceholderDerivation which was
taken for granted in this section and utilized with HierachiePathUniqueDerivation
in Listing 7.5.

78

7.2. Configuration Management Tool

7.2.4. Whitelisting
To realize the proposed concept of Whitelisting for placeholder value overriding, we
implemented two separate but interconnected components.
First and more generally applicable, we implemented a Filter component using the

Strategy-Pattern. This component builds upon on the previously introduced Entity
Visitor to handle the object structure traversal itself. As illustrated in Figure 7.6 the
filter strategy is realized with three concrete strategies, whereas each builds upon the
BasicEntityVisitor or ParentAwareVisitor.

The added value of this component is the functionality to filter arbitrary elements with
an given property out of our data model. It is comparable to the classic concept of any
other filter. However, due to our custom data structure, we needed an own filter imple-
mentation and were not able to adapt existing once, e.g., java.util.stream.filter.
To this end, we explain our custom implementations next.

<<interface>>
EntityFilter<T>

+ filter(Entity startEntity) : List<T>

PlaceholderFilter

+ filter(Entity startEntity) : List<Placeholder>

PlaceholderValueFilter

+ filter(Entity startEntity) : List<PlaceholderValue>

PlaceholderValuePathFilter

+ filter(Entity startEntity) : List<PlaceholderDerivationPath>

ParentAwareVisitorBasicEntityVisitor

<<interface>>
EntityVisitor

Figure 7.6.: UML class diagram illustrating one adaptation of the Strategy pattern to
realize the filter functionality. Slightly shown, it relies on the EntityVisitor
to be able to operate on the crafted data structure.

79

7. Software Architecture & Realization

PlaceholderFilter traverses the complete object structure and collects all Placeholder.
When finished it returns a list of all linked Placeholder. This filter is primary
used as part of the test simulation (cf. Section 7.2.5).

PlaceholderValueFilter similar to PlaceholderFilter this filter collects and returns
a list of all defined PlaceholderValues. Likewise, it is used for the test simula-
tion (cf. Section 7.2.5).

PlaceholderValuePathFilter enfolds the most complex filter implementation. Its main
task is to filter all PlaceholderValue out of the current object structure. Fur-
thermore, it groups those into sets which are identifiable through their context,
i.e., the derivation path complied by all parent entities. As result one receives
a list of PlaceholderDerivationPath, one for each derivated test. Each
PlaceholderDerivationPath encapsulates the Test, the unique path iden-
tifier and all PlaceholderValues defined along the path from the root, e.g.,
CustomerProject, to a leaf, e.g., Test (cf. Listing 7.6). For example, this list
would contain three different entries when deriving all PlaceholderValue for
the test CT3 in the exemplary scenario Figure 6.8 (cf. concept on Whitelisting,
Section 6.4.1). This definition is necessary since a single PlaceholderValue can
be part of various test derivations and therefore “exist” in different contexts.
This filter utilizes the HierachieChainedDerivation which is applied on
every test visit (visit(ComplianceTest test)). It further filters all hierarchi-
cal inherited placeholder values, i.e., checking the correct derivation path as the
HierachieChainedDerivation is context-insensitive (described next). Even
more, it maps all PlaceholderValue to a new PlaceholderDerivationPath,
whereas for each context (derivation path) a new instance is created. Storing all
these into a list forms the outcome of this filter.

1 public class PlaceholderDerivationPath {
2
3 private ComplianceTest complianceTest;
4 private String pathIdentifier = "";
5 private List<PlaceholderToValueMapping>

derivedPlaceholderValues;
6
7 ...
8 }

Source Code 7.6: PlaceholderDerivationPath
class which defines a list of PlaceholderValues for each, uniquely,
derivable test case.

The second component implemented to realize this concept is defined by Derivation.
Its core functionality is to provide a mapping from a Placeholder to one or a list
of PlaceholderValue. This functionality is essential and used by others as lookup

80

7.2. Configuration Management Tool

function to derivate placeholder. For example, this component was already used var-
ious time in previously presented implementation, e.g., ComplianceTransform or
PlaceholderValuePathFilter
The usage of this mapping can vary due to different view-points or interpretations

for what reason we decided to implement the Strategy-Pattern once again. Thus, the
strategy interface (PlaceholderDerivation, cf. Figure 7.7) is always the same, but
the final implementation or algorithm depends on the concrete strategy which should be
adopted. We came up with three different concrete strategies which are used in various
contexts likewise.

<<interface>>
PlaceholderDerivation<T>

+ getPlaceholderToValueMap() : Map<String, T>

<<abstract>>
BasicDerivation<T>

+ getPlaceholderToValueMap() : Map<String, T>

HierachieDerivation

+ getPlaceholderToValueMap() : Map<String, String>

HierachieChainedDerivation

+ getPlaceholderToValueMap() : Map<String, List<PlaceholderValue>>

HierachiePathUniqueDerivation

Figure 7.7.: UML class digramm illustrating the major classes and interfaces used to
implement the placeholder derivation functionality. The Strategy pattern
is adapted to allow different strategies, i.e., HierachieDerivation, in varying
contexts.

HierachieDerivation implements the most simple mapping and derivation strategy, more
precisely the mapping from a placeholder key, given as a string, to a placeholder
value, likewise resolved as a string. The derivation is context-insensitive, whereas the
highest (superior) entity overrides all child definition. For example, a placeholder
value definition on CustomerProject level would override/set the value for all
derived tests, independent from its context.

HierachieChainedDerivation operates in the same way as the HierachieDerivation,
i.e., context-insensitive, but additional stores all previously defined placeholder
values in a list (chained). Thus, the mapping yields a list of placeholder values for
each placeholder, whereas the uppermost entity represents the overwriting-winning
entity.

81

7. Software Architecture & Realization

HierachiePathUniqueDerivation extends the HierachieDerivation and thus yields
a string-to-string mapping as well. However, this filter is, in contrast to its superclass,
context-sensitive and allows an overriding definition for one or more unique derivation
paths. To realize this it utilizes and compares the pathIdentifier of the
PlacehoderValue. For example, with the help of this derivation strategy, one
could define a path-unique PlacehoderValue for context A (leftmost path) in
the scenario shown in Figure 6.8.

To this end,the HierachiePathUniqueDerivation represents a derivation tech-
nique which allows us to implement and realize the proposed concept of Whitelisting.
This functionality justifies the adaptation and usage of the HierachiePathUnique
Derivation in previous outlined implementation, i.e., test code generation. The other
implemented and presented derivation strategies, i.e., HierachieDerivation and
HierachieChainedDerivation, are primarily used for simulation.

82

7.2. Configuration Management Tool

7.2.5. Compliance Testing
The compliance testing, e.g., execution or simulation of modeled compliance tests,
is accomplished through the Adaptation component as explained in the architecture
blueprint in Section 7.1. We distinguished between the disjoint activities execution and
simulation and created an individual component each. Both actions are accessible through
the TestResource and, more precisely, used by the ComplianceRun as illustrated in
Figure 7.8 and Figure 7.10. We separately describe their implementation in the following.

Execution

The final test execution is achieved through on or more Test Plug-ins, which are fairly
independent from the remaining backend. For an exemplary implementation, we realized
the adaptation of InSpec. All its technologies specific code is located in the package
de.cmt.test.plugin.inspec.

To facilitate an adaptation as TestRunner inside the CMT control flow, the plug-in
has to implement the provided TestRunner interface (cf. Figure 7.8). The overall
execution process is prescribed as a set of distinct, chronological ordered task, i.e., test
code generation, test execution and result evaluation. Each of these tasks needs to be
realized by the plug-in itself. Thus we present the InSpec specific implementation of each
task in the following.

Test Code Generation is implemented by InspecTransform which extends the
abstract class ComplianceTransform. To create the InSpec specific file format
InspecTransform uses the Freemarker template engine provided by its superclass. Fur-
thermore, it implements all transform() interfaces required by TemplateTransform
(cf. Figure 7.5). Each transformation method aggregates certain data of the entity
transformation and afterward applies the createProfile or creates the specific itself.
Placeholder derivation which is required for concrete test instantiation is indirectly

done through the abstract class ComplianceTransform, thus the plug-in does not
need to handle the derivation by its own.

Test Execution is realized via InspecCommand. As the naming indicates this class
allows an command creation which is later executed in the system shell. To receive an
easy and system-independent command execution we implemented InspecCommmand
on the basis of the CommandLine class provided by the Apache Common Execution
library. Furthermore we implemented an extension of the default command, namely
InspecDockerCommand, which allows the usage of InSpec inside a Docker container.

Result Evaluation is carried out by the InspecEvaluate class. Its only function is
to parse and convert the InSpec specific created test results, i.e., json format, into a CMT
conform format, e.g., into a JobResult. Furthermore, the overall result, representing
the test failure or succeeding, is calculated and stored.

83

7. Software Architecture & Realization

de.cmt.test.plugin.inspec

InspecCommandInspecTestRunner

+ execute(Job job) : JobResult

InspecDockerCommand

InspecEvaluate

+ evaluate(Job job) : List<ParsedTestResult>

InspecTransform

<<interface>>
TestRunner

+ getResult() : JobResult

+ execute(Job job) : JobResult

+ setExportDestination(File dest) : TestRunner

+ setPlaceholderResolver(PlaceholderResolve<String> res) : TestRunner

 For runtime configuration only

TestRunnerFactory

+ getRunner() : TestRunner

Job

JobResult

/ result : ResultType

JobResultItem

- result : ResultType*

ComplianceRun

ComplianceRunResource

ComplianceExecution

ComplianceTransform

<<uses>>

Figure 7.8.: UML class digram illustrating the major classes and interfaces used to
implement the InSpecTestRunner. The main functionality is encapsulated
in the de.cmt.plugin.inspec package. To allow external access (contracts)
framework specific interfaces are implemented, e.g.,TestRunenr

84

7.2. Configuration Management Tool

The orchestration of these tasks is done by the central, and publicity known, class
InspecTestRunner. This class acts as “single-point-of-interest” for the CMT Frame-
work and implements the TestRunner interface to support external accessibility. For
the sake of simplicity the InSpec plug-in, more precisely the InspecTestRunner, yet
relies on some domain classes, i.e., Job, JobResult, and JobResultItem, to access
required data during test generation and to store the derived results in a framework
conform format. However, this could be implemented in an more abstract manner in
further versions. For the realization of an proof-of-concept implementation we admit this
slightly increased coupling.

Figure 7.9.: Exemplary screenshot of the Execute Compliance web interface. It illustrates
one failed execution of the CustomerProject E3 - ProCoS.

85

7. Software Architecture & Realization

Simulation

Beside test execution, we proposed the realization of a simulation. This should allow to
analyze, validate or visualize the modeled compliance requirements. Each of those actions
is achieved with a specific implementation implementing the ValidationStrategy. To
operate in a universal way, the ValidationStrategy requires a ValidationContext
as input on which it performs its action. The ValidationContext comprises a con-
text given through an ArtifactEntity and a set of validationResults, one for each
executed ValidationStrategy since the same ValidationContext can be used
in other strategies as well. To be able to traverse and filter the passed context, e.g., the
ArtifactEntity, the ValidationStrategy utilizes an EntityFilter.

Exemplary, we have realized to different validation strategies which are applied as part
of the ComplianceSimulation. The retrieved results are stored in a JobResult
entity, similar to the execution realization.

<<interface>>
ValidationStrategy

+ validate(ValidationContext) : ValidationResult

PlaceholderValueGivenValidator

+ validate(ValidationContext) : ValidationResult

ValidationResult

- logs : List<String>

- result : ResultType

- inheritedResults : List<ValidationResult>

ValidationContext

- context : ArtifactEntity

- validationResults : Map<ValidationStrategy, ValidationResult>

+ applyFilter(EntityFilter<T> filter) : List<T>

<<interface>>
EntityFilter<T>

+ filter(Entity startEntity) : List<T>

ComplianceRuleRealized

+ validate(ValidationContext) : ValidationResult

Job

JobResult

/ result : ResultType

JobResultItem

- result : ResultType*

ComplianceRun

ComplianceRunResource

ComplianceSimulation

<<uses>>

<<uses>>

<<uses>>

Figure 7.10.: UML class diagram illustrating the realization of compliance test sim-
ulation. As shown, it relies on the EntityFilter and defines additional
ValidationStrategies. During each ComplianceSimulation one or multiple
ValidationStrategies are used to validate the ValidationContext.

86

7.2. Configuration Management Tool

PlaceholderValueDefinedValidator first filters all Placeholder and PlaceholderValues
attached to the context (ArtifactEntity) using the applyFilter() method (cf.
Listing 7.7). With the aid of these sets, it validates if each used Placeholder has at
least on value definition.
This validation is useed to check if the modeled context is complete and thus
executable.

ComplianceRuleRealizedValidator can be applied to check if every derivable compliance
rule in the current context has at least one test. Therefore this validator applies
the ComplianceRuleFilter to extract all compliance rules and further checks
if one or more tests are linked. If a compliance rule with less than one test is found,
this validation fails.
Similar to the PlaceholderValueDefinedValidator is useed to check the
practicability of the current context.

1
2 @Override
3 public ValidationResult validate(ValidationContext context) {
4
5 List<Placeholder> placeholder =
6 context.applyFilter(new PlaceholderFilter());
7 List<PlaceholderValue> placeholderValues =
8 context.applyFilter(new PlaceholderValueFilter());
9

10 ...
11 }

Source Code 7.7: Filtering Placeholder and PlaceholderValue on an arbitrary context
as part of the PlaceholderValueDefinedValidator

However, we can imagine that further interesting validators or analyzer exists and
could be realized. To extend the overall ComplianceSimulation with an additional
ValidationStrategy or exchange the existing once, one can easily alter the existing setup
compiled in Listing 7.8.
1
2 @Override
3 public synchronized void setExecutionJob() {
4
5 this.validationContext.setContext(this.job.getArtifact());
6
7 this.validations.add(new PlaceholderValueDefinedValidator());
8 this.validations.add(new ComplianceRuleRealizedValidator());
9 }

Source Code 7.8: ComplianceSimulation setup, i.e., registering of all applicable
validations strategies.

87

7. Software Architecture & Realization

7.2.6. Summary
In this section, we gave a rough overview of our implementations and the main function-
alities which realize the core concepts of the Compliance Management Tool.
First, we have shortly outlined the basic technology stack, i.e, Spring/Java, and the

generator used to create the fundamental application at high velocity.
In Section 7.2.2, we described the creation and further generalization of the domain

model in much detail. We argued the application of the Visitor-Pattern which realizes
the overall bedrock functionality to operate on our data model in various way. For
example, we introduced the EntityVistor, EntityFilter and several manifestation
of these, e.g., the ParentAwareVisitor which enables traversing the data model in a
context-sensitive way.
Based on the Compliance Model realization, we accurately described the concrete

implementation of the two functional concepts Test Genericity and Whitelisting. Their
adaptation was explained as part of the realization of the Compliance Testing in Sec-
tion 7.2.5.
To conclude, we have managed to create a very modular realization which can be

extended at various points through the implementation of further concrete strategies.
Furthermore, we accomplished to introduce a great, additional, layer of abstraction
on the generated domain model. On the basis of this, the yet realized domain model
(Compliance and Artifact entities) is easily extendable and still usable due to the generic
implemented visitors.

7.3. Execution Tooling
To accomplish a very straightforward integration into automation systems like Jenkins,
we presented the concept of an additional Command Line Interface which should act as a
non-graphical frontend for the Compliance Management Tooling. As the communication
with the CMT is done with the REST paradigm, we decided to use a scripting language
which comes with REST communication support. To this end, we chose Python as the
scripting language to realizes our CLI for the CMT backend.

The rough class and inheritance structure, if one can classify this as such, is posed in
Figure 7.11.

The central functionality is the simplification of communication effort, wherefore each
class extends the CMT_Conncetion class to accomplish the required HTTP request.
As the class naming indicates, the CLI provides four major functionality, i.e., a listing
of various entities (CMT_Listing), presenting a result of finished jobs (CMT_Result),
kicking off new jobs for an specific artifact (CMT_Runner) and importing baseline
test written in a cmt-cli specific format (CMT_Import). All these functionalities are
accumulated in the CMT_Client command class, which delegates the user input (via
command line) to the specific function handlers. Accordingly, to the available actions
the CMT_Client requires one – out of four – positional arguments (run, result, list or
import) to execute the desired task. Listing 7.9 shows the compiled help documentation.

88

7.3. Execution Tooling

CMT_Client

CMT_Connection

CMT_RunnerCMT_ResultCMT_Listing CMT_Import

Figure 7.11.: UML class diagram illustrating the six main classes used to realize the CMT-
CLI. As illustrated, all classes extend the CMT_Connection to implement
the communication protocol.

1 [root@mmoscher-dev ~]# ./cmt.py --help
2
3 usage: cmt.py [-h] [-u USERNAME] [-p PASSWORD] [-H HOST]
4 {run,result,list,import} ...
5
6 Command Line Interface to access a Compliance Management Tooling

(CMT) backend
7
8 positional arguments:
9 {run,result,list,import}

10 run command to start a compliance run
11 result command to receive results of a job
12 list command to list a certain resources
13 import command to import CMT Testfiles
14
15 optional arguments:
16 -h, --help
17 show this help message and exit
18 -u USERNAME, --user USERNAME
19 username for login, default: admin
20 -p PASSWORD, --password PASSWORD
21 password for login, default: admin
22 -H HOST, --host HOST
23 Host address for backend, default: http://localhost:8080

Source Code 7.9: Compiled help documentation for the cmt-cli python script.

Since this script only acts as wrapping function to the already introduced and explained
CMT functionality, we intentionally skip further detailed description of these. However,
the import operations requires Tests in a well-defined format, i.e., the cmt-cli file format
based on YAML. Such an exemplary test, defined using the YAML (yml) format, is

89

7. Software Architecture & Realization

compiled in Listing 7.10. The four major and required keywords are name, placeholder,
description, and code.
1 name: E3 - TCP Port Listening
2
3 placeholder:
4 - key: port
5 description: single or range of ports to be tested
6
7 description: |
8 Check if a service (tcp connection) is listening on certain

port
9

10 code: |
11 describe port(<% tcpPort %>) do
12
13 it { should be_listening }
14 its(’protocols’) { should include ’tcp’ }
15 end

Source Code 7.10: Exemplary port test defined using the yml format to allow an import
via the CMT CLI.

Summarizing it is to say that we have successfully created a command-line-interface
script which allows easy remote control of the CMT. Furthermore, we presented a
possibility to easily import predefined tests.

90

7.4. Reporting

7.4. Reporting
Primary the Evaluate process phases comprise certain management decision-making, e.g.,
deciding on actions how to handle a compliance test failure for a product. Since these
decisions highly depend on the vendors compliance violation handling strategies, and
as we do not possess the require expert knowledge on this domain, we can not outline
(realize) a guideline on how to handle test failures. However, as proposed in the related
concept, we can undertake some activities to support this process as much as possible. To
this end, we have implemented the conceptual presented KPIs, i.e., Maximum Compliance
Violation and Compliance Index. To access those metrics, we have created an additional
reporting screen in our frontend component. The concrete implementation is realized in
the backend component and is illustrated in Figure 7.12.

ReportResource

+ createReport() : ResponseEntity<Report>

«interface»
 JobRepository

ViolationCalculation

+ getMaxViolation() : float

InspecEvaluate

+ getTestResults() : List<ParsedTestResult>

<<uses>>

<<uses>>

ParentAwareVisitor EntityCount

EntityTypeCountVisitor

Report

- maxViolation : float

- typeCount : EntityCount

- derivedCount : EntityCount

- parsedResults : List<ParsedTestResult>

PrasedTestResult

ParsedTestResultItem Job

<<uses>>

Figure 7.12.: UML class diagram illustrating the central classes used to realize the
Reporting concept.

91

7. Software Architecture & Realization

The access to the reporting functionality and its derived data, i.e., Report, is given
through the ReportResource component located in the de.cmt.communication.
reporting package. Its main task is to fetch and evaluate the test results for a given
job-id and further perform different actions on these. The received results are than
stored in a Report instance and passed back to the client. The wrapping class Report
encapsulates certain information of interest for the reporting process, i.e., maxViolation,
typeCount, derivedCount and parsedResult. Their detailed creation and the further
utilized classes (cf. Figure 7.12) are explained in the following. An overview of all taken
operations and the creation of a Report is compiled in Listing 7.11.
1 ViolationCalculation vClac = new ViolationCalculation();
2 Report report = new Report();
3
4 Job job = jobRepository.findOne(id);
5 CustomerProject project = (CustomerProject) job.getArtifact();
6 InspecEvaluate jsonEval = new InspecEvaluate(..);
7
8 EntityTypeCountVisitor uniqueCount = new EntityTypeCountVisitor();
9 EntityTypeCountVisitor derviedCount = new

EntityTypeCountVisitor(false);
10 uniqueCount.handle(project);
11 derviedCount.handle(project);
12
13 report.setTestsViolation(vClac.getTestsViolation(project));
14 report.setDerviedCount(derviedCount.getEntityTypeCount());
15 report.setTypeCount(uniqueCount.getEntityTypeCount());
16 report.setParsedResults(jsonEval.getTestResults());
17 report.setMaxViolation(vClac.getMaxViolation());

Source Code 7.11: Creation of a report for a given job-id

In the very beginning, the InspecEvaluate implementation (described in Sec-
tion 7.2.5) is used to extract the test result for every single test, i.e., if it has passed or not
(line 13). Since this interpretation is plug-in specific, we do rely on its concrete imple-
mentation. The evaluated results are encapsulated in a ParsedTestResult instance,
which itself contains further PrasedTestResultItems - for each test one item.

Next the EntityTypeCountVisitor is applied (line 14-15). This class is an
implementation of the BasicEntityVisitor (cf. Section 7.2.2) and simply counts all
entity occurrences. Depending on the initial flag passed to its constructor the visitor
counts every occurrences (amount/indication of entity reuse) of an entity type or the
amount of entity per type used in the data model (amount of unique entities, indented
via its id). The derived results are passed as an EntityCount instance.

Finally, the class ViolationCalculation is used to calculate the Maximum Com-
pliance Violation as well as the specific violation score for each test (line 16-17). Since it
needs to traverse the entire data model, e.g., to derive all necessary information as defined
in the calculation concept (cf. Section 6.4.3) it extends the ParentAwareVisitor.

92

8. Evaluation

It’s not a bug - it’s an
undocumented feature.

Author Unknown

Contents
8.1. Verification . 94
8.2. Validation . 94

8.2.1. Continuous Compliance – Elaborate 95
8.2.2. Continuous Compliance – Develop 100
8.2.3. Continuous Compliance – Evaluate 106
8.2.4. Conclusion . 107

8.3. Reusability . 108
8.4. Integration in Process Models . 109
8.5. Code Quality . 112
8.6. Discussion . 114

To evaluate our presented process model Continuous Compliance and its adaptation in
the form of Continuous Compliance Testing, we conduct four different aspects.

First and foremost we assess quality of the Compliance Management Tooling (CMT),
i.e., its validity. Therefore, we verify the previously defined software requirements
Section 8.1 and furthermore validate its support of Continuous Compliance in the context
of ProCoS by applying a case study, which describe it detailed in Section 8.2.
Next, referring to the obtained compliance models (Maximum Reuse, Naive and

Balanced) for ProCoS, we evaluate the intra-model reusability and discuss further possible
reusability capabilities, i.e., inter-model.
Lastly, in Section 8.4, we review and describe the integration and support of other

process models. We want to verify additional value added by our Compliance Management
Tooling beyond our modest process model.

93

8. Evaluation

8.1. Verification
To assure if the created Compliance Management Tooling fully satisfies all formulated
and expected requirements (cf. Section 6.2), we perform a rough software verification
[Poh10], i.e., we review the created software components (cf. Section 7.1) against the
defined requirements.
The domain related requirements, e.g., modeling and linking certain entities, defined

by requirement [CMR-Req-1], [CMR-Req-2], [CMR-Req-3], [CMR-Req-4], [CMR-Req-6],
and [CMR-Req-8], are realized by the most centric software component Domain. Its
accurate implementation was explicitly explained by the Compliance Model realization in
Section 7.2.2. To support a Placeholder in Test Code to yield Test Genericity (cf. [CMR-
Req-5]) the Core component includes the particular software component Placeholder.
Its realization, e.g., Placeholder Determination and Derivation, was implemented and
discussed in Section 7.2.3. For a practical test execution and simulation, i.e., compliance
adaptation demand by [CMR-Req-7], the CMT provides an Adaptation and Test software
component. Finally, the last requirement [CMR-Req-9], i.e., support of result reports,
is realized by the Reporting components. Its accurate implementation was described in
Section 7.4.

To summarize, we successfully verified that the implemented blackbox framework [FS97],
i.e., the Compliance Management Tooling, realizes all described software requirements.

8.2. Validation – Case Study KISTERS ProCoS
To validate the desired tool-support during Continuous Compliance we conduct a case
study which is precisely classified next.

Case Study Classification For the validation of the Compliance Management Tool-
ing and its support of the presented Continuous Compliance process we implement a
exploratory case study, i.e., finding out what is happening, seeking new insights, and
generating ideas and hypotheses for new research [RH08], based on qualitative data, i.e.,
data which involves words, descriptions, pictures, and diagrams [RH08]. To this end,
we explicitly define the qualitative dataset and the objective, i.e, a statement of what is
expected to be achieved in this case study.

Qualitative Dataset To accomplish the case study we selected ProCoS provided our
cooperation partner KISTERS. ProCoS a process control system and is suited for
the application in various domains, e.g., Energy- and Water- supply or infrastructure
application.

Objective The central objective of this case study is to evaluate the adaptation and
usability of the created tool support for the Continuous Compliance Testing. It
should be clarified how and to which extend the tooling is able to facilitate a
practical adaptation of Continuous Compliance.

94

8.2. Validation

Next, to perform the previously defined case study, we apply all three phases of Continuous
Compliance using the CMT on the chose Qualitative Dataset. However, due to to personal
restriction and nonexistent expert knowledge, we deliberately drop the detailed evaluation
of each noted responsibility of involved roles.
First, accordingly to the phase Elaborate, we analysis and compile a set of different

compliance and baseline requirements (cf. Section 8.2.1). Next, in Section 8.2.2, we
shortly describe how to use and create a Test to verify an exemplary ProCoS requirement,
i.e., ProCoS_Install #2. On this basis, we present and discuss three different attempts
taken to model all previous complied ProCoS compliance requirements. The reporting on
the received results, i.e., executing the Balanced model on out ProCoS test environment,
is shortly discussed in Section 8.2.3.
We split each phase evaluation into three fine-grained sections, i.e., Application, Dis-

cussion and an Interim Conclusion. The latter one will facilitate the final conclusion
outlined in Section 8.2.4.

8.2.1. Continuous Compliance – Elaborate
In this first phase of Continuous Compliance, i.e., Elaborate, we aim to analyze and define
compliance requirements for ProCoS.

Application

The application of this phase is split into two distinct fields of requirements extraction.
First and foremost we describe the derivation of ProCoS specific compliance requirements.
Afterwards, we outline additional specification applicable as baseline compliance, i.e.,
Windows baseline tests.

Compliance Requirements To model the product specific compliance (and configura-
tion) required by ProCoS, we conducted several technical documentation concerning the
fundamental installation process and furthermore the operation in a virtual environment
and its specific settings. We complied a list of all provided documents1 in the following
enumerations and reference each of them by the preceded abbreviation.

ProCoS_AntiVirus – ProCoS_und_Antivirenprogramme.pdf

Specific permission management when running ProCoS in conjunction with a vendor
independent anti-virus software.

ProCoS_Dir – handout-ProCoS-VERZEICHNIS.docx

Listing of all relevant directories needed by ProCoS during Runtime.

1All documents were provided electronically on the June 23rd, 2017. Thus, the derived compliance rules
rely on the outlined requirements, configurations and permissions for ProCoS from that very time.

95

8. Evaluation

ProCoS_Network – Procos870_im_Netzwerk.pdf

Required Network interface- and sharing configuration to successfully operate
ProCoS in a network-based environment.

ProCoS_Install – I-A.Installation_ProCoS-Windows7-2017-06.doc

Comprehensive and very detailed installation manual for the “‘ProCoS Leitsystem”
on a Windows 7 operating system.

ProCoS_VM – ProCoS_in_VM_Umgebung-201505.pdf

Hard- and Softwarerequirements for ProCoS when running in a virtual environment,
e.g. VMWare or VirtualBox.

In the following, we present a table for each document representing the extracted
(relevant) information, which will be used for test case derivation later. As some
documents cover both, server and client application of ProCoS, each row will indicate
for which version (or both) the compliance demand is designated. If a requirement was
already defined or mentioned previously, we will point to this definition. Furthermore,
we deliberately go without atomic Compliance, because in our opinion this is a design
decision (cf. Section 8.2.2) and should be handled as part of the(next) modeling phase.

Requirements based on ProCoS_AntiVirus

Req. No Server Client Requirement

#1 3 3 Check if files and directories listed in the document (18
in total) are correctly configured2 for exclusion in the
appropriate Virus Scanner, i.e. Windows Defender.

Requirements based on ProCoS_Dir

Req. No Server Client Requirement

#1 3 3 Check if the correct folder structure, including all sub-
folder, exists and is read/writable by correct user (Pro-
CoS)

2https://www.tenforums.com/tutorials/5924-add-remove-windows-defender-exclusions-windows-10-
a.html

96

8.2. Validation

Requirements based on ProCoS_Network

Req. No Server Client Requirement

#1 3 3 Check if both can reach the corresponding opponent
via IPC network share without authentication (or other
user interaction).

#2 7 3 Can access Firebird RDBMS on port TCP:3050 and
TCP:3060

#3 3 7 (RDBMS) Ports TCP:3050 and TCP:3060 are open
for external access

#4 3 3 Ports open and accessible
TCP: 137, 138, 139, 445 Windows file sharing (incl.

NETBIOS)
TCP: 3050, 3060 Firebird RDBMS Service
TCP: 3389 Remote Desktop Protocol

#5 3 7 Windows Service LanmanServer (Server) and RpcSs
(Remoteprocedurecall) installed and configured to au-
tostart

Requirements based on ProCoS_Install For the ProCoS (basic) installation the
more general compliance requirements regarding Network configuration remain valid.
This means, we only outline additional or deviating demands. Furthermore, we omitted
all User Experience (UX) related settings and configuration since those do not have – to
the best of our knowledge and belief – any impact on security.

Req. No Server Client Requirement

#1 3 3 Separate partition for the ProCoS installation exists
and is formatted as NTFS

#2 3 3 Operating Systems partition (C:) needs to have at least
40GB

#3 3 3 Correct user accounts and permissions (Administra-
tor, ProCoS, Admin) (cf. Document Section 3.2) are
configured

#4 3 3 Correct group and permission (ProCoS-Benutzer) exist
(cf. Document Section 3.2)

#5 3 3 Default user and groups are deactivated (cf. Document
Section 3.2)

97

8. Evaluation

#6 3 3 Autologon3 is installed
#7 3 3 Remote access is configured for group Administrator
#8 3 3 (hidden) Administrator account is activated 4

#9 3 3 Windows Update is deactivated
#10 3 3 Windows Firewall is deactivated
#11 3 3 Ports open and accessible

TCP: 135, 139, 445 RPC, NetBIOS
TCP: 3050, 3060 Firebird RDBMS Service
TCP: 2404, 8000, 8100 IEC-10x
TCP: 80, 8080 HTTP/HTTPs
TCP: 443 SSL
TCP: 12345 ProCoS Apache
TCP: 5631 PcAnywhere
UDP: 137, 138, 445 RPC, NetBIOS
UDP: 5632 PcAnywhere

#12 3 3 Anti Virus is configured to exclude the folders db, Dta
and Def located in the ProCoS installation directory.

#13 3 3 users group (ProCoS-Benutzer) has permission to mod-
ify system time

#14 3 3 System time synchronization through Internet is deac-
tivated

#15 3 3 Network shares (naming and path) for user group
(ProCoS-Benutzer) are setup (cf. Document Section
3.9)

#16 3 3 Hostname is composed of (A-Z,0-9,-) only
#17 3 3 NetBEUI protocol and QoS packet planner are deacti-

vated
#18 3 3 Client for Microsoft Networks is not installed
#19 3 3 IPv6 is disabled
#20 3 3 NetBIOS is activated for TCP/IP
#21 3 7 Additional software (tools) are located in the Tools

directory (cf. Document Section 4)

3https://technet.microsoft.com/de-de/sysinternals/autologon.aspx
4https://www.tenforums.com/tutorials/2969-enable-disable-elevated-administrator-account-windows-
10-a.html

98

8.2. Validation

#22 3 7 A symbolic link to Startup.cmd is placed in All
Users\Startmenü\Programme\Autostart (cf. Docu-
ment Section 4.1)

#23 7 3 A symbolic link to apupdate.cmd is placed in All
Users\Startmenü\Programme\Autostart (cf. Docu-
ment Section 4.1)

#24 3 3 ProCoS OLE-Interface is installed and located in the
ProCoS installation directory (cf. Document Section
4.2)

#25 3 7 Firebird (KISTERS Deployment) is installed (cf. Doc-
ument Section 4.4)

#26 3 7 Firebird config (aliases.conf) contains ProCoS
databases paths (cf. Document Section 4.4)

#27 3 7 Application DatenNetz and Script hhdsich.cmd are
available to preform backup (cf. Document Section
4.5)

Requirements based on ProCoS_VM To run ProCoS inside a virtual machine
(VM) the more general compliance requirements concerning AntiVirus and Network
configuration remain valid. This means, we only outline additional or deviating demands.

Req. No Server Client Requirement

#1 3 3 When using Windows-Autoupdate the automatic instal-
lation of (downloaded) updates needs to be deactivated
and done manually.

As compiled above we were able to extract 35 requirements for ProCos either running in
server or client mode.

Next we will shortly outline the windows baseline requirements which could be used in
conjunction with the ProCoS specific compliance.

Windows Baseline Requirements We created a baseline test for Windows 10 since a
further motivation (indirect outcome) was to validate how ProCoS and its requirements
perform under Windows 10. To do so, we conducted various resources regarding windows
operating system security and finally (re-)used an existing set of windows security test
provided by devsec.io5.

All in all, we created a baseline consisting out of 9 tests, each containing at least two
sub-controls (more fine-grained test). To import those baseline tests one needs to use the
CMT-CLI which was presented in Section 7.3.

5https://github.com/dev-sec/windows-baseline

99

8. Evaluation

Discussion

The application of this phase, i.e., CCR-Analysis and CCR-Definition, revealed that
the provided installation documents build a great fundamental source to derive first
compliance requirements for ProCoS. However, due to their different designated usage,
i.e., describing an installation process nor specific infrastructure settings, these documents
yield some pitfalls when analyzing those under certain other viewpoints. More precisely,
we struggled with the lack of information, i.e., linguistic remediation [Rup+14]. For
example, various documents described port settings, e.g., on requires that TCP port
138 is opened for an NetBIOS service. Treating this requirement from a compliance
perspective of view, the installation, configuration and execution of NetBIOS is demanded,
consequently at least four instead of one demand is formulated. Being aware of the
unconscious linguistic remediation of information, it is possible to derive compliance
requirements using these installation documents very well.

Interim Conclusion

For an interim conclusion of the application of this phase, one can say, that we were able
to successfully derive and create a set of compliance requirements for ProCoS. However,
it is to emphasize that we only evaluated a small subset of this phase due to personal
absence. Nevertheless, we were able to prepare the required outcome of this phase to
proceed with the next phase of our described Continuous Compliance process.
Using the presented tooling (CMT) we were able to (digitally) create and define the

previously outlined compliance requirements, whereas the designated tool support for
this phase can be approved.

8.2.2. Continuous Compliance – Develop
In this phase, we attempt to model the Product and to create the necessary Tests to
ensure the previous defined Compliance. Depending on the chosen proceeding, e.g., using
many or even no Placeholder, for Test creation different modeling attempts occur.
In the following, we distinguish between three different attempts we have taken to

model the previously defined compliance requirements in the context of ProCoS. The
reason for each attempt, their application and consequence are explained in detail.

To express the difference between those attempts, we explain the realization of each by
one compliance requirement, i.e, ProCoS_Install #2. This requirement can be formulated
more intuitively as follows: “The system main partition is named C: and has at least
a size of 40GB.”. As indicated this compliance requirement enfolds two different and
independent demands.

100

8.2. Validation

Modeling ProCoS Requirements – Maximum Reuse

The first modeling approach which resulted during our tool evaluation is named Maximum
Reuse. Its pursued attempt was to yield as much reusability of Tests as possible, which
resulted due to the adaptation of this phase with a traditional developer view. For
example, we tried to reduce the needed tests to a minimum using Test Genericity.

Application To create as less test as possible, we classified all complied compliance
requirements in resource categories, that is, we concentrated on the most fundamental
properties to be checked/verified for each Compliance. Accordingly, for the exemplary
requirement, we created a FileProperties test which is able of verifying any potential
property of a file, e.g., its content, size or permission mode, which is shown in Figure 8.1.

Discussion Pursuing this attempt we were able to reduce all 35 compliance requirements
to a tiny set of only 7 Tests. However, the high usage of Test Genericity leads to
huge amount of Placeholders per Test, on average 4 Placeholder per Test. To finally
generate and execute those test each of these Placeholder needs to be defined via an
PlaceholderValue. Unfortunately, due to the high test abstraction, a exact context is
required to accomplish this instantiation. As a consequence, a great knowledge on the
actual test functionality and the exact effect of each Placeholder was needed in the
Artifcat domain. This is illustrated in the object diagram, i.e., the instantiated model, in
Figure 8.1.

Te
st

C
om

pl
ia

n
ce

A
rt

if
ac

ts

OperatingSystem:CR

FileProperty:Test

placeholder = basePath

placeholder = minSize

placeholder = file

placeholder = contentMatcher

OperatingSystem:SC

basePath =

minSize = 40GB

file = C:/

contentMatcher =

MaxReuse

de s c r i b e f i l e (’<% basePath %><% file %>’) do

i t { shou ld e x i s t }

i f !’<% minSize %>’ . empty?
i t s (’ s i z e ’) { shou ld be > <% minSize %> }

end

i f !’<% contentMatcher %>’ . empty?
i t s (’ content ’) {

shou ld match <% contentMatcher %>
}

end

end

Figure 8.1.: Partial Model instance of Maximum Reuse and its implementation of the
FileProperty Test

101

8. Evaluation

As one can track, we neglected the fundamental principle of test atomicity (uniqueness)
and used only one Test to ensure two different compliance requirements. Thus, the overall
traceability gets even harder, since it is not directly clear which demanded Compliance
are not satisfied (size or naming) if this test fails in the certain context.
To conclude one can say that this approach of modeling and implementation is not

optimal as crucial information like traceability gets lost and high knowledge regarding
the exact test implementation, i.e., to correctly instantiate the Placeholder, is required.
This first, intermediate result, led us to a more naive approach.

Modeling ProCoS Requirements – Naive

The basic idea of this approach was to keep the test implementation as simple as possible.
To reduce the required knowledge for later modeling steps, we minded the principle of
test atomicity and traceability.

Application To consider all noted properties explicitly, we ended up in creating a
non-generic test for each unique compliance requirement. Thus, each test was perfectly
tailored to ensure exactly one property of its origin compliance requirement.
Given the previously mentioned exemplary requirement we created two independent

tests to check each of both requirements, i.e., the specific file name and size (cf. Figure 8.2).

Discussion Accomplishing this attempt for ProCoS resulted in a large set of atomic
tests, i.e., we needed 38 test to ensure 35 compliance requires which is 5.5 times more Test
entities than in the previous attempt. Furthermore, due to neglecting Test Genericity,
we were not able to reuse once implemented Tests.

Partition:CR

PartitonExists:Test

OperatingSystem:SC

PartitonSize:Test

Te
st

C
o
m
p
lia
n
ce

A
rt
if
ac
ts

Naive

de s c r i b e f i l e (’C: / ’) do
i t { shou ld e x i s t }

end

de s c r i b e f i l e (’C: / ’) do
i t s (’ s i z e ’) {

shou ld be >= 40000000
}

end

Figure 8.2.: Partial Model instance of Naive approach and its implementation of the
PartitionExists (top) and PartitionSize (bottom) Test

102

8.2. Validation

However, due to its accuracy, the attempt requires less or no expert knowledge on
higher modeling domains like Artifact which is indicated though no instantiation of
Placeholder (cf. Figure 8.2). Further one can exactly track the cause, i.e., the specific
property, if a compliance requirement failed as every property is checked through an own
Test.

Summarizing it is to say, that the approach is applicable and yields sufficient information
to continue with the Evaluate phase of the overall process successfully. However, it is not
optimal nor does it make use of the established modeling capabilities. As outlined above,
we do not use any of the earlier crafted concepts on Reusability and this is why we carried
out one further modeling attempt to examine if we could improve this proceeding.

Modeling ProCoS Requirements – Balanced

The naming indicates this approach should enfold a balanced way between the previous
conducted extremes. On the one hand, this approach should keep the implementation
as simple as possible and adhere to test atomicity. On the other the concepts of
Reusability should be applied more intensively to yield a high Reusability and decrease
code redundancy.

Application To yield atomic and reusable test we combine both previous approaches, i.e.,
we used the atomic tests from the Naive approach and extended those with Placeholder
used in the Maximum Reuse attempt. For the exemplary compliance requirement, this
resulted in two distinct tests (cf. Figure 8.3) since we needed to ensure two independent
properties.

Next we defined the Placeholder on Compliance level and applied the Blocking concept
(indicated by the black circles/dots in Figure 8.3) to prevent further redefinition.

Discussion Pursuing this modeling attempt we were able to create a high reusability
of Tests, i.e., we only need ten tests to cover all 35 complied requirements. This further
implies less coding effort.
However, we neglected the test atomicity on Test level, i.e., in the test code, but

were able while using the Blocking concept to reify each test into an atomic compliance
requirement on Compliance level. For example, the earlier used FileProperty test can
be turned into an atomic compliance requirement ensuring that a variable file (specified
by the context) with setting the placeholder minSize and content to empty and block
further altering of those.

Nevertheless, due to the usage of Blocking more modeling effort is required to describe
the full set of ProCoS Compliance demands. Further, it was somehow hard to distinguish
between test- and SUT-placeholder, i.e., Placeholder which could be blocked or not.
Conclusively it is to say, that this modeling attempt yields the best qualities. On

the one hand reusability of once implemented tests are given and on the other, the
traceability is persevered since a test can be semantically reduced to check exactly one
property (cf. Blocking in Section 6.4.1).

103

8. Evaluation

Partition:CR

FileExists:Test

OperatingSystem:SC

FileSize:Test

placeholder = file placeholder = file

placeholder = minSize

minSize = 40GB

file = C:/

Balanced

Te
st

C
o

m
p

lia
n

ce
A

rt
if

ac
ts de s c r i b e f i l e (’<% file %>’) do

i t { shou ld e x i s t }
end

de s c r i b e f i l e (’<% file %>’) do
i t s (’ s i z e ’) {

shou ld >= <% minSize %>
}

end

Figure 8.3.: Partial Model instance of Balanced approach and its implementation of the
FileExists (top) and FileSize (bottom) Test

Interim Conclusion

To resume all three previous presented modeling attempts, we have compiled a set of
attributes describing the quality of each of those attempts in Table 8.3. The attributes
Reusability, Required Knowledge and Traceability were already discussed beforehand. To
further classify the approach we valued their Maintenance Effort, which is described in
more detail next.

Maximum Reuse Naive Balanced

Reusability high low moderate

Required Knowledge high moderate moderate

Traceability - 3 3

Maintenance Effort high none moderate

Table 8.3.: Overview of focused attributes and their characteristic for each conducted
modeling attempt.

Maintenance Effort indicates the amount of review activity needed if Compliance
and thus the appropriate Test implementation changes. The affected domain of each
modeling attempt, which has to be reviewed due to changes, is highlighted in Figure 8.4.
For the first attempt, i.e., Maximum Reuse, a Compliance change forces a review at

104

8.2. Validation

Partition:CR

PartitonExists:Test

OperatingSystem:SC

PartitonSize:Test

OperatingSystem:CR

FileProperty:Test

placeholder = basePath

placeholder = minSize

placeholder = file

placeholder = contentMatcher

OperatingSystem:SC

basePath =

minSize = 40GB

file = C:/

contentMatcher =

Partition:CR

FileExists:Test

OperatingSystem:SC

FileSize:Test

placeholder = file placeholder = file

placeholder = minSize

minSize = 40GB

file = C:/

Te
st

C
om

pl
ia

n
ce

A
rt

if
ac

ts

MaxReuse Naive Balanced

Figure 8.4.: Overview of all three modeling attempts. The light blue background
highlights the affected domain when Placeholder change.

the highest level of abstraction, since the concrete information on that compliance is
stored in the used PlaceholderValues on Artifact level. Thus, every – ideally compliance
independent modeled – affected Artifact needs to be reviewed for correctness which results
in a high Maintenance Effort. For example changing a very general and widely used
vendor specific (but Product independent) Compliance will lead to a review of mostly
every Artifact.

In the Naive approach, the Maintenance Effort is very low or even non-existing. This
is due to the fact that each compliance requirements has its own test.
When adopting the Balanced approach, the Maintenance Effort will be somehow

higher than in the Naive approach but even lower than in the Maximum Reuse attempt.
Nevertheless, this amount of effort is justifiable as we tried to change some Compliance
anyway (assumption).

To conclude, we claim that the amount of Maintenance Effort can be compared with
the amount of used Placeholder. A high utilization of Placeholder will lead to a high
Maintenance Effort if the a tests once changes. To this end, the utilization of Placeholder
should be carefully considered.

Summarizing one can say that the Develop phase of Continuous Compliance Testing
process can be successfully solved by different attempts. The final resulting models of
each attempt can be reviewed in the appendix (cf.). These models reveal that we were
successfully able to model the demanded Compliance and their implementing Tests as
part of a ProCoS Product. To this end the applicability of this phase using the CMT
is proven. We have exemplary presented each attempt on basis of a concrete ProCoS
demand, i.e. ProCoS_Install #2, and discussed benefits together with certain drawbacks.
However, we remain with the assumption that each attempt is valid and should yield
the same results. At the bottom line, each user has to decide on its own how to model

105

8. Evaluation

its specific compliance. As our evaluation indicated, we would suggest following the
Balanced attempt, since it enfolds the best usage of Reusability and enables Traceability
as well.

8.2.3. Continuous Compliance – Evaluate
The execution of the last phase as part of Continuous Compliance Testing revealed that
the tool supported reporting is applicable.

Figure 8.5.: CMT Reporting Screen for Job-Run #126 of the balanced modeling approach
(E3). Showing the Entity Type Count, Compliance Index and Maximum
Compliance Violation (left to right). In the lower all derived Tests and their
accurate context are listed.

Figure 8.5 illustrates the reporting and its KPIs for the execution of the third modeling
attempt (Balanced, cf. Section 8.2.2). The leftmost KPI indicates an Entity Type Count,
i.e., how many entities were modeled and how many instantiated during the test run.
The Compliance Index is visualized in the middle. Rightmost the Maximum Compliance
Violation is represented.

The Compliance Index indicates that our ProCoS testing system is not yet compliant.
This is primarily due to the usage of Windows Baselinetest which were mentioned earlier.
The presented Compliance Violation value does not yet have any meaning since we do
not possess the appropriate expert knowledge to value each Compliance impact correctly.

106

8.2. Validation

However, further actions like Remediation were not conducted as part of this evaluation
since this would exceed the scope of this thesis, i.e., we only focus on compliance
testing and not system hardening/remediation as outlined in our problem statement
(cf. Chapter 3).

8.2.4. Conclusion
To finally conclude this case study, i.e., the applicability and tool support of Continuous
Compliance Testing, it is to say that we successfully adopted each phase and were able to
create an exemplary set of Compliance from the product-point-of-view for ProCoS.

First in Section 8.2.1 we have executed the Elaborate phase and presented the derivation
and definition of compliance requirements for ProCoS in very detail. We were able to
derive 35 demands on total. However, we assume that there exist even more compliance
requirements which we do not recorded due to missing expert knowledge. But for a
first shot and application of the presented process model, we have demonstrated that
installation documents yield a very good basis.
Next in Section 8.2.2 we applied the Develop phase and discussed three different

approaches on how to implement and model a representative compliance requirement
(ProCoS_Install #2). We claim that each of these approaches is valid and yield the same
results. However, as discussed, varying advantages and drawbacks exist. On the basis of
an exemplary requirement and the utilized the models, we have proven the practicalness
of this phase.

At least, in Section 8.2.3, we shortly presented the compliance test results for the third
modeling attempt. It revealed that a standard ProCoS installation is not (by default)
compliant with our defined compliance requirements.

However, due to missing personal, we were not able to apply every task of this phase.
Due to this reason, we had to rely on installation documents only and did not conduct
all described roles and stakeholders. Moreover the exploration of such documents is not
yet defined by our promoted process models. Such crucial modifications to the overall
process adaptation have to be noted because they – primarily the omission of the defined
roles – enfold a Threat to Validity [RH08] of our conducted case study. Nevertheless, we
claim that a general tool support using the CMT is established.

The conclusion of this evaluation is, that the tool oriented process is applicable.

107

8. Evaluation

8.3. Reusability
To assess the overall produced reusability we divide this evaluation into two categories.
One the one hand, the technical provided reusability, i.e., reusing entites during modeling,
and on the other hand, the functional motivated reusability, i.e., instantiating one abstract
Test multiple times with other values.

Technical Reusability Due to the chosen modeling attempt, i.e., the separation of
concerns and the resulting meta model for the Compliance Management Tooling, a
technical reusability is assured. To which extend this kind of reusability is applied,
depends on the chosen modeling attempt. However, as we only evaluated one Product
yet, we are not able conclude on the usefulness of this kind of reusability. It is to assume
that large-scale evaluation will outline inter-model reusability.

Functional Reusability To prove the validity of the proposed (functional) Reusability
concept, i.e., the usage of Test Genericity, Whitelisting and Blocking leading to test
case parametrization, we consider the context-sensitively (cf. Section 7.2.3) usage of all
entity types. Therefore, we compared the amount of modeled entities as part of an
ApplicationSystem with the amount of instantiated entities, i.e., one generated test case
with a specific set of test data (cf. [Mes07]). As described in the Whitelisting concept a
specific Test can be used several times in the same contexts, i.e., it is derivable differently
(cf. Section 6.4.1).

Figure 8.6 illustrates the contrast of modeled (left bar) and instantiated (right bar)
entities of each conducted modeling attempt as part of the Develop phase evaluation.
We grouped all entities in three different categories, i.e., Test, Compliance Rules and
Modeling Entities6, to precisely indicated the main field of reusability.

It is noticeable that the functional reusability depends on the chosen modeling attempt.
As part of Maximum Reuse we yield a reusability of around 140%, with the Balanced
attempt around 30% and with the Naive a reusability of 0% (as intended). This data
shows that the concept of Reusability is applicable and operates as assumed.

Nevertheless, it should be mentioned that we only focused the so called intra-model
reusability since our evaluation set only comprises one product. We claim that when
performing an evaluation at a larger scale, e.g., with 10 or more products modeled in the
same CMT instance, an inter-model reusability is given. However, this is to evaluate.

To conclude this brief evaluation, it is to say, that the proposed concept of reusability
is applicable (previously also indirectly assessed as part of the case study) and yields the
desired results.

6all other entities, e.g., Artifacts and Compliance Rule Sets used in the respective model

108

8.4. Integration in Process Models

7

26

0

38 38

0

16

31

7

26

20 20

0

20

20

23

37

0

6 6

0

16

16

0

10

20

30

40

50

60

70

80

90

100

Maximum Reuse Maximum Reuse' Naive Naive' Balanced Balanced'

Tests Compliance Rules Other Entities

Figure 8.6.: Bar chart contrasting the modeled (left bar) and instantiated (right bar)
entities of each modeling attempt.

8.4. Integration in Process Models
To evaluate the further utilization of our presented tooling, we analyzed an existing
maturity model, i.e., OpenSAMM, a standard on information security, i.e., BSI, and
a widely known collection of processes to ensure a proper (and secure) information
infrastructure, i.e., ITIL. How our tooling supports each of those is briefly presented in
the following.

OpenSAMM The OpenSAMM is a framework to help organizations formulate and
implement a strategy for software security that is tailored to the specific risks facing the
organization (cf. Section 2.4). To its similar domain of application, i.e., software security
and risk management, we claim that our solution could assist and further simplify the
adaptation of different maturity levels formulated in OpenSAMM. More precisely we
claim to support the Policy & Governance, Security Requirements, Security Testing and
Environment Hardening security practices. Next, we argue which maturity level of each
security practices is supported. However, we do not recap the different objectives in
detail as those can be looked up in the related document [OWAa].

Policy & Governance is focused on understanding and meeting external legal and
regulatory requirements while also driving internal security standards to ensure compliance
in a way that’s aligned with the business purpose of the organization [OWAa].

This practice is fully supported on all three maturity levels, i.e., PC1, PC2 and PC3.
Because using Continuous Compliance one is able to clearly define (PC1) and create (PC2)

109

8. Evaluation

compliance requirements. Furthermore, using the presented CMT-CLI an additional
quality gate can be implemented (PC3).

Security Requirements is focused on proactively specifying the expected behavior
of software with respect to security [OWAa].

Our process based solution is capable solving the second central activity of the maturity
level SR1 and SR3. For example necessary compliance requirements are conducted
during our Elaborate phase (SR1B). Additional certain requirements can be mandate for
products, e.g., using a quality gate in combination with the CMT-CLI (SR3B).

Security Testing is focused on inspection of software in the runtime environment in
order to find security problems [OWAa].

The maturity levels ST2 and ST3 are partially solved applying the presented solution,
since certain security test can and will indirectly be integrated into the development
process (ST2A). Furthermore, using the CMT-CLI in conjunction with an automation
system like Jenkins on can easily fulfill this phase.

Federal Office for Information Security (BSI) The Federal Office for Information Se-
curity (BSI) offers an annual updated document, i.e., the BSI Grundschutz, describing
standards and physical provisions to yield a certifiable quality regarding IT and infor-
mation security. As earlier discussed in Section 2.2.1 this standard can be used as basis
for compliance testing. We present those categories (Baustein) of the BSI Grundschutz
which could be partially modeled with our solution and furthermore integrated in every
Compliance. Similar to the described integration of OpenSAMM (cf. Section 8.4) we do
not explain the categories in greater detail, since those can be looked up online [ISa].

Baustein B3: Sicherheit der IT-Systeme describes certain recommendations on
how to securely operate information system, e.g., Windows- or Linux- operating Server.
However, as this catalog yields many items one has to decide itself which should or could
be applied. In general one is able to check all technical described measures using our
proposed solution. To this end, we claim that our tool can actively assist this Baustein.

Baustein B5: Sicherheit in Anwendungen similar to the previous Bautsein this one
yields a lot of different items with a description of technical measures each. Thus, we
claim that this Baustein can be realized alike to the previous one.

IT Infrastructure Library (ITIL) The IT Infrastructure Library (ITIL) represents a set
of widely known and adapted process, functions and roles applicable to nearly any IT
infrastructure to yield a well-defined and even secure standard. Due to its large extent,
e.g., five main areas with 37 key processes in total, we present a possible support by
our solution at a very superficial manner. We will outline the support of three major
process, i.e., as part of the ITIL-Service Design processes. Our explanations referrer to
the official ITIL processmap created by Stefan Kempter et. al [Kem].

110

8.4. Integration in Process Models

Risk Management enfolds the main activities of identifying, assessing and controlling
risk. Due to the possibility of modeling and reporting compliance violation of (failed)
compliance requirements, our presented solution is suited to support the sub-process
of Risk Monitoring. As required by this process one can monitor the ongoing pro-
cess of countermeasure implementation, i.e., comparing the Compliance Index of the
ApplicationSystem in a continuous manner.

Information Security Management aims to ensure the confidentiality, integrity and
availability of an organizations data and IT services [Kem]. Adopting the CMT a user is
able to realize the Security Testing and Security Review sub-processes. First, Security
Testing, makes sure that all security characteristics are part of the regular testing. Since
the CMT allows an external interaction, one could easily integrate compliance testing
execution into the regular testing process. Further all gained results can be evaluated and
used to verify if all measures and procedures (for security) are maintained, i.e., Security
Review.

Compliance Management tries to ensure that certain services, processes and system
comply policies and requirements. With our presented solution this process can be
fully implemented, i.e., the sub-processes Compliance-Register, Compliance-Review and
Enterprise Policies and Regulations are supported. More precisely the solution is able of
creating (register) and executing compliance requirements. Furthermore, the gathered
results can be reviewed at anytime.

To finalize this short excursion on further existing process models facing software security
and compliance, it is to conclude that our presented process and its tooling (Continuous
Compliance Testing) is valuable integrateable into other models. We have exemplary
discussed how our solution would support certain processes or maturity levels in Open-
SAMM and ITIL. Furthermore, we have shortly stated that one is able to continuously
check for (partially) compliance with the BSI using our solution.

111

8. Evaluation

8.5. Code Quality
To briefly evaluate the code quality of our created tooling we integrated Sonar as part
of our build pipeline. As illustrated in Figure 8.7 the overall code quality and each
single measured metric, i.e., Reliability, Security and Maintainability, are rated with
A. This indicates an excellent code quality and its maintainability indicates that a
further ongoing development is easily achievable. Figure 8.8 shows further considered

Figure 8.7.: Sonar overview screen of the Compliance Management project. As illustrated,
the project has a excellent (A-grading) source code quality.

metrics. More precisely out code to not contains any Blocker Issues, Major Issues, Bugs
or Vulnerabilities. Unfortunately, we do not yet covered enough lines of code within
our prepared unit tests. However, since we only intended to provide a proof-of-concept
implementation and not a production-ready software we claim that a test coverage of
48.5% by a total amount of roughly 14.000 LOC is a very adequate foundation for further
development.

To conclude one can say that our submitted code for the proof-of-concept implementa-
tion possesses a very high code quality.

112

8.5. Code Quality

Figure 8.8.: Detailed Sonar report of the Compliance Management project.

113

8. Evaluation

8.6. Discussion
To bring the presented evaluation to a conclusion, we resume and shortly discuss the
revealed results.
First and foremost in Section 8.2, we verified and validated the practical adaptation

of the Continuous Compliance process using the presented tooling, i.e., the Compliance
Management Tooling. The results indicated that a general applicability of the process
and the tooling is possible. Furthermore, the excellent modeling capabilities revealed as
part of three different realized modeling attempts. However, due to personal restriction
we were not able to evaluate the roles in accurate detail and noted a possible Threat to
validity of our case study. Nevertheless, we were able to yield first, comprehensive results
for ProCoS which we presented as part of the last phase, i.e., Evaluate. To this end, we
claim that the intended processes and its tool-support are applicable.
Next, we assessed the goodness of our suggested Reusability. We presented the intra-

model reusability for each previously created modeling attempt. As it was expected the
functional reusability depend on the chosen modeling approach. This leads us to the
assumption that the proposed concept on Reusability works as intended. However, it
is even possible to neglect this enhancement as we proved through the application of
the Naive modeling attempt. It is to conclude that we successfully created a tooling
which supports the postulated reusability of Continuous Compliance. Furthermore, we
indirectly proved that reusability in the domain of Compliance Testing is valid and
applicable, i.e., the approach of Data Driven Testing [Mes07] was successfully adopted to
this domain.
Last in Section 8.4, we present further other procedure models and standards to

enhance secure software development. We successfully showed that even other process
models, i.e., not only our novel model, can be supported by the Compliance Management
Tooling. To this end, we claim that the presented solution can be considered as excellence
enhancement in the area of Compliance Testing and secure software development, which
results due to the ability to model even product unrelated compliance tests, i.e., generally
applicable one.

114

9. Conclusion

If debugging is the process of
removing bugs, then
programming must be the process
of putting them in.

Edsger Dijkstra

Contents
9.1. Summary . 116
9.2. Future Work . 117

In this thesis, we successfully developed an iterative and incremental process model
to tackle the domain of Compliance Testing from a produt-point-of-view. Based on its
general domain model, we crafted a more specific meta-model to be able to precisely
model each aspect, i.e., Product, Compliance and Tests, in great detailed. To promote
a practical adaptation, we presented a blackbox framework which support each of the
introduced phases. Applying the process model in conjunction with the novel blackbox
framework in a case study, revealed that our solution is applicable.
Conclusively, we can approve that each of the central problems, i.e., System Mis-

configuration, Information Management and Management Inexperience introduced in
Chapter 3, are all at least partially solved. First and foremost, we assert that we have
completely solved the issue of Information Management. Given the previously pre-
sented evaluation the invented and created Compliance Management Tooling is capable
of creating, managing, versioning, and documenting Compliance requirements from a
product-point-of-view.

The problem of System Misconfiguration is mainly solved since applying the Continuous
Compliance Testing allows to model and execute Compliance. Thus, one is able to ensure
an ApplicationSystem for compliance. However, as recommended by the OWASP Top 10,
our approach is not yet capable of remediation or system hardening.
Last, the problem of Management Inexperience is only partially solved, as were are

not able to entirely define and tackle management activities. However, we proposed and
provide a blueprint regarding the desired process, its roles and their responsibilities. As
our evaluation resulted this process model serves as a fundamental guideline to tackle
the overall problem in a first approach.

115

9. Conclusion

9.1. Summary
In Chapter 1 we gave a brief introduction to the central topic, i.e., Compliance Testing
from a product-point-of-view, and motivated our research attempt.
Next in Chapter 2, we presented the fundamental topics to comprehend this thesis,

e.g., we introduced Compliance Testing and the Software Development Lifecycle.
To identify the central problems which were resolved as part of this thesis, we presented

the overall problem in Chapter 3 in more detail. We classified three distinct problems,
i.e., System Misconfiguration, Information Management and Management Inexperience.

In Chapter 4 we presented the current field of Comppliance Testing and Infrastructure
Compliance Automation. We introduced various tools, discussed their enhancements and
precisely argued their inadequately regarding our defined set of problems, i.e., System
Misconfiguration, Information Management, and Management Inexperience.

Based on these foundations, we proposed our solution to the stated problem in
Chapter 5. First we introduced and defined the overall process domain. We explained the
general concepts of Product, Compliance, and Test. Furthermore, we described the reason
of portioning, i.e., additional modeling layer (Product) and the option to reusability,
and declared the ApplicationSystem, i.e., the resulting context for each model.Next, we
presented the general process model Continuous Compliance to derive, create and test
compliance requirements from a product-point-of-view. To specify each phase in more
detail, we discussed and claimed roles and responsibilities which are required to derive
compliance requirements for an SUT successfully.

To promote the practical application of this process we introduced a technically moti-
vated concept in Chapter 6. We defined the concept of Continuous Compliance Testing
and explained the mapping towards the previously introduced Continuous Compliance
process model. Furthermore, we described software requirements for a tool supporting
the process and outlined our novel ideas for the Compliance Management Tooling in
Section 6.2. To conclude this definition we defined a meta model which enfolds all
necessary aspects to create a tooling for our process model successfully, i.e., the Software
Meta-model (cf. Section 6.3). Based on this foundation, we defined further technical
motivated concepts, such as Reusability and Reporting.

In Chapter 7 we presented a proof-of-concept realization for the Compliance Manage-
ment Tooling. First, we crafted a blueprint software architecture which relies on the CMT
meta model defined in Chapter 6. Given that architecture, we describe central aspects of
our implemented, e.g., we presented the adaptation of the Visitor and Strategy pattern.
Furthermore, we outlined the key-points taken to realize of Reusability and Reporting.
Finally, in Chapter 8, we evaluated our contributions. We verified and validated the

Compliance Management Tooling. The major result is that our developed tooling is
capable of supporting the created Continuous Compliance process model. Furthermore,
we successfully evaluated the usage of Reusability and Reporting.

It is to conclude, that we successfully established a tool-supported process to yield
Continuous Compliance Testing from a product-point-of-view.

116

9.2. Future Work

9.2. Future Work
To continue and further enhance our presented solution on Continuous Compliance
Testing from a product-point-of-view we describe some topics. These topics mainly
accrued during our evaluation and discussion with involved experts at KISTERS.

Portability First and foremost an enlarged Portability of the generated tests and an
executable run time would improve and encourage usage of the Compliance Man-
agement Tooling.
Presently our solution only supports testing a remote environment which is accessible
through SSH, WinRM or plain password authentication. This yields uncertainty in
various departments as not every customer end-system should be accessed via any
remote protocol. To this end we purpose further investment in such functionality,
because it would reduce the overall uncertainty regarding tool-adaptation and
would yield even more application areas.
A blueprint solution is to couple the TestRunner and its associated plug-in even
less with the CMT-Framework. Furthermore, the plug-in needs to be able execute
its generated test code without relaying on external tools, e.g., it has to contain its
own test runner executable.

Document generation To exploit the entire model and its derivable information, we
suggest to create an additional document generation for each modeled Customer-
Project. Similar to the graph visualization it should support the traceability of once
modeled information. Furthermore, it would facilitate a simplified communication
regarding existing compliance requirements.
In future the CMT should be capable of generating detailed documents, e.g., PDF’s,
for each modeled CustomerProject. For example this document should describe all
derived compliance tests, outline their purpose (description) and the implementing
test. Further to fully comprehend the context the derivation (inheritance) path
and placeholder determination, i.e., each specific value and its origin, should be
described in great detail.
A simple possibility to implement this feature would be to create an additional
visitor which gathers all relevant informations combined with an basic document
export class. For instance, the latter one could relay on Freemarker as well.

Large scale evaluation Our conducted evaluation and its exemplary adaptation of our
proposed Continuous Compliance process model highlighted certain amount of
uncertainty regarding the model validity and the overall reachable reusability. For
example, we discover various different approaches on modeling compliance for a
specific product. Each of these approaches yields another quantity of reused entities.
Furthermore, since we applied our solution only to one large scale software product
we were not able to claim on intra-model reusability. To this end, we highly suggest
to conduct further and more extensive evaluation of our novel framework and its
guideline, i.e., the defined process model.

117

9. Conclusion

Integration of EAM or CMDB System An integration of external Configuration Man-
agement Database system will reduce the required management overhead. Accurate,
customer related settings, could directly be sourced from an existing system and do
not need to be duplicated. Furthermore, we could imaging to adapt Enterprise Asset
Management systems as well to store, receive and manage the modeled product
information, i.e., Product and Compliance.

CMT-DSL We propose the creation of an additional Domain Specific Language to
simplify and quicken the model creation and evaluation, i.e., test execution. Such
an DSL should have the ability to represent the required compliance and artifact
entites, as well as their relation among each other. However, pursuing the approach
required additional thoughts on intra-model relations, e.g., inheriting already defined
compliance or artifact entities. Furthermore the provided Command-Line-Interface
needs to be extended.

Summarizing it is to say, that our work builds an enormous foundation for several
further topics in the field of Continuous Compliance. Future work can be very practical,
e.g., implementing additional features like Portability, or more academic oriented, e.g.,
discussing and evaluating further large scale evaluation.

118

A. Model Derivation Graphs

Project

Artifacts

C
om

pliance

Tests

C
ustom

erProject

Softw
areLandscape

Softw
areC

om
ponent

C
om

plianceProfile

C
om

plianceR
uleSet

C
om

plianceR
ule

C
om

plianceTest

E1 - ProC
oS @

 m
m

oscher-w
in01

E1 - ProC
oS Installation

E1 - AntiVirus

E1 - W
indow

s R
egistry Properties

E1 - W
indow

s R
egistry Properties

E1 - ProC
oS - N

o Tim
e Sync

E1 - N
etw

ork shares
E1 - Seperate Partition

E1 - File Properties

E1 - File Properties

E1 - O
perating System

E1 - U
ser Account

E1 - U
ser Properties

E1 - U
ser Properties

E1 - U
ser has correct group

E1 - G
roup Properties

E1 - G
roup Properties

E1 - Autologon

E1 - Softw
are Properties

E1 - Softw
are Properties

E1 - R
em

ote Access
E1 - U

pdate deactivated

E1 - W
indow

s Auto U
pdate

E1 - W
indow

s U
pdate - Auto U

pdate
E1 - W

indow
s U

pdate - Install AutoU
pdates

E1 - W
indow

s U
pdate - AU

 O
ptions

E1 - Firew
all disabled

E1 - Ports listening

E1 - Port TestsE1 - TC
P Port

E1 - Port Properties

E1 - Port Properties

E1 - U
D

P Port

E1 - H
ostnam

e

E1 - H
ostnam

e

E1 - ProC
oS D

irectories
E1 - ProC

oS N
etw

ork
E1 - ProC

oS Virtual M
achine

Figure A.1.: Derivation Graph (Visualization) of modeling attempt Maximum Reuse

119

A. Model Derivation Graphs

Project

Artifacts

C
om

pliance

Tests

C
ustom

erProject

Softw
areC

om
ponent

C
om

plianceProfile

C
om

plianceR
ule

C
om

plianceTest

E2 - ProC
oS @

 m
m

oscher-w
in01

E2 - ProC
oS

E2 - ProC
oS - N

etw
ork

E2 - ProC
oS - N

etw
ork #R

4

E2 - N
et1 - Service Lanm

an
E2 - N

et1 - Service R
pcSs

E2 - ProC
oS - Antivirus

E2 - ProC
oS - Installation

E2 - ProC
oS - Install #R

11

E2 - R
10 - Port O

pen

E2 - ProC
oS - Install #R

12

E2 - R
12 - AntiVirus db execlude

E2 - R
12 - AntiVirus D

ta exclude
E2 - R

12 - AntiVirus D
ef exclude

E2 - ProC
oS - Install #R

14

E2 - R
14 - System

tim
e sync deactived

E2 - ProC
oS - Install #R

15

E2 - R
15 - N

etw
orkshare Procos

E2 - R
15 - N

etw
orkshare U

pdate_Ap
E2 - R

15 - N
etw

orkshare U
pdate_Ts

E2 - ProC
oS - Install #R

12

E2 - R
16 - Valid H

ostnam
e

E2 - ProC
oS - Install #R

22

E2 - R
22 - ProC

oS O
LE-Interface

E2 - ProC
oS - Install #R

23

E2 - R
23 - Startup sym

link

E2 - ProC
os - Install #R

25

E2 - R
25 - Firebird

E2 - ProC
oS - Install #R

26

E2 - R
26 - Firebird C

onfig m
dbuch

E2 - R
26 - Firebird C

onfig m
rl

E2 - ProC
oS - Install #R

1

E2 - R
1 - Partition Exists

E2 - ProC
oS - Install #R

2

E2 - R
2 - Partition Size

E2 - ProC
oS - Install #R

3

E2 - R
3 - Adm

in
E2 - R

3 - Adm
inistrator

E2 - R
3 - ProC

oS

E2 - ProC
oS - Install #R

4

E2 - R
4 - G

roup ProC
oS

E2 - R
4 - G

roup Adm
in

E2 - R
4 - G

roup Adm
inistrator

E2 - ProC
oS - Install #R

6

E2 - R
6 - Autologon

E2 - ProC
oS - Install #R

7

E2 - R
7 - R

D
P G

roup R
ights

E2 - ProC
oS - Install #R

10

E2 - R
9 - W

indow
s Firew

all deactivated

E2 - ProC
oS - Install #R

9

E2 - R
8 - W

indow
s U

pdate deactivated

E2 - ProC
oS - D

irectories

E2 - ProC
oS - D

irectories #R
1

E2 - R
1 - D

irectory 'ProC
oS' exists

E2 - R
1 - D

irectory 'tools' exists
E2 - R

1 - D
irectory 'backup' exist

E2 - R
1 - D

irectory 'bat' exist
E2 - R

1 - D
irectory 'dnbackup' exists

E2 - R
1 - D

irectory 'doc' exists
E2 - R

1 - D
irectory 'install' exists

E2 - R
1 - D

irectory 'logbuch' exists

E2 - ProC
oS - Virtual M

aschine

E2 - ProC
oS - Virtual #R

1

E2 - VM
1 - W

indow
s U

pdate deactivated
E2 - VM

1 - W
indow

s U
pdate N

o Install

Figure A.2.: Derivation Graph (Visualization) of modeling attempt Naive

120

Project

ArtifactsC
om

pliance

Tests

C
ustom

erProject

Softw
areLandscape

Softw
areC

om
ponent

C
om

plianceProfile

C
om

plianceR
uleSet

C
om

plianceR
ule

C
om

plianceTest

E1 ProC
oS @

 m
m

oscher-w
in01

ProC
oS Installation

ProC
oS - Seperate Partition

File Properties

File Properties

ProC
oS - O

perating System
ProC

oS - U
ser Account

U
ser Properties

U
ser Properties

ProC
oS - U

ser has correct group

G
roup Properties

G
roup Properties

ProC
oS - Autologon

Softw
are Properties

Softw
are Properties

ProC
oS - R

em
ote Access

ProC
oS - U

pdate deactivated

W
indow

s AutoU
pdate

W
indow

s U
pdate - Auto U

pdate

W
indow

s R
egistry Properties

W
indow

s R
egistry Properties

W
indow

s U
pdate - Install

W
indow

s U
pdate - AU

 O
ptions

ProC
oS - Firew

all disabled
ProC

oS - Ports listening

Port Tests

U
D

P Port

Port Properties

Port Properties

TC
P Port

ProC
oS - AntiVirus

ProC
oS - N

o Tim
e Sync

ProC
oS - N

etw
ork shares

H
ostnam

e (A-Z,0-9,-) only

H
ostnam

e

ProC
oS D

irectories
ProC

oS N
etw

ork
ProC

oS Virtual M
achine

Figure A.3.: Derivation Graph (Visualization) of modeling attempt Balanced

121

Bibliography

[And10] R. J. Anderson.
Security engineering: a guide to building dependable distributed systems.
John Wiley & Sons, 2010 (cited on page 20).

[Bir] J. Bird. Compliance as Code. url:
https://www.oreilly.com/learning/compliance-as-code
(visited on 03/14/2017) (cited on page 19).

[Bir16a] J. Bird. DevOpsSec: securing software through continuous delivery.
O’Reilly Media, 2016 (cited on pages 8, 19).

[Bir16b] J. Bird. DevOpsSec: securing software through continuous delivery.
Development Operations Security. Sebastopol, CA: O’Reilly Media, 2016.
url: http://cds.cern.ch/record/2213288 (cited on page 20).

[Boo05] G. Booch. The unified modeling language user guide.
Pearson Education India, 2005 (cited on page 43).

[Che16a] Chef. Chef Automate - Deliver Software at Speed. 2016.
url: https://www.chef.io/automate/ (visited on 07/26/2017)
(cited on page 23).

[Che16b] Chef. InSpec - Audit and Test Framework. 2016.
url: http://inspec.io/ (visited on 03/17/2017)
(cited on pages 9, 15, 19).

[Cir16] S. Cirulli. Continuous Security with Jenkins and Docker Bench.
Aug. 31, 2016.
url: https://sandrocirulli.net/continuous-security-
with-jenkins-and-docker-bench/ (visited on 07/25/2017)
(cited on page 23).

[Com09] O. Community. Open Source vulnerability scanner and manager. 2009.
url: http://www.openvas.org/ (visited on 07/25/2017)
(cited on page 23).

[Cou] P. S. S. Council.
url: https://de.pcisecuritystandards.org/minisite/en/
(visited on 05/30/2017) (cited on page 7).

123

https://www.oreilly.com/learning/compliance-as-code
http://cds.cern.ch/record/2213288
https://www.chef.io/automate/
http://inspec.io/
https://sandrocirulli.net/continuous-security-with-jenkins-and-docker-bench/
https://sandrocirulli.net/continuous-security-with-jenkins-and-docker-bench/
http://www.openvas.org/
https://de.pcisecuritystandards.org/minisite/en/

Bibliography

[Den05] P. J. Denning. “The Locality Principle”.
In: Commun. ACM 48.7 (July 2005), pp. 19–24. issn: 0001-0782.
doi: 10.1145/1070838.1070856.
url: http://doi.acm.org/10.1145/1070838.1070856
(cited on page 54).

[Dij82] E. W. Dijkstra. “On the role of scientific thought”.
In: Selected writings on computing: a personal perspective. Springer, 1982,
pp. 60–66 (cited on page 64).

[Doc16] Docker. Docker Bench for Security. 2016.
url: https://dockerbench.com/ (visited on 07/25/2017)
(cited on page 23).

[DS16] J. Dubios and D. K. Sasidharan.
JHipster - Generate your Spring Boot + Angular apps! 2016.
url: https://jhipster.github.io/ (visited on 08/21/2017)
(cited on pages 68, 69).

[Fow02] M. Fowler. Patterns of enterprise application architecture.
Addison-Wesley Longman Publishing Co., Inc., 2002 (cited on page 64).

[FS97] M. Fayad and D. C. Schmidt. “Object-oriented Application Frameworks”.
In: Commun. ACM 40.10 (Oct. 1997), pp. 32–38. issn: 0001-0782.
doi: 10.1145/262793.262798.
url: http://doi.acm.org/10.1145/262793.262798
(cited on pages 65, 94).

[Gam+95] E. Gamma et al. Design Patterns. Vol. 47.
Addison Wesley Professional Computing Series February. 1995, pp. 1–429
(cited on pages 71, 77).

[Gar15] D. Garey. System Misconfigurations Can Put Your Data at Risk.
tenable, 2015. url: https://www.tenable.com/blog/system-
misconfigurations-can-put-your-data-at-risk (visited on
06/31/2017) (cited on pages 1, 15).

[GFL06] GFLewis. RUP disciplines. 2006.
url: https://commons.wikimedia.org/wiki/File:
RUP_disciplines_greyscale_20060121.svg (visited on
07/01/2017) (cited on page 11).

[Har17] C. Hartmann. Using meta-profiles with Chef Compliance. 2017.
url: http://lollyrock.com/articles/chef-compliance-
meta-profiles/ (visited on 04/03/2017) (cited on page 22).

[Hue12] M. Huettermann. DevOps for developers. Apress, 2012 (cited on page 1).
[Hus16] T. Hussung. What Is the Software Development Life Cycle? 2016. url:

https://online.husson.edu/software-development-cycle/
(visited on 07/01/2017) (cited on page 10).

124

http://dx.doi.org/10.1145/1070838.1070856
http://doi.acm.org/10.1145/1070838.1070856
https://dockerbench.com/
https://jhipster.github.io/
http://dx.doi.org/10.1145/262793.262798
http://doi.acm.org/10.1145/262793.262798
https://www.tenable.com/blog/system-misconfigurations-can-put-your-data-at-risk
https://www.tenable.com/blog/system-misconfigurations-can-put-your-data-at-risk
https://commons.wikimedia.org/wiki/File:RUP_disciplines_greyscale_20060121.svg
https://commons.wikimedia.org/wiki/File:RUP_disciplines_greyscale_20060121.svg
http://lollyrock.com/articles/chef-compliance-meta-profiles/
http://lollyrock.com/articles/chef-compliance-meta-profiles/
https://online.husson.edu/software-development-cycle/

Bibliography

[ISa] G. F. O. for Information Security.
IT-Grundschutz - B 1 Übergreifende Aspekte. url: https://www.bsi.
bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKataloge/
Inhalt/Bausteine/B1uebergeordneteAspekte/
b1uebergeordneteaspekte_node.html (visited on 09/11/2017)
(cited on page 110).

[ISb] G. F. O. for Information Security. IT-Grundschutz-Kataloge.
url: https://www.bsi.bund.de/DE/Themen/ITGrundschutz/
ITGrundschutzKataloge/itgrundschutzkataloge_node.html
(visited on 03/15/2017) (cited on pages 8, 15).

[IS17] C. for Internet Security. CIS Benchmarks. 2017. url:
https://benchmarks.cisecurity.org/ (visited on 03/15/2017)
(cited on pages 8, 15).

[Jan10] W. Jansen. Directions in security metrics research. Diane Publishing, 2010
(cited on pages 21, 41, 56).

[Jel00] G. Jelen. “SSE-CMM security metrics”. In: NIST and CSSPAB Workshop.
2000 (cited on page 60).

[Kan02] S. H. Kan. Metrics and Models in Software Quality Engineering. 2nd.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002.
isbn: 0201729156 (cited on page 57).

[Kem] S. Kempter. ITIL Processes. url: https://wiki.en.it-
processmaps.com/index.php/ITIL_Processes (visited on
09/11/2017) (cited on pages 110, 111).

[LL13] J. Ludewig and H. Lichter.
Software Engineering : Grundlagen, Menschen, Prozesse, Techniken. 2013,
p. 665. isbn: 9783864900921.
url: http://www.opac.fau.de/InfoGuideClient.uersis/
start.do?Login=wouer20{\&}Query=540={\%}22978-3-86490-
092-1{\%}22 (cited on pages 6, 10, 11).

[McG16] T. McGonagle.
CompOps: Continuous Delivery Needs Continuous Compliance. 2016.
url: https://www.cloudbees.com/blog/compops-continuous-
delivery-needs-continuous-compliance (visited on 03/09/2017)
(cited on page 19).

[Mes07] G. Meszaros. xUnit test patterns: Refactoring test code.
Pearson Education, 2007 (cited on pages 6, 54, 108, 114).

[Mic04] Microsoft. Security Development Lifecycle. 2004.
url: https://www.microsoft.com/en-us/sdl/default.aspx
(visited on 08/01/2017) (cited on page 12).

125

https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKataloge/Inhalt/Bausteine/B1uebergeordneteAspekte/b1uebergeordneteaspekte_node.html
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKataloge/Inhalt/Bausteine/B1uebergeordneteAspekte/b1uebergeordneteaspekte_node.html
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKataloge/Inhalt/Bausteine/B1uebergeordneteAspekte/b1uebergeordneteaspekte_node.html
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKataloge/Inhalt/Bausteine/B1uebergeordneteAspekte/b1uebergeordneteaspekte_node.html
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKataloge/itgrundschutzkataloge_node.html
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKataloge/itgrundschutzkataloge_node.html
https://benchmarks.cisecurity.org/
https://wiki.en.it-processmaps.com/index.php/ITIL_Processes
https://wiki.en.it-processmaps.com/index.php/ITIL_Processes
http://www.opac.fau.de/InfoGuideClient.uersis/start.do?Login=wouer20{\&}Query=540={\%}22978-3-86490-092-1{\%}22
http://www.opac.fau.de/InfoGuideClient.uersis/start.do?Login=wouer20{\&}Query=540={\%}22978-3-86490-092-1{\%}22
http://www.opac.fau.de/InfoGuideClient.uersis/start.do?Login=wouer20{\&}Query=540={\%}22978-3-86490-092-1{\%}22
https://www.cloudbees.com/blog/compops-continuous-delivery-needs-continuous-compliance
https://www.cloudbees.com/blog/compops-continuous-delivery-needs-continuous-compliance
https://www.microsoft.com/en-us/sdl/default.aspx

Bibliography

[MO16] V. Mohan and L. B. Othmane. “SecDevOps: Is It a Marketing Buzzword? -
Mapping Research on Security in DevOps”. In: 2016 11th International
Conference on Availability, Reliability and Security (ARES). 2016,
pp. 542–547. doi: 10.1109/ARES.2016.92 (cited on page 20).

[NSM14] T. Netflix Security Monkey. Announcing Security Monkey—AWS Security
Configuration Monitoring and Analysis. 2014.
url: http://techblog.netflix.com/2014/06/announcing-
security-monkey-aws-security.html (visited on 07/25/2017)
(cited on page 25).

[Pau93] M. Paulk. “Capability maturity model for software”.
In: Encyclopedia of Software Engineering (1993) (cited on page 13).

[PM04] B. Potter and G. McGraw. “Software security testing”.
In: IEEE Security Privacy 2.5 (2004), pp. 81–85. issn: 1540-7993.
doi: 10.1109/MSP.2004.84 (cited on page 6).

[Poh10] K. Pohl.
Requirements Engineering: Fundamentals, Principles, and Techniques. 1st.
Springer Publishing Company, Incorporated, 2010.
isbn: 3642125778, 9783642125775 (cited on pages 41, 94).

[Red08] RedHat. OpenSCAP - Audit, Fix and be Merry. 2008.
url: https://www.open-scap.org/ (visited on 03/17/2017)
(cited on pages 19, 24).

[RH08] P. Runeson and M. Höst. “Guidelines for conducting and reporting case
study research in software engineering”.
In: Empirical Software Engineering 14.2 (2008), p. 131. issn: 1573-7616.
doi: 10.1007/s10664-008-9102-8.
url: https://doi.org/10.1007/s10664-008-9102-8
(cited on pages 94, 107).

[Rup+14] C. Rupp et al. Requirements-Engineering und Management: Aus der Praxis
von klassisch bis agil. Carl Hanser Verlag GmbH Co KG, 2014
(cited on page 100).

[Sav07] R. M. Savola. “Towards a Taxonomy for Information Security Metrics”.
In: Proceedings of the 2007 ACM Workshop on Quality of Protection.
QoP ’07. Alexandria, Virginia, USA: ACM, 2007, pp. 28–30.
isbn: 978-1-59593-885-5. doi: 10.1145/1314257.1314266.
url: http://doi.acm.org/10.1145/1314257.1314266
(cited on pages 41, 60).

[Sch15] C Schneider. “Security DevOps-staying secure in agile projects”.
In: OWASP AppSec Europe,(Amsterdam, Netherlands) (2015)
(cited on page 19).

126

http://dx.doi.org/10.1109/ARES.2016.92
http://techblog.netflix.com/2014/06/announcing-security-monkey-aws-security.html
http://techblog.netflix.com/2014/06/announcing-security-monkey-aws-security.html
http://dx.doi.org/10.1109/MSP.2004.84
https://www.open-scap.org/
http://dx.doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1145/1314257.1314266
http://doi.acm.org/10.1145/1314257.1314266

Bibliography

[Spr+10] J. Sprinkle et al. “3 Metamodelling”. In: Model-Based Engineering of
Embedded Real-Time Systems: International Dagstuhl Workshop, Dagstuhl
Castle, Germany, November 4-9, 2007. Revised Selected Papers.
Ed. by H. Giese et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 57–76. isbn: 978-3-642-16277-0.
doi: 10.1007/978-3-642-16277-0_3.
url: https://doi.org/10.1007/978-3-642-16277-0_3
(cited on pages 43, 48).

[ST09] N. I. of Standards and Technology.
The Security Content Automation Protocol (SCAP). 2009.
url: https://scap.nist.gov/ (visited on 04/03/2017)
(cited on pages 21, 22).

[Sto15] A. Storms. “How security can be the next force multiplier in devops”.
In: RSAConference,(San Francisco, USA) (2015) (cited on pages 19, 20).

[Tec] TechTarget. Conformance Testing.
url: http://searchsoftwarequality.techtarget.com/
definition/conformance-testing (visited on 05/30/2017)
(cited on page 7).

[Ten14] Tenable. Nessus v6 SCAP Assessments. Tech. rep. 2014.
url: http://static.tenable.com/documentation/Nessus_v6_
SCAP_Assessments.pdf (cited on page 24).

[Ten16] Tenable. Nessus Vulnerability Scanner. 2016.
url: https://www.tenable.com/products/nessus-
vulnerability-scanner (visited on 07/26/2017)
(cited on pages 19, 23).

[Ten17] Tenable. Nessus Compliance Checks. Tech. rep. 2017.
url: https://support.tenable.com/support-
center/nessus_compliance_checks.pdf (visited on 07/26/2017)
(cited on page 24).

[Tis] J. Tischart. How is Security Integrated into DevOps – DevOpsSec,
SecDevOps, or DevSecOps?
url: https://securingtomorrow.mcafee.com/business/cloud-
security/security-integrated-devops-devopssec-
secdevops-devsecops/ (visited on 03/14/2017) (cited on page 20).

[UpG] UpGuard. UpGuard - Cyber Resilience Platform.
url: https://www.upguard.com/ (visited on 03/11/2017)
(cited on page 15).

127

http://dx.doi.org/10.1007/978-3-642-16277-0_3
https://doi.org/10.1007/978-3-642-16277-0_3
https://scap.nist.gov/
http://searchsoftwarequality.techtarget.com/definition/conformance-testing
http://searchsoftwarequality.techtarget.com/definition/conformance-testing
http://static.tenable.com/documentation/Nessus_v6_SCAP_Assessments.pdf
http://static.tenable.com/documentation/Nessus_v6_SCAP_Assessments.pdf
https://www.tenable.com/products/nessus-vulnerability-scanner
https://www.tenable.com/products/nessus-vulnerability-scanner
https://support.tenable.com/support-center/nessus_compliance_checks.pdf
https://support.tenable.com/support-center/nessus_compliance_checks.pdf
https://securingtomorrow.mcafee.com/business/cloud-security/security-integrated-devops-devopssec-secdevops-devsecops/
https://securingtomorrow.mcafee.com/business/cloud-security/security-integrated-devops-devopssec-secdevops-devsecops/
https://securingtomorrow.mcafee.com/business/cloud-security/security-integrated-devops-devopssec-secdevops-devsecops/
https://www.upguard.com/

Bibliography

[VHS03] R. B. Vaughn, R. Henning, and A. Siraj. “Information assurance measures
and metrics - state of practice and proposed taxonomy”.
In: 36th Annual Hawaii International Conference on System Sciences, 2003.
Proceedings of the. 2003, 10 pp.–. doi: 10.1109/HICSS.2003.1174904
(cited on page 41).

[VO10] M. Vaishnavi and L. ben Othmane.
SecDevOps: Is It a Marketing Buzzword? Tech. rep.
Technische Universität Darmstadt, 2010. url:
https://www.informatik.tu-darmstadt.de/fileadmin/user_
upload/Group_CASED/Publikationen/2010/SecDevOps.pdf
(cited on page 19).

[Von16] S. Vonnegut. 4 Keys To Integrating Security into DevOps. 2016. url:
https://www.checkmarx.com/2016/07/01/201607014-keys-
to-integrating-security-into-devops/ (visited on 07/12/2017)
(cited on page 20).

[Wat99] J. Wateridge. “The role of configuration management in the development
and management of Information Systems/Technology (IS/IT) projects”.
In: International Journal of Project Management 17.4 (1999), pp. 237 –241.
issn: 0263-7863 (cited on page 1).

[Win05] M. Winter. Methodische objektorientierte Softwareentwicklung: Eine
Integration klassischer und moderner Entwicklungskonzepte. 2005, p. 540.
isbn: 3-89864-273-9 (cited on pages 10, 11).

[Wol94] P. Wolfgang. “Design patterns for object-oriented software development”.
In: Reading Mass (1994) (cited on page 65).

[Cen16] Center for Internet Security.
CIS Benchmark v1.1.0 for CIS Docker Community Edition Benchmark.
2016. url: https://www.cisecurity.org/cis-benchmarks/
(visited on 07/25/2017) (cited on page 23).

[Cen17] Center for Internet Security. CIS Benchmarks. 2017.
url: https://www.cisecurity.org/cis-benchmarks/ (visited on
07/31/2017) (cited on pages 8, 21).

[Goo10] Google. Angular.io - One framework. Mobile & desktop. 2010.
url: https://angular.io/ (visited on 08/21/2017) (cited on page 68).

[Gos13] Gosuke Miyashita. Serverspe c. 2013.
url: http://serverspec.org/ (visited on 03/17/2017)
(cited on pages 15, 25).

[IT] IT Infrastructure Library. IT Infrastructure Library - Roles.
url: https://wiki.en.it-
processmaps.com/index.php/ITIL_Roles (visited on 08/06/2017)
(cited on page 35).

128

http://dx.doi.org/10.1109/HICSS.2003.1174904
https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_CASED/Publikationen/2010/SecDevOps.pdf
https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_CASED/Publikationen/2010/SecDevOps.pdf
https://www.checkmarx.com/2016/07/01/201607014-keys-to-integrating-security-into-devops/
https://www.checkmarx.com/2016/07/01/201607014-keys-to-integrating-security-into-devops/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://angular.io/
http://serverspec.org/
https://wiki.en.it-processmaps.com/index.php/ITIL_Roles
https://wiki.en.it-processmaps.com/index.php/ITIL_Roles

Bibliography

[Int] International Software Testing Qualifications Board.
ISTQB Standard glossary of terms used in Software Testing.
url: http://glossar.german-testing-board.info/{\#}eng
(visited on 05/30/2017) (cited on page 7).

[Net14] Netflix. Netflix Security Monkey, GitHub. 2014.
url: https://github.com/Netflix/security_monkey (visited on
07/25/2017) (cited on page 25).

[Nor11] Normation. Rudder - Continuous configuration for effective compliance.
2011. url: https://github.com/Normation/rudder/ (visited on
07/25/2017) (cited on page 24).

[Nor16] Normation. Rudder - Continuous Configuration and Auditing. 2016.
url: https://www.normation.com/en/ (visited on 07/25/2017)
(cited on page 24).

[OWAa] OWASP Foundation. “OpenSAMM Core Model”. In: 1.5 ().
url: https://www.owasp.org/images/6/6f/SAMM_Core_V1-
5_FINAL.pdf (visited on 05/12/2017) (cited on pages 13, 14, 109, 110).

[OWAb] OWASP Foundation. OWASP - Top 10 2013-A5-Security Misconfiguration.
url: https://www.owasp.org/index.php/Top_10_2013-A5-
Security_Misconfiguration (visited on 03/09/2017)
(cited on pages i, 1, 15).

[OWA17a] OWASP Foundation. OpenSAMM. 2017.
url: http://www.opensamm.org (visited on 05/12/2017)
(cited on pages 13, 34).

[OWA17b] OWASP Foundation.
OWASP Secure Software Development Lifecycle Project(S-SDLC). 2017.
url: https://www.owasp.org/index.php/OWASP_Secure_
Software_Development_Lifecycle_Project (visited on
08/01/2017) (cited on page 12).

[Piv02] Pivotal. Spring-Framework Documentation. 2002.
url: https://spring.io/docs/reference (visited on 08/21/2017)
(cited on page 68).

[Sof] Software Testing Help. What is Compliance Testing (Conformance testing)?
url: http://www.softwaretestinghelp.com/what-is-
conformance-testing/ (visited on 05/30/2017) (cited on page 7).

[Tec17] TechTarget. TechTagret Definitions by Alphabet. 2017.
url: http://whatis.techtarget.com/definition (visited on
08/06/2017) (cited on page 34).

129

http://glossar.german-testing-board.info/{\#}eng
https://github.com/Netflix/security_monkey
https://github.com/Normation/rudder/
https://www.normation.com/en/
https://www.owasp.org/images/6/6f/SAMM_Core_V1-5_FINAL.pdf
https://www.owasp.org/images/6/6f/SAMM_Core_V1-5_FINAL.pdf
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
http://www.opensamm.org
https://www.owasp.org/index.php/OWASP_Secure_Software_Development_Lifecycle_Project
https://www.owasp.org/index.php/OWASP_Secure_Software_Development_Lifecycle_Project
https://spring.io/docs/reference
http://www.softwaretestinghelp.com/what-is-conformance-testing/
http://www.softwaretestinghelp.com/what-is-conformance-testing/
http://whatis.techtarget.com/definition

Glossary

BM Business Manager

CaC Compliance as Code

CISO Chief Information Security Officer

CLI Command Line Interface

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

CMS Compliance Management System

CRUD Create, Read, Update and Delete

CSO Chief Security Officer

IaC Infrastructure as Code

J2EE Java Platform, Enterprise Edition

JDL JHipster Domain Language

KPI Key Performance Indicator

OVAL Open Vulnerability and Assessment Language

OWASP Open Web Application Security Project

PCI-DSS Payment Card Industry Data Security Standard

PO Product Owner

QA Quality Assurance

REST Representational State Transfer

RUP Rational Unified Process

131

Glossary

S-SDLC Secure Software Development Life Cycle

SCAP Security Content Automation Protocol

SD Software Developer

SDL Security Development Lifecycle

SDLC Software Development Life Cycle

SPA Single-Page Application

SUT System Under Test

UUT Unit under test

XCCDF eXtensible Configuration Checklist Description Format

XP Extreme Programming

132

Glossary

133

	Introduction
	Motivation
	Contributions
	Structure of this Thesis

	Background
	Software Testing
	Whitebox Testing
	Blackbox Testing
	Data Driven Testing

	Compliance Testing
	Benchmarks
	Compliance as Code

	Software Development Life Cycle
	Capability Maturity Model

	Problem Statement
	Related Work
	Security Engineering
	DevOps and Security
	Benchmarks

	Compliance As Code
	SCAP
	Chef InSpec

	Infrastructure Compliance Automation

	Conceptional Foundation
	Domain Model
	Continuous Compliance
	Phases
	Responsibilities
	Roles
	Roles – Responsibilities Mapping

	Summary

	Continuous Compliance Testing
	Continuous Compliance Phase Support
	Software Requirements Specification
	Meta-Model
	Technical Concepts
	Reusability
	Inspection
	Reporting

	Summary

	Software Architecture & Realization
	Software Architecture
	Configuration Management Tool
	Technologies
	Compliance Model
	Test Genericity
	Whitelisting
	Compliance Testing
	Summary

	Execution Tooling
	Reporting

	Evaluation
	Verification
	Validation
	Continuous Compliance – Elaborate
	Continuous Compliance – Develop
	Continuous Compliance – Evaluate
	Conclusion

	Reusability
	Integration in Process Models
	Code Quality
	Discussion

	Conclusion
	Summary
	Future Work

	Model Derivation Graphs
	Bibliography
	Glossary

