
The present work was submitted to
the Research Group
Software Construction

of the Faculty of Mathematics,
Computer Science, and
Natural Sciences

Bachelor Thesis

Developing a
Service-Oriented Interface for

a Heterogeneous Code
Generator

Entwicklung einer
Service-Orientierten Schnittstelle für

einen heterogenen Code Generator

presented by

Marco Bähr

Aachen, September 25, 2017

Examiner

Prof. Dr. rer. nat. Horst Lichter

Prof. Dr.-Ing. Ulrik Schroeder

Supervisor

Dipl.-Inform. Andreas Steffens

Statutory Declaration in Lieu of an Oath

The present translation is for your convenience only.
Only the German version is legally binding.

I hereby declare in lieu of an oath that I have completed the present Bachelor’s thesis entitled

Developing a Service-Oriented Interface for a Heterogeneous Code Generator

independently and without illegitimate assistance from third parties. I have use no other than
the specified sources and aids. In case that the thesis is additionally submitted in an electronic
format, I declare that the written and electronic versions are fully identical. The thesis has not
been submitted to any examination body in this, or similar, form.

Official Notification

Para. 156 StGB (German Criminal Code): False Statutory Declarations
Whosoever before a public authority competent to administer statutory declarations falsely makes
such a declaration or falsely testifies while referring to such a declaration shall be liable to
imprisonment not exceeding three years or a fine.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to
Negligence
(1) If a person commits one of the offences listed in sections 154 to 156 negligently the penalty
shall be imprisonment not exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time.
The provisions of section 158 (2) and (3) shall apply accordingly.

I have read and understood the above official notification.

Eidesstattliche Versicherung

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Bachelorarbeit mit dem Titel

Developing a Service-Oriented Interface for a Heterogeneous Code Generator

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

Aachen, September 25, 2017 (Marco Bähr)

Belehrung

§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche
Versicherung falsch abgibt oder unter Berufung auf eine solche Versicher ung falsch aussagt, wird
mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt
(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen
worden ist, so tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.
(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die
Vorschriften des § 158 Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen.

Aachen, September 25, 2017 (Marco Bähr)

Acknowledgment

I would like to thank the KISTERS AG for accompanying this thesis, as well as, Dipl.-
Inform. Andreas Steffens for providing guidance. Lastly, I would like to thank the
reviewers Prof. Dr. rer. nat. Horst Lichter and Prof. Dr.-Ing. Ulrik Schroeder for taking
the time to review this thesis. Marco Bähr

Abstract

When combining different architecture patterns and DevOps software projects become
complex in structure. Using a code generator can ease the creation of new projects, but
introduces the need to install the tool and keep it up to date. By providing it as a web
service only one instance has to be updated.
This thesis introduces a concept on how to serve an already existing code generator

for heterogeneous infrastructure over the web using a REST-API. By adding a web
application to interact with the service the usage is made more intuitive.

Additionally, this thesis introduces a concept for dynamic generation with the example
of Jenkins build-pipelines. The build-pipelines are made decomposable to allow for a
fine-grained configuration.

Contents

1. Introduction 1
1.1. Structure of this Thesis . 1

2. Motivation and Problem Statement 3
2.1. Problem Statement . 3
2.2. Requirements for a Service-Oriented Code Generator 4
2.3. Requirements for a Front-End Application 5
2.4. Requirements for Dynamic Jenkins Pipelines 5

3. Related Work 7
3.1. Code Generator Services . 7
3.2. Configurable Build-Pipelines . 8
3.3. Summary . 9

4. Background 11
4.1. Model View Controller . 11
4.2. Model View ViewModel . 11
4.3. Web Services . 13
4.4. RESTful Web Services . 13
4.5. Pagen . 14

5. Concept 19
5.1. Web Service . 19
5.2. Extending Pagen with Component Generators 29
5.3. Web Application . 30
5.4. Jenkins Library . 32

6. Realization 33
6.1. Pagen Modifications . 33
6.2. Web Service . 37
6.3. Extending Pagen with Component Generators 45
6.4. Web Application . 45
6.5. Jenkins Shared Library . 47

7. Evaluation 49
7.1. Requirement Analysis . 49
7.2. Code Quality . 53
7.3. Evaluation at KISTERS AG . 53

i

7.4. Discussion . 55
7.5. Summary . 56

8. Conclusion 57
8.1. Summary . 57
8.2. Future Work . 58

A. Evaluation Sheet 59

B. Evaluation Results 63

C. Web Application Screenshots 65

D. JSON Examples 69

Bibliography 71

Glossary 73

List of Tables

6.1. List of REST-API endpoints . 44

7.1. Likert Scale [AS07] . 55

B.1. Evaluation Results . 63

iii

List of Figures

4.1. Model View Controller [BHS07] . 12
4.2. Model View ViewModel Diagram [Mvv] . 12
4.3. Pagen Layers Overview [Gee17] . 14
4.4. Pagen Generator Life-cycle [Gee17] . 15

5.1. Architecture . 20
5.2. Request Processing in Spring Web MVC DispatcherServlet [Sprb] . 21
5.3. Class Diagram of the Pagen Component 24
5.4. Pipes and Filters Pagen Process . 26
5.5. Pagen Pipeline Class Diagram . 27
5.6. Class Diagram of the Jenkins Component 28
5.7. Pipes and Filters Jenkins Process . 28
5.8. Jenkins Pipeline Class Diagram . 29
5.9. Front-End Mockup . 32

6.1. Modified Generator Life-cycle . 34
6.2. FileStore Class Relationships . 35
6.3. Prompt Resolve Strategy Class Diagram 39
6.4. Web Application Screenshot . 46

7.1. SonarQube Report [Son] . 54

A.1. Evaluation Sheet page 1 of 4 . 59
A.2. Evaluation Sheet page 2 of 4 . 60
A.3. Evaluation Sheet page 3 of 4 . 61
A.4. Evaluation Sheet page 4 of 4 . 62

C.1. Execution Log . 65
C.2. Statistics Modal . 66
C.3. Help Modal . 67

v

List of Source Codes

4.1. Prompt.java . 15
4.2. Jenkinsfile . 16

6.1. Generator run methods . 35
6.2. RegisterGenerator.java . 36
6.3. Archetype Generator Registration . 36
6.4. GeneratorConfig.java . 37
6.5. GeneratorNameGenerator.java . 37
6.6. GeneratorScopeMetadataResolver.java . 38
6.7. TraversePromptResolveStrategy.java . 39
6.8. Pipeline.java . 40
6.9. Filter.java . 40
6.10. ReusableZipFileStore.java . 41
6.11. Jenkins Pipeline . 43
6.12. ScriptServerComponentGenerator writing method 45
6.13. loadPipeline.groovy . 47
6.14. Library Overview . 48

D.1. Generator Information . 69
D.2. GeneratorConfig . 70

vii

1. Introduction

Contents

1.1. Structure of this Thesis . 1

To increase re-usability and separation of concerns during software development architec-
ture patterns are used. As a result, the development environment becomes more complex
and requires the repetitive creation of similar components[Gee17].
A code generator can be used to automatically create these components and provide

boilerplate code [Gee17].
The need to install and update such a generator might make it less attractive for

some. A service-oriented implementation eliminates these requirements for the individual
developer and therefore makes it more appealing.

In this thesis, an implementation for a service-oriented interface for an already existing
heterogeneous code generator is introduced. Additionally, a first front-end implementation
is provided to make the service usable for developers.
Code generation can also be used in other areas. For this reason, dynamic code

generation with the example of Jenkins build-pipelines is implemented and examined.

1.1. Structure of this Thesis
The following chapter presents the motivation for this thesis as well as a definition of the
problem. In chapter 3 similar concepts already implemented are evaluated against the
current requirements. The next chapter then introduces some basic knowledge which
will be assumed as given for the rest of the thesis. Next, the concept to solve the in
chapter 2 introduced requirements is presented and followed by some implementation
details provided by chapter 6. The last chapter is then used to analyze to what extent
the requirements are met by the introduced solution.

1

2. Motivation and Problem Statement

Contents

2.1. Problem Statement . 3
2.2. Requirements for a Service-Oriented Code Generator 4

2.2.1. Functional Requirements . 4
2.2.2. Non-functional Requirements 4

2.3. Requirements for a Front-End Application 5
2.3.1. Functional Requirements . 5
2.3.2. Non-Functional Requirements 5

2.4. Requirements for Dynamic Jenkins Pipelines 5
2.4.1. Functional Requirements . 5
2.4.2. Non-functional Requirements 6

Using a code generator can decrease the overhead of creating new software projects
[Gee17].
However, the requirement to install the generator can be unpleasant and lead to

developers ignoring the option. By serving a it over the web, this is no longer needed
and the service only has to be installed once.
Having a single instance that is being used by all developers results in a single point

of maintenance. If the generator has to be updated it has to be done only once instead
of on every developer’s machine. This makes the update process a bliss and guarantees
that all developers use the same version.

By definition a service allows the implementation of multiple clients. These clients only
have to provide the needed information to the generator and are therefore lightweight.
This makes it easy to implement plug-ins for various Integrated Development Environments
(IDEs) or a web application.

Implementing a web application with an intuitive interface can help lower the learning
effort required to get familiar with the generator. It makes it look more appealing to
developers and will, thereby, increase its usage.

2.1. Problem Statement
The goal of this thesis is to make the code generator implemented by Ralph Geerkens in
his master thesis easier to reuse by offering it as a web service. This allows to integrate
it into different scenarios and introduces the mentioned single point of maintenance.

To make the service more useful, a web application will be provided as a first front-end
implementation. This web application provides a graphical user interface to interact with

3

2. Motivation and Problem Statement

the service.
Adding to this, the thesis tries to prove that the Pagen generator can be extended to

generate a complete software component. As an example, a generator for a component
developed by the KISTERS AG will be added to the generator.
Lastly, the dynamic generation of code is examined. This is achieved by generating

Jenkins build-pipelines that are dynamically requested and executed during an already
running build-pipeline execution.

2.2. Requirements for a Service-Oriented Code Generator
In this section the functional and non-functional requirements of a service-oriented code
generator are presented.

2.2.1. Functional Requirements

1.1. Generator discovery Implementing new generators should not require to register
them in the service.

1.2. Generator Information A list of available generators and there parameters should
be available.

1.3. Execution of multiple generators It should be possible to run distinct generators
that produce a common artifact.

1.4. Test execution Before the download it should be possible to verify the generation
by executing tests.

1.5. Persisted configuration To be able to reproduce or improve the generated project,
the used configuration should be preservable to allow some sort of incremental
usage.

1.6. Statistics To give an overview of most used generators, statistics should be set up.

1.7. Client application A first client should be shipped with the service in form of a
front-end application.

1.8 Software Component Generation Pagen should be extended with the ability to
generate complete software components.

1.9. Dynamic generation The service should be extended with the ability to generate
code dynamically on the example of Jenkins build-pipelines [Jen].

2.2.2. Non-functional Requirements

1.9. Reusability The generator interface should be reusable. It should allow multiple
front-end implementations.

4

2.3. Requirements for a Front-End Application

1.10. Extensibility The integration of new operations in the processes should be possible
without having to change the majority of the code.

2.3. Requirements for a Front-End Application
The previous section described the functional requirement of a front-end implementation.
The requirements for such a web application are listed below.

2.3.1. Functional Requirements
2.1. Single-Page Application The front-end should be implemented as a SPA.

2.2. Generator list A list of all available generators should be presented to the user.
This list should allow to filter generators by used architecture or technology.

2.3. Generator parameters The parameter inputs for the generators should be dynami-
cally adjusted to the current selection.

2.4. Process information The progress and test information has to be continuously
available to the user.

2.5. Optional artifact retrieval The retrieval of the artifact should be optional in the
case of failed tests.

2.6. Charts Statistics should be presented as charts.

2.3.2. Non-Functional Requirements
2.7. Intuitivity The user-interface has to be intuitive and easily understandable to achieve

a faster learning experience.

2.4. Requirements for Dynamic Jenkins Pipelines
In section 2.2 the requirements for the service included the dynamic generation at
the example of Jenkins build-pipelines. This section describes the functional and non-
functional requirements for such a build-pipeline.

2.4.1. Functional Requirements
3.1. Decomposability A dynamic build-pipeline should be decomposable to include or

exclude certain parts of the pipeline.

3.2. Parameterization Pipelines should allow the usage of parameters, which are config-
ured before execution.

3.3. Template Version To provide reliability, the template version used in a project
should be specifiable.

5

2. Motivation and Problem Statement

2.4.2. Non-functional Requirements
3.4. Effortless Integration The integration into Jenkins should require a minimum

amount of effort.

3.5. Maintainability There should only be a single point of maintenance, meaning a mod-
ification of a pipeline template should result in an upgraded pipeline configuration
in all projects.

6

3. Related Work

Contents

3.1. Code Generator Services . 7
3.1.1. Spring Initializr . 7

3.2. Configurable Build-Pipelines . 8
3.2.1. Jenkins . 8
3.2.2. TeamCity . 8
3.2.3. BuildKite . 8
3.2.4. GoCD . 9

3.3. Summary . 9

In this chapter already available solutions for the introduced problems are presented and
evaluated against the requirements.

3.1. Code Generator Services

3.1.1. Spring Initializr

The Spring Initializr is a web service that offers to generate quickstart projects for the
Spring Boot framework [Sprc; Spra]. The project is split into three sub-modules.
The initializr-generator module is the library generating the code. It offers

the core functionality and can be embedded in any project.
It is executed by the web service implemented in the initializr-web sub-module.

This module offers a REST-API to configure the generator execution and a web interface.
The web interface offers the selection between Gradle and Maven as build systems,

as well as, the programming language and the Spring Boot version [Mav; Gra]. The
supported programming languages include Java, Kotlin and Groovy [Jav; Kot; Gro].
Next, it requires to input the projects name with the Maven naming convention and a
optional description. The selection of the output format (JAR or WAR) and Java version
is also avaiable.
If the generation is started, the Spring Initializr generates a basic example project

containing: a basic Maven configuration and a small class containing the Spring Boot
initialization.
For further configuration it allows adding commonly used libraries to the project.

These include additional web frameworks, database drivers, template engines, integration
of social networks and many more. These, however, only affect the generated Project

7

3. Related Work

Object Model (POM) Maven configuration [Mav]. This means no additional boilerplate
code is generated.
The generator is designed to create a bare-bone project structure and does not allow

the generation of example code and makes the execution of tests is unnecessary. Spring
Initializr also does not offer any way to share or preserve the used configurations settings.

3.2. Configurable Build-Pipelines

3.2.1. Jenkins

Jenkins offers functionality for parameterized builds by default. It allows the user to
include placeholders in their Jenkinsfile pipeline configuration. While this allows
reusing the pipeline across different projects that have the same build steps, but different
parameters. To be able to include or exclude certain steps, conditional blocks and
parameters have to be used. This results in a less readable and therefore less maintainable
pipeline code.

A newer addition to the Jenkins build ecosystem are shared libraries. Shared libraries
are designed to create new reusable pipelines steps and are generally loaded from a Source
Code Management (SCM) system like Git [Gita]. Commonly used pipelines can thereby
be implemented as a new pipeline step and reused in different Jenkinsfiles. The version
of the library can be specified per Jenkins instance or Jenkinsfile.

3.2.2. TeamCity

TeamCity is a continuous integration server developed by JetBrains [Tea]. TeamCity,
like Jenkins, allows builds to have parameters in form of either system properties or
environment variables. These enable sharing common pipeline configurations across
projects, but do not allow a single point of maintenance since they need to be duplicated
for each new build configuration. For this reason TeamCity supports build templates.
Build templates can be used to maintain similar build configurations. A configuration
can inherit settings and build steps from one build template and might change some
parameters. A configuration, however, can only be associated with a single build template.
Therefore, parts of the template can not be excluded.

TeamCity also supports the concept of meta-runners. Meta-runners allow combining
several build steps into a custom build step that can be included in different configurations.
This allows summing up part of the process and share it across builds similar to Jenkins
shared libraries.

3.2.3. BuildKite

BuildKite is a build server that does not have a specific pipeline language [Bui]. The
pipelines are defined in a pipeline.yml file that contains its steps. Each step has a
label; an identifier of the agent, which should execute the step; and a command to run.
If the step is executed, the specific agent runs the command and therefore allows the

8

3.3. Summary

steps to be implemented in a programming language of choice. BuildKite also supports
creating pipelines dynamically. Inside an existing pipeline, a build step can create a new
pipeline.yml file and run it.

3.2.4. GoCD
GoCD is a continuous integration server that uses a XML based pipeline format [Goc].
Pipelines in GoCD can be abstracted using templates. A template pipeline defines the
build steps but not the configuration. Pipelines using the template are required set these
parameters. This allows to use the same build steps for different projects that have the
same build steps and result in a single point of maintenance.

3.3. Summary
This chapter showed that there was no web service found that fulfilled all introduced
requirements. There are, however, several build-pipelines that support functionality
similar to what is required. Only one of those allows for a dynamic generation of pipeline
code.

9

4. Background

Contents

4.1. Model View Controller . 11
4.2. Model View ViewModel . 11
4.3. Web Services . 13
4.4. RESTful Web Services . 13

4.4.1. Pipes and Filters . 13
4.5. Pagen . 14

4.5.1. Generator Framework Layer 14
4.5.2. Application and Technology Layer 16
4.5.3. Generator Layer . 16
4.5.4. Generator Application Layer 16
4.5.5. Jenkins Pipelines . 16

In this chapter some concepts and architecture patterns are introduced, which were used
as a basis for the concept and implementation of this thesis.

4.1. Model View Controller
The Model View Controller architecture pattern is used divide the business logic of a
web application from its UI [BHS07].

The functionality of the application is implemented in a so called model [BHS07]. This
model might be divided into several domain objects to allow to spread the responsibilities
realized. The model has no knowledge of the user presentation nor does it have to.
The User Interface is presented by a view [BHS07]. There can be a view for every

aspect of the model. A view is responsible to retrieve data from the model and convert it
to the output [BHS07]. This allows to change the view without having an effect on the
model.
The third component of the MVC pattern is the controller. The controller receives

inputs from the user and manipulates the model to react to the events [BHS07].
By separating the concerns it is possible to, for example, change the User Interface

without affecting the application’s functionality [BHS07].

4.2. Model View ViewModel
Model View ViewModel (MVVM) is an architecture pattern based on the previously
introduced MVC [Mvv]. The goal of MVVM is similar to the previous. Achieve separation

11

4. Background

ModelModel

ControllerControllerViewView
Send Event

Access Model

Notify Notify

Figure 4.1.: Model View Controller [BHS07]

of concerns by splitting the application into different classes with predefined separate
objectives. The result is easier to test, re-use and maintain than before [Mvv].
The pattern uses three components: the view, the model and the view model [Mvv].

The first two are familiar from the MVC pattern. The model implements the application’s
domain objects and the view is the visual representation of the data presented to the
user. The controller of the MVC pattern is now replaced by a view model. The view
model acts as a mediator between the model and the view [Mvv]. It invokes methods
of the model and hands reformatted data to the view. It also manages the applications
state and executes operations based on user interaction. Data between the view and the
view model is linked using two-way data biding. If the data in the view changes, it effects
the view models state and vice versa [Mvv].
A benefit of this approach is that the interface functionality can be tested by testing

the view model. This is easier than having to test the from the view produced user
interface itself. An overview of the components relationships is presented in figure 4.2.

View ViewModel Model

Data Binding and
Commands

Send Notifications Send Notifications

ViewModel updates
the Model

Figure 4.2.: Model View ViewModel Diagram [Mvv]

12

4.3. Web Services

4.3. Web Services

Web services are defined by the W3C as

“[...] a software system designed to support interoperable machine-to-machine
interaction over a network. [...] Other systems interact with the Web service
in a manner prescribed by its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in conjunction with other
Web-related standards.”

[Weba]

4.4. RESTful Web Services

Representational State Transfer (REST) is a style defining how HTTP requests should be
used [Jak08]. The W3C categorizes web services implementing such a behavior as “REST-
compliant” [Weba]. These web services are resource-oriented and allow addressing using
a directory like URI. This makes an implemented Application Programming Interface
(API) more intuitive for the user.

To modify a resource CRUD operations in the form of HTTP requests are used.
Resources are retrieved using GET, created using POST, modified using PUT and deleted
using DELETE [Jak08].
All operations executed are stateless, meaning the result is independent from the

previous requests and always contains the full information [Jak08].
Generally, resources can be represented by any format, however, it is recommended

to use either XML or JSON. These formats are implemented in a variety of clients and
make the service widely usable [Rod08].

REST is the current state-of-the-art in Application Programming Interfaces (APIs)
and is widely used in web services. Since it is only dependent on HTTP and when used in
combination with XML or JSON, it can be easily consumed by any client side application
written in a modern programming language. The stateless approach eliminates the need
to persist a client’s state on the server and thereby reduces overhead.

4.4.1. Pipes and Filters

The pipes and filters architecture pattern divides steps of a process into small chunks,
called filters. Each filter has a input and an output and serves only a single function.
Filters are connected by pipes, which are used to pass the results from one filter to the
next.

Unix shells utilize this pattern to chain programs, which by design only serve a single
purpose. For instance, the statement cat hello.txt | wc -l consist of the two
filters cat and wc. Using the pipe (“|”) the output of cat hello.txt is used as input
for wc -l resulting in the number of lines in the file hello.txt.

13

4. Background

4.5. Pagen
Pagen is a incremental code generator designed and developed by Ralph Geerkens during
his master thesis [Gee17]. The generator tries to fulfill the following four requirements.

The generator should support the generation of heterogeneous software and architecture.
This means it has to be able to adapt to different programming languages, as well as,
architecture patterns. To achieve this it has to enable the generator developer to
implement different naming strategies and code organizations [Gee17].
Instead of only providing a bare-bone project for a developer to use, the generator

should be useful during the development phase by providing incremental generation.
Therefore, the generator allows the user to generate components into an existing project
[Gee17].

To make the generator more accessible, the ease of use was considered during develop-
ment. This includes an easy installation, update and execution [Gee17].
The last considered aspect is knowledge sharing. Knowledge sharing should allow

developers to share best practices by providing exemplary code as a result of the generation
[Gee17].
The generator is constructed using a layered architecture presented in figure 4.3.

G
e

n
e

ra
to

r
Fr

am
ew

o
rk

 L
a

ye
r Generator Application Layer

Generator Layer

Application and Technology Layer

Templates

Figure 4.3.: Pagen Layers Overview [Gee17]

4.5.1. Generator Framework Layer
The first layer is the generator framework layer. It provides the functionality and base
classes required to implement a code generator matching the described requirements.

14

4.5. Pagen

This layer also contains the User Query API and the generator life-cycle [Gee17].
The User Query API is used by concrete generators to prompt the user questions on a

CLI. Each question is represented by a class implementing the Prompt interface (shown
in listing 4.1). Therefore, all prompts contain a name, message and a method to interact
with the user [Gee17].
1 public interface Prompt<T> {
2
3 String getName();
4
5 String getMessage();
6
7 T prompt();
8
9 }

Source Code 4.1: Prompt.java

Each concrete generator implements the three life-cycle phases shown in figure 4.4.

Configuring

Writing

Finalizing

Figure 4.4.: Pagen Generator Life-cycle [Gee17]

The configuring phase is used to register any sub-generators (Pagen allows composed
generators) and prompts before evaluating the inputs [Gee17].

The following writing phase performs all operations on the template files. Since files
can be expected to be dependent on each other a Intermediate File Storage (IFS) is
introduced. The IFS is responsible for retrieving the templates and keeping them in

15

4. Background

memory until told otherwise [Gee17]. This allows to perform actions like placeholder
replacement and rearrangement without causing load on a permanent file storage.

When executing the finalizing phase the IFS is instructed to output the results of
the generation to disk [Gee17].

4.5.2. Application and Technology Layer
The second layer is the application and technology layer. This layer implements naming
conventions and other definitions required to support the heterogeneous nature of the
generation [Gee17]. It also contains abstract generator implementations for the different
technologies and architecture patterns [Gee17].

4.5.3. Generator Layer
The third layer is the generator layer. The generator layer contains the concrete generator
implementations and templates. Templates are stored separately and are fetched during
the generator execution [Gee17]. Each generator follows the in the framework layer
defined life-cycle steps and produces the final generation output [Gee17].

4.5.4. Generator Application Layer
The last layer is called generator application layer. This layer represents the CLI
application implemented as a Maven plug-in [Mav; Gee17]. It offers the user a selection
of available generators and executes the selected. On execution the respective generator
prompts the user with the configured questions and generates the code in the current
directory [Gee17].
In this thesis Pagen will be made available using a web service. For this reason, the

generator application layer is of no use and therefore will not be mentioned again.

4.5.5. Jenkins Pipelines
A Jenkins pipeline (or more specific build-pipeline) is a collection of plug-ins for the
Jenkins build automation server [Jen]. It allows the system to support Continous Delivery
processes using a Domain Specific Language (DSL) [Jen].
Continous Delivery (CD) is the process of serving a software system to the user

automatically. This process includes the retrieval of source code, compilation, testing
and finally installation on a target machine [Jen].

Jenkins pipelines are defined in a Jenkinsfile containing different stages. A stage
is a collection of steps that serve a common purpose [Jen]. An example for a stage might
be the compilation phase. The steps represent actions executed by the pipeline. These
could include a SCM checkout, shell script execution and so on. Listing 4.2 shows a
pipeline example grabbed from the official documentation [Jen].
1 pipeline {
2 stages {
3 stage(’Build’) {

16

4.5. Pagen

4 steps {
5 sh ’make’
6 }
7 }
8 stage(’Test’){
9 steps {

10 sh ’make check’
11 junit ’reports/**/*.xml’
12 }
13 }
14 stage(’Deploy’) {
15 steps {
16 sh ’make publish’
17 }
18 }
19 }
20 }

Source Code 4.2: Jenkinsfile

17

5. Concept

Contents

5.1. Web Service . 19
5.1.1. Technology . 21
5.1.2. Web Service Class Type Overview 22
5.1.3. Pagen Service Component Overview 22
5.1.4. Pagen Generator Discovery 24
5.1.5. Pagen User Query API Mapping 24
5.1.6. Pagen Execution Process . 25
5.1.7. Pagen Pipeline . 25
5.1.8. Jenkins Service Component Overview 26
5.1.9. Jenkins Templating . 27
5.1.10. Jenkins Build-Pipeline Generation Process 28
5.1.11. Jenkins Pipeline . 28
5.1.12. Statistics . 29

5.2. Extending Pagen with Component Generators 29
5.3. Web Application . 30

5.3.1. Technology . 30
5.3.2. Generator Selection . 31
5.3.3. Displaying Query Information 31
5.3.4. Progress Information . 31
5.3.5. Charts . 31

5.4. Jenkins Library . 32

In this chapter the basic concepts and architecture is introduced. The concept is divided
into three parts:

• A web service implementing the capabilities defined in section 2.2 and section 2.4.

• A web application fulfilling requirements described in section 2.3

• And a Jenkins library to be able to use the generated Jenkins build-pipelines.

Figure 5.1 gives an overview about the listed components.

5.1. Web Service
The web service consists of two parts that are shown in figure 5.1. A Pagen service
component and a Jenkins service component.

19

5. Concept

Web Service

Pagen
Service

Jenkins
Service

Web Application
Jenkins
Library

REST-API REST-API

Pagen Pipeline Jenkins Pipeline

Pagen GitLab

HTTP

Figure 5.1.: Architecture

The Pagen component is responsible for offering a web service interface to Ralph
Geerken’s Pagen generator. This interface is used by the web application and can also
be used by other REST compliant clients (requirement 1.9). The Pagen generator is here
used as a dependency.

The Jenkins component is responsible for creating the dynamic Jenkins pipelines and
serving them, again, over a REST-API (requirement 1.9). The templates are stored in a
GitLab repository and are retrieved over the HTTP. Instead of the web application, the
interface is designed to be consumed by a Jenkins library, which requests and executes
the Jenkins build-pipeline.
The actual generation of both components is done in a separate component, called

pipeline. These either do the generation themselves (Jenkins service component) or
delegate it to the Pagen generator.

20

5.1. Web Service

To avoid confusion the Jenkins pipelines will be called build-pipelines for the rest of
this thesis.

5.1.1. Technology

Spring Boot

The web service is implemented with the help of Spring Boot[Spra]. Spring Boot is a
simplification of the Spring Framework [Sprb]. It allows the user to create stand-alone
Spring applications without the need for extra configuration or external Java Servlets.
The Spring Framework uses the Model View Controller (MVC) pattern and includes
a functionality to create RESTful apllications, as well as, features like Dependency
Injection, database integration and integrated JSON marshalling/unmarshalling. Since it
is a Java framework the integration of Pagen can be achieved by importing the project
as a dependency and using it as a library. This allows to keep the execution in a single
JVM.

The Spring request work-flow is visualized in figure 5.2. The framework is request-

Front
Controller

Controller

View
Template

model

model

Delegate
request

Delegate
Rendering

Of response

Render
Response

Return
control

Handle
request

Create
model

Incomming
request

Return
response

Servlet engine
(e.g. Tomcat)

Figure 5.2.: Request Processing in Spring Web MVC DispatcherServlet [Sprb]

driven and uses a central DispatcherServlet (illustrated in the graphic) to delegate
work to specific controllers and render the model to a view [Sprb].

21

5. Concept

5.1.2. Web Service Class Type Overview

The service’s classes are divided into three types.
The controller is introduced in the illustration figure 5.2 and handles specific requests

forwarded from the Spring framework. These represent the endpoints of the REST-API.
Like suggested by Fowler, the domain layer is split into domain models and a service

layer [Fow02]. The service layer in this implementation contains the business logic
while the other objects mainly serve as Data Transfer Objects (DTOs) [BHS07].
This makes the used data independent from the used generator.

5.1.3. Pagen Service Component Overview

The Pagen component of the service is shown in figure 5.3. It consists of six DTOs, three
controllers and three services.

Data Transfer Objects

The Generator class is used to represent a Pagen generator. It includes its name, its
command (used to identify the generator) and other meta information (requirement
1.2). Additionally, it contains the list of prompts. These prompts are represented by
the Prompt DTO and include the message and value type of the prompt. Adding to
this a map to store nested prompts is added. The map saves the name of the prompts
as keys and other Prompt DTOs as values. These classes are used to provide the client
with information about the available generators. To initiate a generation, the client
inputs a GeneratorConfig. The GeneratorConfig defines the generators (identified
by command) that should be executed and a list of parameters, which should be used as
prompt inputs.
When a generation is started, the user is provided which an identifier for the specific

job, to be able to check its progress. The identifier is modeled by the Job class and the
status information by the JobStatus class. The JobStatus contains information about
the current state of execution, test results and the current output log.
The remaining DTO (Response) is used to transmit String messages to the client.

This is used to give information in the case of failure.

Controllers

The controllers GeneratorController, JobController and ArtifactController

represent the REST-Endpoints of the application. They execute the respective methods
of their service and compose error messages with the help of the Response domain in
case the service fails.

Services

The service classes implement the business logic of the web service.

22

5.1. Web Service

The GeneratorService acts as a facade for the user query mapping, input validation
and pipeline composition [Fow02]. The query mapping (explained in section 5.1.5) and
input validation is outsourced using a strategy pattern [Gam+95].
The GeneratorService executes the PromptMapingStrategy on all generators ,as soon
as the generator overview is requested, and adds a prompt for the optional test execution
to the returned list of Prompts DTOs. They are than added to the created Generator

DTOs and returned to the user. A to JSON transformed example is presented in
appendix D. If a new generation is initiated, the service validates provided inputs using the
PromptValidationStrategy and assembles the pipeline using a JobPipelineBuilder
(Explained later in this chapter). The assembly is performed dynamically, if the user
requested to run test the pipeline is configured accordingly. All available Pagen generators
are registered in the GeneratorService, during the pipeline composition the chosen
generator instances are passed to the pipeline for execution. After the pipeline is composed,
the GeneratorService passes the already running pipeline to the JobService and
provides the user with a matching identifier in form of a Job DTO.

After that, the JobService stores the pipeline reference and is responsible for creating
JobStatus responses. If a status is requested and the pipeline is finished, the service
passes the pipeline’s final artifact to the StorageService and provides the client with a
matching artifact id.

Using this artifact id, the client is able to download the result of the generation from
the StorageService’s in-memory storage. Artifacts can be expected to be small in
the case of a code generator. Therefore, the in-memory storage is sufficient. If a client
downloads an artifact it gets immediately removed from the storage.
It is, however, possible that a generated artifact gets abandoned by the client. This

is common if, for example, the tests failed. In such cases the service has to discard the
generated artifact. For this reason a time-to-live is introduced. Each artifact gets a
time-stamp as soon as it is added to the storage. Every two minutes, the service checks
for artifacts with a time-stamp older than two minutes and removes them. This results
in a worst-case storage time of four minutes.

23

5. Concept

JobPipelineBuilderAbstractGenerator

GeneratorController JobController ArtifactController

GeneratorService JobService StorageService

Generator

GeneratorConfig

Job

JobStatus

Prompt

Response

<<interface>>
PromptResolveStrategy

<<interface>>
PromptValidationStrategy

0..*

1

0..*

1

JobPipeline

0..*

1

0..*

1

0..*

1

<< create >>

Figure 5.3.: Class Diagram of the Pagen Component

5.1.4. Pagen Generator Discovery
To ease the integration of new Pagen generators an annotation is added which contains
additional meta-data of the generator. This includes architecture type, technology and a
category. This annotation is used to scan for generators using Spring’s bean discovery
[Spra]. The discovered generators can than be injected in the service without having to
be explicitly added (requirement 1.1).

5.1.5. Pagen User Query API Mapping
To present the user with the parameters required by the selected generators Pagen’s User
Query API has to be mapped to the Prompt DTOs (requirement 1.2).
Pagen uses a builder pattern to compose queries in form of prompts [Gam+95]. A

prompt is implemented as a interface, which includes the prompts name and message.
Here, the name of the prompt represents the queries key and the message the output
presented to the user. There are several types of prompts including input, confirmation
and selection prompts. The only ones used in the generators itself are the input and the
confirmation prompt. These either ask the user to input a string or answer a question
with yes or no. The value of the input in case of the confirmation prompt is saved
as a boolean value. Therefore, the only constraints from the prompts are: queries
represented by the InputPrompt require a value of type String and queries represented
by ConfirmPrompt require a value of type Boolean. It has to be noted that prompts
can be nested. This means a prompt of type ConfirmPrompt can contain another builder

24

5.1. Web Service

composing additional queries if the prompt is selected. Therefore, the Prompt DTO has
to allow a hierarchical structure. Furthermore, generators can set parameters of there
sub-generators by using InjectPrompts. Values set by these prompts should not show
up in the mapping and have to be filtered out.

5.1.6. Pagen Execution Process

The process of executing pagen is divided in three steps. First is the actual execution of
one or more generators followed by the injection of the used configuration for re-usability
and lastly the execution of the included tests.

Generation

At the start of the process Pagen is used to generate the desired source code (the artifact
of the generation). Since a Java framework was chosen, Pagen can be utilized as a library.
Pagen is designed to execute a single generator and output the generated files in the
current directory. The service, on the other hand, should be able to run a selection of
generators. During execution the files are kept in a Intermediate File Storage (IFS) and
are written to disk in the finalizing phase of the generator. Therefore, it is a good
idea to run the generators in sequence with a common IFS. This way, the operations are
kept in memory until the complete generation is finished.

Configuration Injection

After the generation the used configuration of the generators is stored in the artifact
(requirement 1.5). This enables developers to share useful configurations and minimizes
startup times for new projects.

Testing

The last stage of the process is the testing stage. In this phase Maven is used to execute
the tests included in the templates used by Pagen to verify if the generated source code
is executable (requirement 1.4) [Mav]. Maven is the build system used in the templates
and is able run all tests of a project by executing mvn verify in a directory containing
the Maven Project Object Model (pom.xml). As already mentioned, the test execution
is optional since it can take time.

5.1.7. Pagen Pipeline

The in section 5.1.6 described process can be realized using the pipes and filters architec-
ture pattern introduced in section 4.4.1. Figure 5.4 shows the execution of Pagen with
two generators, the attachment of the configuration and the test execution in form of a
pipes and filters pattern. The pattern offers high flexibility making it easy to add new
filters, like additional generators (requirement 1.3, 1.10), or to exclude them, like the
optional testing filter.

25

5. Concept

GeneratorGenerator GeneratorGenerator
Configuration

Injector
Configuration

Injector
Maven TestingMaven TestingPipePipe PipePipe Pipe

Filter Filter Filter Filter

Figure 5.4.: Pipes and Filters Pagen Process

Figure 5.5 shows a concrete class digram of the processes model.
The Pipeline and Filter interfaces are the definition of the pattern. The pipeline is

an active pipe representation that executes all registered filters in sequence and passes the
output (artifact) of one filter to the next. The concrete implementation of JobPipeline
has a artifact named JobArtifact. This artifact is the only allowed input and output
format of the filters. It contains the common IFS, which therefore gets passed from
generator to generator.
The three concrete filter types represent the process steps presented in the previous

chapter.
To ease the usage of the pipeline it is equipped with a JobPipelineBuilder following

the builder pattern. A builder pattern eases the construction of complex composed
objects by providing methods to add a supported object to the composition [Gam+95].
Here, the builder is used to compose a JobPipeline by adding concrete filters to it.

5.1.8. Jenkins Service Component Overview
The Jenkins component of the web service only consists of one DTO , one controller and
one service.

Data Transfer Object

The Request DTO represents a request by a client. It contains the configurable parame-
ters of the pipeline, like the fragments and variables, as well as, the URL to the template
repository and the commit SHA. The commit is optional and can be used to set a specific
version of the pipeline instead of using the newest one.

Controller

Again the JenkinsController acts as the definition of the REST-Endpoint. It calls
the JenkinService to generate the build-pipeline.

Service

The JenkinService is responsible for assembling the pipeline and starting the execution.
Like the Pagen component it again uses a builder. After the pipeline is finished either
the generated build-pipeline code gets returned or a build-pipeline code displaying an
error message during Jenkins’ execution.

26

5.1. Web Service

<<interface>>
Filter

<<interface>>
Pipeline

T T

GeneratorConfig

AbstractGenerator

GeneratorFilter ConfigFilter

MavenFilter

InputMap

<<interface>>
JobFilter

JobPipeline

JobArtifact

1

0..*

FileStore

Figure 5.5.: Pagen Pipeline Class Diagram

5.1.9. Jenkins Templating

In order to exclude or include certain parts of a Jenkins build-pipeline, the original
build-pipeline has to be split into fragments (requirement 3.1). The original pipeline
might contain a segment on which any further step of the build-pipeline depends. In this
segment dependencies might be downloaded or the environment might be configured.
These steps are vital for the build-pipeline execution and are therefore required in order
for a fragment to work. For this reason, a build-pipeline is able to define a mandatory
fragment, which contains the explained actions. Each fragment, including the mandatory
fragments, should be saved in a individual file. These files and a name identifying
the fragment are stored in a tempalte.json file, which is located in the root of the
template repository. Furthermore, the file should contain the location of a template’s
root directory and a list of variables, which should be provided by the client when a

27

5. Concept

JenkinsController JenkinsService

Request JenkinsPipelineBuilder

JenkinsPipeline

<< create >>

Figure 5.6.: Class Diagram of the Jenkins Component

build-pipeline is requested (requirement 3.2).

5.1.10. Jenkins Build-Pipeline Generation Process

The process of generating dynamic Jenkins build-pipeline can also be divided into several
stages. The first stage being the download of the templates from GitLab optionally with
a specific commit (requirement 3.3) [Gitb]. After that the template.json has to be
unmarshalled to be able to read the information. Next, the variables provided by the
request can be validated and added to the final build-pipeline, which will be returned
after the process. The last stage is the assembly of fragments. For each fragment that is
requested the respective files content needs to be added to the final build-pipeline.

5.1.11. Jenkins Pipeline

The in section 5.1.10 described process can again be modeled using the pipes and filters
pattern.

Retrieve
Templates
Retrieve

Templates
Process TemplatesProcess Templates Add VariablesAdd Variables

Combine
Fragments
Combine

Fragments
PipePipe PipePipe Pipe

Filter Filter Filter Filter

Figure 5.7.: Pipes and Filters Jenkins Process

28

5.2. Extending Pagen with Component Generators

Like the Pagen pipeline, the Jenkins pipeline uses implementations of the Pipeline
and Filter interfaces to model the architecture.

<<interface>>
Filter

<<interface>>
Pipeline

T T

Template

<<interface>>
JenkinsFilter

JenkinsPipeline

RetrieveFilter TemplateFilter FragmentFilterVariableFilter

JenkinsArtifact

Figure 5.8.: Jenkins Pipeline Class Diagram

In this case the JenkinsArtifact contains the Template DTO, the actual templates
retrieved from the GitLab repository and the current build-pipeline code[Gitb]. Therefore,
unlike in the Pagen pipeline, it is not possible to rearrange the filters. Again, the concrete
filters represent the steps described in section 5.1.10.

5.1.12. Statistics

To give the generator developer an idea which generators are used frequently the web
service offers metrics on what generators are used how often and how many tests have
failed (requirement 1.6). To achieve this the service takes advantage of Spring’s actuator
package to extend the included metrics with statistics [Sprb].

5.2. Extending Pagen with Component Generators
To test the extensibility of Pagen, a generator for the KiScriptServer component, developed
by KISTERS AG is added to the generator (requirement 1.8). When choosing the

29

5. Concept

generator, the KiScriptServer component should be added to the project without any
parameters.
To achieve this the application and technology layer has to be extended with fitting

naming conventions and a factory to create the convention implementation [Gam+95].
Since the KiScriptServer follows the naming conventions implemented for the ports and
adapters architecture the same implementation was chosen for the component. New
component specific conventions can always be added afterwards. Additionally, an abstract
generator for the software components was added to this layer.

Next, the generator layer has to be extended with the concrete implementation of the
KiScriptServer generator. Since the component is already complete it just has to be
moved into its own folder.

5.3. Web Application

The web application offers a user-friendly interface to operate the Pagen part of the
web service in form of a Single-Page Application (requirement 2.1). The user should be
able to select the desired generators and provide the required parameters. Furthermore,
it should display the user with progress updates and test results, as well as offer the
generated artifact as download.

5.3.1. Technology

Vue.js

The web application uses Vue.js as a framework[Vuea]. Vue.js is a progressive Javscript
framework with support for creating Single-Page Applications (SPAs) using the MVVM
pattern. It uses a declerative component-based approach with a virtual Document Object
Model (DOM) for responsiveness. It also allows the user to define a component in a
single .vue file, which includes the components template, javascript functionality and
style, with the help of tools like Webpack [Webb].

Vuex

Vuex is a library which is used to manage global state in a Vue.js application [Vueb]. To
modify the global state, mutations have to be implemented in order to keep the outcome
predictable. The introduction of a global state is useful when dealing with state that is
distributed over multiple components. When a component changes the state is mutated
globally eliminating the need to gather the states of the individual components.

Bulma

Bulma is a CSS framework based on the flexbox layout mode of CSS3 [Bul]. It is a
responsive and mobile first.It is therefore usable on any device. In contrast to other
frameworks such as Bootstrap, Bulma does not include any JavaScript. Therefore, it

30

5.3. Web Application

is lightweight while offering all needed components for building a generator front-end.
It also allows to implement the needed functionality in the chosen js framework and
eliminates the hassle of mixing imperative with declarative paradigms.

5.3.2. Generator Selection
Generators have to be displayed to the user in order to be selected (requirement 2.2). The
generators are divided into categories and should be displayed accordingly. A generator
has a name and a command which is only used to identify the generator. The easiest
representation is to display generators as a list of checkboxes with their name as label.
Since the amount of generators is expected to increase over time, filter methods are
provided to only show generators that generate code of a certain programming language
or architecture pattern.

5.3.3. Displaying Query Information
Each generator has a specific set of parameters. These parameters are provided by the
web service in form of prompts. Since these prompts vary from generator to generator the
union of the parameters has to be computed to eliminate duplicates (requirement 2.3). In
section 5.1.5 it was determined that two types of parameters are required: String and
Boolean. String parameters can easily be represented by the input type textfield,
while Booleans can be represented by checkbox. These inputs are than labeled with
the query message retrieved from the prompts in the web service. Furthermore, the
queries of type Boolean can contain nested queries, which should only be visible if the
corresponding checkbox is checked. To clarify a mockup is provided in figure 5.9.

5.3.4. Progress Information
While the web service is working, the web application presents the user with the current
log and the status of the execution (requirement 2.4). If the process succeeds, the web
application should automatically download the artifact. If it fails, the user should decide
if he still wants to download the file (requirement 2.5).

5.3.5. Charts
To display the from the web service computed statistics charts are added to the web
application to give a quick an easy to interpret overview of the data.

31

5. Concept

GeneratorService

http://www.genservice.com/

PagenWeb
JavaSelect Technology:PortAdapterSelect Architecture:

?AREA:

energy

?SLICE:

build

isSublisce ?

?SUBSLICE:

fast

?HOMENAME:

examleCode ? Do you want to generate
exmaple Code?

Generate!

Composites:

Archetype Slice

Development:

Domain Implementation

Domain SPI

Service API

Service Implementation REST Proxy

Primary Adapter REST

Secondary Adapter MemDB

Secondary Adapter JPA

Deployment:

Domain API

Karaf Features

Chef

Supplements:

Build Pipeline

Figure 5.9.: Front-End Mockup

5.4. Jenkins Library
To be able to execute the build-pipeline, generated by the web service, dynamically,
Jenkins needs to be extended. This is done by implementing a shared library. Shared
libraries are registered inside Jenkins using, for example, a git repository (requirement
3.4, 3.5). They can either be made available globally, for all build-pipeline, or registered
to a single build-pipeline. The library also offers a interface to define the name of the
desired build-pipeline template, it’s version (in form of commit) (requirement 3.3), the
variables and fragments to include in the final product. With the help of those parameters
it downloads the final assembly and executes it in the same context.

32

6. Realization

Contents

6.1. Pagen Modifications . 33
6.1.1. User Query API . 33
6.1.2. Generator Life-cycle . 34
6.1.3. Output Formats . 34
6.1.4. Metadata and Generator Registration 36

6.2. Web Service . 37
6.2.1. Generator Discovery . 37
6.2.2. Pagen User Query Mapping Implementation 39
6.2.3. Pipes and Filters Implementation 40
6.2.4. Pagen Pipeline . 41
6.2.5. Jenkins Pipeline . 42
6.2.6. Statistics . 43
6.2.7. REST-Endpoints . 43

6.3. Extending Pagen with Component Generators 45
6.4. Web Application . 45
6.5. Jenkins Shared Library . 47

In this chapter the necessary changes to the Pagen generator and the implementation of
the most important concepts explained in chapter 5 are explained [Gee17].

6.1. Pagen Modifications
Since Pagen is designed to be a CLI-based application some changes have to be made in
order to utilize it as a library.

6.1.1. User Query API

First an foremost, the User Query API has to be modified. Each generator owns an
instance of a UserQueryBuilder which is a class utilizing the builder pattern. Internally
the queries and its name are stored in a map data structure. On generator execution
the UserQueryBuilder is called with a already given InputMap (HashMap wrapper
containing input data). If more inputs than given are needed, the respective query
prompts the user for the input. To avoid these prompts a already complete list of inputs
has to be provided to the generator. Therefore, the needed data needs to be known before
generator execution. This can be achieved by adding a getter to the UserQueryBuilder
for the prompt list and a getter to the generators in order to retrieve the builder.

33

6. Realization

6.1.2. Generator Life-cycle
The next step of retrieving the inputs is to change the generators life-cycle. In the original
life-cycle model the generator specific queries are added in the configuring and the
builder is executed immediately afterwards. This gives no opportunity to retrieve the
queries without getting prompted for input. Therefore, the configuring step is split
into a initializing and a configuring step. The new initializing step takes care
of the query configuration and the registration of sub-generators, while the configuring
step executes the builder and evaluates the generated InputMap. The modified generator
life-cycle is presented in figure 6.1.

Next there needs to be a way to inject a complete list of inputs before the generator’s
execution. Therefore, the generators a equipped with an additional run method that
accepts a configured InputMap.

Configuring

Writing

Finalizing

Initliaizing

Figure 6.1.: Modified Generator Life-cycle

6.1.3. Output Formats
Apart from the user query changes the generated code format has to be adjusted. In
addition to generating files and folders on the operating systems file system, there is
now the need for archive support. The Intermediate File Storage (IFS) is responsible for

34

6.1. Pagen Modifications

handling the files and writing them to disk with the commit method. By creating an
abstract class with an abstract commit template method the implementation of multiple
output formats is a matter of implementing different specific file stores [Gam+95].
The original commit implementation is extracted into a DiskFileStore and a new
implementation for ZIP-archives is added in form of ZipFileStore. The relationships
are shown in figure 6.2.

<<abstract>>
FileStore

DiskFileStore ZipFileStore

Figure 6.2.: FileStore Class Relationships

Again the generator run method needs to be modified to allow a selection of output
formats. The final method signatures are presented in listing 6.1.

1 public void run(String... args) throws IOException
2 public void run(InputMap inputMap, OutputFormat format, Path path)

throws IOException
3 public void run(InputMap inputMap, FileStore fileStore) throws

IOException
4 public void run(InputMap inputMap, OutputStream out) throws

IOException

Source Code 6.1: Generator run methods

The first signature is derived from the Task interface and used by the Maven plugin.
The others allow the injection of a pre-configured InputMap as introduced in section 6.1.1.
Furthermore, they allow output format configuration by either choosing a format and a
destination or by providing an own FileStore. The signature in line 4 is used to write
the archive into a desired OutputStream.

35

6. Realization

6.1.4. Metadata and Generator Registration

The current implementation requires a hard-coded list of generators and getter methods
to configure meta-information. By introducing a RegisterGenerator annotation the
meta-data can be separated from the generators logic and offers the opportunity to import
generators by scanning for the annotation in a base-package. This eases the integration
of new generators and allows for filtering by, for example, technology. The implemented
annotation includes fields for architecture, technology, category and a description. A
listing is provided by listing 6.2
1 @Retention(RetentionPolicy.RUNTIME)
2 public @interface RegisterGenerator {
3 String description() default "";
4 Architecture architecture() default Architecture.OTHER;
5 Technology technology() default Technology.OTHER;
6 Category category();
7
8 enum Architecture {
9 PORT_ADAPTER,

10 MVVM,
11 OTHER
12 }
13 enum Technology {
14 JAVA,
15 ANGULAR,
16 OTHER
17 }
18
19 enum Category {
20 COMPOSITE,
21 DEPLOYMENT,
22 DEVELOPMENT,
23 SUPPLEMENT,
24 COMPONENT
25 }
26 }

Source Code 6.2: RegisterGenerator.java

The @Retention(RetentionPolicy.RUNTIME) is required to keep the annotation in
the compiled byte-code, otherwise evaluation at runtime would not be possible.

All that needs to be done to register a new generator is now to add a annotation, like
shown in listing 6.3, in front of a generator class.
1 @RegisterGenerator(
2 category = RegisterGenerator.Category.COMPOSITE,
3 architecture = RegisterGenerator.Architecture.PORT_ADAPTER,
4 technology = RegisterGenerator.Technology.JAVA
5)

36

6.2. Web Service

6 public class PortAdapterArchtypeGenerator extends
AbstractPortsAndAdaptersGenerator {

Source Code 6.3: Archetype Generator Registration

6.2. Web Service
This section introduces the most important implementations of the concepts introduced
in section 5.1.

6.2.1. Generator Discovery

Spring Boot detects its components by scanning the with @SpringBootApplication

annotated classes package and sub-packages [Spra]. This allows the user to skip the process
of registering all beans in a XML file. The same technology can be utilized for the generator
discovery. Since all generators are already annotated with @RegisterGenerators (see
section 6.1.4) all that needs to be done is to configure Spring to search for the annotation
in the de.kisters.pagen package.
This is implemented by providing the Spring Java configuration shown in listing 6.4.

1 @Configuration
2 @ComponentScan(
3 basePackages = {"de.kisters.pagen"},
4 includeFilters = {
5 @ComponentScan.Filter(type = FilterType.ANNOTATION,
6 value = RegisterGenerator.class)
7 },
8 nameGenerator = GeneratorNameGenerator.class,
9 scopeResolver = GeneratorScopeMetadataResolver.class

10)
11 public class GeneratorConfig {
12 }

Source Code 6.4: GeneratorConfig.java

The basePackages attribute points Spring to the start of the package tree to search,
while includeFilters configures it to search for classes annotated with
@RegisterGenerator. The default Spring naming strategy for beans is to use the class
name, but since the generators have a predefined command to identify them a custom
naming strategy is provided. This is achieved by implementing the generateBeanName
method of the BeanNameGenerators interface. The listing 6.5 shows the implementation.
1 @Override
2 public String generateBeanName(BeanDefinition definition,

BeanDefinitionRegistry registry) {
3 try {

37

6. Realization

4 Class<?> clazz =
Class.forName(definition.getBeanClassName());

5
6 for (PropertyDescriptor pd :

Introspector.getBeanInfo(clazz)
7 .getPropertyDescriptors()) {
8 if (pd.getReadMethod() != null &&

pd.getReadMethod().getName().equals("getCmd") &&
!pd.getName().equals("class")) {

9 return (String)
pd.getReadMethod().invoke(clazz.newInstance());

10 }
11 }
12
13 return clazz.getSimpleName();
14 } catch (Exception e) {
15 springLogger.error(e.getMessage());
16 }
17
18 return definition.getBeanClassName();
19 }

Source Code 6.5: GeneratorNameGenerator.java

The generator command is defined in a getter method, which needs to be executed
using reflection. This is done by iteration over the class properties until the getCmd

method is found. If existent, it is invoked on a new instance and returned. As a fall-back,
the name of the class is returned.
Last but not least, the bean scope has to be defined. A new instance of a generator

is required for every request. To achieve this the bean scope has to be set to request

(defaults to singleton). This is again realized by implementing another interface.

1 public class GeneratorScopeMetadataResolver implements
ScopeMetadataResolver {

2 @Override
3 public ScopeMetadata resolveScopeMetadata(BeanDefinition

definition) {
4 ScopeMetadata metadata = new ScopeMetadata();
5
6 metadata.setScopedProxyMode(ScopedProxyMode.NO);
7 metadata.setScopeName("request");
8
9 return metadata;

10 }
11 }

Source Code 6.6: GeneratorScopeMetadataResolver.java

38

6.2. Web Service

The resolveScopeMetadata method presented in listing 6.6 sets the scope to
request and disables the scope proxy. The scope proxy is not needed, since the service
using the generators has the same scope as the generators.

6.2.2. Pagen User Query Mapping Implementation
The algorithm used to parse the UserQueryBuilder object is encapsulated in a strat-
egy pattern shown in figure 6.3 [Gam+95]. The context is here represented by the
GeneratorService. Listing 6.7 shows the implementation.

<<Interface>>

PromptResolveStrategy

<<Interface>>

PromptResolveStrategy

+resolvePrompts(builder : UserQueryBuilder) :
Map<String, Prompt>

TraversePromptResolveStrategyTraversePromptResolveStrategy

+resolvePrompts(builder : UserQueryBuilder) :

Map<String, Prompt>

GeneratorServiceGeneratorService

-resolveStrategy : PromptResolveStrategy

Figure 6.3.: Prompt Resolve Strategy Class Diagram

1 public class TraversePromptResolveStrategy implements
PromptResolveStrategy {

2 @Override
3 public Map<String, Prompt> resolvePrompts(UserQueryBuilder

builder) {
4 Map<String, Prompt> prompts;
5 List<String> remove;
6
7 prompts = new LinkedHashMap<>();
8 remove = new ArrayList<>();
9

10 builder.getPrompts().forEach((key, value) -> {
11 if (value instanceof ConfirmPrompt) {
12 ConfirmPrompt confirm = (ConfirmPrompt) value;
13 // Nested prompts?
14 Prompt promptModel = new Prompt("Boolean",

value.getMessage());
15 if (confirm.getBuilder() != null)
16 promptModel.setAdditional(this.resolvePrompts(confirm.getBuilder()));
17 prompts.put(value.getName(), promptModel);
18 } else if (value instanceof InjectPrompt) {
19 if (!remove.contains(key))
20 remove.add(key);

39

6. Realization

21 } else
22 prompts.put(value.getName(), new Prompt("String",

value.getMessage()));
23 });
24
25 // Delete all predefined entries
26 remove.forEach(key -> prompts.remove(key));
27
28 return prompts;
29 }
30 }

Source Code 6.7: TraversePromptResolveStrategy.java

The algorithm starts at the top-level builder and parses the registered prompts. If
a prompt is an instance of ConfirmPrompt, it’s message and name gets stored in a
Prompt DTO with the addition of a value type of Boolean. The same is applied to
InputPrompts, but with the value type of String. ConfirmPrompts can additionally
have nested prompts, which are stored in another UserQueryBuilder instance in the
prompts object. The nested builder’s prompts are added to the current list of prompt
DTOs using recursion. The third type of prompt is the InjectPrompt. These are used
to set values for prompts that are already registered. Since these values are already set
they do not need to be presented to the user and are removed after the traversal. A
result of the traversal in JSON format can be examined in appendix D.

6.2.3. Pipes and Filters Implementation

The definition of the pipes and filters architecture pattern described in section 4.4.1 is
implemented in the listings 6.8 and 6.9.

1 public interface Pipeline<T> {
2 void addFilter(Filter<T> filter);
3 void execute();
4 T getArtifact();
5 boolean isSuccessful();
6 }

Source Code 6.8: Pipeline.java

The pipes are implemented as an active pipeline, which has a list of filters that are
applied in sequence. The pipeline passes the output of the previous filter in form of an
artifact to the next as an input. Additionally, the pipeline provides a Boolean indicating
if the filters were executed successfully.

1 public interface Filter<T> {
2 T execute(T artifact);
3 boolean isSuccessful();

40

6.2. Web Service

4 }

Source Code 6.9: Filter.java

The filters are passive in the implementation. They get called by the pipeline and
provides the result of the operation as a return object of the execute method. Whether
the filter was successful is indicated by the isSuccessful getter method.

6.2.4. Pagen Pipeline

The implementation of the Pagen pipeline is contained in the package
de.kisters.genservice.pagen.pipeline. The JobArtifact represents the input
and output format of every filter. It acts as a container for the file store used in the
generators and includes a method to generate the final ZIP- file. Every generator executes
the commit method of the file store in its finalizing phase, which causes the file store
to generate the zip after every generation. Since mulitple generators are run in sequence
a custom file store listed in listing 6.10 is used to omit the output until all generators are
finished.

1 public class ReusableZipFileStore extends ZipFileStore {
2 public ReusableZipFileStore(OutputStream out) {
3 super(null, null, out);
4 }
5
6 @Override
7 public void commit() {
8 // Skip commit to allow reuse in other generator
9 }

10
11 public void finalCommit() {
12 // Call ZipFileStore.commit() to create ZIP file
13 super.commit();
14 }
15 }

Source Code 6.10: ReusableZipFileStore.java

Like introduced in section 5.1.6 there are three filters implemented in the pipeline.

GeneratorFilter

The GeneratorFilter uses the run method added in section 6.1.3 to provide the
respective Pagen generator with the in the JobArtifact wrapped file store and thereby
executes a single generator.

41

6. Realization

ConfigFilter

The ConfigFilter utilizes Jackson to convert the generator configuration, provided
as the body of the received POST-request, to a JSON file, which is added to the file
store. Posting the file to the service therefore produces the same output as the current
execution of the service.

MavenFilter

To be able to execute the tests, the ZIP first has to be generated by the file store and
extracted to a temporary directory. The JobArtifact offers a getBytes() method,
which calls finalCommit() of the file store and returns the ZIP file as bytes.

The MavenFilter uses the MavenInvoker package to execute the mvn verify com-
mand on the project object model included in the generated source code.
The MavenInvoker uses the pre-installed Maven executable located in the MAVEN_HOME
folder with the settings located in the M2_HOME.

The pipeline (JobPipeline) executing the filters is implemented as a thread. This is
due to the possibly long execution time of the generators and MavenFilter. A client,
which has requested a generation, might timeout before the pipeline is finished. Therefore,
the execution is run as a background tasks, while the client can request status updates
including the current execution log. After the pipeline is finished, the client receives a
artifact id, which he can use to retrieve the generated source as a ZIP. The client has
also the ability to cancel the pipeline. If he chooses to do so, the thread gets terminated
after the current filter finishes. The filters are made atomic to avoid leaving waste on
the disk. The MavenInvoker and Pagen are both not designed to be interrupted and
therefore offer no cleanup methods to remove any temporary files created.

To ease the usage of the pipeline, a JobPipelineBuilder is implemented, which offers
a DSL to configure a pipeline.
builder.generator(gens, "archetype", inputs).config(config).maven();

would create a pipeline with a GeneratorFilter executing the archetype Pagen gener-
ator, a ConfigFilter adding the used configuration to the file store and a MavenFilter
executing the test. By calling execute() the builder would start the pipeline and return
the reference.

6.2.5. Jenkins Pipeline

The Jenkins pipeline is simpler than the Pagen pipeline and does not require the execution
to run in the background. The generation of the pipeline code is quick enough for the
client to not timeout and therefore the JenkinsPipeline is not implemented as a thread.
Again, the process is as described in section 5.1.10 is implemented as four filters.

42

6.2. Web Service

RetrieveFilter

The RetrieveFilter is responsible for downloading the templates from GitLab. It uses
Java’s FileSystem class to open the downloaded archive and stores the information in
the JenkinsArtifact container.

TemplateFilter

After the RetrieveFilter the TemplateFilter is executed and resolves the
template.json file inside the ZIP’s root directory. It than uses Jackson to parse the
content into the respective Template DTO and adds it to the artifact container.

VariableFilter

The VariableFilter is used to check the provided variables for completeness and
checks their types. It than adds the variables and their values to the top of the final
build-pipeline.

FragmentFilter

The FragmentFilter is the final filter of the Jenkins pipeline. It resolves the selected
fragments with help of the Template domain model and adds them to the final build-
pipeline code.
Like for the Pagen pipeline, the Jenkins pipeline also includes a builder in form

of JenkinsPipelineBuilder. The complete configured pipeline looks as shown in
listing 6.11.
1 builder.retrieve(templateUrl, commit).template().variable(name,

variables).fragment(name, fragments).execute();

Source Code 6.11: Jenkins Pipeline

6.2.6. Statistics
Statistics are provided using the Spring Boot Actuator [Spra]. The Spring Boot Actuator
generates automatically generates metrics for the applications uptime, memory usage
and others. It also allows to add custom metric data by using the CounterService.
The CounterService can be retrieved using Spring’s dependency injection and offers
methods to increase or decrease a specific counter by a string name representation. These
additional counters are automatically added to the metrics endpoint and are used to
create the generator statistics.

6.2.7. REST-Endpoints
The REST-Endpoint presented in table 6.1 are the result of the controller classes
introduced in this chapter.

43

6. Realization

All Endpoints with prefix /api/pagen/generators/ are implemented in the
s GeneratorController of the Pagen component. They can be used to list all avail-
able generators, execute a single generator by providing input parameters or executing
multiple generators using the GeneratorConfig. Example JSON results can be found
in appendix D.

Endpoints prefixed with /api/pagen/job/ refer to a running JobPipeline and are
used to retrieve the status information or cancel a specific job.

After a successful generation the result of the pipeline is available to download via the
/api/pagen/artifacts/ endpoint.

The endpoint /api/jenkins belongs to the JenkinsController. It is used to
provide the build-pipeline configuration and returns the generated build-pipeline.

Metrics and generation statistics can be viewed with the help of the /metrics endpoint
generated by the Spring Actuator package. It contains the current performance metrics
and different generation statistics.
The web service also offers a live documentation powered by Swagger, which can be

found under the /swagger-ui.html URL [Swa].

REST-API Endpoints
Request Type Endpoint Description

Generators

GET /api/pagen/generators List of available generators
POST /api/pagen/generators/{cmd} Run generator {cmd}
POST /api/pagen/generators Run generators

Jobs

GET /api/pagen/jobs/{jobId} Get status of job {jobId}
DELETE /api/pagen/jobs/{jobid} Cancel job {jobId}

Artifacts

GET /api/pagen/artifacts/{artifactId} Download artifact {artifactId}

Jenkins

POST /api/jenkins/{name} Retrieve pipeline {name}

Spring Actuator

GET /health Application health information
GET /info General information
GET /metrics Metrics and generator statistics
GET /trace Last HTTP requests

Table 6.1.: List of REST-API endpoints

44

6.3. Extending Pagen with Component Generators

6.3. Extending Pagen with Component Generators
First the component had to be made executable on its own. The POM of the module
contained a reference to a parent component. This reference was deleted and the project
was able to build with mvn verify. Next, a template.json had to be added for
Pagen to work. Since the component should not be parameterized, the file was left empty.
The current supported types in Pagen are Angular components and Port Adapter

implementations. To allow complete components,
a AbstractSoftwareComponentGenerator class was added to the pagen-core
module. It does not contain any implementations except from the User Query Builder
initialization.
Next is the implementation of the concrete generator in the pagen-templates

module. This required setting the repository (in the constructor) and copying the files,
located in the root of the repository, in its own folder inside the writing life-cycle
method. The implementation is shown in listing 6.12.
1 @Override
2 public void writing(Path destinationPath) {
3 Path sourcePath = Paths.get("");
4 Path targetPath =

destinationPath.resolve(convention.getFullName());
5
6 newGeneration(fileStore)
7 .from(sourcePath)
8 .to(targetPath)
9 .copyDirectories();

10 }

Source Code 6.12: ScriptServerComponentGenerator writing method

To register the generator all that was needed is to add the @RegisterGenerator
annotation for the service to discover it.
This should show that with the help of the new generator discovery and the current

Pagen interface, the implementation of new architecture components can be done with
little effort.

6.4. Web Application
The web application implementation uses the Vue.js webpack template [Tem]. The
template includes a complete webpack configuration with minification, Vue single file
components and hot reload. The configuration was slightly modified to configure a
development proxy for the web service and to be able to include the code in the JAR.

The list of generators is implemented as a list of generator components. Each of these
generator components displays its name and a checkbox. If a generators checkbox
gets checked, the corresponding command gets added to the list of activated generators
in the global state store managed by Vuex [Vueb].

45

6. Realization

The same technique is also used to store the query information. Each prompt is
represented by either the InputPrompt or the ConfirmPrompt component. Since
these share a large portion of their functionality, a mixin is used to outsource these
parts. A mixin is Vue’s form of abstraction and “mixes” its JavaScript properties into
the properties of the components using this mixin [Vuea]. Again, the query values are
stored in the Vuex store.

Both component types now store their value in a central data store, which makes is
easy to compose the AJAX request without having to traverse all components.

After a generation is initiated, the web application polls the current status of the
execution every three seconds and allows the user to download the generated source code
after it is finished.

All AJAX requests are implemented in a plugin making it easy to swap out the library
or change the REST-endpoints.

The resulting web application can be examined in figure 6.4, further screen-shots can
be found in appendix C.

Gen-Web Statistics Help

Architecture Technology

Composite

Deployment

Development

Supplement

Component

What is the name of the area? [AREA]

What is the name of the slice? [SLICE]

What is the name of the subslice? [SUBSLICE]

What is the name of the home variable? [HOMENAME]

Job running!

All All

 Archetype Slice

 Chef Provision

 Integration Test

 Karaf Distribution

 Karaf Features

 Omnibus

 Domain API

 Domain Implementation

 Domain SPI

 Primary Adapter - REST

 Secondary Adapter - JPA

 Secondary Adapter - MemDB

 Service API

 Service Implementation

 Service Implementation - REST Proxy

 Web UI

 Build Pipeline

 Maven Parent

 Maven Root ?

 Angular Component

 Angular Component with Service

 Script Server

Load Config

energy

build

 Is this project a subslice? [isSubslice]

fast

 Do you want to generate example code? [exampleCode]

HOME

 Do you want to run tests after generation? [runTests]

 Cancel View log

Figure 6.4.: Web Application Screenshot

46

6.5. Jenkins Shared Library

6.5. Jenkins Shared Library

The Shared Library registers the function loadPipeline globally. The implementation
of the function is shown in listing 6.13.

1 import groovy.json.JsonOutput
2
3 def call(Closure body) {
4 def config = [:]
5 body.resolveStrategy = Closure.DELEGATE_FIRST
6 body.delegate = config
7 body()
8
9 if (!config.url || !config.templateUrl || !config.fragments ||

!config.variables ||
10 !(config.fragments in List) || !(config.variables in Map))
11 error ’Invalid config!’
12
13 def data = [
14 templateUrl: config.templateUrl,
15 commit: config.commit,
16 fragments: config.fragments,
17 variables: config.variables
18]
19
20 def json = JsonOutput.toJson(data)
21
22 // Retrieve pipeline from service
23 def response = httpRequest consoleLogResponseBody:

config.debug, contentType: ’APPLICATION_JSON’,
24 httpMode: ’POST’, requestBody: json, url:

"${config.url}/${config.name}",
25 validResponseCodes: ’200’
26 def exec
27
28 // Load pipeline
29 node("master") {
30 writeFile file: "pipeline.groovy", text: "def call()

{\n${response.content}\n}\nreturn this;"
31 exec = load "pipeline.groovy"
32 }
33
34 // Run pipeline
35 exec()
36 }

Source Code 6.13: loadPipeline.groovy

The call function gets executed everytime the loadPipeline function gets called.

47

6. Realization

The parameter body of the function refers to the body of the loadPipeline block
(since parentheses can be omitted in Groovy) [Gro]. The block is used to provide the
configuration and is parsed into a Map by setting the delegate context to the desired
variable. After executing the closure the config map contains every variable and its
value defined inside the body block.

Now, the existens of the required fields in the configuration is validated and the
build-pipeline is requested from the back-end using the HTTPRequestPlugin.

To execute the downloaded build-pipeline it has to be written to disk first in order to
be loaded by the load Jenkins step. For the load step to work, the build-pipeline has
to be wrapped inside a call function. This has the consequence that no functions can
be used in the build-pipeline templates and have to be replaced by closures.
A usage overview of the library can be found in listing 6.14

1 loadPipeline {
2 url = ’’// URL to the service
3 templateUrl = ’’// URL to the template ZIP (retrieve from

gitlab)’
4 name = ’’ // Name of the template project
5 fragments = [] // Fragments to include
6 debug = true // Output pipeline before execution?
7 variables = [:] // Map of variables (needs to match definition

in template.json)
8 }

Source Code 6.14: Library Overview

48

7. Evaluation

Contents

7.1. Requirement Analysis . 49
7.1.1. Web Service . 49
7.1.2. Generator Information . 50
7.1.3. Web Application . 51
7.1.4. Dynamic Jenkins Pipelines 52
7.1.5. Template Version . 52

7.2. Code Quality . 53
7.3. Evaluation at KISTERS AG . 53
7.4. Discussion . 55

7.4.1. Pagen Component . 55
7.4.2. Jenkins Component . 55
7.4.3. Performance Improvements 56
7.4.4. Validation . 56

7.5. Summary . 56

In this chapter the generator service developed will be evaluated by checking whether
the requirements introduced in chapter 2 are matched. Afterwards the quality of code is
examined using a SonarQube analysis [Son].
Following the code quality some results of a evaluation done at KISTERS AG are

presented by discussing requested features.
In the last part of the chapter some possible improvements for the current realization

and concept are introduced.

7.1. Requirement Analysis

In this section the requirements introduced in chapter 2 are compared to the implemented
functionality.

7.1.1. Web Service

The web service includes the implementation of the requirements presented in section 2.2.
In this section the functional and non-functional requirements are evaluated in there
degree of implementation.

49

7. Evaluation

Generator Discovery

Adding a new generator to the list of available generators should not require a manual
registration. For this reason Spring’s component scan is used to search for generators in
a specific project package and its sub-packages. This makes it easy to add or remove
generators from the list without having to modify the service.

7.1.2. Generator Information

The implemented User Query API mapping algorithm adjusts to changed generator
parameters and also supports nested prompts. It only implements the currently used
types and has to be extended to allow for new prompt types.

Multiple Generations and Artifact

The generator should be able to execute multiple generators. Pagen, by design, only
allows to execute one generator at a time [Gee17]. During execution, the user is prompted
to select one of the available generators, fill in the parameters and start the generation.
The generator creates the files in the current directory and terminates.

To allow for the sequential execution of generators a modified Intermediate File Storage
was used. This IFS is shared between the generator executions and does not write to disk
until all generations are finished. This allows to keep all data in memory until an output
is required and is especially important if the generated artifact should be available as an
archive. Instead of generating the files on disk and compressing them in a ZIP archive,
the complete source code is written directly from memory in a ZIP format. It therefore
decreases waste and processing on storage media, such as Hard Disk Drives (HDDs).

Test Execution

In the presented implementation the last filter executed in the Pagen pipeline runs Maven
to verify the generation. Pagen templates should be executable code and therefore stay
executable after the generation process. The automatic verification makes sure the user
known whether the generation was successful before including the source code in his
project.

Incremental Use

The concept of incremental usage as implemented by Pagen is not easy to translate to
a web service. A web service requires the user to download the generation and extract
the archive. For the original implementation of Pagen as a Maven plug-in this is not
necessary. The plug-in can directly generate the new component’s files inside the project.
To achieve the same effect with a web service a client implementation has to be added.
This client has to download the generated sources and extract it into the projects folder.

To at least allow the user to regenerate a certain project or improve its generation, a
configuration file is added to the artifact. This configuration includes the selected genera-

50

7.1. Requirement Analysis

tors and their parameters. Creating a POST request to the /api/pagen/generators
endpoint with the configuration as body will result in the same source code as the original
generation. This enables a developer to share his presets or store them for future projects.
It also allows to slightly modify the generation if something was missing.

To sum up, incremental usage is supported, but for effective usage an additional client
is needed. The reuse of generation presets is however supported and allows for fast
project initialization and sharing between developers.

Reusability

The web service executing the code generator should be reusable. This should allow the
implementation of different front-ends, like plug-ins for IDEs. By choosing a REST-API
for the interface implementation the only requirement for a client is to be able to send
HTTP requests. The endpoints are documented using Swagger, which also presents the
used JSON format. This makes it easy for third parties to implement their own client.

One inconvenience of the interface is the implementation of a job’s status. The status
of a generation has to be checked frequently to be able to determine when the final
artifact is available for download. This means unnecessary overhead for the implementing
client if it does not require a continuous update of the progress. One of the limitations
of Representational State Transfer (REST) is the data retrieval. If a client request an
endpoint it always returns all available information. In the case of the progress retrieval
this always leads to the inclusion of the process log. If this data is not required in the
consuming application it presents more unnecessary overhead.
All in all the implementation of a REST-API offers a easily adaptable interface for

third parties.

Extensibility

The processes implemented in the web service are easily expendable. This is possible
due to the usage of the pipes and filters pattern. It allows create new process steps
by implementing the respective filter interface. Since the functionality of all filters is
encapsulted the only change that needs to be made is to add the filter to the current
pipeline. Furthermore, there are no dependencies between filters. Therefore, the order of
filters can be changed to serve the requirementes without breaking the system.

7.1.3. Web Application

In this section the implemented features of the front-end are compared against the
requirements listed in section 2.3.

The front-end is developed in form of Single-Page Application. It supports the selection
of generators and dynamically adjusts the parameter form. The parameters presented
display the same input messages as the Pagen plug-in and support nested prompts.
During the execution of a generation process it is able to present the current execution

51

7. Evaluation

log, as well as, the test results. If tests failed, the download of the generated artifact is
optional while it is automatically downloaded if all tests passed.
Statistics are offered in form of charts that give a quick overview over the most used

generators and might indicate which of them can be composed into a composite generator.
To increase the learning experience, a help modal is added. It gives a quick overview

about the interface components and thereby presents a basic work-flow. This helps reduce
the time needed to get started with the generator and thereby increases efficiency.
The intuitiveness of the user interface is evaluated by asking employees of KISTERS

AG for their opinion. The results are presented in section 7.3.

7.1.4. Dynamic Jenkins Pipelines

In this section the requirements of section 2.4 are evaluated against the library and
template implementation.

Decomposability

The generator should allows pipelines to be decomposable. This means parts of the
pipeline should be optional and can be excluded. This is implemented in the generator
by introducing fragments. The original pipeline is divided into fragments, which can
be included into the result. All of these are optional (except the mandatory fragment)
and therefore allows the developer to only choose the fragments that are required for a
project.

Parameterization

Pipelines should be configurable through the usage of parameters. These parameters
are implemented as variables. If a client sets a parameter, it gets added as a variable at
the top of the pipeline script. This makes it globally available inside all blocks of the
pipeline.
By using variables instead of replacing placeholders the development process of

pipelines is simplified. Instead of having to replace every occurrence of a variable or value
by a placeholder, the developer can define his test parameters as variables at the top of
the script and delete them afterwards. This makes the error prone replacement of values
obsolete and eases the development process.

The included type checks make sure that unexpected behavior in the execution caused
by implicit type casting of variables can not happen. The user receives an error if a
variable is missing or if its type is incorrect before the build-pipeline’s execution.

7.1.5. Template Version

To achieve reliability a commit parameter is added to the services request. This commit
allows the developer to set a specific template version. Thereby an error in the template
does not necessarily result in broken build-pipelines. Before a developer decides to update

52

7.2. Code Quality

the used template version of his project, he is able to check for any errors and does not
get surprised by failing pipelines not caused by faulty code.

Maintainability

Pipelines should be editable in one location resulting in an updated pipeline for all using
projects. This is achieved by serving the generation as a service and pulling the templates
from GitLab. This way all changes in the git repository resolve in changes in the using
pipelines.

Integration

To integrate the library into Jenkins, the SCM link hast to be added to the Jenkins
configuration. There are now two options to use the library. Either the used version is
fixed in the Jenkins settings or hast to be defined in any using pipeline. It is also possible
to include the library automatically in every pipeline. This way, the library does not
have to be specifically imported at the beginning of every script, but forces all pipelines
to use the same library version.

This makes the integration and update of the library very convenient in comparison to
an implementation as a Jenkins plug-in.

7.2. Code Quality

To ensure the quality of the implemented service and web application SonarQube was
added to the used build-pipeline [Son]. As shown in the report screen-shot provided in
figure 7.1 no bugs, vulnerabilities or code smells were found in the source code.

The source code sums up to 1.987 lines of code, which only includes Java and JavaScript
code (no HTML, CSS, etc.). This is not a considerably large amount of code for the
implemented functionality. As a result it is easier to manage than larger code bases and
thereby decreases the amount of work needed to fix bugs.

The small amount of code is partly a result of the usage of libraries like Lombok, which
was used to automatically create getters and setters, as well as, using the declarative
Vue.js [Lom; Vuea].

7.3. Evaluation at KISTERS AG

To evaluate the usability of the service, the web application and Jenkins library and
template structure was presented to two employees of KISTERS AG. They were given
an overview of the user interface and how to use it, as well as, a usage example of the
Jenkins library and their template implementation. Both were handed an evaluation
sheet (see appendix A) to rate the usability and implemented functionality. The Likert
scale presented in table 7.1 was used to measure the satisfaction of the employees. Results
of the evaluation are available in appendix B

53

7. Evaluation

Quality Gate

You should define a quality gate on this project.

Generator Service

S 2k
Lines of Code

Java

JavaScript

1.5k

472

Quality Profiles
(Java) Sonar way
(JavaScript) Sonar way

Key

de.kisters.build:gen-service

Activity

September 20, 2017
1.0-SNAPSHOT

September 18, 2017
Quality Profile: Use 'Sonar way' (JavaScript)

Show More

Bugs & Vulnerabilities

Code Smells

Coverage

Duplications

Leak Period: since previous version
started 3 days ago

started 3 days ago

0 A

Bugs

0 A

Vulnerabilities

0 A

New Bugs

0 A

New Vulnerabilities

0 A

Debt

0
Code Smells

0 A

New Debt

0
New Code Smells

0.0%
Coverage

0.0%
Coverage on

9 New Lines to Cover

0.0%
Duplications

0
Duplicated Blocks

0.0%
Duplications on
21 New Lines

No tags

gen-service Private September 20, 2017 3:46 PM Version 1.0-SNAPSHOT

 Issues Measures Code Activity Administration

Figure 7.1.: SonarQube Report [Son]

The used terms in the application (question 1.4) achieved the worst rating. This is
due to acronyms like MVVM, which are used in the filter options. These are directly
retrieved from the architecture defined in the annotation introduced in section 6.1.4. It,
however, can be expected for developers using the generator to know the acronym as
they work with the pattern every day.

Some suggested improvements are the integration of links to the used template. This
knowledge is however only available to Pagen and can therefore not be implemented
in the service. Another suggestion was the addition of examples to required generator
parameters. This information is, again, provided by Pagen and can therefore not be
added in the service.

Another requested feature is the encoding of the current configuration inside the URL
to be able to share it with co-workers. This is somewhat already implemented as the
configuration file added to the archive. It can be loaded inside the UI and shared between
employees. The addition of an URL encoding might be more convenient in some cases,
but does not offer any real improvements.

A feature requested, which was already implemented after the evaluation, is a prefix in
the generated file’s filename. The previous version would use the artifact identifier as the
name for the archive. The added prefix should eliminate any confusion about the file’s

54

7.4. Discussion

origin.

Likert Scale
1 Strongly disagree
2 Disagree
3 Neutral
4 Agree
5 Strongly agree

Table 7.1.: Likert Scale [AS07]

7.4. Discussion

In this section some design choices and their advantages and disadvantages are discussed.

7.4.1. Pagen Component

When taking a look at the Pagen components class diagram it becomes obvious that the
GeneratorService has many relationships. The class manages a large portion of the
components responsibilities, which is not a good design. However, the class itself does
not implement much functionality at all, it mostly delegates work to other classes. It
acts as a facade for the Pagen generation pipeline and user query mapping strategies.

All discovered Pagen generators are owned by this class and are passed to the
GeneratorFilter for execution. This was done to ensure there are no dependencies
between the pipes and filters implementation and Spring Boot. This allows to reuse the
pipeline in other Spring independent projects without having to make any changes.
A possible improvement would be to divide the object into a new class handling the

query mapping and a class handling the pipeline configuration.
The Pagen generator pipeline uses a thread to be executed in the background. This

could be improved by introducing thread pools to limit the load on the server. Since a
generator can be expected to be only used occasionally this should not be an issue in
general usage.

7.4.2. Jenkins Component

The Jenkins component of the service has its own implementation of basic code gen-
eration. The generation functionality is implemented in the VariableFilter and
FragmentFilter classes. It currently does not depend on Pagen since the generation
process of single file build-piplines is very straight forward. An integration into Pagen
would, however, be desirable to take advantage of the concepts provided by the generator.
It would allow composition of build-pipelines spread over multiple files while the capability

55

7. Evaluation

of merging files has to be added. The current implementation can be seen as a proof of
concept for the idea of generating build-pipelines dynamically and not necessarily as a
perfect solution.
Another point that could be improved is the Jenkins library. It currently requires to

save the downloaded build-pipeline to disk before execution. A direct evaluation of the
code was tested but turned out to be problematic since Jenkins requires the pipeline to
be serializable during execution. This is for some reason not given when using direct code
evaluation of a closure. A closure was wrapped around the pipeline code to be able to
inject the Jenkins pipeline context into the evaluation environment by setting the closure
delegate to the libraries current context. This could be improved by implementing the
client code as a plug-in. A plug-in should be able to pass the serialization but would
make the integration and update routine a lot harder.

The current Jenkins library implementation uses the load step to evaluate the retrieved
code. This is problematic since the code needs to be wrapped inside a function. Therefore,
the implementation of functions inside the build-pipeline templates is not possible and
have to be replaced with closures.

7.4.3. Performance Improvements
To improve the performance of the service caching mechanisms could be introduced. This
is especially useful for the result of query mapping. Instead of having to parse the query
builder object on each request, it could be parsed once and cached for the rest of the
execution since there is no possibility of changes. The same goes for the retrieval of
Pagen generator information. The process of gathering the meta-data of all discovered
generators could be done once and the saved result returned afterwards.

This is, however, not applicable for generation artifacts. The results of the generation
is dependent on the templates located in a GitLab repository and might therefore change
in between generations [Gitb].

7.4.4. Validation
The current input validation is not as robust as it should be for production. This could
lead to error messages getting exposed to the client. Before exposing the service to the
outside world validation should be improved to prevent leakage of sensible information.

7.5. Summary
The requirement analysis at the beginning of this chapter proofed that most of the
required features are implemented. While the current implementation might not be
optimal, like discussed in section 7.4, it provides a good reusable basis and a proof of
concept for the introduced problems.

56

8. Conclusion

Contents

8.1. Summary . 57
8.2. Future Work . 58

8.1. Summary

The goal of this thesis was to create a web service for an existing code generator. This
should eliminate the installation and update process for individuals using the generator
and therefore ease the introduction to code generation.

By creating a web application an exemplary client implementation of the service was
provided to make it easy to interact with the service.
To evaluate the extensibility of the Pagen generator a software component generator

was implemented. It turned out this can be achieved with minimal effort by implementing
just a few classes to support the new architecture.

Lastly, the concept of dynamic generation was examined by implementing decomposable
build-pipelines for Jenkins.

Chapter 3 introduced some already existing applications offering similar functionality
as introduced in this thesis. On the one hand, it was concluded that there were no
generator services found that support similar principles than the here introduced service
for Pagen. On the other hand, a few build-pipeline principles were presented that allowed
similar functionality as required. However, these were either not available for the Jenkins
build server or not decomposable.

In chapter 4 some knowledge required to understand the rest of the thesis was introduced.
This included the in the frameworks used architecture patterns as well as the later used
pipes and filter pattern. Furthermore, a quick overview of the Pagen generator developed
by Ralph Geerkens was provided.

The next chapter was used to introduce the services structure and design principles. At
the beginning a brief overview of the implemented components was presented, followed
by a more detailed introduction to the mentioned components. This included the
implementation of the pipes and filters architecture and how the generation processes
were mapped to filters.

In the following chapter 6 the concrete implementation of the concepts were described.
The last chapter than provided a requirement analysis to prove that all requirements

were met. It, however, also showed some areas of the current implementation that can

57

8. Conclusion

be improved.

8.2. Future Work
The web service presented in this work can be improved in different ways, some of them
were already mentioned in the thesis.

One idea already mentioned is the implementation of a client application, which
utilizes the service’s generation capabilities while allowing to modify a project’s directory
structure directly. This would allow for the same incremental usage as provided by the
Maven plug-in implemented by Ralph Geerkens while keeping all the benefits of a service
approach.

Another mentioned aspect is the integration of the Jenkins generation into the Pagen
generator itself. This would allow to utilize the advanced functionality of Pagen, but
would require implementation of problem-specific features, like the ability to edit a files
contents apart from placeholders.

The current implementation of the service only allows the execution of multiple different
generators sharing a common parameter set. The execution of the same generator multiple
times with different parameters is currently not supported. To add this functionality only
a few changes have to be made in the service while the web application would require a
makeover.
Adding to this, the service currently does not resolve a composite generator’s sub-

generators. A user could therefore unknowingly select a generator which is already
included in the generation. This does not cause any trouble, but a visual indication
of already indirectly selected generators would be a good idea. Furthermore, without
the possibility to resolve a composite’s sub-generators the service cannot verify if all
parameters required by sub-generators are matched. It can, therefore, happen that the
generator pauses execution and waits for input, which will not be provided. This is
currently not the case since the only composite has all required queries registered in the
composite class, but might be an issue in the future. To prevent the execution pause,
Pagen could also be extended with a non-interactive mode. This mode would return
errors instead of requesting missing parameters.

Input validation is another area of the service that requires improvement. The service
is currently not very robust. Faulty input data can cause errors that are returned to the
client. To prevent this further validation rules should be added to the service.
Finally, statistics are currently not implemented for the Jenkins components. The

implementation is however not necessary if the process gets added to Pagen.

58

A. Evaluation Sheet

Evaluation Sheet

Pagen

1 User Interface

1.1 The UI is intuitive

strongly agree strongly disagree

1.2 The available help is useful

strongly agree strongly disagree

1.3 The structure of the UI is logical

strongly agree strongly disagree

1.4 The used terms are understandable

strongly agree strongly disagree

1.5 Error messages are understandable

strongly agree strongly disagree

1.6 How can the UI be improved?

1

Figure A.1.: Evaluation Sheet page 1 of 4

59

A. Evaluation Sheet

2 Functionality

2.1 The displayed progress information is sufficient

strongly agree strongly disagree

2.2 The statistics are easy to interpret

strongly agree strongly disagree

2.3 The available filter options help the generator selec-
tion

strongly agree strongly disagree

2.4 The loading and modifying of already existing config-
urations is useful

strongly agree strongly disagree

2.5 What features are missing?

2

Figure A.2.: Evaluation Sheet page 2 of 4

60

Jenkins

3 Templating

3.1 The fragmentation of pipelines meets the requirement
of being able to exclude/include certain parts of the
original pipeline in the execution

strongly agree strongly disagree

3.2 The introduction of mandatory fragments is useful

strongly agree strongly disagree

3.3 The integration of parameters in form of variables is
sufficient

strongly agree strongly disagree

3.4 How could the template format be improved?

3

Figure A.3.: Evaluation Sheet page 3 of 4

61

A. Evaluation Sheet

4 Shared Library

4.1 The library can be easily imported to Jenkins

strongly agree strongly disagree

4.2 The pipelines are easy to configure

strongly agree strongly disagree

4.3 How could the library be improved?

Submit via E-Mail

4

Figure A.4.: Evaluation Sheet page 4 of 4

62

B. Evaluation Results

Evaluation Results
Question Rating Rating

1.1 4 5
1.2 5 5
1.3 5 5
1.4 3 4
1.5 4 5
1.6 Links to used templates Add examples for area, slice etc.

2.1 4 5
2.2 4 5
2.3 3 5
2.4 5 5
2.5 Encode configuration in URL Generated file could start with app name

3.1 4 5
3.2 5 5
3.3 3 5
3.4 - -

4.1 4 5
4.2 4 5
4.3 - -

Table B.1.: Evaluation Results

63

C. Web Application Screenshots

Gen-Web Statistics Help

Architecture Technology

Composite

Deployment

Development

Supplement

Component

What is the name of the area? [AREA]

What is the name of the slice? [SLICE]

What is the name of the subslice? [SUBSLICE]

What is the name of the home variable? [HOMENAME]

 Job failed!

All All

 Archetype Slice

 Chef Provision

 Integration Test

 Karaf Distribution

 Karaf Features

 Omnibus

 Domain API

 Domain Implementation

 Domain SPI

 Primary Adapter - REST

 Secondary Adapter - JPA

 Secondary Adapter - MemDB

 Service API

 Service Implementation

 Service Implementation - REST Proxy

 Web UI

 Build Pipeline

 Maven Parent

 Maven Root ?

 Angular Component

 Angular Component with Service

 Script Server

Load Config

energy

build

 Is this project a subslice? [isSubslice]

fast

 Do you want to generate example code? [exampleCode]

HOME

 Do you want to run tests after generation? [runTests]

Generate!

 Download anyway View log

[2017/09/21 15:14:56] Starting filter: Generator: Archetype Slice
[2017/09/21 15:14:59] Starting filter: Configuration Injector
[2017/09/21 15:14:59] Starting filter: Maven
[2017/09/21 15:14:59] Running tests.
[INFO] Scanning for projects...
[INFO] --
[INFO] Reactor Build Order:
[INFO]
[INFO] KISTERS :: energy-build-fast.parent
[INFO] KISTERS :: energy-build-fast.dm.api
[INFO] KISTERS :: energy-build-fast.dm.spi
[INFO] KISTERS :: energy-build-fast.dm.impl
[INFO] KISTERS :: energy-build-fast.service.api
[INFO] KISTERS :: energy-build-fast.service.impl
[INFO] KISTERS :: energy-build-fast.sadp.memdb.impl
[INFO] KISTERS :: energy-build-fast.padp.rest.impl
[INFO] KISTERS :: energy-build-fast.service.proxy.rest.impl
[INFO] KISTERS :: energy-build-fast.ui.web.impl
[INFO] KISTERS :: energy-build-fast.karaf.features
[INFO] KISTERS :: energy-build-fast.karaf.distribution
[INFO] KISTERS :: energy-build-fast.integrationtest
[INFO] KISTERS :: energy-build-fast
[INFO]
[INFO] --
[INFO] Building KISTERS :: energy-build-fast.parent 0.0.1-SNAPSHOT
[INFO] --
[INFO]
[INFO] --- jacoco-maven-plugin:0.7.2.201409121644:prepare-agent (jacoco prepare-agent) @ energy-build-fast.parent ---
[INFO] argLine set to -
javaagent:C:\\Users\\mbaehr\\.m2\\repository\\org\\jacoco\\org.jacoco.agent\\0.7.2.201409121644\\org.jacoco.agent-
0.7.2.201409121644-runtime.jar=destfile=C:\\Users\\mbaehr\\AppData\\Local\\Temp\\gen_test_7969512830825781656\\energy-
build-fast.parent\\target\\jacoco.exec,excludes=**/Messages.class
[INFO]
[INFO] --- jacoco-maven-plugin:0.7.2.201409121644:report (jacoco report) @ energy-build-fast.parent ---
[INFO] Skipping JaCoCo execution due to missing execution data
file:C:\Users\mbaehr\AppData\Local\Temp\gen_test_7969512830825781656\energy-build-fast.parent\target\jacoco.exec
[INFO]
[INFO] >>> maven-source-plugin:2.2.1:jar (attach-sources) > generate-sources @ energy-build-fast.parent >>>
[INFO]
[INFO] --- jacoco-maven-plugin:0.7.2.201409121644:prepare-agent (jacoco prepare-agent) @ energy-build-fast.parent ---
[INFO] argLine set to -
javaagent:C:\\Users\\mbaehr\\.m2\\repository\\org\\jacoco\\org.jacoco.agent\\0.7.2.201409121644\\org.jacoco.agent-
0.7.2.201409121644-runtime.jar=destfile=C:\\Users\\mbaehr\\AppData\\Local\\Temp\\gen_test_7969512830825781656\\energy-
build-fast.parent\\target\\jacoco.exec,excludes=**/Messages.class
[INFO]
[INFO] <<< maven-source-plugin:2.2.1:jar (attach-sources) < generate-sources @ energy-build-fast.parent <<<
[INFO]
[INFO] --- maven-source-plugin:2.2.1:jar (attach-sources) @ energy-build-fast.parent ---
[INFO]
[INFO] --- maven-checkstyle-plugin:2.15:check (checkstyle check) @ energy-build-fast.parent ---

Job Log

Figure C.1.: Execution Log

65

C. Web Application Screenshots

Gen-Web Statistics Help

Architecture Technology

Composite

Deployment

Development

Supplement

Component

What is the name of the area? [AREA]

What is the name of the slice? [SLICE]

What is the name of the subslice? [SUBSLICE]

What is the name of the home variable? [HOMENAME]

 Job successful!

All All

 Archetype Slice

 Chef Provision

 Integration Test

 Karaf Distribution

 Karaf Features

 Omnibus

 Domain API

 Domain Implementation

 Domain SPI

 Primary Adapter - REST

 Secondary Adapter - JPA

 Secondary Adapter - MemDB

 Service API

 Service Implementation

 Service Implementation - REST Proxy

 Web UI

 Build Pipeline

 Maven Parent

 Maven Root ?

 Angular Component

 Angular Component with Service

 Script Server

Load Config

energy

build

 Is this project a subslice? [isSubslice]

fast

 Do you want to generate example code? [exampleCode]

HOME

 Do you want to run tests after generation? [runTests]

Generate!

 View log

GENERATIONS

7
JOBS

5
ARTIFACTS

4

Statistics

Figure C.2.: Statistics Modal

66

Gen-Web Statistics Help

Architecture Technology

Composite

Deployment

Development

Supplement

Component

What is the name of the area? [AREA]

What is the name of the slice? [SLICE]

What is the name of the subslice? [SUBSLICE]

What is the name of the home variable? [HOMENAME]

 Job successful!

All All

 Archetype Slice

 Chef Provision

 Integration Test

 Karaf Distribution

 Karaf Features

 Omnibus

 Domain API

 Domain Implementation

 Domain SPI

 Primary Adapter - REST

 Secondary Adapter - JPA

 Secondary Adapter - MemDB

 Service API

 Service Implementation

 Service Implementation - REST Proxy

 Web UI

 Build Pipeline

 Maven Parent

 Maven Root ?

 Angular Component

 Angular Component with Service

 Script Server

Load Config

energy

build

 Is this project a subslice? [isSubslice]

fast

 Do you want to generate example code? [exampleCode]

HOME

 Do you want to run tests after generation? [runTests]

Generate!

 View log
1. Restrict list of available generators by their used
architecture or technology.

2. List of available generators sorted by category.
Select desired generators or

3. Load settings from existing configuration.

4. Configure selected generators.
Empty fields are not allowed.

5. Start generation.

6. Current execution status.
Process can either be canceled or viewed.

7. View generation statistics.

Help

Figure C.3.: Help Modal

67

D. JSON Examples

1 {
2 "name": "Archetype Slice",
3 "cmd": "archetype",
4 "category": "COMPOSITE",
5 "architecture": "PORT_ADAPTER",
6 "technology": "JAVA",
7 "prompts": {
8 "AREA": {
9 "type": "String",

10 "message": "What is the name of the area?"
11 },
12 "SLICE": {
13 "type": "String",
14 "message": "What is the name of the slice?"
15 },
16 "isSubslice": {
17 "type": "Boolean",
18 "message": "Is this project a subslice?",
19 "additional": {
20 "SUBSLICE": {
21 "type": "String",
22 "message": "What is the name of the

subslice?"
23 }
24 }
25 },
26 "exampleCode": {
27 "type": "Boolean",
28 "message": "Do you want to generate example code?"
29 },
30 "HOMENAME": {
31 "type": "String",
32 "message": "What is the name of the home variable?"
33 },
34 "runTests": {
35 "type": "Boolean",
36 "message": "Do you want to run tests after

generation?"
37 }
38 }

69

D. JSON Examples

39 }

Source Code D.1: Generator Information

1 {
2 "cmds": ["archetype"],
3 "inputs": {
4 "AREA": "energy",
5 "SLICE": "build",
6 "isSubslice": true,
7 "SUBSLICE": "fast",
8 "exampleCode": true,
9 "HOMENAME": "HOME",

10 "runTests": true
11 }
12 }

Source Code D.2: GeneratorConfig

70

Bibliography

[AS07] I. E. Allen and C. A. Seaman. “Likert scales and data analyses”. In: Quality
progress 40.7 (2007), p. 64 (cited on page 55).

[BHS07] F. Buschmann, K. Henney, and D. Schmidt. Pattern-Oriented Software
Architecture: A Pattern Language for Distributed Computing. John Wiley &
Sons, 2007. isbn: 0470059028, 9780470059029 (cited on pages 11, 12, 22).

[Bui] BuildKite. https://buildkite.com/ (cited on page 8).
[Bul] Bulma. http://bulma.io/ (cited on page 30).
[Fow02] M. Fowler. Patterns of enterprise application architecture. Addison-Wesley

Longman Publishing Co., Inc., 2002 (cited on pages 22, 23).
[Gam+95] E. Gamma et al. Design Patterns: Elements of Reusable Object-oriented

Software. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1995. isbn: 0-201-63361-2 (cited on pages 23, 24, 26, 30, 35, 39).

[Gee17] R. Geerkens. An Incremental Code Generator for Heterogeneous Software
and Infrastrucutre. 2017 (cited on pages 1, 3, 14–16, 33, 50).

[Gita] Git. https://git-scm.com/ (cited on page 8).
[Gitb] Gitlab. https://about.gitlab.com/ (cited on pages 28, 29, 56).
[Goc] GoCD. https://www.gocd.org/ (cited on page 9).
[Gra] Gradle. https://gradle.org/ (cited on page 7).
[Gro] Groovy. http://groovy-lang.org/ (cited on pages 7, 48).
[Jak08] M. Jakl. “Rest representational state transfer”. In: (2008) (cited on page 13).
[Jav] Java. https://www.java.com (cited on page 7).
[Jen] Jenkins. https://jenkins.io/ (cited on pages 4, 16).
[Kot] Kotlin. https://kotlinlang.org/ (cited on page 7).
[Lom] Lombok. https://projectlombok.org/ (cited on page 53).
[Mav] Maven (cited on pages 7, 8, 16, 25).
[Mvv] The MVVM Pattern. https : / / msdn . microsoft . com / en - us /

library/hh848246.aspx (cited on pages 11, 12).
[Rod08] A. Rodriguez. “Restful web services: The basics”. In: IBM developerWorks

(2008) (cited on page 13).
[Son] SonarQube. https://www.sonarqube.org/ (cited on pages 49, 53, 54).

71

https://buildkite.com/
http://bulma.io/
https://git-scm.com/
https://about.gitlab.com/
https://www.gocd.org/
https://gradle.org/
http://groovy-lang.org/
https://www.java.com
https://jenkins.io/
https://kotlinlang.org/
https://projectlombok.org/
https://msdn.microsoft.com/en-us/library/hh848246.aspx
https://msdn.microsoft.com/en-us/library/hh848246.aspx
https://www.sonarqube.org/

Bibliography

[Spra] Spring Boot. http://projects.spring.io/spring-boot/ (cited on
pages 7, 21, 24, 37, 43).

[Sprb] Spring Framework. http://projects.spring.io/spring-framework/
(cited on pages 21, 29).

[Sprc] Spring Initializr. https://github.com/spring-io/initializr
(cited on page 7).

[Swa] Swagger. https://swagger.io/ (cited on page 44).
[Tea] TeamCity. https : / / www . jetbrains . com / teamcity/ (cited on

page 8).
[Tem] vue-webpack-boilerplate. https://github.com/vuejs-templates/

webpack (cited on page 45).
[Vuea] Vue.js. https://vuejs.org/ (cited on pages 30, 46, 53).
[Vueb] Vuex. https://vuex.vuejs.org (cited on pages 30, 45).
[Weba] Web Services Architecture. 2004 (cited on page 13).
[Webb] webpack. https://webpack.js.org/ (cited on page 30).

72

http://projects.spring.io/spring-boot/
http://projects.spring.io/spring-framework/
https://github.com/spring-io/initializr
https://swagger.io/
https://www.jetbrains.com/teamcity/
https://github.com/vuejs-templates/webpack
https://github.com/vuejs-templates/webpack
https://vuejs.org/
https://vuex.vuejs.org
https://webpack.js.org/

Glossary

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CD Continous Delivery

CLI command-line user interface

CRUD Create Read Update Delete

CSS Cascading Style Sheets

DOM Document Object Model

DSL Domain Specific Language

DTO Data Transfer Object

HDD Hard Disk Drive

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IFS Intermediate File Storage

JAR Java Archive

JSON JavaScript Object Notation

JVM Java Virtual Machine

MVC Model View Controller

MVVM Model View ViewModel

POM Project Object Model

REST Representational State Transfer

73

Glossary

SCM Source Code Management

SHA Secure Hashing Algorithm

SPA Single-Page Application

UI User Interface

URI Uniform Resource Identifier

URL Unifrom Resource Locator

WAR Web Application Archive

XML Extensible Markup Language

ZIP ZIP

74

	Introduction
	Structure of this Thesis

	Motivation and Problem Statement
	Problem Statement
	Requirements for a Service-Oriented Code Generator
	Requirements for a Front-End Application
	Requirements for Dynamic Jenkins Pipelines

	Related Work
	Code Generator Services
	Configurable Build-Pipelines
	Summary

	Background
	Model View Controller
	Model View ViewModel
	Web Services
	RESTful Web Services
	Pagen

	Concept
	Web Service
	Extending Pagen with Component Generators
	Web Application
	Jenkins Library

	Realization
	Pagen Modifications
	Web Service
	Extending Pagen with Component Generators
	Web Application
	Jenkins Shared Library

	Evaluation
	Requirement Analysis
	Code Quality
	Evaluation at KISTERS AG
	Discussion
	Summary

	Conclusion
	Summary
	Future Work

	Evaluation Sheet
	Evaluation Results
	Web Application Screenshots
	JSON Examples
	Bibliography
	Glossary

