
The present work was submitted to
the Research Group
Software Construction

of the Faculty of Mathematics,
Computer Science, and
Natural Sciences

Bachelor Thesis

Supporting Distributed
Environments in COMET

presented by

Kaloyan Todorov

Aachen, April 26, 2018

Examiner

Prof. Dr. rer. nat. Horst Lichter

Prof. Dr. rer. nat. Bernhard Rumpe

Supervisor

Dipl.-Inform. Andreas Steffens

Statutory Declaration in Lieu of an Oath

The present translation is for your convenience only.
Only the German version is legally binding.

I hereby declare in lieu of an oath that I have completed the present Bachelor’s thesis entitled

Supporting Distributed Environments in COMET

independently and without illegitimate assistance from third parties. I have use no other than
the specified sources and aids. In case that the thesis is additionally submitted in an electronic
format, I declare that the written and electronic versions are fully identical. The thesis has not
been submitted to any examination body in this, or similar, form.

Official Notification

Para. 156 StGB (German Criminal Code): False Statutory Declarations
Whosoever before a public authority competent to administer statutory declarations falsely makes
such a declaration or falsely testifies while referring to such a declaration shall be liable to
imprisonment not exceeding three years or a fine.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to
Negligence
(1) If a person commits one of the offences listed in sections 154 to 156 negligently the penalty
shall be imprisonment not exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time.
The provisions of section 158 (2) and (3) shall apply accordingly.

I have read and understood the above official notification.

Eidesstattliche Versicherung

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Bachelorarbeit mit dem Titel

Supporting Distributed Environments in COMET

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

Aachen, April 26, 2018 (Kaloyan Todorov)

Belehrung

§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche
Versicherung falsch abgibt oder unter Berufung auf eine solche Versicher ung falsch aussagt, wird
mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt
(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen
worden ist, so tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.
(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die
Vorschriften des § 158 Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen.

Aachen, April 26, 2018 (Kaloyan Todorov)

Acknowledgment

First, I want to thank my family for supporting me during my studies. Without their
help, I wouldn’t be writing this theses.
Second, I want to thank my supervisor, Andreas Steffens, who not only offered to

supervise my work, but also provided me with a very valuable feedback. His knowledge
and ideas influenced and helped improving this thesis.
And last, but not least, I want to thank Prof. Dr. rer. nat. Horst Lichter who gave

me the opportunity to pursue this thesis at the Research Group Software Construction
and who also was my first examiner. In addition to that, I want to thank Prof. Dr. rer.
nat. Bernhard Rumpe, who was the second examiner for this thesis.

Kaloyan Todorov

Abstract

Software testing is a crucial part of modern software development. Thanks to the
increasing number of users, the demand for more features, better security, redundancy,
etc. software testing becomes more and more important and complex. That’s why in
addition to the regular functional tests [Fun], which test the behaviour of the software
itself, non-functional tests [Non] are also needed.
Compliance Testing and Compliance as Code are two very interesting non-functional

testing techniques. They focus on testing system configuration and their main goal
is to increase the overall system and application security. Unfortunately, not many
tools for Compliance Testing exist. That’s why creating one was the main priority in
[Mos17]. And indeed, such a tool was created. It is called the Compliance Management
Tooling (COMET) and with its help one can create, manage and execute compliance
tests. However, the tool is not perfect and has some limitations and missing functionality.

That’s why in this work we are going to present some of the limitations that COMET
has, propose a solution for them and finally implement it. We will be focusing on making
COMET portable, i.e. make it possible to execute tests on distributed environments
that are not remotely accessible. We are also going to implement the possibility to test
complex and distributed systems and to make the testing of multiple Systems Under
Test (SUT) at once possible.

Contents

1 Introduction 1
1.1 Contributions . 1
1.2 Structure of this Thesis . 2

2 Background 3

3 Problem Statement 7

4 Related Work 9
4.1 COMET-Portable . 9
4.2 Compliance Testing of Complex and Distributed Systems 9

5 Concept 11
5.1 Portability . 11
5.2 Compliance Testing of Complex and Distributed Systems 15

6 Realization 23
6.1 Portability . 23
6.2 Compliance Testing of Complex and Distributed Systems 30

7 Evaluation 43
7.1 COMET-P . 44
7.2 Compliance Testing of Complex and Distributed Systems 45

8 Conclusion 49
8.1 Summary . 49
8.2 Future Work . 50

Bibliography 53

i

List of Figures

2.1 Current Domain Model of COMET . 6

5.1 Current Test Execution Flow in COMET 12
5.2 Test Execution Flow of Exported Jobs . 16
5.3 Domain Model of COMET supporting the simultaneous testing of multiple

nodes in one Job . 20
5.4 Domain Model of COMET supporting a Distribution (Mapping) of Soft-

ware Landscapes and Software Components on Environments 21

6.1 The new button for the export of Jobs . 24
6.2 The Software Architecture of COMET-P 31
6.3 The new Mapping tab under the Customer Project Edit menu, which

allows the user to define a Mapping . 40
6.4 The modified Reports page that shows the reports for the different Envi-

ronments . 40
6.5 The modified Reports page that shows the reports for the different Envi-

ronments . 41

7.1 The Customer Project used to evaluate the testing of Distributed Systems 46
7.2 The Mapping for our Linux Ubuntu Environment used to evaluate the

testing of Distributed Systems . 46
7.3 The Mapping for our Windows 10 Environment used to evaluate the testing

of Distributed Systems . 47

iii

1 Introduction

Real programmers don’t comment
their code. It was hard to write,
it should be hard to understand.

Anonymous

Contents

1.1 Contributions . 1
1.2 Structure of this Thesis . 2

The inspiration for this thesis came from [Mos17]. Moscher took the big challenge to not
only create a process model blueprint for Continuous Compliance, but to also implement
a tool for Compliance Testing, which they ended up calling Compliance Management
Tooling (COMET). Although their work was a success and they’ve accomplished the
things they’ve planned, the COMET tool that resulted from their work is far from ideal,
because it has some considerable limitations and missing functionality. That’s why in this
work we want to take COMET as a basis, further work on it and at the end, hopefully,
improve it.

1.1 Contributions

The two main contributions that we want to make to the tool is to make it portable and
to enable the possibility to not only test trivial systems (ones that basically consist from
1 computer), but also more complex and distributed ones.

Portability is quite a broad term, so at a first glance it might not be clear what we
want to achieve here, but we will try to narrow it down and explain exactly what we
mean. Currently COMET can only test systems which are accessible through remote
connection. We want to remove this limitation. Our blueprint solution for this is to create
a smaller tool, COMET-Portable (COMET-P) that can be distributed and deployed
independently from COMET and that can enable the testing for systems that are not
remotely accessible.
Our second contribution will enable the testing of complex and distributed systems,

i.e. such that have more than 1 computer. Although that is theoretically possible at
the moment, one doesn’t have the possibility to define a complex/distributed system
in COMET and test it as a whole. That’s why we want to remove that limitation too.
This task also goes hand in hand with the first one, since our portable tool will help us
when testing distributed systems that have nodes, which are not meant to be remotely

1

1 Introduction

accessible.
Before reading this thesis, we strongly recommend to also read [Mos17], since all of

our work will be based on COMET and without any background on it, this thesis will be
very unclear and hard to read.

1.2 Structure of this Thesis
As for the structure of this work, in the next chapter we are going to make a small
introduction to COMET. After that in chapter 3, we are going to describe some of the
problems that COMET currently has and also explain why we picked out exactly these 2
problems to work on out of all the available ones. Then, in chapter 4 we are going to
present some of the Related Work in the field of Compliance Testing and Distributed
Systems.

After we are done with all of that, we are going to lay out the concept for our solution
in chapter 5. In it we are going to present our solutions only on conceptional level and
keep the technical details for chapter 6.
When we are ready with the implementation of our new tool, COMET-P, and also

with the improvements to COMET, we are going to test everything and evaluate our
results in chapter 7.

At the end, we are going to make a short conclusion in which we are going to summarize
what we’ve achieved in our work and also propose topics for possible future work.

2

2 Background

Any product that needs a manual
to work is broken.

Elon Musk

In this chapter we want to make a short introduction to COMET. As we mentioned
in the previous chapter, one should definitely read [Mos17] to get a good grasp over
COMET and understand how it works. However, we will still try to briefly explain how
COMET works and go over some of the more important components and things on which
we will work on in this paper.
COMET is a web based application for Compliance Testing. It makes use of the

JHIPSTER [Jhi] stack, which uses the Spring Boot Framework [Spra] for the Back-End
application and the Angular [Ang] framework for the Front-End application. All of the
data is persisted in a MySQL [Mys] database, because the test data is structured in a
relational way. The JHIPSTER stack was used as a base for COMET, because it provides
a lot of functionality out-of-the-box without the need for any configuration whatsoever.
In addition to speeding up the entire development process, it also helps make COMET a
cross-platform application. Since JHIPSTER uses the Spring Boot framework for the
Back-End application and Spring Boot is Java Web Framework, this makes it possible to
run COMET on pretty much any Operating System, for which the Java Virtual Machine
(JVM) is available.

The actual testing however is performed with the help of the InSpec [Ins] Testing
Framework. With InSpec, the code for the tests can be written either in the InSpec
Domain Specific Language (DSL) or in the Ruby programming language. The real magic
of this testing framework however, is in the way it executes tests. It can not only test
the system on which it is currently running on, but can actually connect via SSH or
Windows Remote to a target System Under Test (SUT) and perform the actual testing
without the need to install any additional software. In addition to that, InSpec offers
Profiles, which are a way to structure our testing files. One can create such Profiles to
basically test different components of a system. For example, a popular Profile is the
Linux Baseline Profile, which tests the security configurations of a Linux Distribution.

The ability of InSpec to run tests on a system without the need to install any additional
software, the Profiles, with the help of which the actual compliance tests are generated
and structured and also the very good and easy to use DSL were the 3 main reason for
choosing InSpec as a testing framework for COMET. To this date, there is still no better
alternative to InSpec and that’s why in is still used in COMET.
But how does COMET actually work, one might ask? That’s exactly what we want

to explain now. In COMET a user can define the following things: Compliance Tests,

3

2 Background

Compliance Rules, Compliance Rule Sets, Compliance Profiles, Software Components,
Software Landscapes, Customer Projects and Environments.

The Compliance Tests contain the actual test code written in the InSpec DSL or in
Ruby. These tests can be reused in different Compliance Rules, as the user can use
Placeholders for variables, which might change depending on where the test is used.
These Placeholders can then be overwritten at 4 different stages: First in the Compliance
Rule, then in the Software Component, after that in the Software Landscape and finally
the Customer Project, with each overwriting having a higher priority than the last one,
i.e. overwriting a placeholder in the Customer Project will always have a higher priority
than any other. To give an example for a test written in the InSpec DSL and containing
a Placeholder, we present the following code which tests if a given file exists:
1 describe file(’<% fileName %>’) do
2 it {should exist}
3 end

As one can see, we have a Placeholder for the name and actually the path of the file,
denoted with <% fileName %>, which is the standard notation for placeholders. By
using a Placeholder Value for our filename, the test can be reused as often as we need,
without the need to change the actual code of the test.

After we have our Compliance Tests, we have to combine them in Compliance Rules.
Each Compliance Rule can have multiple Compliance Tests, but should test only one
thing, or as the name suggests, one rule. For example, a Compliance Rule can check if a
given file exists and if the user has permissions to modify this file. This can be achieved
with the help of 2 Compliance Tests: one that checks if the files exists and one that
checks if the user has the permissions. Similar Compliance Rules can then be combined
in Compliance Rule Sets and further into Compliance Profiles.

One can then group these Compliance Rules, Rule Sets and Profiles into Software Com-
ponents, or as called in the COMET Front-End, Solutions. These Software Components
can be further combined together to form Software Landscapes or, as again, called in the
COMET Front-End, Complex Solutions. A good example for a Software Landscape is the
LAMP (Linux, Apache, MySQL, PHP) stack, which consists of the Software Components
Linux, Apache, MySQL and PHP. Each of these components, can then have multiple
Compliance Rules, Rule Sets and Profiles. For example, there might exist a Compliance
Profile that checks if the Linux Distribution is configured securely and can run the web
server and there might exist a Compliance Profile that checks the configuration of the
Apache web server.

Finally, one has to group the desired Compliance Rules, Compliance Rule Sets, Com-
pliance Profiles, Software Components and Software Landscapes in one Customer Project,
which pretty much describes the entire SUT, or more precisly, the things that have to
be tested for compliance in this system. The address of this system, the username and
the password (or the SSH keys) with which the system can be accessed, are defined in
an Environment instance, which is then also added to the Customer Project. Further
in this work we might use the terms Environment, Node and Machine interchangeably,
because in the context of COMET they mean the same thing: 1 computer. A System

4

however, might consist from more than 1 computer, so it shouldn’t be mistaken with an
Environment, a Node or a Machine.

Another thing worth pointing out, is that a Job in the context of COMET, is when we
start the testing for a given Customer Project. Jobs are represented by special entities,
which have an ID, contain the Customer Project that is being executed, have a state,
and also a Job Result. This means that, when we say that we are running a Customer
Project, we mean that we start a Job for it.

This is pretty much a short summary of everything that one should know about
COMET. It is not by any means a comprehensive introduction, but we will explain in
more detail other things that one should know, when we need them. For now, we want to
finish the introduction by presenting the current domain model of COMET in figure 2.1,
because we are going to reference it and change it in order to solve the problems listed in
the next chapter.

5

2 Background

Figure 2.1: Current Domain Model of COMET

6

3 Problem Statement

Don’t panic!

Douglas Adams

While COMET might be an innovative system for Compliance Testing, it is certainly not
perfect. It was created by a single person, for a limited amount of time, which combined
with the complexity of COMET leaves a lot of things to desired. That’s why in this
chapter we want to lay out some of the problems and limitations that COMET currently
has. Of course, we cannot cover everything, but we will try to present some of the major
problems and limitations and then explain why we picked 2 of them to work on in this
paper.

The first limitation that COMET currently has is that there is currenly only 1 supported
testing framework: InSpec. The reason for that is however rather simple: There aren’t
many testing frameworks available that can do the things that InSpec can. The other
popular framework that does pretty much the same things is ServerSpec. And as one
might guess from the name, ServerSpec and InSpec are related with InSpec being based
on ServerSpec. This makes InSpec an improved version of ServerSpec and eliminates the
need for the latter. A more detailed explanation of why InSpec was chosen for the task
and what other options are available, can be found in [Mos17].

But why not create our own COMET DSL and a COMET Testing Framework someone
might ask? The answer for that is, again, rather simple: It’s just not worth it at this
point. Creating a custom DSL and a custom testing framework will require a lot of time
and effort just in order to get to the current state of InSpec. And the thing is that InSpec
is not currently limiting the functionality of COMET in any way. Still, it will be nice to
have a custom DSL and a custom testing framework, because they can be optimized and
adapted more easily to the needs of COMET. The task of creating these is however not
a one man job and is beyond the scope of this theses. That’s why we are leaving this
problem open for now.
The second limitation of COMET is that it is currently only a Compliance Testing

Tool. Other non-functional types of testing, like Performance Testing, are currently
not supported. And while the original idea for COMET was for it to be exactly that,
turning COMET in to a multi-purpose tool that can perform multiple types of testing is
something to be desired. The integration of performance testing tools like Apache Jmeter
[Apa], Gatling [Gat] and also the integration with Security Scanners like OpenVAS [Ope]
is another open topic. These features however are all nice to have and there is no real
urgent need to add them to COMET.
Another open problem is the fact that COMET can curretly only test remotely

accessible systems. This is actually the first problem on which we are going to work

7

3 Problem Statement

on in this thesis: Making COMET portable. As we mentioned in the previous chapter
chapter 1, COMET currently makes use of InSpec for the testing, which connects to
the target SUT via remote connection and performs the testing. If, however the target
SUT is not accessible via remote connection, COMET has to be deployed on the target
SUT itself in order for the testing to be possible. This is not an ideal solution, because
although COMET is a cross-platform application, it is a relatively big one, requires a
database connection and is also relatively heavy on system resources. This can easily
turn in to a problem and a solution for it is needed. That’s why we are going to create a
small tool, COMET-P, which is going to solve that problem. We are going to discuss all
of the requirements for this tool in chapter 5.
The second problem that we want to solve is the lack of option to test complex and

distributed systems. Currently COMET can only execute 1 Customer Project on 1
machine at a time. That means, that if we want to execute the same test on 10 systems,
that have to be configured in exactly the same way, e.g. the computers at the checkout
in a supermarket, we have to run 10 different Jobs with the same tests. This problem
however goes even further, because 1 Customer Project can actually contain many
Software Landscapes or Software Components, the tests for which in reality might need to
run on different nodes of the system. What that means is that, if we have, for example,
a typical web application with a micro-service [Mic] architecture, i.e. the Front-End runs
on 1 machine, the Back-End on a second and the database on a third, with each one
represented by a Software Landscape, and we want to test the system as a whole, because
ultimately that is how the system must run, we can’t simply do this. While the definition
of different Software Landscapes and Software Components in COMET is possible, we
cannot distribute these to different nodes/machines. This is a serious limitation, because
while COMET can test systems that need complex configuration, it can currently test
only trivial systems, i.e. ones that basically have 1 node. Again, how we plan to solve
this problem and the exact requirements for this it, will be considered in chapter 5.
We think that these two problems go together very well, because both the portable

tool and the ability to test distributed systems, will make COMET more versatile and a
lot more capable. There are a lot of systems that need to be tested for compliance, but
are not accessible via remote connection and there are even more distributed systems,
some of which might also not be accessible remotely. By solving these two problems,
COMET will be able to run Compliance Test on basically every system for which the
InSpec testing framework and the JVM are available.

8

4 Related Work

Good artists copy. Great artists
steal.

Various

Contents

4.1 COMET-Portable . 9
4.2 Compliance Testing of Complex and Distributed Systems 9

Saying that finding work directly related to ours was easy, wouldn’t be true. Although
Compliance Testing, which is also known as Conformance Testing, is not a new idea,
information and publications about it are limited and software products that perform
Compliance Testing are even less common. [Mos17] did a good job finding related work
for Compliance Testing, but we had more difficult time, because we had to focus on
Compliance Testing of Distributed Systems, which seriously limits our search results.
Nevertheless, here we present all the relevant work that we managed to find.
Because we are solving two different problems in our thesis, we will try to present

related work for both of them separately. The reason for that is that our portable tool,
COMET-P, is not conceptually new and doesn’t have more functionality compared to
COMET. That’s why, we are going to present only design patterns for it, with the help
of which our new tool can be integrated with COMET. For our second problem, we will
present other software products that do similar things to COMET.

4.1 COMET-Portable
Starting with the related work for our portable tool, we had to decide how to integrate
it with COMET. The first option is to use a Shared Database, [HW03], in order to
transfer the information about the Customer Projects and the Jobs between COMET
and COMET-P. This, however, would require for COMET-P to have access to the same
database as COMET, which would be an issue, if we want to test a system, which
doesn’t have an Internet connection. Also, if we choose this option, COMET-P should
also support the Placeholder Resolvers, Artifacts and so on, because it has to generate
the test files on it’s own. Generating the test files and COMET and using a Shared
Database wouldn’t simply make sense. That’s why, the only possible and reasonable way
to transfer information between COMET and COMET-P, is to use a File Transfer for
the application integration [HW03], which would allow us to only transfer the generated
test files.

9

4 Related Work

In order for the File Transfer to work properly, we have to specify a Data Format
for these files. Fortunately, since we are working with Java Objects for our Customer
Projects, Jobs and Environments, we could make use of Serialization and Deserialization
of Objects. This would allow us to have a consistent Data Format without the need to
do some extra conversion.
Finally, we would like to reuse as much from COMET as possible and basically have

a tight coupling for the shared components. The reason for that is that we want our
COMET-P tool to have as much of the functionality of COMET as possible.

4.2 Compliance Testing of Complex and Distributed Systems
For our second problem, we present the following software products that solve similar
problems to COMET.

Sentinel
Sentinel is a language and framework for policy built to be embedded in existing software
to enable fine-grained, logic-based policy decisions. A policy describes under what
circumstances certain behaviors are allowed [Sen]. It also offers its own, easy to use
DSL, the Sentinel DSL, just like InSpec, in which the policies have to be written. And
although the idea behind Sentinel is more or less to embed policies into software, it can
be also used to test system behaviour, which is what Compliance Testing does. However,
as far as we know, Sentinel doesn’t provide the option to test distributed systems in the
way in which we plan to do it with COMET. Distributing the rules, that one defines in
a Sentinel policy, to different machines might be theoretically possible, but there is no
clear information on how to do that. In addition to that, Sentinel only offers a CLI tool
without any graphical interface. These problems might be solved in the future, because
Sentinel is a relatively new product and, at the time of writing this, is less than 1 year
old, but for now, in its current state, it doesn’t fully fulfill our needs.

UpGuard Core
UpGuard Core simplifies security and compliance for your infrastructure in the cloud
and on premises [Upg]. UpGuard Core really offers a lot of features and in addition to
testing, it can also monitor different nodes. It can also show the differences in system
configuration over time and with that make it easier to find the source of a problem.
UpGuard Core is designed with the Cloud in mind, so it solves our problem with the
compliance testing of distributed systems. Unfortunately, UpGuard Core is not free, not
open source and doesn’t offer a free demo or a trial. The idea behind this licensing is
that primarily enterprises with a lot of servers with a lot of nodes are going to use such
a product, because it doesn’t make sense to use such a complicated piece of software
for a small system. And since UpGuard lists NASA and the New York Stock Exchange
(NYSE) as some of their customers, we believe that UpGuard Core is great. Due to the
issue with the license however, it simply doesn’t help us to solve our problems.

10

4.2 Compliance Testing of Complex and Distributed Systems

Chef Automate
Chef Automate helps overcome complexity to build, manage, and deploy better, faster,
and safer [Che]. Chef Automate includes the InSpec framework, which we also use in
COMET. However, as explained in [Mos17], Chef Automate and InSpec alone don’t solve
two of the problems that COMET does, Information Management and Management
Inexperience. They only help us to test for System Misconfiguration, which is not sufficient,
because the idea behind COMET was to solve all 3 problems [Mos17]. In addition to
that, Chef Automate cannot distribute different tests to different nodes they way we plan
to do it. This makes Chef Automate also unsuitable for our needs.

11

5 Concept

There are no facts,
only interpretations.

Friedrich Nietzsche

Contents

5.1 Portability . 11
5.1.1 Adapting COMET . 12

5.2 Compliance Testing of Complex and Distributed Systems 15
5.2.1 Testing of multiple nodes at once 16
5.2.2 Distribution of Software Landscapes and Software Components to

different nodes . 17

Since we are working on two different problems in this thesis, this chapter is also going
to be split in two parts. First, we are going to consider all of the problems and the
requirements for the portable version of COMET and then in the second part, we explain
all the things that have to be extended and modified in order to make the testing of
complex and distributed systems possible.

5.1 Portability

At first glance creating a smaller and portable version of COMET might not look like
a big challenge. And that’s exactly the case, if we only want to create a very simple
version that can only execute the tests on a different system and then import back the
results. For such a tool, one can probably even use Bash or some other type of Shell
scripts, since once all of the test files are available on the targeted SUT, one has to only
execute the InSpec command. But we are not interested in such a solution. We want a
more sophisticated tool that doesn’t only have this basic functionality. Our tool should
be able to grow and provide more functionality with time. For example, the portable
tool should be able to also test distributed systems that are not accessible via remote
connection at all. This means that an instance of it should run on every node of the
distributed system. Such a scenario will require flexible configuration and the ability
for each running instance to be controlled remotely from COMET. With all of that in
mind, let’s take a look at the requirements for this new tool, which we are going to call
COMET-Portable (COMET-P).

13

5 Concept

5.1.1 Adapting COMET

The first thing that we have to consider is how are we going to adapt COMET in order
for it to start supporting the export of tests and also the import of test results. In
addition to that, at some stage COMET should be able to “control” multiple instances of
COMET-P. These instances of COMET-P will basically be Workers. In order to explain
the current testing work-flow, we present the following diagram in figure 5.1.

Figure 5.1: Current Test Execution Flow in COMET

As one can see, the first stage is, of course, the definition of Compliance Tests,
Compliance Rules, Rules Sets and Profiles, Software Components and Software Landscapes,
which are also called Solutions and Complex Solutions, the target SUTs/Environments and
finally Customer Projects by the user. After all of these are defined, one can execute the
Customer Project as a Job to basically test the target system. The things that currently
happen when the user presses the “Start Job” button in the COMET Front-End, are as
follows:

• A REST Request with the information describing for which Customer Project a
Job has to be created is made to the COMET Back-End.

• A Job is created for this Customer Project, marked as QUEQED and saved in the
Database.

• The now created Job is started asynchronously in a new Thread, so it doesn’t block
any other parts of the application, and is marked as RUNNING. This makes it
possible to run multiple Jobs at a time.

• After the Job is started, the Job directory which is going to contain the InSpec test
profile is created in the /jobs directory.

• Then, all of the test files are generated. Before the actual file creation, a Placeholder
Resolving is performed. Currently COMET provides Interfaces with methods for
Placeholder Derivation and Resolving, which have to be implemented by every test

14

5.1 Portability

plug-in. This is exactly the case with InSpec. So, after all of the Placeholders are
substituted, the actual files are created with the help of templates.

• After generating the files, COMET performs a connection test to see if the SUT is
reachable and if so, it executes the InSpec’s check and exec commands.

• The first command, check, checks if the InSpec test profile is valid. If so, the process
continues to the next step, which is the actual testing.

• When the exec command is executed, InSpec connects via SSH or WinRM to the
target system, performs the testing and then returns the result in either JSON or
XML. In our case, it was opted for the results to be in JSON.

• Then, the results are saved in the database. COMET currently has 2 Entities which
are designed for the saving of the results. These are Job Result and Job Result
Item. The Job entity has a One-To-One relationship to Job Result and Job Result
has a One-To-Many relationship to Job Result Item. At the end, for each Job we
currently have exactly 3 results or Job Resul Items: 1 from the connection test, 1
from the check of the InSpec profile and 1 from the actual test. After the results
are saved, the Job is marked as finished and the results from it can be seen by the
user in the Front-End.

As one can see, if we want to support the export of tests, one should simply stop the
execution process directly after the files are generated. The Job should be then marked
as EXPORTED until the test results are imported.
In addition to the InSpec test profile files, we will also need to export all of the

information about the Job, including the information about the Environments that have
to be tested, and save it in a file in the Job directory. Since some Environments are
accessible via SSH only with the help of a public and private key pair, COMET currently
generates these keys when an Environment is defined and then offers an authentication-
free link from which the public key can be downloaded on the target SUT. This is a very
useful feature, but if we want COMET-P to be able to access the systems on which this
public key is downloaded, we have to transfer the private key between the systems on
which COMET and COMET-P are running. Private SSH keys however can be a very
sensitive information and because of that we won’t provide a method for transferring
them. We leave this operation entirely to the user of COMET-P. He/she must generate
it’s own public and private key pair and configure the target SUT for remote connection.
After all of these actions are performed, we will need a way to transfer the test files

between COMET and COMET-P. The 2 possible options are:

• Manually Copy & Paste the files from the system on which COMET is running to
the system on which COMET-P is running.

• Create a REST Endpoint from which the files can be downloaded in the form of a
simple ZIP file. This is actually our preferred way for exporting the test files, since
the overhead for it is very minimal.

15

5 Concept

Finally, the test results have to be imported to COMET. For this we need 2 different
methods which will actually work in exactly the same way. The first one is via a REST
request. Since we already have entities for saving the test results, with the help of
JSON serialization and deserialization we can directly make a REST request with the
results and save them. The second method is to import everything manually through the
front-end. This will require for us to extend the front-end slightly. The nice thing here
is that a manual import of the test results will also use the same REST endpoint and
won’t create a big overhead.

COMET-Portable

Now we want to present all of the requirements for COMET-P.
Since COMET is already a cross-platform application, COMET-P has to also be able

to run on most modern systems. It has to be small, lightweight and portable, which
means that we need a command line tool (CLI). While a Graphical User Interface (GUI)
will be a nice addition, a GUI only application won’t be a good choice since there are a
lot of systems that don’t have a user interface, e.g. Linux Servers.
Furthermore, COMET-P should be at least able to make REST requests to at least

one instance of COMET in order to download the test files and information and also to
upload the test results. Ideally, it should also be able to accept REST request for easier
configuration and control. This will basically turn COMET-P into a web application.
However, the ability to configure and more importantly control COMET-P from COMET
should be also available even if the SUT doesn’t allow incoming HTTP request, i.e. ports
80, 443 or any others are not open and running a web server is not possible.

The configuration problem can be easily solved by using a simple configuration or ini
file to store the settings. This file can then be modified by the user with the help of a
simple text editor.
The control of COMET-P from COMET however, will be a bit more complex. If

COMET-P cannot be accessed at all by COMET, a control with HTTP GET requests in
a typical Polling fashion should be possible. While this might not be the most efficient
way to control an instance of COMET-P, because it will create an additional overhead,
since we need to implement this functionality for both COMET and COMET-P, it will
give us a lot more flexibility and will enable the full functionality of COMET on a lot
more systems.

As for the actual functionality that COMET-P needs, it has to implement at least the
following features:

• It should be able to list all of the Jobs that are marked as EXPORTED by one
or more instances of COMET to which COMET-P is currently connected. If the
portable tool is connected to more than one COMET instances and there are Jobs
with the same Id, the listing should clearly visualize that. An example command
for that will be a simple list with an additional parameter with the help of which
the user can specify a concrete instance of COMET, from which the exported Jobs
have to be listed.

16

5.2 Compliance Testing of Complex and Distributed Systems

• It should be able to download the ZIP files with the exported Jobs and unzip them
automatically. In the case of matching Job Ids from different instances of COMET,
the user should be able to choose which one to download. An example command
for that will be a simple download with an additional parameter for the COMET
instance.

• It should be able to run the Jobs exactly like COMET does. An example command
for that will be a simple run.

• It should be able to generate a JSON file with the test results, which can be
imported back manually to COMET. An option to import the results via REST
request to the instance of COMET, from which the Job was downloaded, should
also exist. In addition to that, it should be possible to print the test results on the
screen, so the user can see them. For these features we need both an additional
command and also optional parameters for our run command, so the results can
be saved to a file, printed and/or imported to COMET directly after running the
test. An example for the additional command that we will need, so the user can
see the results, which are saved in a JSON file and also to be able to import them
to COMET after the test has finished, is a simple res. A few optional parameters
like -m for printing the raw message that InSpec returned after running the test
and -i for importing the test results are also going to be needed.

• Finally, an authenticate or login command will also be needed, since COMET is
RESTful web application with enabled security. This means that a user needs to
login first, before he/she can access the REST endpoints for listing and downloading
Jobs and importing of test results.

This sums up pretty much the entire functionality that COMET-P needs for its first
version. Implementing these features will gives us exactly the tool that we need and will
help us to solve the described problem. With our new tool, the entire test execution flow
will look as visualized in figure 5.2.

5.2 Compliance Testing of Complex and Distributed Systems
The second problem that we want to solve in our work is to extend COMET and make it
possible to test complex and distributed systems for compliance. Before we go further, we
want to clarify what our definition for a “complex” system is. A complex system in our
case is a system that has more than 1 node/computers and multiple Software Landscapes
and/or multiple Software Components. If a system has more than 1 nodes and only 1
Software Landscape/Software Component, we still consider it to be a “complex” system,
because it doesn’t fit our previous 1 Job, 1 Job Result model.
In order to make such a testing with COMET possible, we have to solve, yet again,

2 problems. The first one is to simply implement the possibility to test a system with
multiple nodes. For this part, we don’t need any advanced testing options. We are

17

5 Concept

Figure 5.2: Test Execution Flow of Exported Jobs

leaving these for the second part in which we are going to implement the possibility to
distribute Software Components and Software Landscapes on to different Environments.
That means that we are going to provide the user with the option to map different
Software Component/Software Landscape to different nodes.

5.2.1 Testing of multiple nodes at once
For the testing of multiple nodes in one Job, we actually don’t have to do a lot of work.
Literally all of the changes that we have to make are reflected in our updated domain
model in figure 5.3.
These include only the following things:

• We have to add the option for a Customer Project to have more than one Envi-
ronment, i.e. turn our One-To-One relationship to a One-To-Many relationship.
This, unsurprisingly, was already implemented in COMET. The change was not
reflected in the domain model in figure 2.1 however, because the rest of COMET
didn’t support the functionality to test multiple systems at once, so it was denoted
as a One-To-One relationship in order to correspond to what COMET can actually
do.

• The second change that has to be made is to add the option for a Job, or as denoted
in the domain model, a Test Run, to have multiple Job Results/Test Results. This
is of course a very obvious thing since the number of test results will be equal to
the number of systems tested. In order to achieve that, we have to again turn the
One-To-One relationship between Test Run and Test Result to a One-To-many
relationship.

18

5.2 Compliance Testing of Complex and Distributed Systems

• The last change is also a change in a relationship. The One-To-One relationship
from Report to Result has to become a One-To-Many relationship. This might
not be as obvious as the other two changes, but the reason for it is quite simple:
Currently a report is generated based on a test result. Since now we have multiple
nodes on which we run the tests, we also have multiple results, so we need multiple
reports. One might wonder why not create a single report for all systems, but that
wouldn’t be accurate, because running the same Job on multiple Environments at
once, doesn’t require the nodes to be related at all and to even belong to the same
system, so creating a report based on the results of all systems doesn’t make sense.

Of course, there are also other changes that have to be made in order for COMET to
continue working after we change the domain model, but these all involve implementation
specific details, which we will present in chapter 6.

5.2.2 Distribution of Software Landscapes and Software Components to
different nodes

By being able to distribute Software Landscapes and Software Components to different
nodes, we would be able to perform compliance testing on distributed systems and
on systems with complex configuration. So, naturally we would like this feature to
be possible. Currently, if we have a system with multiple nodes, which have different
Software Landscapes and Software Components installed on them and also require different
configuration, we basically have to create a Customer Project for each node and then
run these as different Jobs. There is no option to define a Customer Project containing
all Software Landscapes and Software Components and then to choose which ones belong
to which node. This is a serious limitation which we want to remove.
To solve this problem, we came up with 2 possible solutions, one of which ended up

being better than the other. Now we want to present them and discuss their advantages
and disadvantages.
The first idea that we had, was to have Customer Projects defining the Software

Landscape and Software Components for 1 or more nodes with the exact same configuration
and then to group these Customer Projects into a Customer Project Set. This is basically
the same idea as the grouping of Compliance Rules into Compliance Rule Sets. The
advantages of this approach are that it is simple to implement and that it allows us to
reuse Customer Projects in different systems. Unfortunately, the main and probably
the only disadvantage of this approach is that it requires for all nodes in the Customer
Project to have exactly the same configuration. This might not seem like a big problem
at first, but can easily turn into one for systems with a lot of nodes with different
configurations. For example, if we have a system with 20 nodes, which all have different
Software Landscapes and Software Components, we would need to define 20 Customer
Projects and then combine them in one Customer Project Set. This, as one can guess, is
not ideal, because in reality it will work only for systems with low number of different
nodes. The definition and possibly later modifications of Customer Projects will come

19

5 Concept

out of control, because the user will have to keep track of all Customer Projects contained
in the Customer Project Set.

That’s why we needed a better solution for this problem. The second idea that we had
and that we ended up using, is to create a Mapping between the Software Landscapes
and Software Components defined in a Customer Project and the Environments/nodes of
this Customer Project. With this Mapping we allow the user to choose which Software
Landscapes and Software Components to run on which node. That means that now we can
have one Customer Project combining all Software Landscapes and Software Components
contained in the system and with that basically define and entire complex/distributed
system with only one Customer Project. Then, for each node the user can pick only the
landscapes and components that the node constains. This is exactly the functionality
that we need and that we want. The only real downside of this approach is that it a lot
harder to implement than the first one. We are going to provide a detailed explanation
of how we implemented this solution in section 6.2.2, but before that we want to present
the solution on a conceptional level.

The things to consider with this solution was how to define this mapping and where it
makes sense to actually put the options for it. The latter one was, as one might guess, is
a lot easier. We had pretty much 2 options for the places to which we can add the menu
for the mapping: In the definition of the Customer Project and in the Compliance Run
page. We ended up choosing the first option, because it allows us to persist the mapping
and reuse it.

Deciding how to define this mapping was actually a lot harder. After some considera-
tions, we figured out that it will make the most sense to implement the mapping with the
help of 2 new entities: Mapping and Mapping Entry. The Mapping Entry entity is the
one that is used to describe which Software Landscapes and Software Components should
run on the environment/node. This means that each MappingEntry instance should be
defined for 1 Environment and should have multiple Software Landscapes and/or multiple
Software Components. These Mapping Entries are then combined into 1 Mapping via a
One-To-Many relationship. After that, we introduced the constraint to have 1 Mapping
per Customer Project. This was achieved with the help of a One-To-One relationship.
What this means in reality is that the user can choose to define and have a Mapping for
the Customer Project, which will consist of different Mapping Entries. Each Mapping
Entry will then define which Software Landscapes and Software Components are contained
on which node. If the user doesn’t define a mapping, then the tests for all Software
Landscapes and Software Components will be run on each Environment. If on the other
hand, the user creates a Mapping Entry only for some of the Environments and leaves the
others without one, the ones for which a Mapping Entry doesn’t exist, will be tested with
the tests for all Software Landscapes and Software Components defined in the Customer
Project. Finally, we had to introduce one more constraint in the relationship between
Mapping Entry and Software Landscape and in the relationship between Mapping Entry
and Software Component. Both of these relationships have to also have a constraint to
Customer Project, since a Mapping Entry can contain only the Software Landscapes and
Software Components, which are defined in the Customer Project. One can see how these

20

5.2 Compliance Testing of Complex and Distributed Systems

2 new entities interact with the rest of the domain model in the updated domain model
in figure 5.4.
As sparse as it might seem, this pretty much sums up the conceptional part for

the solution of this problem. As we already mentioned, the implementation is quite
complicated and we will describe it in full detail in the corresponding chapter.

21

5 Concept

Figure 5.3: Domain Model of COMET supporting the simultaneous testing of multiple
nodes in one Job

22

5.2 Compliance Testing of Complex and Distributed Systems

Figure 5.4: Domain Model of COMET supporting a Distribution (Mapping) of Software
Landscapes and Software Components on Environments

23

6 Realization

I don’t know
if it’s what you want,
but it’s what you get. :-)

Larry Wall

Contents

6.1 Portability . 23
6.1.1 Adapting COMET . 23
6.1.2 COMET-Portable . 27

6.2 Compliance Testing of Complex and Distributed Systems 30
6.2.1 Testing of multiple nodes at once 30
6.2.2 Distribution of Software Landscapes and Software Components to

different nodes . 32

As with the previous chapter in which we conceptualized our ideas for all the features
and improvements, we are going to also split this chapter in two parts. In the first one,
we are going to take a look at all of the additions and small changes that we had to
make to COMET in order to support the export of Jobs and the import of Job Results.
After that we will explain how we have created our portable tool, COMET-P, and how
it works. Then, in the second chapter, we present how we have extended and modified
COMET and also COMET-P, so they can test complex and distributed systems.

6.1 Portability
To keep the same structure as in chapter 5 and also because this was the actual order in
which we had to implement our solution, we first present how we’ve adapted COMET to
support the export of Jobs and the import of Job Results and then explain how we’ve
created our COMET-P tool.

6.1.1 Adapting COMET

Adding the support for these new features to COMET turned out to be a very simple
job, which didn’t require any major modifications to the system. This means, that we
only had to add the new functionality without changing the old one at all.

So instead of changing the entire test execution flow from figure 5.1, we simply added
the new one, which we visualized in figure 5.2. In order to do that, we gave the user the
option to export the Job instead of running it, as one can see in figure 6.1. The new

25

6 Realization

“Export Job” button is the only visual difference, apart from the page for importing of
the Job Results, that had to be made to the Front-End of COMET. After the addition of
the button, a new REST Endpoint was created in the Back-End project for accepting of
the new request types. Of course, the REST client in the Front-End was also extended
to support this functionality.

Figure 6.1: The new button for the export of Jobs

Then, we had to make sure to modify the Back-End further in order to not start the
Job, but to only create it and generate the test files. COMET currently makes use of
Java’s Concurrency library in order to start Jobs asynchronously at the end of every
REST request. To achieve that, there is an abstract ComplianceRun Task Executor,
which implements the Runnable interface. This abstract task executor takes care of all
standard procedures for COMET before starting a Job, like reading the entire information
for the Job from the database. The ComplianceRun Executor is then extended by the
ComplianceExecution one, which implements the needed for the Runnable interface run
method. Here is how the run method of the ComplianceExecution class currently looks
like:
1 @Override
2 public void run() {
3
4 this.setExecutionJob();
5 this.job.setState(JobState.RUNNING);
6 this.getJobRepository().save(this.job);
7
8 File exportDestination = this.setExportFolder(this.job);
9 TestRunner runner = TestRunnerFactory.getRunner();

10
11 runner.setExportDestination(exportDestination)
12 .setPlaceholderResolver(new PlaceholderResolveSimple());
13 runner.execute(this.job);
14
15 // update job properties
16 this.job.setResult(runner.getResult());
17 this.job.setState(JobState.FINISHED);
18
19 this.getJobRepository().save(this.job);
20 }

Source Code 6.1: ComplianceExecution.java

26

6.1 Portability

As one can see, the things that happen in this method are as follows: the Job State
is set to RUNNING and the Job is saved again to the database in order to update the
state. After that, the export destination or the folder in which the test files are going
to be generated, is configured and then the Job is started via the TestRunner interface
and the execute method. In COMET, this interface has to be implemented by every test
plug-in, as it is the case with InSpec and its InspecTestRunner class. The execute method
is basically the entry point for the testing and it looks like this:
1 @Override
2 public JobResult execute(Job job) {
3
4 this.job = job;
5 this.result = new JobResult();
6
7 // check correct state of class
8 if(this.exportDestination == null || this.resolver == null) {
9 throw new IllegalStateException("Export Destination or

PlaceholderResolver are missing, stopping execution");
10 }
11
12 this.generateTestCode();
13 this.executeTests();
14
15 return this.result;
16 }

Source Code 6.2: InspecTestRunner.java

Finally, after the Job is completed, i.e. the InSpec command has returned a result
via the execute method, the results are saved in the database and the Job is marked as
FINISHED.

In order to support the export of Jobs, we created a new Task Executor, Compliance-
Export, which also extends the abstract ComplianceRun one, and which is called at the
end of the REST request for exporting a Job. This new executor also has a run method,
which currently looks like this:
1 @Override
2 public void run() {
3
4 this.setExecutionJob();
5 this.job.setState(Job.JobState.EXPORTED);
6 this.getJobRepository().save(this.job);
7
8 File exportDestination = this.setExportFolder(this.job);
9 TestRunner runner = TestRunnerFactory.getRunner();

10 runner.setExportDestination(exportDestination)
11 .setPlaceholderResolver(new PlaceholderResolveSimple());
12 runner.export(this.job);
13

27

6 Realization

14 // Generate the JSON with the Job and Environment Information
15 this.generateJSONWithJobInformation(this.job);
16 }

Source Code 6.3: ComplianceExport.java

As one can see, we have made some changes in comparison to the run method in
the ComplianceExecution class. The first one is quite obvious, the Job State is set to
EXPORTED. In order to support this new state, we had to first add it to the Job entity.
And since the Job States in COMET are listed as a basic Enum, we only had to add the
new state as follows:
1 public class Job {
2
3 // ...
4
5 public enum JobState {
6 NEW, // created and not yet queued
7 QUEUED, // queued in thread pool
8 RUNNING, // currently running
9 FINISHED, // job finished

10 EXPORTED // job is exported. waiting for the job results
11 }
12
13 // ...
14 }

Source Code 6.4: Job.java

The second change is that instead of the execute method of the TestRunner or actually
the InspecTestRunner, we are calling a new export method, which looks like this:
1 @Override
2 public void export(Job job) {
3
4 this.job = job;
5 this.result = new JobResult();
6
7 // check correct state of class
8 if(this.exportDestination == null || this.resolver == null) {
9 throw new IllegalStateException(

10 "Export Destination or PlaceholderResolver are missing,
stopping export");

11 }
12
13 this.generateTestCode();
14 }

Source Code 6.5: InspecTestRunner.java

28

6.1 Portability

There is really no real magic in this method. We simply do not call the executeTests
method here and that gives us exactly the desired behaviour: the test files are generated,
but the InSpec’s check and exec commands are not executed.
The third and final change in the run method is that we call an additional method,

generateJSONWithJobInformation, which exports the entire information about the Job
and the Environments from the database and saves it to a JSON file in the Job directory.
We need this file, because our COMET-P tool also needs the Job information in order to
able to execute the Job.

In addition to these extensions, we also had to create a few additional REST Endpoints,
which provide information about which Jobs are currently marked as EXPORTED, offer
the ability to download the Job as a ZIP file and to import back the Job Results.
These Endpoints were basically added as a way for our COMET-P tool to communicate
with COMET. They are all standard and pretty straight forward, so we omit further
details about them in this document and encourage the reader to take a look at them
himself/herself. The only thing that we want to point out, is that for the import of
the test results, the JobResult POJO is deserialized to JSON by COMET-P and then
serialized back to POJO by COMET with the help of the Jackson [Fas] library.
As far as the page in the COMET Front-End for the import of the test results goes,

we didn’t need anything more than a simple file upload form for it, which utilizes our
existing REST Endpoint.

This sums up pretty much all of the changes that we had to make to COMET in order
to support the export of Jobs and with that our new tool too.

6.1.2 COMET-Portable

Before we start with the details for the implementation of our tool, we want to say a few
words about the technologies that we’ve used, why we’ve picked them and why we’ve
created the tool this way.

As written in [Mos17], in addition to COMET there is also a COMET-CLI tool, which
offers some of the functionality that the COMET Front-End has. Namely, it offers the 4
commands: list, run, result and import. The run command is, of course, used to start a
new Job and the result command is used to show the results for a finished Job. The list
command is used to list various resources, which is different to the list command that
we’ve described in section 5.1.1. And finally, there is the import command, with the help
of which one can import tests written in a COMET-CLI specific format to the COMET
database. On first glance the COMET-CLI does almost everything that we’ve described
and wanted for our COMET-P tool. So one might ask why not use the already existing
tool and extend it, instead of creating a new one? There are however a couple of reasons
for not working further on the COMET-CLI.
The first reason is that it wasn’t designed with our usage scenario in mind. The

COMET-CLI was created only as an alternative to the COMET Front-End, so it can
be used together with COMET on systems without a Graphical User Interface (GUI).
The COMET-CLI was never really written as a smaller, stand-alone version of COMET

29

6 Realization

which can be deployed separately from COMET and that only needs a connection to
COMET to download the Jobs and to import the Job Results.

This however, doesn’t fully answer the question why we’ve chosen to create a new
tool instead of extending the old one. Which brings us to reason number two: The
COMET-CLI is written in Python. As we mentioned in chapter 3, the Back-End and
with that the entire domain and functionality of COMET is written in Java with the help
of the Spring Boot Framework. This means that the entire code of the COMET-CLI is
written in a totally different way and is basically incompatible with the Back-End logic
of COMET. And since we wanted to design a new tool that is small, lightweight, can
work separately from COMET and can mimic most of the functionality, we had to create
a new tool.

This leads us to the technology stack that we’ve used for COMET-P. Since we needed
a CLI and we wanted to share as much things with COMET as possible, we opted again
for the Spring Boot Framework in combination with the Spring Shell [Sprb] extension.
This resulted in an interactive shell application that provides a lot of functionality out
of the box like the incredibly simple way to create custom commands, auto-completion,
error handling and others. In addition to that, we have all the benefits of the Spring
Boot Framework, like the ability to create RESTful Controllers and a built-in REST
Client. These two features alone are really important for COMET-P since they make the
communication between our tool and COMET much easier. And since both COMET
and COMET-P are written in Java and use the Spring Boot Framework, we were able to
reuse a lot of the code from COMET for our new tool.
Now, we want to dive-in into the implementation details and explain what parts of

COMET we were able to reuse, what we had to change and what we had to additionally
develop in order to make our new tool work.
For our COMET-P tool we were able to reuse all of the elements that we need from

COMET’s testing APIs, including the InSpec testing plug-in. This also includes parts of
the domain model, specifically the sub-domain containing the entities for the Job, Job
Result, Job Result Item and Environment. The only thing here that we had to modify
were the Java Persistence API (JPA) annotations. COMET makes use of the JPA for
easier persistence of the data, but since our new tool doesn’t use a database at all, we
had to remove the annotations so we can compile the code. This unfortunately means
that we cannot use exactly the same code and the same entities for both projects, but
since the entities shouldn’t change that often and do not change the functionality of the
rest of the systems, we think that this is not a major problem.

As one probably noticed, we just said that we used “all of the elements that we need”
from COMET’s testing APIs and not all of the elements. That’s due to the fact that
COMET also offers Placeholder Resolvers or Code Transformers, which every test plug-in
has to implement and which are basically used to substitute placeholders in the test code
with actual values. However, the Placeholders are currently being resolved just before
the test files are generated, so we don’t need that feature in our COMET-P tool, because
we are downloading the already generated test files. That’s exactly why we opted to not
include this functionality in our tool.

30

6.1 Portability

The other things that we were able to reuse is the already mentioned Task Executorts:
the abstract ComplianceRun and the extension ComplianceExecution. With them, we
didn’t have to make any change whatsoever. They were able to work in our tool without
any modification.

As far as the features described by us in section 5.1.1 goes, we were able to implement
everything and here we present every command/function that COMET-P currently has.
Each parameter will be noted exactly in the way Spring Shell displays the parameters,
when the help command is used. This means that mandatory parameters will be noted
in single square brackets, e.g. [-j] and optional parameters in double square brackets, e.g.
[[-i]].

• authenticate. This command, as the name suggests, is used in order for COMET-
P to have access to COMET and in particular, to its REST APIs. Usually, if
COMET-P is started after COMET and can reach it, the authentication process
happens automatically and the user doesn’t need to worry about it. Also, the access
token is refreshed every hour, so it doesn’t expire. However, for the cases in which
COMET-P was started before COMET or COMET was restarted at some point
and the access tokens are no longer valid, we provide a command for authentication,
so the user doesn’t have to restart COMET-P or wait for the next refresh of the
access token.

• list [[-d]] or [[-r]] or [[-f]]. By default this command attempts a connection to
COMET and tries to get the list with the exported Jobs and then returns them to
the user. The user can also choose to list only the downloaded Jobs by using the
flag -d or the Jobs that are currently running or have already finished by specifying
the flags -r or -f respectively. Because of the way Spring Shell handles parameters
and because the list command should list only 1 type of Jobs, it is possible to use
only 1 optional parameter at a time and the priority of the parameters is exactly
as listed here, i.e. by using the -d flag, one will always get the downloaded Jobs,
no matter if any other flag is used before that. For example list -r -d will always
return the list with the downloaded Jobs.

• download [-j]. This is a very straightforward command. It is basically used to
download the test files from COMET. The mandatory -j parameter stands here,
and also in the run and res commands for Job ID. Thanks to the way Spring Shell
handles parameters, one can skip the flag when using the command and directly
use the id. For example, if one wants to download a Job with ID 130, one can write
download 130 instead of download -j 130.

• run [-j] [[-i]] [[-l]] [[-k]]. As one can see, our run command has the most number
of optional parameters, excluding of course the -j parameter which is mandatory.
The -i parameter specifies if the Job Results should be imported back to COMET
directly after the Job finishes. The -l parameter specifies that the Job has to run on
the systems on which COMET-P is currently running. This is the only modification
to the Job and Environment configuration that we allow. Since Jobs have to be

31

6 Realization

basically immutable, because COMET expects the results exactly for the Job it
has exported, our tool shouldn’t change any of the test files. Of course, here we
don’t account for modifications that a user can make to the test files. We allow
the change of the Environment with the local one, because if for example the user
defines an Environment in COMET that is not reachable via remote connection
and then exports the Job, downloads it on the target SUT and runs it with the
help of COMET-P, with the default configuration, InSpec will attempt remote
connection via WinRM or SSH. That’s why we implemented the option to run the
tests on the same system. And finally, the -k parameter. It is there so the user can
specify a path to an SSH key file. This SSH key file is of course used so InSpec can
connect to the target SUT.

• res [-j] [[-m]] [[-i]]. The res command provides the user with the option to see
the test results for a Job that has finished. The -m parameter provides the user
with a little more information and in addition to the Job Results, it also displays
the Executor Command that was used in order to receive these results. The -i
parameter is used here (as in the run command) to import the Job Results back to
COMET. We provide this option for the cases in which the user forgot to use the
flag in the run command and the test results are only available locally.

In addition to these commands, we’ve also implemented a simple Job Monitoring
Service. It basically tracks the Jobs and their state, i.e. are they only downloaded, are
they running and have they finished. This service also helps us prevent to run a Job
multiple times. In COMET every Job can and has to run only once and with the Job
Monitoring Service we made that possible in COMET-P too.

As far as the configuration of COMET-P itself goes, i.e. the URL of COMET, what
username and password to use to authenticate with COMET, on which port to run and
so on, we managed to export all of these settings to an application.ini file, which can be
shipped together with the executable JAR file. This enables easy configuration, which
can be modified with a simple text editor.

This sums up pretty much the entire functionality of COMET-P. The only thing that
we didn’t manage to complete due to time constraints, is the ability for COMET-P to be
controlled and monitored via REST Requests. However, we think that we provided good
suggestions on how this feature should be implemented and we leave is as a possible and
desired future work.
Finally, we present the Architecture of COMET-P in figure 6.2.

6.2 Compliance Testing of Complex and Distributed Systems

6.2.1 Testing of multiple nodes at once

As we’ve listed in section 5.2.1, we had to make only 3 conceptional changes to COMET
in order to support the test of multiple nodes in 1 Job. In addition to that however, some
further things had to be changed in the COMET Front-End and also in the Back-End

32

6.2 Compliance Testing of Complex and Distributed Systems

Figure 6.2: The Software Architecture of COMET-P

REST APIs, so the new feature can work. We are going to start with the modifications
of the Back-End Spring project.
The first thing was, of course, to make sure that a Customer Project can have more

than 1 Environments. As we’ve mentioned in section 5.2.1, this was already implemented,
as shown in listing 6.6

1 public class CustomerProject implements Serializable,
ArtifactEntity, PlaceholderValueDefiningEntity {

2
3 // ...
4
5 @ManyToMany
6 @Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)
7 @JoinTable(name = "environment_projects",
8 joinColumns =
9 @JoinColumn(name="projects_id",

10 referencedColumnName="id"),
11 inverseJoinColumns =
12 @JoinColumn(name="environments_id",
13 referencedColumnName="id"))
14 private Set<Environment> environments = new HashSet<>();
15
16 // ...
17 }

Source Code 6.6: CustomerProject.java

The second thing was to change the relationship between Job and Job Result from
One-To-One to One-To-Many. We omit the details about this procedure, as it was

33

6 Realization

accomplished with a simple change in the JPA Annotation.
The third and final conceptional change was to simply create reports for each Job

Result instead of creating only 1 report. We achieved this by simply iterating over all Job
Results and creating a report for each one. One thing worth pointing about this change
is that we didn’t have to modify the database schema, because to this stage, reports were
generated on every request and weren’t saved to the database.

After we were done with the modifications to our domain model and database schema,
we had to adapt the two REST Endpoints that return the results for the Job and the
report. Both of them now return a JSON list with Job Result objects and Report objects
respectively, instead of a single object for each one. This was quite straight forward to
implement, but caused some incompatibility with the Front-End, which brings us to the
changes that we had to make there.

There were 2 main things that we had to modify in the Front-End. The first change is
under the Compliance Run page and specifically under the Finished Jobs tab. Previously,
the user had the option to click on each finished Job and see a short summary for the
Job, including an information if the Job Results are valid and if the testing succeeded.
Since now we can have multiple results for a single Job, we had to remove this summary
and only display the small icon that shows if the testing was successful. We removed the
additional information, because in the current form of this page, there is no adequate
way to display more than 1 summary. An entire page redesign was required, which would
have created a lot of overhead and at the end wouldn’t really bring a lot of value, because
not much additional information will be provided to the user.

The second change is in the reporting page. There we added the option to display the
reports for the different Environments on which the Job ran. Of course, this is only for
the cases in which the Job ran on more than 1 machine. As we’ve already explained in
section 5.2.1, a combined report for all nodes doesn’t make sense, so we didn’t implement
one.

6.2.2 Distribution of Software Landscapes and Software Components to
different nodes

The starting point for the implementation of the solution for this problem was, of course,
to create our two new entities: Mapping and Mapping Entry. They currently look like
this:

1 public class Mapping implements Serializable {
2
3 @Id
4 @GeneratedValue(strategy = GenerationType.IDENTITY)
5 private Long id;
6
7 @OneToMany(cascade = CascadeType.ALL, mappedBy="mapping", fetch

= FetchType.EAGER)
8 private List<MappingEntry> mappingEntries = new ArrayList<>();
9

34

6.2 Compliance Testing of Complex and Distributed Systems

10 // Getters, Setters, equals, hashCode and toString methods are
omitted here

11
12 }

Source Code 6.7: Mapping.java

1 public class MappingEntry implements Serializable {
2
3 @Id
4 @GeneratedValue(strategy = GenerationType.IDENTITY)
5 private Long id;
6
7 @JsonIgnore
8 @ManyToOne(cascade = CascadeType.ALL, fetch = FetchType.EAGER)
9 @JoinColumn(name = "mapping_id")

10 private Mapping mapping;
11
12 @OneToOne(cascade = {CascadeType.ALL}, fetch = FetchType.EAGER)
13 @Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)
14 private Environment environment;
15
16 @ManyToMany(fetch = FetchType.EAGER)
17 @Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)
18 @JoinTable(name = "mapping_entry_software_landscapes",
19 joinColumns = @JoinColumn(name="mapping_entry_id",

referencedColumnName="id"),
20 inverseJoinColumns = @JoinColumn(name="software_landscape_id",

referencedColumnName="id"))
21 private Set<SoftwareLandscape> softwareLandscapes = new

HashSet<>();
22
23 @ManyToMany(fetch = FetchType.EAGER)
24 @Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)
25 @JoinTable(name = "mapping_entry_software_components",
26 joinColumns = @JoinColumn(name="mapping_entry_id",

referencedColumnName="id"),
27 inverseJoinColumns = @JoinColumn(name="software_component_id",

referencedColumnName="id"))
28 private Set<SoftwareComponent> softwareComponents = new

HashSet<>();
29
30 // Getters, Setters, equals, hashCode and toString methods are

omitted here
31 }

Source Code 6.8: MappingEntry.java

35

6 Realization

As one can see, our Mapping Entry entity has a Many-To-One relationship with the
Mapping entity. In addition to that, it has a One-To-One relationship with the Environ-
ment entity, because of our constraint to have a Mapping Entry for each Environment
for which we want to have a “reduced” Customer Project. An important thing that we
want to mention here and that might be the reason for some questions, is why we allow
for a Mapping Entry to have only Software Landscapes and Software Components and
not Compliance Rules, Compliance Rule Sets and Compliance Profiles. The reason for
that is simple: We assume that all of the compliance rules, rule sets and profiles that are
included by the user in the Customer Project, should be valid for all Environments. That
means, that in addition to tests for the selected via the mapping Software Landscapes
and Software Components, the tests for the compliance rules, rule sets and profiles will
also be executed. For now we are not planning to change this and give the user the
option to also filter the compliance rules, rule sets and profiles, but this feature can be
easily implemented in the future with only a few modifications.

After modeling our two new entities, we had to add the One-To-One relationship to the
Customer Project entity. Finally, we had to figure out how to implement the constraint
for a Mapping Entry to contain only the Software Landscapes and Softare Components
that were defined in the Customer Project and to not contain any others. That isn’t an
issue, if one uses the COMET Front-End to define the Mapping Entry, but since we have
a RESTful Back-End, we had to implement this constraint in the Back-End too. We had
basically two options to do that: a simple and a complicated one. The compliacted one
was to add additional relationships and constraints to our entities, but this seemed like
too much work for something that we could achieve much easier. The simple option was
to simply iterate over all the Software Landscapes and Software Components defined in
the Mapping Entries and to see if they are also defined in the Customer Project. This
action has to be perfomed, of course, on every definiton or edit of a Customer Project,
i.e. after every REST request to create or edit a Customer Project. One can see how
we’ve implemented this in the following code snippet:

1 public boolean
mappingContainsCorrectLandscapesAndComponents(CustomerProject
project) {

2
3 if(project.getMapping() == null ||

project.getMapping().getMappingEntries().isEmpty()) {
4 return true;
5 }
6
7 for(MappingEntry me :

project.getMapping().getMappingEntries()) {
8
9 if((project.getLandscapes()

10 .containsAll(me.getSoftwareLandscapes()) == false) ||
11
12 (project.getComponents()
13 .containsAll(me.getSoftwareComponents()) == false)) {

36

6.2 Compliance Testing of Complex and Distributed Systems

14 return false;
15 }
16 }
17
18 return true;
19 }
20 }

Source Code 6.9: Constraint for a Mapping Entry to only contain Software Landscapes
and Software Components defined in the Customer Project

These are all of the changes that he had to make in our model in order for it to support
this new feature. The next thing that we had to consider is how to make use of this
new data. After some considerations, we decided that in order to use the information
from the mapping, we had to create derived Customer Projects from our main one with
the help of the data from the mapping. The reason for that might not be very obvious,
but comes down to one thing: InSpec, or more specifically the InSpec Profiles. As we’ve
already explained, after we start a Job, i.e. run the Customer Project, COMET generates
the test files that are needed by InSpec to perform the testing and structures them in an
InSpec-defined way called an InSpec Profile. What all of this means is that if we want to
have multiple variations of our Customer Project with each one being derived with the
help of the mapping, we also need to generate multiple InSpec Profiles. And here multiple
is actually equal to the number of variations of the Customer Project or more precisely 1
InSpec Profile for every MappingEntry plus one InSpec Profile for the Environments for
which we don’t have a MappingEntry, if there are any, of course. We find that to be a bit
of a limitation of the InSpec framework, because one cannot just “tell” InSpec which parts
of the profile to consider while the exec command is executed and which not. Nevertheless,
we had to find a workaround for this problem. The solution was two create two new test
Task Executors: ComplianceExecutionComplex and ComplianceExportComplex, both of
which extend the abstract task runner ComplianceRun. As with COMET-P, we needed
a new test execution flow. In this work, we are going to explain and present only how
the ComplianceExecutionComplex test runner works, because the one for the exporting
is very similar. The interesting part with the exported Jobs is actually when the test
results are imported back and that’s why are going to focus on that instead.

But before we start with the ComplianceExecutionComplex test runner, we had to find
a way to use our data from the mapping. The solution that we opted for is to create a
new Mapping Utility that uses the data from the mapping in order to create “derived”
Customer Projects from the original one and then uses this Customer Projects to create
Jobs for these Customer Projects. Currently our Mapping Utility looks like this:
1 public class MappingUtility {
2
3 public List<CustomerProject>

deriveCustomerProjects(CustomerProject project,
Set<Environment> mappedEnvironments) {

4

37

6 Realization

5 List<CustomerProject> derivedProjects = new ArrayList<>();
6 ParentAwareVisitor traverser = new ParentAwareVisitor();
7
8 for(MappingEntry me :

project.getMapping().getMappingEntries()) {
9

10 CustomerProject derivedProject = new CustomerProject();
11 derivedProject.setId(project.getId());
12 Set<Environment> tempEnvSet = new HashSet<>();
13 tempEnvSet.add(me.getEnvironment());
14 derivedProject.setEnvironments(tempEnvSet);
15 me.getSoftwareLandscapes()
16 .forEach(derivedProject::addLandscapes);
17 me.getSoftwareComponents()
18 .forEach(derivedProject::addComponents);
19
20 // Set the Compliance Profiles, Rule Sets and Rules to be

the same for every derived project
21 derivedProject.setProfiles(project.getProfiles());
22 derivedProject.setRuleSets(project.getRuleSets());
23 derivedProject.setRules(project.getRules());
24
25 derivedProject.setPlaceholders(project.getPlaceholders());
26 derivedProject.setPlaceholders(project.getPlaceholders());
27 derivedProject.setTitle(project.getTitle() + " derived");
28 derivedProject.setDescription(project.getDescription());
29 derivedProject.setArtifactId(project.getArtifactId());
30 derivedProject.setSignificance(project.getSignificance());
31 derivedProject.setVersion(project.getVersion());
32 derivedProject.setMapping(null);
33
34 derivedProject.accept(traverser);
35
36 mappedEnvironments.add(me.getEnvironment());
37
38 derivedProjects.add(derivedProject);
39
40 }
41
42 return derivedProjects;
43 }
44
45 private Job createSubJob(Job job, CustomerProject artifact, long

derivationNumber) {
46
47 Job derivedJob = new Job();
48 derivedJob.setArtifactType(job.getArtifactType());
49 derivedJob.setArtifact(artifact);
50 derivedJob.setState(Job.JobState.QUEUED);

38

6.2 Compliance Testing of Complex and Distributed Systems

51 derivedJob.setType(job.getType());
52 derivedJob.setTitle(job.getTitle() + " derivation " +

derivationNumber);
53
54 return derivedJob;
55 }
56
57 public List<Job> createSubJobs(Job job, List<CustomerProject>

derivedCustomerProjects) {
58
59 List<Job> subJobs = new ArrayList<>();
60
61 long derivedJobsCount = 1;
62
63 for(CustomerProject cp : derivedCustomerProjects) {
64
65 // Since we are not going to persist these Jobs, we only

need an ID to differentiate them
66 Job current = this.createSubJob(job, cp, derivedJobsCount);
67 current.setId(derivedJobsCount);
68 subJobs.add(current);
69 derivedJobsCount++;
70 }
71
72 return subJobs;
73 }
74 }

Source Code 6.10: MappingUtility.java

As one can see, we have three new methods. The first one, deriveCustomerProjects
takes our original Customer Projects and creates as many derivations of it as the number of
mapping entries. Each derivation is almost identical to the original Customer Project with
the exception of the Software Landscapes and Software Components that it has. These
are, of course, specified in the mapping for each derived project. Probably an interesting
point here is the second parameter that this method takes, the mappedEnvironments set.
We use this set to keep track of the Environments for which the user defined a mapping.
After we finish the derivation process, we remove the Environments for which a mapping
exists from the set of Environments defined for the original Customer Project and if there
are any Environments left for which a mapping doesn’t exist, we also add the original
Customer Projects to the list of Customer Projects for which a Job has to be created.
We are performing this action in the ComplianceExecutionComplex test runner, as we
shall later demonstrate.
The second method in our utility, createSubJob is used to create a so called “sub”

Jobs with the help of the main Job and a derived Customer Project. As with a regular
ComplianceExecution, we treat the entire testing process as one Job. This means that
even for complex executions, we have one master Job in which the entire testing is

39

6 Realization

performed. However, since 1 Job means 1 execution of the connectivity test, the InSpec
check command and the InSpec exec command, we had to create “sub” Jobs if we wanted
to keep the same execution principle. So, naturally, this is what we did and that’s why
we have this method.

The third method is actually the one that is used by our test runner and basically
utilizes the createSubJob method. It delivers a list of Jobs which is created from the
main Job with the help of the derived Customer Projects.

Now we can move on to our new ComplianceExecutionComplex test runner. We won’t
present it’s entire source code here because of space reasons and we encourage the reader
to take a look at it himself/herself. We will only present some parts of the run method
that we find to be important.

After the Customer Projects and the Jobs are derived, the execution process is started
as normal for each sub Job with the help of the InSpec TestRunner. Another interesting
point here is that we use a HashMap to keep track which Job Result belong to which
Environment. At the end of the testing process, these Job Results are sorted according
to the order of the Environments in the original Customer Project. Part of this process
is presented in the following listing:

1 @Override
2 public void run() {
3
4 // The master Job is created as usual and and the process is

omitted here
5
6 // Derivation of Customer Projects and Jobs is also skipped,

as it is already explained
7
8 Map<Long, JobResult> environmentResultSequence = new

HashMap<>();
9 Map<Long, Report> environmentReportSequence = new HashMap<>();

10
11 for(Job currentJob : subJobs) {
12
13 // Performing the testing via the InspecTestRunner
14 for(Environment currentEnv :

currentProject.getEnvironments()) {
15
16 JobResult currentResult =

runner.getResults().get(currentJobResult);
17 Report currentReport = this.reportUtility
18 .createReportForJobResult(this.job.getId(),

currentResult, currentProject);
19
20 environmentResultSequence.put(currentEnv.getId(),

currentResult);
21 environmentReportSequence.put(currentEnv.getId(),

currentReport);

40

6.2 Compliance Testing of Complex and Distributed Systems

22
23 currentJobResult++;
24 }
25 }
26 }

Source Code 6.11: ComplianceExecutionComplex.java

As one can notice, in addition to the HashMap for the Job Results, we also have a
HashMap for the Reports. One could also see that these reports are generated directly
after the testing is completed as opposed to upon a request from the Front-End. The
reason for this is that we ran into some obstacles with the old way of report generation.
Previously, the reports weren’t persisted in the database and they were generated on
every request. This wasn’t very efficient, but wasn’t also an issue. The problem we
had with this method for report generation is that the Customer Project was need in
combination with the Job Results in order for the report to be generated. And since we
are not persisting our derived Customer Projects, we had no choice but to generate the
reports directly after the execution of the tests, when we still had the derived Customer
Projects. Then, we had to persist this report in the database.

We could have accomplished that in couple of ways, but we decided that the easiest
way was to extend our Job entity and add a reports attribute/column to it. There we
could persist the reports directly after they are generated. And since our entire COMET
Back-End communicates via RESTful APIs with the Front-End, we chose to persist
these reports directly as JSON string, so we didn’t need to perform any conversions
after that. This entire new process of report generation was applied also to all other
scenarios of execution, i.e. to the regular Compliance Execution, where we don’t have a
mapping, and also to the ComplianceExport and ComplianceExportComplex. With the
ComplianceExport and ComplianceExportComplex we, of course, generate the reports
when the Job Results are imported back by the user via the Front-End or with the
help of COMET-P. An important thing worth pointing out is that in the case of the
ComplianceExecutionComplex, we had to derive again the Customer Projects and sub
Jobs, because the information for them is needed for the report generation.

With that, we pretty much explained all the details about how our mapping works in
practice and how we’ve implemented the functionality in our Back-End. The only thing
that left unmentioned is how we differentiate between our test runners, ComplianceExe-
cution and ComplianceExecutionComplex, and how we pick which one to use. This is
actually rather simple and we make the choice only based on the fact if the Customer
Project has a mapping defined by the user.

Next, we want to move to our Front-End and demonstrate how we’ve integrated the
new features in it. This part was far less interesting, because we only had to add the
menu for the mapping in the page for editing of Customer Projects. We managed to
create a very simple menu, the majority of which we actually reused. As one can see in
figure 6.3, the mapping menu looks almost identical to the menu for selecting the “to be
included” in the Customer Project, Software Landscapes and Software Components. The

41

6 Realization

reason for that is, of course, that this is pretty much what the mapping does.
As for the reports page, we didn’t need to add anything more to it, after we’ve already

edited it when we added the support for testing multiple Environments at a time. The
page currently looks like as visualized in figure 6.4 and figure 6.5.
The final thing that we had to do is to adapt our COMET-P tool, so it can also

execute Jobs that have a mapping. And since our tool basically mimics the functionality
of COMET, we only had to include our ComplianceExecutionComplex test runner in
COMET-P, adapt a few things and we were ready.

Figure 6.3: The new Mapping tab under the Customer Project Edit menu, which allows
the user to define a Mapping

Figure 6.4: The modified Reports page that shows the reports for the different Environ-
ments

42

6.2 Compliance Testing of Complex and Distributed Systems

Figure 6.5: The modified Reports page that shows the reports for the different Environ-
ments

43

7 Evaluation

It’s not a bug - it’s an
undocumented feature.

Author Unknown

Contents

7.1 COMET-P . 44
7.2 Compliance Testing of Complex and Distributed Systems 45

To evaluate our contributions, we will take a look at two example scenarios. The first
one will be for COMET-P and the second for COMET and the testing of distributed
systems. With the help of these example scenarios, we will try to not only show how
we’ve improved COMET, but we will also point out some limitations and how they can
be removed.

Before we begin with the evaluation, we want to say something about our testing envi-
ronment/target SUT. Unfortunately, we don’t have access to a proper distributed system
and building one isn’t exactly a child’s play. However, defining the same Environment in
COMET multiple times with a different name effectively allows us to use it a couple of
times for the same Customer Project. This is a good enough simulation of a distributed
system since the idea here is just to have multiple nodes to test.
For our remotely accessible “distributed” system, we are going to use a node with a

Linux Ubuntu distribution running inside a virtual machine and another node running
Windows 10, again in a virtual machine. For our non-remotely accessible machine, we
are going to use a Windows 10 computer, on which we are also going to run COMET
and COMET-P. One might ask, why the virtual machine with Windows 10 is remotely
accessible and the Windows 10 computer, on which we are running COMET is not? The
reason for that is simple: As with SSH, WinRM has to be activated, so one can use it to
access a remote Windows machine. By not activating it and by not choosing to overwrite
the Environment with the local one, when starting the Job in COMET, we can effectively
simulate a machine that is not remotely accessible and we can use COMET-P to test it
for compliance. We will activate WinRM however for the Windows 10 system running
on the virtual machine.

As far as the actual compliance tests goes, we will use the same tests that were used in
the evaluation part in [Mos17]. The idea here is, again, not to perform actual compliance
testing, but to only demonstrate how our contributions improved COMET.

45

7 Evaluation

7.1 COMET-P

The first test scenario is, as explained above, to run COMET-P on a machine that is not
remotely accessible and to perform the compliance testing with its help. To achieve this,
we are running COMET and COMET-P on our Windows 10 machine and we are not
enabling WinRM.

The Customer Project that we defined for this Job was very minimalistic and contained
1 Software Component with 1 Compliance Rule and 1 Compliance Test, which basically
tested if a file exists on the system. For this scenario, we didn’t really need anything
more complicated. The Job was exported by us as usual in the COMET Front-End with
the method that we implemented. Then, the Job was downloaded in COMET-P and
executed with the following commands:

1 // Download the Job with ID 5049
2 download 5049
3
4 // Run Job 5049, import back the test results on completion,
5 // overwrite the Environment with the local one
6 run 5049 -i -l

Source Code 7.1: Downloading and Running a Job with COMET-P

As one can see, we are overwriting the Environment with the one on which COMET-P
is running, i.e. our local Windows 10 machine. We are also choosing to import back the
Job Results to COMET, when the testing is complete. One can also do this manually via
the Results Import Page at a later point, if COMET is not reachable by COMET-P. In
the event that COMET is not reachable, one can manually transfer the Job files too, so
the testing with COMET-P is alway possible and has no limitations due to the lack of
connection. Such a testing wouldn’t be possible without COMET-P on a machine that
is not remotely accessible. Of course, one could deploy COMET on such machines, but
COMET is a bigger application, which has more dependencies, requires a database and
is overall slower. These are problems, which we managed to all solve with the help of
COMET-P.

One small limitation that are new tool has, is if we have multiple Environments for
the Job and we want to overwrite one of them. We currently don’t allow that and it is
debatable if we should implement such an option, because the idea when testing multiple
machines at a time, is to test them remotely and not to run COMET-P on one of them.
The overwriting of Environments is however not the biggest current issue.

In addition to this small limitation, we also have a problem, which we unfortunately
didn’t manage to solve with COMET-P due to the limited time frame in which we had
to complete our thesis. This problem has to do with the testing of distributed systems
that are not remotely reachable at all. We still don’t have a solution for this scenario.
Currently, we cannot deploy COMET-P on each node of the distributed system, test it
independently from the others and then import back the results. The implementation
of this feature is not very straight forward and might become a bit complicated. One

46

7.2 Compliance Testing of Complex and Distributed Systems

has to decide how to split the test files or to tell COMET-P which one to use. Ideally,
COMET-P has to know on which Environment it is currently running and this should be
also reflected in COMET. In this scenario the COMET-P instances have to be identifiable,
i.e. we will need some kind of ID for them. Overall, supporting such a testing will create
a lot of communication overhead between COMET and COMET-P, but it has to be
implemented at some point if the future, because it will further expand the testing “skills”
of COMET. That’s why we are going to include the problem in the chapter about Future
Work.

7.2 Compliance Testing of Complex and Distributed Systems

For the second part of our evaluation, we have the following scenario: We will run
COMET on our local Windows 10 machine and then have 2 virtual machines, which
will simulate our distributed system. The first virtual machine will be running a Linux
Ubuntu distribution and the second one a copy of Windows 10. Both machines will
have enabled remote connection. For the Linux one we will have SSH as the method for
remote connection and for the Windows machine we will have WinRM enabled.
Here we will skip the case in which all of the Environments have to have the exact

same configuration and have to be tested with the exact same compliance tests, i.e. the
case in which we don’t need a mapping. This case is a simplified version of the testing
that we are going to perform next and is nothing special, because we basically run the
tests for all Environments in the Customer Project.

Speaking of the Customer Project, here we don’t need anything special again, as for the
first scenario. We just need a Customer Project which has multiple Software Landscapes
or/and multiple Software Components, so we can distribute these between the different
Environments. In figure 7.1 one can see how we’ve defined our Customer Project. Then,
in figure 7.2 and in figure 7.3 one can see how we’ve defined our Mapping. For this
Customer Project we chose not to include any Compliance Rules, Compliance Rule Sets
or Compliance Profiles, but if we had included some, the tests for them would run on all
nodes.
We are not going to include a picture of how the results and the reports for this Job

look, because they are pretty similar to the ones we showed in section 6.2.2. What we
can definitely say however, even without showing the results for this concrete Job, is
that with the help of the mapping that we created, we are now able to test distributed
systems for compliance. This is major improvement, because now one can have a complex
distributed system as he/she wants to, and test it for compliance with COMET with the
help of only 1 Customer Project and only 1 Job.

The only real limitations, if one can call them that, is that all Compliance Rule, Rule
Sets and Profiles will be executed on all nodes and that the Placeholders have to have
the same values for all nodes. Our Mapping currently doesn’t support Compliance Rules,
Rule Sets and Profiles and also Placeholders. One can argue however, that this is the
correct behaviour, because the idea for these rules is for them to be valid for the entire
system, i.e. the entire Customer Project. There are some cases though, in which it would

47

7 Evaluation

be good for the Mapping to support Compliance Rules, Rule Sets and Profiles. For
example, if we take a look at the Linux Baseline Profile, which we already mentioned and
which is defined as a Compliance Rule and we want to add it to our Customer Project,
we would get bad test results. The reason for that is, of course, because we also have a
Windows Environment in our Customer Project, for which the Linux Baseline tests will
fail. This means, that if we really want to include these tests to our Customer Project, we
would have to define them either as a Software Landscape, or as a Software Component
and then use this Landscape/Component in the mapping. This however, wouldn’t be the
correct way to define these baseline tests, so one could say that our Mapping can’t be
used in all cases. But because one could argue, if the Mapping really should support
Rules, Rule Sets and Profiles, we leave this option out. Everything can be added to the
Mapping with only a simple extension of the model and a few tweaks though, so we don’t
consider this to be a major issue.

The other thing that one can argue about is, if it should be possible to substitute the
Placeholders for each Mapping Entry, i.e. for each Environment. This is again debatable
and there are pros and cons for the support of this feature. On one hand, the Placeholder
Values should be the same for the entire system, and on the other the option to define
them for every Environment would give us more flexibility. Either way, we chose not
to support this feature for now, but it can also be added very easily with only a few
modifications.

Figure 7.1: The Customer Project used to evaluate the testing of Distributed Systems

Figure 7.2: The Mapping for our Linux Ubuntu Environment used to evaluate the testing
of Distributed Systems

48

7.2 Compliance Testing of Complex and Distributed Systems

Figure 7.3: The Mapping for our Windows 10 Environment used to evaluate the testing
of Distributed Systems

49

8 Conclusion

If debugging is the process of
removing bugs, then
programming must be the process
of putting them in.

Edsger Dijkstra

Contents

8.1 Summary . 49
8.2 Future Work . 50

8.2.1 Independent testing of the nodes in a distributed system 50
8.2.2 Monitoring and Control of COMET-Portable instances from COMET 50
8.2.3 Improvement of the Reporting and Report Visualization 50
8.2.4 General Improvements and Optimizations for the COMET Front-

End and Back-End . 51

In this thesis we managed to make 2 big contributions to COMET and with that to
also solve 2 of the bigger problems that it had. First, we developed our COMET-P
tool, which can work independently from COMET and can test machines that are not
remotely accessible. Our tool provides a solid base for further development and with a
little extra work, one would be able to execute even more complex testing procedures.
But the bigger contribution that we made to COMET, is the extension with the help of
which COMET can now test multiple machines at a time and also, and more importantly,
distributed systems.
We now want to summarize what we’ve accomplished in our work and present a few

topics for future work.

8.1 Summary

In chapter 1 we presented briefly the problems on which we worked in this thesis and
outlined how our work is structured.
Then, in chapter 2 we made an introduction to COMET and explained how it works.

This was very important for the next chapters, because our work is entirely based on
COMET.

In chapter 3 we presented some of the problems and limitations that COMET had, then
described in more detail the 2 problems that we worked on in this thesis, and explained
why we picked them.

51

8 Conclusion

After that, in chapter 4 we wrote about related work in the field of Compliance Testing
and Compliance Testing of Distributed Systems.
Our real work however, started in chapter 5 where we presented the concept for the

solutions of our two problems. First, in section 5.1, we explained how we are going to
solve our first problem and make COMET portable. Then, in section 5.2 we presented
how we plan to make the testing of distributed systems with COMET possible and with
that solve our second problem.
After that, in chapter 6 we implemented our solutions and explained how we did it.

We followed the same structure as for chapter 5 and presented the details for the solution
of the first problem in section 6.1 and for the second in section 6.2.
Finally, we evaluated our solutions in chapter 7. In addition to showing how they

solved the 2 problems, we pointed out some limitations that they have and how they can
be removed in the future.

8.2 Future Work
As far as future work goes, there is still a lot to be desired from, improved and added to
COMET and COMET-P. Here we present some open problems and topics. The list is
not by any means complete and can be extended with some of the open problems listed
in [Mos17].

8.2.1 Independent testing of the nodes in a distributed system

Currently, both COMET and COMET-P can only perform the testing, if all of the nodes
are accessible at the time of starting the Job. It is not possible to test only a few of the
nodes and then, at a later point, to test the rest of them and to add the results. That
means, that for the scenario in a distributed system in which all of the nodes are not
accessible via remote connection, one cannot create one Customer Project for the entire
system and then execute parts of it independently on the different nodes. This is not a
major issue, but it is a limitation, which has to be removed.

8.2.2 Monitoring and Control of COMET-Portable instances from COMET

Another nice to have feature, which will be particularly useful when the problem described
above is solved, will be to extend COMET-P so, that its configurations and settings can
be changed remotely via REST requests. Also, monitoring and controlling all of the
COMET-P instances, which are connected to COMET will be very helpful. Remotely
starting a test, scheduling a tests and so on, are just some of the things that can be
achieved here.

8.2.3 Improvement of the Reporting and Report Visualization

Although COMET provides some report tooling, it is by far now ideal. The violation
score is not perfect and also the Data Graph Visualisation Tree in the Reports page can

52

8.2 Future Work

be much better. The tree currently doesn’t reflect which parts of the Customer Project
are mapped to which Environment/Node and it is not visually pleasing. In addition to
that, more detailed reports in form of PDF files are also a feature that can be added to
the report tooling.

8.2.4 General Improvements and Optimizations for the COMET Front-End
and Back-End

COMET was created more or less with the Proof of Concept idea in mind and we sort of
continued that trend in this thesis. At some point however, the entire system has to be
optimized and some things have to be fixed, so everything is production ready. A big
performance improvement that can be made is the asynchronous execution of tests for
Jobs with multiple nodes. Currently, the testing is performed sequentially for each node.
As a result, the entire testing procedure takes a lot more time and that can turn into an
issue for systems with a lot of nodes.

53

Bibliography

[Ang] Angular. url: https://angular.io/ (visited on 02/22/2018) (cited on
page 3).

[Apa] Apache JMeter. url: http://jmeter.apache.org/ (visited on 02/22/2018)
(cited on page 7).

[Che] Chef Automate. url: https://www.chef.io/automate/ (visited on
04/18/2018) (cited on page 10).

[Fas] FasterXML/Jackson. url: https://github.com/FasterXML/jackson
(visited on 03/21/2018) (cited on page 27).

[Fun] Functional Testing. url: https://en.wikipedia.org/wiki/Functional_
testing (visited on 02/07/2018) (cited on page i).

[Gat] Gatling. url: https://gatling.io/ (visited on 02/22/2018) (cited on
page 7).

[HW03] G. Hohpe and B. Wolf. Enterprise Integration Patterns. The Addison-Wesley
Signature Series. 2003, pp. 1–574 (cited on page 9).

[Ins] Inspec. url: https://www.inspec.io/ (visited on 02/22/2018) (cited on
page 3).

[Jhi] JHIPSTER. url: http://www.jhipster.tech/ (visited on 02/22/2018)
(cited on page 3).

[Mic] Microservices. url: https://en.wikipedia.org/wiki/Microservices
(visited on 02/22/2018) (cited on page 8).

[Mos17] M. Moscher. “Continuous Compliance Testing”. In: (2017), p. 147 (cited on
pages i, 1–3, 7, 9, 10, 27, 43, 50).

[Mys] MySQL. url: https://www.mysql.com/ (visited on 02/22/2018) (cited
on page 3).

[Non] Non-Functional Testing. url: https://en.wikipedia.org/wiki/Non-
functional_testing (visited on 02/07/2018) (cited on page i).

[Ope] OpenVAS. url: http://www.openvas.org/ (visited on 02/22/2018) (cited
on page 7).

[Sen] Sentinel. url: https://www.hashicorp.com/sentinel (visited on
04/18/2018) (cited on page 10).

[Spra] Spring Boot. url: https://projects.spring.io/spring- boot/
(visited on 02/22/2018) (cited on page 3).

55

https://angular.io/
http://jmeter.apache.org/
https://www.chef.io/automate/
https://github.com/FasterXML/jackson
https://en.wikipedia.org/wiki/Functional_testing
https://en.wikipedia.org/wiki/Functional_testing
https://gatling.io/
https://www.inspec.io/
http://www.jhipster.tech/
https://en.wikipedia.org/wiki/Microservices
https://www.mysql.com/
https://en.wikipedia.org/wiki/Non-functional_testing
https://en.wikipedia.org/wiki/Non-functional_testing
http://www.openvas.org/
https://www.hashicorp.com/sentinel
https://projects.spring.io/spring-boot/

Bibliography

[Sprb] Spring Shell. url: https://projects.spring.io/spring-shell/
(visited on 03/23/2018) (cited on page 28).

[Upg] UpGuard Core. url: https://www.upguard.com/product/core (vis-
ited on 04/18/2018) (cited on page 10).

56

https://projects.spring.io/spring-shell/
https://www.upguard.com/product/core

	Introduction
	Contributions
	Structure of this Thesis

	Background
	Problem Statement
	Related Work
	COMET-Portable
	Compliance Testing of Complex and Distributed Systems

	Concept
	Portability
	Compliance Testing of Complex and Distributed Systems

	Realization
	Portability
	Compliance Testing of Complex and Distributed Systems

	Evaluation
	COMET-P
	Compliance Testing of Complex and Distributed Systems

	Conclusion
	Summary
	Future Work

	Bibliography

