
The present work was submitted to
the Research Group
Software Construction

of the Faculty of Mathematics,
Computer Science, and
Natural Sciences

Bachelor Thesis

Mining Changes of Build
Processes in the Context of

Continuous Integration

presented by

Benedikt Holmes

Aachen, December 10, 2017

Examiner

Prof. Dr. rer. nat. Horst Lichter

Prof. Dr. rer. nat. Bernhard Rumpe

Supervisor

Dipl.-Inform. Andreas Steffens

Statutory Declaration in Lieu of an Oath

The present translation is for your convenience only.
Only the German version is legally binding.

I hereby declare in lieu of an oath that I have completed the present Bachelor’s thesis entitled

Mining Changes of Build Processes in the Context of Continuous Integration

independently and without illegitimate assistance from third parties. I have used no other than
the specified sources and aids. In case that the thesis is additionally submitted in an electronic
format, I declare that the written and electronic versions are fully identical. The thesis has not
been submitted to any examination body in this, or similar, form.

Official Notification

Para. 156 StGB (German Criminal Code): False Statutory Declarations
Whosoever before a public authority competent to administer statutory declarations falsely makes
such a declaration or falsely testifies while referring to such a declaration shall be liable to
imprisonment not exceeding three years or a fine.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to
Negligence
(1) If a person commits one of the offences listed in sections 154 to 156 negligently the penalty
shall be imprisonment not exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time.
The provisions of section 158 (2) and (3) shall apply accordingly.

I have read and understood the above official notification.

Eidesstattliche Versicherung

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Bachelorarbeit mit dem Titel

Mining Changes of Build Processes in the Context of Continuous Integration

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

Aachen, December 10, 2017 (Benedikt Holmes)

Belehrung

§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche
Versicherung falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird
mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt
(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen
worden ist, so tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.
(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die
Vorschriften des § 158 Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen.

Aachen, December 10, 2017 (Benedikt Holmes)

Abstract

The use of Continuous Integration systems is a widely accepted and modern practice
adopted by many open-source software (OSS) developers. As of yet there has been only
little in-depth research on the understanding and usage of CI in OSS. Thus, with this
thesis I present an explorative approach for analyzing this. As source I use 900+ projects
from GitHub which use the Travis CI platform and mine on the change history of their
CI configuration file. The goals of this research are to investigate the value of such a
data set and to gather knowledge on the acceptance and robustness of the Travis CI
model as well as the evolution of Travis CI build processes. In fact the configuration
change history allows for detailed analysis. The findings include, that the model is well
accepted and is slightly unstable towards changes. Also does the analysis of the build
process evolution yield that build processes do not stabilize, in terms of changes to the
configuration. Furthermore, it is possible to derive a maturity measure for the build
processes. More than half of all projects’ build processes are considered mature.

Contents

1. Introduction 1
1.1. Structure of this Thesis . 1

2. Background 3
2.1. Domain-driven Background . 3
2.2. Methodology-driven Background . 7

3. Motivation 13
3.1. Topic of this Thesis . 13
3.2. Why Historic Build Data is Interesting . 13
3.3. The Mining Software Repositories Conference (MSR) 14
3.4. Mining in the Context of CI . 16
3.5. Purpose of this Thesis . 17
3.6. What to Expect . 17
3.7. Methodology . 18

4. Preliminary Data Analysis 19
4.1. Data Selection . 19
4.2. Build Execution Logs . 19
4.3. Build Configuration in Travis CI . 20
4.4. Conformance to Classic CI . 24
4.5. Research Focus . 24
4.6. Definition of Terms . 25

5. Research Goals and Questions 29
5.1. Goals . 29
5.2. Feature Selection . 34

6. Data Preprocessing 35
6.1. Feature Vector Modeling . 35
6.2. Challenges . 39
6.3. First Observations . 41

7. Results and Discussion 43
7.1. Goal 1: Acceptance of the Travis CI Model 43
7.2. Goal 2: Robustness of the Travis CI Model 48
7.3. Goal 3: Build Process Evolution . 52
7.4. Goal 4: Build Process Structure Build-Up 57

i

7.5. Goal 5: Equivalent Usage of the Travis CI Model 65
7.6. Final Discussion . 68

8. Conclusion 71
8.1. Threats to Validity . 72
8.2. Future Work . 77

A. Clustering Results 79

B. Classification Results 87

Bibliography 91

List of Tables

4.1. Top-level keys of .travis.yml [Trab]. 22
4.2. Phases defined by top-level keys of .travis.yml. 26
4.3. CI-functionalities defined by phases. 28

5.1. Features selected for this research. 34

6.1. Project distribution w.r.t main programming language and CI-usage period. 41

7.1. Rankings of phase changes and usage in absolute and relative (rounded)
measures. 45

7.2. Volatility of phases. 46
7.3. Build failures per phase. 49
7.4. Groups of phases that cause build failures together. 51
7.5. CI-maturity measured by CI-functionality adoption. 59
7.6. Mean time of adoption for CI-functionalities. 60
7.7. Age and CI-usage period of the projects in cluster10 (sorted by age). . . . 64
7.8. Resulting cluster means for clustering on total configuration changes. . . . 66
7.9. Resulting cluster means for clustering on phase change density. 67

A.1. Clustering results: phase changes prior to build failures. 80
A.2. Clustering results: CI-functionality introduction. 81
A.3. Clustering results: phase usage. 82
A.4. Clustering results: phase changes. 83
A.5. Clustering results: configuration changing commits. 84
A.6. Clustering results: phase change density. 85

B.1. Classification results: (All ⇒ CI-Maturity). 87
B.2. Classification results: (Meta Features ⇒ CI-Maturity). 87
B.3. Classification results: (Absolute Usage ⇒ CI-Maturity). 87
B.4. Classification results: (Relative Usage ⇒ CI-Maturity). 88
B.5. Classification results: (Binary Usage ⇒ CI-Maturity). 88
B.6. Classification results: (Absolute Changes ⇒ CI-Maturity). 88
B.7. Classification results: (Relative Changes ⇒ CI-Maturity). 89
B.8. Classification results: (Age and CI-Usage ⇒ CI-Maturity). 89

iii

List of Figures

2.1. Git’s Internal Structure ([Gite], Figure 151). 4
2.2. Exemplary branching scenario in Git: Directly after branching. 5
2.3. Exemplary branching scenario in Git: Some time after branching. 5
2.4. Exemplary branching scenario in Git: After merging. 6
2.5. DevOps practices compared [Awsa]. 7
2.6. The GQM model [BCR94]. 11

4.1. Travis CI state machine. 23

6.1. Different phase usage representations. 38
6.2. Handling invalid YAML files in the change history. 39
6.3. The three basic types of changes. 40
6.4. Distribution of project age and CI-usage period in the preprocessed data. 41

7.1. Amount of distinct phases used per project. 47
7.2. Plot of change frequency versus build failures of all phases. 50
7.3. Phase change frequency for all phases in groups of CI-usage periods. . . . 53
7.4. Phase usage frequency for selected phases for all projects. 55
7.5. Examples for experimental periods in phase usage frequency graphs. . . . 56
7.6. Project count for different thresholds T in the CI-functionality adoption

measure. 58
7.7. Distribution of clusters mapped to the distribution of distinct phase usage. 62

v

List of Source Codes

4.1. YAML syntax. 20
4.2. Exemplary minimal configurations in Travis CI. 24
4.3. Different types of phase changes. 27

7.1. Default denied. 47

8.1. Ambiguity in Travis CI configurations. 76

vii

1. Introduction

Contents
1.1. Structure of this Thesis . 1

Modern collaboration platforms allow software development to become an easy task for
a large group of developers. But with more frequent collaboration comes the need to
confirm the software’s correctness and quality and with growing amounts of contributions
to a project the need for automating these tasks arises. Automated support is given by
Continuous Integration systems where build automation is used.
CI builds are no simple execution any more, but rather has complexity risen to a

high scale. That is because CI systems allow for diverse configuration of their CI build
processes. Modern CI systems provide a variety of tasks that are not mandatory to a build
and which can be wildly composed. This increases the amount of possible configurable
build processes greatly.
On a CI platform (virtual) build execution environments are provided on the orga-

nization’s servers. Also, the setup of these environments is automated via a special
configuration file. Using CI configuration files has many advantages for developers.
Without having to take care of the execution environment, developers have no overhead
when altering the configuration of their CI builds. Also, it is ensured that two equal
configurations yield the same build process as only the configuration is user-dependent.

In this thesis I perform an explorative analysis on the change history of CI configurations
from open source GitHub repositories, that use the Travis CI platform. The aim of this
research is to gain knowledge on how OSS (open-source software) developers understand
and use CI today. Therefore this research focuses on investigating what knowledge can
be extra from the change history of CI configurations (i.e., historical build data). The
main drive is to learn how build processes are iteratively constructed and maintained in
OSS.

1.1. Structure of this Thesis
Firstly, some background knowledge for this research is presented, which is divided
into a domain-driven and a methodology-driven part (chapter 2 (page 3)). Secondly
I give my motivation for this research, which also includes the review of related work
(chapter 3 (page 13)). Next to the latest topics from the mining software repositories field
I present related work relevant to the topic of mining in the context of CI. In section 3.7
(page 18) the research methodology of this thesis is introduced, based upon the previous

1

1. Introduction

methodology background (section 2.2 (page 7)), as a KDD-like approach together with
GQM. The subsequent chapters then follow the methodology structure.
Chapter 4 (page 19) gives insight into this research data’s origin and context. After-

wards, in chapter 5 (page 29) the most interesting features are identified and feasible
research goals and questions are defined upon those features. Chapter 6 (page 35) concerns
the preprocessing, i.e., the filtering of data and the formatting of the selected features,
to enable later mining activities and the challenges that are faced during. Chapter 7
(page 43) then presents the findings of my research. All results are resumed in the
conclusion together with suggestions for future work and threats to validity.

2

2. Background

Contents
2.1. Domain-driven Background . 3

2.1.1. Git, a Version Control System 3
2.1.2. GitHub, a Collaboration Platform 6
2.1.3. Continuous Integration (CI) . 6
2.1.4. Travis CI, a Continuous Integration Platform 7

2.2. Methodology-driven Background . 7
2.2.1. Data Mining . 8
2.2.2. Knowledge Discovery in Databases (KDD) 9
2.2.3. Goal Question Metric (GQM) . 10

2.1. Domain-driven Background
2.1.1. Git, a Version Control System
A version control system (VCS) [Gitc] is a tool which keeps a change history for files
in a special location known as a repository. Various VCS tools differ greatly in their
internal procedures. The VCS relevant to this thesis is Git [Gitc], which was developed
in 2005 [Gita]. A Git repository can be used for any set of files or for any other software
unrelated purpose, but it is mostly valued by software developers to allow structured
collaboration upon their source code and documentation. Due to the change tracking
nature of Git, the information of who changed what and when is omnipresent.
Among others Git is a distributed VCS [Gita], meaning that every developer has

a complete copy of the repository on his local machine. Changes can be commited
locally and then pushed back into the main repository to ensure the integrity of the
files. An arbitrary number of workflow models can be used with Git, e.g., the integration
manager workflow [Gitf] where developers work indepently on their local copy of a ‘blessed
repository’ and push their changes to their own repository. Then they ask for their
changes to be pulled back into the ‘blessed repository’ by the integrator, a developer that
functions as a controlling unit.

Git’s Internal Structure

A Git repository can be simply viewed as a dedicated file-directory and its contents.
Additionally the change history of the repository, i.e., the change history of the directory
and its contents, is stored in each of the repositories’ local copies with the aid of Git’s

3

2. Background

internal data structure. This consists of (1) a set of commit objects and (2) a set of tree
objects [Gite]:

• Tree objects store a current snapshot of the repositories’ content, comparable to a
directory tree.

• Commits are the technicality with which changes in the local working directory are
contributed to the main repository. A commit is also an object of Git’s internal
data structure which stores additional data for the corresponding tree object that
represents the current change: a unique commit id, a timestamp, the person who
introduces the commit, a mandatory commit message (which has to be used by the
developer to explain what changes he is introducing) and references to one or more
parent commit objects (one or more previuous changes).

The linked list of commits puts the tree objects in a context and yields the change history
of the repository. An exemplary scenario is depicted in figure 2.1.

Figure 2.1.: Git’s Internal Structure ([Gite], Figure 151).

Parallel Workflow in Git

Git also allows for parallel workflow with a feature called branching. Branches are created
by figuratively branching of the current workflow creating a new independent one. They
can then be used for experimental or independent feature development. Branches can

4

2.1. Domain-driven Background

easily be disposed of or merged back into the original workflow or other branches and
switching between branches is possible at any time.
Technically a branch is simply a pointer to a commit which represents the current

version of the repositories files in this branch. So creating branches does not create a new
copy of the data. The main workflow of a repository, usually called the master branch, is
also just a pointer to the current version indicating where the change history starts. The
branch pointer can be redefined by the user himself but I omit such scenarios here. To
know on which branch one is currently working Git uses another pointer called HEAD to
point to the current branch pointer (cf. [Gitd]).

The change history of a branch is a list of commits that is connected by the commits’
parent pointers starting at the commit that the branch pointer is pointing to. Directly
after branching the original and the new branch point to the same commit (cf. figure 2.2)
and after some time they only share an equal subset of commit objects in their history (cf.
figure 2.3). After merging a branch back into the one it branched off from, the original
branch’s history also includes the one of the merged branch, and at some point in the
change history a commit has two parent pointers (cf. figure 2.4). Git is well equipped
with many additional features [Gitb]. More details on Git’s internal working, features
and best practices are omitted at this point due to relevance.

Figure 2.2.: Exemplary branching scenario in Git: Directly after branching.

Figure 2.3.: Exemplary branching scenario in Git: Some time after branching.

5

2. Background

Figure 2.4.: Exemplary branching scenario in Git: After merging.

2.1.2. GitHub, a Collaboration Platform
GitHub [Ghub] is a commonly used platform for hosting Git repositories. GitHub
established between late 2007 and early 2008 [Ghuc]. Since then, the community grew
rapidly and the number of hosted repositories on GitHub exponentially grew to 65+
million [Ghua], with a lot of these repositories hosting open source software (19+ million
open source repositories active in 2016 [Ghue]). Next to all the features of Git, GitHub by
itself offers more features actively through apps in its Marketplace [Ghud] and passively
through third party integration. Features include among others the customization
and improvement of software development (e.g., in terms of Code Quality, Project
Management, Chat Platforms or Continuous Integration).

2.1.3. Continuous Integration (CI)
Continuous Integration (CI) in its most basic understanding in the 1990’s [Boo91]
describes the practice in software development to integrate code changes early and often
into the main repository or branch, at best multiple times a day [Awsa]. This prevents
that developers, who implement features over a long period of time, are isolated from the
current state of the software and makes integrating changes more easy.
In practice the understanding of CI is twofold. “Continuous integration refers to the

build and unit testing stages of the software release process. Every revision that is
committed triggers an automated build and test.” [Awsa]. Additionally to the ‘soft-skill’
of frequently committing to the main line, CI also has a technical side. Parts of the
software release process should be run automatically for each change that is commited to
the corresponding repository. The software release process can be broadly divided into five
main phases: Software Compilation – Software Build – Test – Staging – Release/Deploy
[Awsa]. An implementation of a software release process in the Context of CI is referred to
as a Pipeline; phases in the software release process are called stages. The relevant stages
for CI are the ones that occur directly after implementation: the software compilation,
build and test stages. Automating stages does not only replace manual execution, which
is error prone due to repetition, but also gives a direct feedback on the current software
status so that no change is untested. The goal of CI is to improve productivity among
developers, find bugs earlier, validate software faster, more trustworthy and release
software with more confidence.

6

2.2. Methodology-driven Background

CI is a subdivision of the DevOps (Development & Operations) process which in
general implies more agility through better interaction between different stakeholders of
a software project (Developers, Operations, Quality Assurance) [Awsb]. In contrast to its
siblings Continuous Delivery and Continuous Deployment, CI specializes in the stages that
validate the software on a low-level (e.g., Unit Tests). It thereby validates the software’s
fitness for release or staging where high-level tests (e.g., Integration Tests, Performance
Tests) are normally executed. Continuous Delivery and Continuous Deployment practices
aim to automate the full software release cycle from a commit by a user to releasing the
fully tested software, i.e., deploying it into production (cf. figure 2.5).

Figure 2.5.: DevOps practices compared [Awsa].

2.1.4. Travis CI, a Continuous Integration Platform
As already mentioned, a rather new feature offered towards repositories is the use of CI
Systems. Travis CI (Travis) [Trac] is a distributed CI platform for projects hosted on
GitHub and is used by 300.000+ open source projects [Trac]. It integrates with GitHub
by cloning the repository on each commit and executing a corresponding CI build for the
software’s newest version. A CI build or a run is an execution of the CI build process. A
CI build can be composed of many parallel or sequential tasks. Travis CI allows for high
detailed configuration of these CI build processes. These mandatory configuration files lie
in the root directory of a repository meaning that (1) they are collected and executed by
Travis CI by cloning the repository and (2) underlay the version control of the repository
itself. Remark that Travis CI is a platform and not a tool, i.e., a virtual target and build
environment are provided for each CI build.

2.2. Methodology-driven Background
The practice of extracting knowledge from databases or large data sets is often referred
to as Data Mining Science or Knowledge Discovery in Databases (KDD). Although these
two terms are often used interchangeably they can be interpreted as two strongly-related,
yet different practices as Han, Kamber, and Pei [HKP11] present in their introduction. I
now want to separate these two terms by refering a definition for both.

7

2. Background

2.2.1. Data Mining
Data mining is a misnomer [HKP11]: It is the practice of systematically analyzing, i.e.,
mining, a large data set to extract patterns and knowledge from it and not the mere
extraction of raw data from data bases. Frawley, Piatetsky-Shapiro, and Matheus give a
stronger definition: “This extraction of knowledge from large data sets is called Data
Mining or Knowledge Discovery in Databases and is defined as the non-trivial extraction
of implicit, previously unknown and potentially useful information from data.” [FPSM92].
Thus, data mining should comply with some basic characteristics.

Data Mining Characteristics

Knowledge characteristics. Knowledge extracted or discovered by data mining must be
new knowledge, i.e., it cannot be extracted and evaluated by a DBMS query language
or the like. Data mining searches for knowledge and hidden patterns that lie implicitly
inside a data set, e.g., the correlation of many attributes. Knowledge extracted by data
mining does not have to be defined by the database yet and knowledge extraction must
not be trivial, i.e., “[. . .] a discovery system must possess some degree of autonomy
in processing the data and evaluating its results.“ [FPSM92]. Most importantly, the
discoveries of a data mining application have to be potentially useful to be approved as
knowledge. Furthermore, these discoveries must represent the original data to a certain
degree.

Data characteristics. Data used for data mining can originate from almost any large
data set. Many data mining applications work on growing data bases. In data classification
applications for example, discovered knowledge is utilized to classify new data in the
future. Also data bases need to represent real life data to provide valuable results. For
detailed information on what data can be mined please refer to chapter 1.3 of [HKP11].

Furthermore, data mining is characterized by the use of data mining algorithms, which
automate certain data mining techniques [FPSM92]. Data mining algorithms must have
efficient run times. More characteristics on data mining shall not be considered at this
point.

Data Mining Tasks and Technologies Used in Data Mining

The most important and basic data mining tasks are the following [ES00].

• Classification
A data set is given in which the instances are labeled, i.e., already assigned to
a class. One wants to learn classification rules from the given data to classify
future data instances correctly. In this thesis three classification algorithms are
used: ZeroR, OneR and J48 [FHW16]. The ZeroR classifier does not consider any
features for classification. Each instance in the data set is simply classified as the
label which occurs most frequently. OneR classifies data instances by one feature

8

2.2. Methodology-driven Background

only. In this case the best predictor (i.e., the feature with lowest classification
error) is chosen and classification rules are constructed for each value in the best
predictor’s value space. The third classifier is the simple J48 tree classifier. It is
an implementation of the C4.5 decision tree building algorithm in the Weka tool
[FHW16]. J48 can be parameterized by setting the minimum bucket size, i.e., the
minimum amount of instances to be contained in each of the resulting decision
tree’s leafs.

• Clustering
The goal of clustering is to partition the data set into groups of instances that are
similar. For example, this can be achieved by minimizing an algebraic distance
between instance in the data, e.g., the euclidean or manhattan distance. In this
thesis the SimpleKMeans algorithm is used [FHW16]. It has a parameter K, which
states that K clusters are output. SimpleKMeans firstly chooses K random cluster
means in the instance space. Then it iteratively performs two tasks until the
clusters are stable: (1) Assign each data instance to the closest cluster mean (via
an algebraic distance) and (2) update for each cluster the cluster mean.

Data mining can be considered to be an inter-disciplinary subject adopting concepts
from many different research fields [HKP11]. Technologies conventionally used for data
mining are:

• Machine Learning, such as Neuronal Networks or Bayesian Networks
• Pattern Recognition
• Statistics
• Clustering and Classification Algorithms
• Data Base Systems and Data Warehousing
• Visualization
• . . .

Statistics provide a good foundation for data analysis. Although a purely statistic
approach is only data-driven, since no domain knowledge is included, statistics are a
valued tool used in data mining [HKP11]. Represented here are some basic data mining
characteristic and techniques to obtain a basic insight into the large data mining field.
For detailed information refer to [HKP11] [ES00].

2.2.2. Knowledge Discovery in Databases (KDD)
The KDD process extends data mining to a concept of a complete discovery process in
which data mining is an integral part of the tooling in data analysis [HKP11]. Data
mining is defined on a lower, more technical level. KDD on the other hand is defined on
a higher, more conceptual level. In addition to data mining, the discovery process defined
by KDD also regards pre-analysis steps, e.g., data extraction or data pre-processing, and

9

2. Background

post-analysis steps as the evaluation of knowledge. A classic KDD discovery process,
according to Han, Kamber, and Pei [HKP11], includes the following steps:

1. Data Cleaning (to remove noise and inconsistent data)

2. Data Integration (where multiple data sources may be combined)

3. Data Selection (where data relevant to the analysis task are retrieved from the
database)

4. Data Transformation (where data are transformed or consolidated into forms
appropriate for mining by performing summary or aggregation operations, for
instance)

5. Data Mining (an essential process where intelligent methods are applied in order
to extract data patterns)

6. Pattern Evaluation (to identify the truly interesting patterns representing knowledge
based on some interestingness measures)

7. Knowledge Presentation (where visualization and knowledge representation tech-
niques are used to present the mined knowledge)

Steps (1) to (4) represent preprocessing tasks which include the cleaning, integration,
selection and transformation of the raw data for the purpose of gathering data and
making it fit for analysis. Step (5) is the main analysis in which a suitable data mining
technique of choice may be applied. Step (6) to (7) review and evaluate the discoveries
and present the findings in a best suitable way. For a most reasonable discovery, all steps
need to be performed in the context of the analysis goal, the chosen mining activity and
the data source itself [HKP11].

The use of this KDD approach or KDD-like approaches can be verified by other
academic literature, e.g., by Fayyad, Piatetsky-Shapiro, and Smyth’s “From Data Mining
to Knowledge Discovery: An Overview“ [FPSS96] or by recent papers in ACM’s annual
KDD conference [Kdd].

2.2.3. Goal Question Metric (GQM)
Software metrics are quantitative statements about software or software-related processes
[LL13], or respectively “a quantitative measure of the degree to which a system, component,
or process possesses a given attribute.” [Iee]. Diversity, reproducibility and plausibility
are the most important requirements towards a metric [LL13], thus metrics are a useful
model to answer research questions in a reliable and empirical way. Metrics can be
divided into base metrics, whose computation solely uses the existing data, and derived
metrics, whose computation relies on already defined base metrics [LL13]. However,
metrics must be defined top-down [BCR94]. To know which metric to use and how to
interpret it, a metric must be defined in a context given by appropriate models and

10

2.2. Methodology-driven Background

research goals; otherwise metrics are useless [BCR94]. Most software-related metrics
output measures which belong to an absolute scale [LL13].

The Goal Question Metric (GQM) approach [BCR94], created in the 1980’s, is a
measurement model widely accepted and used in computer science academia. The
model sets metrics in a context of research goals and questions. The GQM model is
structured by three consecutive levels: The conceptual level (GOAL), the operational
level (QUESTION) and the quantitative level (METRIC) (cf. figure 2.6). The goal states
the purpose, object and issue of measurement and also the viewpoint from which the
measurement is done. For each goal a set of questions characterizes the measurement
of the object. Metrics can then be defined in the given context of goal and questions,
so that its value answers the question in a quantitative way. Goals can share common
questions and questions may relate to more than one metric. To obtain a GQM model

Figure 2.6.: The GQM model [BCR94].

one must first set one or more goals and identify the potentially useful data. Upon this
data the goals can be characterized by a suitable set of distinct questions. Lastly provide
metrics, that work upon the given data and produce useful measurement of the object,
to answer the corresponding question.

11

3. Motivation

Contents
3.1. Topic of this Thesis . 13
3.2. Why Historic Build Data is Interesting 13
3.3. The Mining Software Repositories Conference (MSR) 14

3.3.1. A Word on Mining Repository Data 15
3.4. Mining in the Context of CI . 16
3.5. Purpose of this Thesis . 17
3.6. What to Expect . 17
3.7. Methodology . 18

In this chapter I want to address the topic of this thesis again and motivate it accordingly.
Then some related work on mining in the context of CI is reviewed. Lastly I state the
purpose of this thesis, expectations towards this research and the methodology for my
research.

3.1. Topic of this Thesis
Software development is a complex and interdisciplinary process, therefore I wish to
contribute useful insights into the software development process. This research focuses
on processes in the context of CI, to answer fundamental questions about the structure
and evolution of such a process. Therefore I mine the historic build data, i.e., the history
of CI configurations, of 900+ OSS projects that use the Travis CI platform.

3.2. Why Historic Build Data is Interesting
The motivation on mining historic build data is twofold: As CI is both a tool and a
mentality the following always needs to be considered: For CI to work correctly not only
is the use of collaboration and CI tools necessary but also must the correct CI mentality
be incorporated by all developers. Neither does the use of a CI tool imply that CI is
implemented correctly, nor is the awareness of CI Know-How without the necessary tools
(for automation) always sufficient. As it is obvious that projects in this research’s scope
use reasonable tools, it is the mentality, or the usage of the CI tool respectively, that is
to be analyzed. It is possible to verify correct usage by checking if a list of guidelines
apply, for example:

13

3. Motivation

• Do all developers commit to the main line on a daily basis?
• Does every commit trigger a build?
• Are build failures resolved within x minutes/hours ?
• . . .

Such research soon reaches its limitations, due to its superficiality. I want to take
research to a much more fine grained level by observing the complete change history of
CI configurations. This allows for asking much more detailed questions about how CI is
understood and implemented in OSS and maybe even why certain thing are not done in
the way they are prescribed in academia.

Furthermore does historic build data for CI build processes identify as a rather
unexploited data set. I am therefore simply interested in what value the data presents in
the first place and what knowledge is extractable. The preliminary analysis (cf. chapter 4
(page 19)) of this data set yields interesting and feasible research questions for this and
possibly future research.

3.3. The Mining Software Repositories Conference (MSR)
The Mining Software Repository (MSR) conference is held annually with a wide range of
topics related to mining. I here want to give a broad overview over the last three years
of MSR with some examples for mining topics before I go into detail on related papers.

The side benefit of the change tracking nature of Git is that detailed insight into the
software development process is also possible for research purposes. There exist VCS
other than Git repositories, e.g., bug repositories, that also present themselves as an
interesting (historic) data source due to an integrated change history. In the last decade
the mining of repositories that are somewhat related to or have an impact on software
development has gained a lot of attention. A considerable amount of contribution to this
research field is given by the papers of the annual MSR conference [Msr].
The data sources used in the MSR can be any kind of software-related data, as

e.g., software repositories, bug repositories, issue tracking systems, logs, communication
archives, artifact repository or even software support forums. Not all research niches in
the MSR conference are discussed each year and most research work cannot be associated
with one niche only. In the following are some of the main niches that have emerged in
the last three years of MSR. The conferences paper can be viewed in the ACM digital
library [Proc][Prob][Proa].

Mobile Applications with a strong focus on Android. (Topics: Vulnerabilities in Mobile
Applications, Errors in the Android Manifest, Evolution of Permission Requests, Energy
Consumption in Android Applications, . . .)

Social Mining and NLP, where mostly textual artifacts are mined that emerge during
software development. Mining social aspects among developers and the impact of human

14

3.3. The Mining Software Repositories Conference (MSR)

factors on software development goes along with this. In a majority of papers the support
forum Stack Overflow is used as data source. (Topics: Sentiment Analysis in Software
Development, Predicting Usefulness of Code Comments, Detecting Burnout Symptoms,
Estimating Answering Times for Issues on Stack Overflow, Copy-Paste Behavior, Triage
Developers for Change Requests Implementation, . . .)

Testing, Bugs, Risks and Vulnerabilities (Topics: Usage of Testing Patterns, Studying
Mocking Practices, Predict Issue Lifetime in GitHub Projects, Evolution of Technical
Debt, Predicting Issue-Related Risks and Vulnerabilities, . . .)

Source Code Mining, the classic niche which mines changes to the software’s code.
(Topics: Cross-Project Code Reuse, Exception Evolution in Java, Classifying Feature-
Orientated Changes, Empirical Study on Architectural Changes in OSS, . . .)

Dependencies and Licenses (Topics: Structure and Evolution of Package Dependency
Networks, Dependencies in JEE, Detecting License Inconsistencies in OSS, . . .)

Continuous Integration and Build (Topics: Empirical Analysis of GitHub’s Docker
Container Ecosystem, Usage of Static Analysis Tools in CI Pipelines, Empirical Analysis of
Build Failures, Explorative Analysis of Travis CI with GitHub, Extracting and Classifying
Build Changes from Maven Build Files. . .)

Meta Papers do not perform direct mining research themselves but review aspects
of other papers in this conference. (Topics: Revision of MSR papers, Summaries,
Methodology Reviews, Quality and Properties of Repository Data, MSR Tool Reviews,
. . .)

A Data Showcase is introduced in the year 2013. Papers present, possibly new, data
sets from which the MSR community might benefit. These data sets are desired to be
made available in a preprocessed and easy to use manner.

The Mining Challenge is held annually at MSR since 2006. This challenge motivates
researchers to competitively mine a common data set. In 2017 the challenge is the
TravisTorrent data set [BGZ17b], which holds information on CI builds, synthesized from
both GitHub and Travis CI.

3.3.1. A Word on Mining Repository Data
Data sets used in MSR are never truly constructed for mining purposes. In contrast to
data from a more business related (e.g., financial) origin, repository data is not intended
to be mined for any kind of business benefit but rather used for recovery and issue
tracking. However, the MSR shows that such mining is indeed possible (e.g., due to the
existence of a change history).
This implies that extensive preprocessing might be needed. Also do a good deal of

MSR papers perform an explorative analysis, as they simply cannot foresee what their
data sources have to offer.

15

3. Motivation

3.4. Mining in the Context of CI
A rather new feature offered towards projects or repositories is CI. The technical side of
CI works tightly coupled with the corresponding software repository, thus CI belongs to
one of the big niches in the MSR field. Mining CI related data has been done within the
following areas:

1. Identifying CI Projects Characteristics [GVS17]

2. Testing Practices in CI [BGZ17a]

3. Usage, Costs and Benefit of CI [Hil+16]

Gautam, Vishwasrao, and Servant [GVS17] analyze software projects that use CI
by clustering these by five main feature groups: activity, popularity, size, testing and
stability. The goal of this research is the discovery of distinct characteristic for different
groups of projects. The authors encourage projects to advertise their affinity to one of
these groups for recruiting more suitable developers. The findings include four distinct
groups: The first group of projects are highly test-driven, as they have a high test density
and therefore also a large size (in KB) and fairly stable builds (73%). These project’s
popularity is rather low on average. Group two are the most popular and biggest (in
LOC) projects. Their test case prioritization is very low, although the builds are mostly
stable (74%). The authors link this to the project’s low churn rate. Group three is the
biggest group with projects that fit to the overall mean in all five categories. Group four
are the projects that have a relative high amount of open issues and a low success rate
on builds (51%). The clustering is performed with the SimpleKMeans algorithm.

Beller, Gousios, and Zaidman [BGZ17a], who also presented the TravisTorrent data
set, perform an analysis on testing practices within the scope of GitHub projects that use
Travis CI. The analysis focuses on (1) how commonly Travis CI is used, (2) how central
testing is to CI and (3) how tests influence the build result by reviewing 2.600.000+
builds. Their results concluded that the adoption rate of Travis CI on GitHub is 30%,
testing is central to a majority of builds (80%) and the test failures are the most common
cause for broken builds.

Hilton et al.’s [Hil+16] work is not published within the MSR conference, but is of
major importance to this thesis. The main drives of this research is to understand which
CI service GitHub users prefer, how developers use CI and why certain projects to not
use a CI service. The latter is answered by a survey with 422 developers. Of interest are
the first two drives:
They found that about 40% of GitHub projects use a public CI service and that a

majority of CI projects use the Travis CI platform (90.1%). For a more detailed analysis
on how CI is used, the authors identify the 1000 most popular CI projects on GitHub,
and extensively gather data on the 620 projects that use Travis CI. A part of this detailed
analysis includes to ask how developers evolve their CI configuration. Hilton et al. observe

16

3.5. Purpose of this Thesis

that on average the CI configuration is changed up to 12 times per project. Additionally,
they analyze to which crucial areas of the configuration changes are made during project
lifetime. They present a statistic for the change counts towards each of these configuration
areas. In total their research concludes that CI is a growing trend, as CI projects have
more frequent releases and more confident developers.

3.5. Purpose of this Thesis
All in all this thesis is motivated by (1) the unexploited nature of the historic build data
and (2) comprehensively learning about CI usage in OSS through this data set.

This research serves the purpose of attempting to gain a more in-depth knowledge on
how the world understands and uses CI by looking at small representative group of 900+
OSS projects that use the Travis CI tool. A deeper understanding might aid in decision
making in future software development projects. The evaluation of this data set’s value
may not be the core goal of this research, but is a mandatory step before any mining can
be done. Also shall the preliminary analysis (cf. chapter 4 (page 19)) motivate to utilize
historic build data from other origin for similar research. Due to (1) I try to find answers
in this data to a set of basic questions only.

3.6. What to Expect
As this is an explorative research and highly data-driven, goals and questions are
constructed in an iterative process during preliminary data analysis (cf. chapter 4
(page 19)). Therefore I want to briefly anticipate that questions are asked more or less
with respect to the following subgoals:

• Acceptance of the Travis CI Model
• Robustness of the Travis CI Model
• Build Process Evolution
• Build Process Structure Build-Up
• Equivalent Usage of the Travis CI Model

Firstly the acceptance and robustness of the Travis CI model are of interest: To what
extend are parts of the model utilized? And how robust is the model towards changes?
Next, I observe when significant parts of the model are changed or used. Then I view
the most recent state of the CI processes available in the data and try to determine how
functionality is incrementally adopted. This later reveales that a measure for maturity of
build processes is derivable. Lastly projects are clustered to observe equivalent usage of
the model.

17

3. Motivation

3.7. Methodology
This research is mainly explorative and highly data-driven. So I orientate myself towards
an KDD-like approach in combination with a GQM model (section 2.2 (page 7)), for
defining my goals, questions and suitable metrics. My research methodology is given by
the following steps.

1. Preliminary Data Analysis

2. Goal Definition

3. Data Preprocessing

4. Mining

5. Evaluation

Firstly I review the available data, especially its usefulness for this research. This results
in finding two interesting sources: the change history of 900+ GitHub projects that use
the Travis CI platform and the build results of these projects’ CI builds. To formulate
goals with GQM first feasible features are located by performing a preliminary data
analysis of the data’s background. This includes the structure of Travis CI configurations
and the Travis CI build life-cycle.

After knowing what information the data holds, research goals, questions and suitable
metrics are constructed via a GQM approach. With this the research scope is finally
set. Data preprocessing handles the filtering of data and the formatting of the selected
features to enable later mining activities. In the end I present and discuss my findings
and interesting observations.

18

4. Preliminary Data Analysis

Contents
4.1. Data Selection . 19
4.2. Build Execution Logs . 19
4.3. Build Configuration in Travis CI . 20

4.3.1. The .travis.yml Syntax . 21
4.3.2. The .travis.yml Semantics . 21
4.3.3. The Minimum .travis.yml . 23

4.4. Conformance to Classic CI . 24
4.5. Research Focus . 24
4.6. Definition of Terms . 25

This preliminary data analysis deals with the review of available data related to this
research topic to form a basis for finding feasible research goals. After data selection,
this includes the gathering of in-depth knowledge about the data’s origin and context,
which shall be presented here. This chapter only regards the data that is finally selected
for research. The extracted research questions and the integration and transformation of
the data to a suitable format for later mining or analysis activities follows in chapter 5
(page 29) and chapter 6 (page 35).

4.1. Data Selection
Two interesting data sources exist for this research: Firstly the Git change history of OSS
projects on GitHub and secondly the raw build logs for the CI builds of these projects
available on the TravisTorrent website [Trad]. TravisTorrent is the data set used in the
MSR’2017 Mining Challenge [BGZ17b]. At the time this thesis started the latest data
snapshot is recorded on December 20th, 2016, which sets this analysis’ time limit. From
these data sources the project’s ages and the project’s CI-usage periods are extracted
easily by the dates of the first commit and the first commit that introduced the project’s
CI configuration file.

4.2. Build Execution Logs
Build execution logs are the accumulated output of all tasks that are executed in a CI
build. The TravisTorrent data set presents valuable data, i.e., build results and similar,
that were extracted from raw Travis CI build logs. The data set is stored in a structured
format to provide easily accessible data for analysis of the Travis CI platform. The

19

4. Preliminary Data Analysis

projects considered by TravisTorrent must meet the following requirements: a minimum
amount of watchers on GitHub(> 10) and builds on Travis CI (> 50) [BGZ17b]. Next to
the live online accessible data set, the TravisTorrent website also offers regular offline
snapshots and the raw build logs for 900+ GitHub projects [Traa].
During preliminary data analysis the raw build logs are searched for relevant data.

From the unstructured logs it is possible to extract the tasks that are executed in the
CI build but this data is also retrievable from the project’s CI configuration, which also
happens to be stored in a structured format already. This concludes that only the build
results are a useful feature that is uniquely retrievable from the build logs. Yet I orientate
myself by the set of projects for which the raw build logs are accessible on TravisTorrent
[Traa], as they present a suitable base for this analysis.

4.3. Build Configuration in Travis CI
Next to the build logs, the CI build configurations are a more valuable source for research.
A CI configuration holds direct information on the parts of which a CI build is composed.
In Travis CI this configuration file is present in the root directory of the project’s Git
repository, therefore it underlies Git’s change history, which can be accessed easily.
The Travis CI build configuration is the .travis.yml file. This file is of type YAML

(Yet Another Markup Language) which is a common file format, widely used for data
serialization or configuration. YAML files are close to the JSON file format, due to data
being stored as key value pairs in a tree structure of nested lists and maps. Yet they
have a more minimal syntax compared to JSON due to indention being used instead of
brackets and braces.

1 key_simple: value
2 key_map:
3 key1: value2
4 key2: value2
5 key_list:
6 - element1
7 - element2
8 # This is a comment
9 key_complex:

10 - key1: value1a
11 key2: value1b
12 - key1: value2a
13 key2:
14 - element2a
15 - element2b

Source Code 4.1: YAML syntax.

It is important to mention that the .travis.yml
configuration is of declarative nature, which
means that these configurations only shows of
which tasks a build is composed, but not neces-
sarily determine how these tasks are executed.
A YAML file has the syntactic structure as
shown in listing 4.1. The most atomic parts
of the CI configuration are the keys in the
.travis.yml. A top-level key is a key in the
root of a tree of nested lists and maps (e.g.,
key_simple, key_map, key_list and key_com-
plex in listing 4.1).

20

4.3. Build Configuration in Travis CI

4.3.1. The .travis.yml Syntax
The most important feature is the presence of top-level keys in the configuration file,
since they express the highest semantic value. Some of these are store in a key:value
fashion, with a predefined value space; others are composed of a list of user defined shell
commands. All available top-level keys for CI configurations in Travis CI can be viewed
in table 4.1.

4.3.2. The .travis.yml Semantics
Some top-level keys can be grouped as they express similar semantics in the build process:

• (1) - (11) States in the Travis CI state machine
• (12) - (13) Configuration of complex builds
• (14) Notifications
• (15) - (79) All kinds of environmental configuration (platform, language,

cache, build,. . .)

Some keys map to the states in the Travis CI state machine as depicted in figure 4.1 which
illustrates the build life-cycle in Travis CI [Trab]. These include the main states given by
the keys install, script and deploy. Furthermore some intermediate states for additional
(before. . . / after. . .) or conditional (after_success / after_failure) configuration exist.
All of these states are mapped to only one specific top-level key in the configuration.
Each of these keys, except for deploy, hold a list of shell commands that are executed
as one command block. The command blocks defined under a key are executed in the
order in which the key’s states appear in the state machine (cf. figure 4.1) starting at
before_install. The use of all the keys (1) - (11) is not mandatory, most of these keys can
be omitted, e.g., before_cache is optional (cf. section 4.3.3).

If a build fails at some point, the build result depends on the state in which a command
returned an error code [Trab]. The result of the build can either be a success, a failure, an
error or an abort. An abort can occur at any point of time, whenever the user manually
aborts the build. The build is errored as soon as the build fails in one of the first three
pre-script states or in one of the before-states. As soon as a build is errored the build
stops. A build failure is due to a fail in the script state. After a failure the build still
continues with the subsequent states. All other states have no impact on the current
build result. E.g., after_success is executed after a successful execution in the script
state, but a failure in this state has no impact on the overall build result.

All other keys relate to state independent configurations [Trab]. Keys (12) and (13)
allow for definition of more complex builds by stating multiple run times versions,
environments etc.; for each combination one job is issued in a run. The notifications key
(14) provides configuration of notification mechanisms or an integration different from
the default email notification. Furthermore, recipients and notification triggering events

21

4. Preliminary Data Analysis

ID Top-level Key ID Top-level Key
1 before_install 41 ghc
2 install 42 gobuild_args
3 before_script 43 go_import_path
4 script 44 go
5 before_cache 45 haxe
6 after_failure 46 hxml
7 after_success 47 jdk
8 after_script 48 julia
9 before_deploy 49 language
10 deploy 50 lein
11 after_deploy 51 mono
12 jobs 52 neko
13 matrix 53 node_js
14 notifications 54 otp_release
15 addons 55 pandoc_version
16 cache 56 perl6
17 dist 57 perl
18 group 58 php
19 os 59 podfile
20 osx_image 60 python
21 branches 61 r_binary_packages
22 git 62 r_build_args
23 env 63 r_check_args
24 services 64 r_check_revdep
25 sudo 65 repos
26 android 66 r_github_packages
27 apt_packages 67 r
28 bioc_packages 68 r_packages
29 brew_packages 69 rust
30 bundler_args 70 rvm
31 compiler 71 sbt_args
32 cran 72 scala
33 crystal 73 smalltalk
34 dart 74 solution
35 dart_task 75 warnings_are_errors
36 disable_homebrew 76 xcode_project
37 d 77 xcode_scheme
38 dotnet 78 xcode_sdk
39 elixir 79 xcode_workspace
40 gemfile

Table 4.1.: Top-level keys of .travis.yml [Trab].

22

4.3. Build Configuration in Travis CI

may be configured. Keys (15) - (79) allow for all kinds of configuration to the platform
and build environment, e.g., the OS image to be used or the programming language that
is used.

Figure 4.1.: Travis CI state machine.

4.3.3. The Minimum .travis.yml
Travis CI provides a set of default executions which has to be regarded in later inter-
pretation of mining results. The Travis CI documentation [Trab] prescribes only the
addons, cache-related and deploy-related keys to be optional, yet any key can be omitted,
i.e., not used in the configuration. But not all incomplete configurations yield a build
process. The minimum requirements for a semantically correct configuration in Travis CI
is the use of either the language or script key (cf. listing 4.2). As script holds the main

23

4. Preliminary Data Analysis

execution of the build, the use of only this key suffices. Also does Travis CI perform a
default language dependent build execution, if only the language key is set. Furthermore,
default email notifications are implemented, if the notifications key is not used.

1 script: mvn build 1 language: java

Source Code: Exemplary minimal configurations in Travis CI.

4.4. Conformance to Classic CI
The classic CI pipeline consists of at least the main stages Checkout, Compile and Unit
Tests [HF10]. Afterwards, artifacts or the like may be pushed somewhere for further
tasks in the CD context. In Travis CI the repository checkout is triggered automatically
on each commit per default. Git options, build environment (e.g., services) and the
platform environment, on which the build is executed (e.g., distribution), are highly
configurable. Such pre-execution configuration is not considered for the CI-related parts
of the theoretical pipeline model [HF10], but is widely used in the analyzed Travis CI
configurations. Execution of compilation and unit test tasks is not clearly separated in
Travis CI, but recommended to be combined in the script key. Fast feedback in Travis
CI is handled by default notifications via email, which are sent to all Git contributors
on each finished build. Alternative notification mechanisms may also be configured.
An optional deploy stage is provided by Travis CI to push artifacts to a given set of
supported providers, or to a destination of choice by custom scripting. Especially this
deploy functionality extends the Travis CI model to some sort of simplified version of the
CD model (cf. section 2.1.3 (page 6)).
All in all the Travis CI model provides at least all the functionality of a CI pipeline. In
general a correct usage of the configuration is hard to validate, since there are a lot of
parts in the configuration which can be custom scripted. The custom scripting parts of
the configuration primarily provide a grouping of similar tasks, yet some yield different
build results if a failure occurs in one of the executed tasks (cf. figure 4.1).

4.5. Research Focus
I identified the changes to the configuration file as an interesting research focus. When
analyzing changes to the configuration it is not of interest what the new values are but
to which keys the changes are made. Therefore, this research is based on changes to the
CI configuration file, or usage of and changes to top-level keys in the CI configuration
respectively. Furthermore, the research is restricted to the Git history of the projects’
master branches. The YAML file format in which the CI configuration for Travis CI
is stored can be parsed and compared with other instances of this file format. Thus, I
pairwise compare consecutive versions of the CI configuration file for each project to
extract the change history of the project’s CI build process.

24

4.6. Definition of Terms

4.6. Definition of Terms
Here I want to clearly state the definition and use of some terms for the rest of this thesis.
When analyzing changes to the configuration it is not reasonable to analyze changes to
all 79 top-level keys. I identified groups of keys with similar semantics. Hence I define a
phase by a set of one or more top-level keys in the .travis.yml configuration file, that
express unique semantics compared to all other keys. A list of all phases and top-level
keys can be found in table 4.2.

Furthermore, changes are defined. To each project there belongs a set (1, . . . , n) of n
commits, that alter the CI configuration in some way. A configuration change refers to
the syntactical change to the configuration file, via a Git commit in this case. A change
in the configuration file may lead to a change in the CI build process. This semantic
impact of the configuration change on the build process is what I refer to as a build
process change, or build change respectively, which is the core aspect of this thesis. As
already mentioned a top-level key is the most atomic part in a Travis CI configuration file
with the highest semantic value. A change to a top-level key occurs if the value of the key
or the value of one of the key’s sub-keys is changed. A phase change for phase X occurs
whenever at least one of the top-level keys, that belongs to X, is changed semantically.
Conclusive each project’s history contains a series of configuration changes. If at some
point there is a semantic change (e.g., not just a comment added), this yields a build
change. A build change can then include one or more phase changes.
The commit that introduces a configuration change (or build change or phase change
respectively) is the configuration changing commit (or build changing commit or phase
changing commit respectively). In case a configuration change does not lead to a build
change, i.e., it is a non-semantic change, a change of whitespace or comments inside the
configuration is assumed, for which the FORMATTING phase is used. FORMATTING
is no phase related to Travis CI directly, but serves as a default phase. All non-semantic
changes to the configuration file are accounted to this phase.

In more detail a phase change can be the inclusion, exclusion or maintenance of a phase’s
keys. Listing 4.3 depicts these three scenarios together with an example for a non-semtical
change.

25

4. Preliminary Data Analysis

ID Phase Top-level Keys
1 BEFORE_INSTALL before_install
2 INSTALL install
3 BEFORE_SCRIPT before_script
4 SCRIPT script
5 BEFORE_CACHE before_cache
6 AFTER_FAILURE after_failure
7 AFTER_SUCCESS after_success
8 AFTER_SCRIPT after_script
9 BEFORE_DEPLOY before_deploy
10 DEPLOY deploy
11 AFTER_DEPLOY after_deploy
12 BUILD_STAGES jobs
13 BUILD_MATRIX matrix
14 NOTIFICATIONS notifications
15 ADDONS addons
16 CACHE_ENV cache
17 PLATFORM_ENV dist, group, os, osx_image,
18 GIT branches, git
19 BUILD_ENV env, services, sudo
20 LANGUAGE_ENV android, apt_packages, bioc_packages,

brew_packages, bundler_args, compiler,
cran, crystal, dart, dart_task,
disable_homebrew, d, dotnet, elixir,
gemfile, ghc, gobuild_args,
go_import_path, go, haxe, hxml, jdk,
julia, language, lein, mono, neko, node_js,
otp_release, pandoc_version, perl6, perl,
php, podfile, python, r_binary_packages,
r_build_args, r_check_args,
r_check_revdep, repos,
r_github_packages, r, r_packages, rust,
rvm, sbt_args, scala, smalltalk, solution,
warnings_are_errors, xcode_project,
xcode_scheme, xcode_sdk,
xcode_workspace

21 FORMATTING default change

Table 4.2.: Phases defined by top-level keys of .travis.yml.

26

4.6. Definition of Terms

Pre-Change Post-Change

Inclusion of the
SCRIPT phase.

1 language: java 1 language: java
2 script:
3 - mvn compile

Exclusion of the
GIT phase.

1 language: java
2 git:
3 depth: 3

1 language: java

Maintenance of the
LANGUAGE_ENV
phase.

1 language: java
2 jdk:
3 - oraclejdk8

1 language: java
2 jdk:
3 - oraclejdk9

A non-semantical
change.

1 language: java
2 script:
3 - mvn compile

1 language: java
2 # comment added
3 script:
4 - mvn compile

Source Code: Different types of phase changes.

Furthermore can the usage of a phase be determined by the current phase change. Phase
usage starts for a phase X, if a current change to phase X exists and it is either an
inclusion or maintenance. For the case that the phase change is an exclusion, then one
knows that the phase X is not used anymore. Conclusively the core aspects and terms for
this thesis are defined. Here the distinction between inclusion, exclusion or maintenance
of a phase solely serves the purpose to derive a concrete definition for phase usage. This
distinction is not made when studying phase changes in this research (cf. section 6.1
(page 35)).

Further on the relation between parts of the configuration and the main stages of a CI
pipeline (cf. section 4.4) is of interest. Therefore I define CI-functionalities as groups
of phases (cf. table 4.3). Again the change and usage, or rather adoption, of a CI-
functionality is defined by the change to or usage of at least one of its phases. A more
detailed definition for both the CI-functionality adoption and consistent phase usage is
derived in section 6.1 (page 37).

27

4. Preliminary Data Analysis

CI-functionality Phase ID Phase
PRE_EXEC 2 INSTALL

12 BUILD_STAGES
13 BUILD_MATRIX
15 ADDONS
16 CACHE_ENV
17 PLATFORM_ENV
18 GIT
19 BUILD_ENV
20 LANGUAGE_ENV

EXEC 4 SCRIPT
BEFORE_AFTER 1 BEFORE_INSTALL

3 BEFORE_SCRIPT
5 BEFORE_CACHE
6 AFTER_FAILURE
7 AFTER_SUCCESS
8 AFTER SCRIPT
9 BEFORE_DEPLOY
11 AFTER_DEPLOY

NOTIFICATIONS 14 NOTIFICATIONS
DEPLOY 10 DEPLOY

Table 4.3.: CI-functionalities defined by phases.

28

5. Research Goals and Questions

Contents
5.1. Goals . 29
5.2. Feature Selection . 34

This chapter presents the research goals of this thesis. Due to the explorative nature
of this study, the construction of research goals is a highly data-driven process and
conducted iteratively during data analysis. Different features in the data motivated
certain research questions which where directly combined with a suitable metric and then
later grouped by similar themes. This resulted in a GQM-like model (cf. section 2.2.3
(page 10)) where the goals represent the gathering of knowledge with respect to the
stated theme. These five goals are extracted throughout data analysis:

1. Acceptance of the Travis CI Model

2. Robustness of the Travis CI Model

3. Build Process Evolution

4. Build Process Structure Build-Up

5. Equivalent Usage of the Travis CI Model

The following section presents the goals with more details on the questions and metrics.

5.1. Goals
For each goal it is briefly described by which questions they are characterized and how
these are answered by metrics.

GOAL 1: Acceptance of the Travis CI Model

a) Question: Which phases of the model are most frequently used?
• Metric (base): The amount of projects that use phase X at least once. As this

metric counts the absolute frequency it maps to an unbounded absolute scale.
The higher the metric’s output the more is phase X accepted. To compare
the different phases, the metric’s output for all phases is given in a ranking
with the highest output expressing the highest rank. Thus phases that are
lower ranked are used less.

29

5. Research Goals and Questions

b) Question: Which phases of the model are most frequently changed?
• Metric (base): The total amount of changes to phase X. As this metric counts
the absolute frequency it maps to an unbounded absolute scale. The higher
the metric’s output the more is phase X accepted. To compare the different
phases, the metric’s output for all phases is given in a ranking with the highest
output expressing the highest rank. Thus phases that are lower ranked are
changed less.

c) Question: How many phases are used per project?
• Metric (base): The absolute amount of distinct phases ever used per project.
As this metric counts the absolute frequency, it maps to the integer scale [0,21],
which is limited by the maximum amount of phases (cf. section 4.6 (page 25)).
For comparison and due to the limit on this scale, a histogram is constructed
with the amount of projects whose metric maps to x for every x ∈ [0, 21].

d) Question: What is the volatility of phases?
• Metric (derived): The ratio of absolute changes to absolute usage per phase.
This metric expresses the average amount of times that a phase is changed
per project. It is derived from the metrics of both questions 1.1 and 1.2. The
scale of this metric is unbounded, therefore a ranking is given for comparison.

Starting with simple needs, the first goal investigates the acceptance of the Travis CI
model by the projects under study to provide insights into how Travis CI is generally
used. The acceptance of the model is characterized by the four questions above to which
four simple statistical measures provide answers. After an analysis of phase changes both
a ranking of the most used and the most changed phases in the Travis CI model give an
overview of most accepted or favored phases of the model. Thirdly a histogram visualizes
the distribution of distinct phase usage. From this one can learn to which extend the
whole model is used per project. Lastly the volatility, i.e., the average change frequency
for a phase per project, of phases is reviewed. This gives another ranking which shows if
projects focus on maintaining special phases.

GOAL 2: Robustness of the Travis CI Model

a) Question: Which phases are critical, concerning the build results of the correspond-
ing builds after a phase change?
• Metric (base): The amount of negative build results after phase X is changed.
As this metric counts the absolute frequency it maps to an unbounded absolute
scale. The lower the metric’s output the more the phase X is regarded robust.
To compare the different phases the metric’s output for all phases is given in a
ranking, with the highest output expressing the highest rank. Thus for phases
that are lower ranked the build fails less often after a change.

30

5.1. Goals

b) Question: Does a correlation between change frequency and amount of negative
build results exist?
• Metric (base): The correlation coefficient of Weka’s linear regression classifier
when applied to the set of phase change frequency and number of failed builds.
This classifier only finds linear correlations, thus a good correlation coefficient
means that there is a constant amount or percentage of the phase changes
which always cause the build to fail.

c) Question: Do phases cause build failures together?
• Metric (base): the number of final clusters with minimal SME (cf. appendix A
(page 79)) when clustering upon phase changes for data instances, that have a
failed build. The number of final clusters reveal whether phases cause build
failures together and further do the final cluster means reveal which phases
exactly. With lower SME it can be ensured that the final cluster means
represent the cluster with best precision.

The second goal aims to give a measure for the robustness of the Travis CI model by
identifying critical phases in the build process that often tend to cause a build failure
after they are changed. Firstly, a ranking is given for the absolute amount of build
failures that are caused by a change to phase X. Then the correlation between the amount
of changes to a phase and the amount of unsuccessful builds that were executed upon
a phase change is evaluated using linear regression. Phase change frequency is simply
measured by non-negative integers. For the build results one can accumulate the amount
of non-successful builds of the builds directly executed after a phase change, so the scale
would also measure non-negative integers. By clustering on the phase changes of instances
that have a failed build it can be revealed which combinations of phases are commonly
changed together before a build fails.

GOAL 3: Build Process Evolution

a) Question: When are phase changes made in a project’s CI-usage period?
• Metric (base): To answer this question change-frequency graphs are visualized.
In this case a Boolean metric could relate to the existence of one specific
property of the graph. The metric that relates to the graphs convergence to a
constant value is of most interest. Such property describes that the change
frequency stabilizes, i.e., that the build process stabilizes.

b) Question: When are phases used in a project’s CI-usage period?
• Metric (base): To answer this question usage-frequency graphs are visualized.
In this case a Boolean metric could relate to the existence of one specific
property of the graph. The metric that relates to the property that the graphs
curve is on average linear is chosen here. It describes if the phase usage is
constant or not.

31

5. Research Goals and Questions

c) Question: Can foci on significant phases be found in these graphs?
• Metric (base): Again a Boolean metric for the graphs of questions 3.1 and
3.2. The existence of maxima in the frequency graphs is of interest as such
property confirms that phases have a dedicated interval in which they are
focused on.

This goal incorporates the time dimension and the analysis of build process evolution in
terms of phase usage and changes over time is central. First it is observed when phase
changes are made, secondly in which intervals phases are commonly used and lastly if
there exist special foci on phases. Therefore the phase change and usage frequency graphs
need to be constructed, wherefore the standardized CI-usage period and the relative time
of each build change is used. Due to standardization all projects are then comparable in
the same graph model that plots time versus change or usage frequency. The desired
graph has the time axis [0, 1] and an integer count axis to represent the frequency of
phase changes to a certain point in time or the amount of projects that use a phase to
a given point in time respectively. Alternatively, for a clearer comparison, all projects
whose real CI-usage period lies in a similar interval, are compared to each other in an
individual graph. This results in multiple graphs, one for each combination of the chosen
interval and the phase for which it is constructed (local). The graph is also constructed
for combinations of intervals and all phases (global).

GOAL 4: Build Process Structure Build-Up

a) Question: Are CI-functionalities used in a consistent manner?
• Metric (base): The CI-functionality adoption count for different threshold

parameters T . This metric maps to an absolute scale. If the adoption count is
high for a high threshold T , then this means that functionalities are indeed
used in a consistent manner. Furthermore, if the metric’s gain from one high
threshold to a subsequently lower threshold is small, then this also implies
that this thresholds is a good lower bound for measuring consistent usage.

b) Question: How mature are CI build processes in Travis CI?
• Metric (base): The amount of CI-functionalities adopted by a project. This
metric maps to an absolute scale. The more functionality a project adopts,
the more mature it is regarded. Furthermore, the projects are clustered upon
a vector, that expresses the order in which CI-functionality is adopted in
a project. The final cluster means refine the maturity measure once more
through the order property.

c) Question: What is the adoption time for CI-functionalities in GitHub projects?
• Metric (base): Mean time of adoption for each CI-functionality. This shows
the average order in which functionalities are adopted and thus the build-up
of the build process structure.

32

5.1. Goals

d) Question: What is the impact of project age, CI-usage period, phase usage and
phase changes on CI-maturity?
• Metric (base): The precision of certain classifiers on different feature subsets,

attempting to classify projects upon the CI-maturity levels. The metric maps
to the scale [0,1] as it represents the percentage of correctly classified instances.
The higher this value is, the better the feature subset indicates maturity.

The fourth goal tries to answer how a CI build process is iteratively constructed, i.e., how
CI-functionality is adopted over time. Therefore the previously defined CI-functionalities
and the parameterizable adoption measure are used (cf. section 4.6 (page 25)). Firstly the
quality of different adoption thresholds is observed, to conclude if functionalities are used
consistently. Adoption sequences are represented in form of a vector. Each element of the
vector is assigned to a CI-functionality and its value represents the chronological order
in which the CI-functionality is adopted. Further CI-maturity levels are identified by
clustering on these vectors. Each maturity level is then represented by a group of projects
that use the same amount of CI-functionality which are also introduced in a likewise order.
The mean time of adoption for the different CI-functionalities is also examined. The
last questions investigates the relationship between project-level features (cf. chapter 6
(page 35)) and the CI-maturity levels by attempting to find good classifiers. If such good
classifiers exist, then project-level features are good indicators for CI-maturity which is
originally defined on commit-level features (cf. chapter 6 (page 35)).

GOAL 5: Equivalent Usage of the Travis CI Model

a) Question: Can projects be clustered by similar usage of phases?
• Metric (base): A Boolean metric, that answers the question with a yes or a
no. The projects are clustered upon a binary vector of phase usage.

b) Question: Can projects be clustered by similar phase changes?
• Metric (base): A Boolean metric, that answers the question with a yes or a
no. The projects are clustered upon a real vector of phase changes.

c) Question: Can projects be clustered by amount of configuration changes?
• Metric (base): A Boolean metric, that answers the question with a yes or a

no. The projects are clustered upon total amount of configuration changes.

d) Question: Can projects be clustered by density of phase changes?
• Metric (base): A Boolean metric, that answers the question with a yes or a
no. The projects are clustered upon density of phase changes over time.

e) Question: Can projects be clustered by age?
• Metric (base): A Boolean metric, that answers the question with a yes or a

no. The projects are clustered upon age.

33

5. Research Goals and Questions

f) Question: Can projects be clustered by CI-usage period?
• Metric (base): A Boolean metric, that answers the question with a yes or a

no. The projects are clustered upon CI-usage period.

The last goal aims to find clusters of projects under the perspective of equivalent usage of
the model. The clustering capability of six different (groups of) features is investigated.
If the feature subsets can be clustered upon, then the resulting final cluster means are
evaluated which show common usage patterns for Travis CI. For the first two, time is
not relevant: Phase usage per project can be expressed by a vector with one value per
phase. A binary vector indicates for each phase whether it is ever used in a project.
Therefore it seems suitable to cluster with a manhattan distance. Phase changes can be
expressed by real vectors, this time with integer values for the amount of changes to a
certain phase. In this case an euclidean distance is reasonable for clustering. The next
four clustering applications cluster on one-dimensional features only: The total amount
of configuration changes in a project, the project’s age in seconds, the project’s CI-usage
period in seconds, and the phase change density of a project.

5.2. Feature Selection
During preliminary data analysis (cf. chapter 4 (page 19)) interesting features from
the collected data are already identified. To answer the goals the following features are
needed (cf. table 5.1).

Features:
(i) Project age
(ii) CI-usage period
(iii) Knowledge of Travis CI Model
(iv) Phase Changes for each configuration change
(v) Phase Usage after each configuration change
(vi) Relative point of time for each configuration change
(vii) Build results for the associated builds

Table 5.1.: Features selected for this research.

Features (i) to (iii) have already been extracted, features (iv) to (vii) are captured by
data preprocessing.

34

6. Data Preprocessing

Contents
6.1. Feature Vector Modeling . 35
6.2. Challenges . 39
6.3. First Observations . 41

Preprocessing extracts the relevant data, i.e., the selected features (cf. section 5.2
(page 34)), from the data sources. To later apply algorithms the extracted features are
stored in the structured ARFF (Attribute-Relation File Format) file format [Arf].

6.1. Feature Vector Modeling
Features are recorded in two different granularity levels: On commit-level data instances
are recorded for each configuration changing commit of each project. They hold in-
formation on the changes to each phase and usage of each phase after a configuration
change.
Instances on project-level have a higher abstraction level as data instances are only
recorded per project. Information on all changes and usage is summarized for each
project, thus data instances on this level have a more extensive but less detailed view on
the projects.
Similar features are grouped into the feature vectors given below.

Commit-Level

On commit-level the different feature vectors hold the following features with the according
domains:

F1 = (c1, . . . , cn, csum)

• ci ∈ {0, 1} with ci = 1 indicating phase i is changed, else ci = 0
• csum ∈ N0 with csum = Σci

F2 = (u1, . . . , um, usum)

• ui ∈ {0, 1} with ui = 1 indicating phase i is used after a change, else ui = 0
• usum ∈ N0 with usum = Σui

F3 = (prj, lang, ageabs, agerel, fail, ID)

35

6. Data Preprocessing

• proj the project’s GitHub name (Organisation@Repository)
• lang the project’s main programming language
• ageabs ∈ N0 the time in seconds from start of CI-usage to this configura-

tion changing commit
• agerel ∈ [0, 1] the relative time from start of CI-usage to this configuration

changing commit w.r.t. total CI-usage period.
• fail ∈ {0, 1, 2} the result of the next CI build after the configuration change

is either a positive (0), negative (1) or not retrievable (2)
• ID ∈ N the number of the commit in the chronological order of the

configuration changing commits of this project

Preprocessing extracts which phases are changed and which phases are used after the
build change together with the commit’s absolute and relative point of occurrence in the
projects CI-usage period, the project’s name, main programming language and the build
result of the next CI build after the change for every configuration change.
The feature vectors are grouped to store data instances in the form (F1, F2, F3) with F3
holding the features that identify each data instance uniquely by the project’s name and
the commit number, or point of time respectively. Some values in F3 are stored multiple
times across instances of the same project.
Indices 1 to n refer to the phases in table 4.2 (page 26). The FORMATTING phase
is used as a default phase for phase changes, but as phase it is never explicitly used,
therefore it is not considered a feature in phase usage. So for phase usage m = n − 1
features are stored instead of n.
The build results are simplified to a Boolean scale, with a positive (success ⇒ 0) and a
negative (failure, errored, aborted ⇒ 1) measure. For the rest of this thesis a negative
build result is referred to as a failed build.

Project-Level

On project-level the different feature vectors hold the following features with the according
domains:

F4 = (c1,abs, . . . , cn,abs, csum,abs, c1,rel, . . . , cn,rel)

• ci,abs ∈ N0 the total amount of changes to phase i in this project
• csum,abs ∈ N0 the total amount of changes as csum,abs = Σci,abs

• ci,rel ∈ [0, 1] the relative amount of changes to phase i w.r.t. total amount
of changes

F5 = (u1,abs, . . . , um,abs, u1,rel, . . . , um,rel, u1,bin, . . . , um,bin, usum,bin)

36

6.1. Feature Vector Modeling

• ui,abs ∈ N0 the number of times that phase i is used after a change
• ui,rel ∈ [0, 1] the relative usage to phase i w.r.t. total usage of all phases
• ui,bin ∈ {0, 1} with ui,bin = 1 indicating phase i is at least used once in this

project, else ui,bin = 0
• usum,bin ∈ N0 the amount of distinct phases used as usum,bin = Σui,bin

F6 = (proj, lang, age, ci_usage, den,maxID)

• proj the project’s GitHub name (Organisation@Repository)
• lang the project’s main programming language
• age ∈ N0 the project’s age in seconds
• ci_usage ∈ N0 the project’s total CI-usage period in seconds
• den ∈ [0, 1] the phase change density
• maxID ∈ N the number of configuration changing commits in this project

The feature vectors are grouped to store data instances in the form (F4, F5, F6) with F6
holding the project name feature which identifies each instance uniquely, due to GitHub’s
naming scheme.
These data instances hold the total number of changes to phases in a project. The sum
of these values results in the total changes to any phase in a project (csum,abs). Also the
relative share of changes to one phase, with respect to the total amount of changes is
stored. The relative values may allow for easier comparison of projects.
For the usage of phases similar features are stored, with an additional feature expressing
the binary usage of a phase, i.e., if a phase is used at least once in a project.
F6 contains similar features as F3, but again for project-level. The age of the whole
project and the time since CI was introduced into the project are stored here. The maxID
feature holds the total amount of configuration changes. Additionally there is the feature
of phase change density

den = maxID

ci_usage ∗ 3600

expressing the frequency at which a phase is changed. As CI configurations naturally
have a low change frequency, the density measure is normalized to express the average
number of phase changes per hour, rather than per second.

CI-functionality Adoption Measure

CI-functionalities are defined by groups of phases and express the same value as stages in
a CI pipeline (cf. section 2.1.3 (page 6) / section 4.6 (page 25)). An approach to measure
the adoption of such functionalities is given shortly. First some extra computation is
needed, which is explained.

37

6. Data Preprocessing

Obviously, to measure consistent phase usage the discrete usage representation alone, as it
is given in binary form by the preprocessed data set, is not sufficient. To measure consistent
usage I define the point of phase introduction over a continuous usage representation.
I.e., the point in time from which on a phase is used consistently, whereby consistent
usage is defined as a tolerance towards constant usage. To compute a measure for phase
introduction from this data, firstly the discrete usage representation is transformed into
a continuous usage representation. This is done for a project’s set of configuration
changing commits (1, . . . , t, . . . , n), a phase i and the corresponding usage features
(U(i,1), . . . , U(i,t), . . . , U(i,n)) ∈ {0, 1}n by applying a function fi to each commit t that
computes:

fi(t) =
|{U(i,k)|t ≤ k ≤ n ∧ U(i,k) = 1}|

|{U(i,t), . . . , U(i,n)}|
∈ [0, 1]

Thus a function value fi(t) = p expresses the relative future use of phase i, i.e., that after
(p · 100)% of the following configuration changes (t + 1, . . . , n) the phase i is used. In
this way the discrete phase usage representation is transformed to a continuous usage
representation (cf. figure 6.1 for an example).

(a) Discrete phase usage (b) Continuous phase usage

Figure 6.1.: Different phase usage representations.

When using a continuous usage representation, phase introduction can be defined as
the first point in time t∗ at which a certain threshold f(t∗) = T ∈ [0, 1] is reached. A
CI-functionality is then adopted, regarding a threshold T , if for one of the functionality’s
phases its continuous usage function f reaches the threshold T after some commit t:
f(t) ≥ T . The commit t for which f(t) ≥ T holds for the first time is then considered
the point of adoption of the CI-functionality.

38

6.2. Challenges

File Format

For mining I use the Weka tool [FHW16], a widely used open source software for
data mining applications. Although not all questions can be answered by data mining
algorithms, the recorded data instances are stored in Weka’s ARFF file format. The
ARFF file format is not restricted to exclusive use by the Weka tool. It is a variation of
a common family of file formats, which store data instances in lines, separating values
by commas (or a self-defined separator) and data instances by line breaks. Thus this
structured format can be easily parsed by other tools or applications for visualization or
similar.

6.2. Challenges
During preprocessing the following challenges are faced.

(1) In the temporal delta between the extraction of the configuration files by myself
(12.09.2017) and the point of time that the data set from TravisTorrent [Traa] was
recorded (20.12.2016), a small amount of projects was deleted. Also for some projects
there is no recorded data in the TravisTorrent set. All projects for which the data set in
TravisTorrent is either empty or the repository is deleted on GitHub are removed from
the preprocessing scope.

(2) In some cases a configuration change does not alter the build process. This is the case
if there is no semantic change to the file, e.g., comments added. The other case occurs
if a syntactically invalid .travis.yml is pushed into the repository. Due to the invalidity
of such a configuration file it cannot be automatically parsed by Travis CI leading to a
direct termination of the build process. This leaves an uncertainty in the change history,
as the real intention of the developer is not recordable. The best solution to this problem
is to skip an invalid file in the pairwise comparison of CI configurations (cf. figure 6.2).

Figure 6.2.: Handling invalid YAML files in the change history.

For pairwise comparison two valid files are needed. Therefore in case a direct predecessor
is an invalid configuration, the current file version is compared to the its first valid
predecessor. If there is no valid predecessor for a configuration file, then it is treated as
if it was the first version for in a project’s change history.
Obviously as the file is invalid, the change is not directly extractable. Assuming the
unrecordable change is the inclusion of a new key to the configuration. The developer

39

6. Data Preprocessing

could then possibly fix his mistake in which case the new valid configuration reveals
the intended change. This would be a best-case scenario. Alternatively the developer
might deleted this key again, returning the configuration to its older state. In this case
the change is not recorded by preprocessing, which is the worst-case. This uncertainty
increases through higher amount of successively pushes of invalid files.
The following scheme is used to represent the three basic types of changes via the F1
vector (cf. figure 6.3):

Figure 6.3.: The three basic types of changes.

For this scheme it is assumed that the previous configuration file is always a valid file.
This requirement always holds due to the strategy presented in figure 6.2.
Type A represent a standard change: If the configuration file is valid and at least one
phase is changed, then the related phase change variables equal 1 where the phases are
changed with respect to the next valid predecessor. The variable for the FORMATTING
phase equals 0.
A Type B change occurs if the file is valid but there is no semantic change. This change
has no impact on the build process, therefore only the FORMATTING variable equals 1
and all others equal 0. Examples are changes of comments in the configuration or usage
of user-defined keys, which are not recognized by Travis CI.
Type C occurs if the current file is invalid, then all variables in F1 equal 0. The usage
features however are inherited from the preceding configuration change, as there is no
phase change recorded.

(3) In Git it is possible to push multiple commits at once. If multiple commits are pushed
at once, Travis CI only issues a build on the latest commit. If a build changing commit
is transferred in a multiple commit push, then there might be no build result link-able to
a configuration change in the two different data sets (TravisTorrent and Git History) via
a Git commit id. To counteract this the chronologically next build result is used.

40

6.3. First Observations

6.3. First Observations
Preprocessing resulted in a structured data set consisting of 962 GitHub projects and
26708 configuration changing commits in total. The total number of phase changes is
49189. The average project alters its configuration about 27 times. Table 6.1a shows the
language distribution: there are four main programming languages used by projects in
this data set.

Language # projects
Python 259
Ruby 245
Java 241
Go 201
Other 16
Σ 962

(a) Distribution of main programming lan-
guage in the preprocessed data.

Group # projects
Years [0− 1) 68
Years [1− 2) 203
Years [2− 3) 256
Years [3− 4) 197
Years [4− 5) 153
Years [5− 6] 85

Σ 962
(b) Amount of projects in groups of

distinct CI-usage periods.

Table 6.1.: Project distribution w.r.t main programming language and CI-usage period.

The distribution of project age and CI-usage period in years are visualized in figure 6.4a
and figure 6.4b. Both distributions approximate a normal distribution (red curve) with
values for µ and σ given in the figures. The average project is 4.6 years old and used
Travis CI for approximately three years. For groups of distinct CI-usage period the above
membership count is observed (cf. table 6.1b).

(a) Distribution of project age. (b) Distribution of CI-usage period.

Figure 6.4.: Distribution of project age and CI-usage period in the preprocessed data.

41

7. Results and Discussion

Contents
7.1. Goal 1: Acceptance of the Travis CI Model 43

7.1.1. Discussion . 44
7.2. Goal 2: Robustness of the Travis CI Model 48

7.2.1. Q3: Do phases cause build failures together? 50
7.2.2. Discussion . 51

7.3. Goal 3: Build Process Evolution . 52
7.3.1. Discussion . 54

7.4. Goal 4: Build Process Structure Build-Up 57
7.4.1. Discussion . 63

7.5. Goal 5: Equivalent Usage of the Travis CI Model 65
7.5.1. Discussion . 67

7.6. Final Discussion . 68

This chapter presents the main results of this thesis. For each question the results are
shown along with some words on the execution of the mining, visualization, metric
computation or the like. For each goal there is a small discussion and in the end there is
final discussion about all findings.

7.1. Goal 1: Acceptance of the Travis CI Model
To gain basic knowledge on how the Travis CI model is used, I look at how frequently
the different components, the phases, are used and maintained by the projects.

Q1: Which phases of the model are most frequently used?

Counting for each phase by how many projects in the data set it is used at least once
results in the ranking given in table 7.1a. This is accomplished by using the binary-usage
feature defined in feature vector F5 (cf. section 6.1 (page 35)).
First of all, it is observable that there is no phase, that is used by 100% of the projects.
Except for the BUILD_STAGES and FORMATTING phases there is also no phase which
is not used by all project. The BUILD_STAGES phase relates to a functionality of the
Travis CI build process, which at the point of time this data was extracted was currently
introduced in a beta phase. As already stated in section 6.1 (page 35), FORMATTING
is not a phase related to the Travis CI model. It is used as a default for non-semantic
changes, therefore its usage has no meaning and is not regarded here.
The top three phases are used by a decent amount of all projects (above 75%). The

43

7. Results and Discussion

top two phases (LANGUAGE_ENV and SCRIPT) are exactly those phases which are
identified as the core phases in a Travis CI build, regarding the minimum CI configuration
(section 4.3.3 (page 23)). All other phases, i.e., besides the top three, are only used by
circa 50% of the projects or less. These phases are also those, which are used to configure
more individual and complex builds. Therefore this ranking seems quite reasonable.

Q2: Which phases of the model are most frequently changed?

Counting on commit-level how often a certain phase is changed results in the ranking
given in table 7.1b. This is accomplished by using the features of F1 (cf. section 6.1
(page 35)). There are no changes to BUILD_STAGES, because it is not used in any
project. The most changed phase is the LANGUAGE_ENV phase with 8616 changes,
making up circa 18% of all changes.
The majority of changes (> 64%) are made to the top five phases in this ranking, each
having an individual share of 10% or more. The top five include the basic LANGUAGE_-
ENV and SCRIPT phases and the phases that are changed less are more likely used for
advanced configuration.

Q3: How many phases are used per project?

The feature usum,bin of feature vector F5 (cf. section 6.1 (page 35)) expresses the maximum
amount of distinct phases used in a project, i.e., the sum of individual phases that are
included in the project’s build process at least once at some point. Figure 7.1 shows the
distribution of this feature among all projects.
On the one hand there exist projects that only use one phase; on the other hand the
maximum lies at 16 phases. The distribution is approximated by a normal distribution
(red curve) with µ = 6.17 and σ = 2.68. Thus the majority of projects (∼ 70%) used
approximately four to nine phases in their CI-usage period.

Q4: What is the volatility of phases?

The volatility of phases is measured by the average amount of changes to a phase per
project. This measure is computed by dividing the values of both rankings in table 7.1.
Table 7.2 shows a ranking that deviates from the other two as projects have a clear focus
on changing BUILD_MATRIX and INSTALL more often.

7.1.1. Discussion
It is observed that the more basic phases are the ones that have a higher priority in
both the phase-usage and phase-change ranking, thus are highly accepted. In general
the two rankings are similar in the order of the phases. Both share the top three phases
LANGUAGE_ENV, SCRIPT and BUILD_ENV in exactly this order, which are more
or less the basic parts of a Travis CI build process. Although not in the same order, the
top ten phases of both ranking are also the same, indicating that there is a separation
and all phases below rank 10 are less accepted. For the volatility of phases, it can be

44

7.1. Goal 1: Acceptance of the Travis CI Model

Ph
as
e

#
of

pr
oj
ec
ts

%
of

pr
oj
ec
ts

us
in
g
ph

as
e

us
in
g
ph

as
e

LA
N
G
U
A
G
E_

EN
V

95
7

99
.5

SC
R
IP

T
79

8
83

.0
B
U
IL
D
_
EN

V
75

1
78

.1
IN

ST
A
LL

53
3

55
.4

B
EF

O
R
E_

IN
ST

A
LL

52
3

54
.4

N
O
T
IF

IC
AT

IO
N
S

37
8

39
.3

B
U
IL
D
_
M
AT

R
IX

34
5

35
.9

C
A
C
H
E_

EN
V

34
3

35
.7

B
EF

O
R
E_

SC
R
IP

T
29

4
30

.6
A
FT

ER
_
SU

C
C
ES

S
27

7
28

.8
A
D
D
O
N
S

21
9

22
.8

PL
AT

FO
R
M
_
EN

V
15

6
16

.2
G
IT

15
6

16
.2

D
EP

LO
Y

68
7.
1

A
FT

ER
_
SC

R
IP

T
55

5.
7

B
EF

O
R
E_

C
A
C
H
E

35
3.
6

A
FT

ER
_
FA

IL
U
R
E

30
3.
1

B
EF

O
R
E_

D
EP

LO
Y

19
2.
0

A
FT

ER
_
D
EP

LO
Y

8
0.
8

B
U
IL
D
_
ST

A
G
ES

0
0.
0

FO
R
M
AT

T
IN

G
0

0.
0

(a
)

R
an

ki
ng

of
ph

as
e

us
ag

e.

Ph
as
e

#
of

ch
an

ge
s

%
of

ch
an

ge
s

(a
bs
.
m
ea
su
re
)

(r
el
.
m
ea
su
re
)

LA
N
G
U
A
G
E_

EN
V

86
16

17
.5

SC
R
IP

T
68

45
13

.9
B
U
IL
D
_
EN

V
64

55
13

.1
B
U
IL
D
_
M
AT

R
IX

54
73

11
.1

IN
ST

A
LL

53
64

10
.9

B
EF

O
R
E_

IN
ST

A
LL

45
08

9.
2

B
EF

O
R
E_

SC
R
IP

T
20

59
4.
2

A
FT

ER
_
SU

C
C
ES

S
17

56
3.
6

C
A
C
H
E_

EN
V

15
48

3.
1

N
O
T
IF

IC
AT

IO
N
S

14
48

2.
9

A
D
D
O
N
S

13
19

2.
7

G
IT

88
7

1.
8

FO
R
M
AT

T
IN

G
78

8
1.
6

PL
AT

FO
R
M
_
EN

V
65

8
1.
3

D
EP

LO
Y

56
3

1.
1

A
FT

ER
_
SC

R
IP

T
28

8
0.
6

A
FT

ER
_
FA

IL
U
R
E

21
4

0.
4

B
EF

O
R
E_

D
EP

LO
Y

17
3

0.
4

B
EF

O
R
E_

C
A
C
H
E

16
9

0.
3

A
FT

ER
_
D
EP

LO
Y

58
0.
1

B
U
IL
D
_
ST

A
G
ES

0
0.
0

Σ
49

18
9

10
0.
0

(b
)

R
an

ki
ng

of
ph

as
e

ch
an

ge
s.

Ta
bl
e
7.
1.
:R

an
ki
ng

s
of

ph
as
e
ch
an

ge
s
an

d
us
ag

e
in

ab
so
lu
te

an
d
re
la
tiv

e
(r
ou

nd
ed

)
m
ea
su
re
s.

45

7. Results and Discussion

Phase # of changes #projects using Volatility
(abs. measure) using phase

BUILD_MATRIX 5473 345 15.86
INSTALL 5364 533 10.06
BEFORE_DEPLOY 173 19 9.11
LANGUAGE 8616 957 9.00
BEFORE_INSTALL 4508 523 8.62
BUILD_ENV 6455 751 8.60
SCRIPT 6845 798 8.58
DEPLOY 563 68 8.28
AFTER_DEPLOY 58 8 7.25
AFTER_FAILURE 214 30 7.13
BEFORE_SCRIPT 2059 294 7.00
AFTER_SUCCESS 1756 277 6.34
ADDONS 1319 219 6.02
GIT 887 156 5.69
AFTER_SCRIPT 288 55 5.24
BEFORE_CACHE 169 35 4.83
CACHE_ENV 1548 343 4.51
PLATFORM_ENV 658 156 4.22
NOTIFICATIONS 1448 378 3.83
FORMATTING 788 0 -
BUILD_STAGES 0 0 -

Table 7.2.: Volatility of phases.

46

7.1. Goal 1: Acceptance of the Travis CI Model

Figure 7.1.: Amount of distinct phases used per project.

seen that LANGUAGE_ENV, SCRIPT and BUILD_ENV are not among the top three
anymore.
Phase usage implies only one phase change, namely the inclusion of the phase, thus
the phase-usage ranking should not predict the ranking of phase-changes. It is a very
interesting observation that nevertheless the two rankings are very similar. From this
the hypothesis can formulated that phases, which are more used are also more likely to
change more frequently. This is also in contrast to the belief that basic parts of the build
process should be stable, but these rankings show that this is not the case. Later when
incorporating the time dimension, it is be possible to confirm, if parts of the process
really stabilize or not.

Next to the usage of default conventions (cf. section 4.3.3 (page 23)), the following
anti-pattern of explicit denial is observed. The explicit denial of a default, e.g., by turning
off all notifications (cf. listing 7.1), is recorded as usage of this phase, although the phase
is not used semantically.

1 notifications:
2 email: false

Source Code 7.1: Default denied.

For the acceptance of the model three conclusions can be drawn:

47

7. Results and Discussion

(1) There is a general acceptance of the model. There is no phase which is never used,
but also there is no phase, which is used by every project. As it is already known that
either the LANGUAGE_ENV or SCRIPT phase is mandatory, this is legitimate. About
one quarter of the phases are used by 50% of the projects or more. Usage under 50% is
considered under-utilization of the phase.
(2) There is a high acceptance of parts of the model. The top three phases are used
by more than 75% of the projects and have the highest change count. Especially the
SCRIPT phase is used by 83%, implying that at most 17% of the projects rely on the
standard build execution that Travis CI offers. However, it is observed that phases,
which are used by more projects, are also changed more often. The reason for this (e.g.,
instability of a phase) and the impact this could possibly have on the acceptance measure
is unknown at this point. The robustness of the model is investigated in the next section.
(3) There is a low acceptance of the whole model. No project uses all the offered
functionality. In fact the trend lies at using four to nine phases; the mean is six. This
means that on average each project uses only 6

20 = 30% of all phases, i.e., 70% of all
phases are not used. If there is a reason to why only a small subset of all phases is used
is investigated in cluster analysis (section 7.5). In general, all deploy related functionality
is rarely accepted.

7.2. Goal 2: Robustness of the Travis CI Model
Q1: Which phases are critical, concerning the build results of the corresponding
builds after a phase change?

For a build result one of the three values {0, 1, 2} is stored in the corresponding feature in
F3 (cf. section 6.1 (page 35)). The amount of unretrievable build results (2) in this data
set is rather low with only 2143 affected builds (8.02%), the amount of build failures (1)
lies at 10561 (39.54%) and the amount of build success (0) at 14004 (52.43%). Besides
counting the change frequency, also the build failures can be summarized per phase on
commit-level. The results are listed in table 7.3.
On first sight, the amount of build failures grows linearly with the ranking of phase
changes, and BUILD_STAGES again has value zero as it is never used. Thus the ranking
is very similar to the phase-change ranking (cf. table 7.1b).

Q2: Does a correlation between change frequency and amount of negative build
results exist?

In fact Weka’s linear regression classifier approximates the quantitative relationship
between phase changes and build failures effectively. Figure 7.2 visualizes this relation:
A point represents for each phase its change frequency and amount of build failures as
given in the rows of table 7.3. The line represents the linear regression function with
which these points are approximated by Weka and expresses the correlation of both the
change frequency and the amount of build failures. The regression’s correlation coefficient
is 0.99871. The gradient of the regression line implies that in circa 40% of the times a

48

7.2. Goal 2: Robustness of the Travis CI Model

Phase # of changes # of build
(abs. measure) failures

LANGUAGE_ENV 8616 3438
SCRIPT 6845 2762
BUILD_ENV 6455 2633
INSTALL 5364 2231
BUILD_MATRIX 5473 2191
BEFORE_INSTALL 4508 1990
BEFORE_SCRIPT 2059 1002
CACHE_ENV 1548 633
AFTER_SUCCESS 1756 611
NOTIFICATIONS 1448 592
ADDONS 1319 556
GIT 887 380
FORMATTING 788 315
PLATFORM_ENV 658 284
DEPLOY 563 191
AFTER_FAILURE 214 95
AFTER_SCRIPT 288 85
BEFORE_DEPLOY 173 71
BEFORE_CACHE 169 67
AFTER_DEPLOY 58 20
BUILD_STAGES 0 0
Σ 49189 20147

Table 7.3.: Build failures per phase.

49

7. Results and Discussion

phase is changed the next build will fail.

Figure 7.2.: Plot of change frequency versus build failures of all phases.

7.2.1. Q3: Do phases cause build failures together?
Previously, each phase is analyzed separately, leading to an accumulated amount of 20147
build failures (cf. last row in table 7.3), which is much higher than the real amount of
build failures (10561). I.e., it is not regarded to which extend multiple phase changes in
one commit cause a build failure together. From those values we see that on average two
phases are responsible for a build failure:

#phase changes causing build failures
#failed builds = 20147

10561 ≈ 2

To see which combination of phase changes lead to build failures, the commit-level in-
stances are clustered upon the phase change features of F1 (except for the FORMATTING
phase) for instances that have a failed build result (cf. table A.1 (page 80) / table 7.4).
The number of final clusters is 11, thus with 11 ≤ 20, the maximum number of phases
except FORMATTING, one knows that there exists at least some clusters including two
or phases. In fact three main groups are identified: The majority of build changes (9298
(92%)), on which the next build fails, are unique changes, i.e., only one phase is changed.
Commits that induce multiple phase changes are less common (cf. table 7.4). So, a large
amount of phases are changed together, but not so often as that this would create a
major distortion in the observation depicted in figure 7.2. However, the phases that are

50

7.2. Goal 2: Robustness of the Travis CI Model

Category Count Phases

multiple 445 {BEFORE_INSTALL, INSTALL, SCRIPT,
BUILD_MATRIX, BUILD_ENV, LANGUAGE_ENV }

multiple 359 {BEFORE_INSTALL, INSTALL, SCRIPT, BUILD_ENV,
LANGUAGE_ENV }

unique 9298 {BEFORE_INSTALL}, {INSTALL}, {SCRIPT},
{AFTER_SUCCESS}, {BUILD_MATRIX}, {ADDONS},
{PLATFORM_ENV }, {BUILD_ENV },
{LANGUAGE_ENV }

Table 7.4.: Groups of phases that cause build failures together.

mostly changed together before a build fails are also the ones, that are higher valued in
the phase-change and phase-usage ranking (cf. table 7.1).

7.2.2. Discussion
By viewing for each phase separately its values for change frequency and build failures, it
is learned that there are no phases solely responsible for an exceptional amount of build
failures. In terms of robustness of the model, the observation, that, phase-independently,
in 40% of the cases the build fails after a build change, implies that there is sort of
constant instability in the build process, as the correlation coefficient (0.99871) from
linear regression is exceptionally high.

The final clusters from clustering upon the change features of instances with failed
builds strengthens the original observation of constant instability. For the cause of this
phenomenon four hypotheses from contrasting perspectives are presented:

(1) The cause lies exclusively in the Travis CI model, i.e., faults in the internal processing
of the configuration and faulty build executions or grave issues in the understandability
on how to use Travis CI and its configuration properly. I find this hypothesis is possible,
but unlikely.
(2) The robustness cannot be measured clearly due to the software. Builds fail due to
normal causes, e.g., failing unit tests or syntax errors, as CI configuration changes often
go along with big software changes. For a clearer view on the robustness the impact the
software itself has on the build result must be regarded. Explicitly excluding this impact
would reveal the pure robustness of a phase in the model. Obtaining this insight is not
possible with this data set.
(3) The robustness cannot be measured clearly due to the unrecorded intention of the
developers. In this research the classification of the quality of build results is conducted

51

7. Results and Discussion

upon intuition (Reminder: success ⇒ 0, failure, errored, aborted ⇒ 1; cf. section 6.1
(page 35)). The real intention of a build change however is unclear. Thus a build failure
might be the desired outcome of the build change, e.g., if new quality gates are introduced
into the CI build. In this case the build failure has a high quality towards the user. It
might be possible to extract intent from commit messages. However, obtaining such
insight from this data set is also not possible.
(4) All developers build pipelines in a careless trial-and-error fashion. This is also unlikely.

7.3. Goal 3: Build Process Evolution
To gain knowledge on how Travis CI build processes evolve, the time dimension is
incorporated to plot the usage and change frequency over the CI-usage period of all
projects. For a clearer view, projects are grouped by their CI-usage period into the six
groups of [0− 1), [1− 2), . . . [5− 6] years (cf. section 6.3 (page 41)). A graph is created
for each pair of phase and group, and once for all phases per group. This resulted in 132
graphs for each the phase change frequency over time and phase usage frequency over
time. In the following the most significant insights from these graphs are presented.
By normalizing the CI-usage period (i.e., plotting over [0, 1]) the projects become com-
parable, as then the relative point of time of a change or usage is known. Grouping
projects by their real CI-usage period, minimizes the distortion, that is caused by the real
temporal delta between any two commits of different projects in each group. Furthermore,
distinct characteristics for the different groups of CI-usage periods can be evaluated.

Q1: When are phase changes made in a project’s CI-usage period?

The phase change frequency graphs are plotted with the normalized time of each commit
and the amount of phases that are changed by the corresponding build change (cf.
section 6.1 (page 35)).
As listing all 132 graphs is not reasonable, figure 7.3a - figure 7.3f show the summarized
change frequency for all phases in the six different groups of CI-usage periods. These
summaries each represent the behavior of change frequency in the graphs for single
phases in their CI-usage period group sufficiently. Note that the curves are plotted on
a logarithmic scale for better comparison. The equidistant points on the curve each
approximate the change frequency of a seven-day week. All 132 change frequency graphs
show that the change frequency curves peak at the beginning of the CI-usage period and
then vastly descend to oscillate at a lower value (cf. figure 7.3). No curve converges to a
constant value or zero in any way.

Q2: When are phases used in a project’s CI-usage period?

The phase usage frequency graphs are plotted with the normalized time of each commit
and the amount of projects that are used after the corresponding build change (cf.
section 6.1 (page 35)). Again from the 132 graphs only the most significant are presented
here.

52

7.3. Goal 3: Build Process Evolution

(a) Years [0 − 1) (b) Years [1 − 2)

(c) Years [2 − 3) (d) Years [3 − 4)

(e) Years [4 − 5) (f) Years [5 − 6]

Figure 7.3.: Phase change frequency for all phases in groups of CI-usage periods.
peak: the maximum phase change frequency
avg: the average phase change frequency
n: the total amount of configuration changes to this phase in this group

53

7. Results and Discussion

On average, phase usage stays at a constant level (cf. figure 7.4). With the small
exception of phases BUILD_ENV (cf. figure 7.4f) and CACHE_ENV (cf. figure 7.5c)
this holds true for every phase. It is also observed that for a subset of phases the usage
frequency slightly peaks at the beginning of CI-usage, i.e., in the interval [0, 0.1] (cf.
figure 7.5).

Because phase usage is mostly steady throughout the whole CI-usage period, the inclusion
and exclusion behavior of phases at any fixed point in time is investigated. Inclusion and
exclusion are shown by the green and red curves in figure 7.4 and figure 7.5. For any
point in time t ∈ [0, 1] the green curve shows the amount of projects which added the
phase to their configuration, respectively the red curve shows the amount of projects that
deleted the phase. Thus the delta of the total usage frequency (black curve) is expressed
by the subtraction of the exclusions from the inclusions. The inclusion/exclusion rates
are always very low (< 2% of total projects; cf. figure 7.4, figure 7.5) for the interval
(0, 1].

Q3: Can foci on significant phases be found in these graphs?

The simple answer is no. There are no significant maxima in the frequency graphs to
be found, which would indicate that a distinct period of time is generally dedicated to
the usage or maintenance of one or more phases. The change frequencies show that
maintenance oscillates. Usage frequency is mostly constant, resulting in an absence of
peaks.

7.3.1. Discussion
The fact that no phase exhibits a stabilizing behavior, indicates that the build processes
are (1) constantly developed incrementally or (2) require constant maintenance. However,
this also indicates that build processes themselves do not seem to stabilize over time,
as they are always exposed to a lot of changes (e.g., 10-100 phase changes per week for
∼ 200 projects). The current states of the build processes in this data set are apparently
not the final states as desired by the developers. Does this imply that build processes
never stabilize or just do so in the future, i.e., outside of the observed period of six years?
Furthermore, the question remains why maintenance is always at a constant high level.

The knowledge that inclusions/exclusion rates stay very low, approves the observation
that phase usage stays at a constant level and in general the following rule holds:

If a phase is not used at the beginning of CI-usage, then with high probability it will be
never used in this build process and vice versa.

This is a very coarse rule, as the usage frequency in these graphs is accumulated for
all 962 projects. Yet in all other frequency graphs the results are very similar, except
for a few insignificant outliers. This may also weakly imply that there is hardly any
incremental adoption of phases in the evolution of build processes. However, the observed

54

7.3. Goal 3: Build Process Evolution

(a) The INSTALL phase (b) The SCRIPT phase

(c) The DEPLOY phase (d) The NOTIFICATIONS phase

(e) The LANGUAGE_ENV phase (f) The BUILD_ENV phase

Figure 7.4.: Phase usage frequency for selected phases for all projects.
peak: the maximum phase usage (in %)
avg: the average phase usage (in %)
n: the total amount of projects in this group (= 100%)
black curve: shows the usage frequency
green curve: shows the current amount of inclusions
red curve: shows the current amount of exclusions

55

7. Results and Discussion

(a) The BEFORE_INSTALL phase (b) The AFTER_SUCCESS phase

(c) The CACHE_ENV phase (d) The BUILD_MATRIX phase

(e) The ADDONS phase (f) The PLATFORM_ENV phase

Figure 7.5.: Examples for experimental periods in phase usage frequency graphs.
peak: the maximum phase usage (in %)
avg: the average phase usage (in %)
n: the total amount of projects in this group (= 100%)
black curve: shows the usage frequency
green curve: shows the current amount of inclusions
red curve: shows the current amount of exclusions

56

7.4. Goal 4: Build Process Structure Build-Up

peaks at the beginning of CI-usage (cf. figure 7.5) indicate that projects go through an
experimental period for a subset of phases.

Also it could not be observed that there exist time periods in which the focus lies on
maintaining special phases. The expectations were to find that for certain intervals in the
CI-usage period foci on special phases exist and that at some point the build processes
would stabilize. Changes are always regarded good, as the process should evolve, but the
frequency was not expected to remain on such a high level. Furthermore it was expected
to identify stabilizing characteristics for projects with a larger CI-usage period. None of
the above expectations could be confirmed by the data.

7.4. Goal 4: Build Process Structure Build-Up
Instead of observing the build process evolution by analyzing the change and usage
frequencies of phases, here the adoption of CI-functionalities is observed to investigate
incremental adoption from a different point of view. CI-functionalities are defined by
groups of phases (cf. section 4.6 (page 25)) and an approach is given to measure the
adoption of such functionalities (cf. section 6.1 (page 37)). The results yield information
on how the semantic structure of the build process is constructed iteratively and how
mature a build process is.

Q1: Are CI-functionalities used in a consistent manner?

Assuming an absolute threshold (T = 1) as an appropriate parameter for the adoption
measure is unreasonable, because consistent usage must fulfill a certain variable tolerance.
For the five CI-functionalities given (cf. table 4.3 (page 28)), functionality adoption
is tested for thresholds T ∈ {0.7, 0.8, 0.9, 1.0}. For each threshold T the amount of
projects p(T,C), that have adopted a CI-functionality C ∈ (1, . . . , 5) is represented as
(p(T,1), . . . , p(T,5)) (cf. figure 7.6). By lowering the threshold T one can see by how much
these values increase.
A 100% threshold, which was previously assumed too strict, actually gives a high project
count, especially for the PRE_EXEC functionality: (916, 731, 597, 310, 49). More projects
are gained by lowering the threshold. The project gain from T = 0.9 to T = 0.8 is the
following: (9, 7, 12, 7, 4). In four out of five cases there is a gain of less than 1% (regarding
100% as all 962 projects), thus a 90% threshold suffices the variable demand, but also
remains strict enough.
With a 90% threshold the project count for the five CI-functionalities is the following:
(942, 754, 620, 324, 49). Therefore it can be said that by defining a continuous usage
representation consistent functionality usage is sufficiently measurable and that consistent
usage is indeed observed.

57

7. Results and Discussion

Figure 7.6.: Project count for different thresholds T ∈ {0.7, 0.8, 0.9, 1.0} in the CI-
functionality adoption measure.

58

7.4. Goal 4: Build Process Structure Build-Up

Q2: How mature are CI build processes in Travis CI?

From the CI-functionality adoption measure it is further possible to derive maturity
levels for Travis CI build processes. In order to accomplish this the temporal order, in
which the CI-functionalities are adopted, is presented as a five-tuple (F1, F2, F3, F4, F5)
with Fi ∈ {1, 2, 3, 4, 5} uniquely representing the order of adoption, and Fi = 0 meaning
the functionality Fi is never adopted. Here the adoption measure with the 90% threshold
is used. I map the functionalities in the order as given in table 4.3 (page 28):

(F1, F2, F3, F4, F5)

=

(PRE_EXEC,EXEC,BEFORE_AFTER,NOTIFICATIONS,DEPLOY)

By clustering on these vectors using an euclidean distance (cf. table A.2 (page 81)), 14
distinct groups are identified (cf. table 7.5). These groups are regarded as CI-maturity
levels. The cluster name is simply a name, that is assigned to the cluster by the Weka
tool. Of importance are the cluster codes and the cardinality of the cluster given in the
count column. The clusters are sorted by the amount of adopted CI-functionality, i.e.,
by the amount of Fi 6= 0 in the cluster code. The cardinality of the clusters does not
rise with increasing amount of CI-functionality. In fact most projects adopt three to
four CI-functionalities, whereby DEPLOY is the least adopted functionality. 18 projects
never use any phase consistently.

Cluster Name Cluster Code Cardinality Amount of CI-functionality
cluster10 12345 15 5
cluster4 12304 27 4
cluster7 12340 134 4
cluster9 12430 49 4
cluster3 12300 300 3
cluster12 12003 5 3
cluster2 12030 69 3
cluster5 10230 15 3
cluster14 10320 23 3
cluster1 12000 161 2
cluster8 10200 60 2
cluster11 10020 17 2
cluster6 10000 69 1
cluster13 00000 18 0

Table 7.5.: CI-maturity measured by CI-functionality adoption.

Cluster3 is the cluster with the highest cardinality: ∼ 31% of all projects develop their
build process structure according to cluster code (12300). Clusters above cluster3 in

59

7. Results and Discussion

table 7.5 (cluster9, cluster7, cluster4 and cluster10) extend the cluster code (12300) by
including NOTIFICATION and DEPLOY functionalities. The majority of projects
(≥ 54%) lie in cluster3 or in one of the latter four. Projects in cluster10 actually adopt
all functionality in the order (12345).

Q3: What is the adoption time for CI-functionalities in GitHub projects?

The evolution of CI-functionality adoption is already given by the cluster codes in
table 7.5, representing the order in which CI-functionalities are adopted. What remains
is to investigate the mean adoption time for these functionalities. This is done for each
functionality separately (cf. table 7.6).

CI-functionality Time in days Time in commits
PRE_EXEC 5.38 1.13

EXEC 52.39 2.21
BEFORE_AFTER 254.82 8.45
NOTIFICATIONS 123.41 6.72

DEPLOY 426.52 20.57

Table 7.6.: Mean time of adoption for CI-functionalities.

PRE_EXEC, the functionality which is always adopted first, is on average introduced
via the first configuration change and in the first five days after the start of CI-usage.
The main functionality, the SCRIPT functionality, is on average adopted circa seven
weeks (52 days) after begin of CI-usage. This is a rather long pause, but on average this
is only the second build changing commit. Next come the notifications and additional
phases with mean adoption times of a third and two thirds of a year. Only after one
year the adoption of DEPLOY takes place. In commits this is commonly reached in the
20th configuration changing commit. The average project had a total of 27 configuration
changes (cf. section 6.3 (page 41)), thus DEPLOY is adopted quite late.

Q4: What is the impact of project age, CI-usage period, phase usage and phase
changes on CI-maturity?

The relation between project-level features (cf. section 6.1 (page 35)) and the assigned
CI-maturity levels can be analyzed in multiple ways. Here I decided use the Weka tool
to evaluate different classifiers for CI-maturity on selected feature subsets of project-level
features (cf. appendix B (page 87)). I thereby do not aim at optimizing or finding an
optimal classifier, but only observe if there exists a classifier which classifies better than
a given threshold classification.

The OneR, ZeroR and J48 classifiers are used (cf. section 2.2.1 (page 8)). The two simple
ZeroR and OneR classifiers are considered a minimum threshold for good classification,

60

7.4. Goal 4: Build Process Structure Build-Up

as a good classifier should exceed the percentage of correct classified instances, i.e., the
precision, of ZeroR and OneR significantly [FHW16].

Classifiers are evaluated upon the following feature subsets:

(i) All features (F4, F5, F6)
(ii) meta features: (csum,abs, usum,bin, lang, den,maxID) ⊆ F4 × F5 × F6

(iii) features of absolute usage: (u1,abs, . . . , um,abs) ⊆ F5

(iv) features of relative usage: (u1,rel, . . . , um,rel) ⊆ F5

(v) features of binary usage: (u1,bin, . . . , um,bin) ⊆ F5

(vi) features of absolute changes: (c1,abs, . . . , cn,abs) ⊆ F4

(vii) features of relative changes: (c1,rel, . . . , cn,rel) ⊆ F4

(viii) age and CI-usage period in F6

As the ZeroR classifier does not rely on the features, it obviously gives the same threshold
precision (31.19% correctly classified instances) for each of the following classifications:

(i) OneR classifies with precision 41.37% and uses the NOTIFICATIONS_changed_-
relative feature as the best predictor. For J48 and a bucket size of two the precision rises
to 78.27%, which is significantly higher than both the ZeroR and OneR precisions; even
more than twice as precise as ZeroR (cf. table B.1 (page 87)).

(ii) For classification upon meta features OneR has precision 36.28% whereas J48 with
bucket size two only has a precision (30.77%) even worse than both ZeroR and OneR.
For bucket size 30 the precision of J48 rises to 38.88%, for greater bucket size it decreases
again (cf. table B.2 (page 87)).

(iii) Classifying upon absolute usage features yields a precision of 42.83% for OneR and
the maximum precision of J48 (71.93%) is again achieved with a low bucket size of two
(cf. table B.3 (page 87)). Again J48 exceeds ZeroR’s precision significantly. OneR once
more uses the notification related feature as best predictor.

(iv) With the relative usage features the highest precision of all J48 classifications is
achieved (79.42%) with bucket size two (cf. table B.4 (page 88)). OneR (with best
predictor being the notifications) has a low precision of 41.99%.

(v) - (vii) For these three, again OneR has a precision of circa 41% and J48 exceeds
both ZeroR and OneR with an optimal bucket size of five (cf. table B.5 (page 88)) or 20
(cf. table B.6 (page 88) / table B.7 (page 89)). For all three subsets OneR again classifies
with the notification related feature.

61

7. Results and Discussion

(viii) The time related features classify with very low precision. OneR (25.88%) classifies
even worse than ZeroR and with J48 and bucket size 40 the precision just matches the
one of ZeroR (cf. table B.8 (page 89)).

Additionally I manually review the classification capability of distinct phase usage per
project upon the visual distribution of the latter (cf. figure 7.1). In figure 7.7 the
distribution of CI-maturity levels (colors) is plotted onto the distribution of distinct
phase usage (histogram).

(a) Absolute distribution. (b) Relative distribution.

Figure 7.7.: Distribution of clusters mapped to the distribution of distinct phase usage.

Figure 7.7a shows that CI-maturity levels are widely scattered in this distribution. CI-
maturity levels cluster3 (12300), cluster1 (12000) and cluster7 (12340) make up most
of the absolute shares, which is already known from table 7.5. Viewing the relative
distribution of CI-maturity levels upon distinct phase usage (cf. figure 7.7b) gives a better
picture for classification. The marginals of the relative distribution are quite exclusively
used. Projects using only one phase belong to CI-maturity level cluster6 (10000). 16
distinct phases are used by projects of maturity cluster4 (12304), 15 distinct phases by
projects of maturity cluster3 (12300).
Between these marginals there is the following situation: cluster1 (12000) holds the
majority of projects for two distinct phases and its relative share then slowly vanishes
towards the value eight or nine. Similarly cluster6 vanishes around value seven. or the
highly mature and large levels cluster3 (12300), cluster7 (12340) and cluster10 (12345) a
growth of relative share with increasing distinct phase count is observable. Cluster3 first
appears at value two and quickly grows and holds a circa 30% relative share. Similar
is true for cluster7, only that its share grows slower. Cluster10 appears rather late and
maintains a low share due to its small size (15 projects only cf. table 7.5). The immature
cluster13 has the most of its appearance for values one to four. All other clusters are
neglected at this point due to an insignificant absolute share.

62

7.4. Goal 4: Build Process Structure Build-Up

7.4.1. Discussion
Consistent usage is analyzed upon CI-functionalities and not for phases. Measuring
adoption for single phases only might not reflect the adoption of functionalities as well as
when the phases are grouped together as in table 4.3 (page 28), especially as Travis CI
allows for ambiguous configurations of builds (cf. section 8.1 (page 72)). It is observed
that consistent usage is measurable and a 90% threshold suffices greatly for this, as a lot
of projects adopt functionality when this threshold is used.

Cluster3 (12300) is what I determine as the basic maturity level, since the core parts of
the Travis CI model are adopted: obviously the SCRIPT phase is used, along with some
pre-build execution steps, e.g., configuration of the platform environment, and some basic
conditional phases (BEFORE_AFTER). Notifications are already given by default and
the DEPLOY is not a necessary part of a CI model, as it can be seen as an extension to
CD (cf. section 4.4 (page 24)). Thus the absence of these functionalities is no violation
of CI principles. Together with cluster4 (12304), cluster7 (12340) and cluster9 (12430),
the projects of these four clusters make up the mature CI processes. Cluster10 holds
the projects, which are overly mature, as they fully use the Travis CI model and its CD
extensions. More than half of the clusters below cluster3 do strangely not adopt the
main EXEC functionality, yet they make use of the conditional phases of the Travis CI
model or use notifications. Cluster1 (12000), cluster2 (12030), cluster5 (10230), cluster12
(12003) and cluster14 (10320) can be considered some kind of premature build processes,
all other clusters below cluster3 are with reservation assessed as immature.

Two extreme cluster groups have been found: The groups which are assessed as immature
(cluster6, cluster8, cluster11, cluster13) and the projects that fully adopt all of the model’s
CI-functionalities (cluster10). Of all projects only 15 (1,5%) adopt every functionality.
The possible reasons are manifold: Is it hard to reach full maturity? Is it unnecessary?
Or is reaching full maturity depending on the project’s age or CI-usage period?
Assuming full maturity as hard to reach is not reasonable: maturity is purely computed
upon phase usage, i.e., the usage of keywords in the configuration, thus there is no
complexity in reaching a maturity level. The 15 projects from cluster10 can be typed as
two platforms, two frameworks, four python libraries, three data management / processing
systems, one mobile app, one database plug-in and one hoax project. Especially for the
hoax project (a project which enables the user to include webcam selfies in Git commit
messages) it is surprising that it was developed with a mature CI configuration. However,
it can not be said that the project’s type implies a high maturity level. The same can be
said for the ages and CI-usage periods of these 15 projects, displayed in table 7.7. The
values are widely spread and do not allow for identification of distinct characteristics of
highly mature CI builds.
For the non-mature clusters the following has the to be noted: Having a low quantitative
adoption of CI-functionality does not necessarily imply that the build process is weak
or ill suited. I picked a random sample of projects from the non-mature clusters and
reviewed their repositories on GitHub. It turned out that for some projects the SCRIPT

63

7. Results and Discussion

ID Age CI-usage period
1 1.41 0.90
2 1.61 1.61
3 2.35 2.27
4 2.59 1.98
5 3.00 2.76
6 3.33 3.34
7 3.57 2.92
8 3.71 3.54
9 5.08 4.70
10 5.22 4.67
11 6.31 5.37
12 6.60 4.68
13 6.67 2.63
14 7.01 4.59
15 11.47 2.35

Table 7.7.: Age and CI-usage period of the projects in cluster10 (sorted by age).

phase is used but just not recognized as adopted, because the 90% threshold is never
crossed. In other cases projects rely on the conventional default build execution in
the SCRIPT phase (cf. section 4.3.3 (page 23)). Maturity levels are constructed
with the implicit assumption that using conventions is lower valued than ownership
of functionalities, improving portability and readability of the configuration without
much a priori knowledge. Yet using conventions may ensure builds in different projects
of the same owner run homogeneously. The benefits of using these conventions are
debatable, but beyond the scope of this thesis. Maybe for Travis CI the usage of effective
configurations (after pushing a configuration default steps are explicitly added to the
configuration file automatically) is more convenient. However the immaturely classified
clusters are small in size (summarized: ∼ 20% of all projects). Hence a negative impact
on the quality assignment to the clusters is rather neglectable.

For classification of projects the J48 classifier is used and it is evaluated for which feature
subsets the latter provides a significantly better classification precision than the ZeroR
and OneR classifiers. Meta data, i.e., all data that does not directly relate to a certain
phase, and the combination of the projects age and CI-usage period both did not suffice
for simple and good classification (precision ∼ 25− 38%). The phase related data (phase
usage, phase changes and all features) however presented a good basis for classification
as precision (∼ 70− 80%) is approximately doubled compared to ZeroR and OneR. An
interesting observation is that notification related features are always chosen as the best
predictor in every case such a feature is present in one of the subsets (i)-(viii).
For the classification capability of distinct phase usage the following is observed. Except
for the marginals, for all values of distinct phase usage no CI-maturity level holds a

64

7.5. Goal 5: Equivalent Usage of the Travis CI Model

50% or higher relative share (cf. 7.7b). Thus a classifier, that would perform a ZeroR
classification for each value of distinct phase usage, would have an overall precision of
lower than 50%.
Hence distinct phase usage by itself does also not provide a better classification capability,
but it confirmed the plausibility of the CI-maturity level assignment (cf. section 7.4) I
do not want to strictly assign higher quality to build processes only because they use
more distinct phases, but through figure 7.7a it becomes clear that projects, which use
more distinct phases, tend to have a higher CI-maturity level.

7.5. Goal 5: Equivalent Usage of the Travis CI Model
In this section I aim to find characteristics of equivalent usage of the Travis CI model
by clustering projects upon selected feature subsets on project-level (Feature Vectors
F4, F5, F6; cf. section 6.1 (page 35)). Clustering all features at once yields a too distorted
view on the projects, therefore this option is not further pursued.

Q1: Can projects be clustered by similar usage of phases?

Yes, as clustering upon the binary phase usage features on project-level (cf. section 6.1)
yields in which combination phases are used together in a project (cf. table A.3 (page 82)).
Clustering revealed that there are nine main groups. All clusters, as seen several times
already, use the basic SCRIPT and LANGUAGE_ENV phase. BEFORE_INSTALL and
INSTALL. are also often used, and if then they are commonly used together. Strangely
projects of cluster two (127 projects) utilize BEFORE_INSTALL without the INSTALL
phase. Fewer used phases (cf. table 7.1a) are used to such small extend, that they
are not recognized in any cluster’s mean. The 84 projects of clusters five and the 58
projects of cluster seven show usage of exceedingly many phases. Of all remaining phases
(phases 6,8-12 cf. table 4.2 (page 26)), cluster five uses nearly all phases and moreover
three of them exclusively. It is the only cluster which configures the BEFORE_SCRIPT,
PLATFORM_ENV and GIT phases. Cluster seven is the same as cluster five, except
for the usage of the latter three phases. No other significant correlation between projects
upon phase usage can be observed.

Q2: Can projects be clustered by similar phase changes?

Yes, as clustering upon the phase change sum features on project-level (cf. section 6.1
(page 35)) yields groups of projects with characteristic focus on phases that they change
more frequently. In table A.4 (page 83) the cluster means for the six clusters are listed. I
compare each cluster against the full data means.
Cluster zero (64 projects) shows a significantly larger amount of phase changes for the
phases BEFORE_INSTALL, SCRIPT, BUILD_ENV and LANGUAGE_ENV. Projects
in this cluster often change the notifications configuration.
For cluster one, the cluster with the highest cluster size (544 projects), the characteristic
is, that for none of the phases the clusters mean exceeds the means of the full data. Most

65

7. Results and Discussion

of the projects, because this cluster holds the majority (∼ 56%) of all projects, change
most phases not more than once. The phase undergoing the most changes in cluster one
is the LANGUAGE_ENV with an average of four changes.
Projects of cluster two (58 projects) have a strong focus on changing the BUILD_-
MATRIX, BUILD_ENV and LANGUAGE_ENV phases. This cluster contains those
projects which among others strongly focus on modifying the build environment and
maintaining multiple jobs in the build process.
Cluster three (212 projects) is similar to cluster zero except for a focus on the INSTALL
phase instead of BEFORE_INSTALL, and no special focus on the NOTIFICATIONS.
As in cluster zero the focus also lies on the SCRIPT phase.
Cluster four (74 projects) is a mixture of clusters two and three. Additionally the
PLATFORM_ENV is special to these projects. Projects in this cluster focus both on
the build environment / multiple jobs and the main SCRIPT phase.
The 10 projects of cluster five exceed the full data means for nearly every phase, most of the
times by the factor ten. In contrast to all other clusters, here the focus on deploy related
phases clearly emerges. The same holds for the conditional phases AFTER_FAILURE,
AFTER_SUCCESS and environmental phases as GIT, ADDONS and CACHE_ENV.

Q3: Can projects be clustered by amount of configuration changes?

Yes, clustering upon the total amount of configuration changes per project resulted in
five clusters (cf. table A.5 (page 84) / table 7.8).

Cluster# Mean # configuration changes Share (rel.)
0 189.08 12 (1.25%)
1 7.38 452 (46.98%)
2 99.15 55 (5.71%)
3 53.64 146 (15.17%)
4 26.34 297 (30.87%)

Table 7.8.: Resulting cluster means for clustering on total configuration changes.

The overall mean of configuration changes per project is 27. Circa 30% of all projects
gather around this value. Even more (∼ 47%) projects change there configuration even
less. Fewer projects lie above the mean, with cluster size decreasing as the cluster mean
increases. This shows that the average amount of configuration changes lies in the range
[7, 54]; applying significantly more changes to the configuration is rather unusual. This
could possibly be due to a lower amount of phase changes per build change in these
projects. So projects that have a lower amount of build changes might change more
phases at once.

66

7.5. Goal 5: Equivalent Usage of the Travis CI Model

Q4: Can projects be clustered by density of phase changes?

Yes, clustering on phase change density per project resulted in six clusters (cf. table A.5
(page 84) / table 7.9). In contrast to viewing the absolute amount of configuration
changes, this clustering considers the density of changes regarding time. Furthermore is
the den feature (cf. section 6.1 (page 35)), on which the clustering is executed, a measure
for mean phase changes, not configuration changes.

Cluster# A phase change every . . . days Share (rel.)
0 6.94 62 (6.44%)
1 69.44 422 (43.87%)
2 4.21 24 (2.49%)
3 2.42 6 (0.62%)
4 23.15 298 (30.98%)
5 11.90 150 (15.60%)

Table 7.9.: Resulting cluster means for clustering on phase change density.

Phase change density is given as the ratio of phase changes per hour. In the middle
column of table 7.9 the results are simplified to express the mean time between two phase
changes, as if the phase changes were equidistantly mapped onto the CI-usage period.
Thus a lower value expresses a higher density. The total mean of phase change density
lies at 19.84 days (∼ three weeks) between each phase change. Again it is apparent,
that most projects are gathered around this mean or above (clusters one, four and five),
implying that the density is quite low. Few projects (accum. ∼ 9.56%) exhibit a high
density, up to a phase change every two to three days, or two to three times a week
respectively.

Q5: Can projects be clustered by age?

No, not in any beneficial way. It was already seen in figure 6.4a (page 41), project age is
approximated by a normal distribution (with mean 4.66, variance 2.69). Thus clustering
solely on the project age feature yields no valuable information, as there is only one focus
point in the feature space. For increasing K in the SimpleKMeans, K clusters of equally
large span are outputted.

Q6: Can projects be clustered by CI-usage period?

For clustering upon the CI-usage period holds the same as for clustering upon project
age. Thus the answer is also no.

7.5.1. Discussion
Except for the age and CI-usage period features, clustering is possible and revealed that
on average 4-6 distinct clusters can be identified. Furthermore it is learned that extremes

67

7. Results and Discussion

with notably high values are always grouped in clusters of small size, whereas cluster
sizes for extremes with significantly lower values than the overall mean are very large.
The final clusters in the second clustering revealed that there exist different types of
projects, e.g., projects that focus on maintaining the main SCRIPT phase or maintaining
complex build processes.
As the final clusters in the third and fourth clustering both include small outlier clusters
with extraordinary high values, it can be assumed that the projects that change their
configuration often also have higher count of phase changes, or higher phase change
density respectively. The previous assumption that projects with more build changing
commits maybe have a lower phase change rate per build change could not be confirmed.
Concrete links between these extreme clusters for the different feature subsets are not
further investigated in this thesis.

7.6. Final Discussion
Acceptance of phases in the Travis CI model (cf. section 7.1) is measured by the rank of
the phase in the overall usage and change rankings (cf. table 7.1a / table 7.1b). These
rankings are recognizable in many other findings, as there are always two sets of phases
observable. One of which are the phases that are regarded rather basic and are therefore
often included in the configuration (thus higher ranked), the other phases are regarded as
advanced configuration of the build process (thus lower ranked). It can be seen, especially
with the CI-maturity levels, that not all phases need to be used for a good build process.

The analysis of phase usage frequency yields that phase usage is mostly at a constant
level. These levels actually align with the values of the phase-usage ranking in section 7.1,
which shows by how many projects a phase is used in total (cf. table 7.1a). This measure
expresses the maximum amount of projects by which a phase is used. Furthermore, this
measure neither regards any temporal aspects, nor does it imply that these projects used
this phase in the same period of time or that they used this phase consistently. Yet the
frequency graphs presented in section 7.3 show that the usage levels from table 7.1a do
not differ greatly from the real usage at any point throughout the whole CI-usage period.

Also for the CI-functionalities a comparison to section 7.1 can be drawn: The CI-
functionality adoption rates are higher for functionalities, which include phases that have
higher acceptance given by the rankings in table 7.1a and table 7.1b.

Furthermore 14 CI-maturity levels have been identified (cf. section 7.4), yet the number
of final clusters resulting from the clustering in section 7.5 is significantly lower (e.g., six
final clusters for phase changes). Obviously there is no 1 : 1 mapping possible, when
assigning maturity levels to projects, due to comparatively few distinct characteristics.
Thus the classification precisions in section 7.4 are particularly good.

In section 7.5 projects are clustered upon project-level feature subsets. The final clusters
for phase usage and phase changes once again relate to the results of section 7.1, in

68

7.6. Final Discussion

particular to the rankings (cf. table 7.1a / table 7.1b). The higher ranked phases form
a basis that is used in nearly every project. The lower ranked phases then are used in
different combination with these basis phases. Similar holds for the phase changes, as
lower ranked phases are less likely to be changed often. This is observable in the small
size of the clusters, for which such phase change values are significantly high.

The majority of projects perform fewer configuration changes and have a lower average
phase change density (cf. section 7.5) than the mean of the full data. The visualization
of phase changes and phase usage (cf. figure 7.3 / figure 7.4) within the CI-usage period
show that phase change rates drop sharply after first setup and there exists a small
experimental usage period at beginning of CI-usage (cf. section 7.3). However this
does not have any impact on the maturity levels assigned. It can be seen that only few
projects raise the effort to maintain their CI configuration consistently, yet a majority of
projects share a moderate to high CI-maturity level (cf. section 7.4). Also in contrast
to the steady usage of phases, the change rates for phases oscillate at a moderate level.
This implies that projects develop their build processes incrementally, but only upon the
phases they used since the beginning. In sum for all 962 projects a stabilization, i.e.,
progressive reduction of phase change rates, could not be observed (cf. section 7.3).

69

8. Conclusion

Contents
8.1. Threats to Validity . 72

8.1.1. Construct Validity . 72
8.1.2. Inner Validity . 73
8.1.3. Outer Validity . 75

8.2. Future Work . 77

The first rough insights that are presented in this thesis already give a good view on
modern CI practices in OSS projects. It is possible to make statements on the acceptance
and robustness of the Travis CI platform, and also on the evolution and maturity of build
processes. With the general assumption that developers use Travis CI appropriately, the
following conclusions are drawn.
Rankings of phase changes and usage show that phases that express more basic CI-
functionality are preferred to be used in configurations more often than others. The
deploy functionality and other more advanced functionalities are less favored.
The Travis CI model is regarded stable towards changes. Although the probability of
the build result being a failure after a build change is quite high (40%), it is observed
that this probability is constant and independent of the phases that are changed (cf.
section 7.2 (page 48)). Without further investigation of the true cause of the build
failure, it cannot be clearly said that this anomaly is solely due to the Travis CI model.
Ultimately however, it is not observed that a special set of phases cause more build
failures upon change as others do, therefore the Travis CI model is considered stable
with slight constant uncertainty.
It is further possible to derive a maturity measure for projects from this data set
by clustering projects upon the order in which they adopted CI-functionality in their
configuration. A great share of projects adopt the necessary CI related functionality that
Travis CI has to offer.
Most projects pursue a fast setup and minimal involvement strategy, whereby minimal
involvement in this case only relates to the low adoption of new phases (thus somewhat
confirming the findings of Hilton et al. [Hil+16]). It follows that projects develop their
build processes incrementally but only upon the phases they used since the beginning. In
sum for all 962 projects a stabilization, i.e., progressive reduction of phase change rates,
could not be observed (cf. section 7.3 (page 52)).
Furthermore there exists a fairly good classification capability for most of the recorded
project-level features, with regard to the CI-maturity levels. Age turned out to be no
measure for CI-maturity at all. The concrete relationship between CI-maturity levels and

71

8. Conclusion

the feature’s values is not investigated, yet a strong relation exists (classification precision
up to 80%). This enables the prediction of maturity for future CI build processes of OSS
projects, using project-level features as indicators.

The data set which is explored by this thesis holds the change history of CI configuration
files from 962 GitHub OSS projects, that use Travis CI. In retrospective this data
set provides useful insights into the usage of Continuous Integration on the Travis CI
platform. The results give satisfying answers towards the research questions, however
the potential of this data set is not yet exhausted. Thus such historic build data can
indeed be successfully utilized for future research.

8.1. Threats to Validity
In the following I want to address some of the main threats towards my work. For the
structure of this chapter I orientate myself by the work of Beller, Gousios, and Zaidman
[BGZ17a] and Hilton et al. [Hil+16]. Threats are grouped by the construct, inner and
outer validity.

8.1.1. Construct Validity
Construct validity affects the setup of my research and the collection of the data.

Research Setup

Did I ask the right questions? This research is conducted on a previously rather un-
exploited data set. The research focus (cf. section 4.5 (page 24)) is constructed upon
viewing related work and an own analysis of the historic build data available. Thus the
research is set up to revolve around changes to CI configuration files (cf. section 4.5
(page 24)) and to exploratively gather knowledge on how CI is used in OSS. From there
on it is only logical to ask basic questions first while also following the premise to keep
preprocessing (including feature selection) and mining tasks as simple as possible for first
insights with this new data set.

Why did I not pursue other questions? The research questions in this thesis view the
data broadly, but from many perspectives. In retrospective research could be improved
by incorporating knowledge from other research questions (e.g., perform visualization of
changes and usage not upon groups of CI-usage period (cf. section 7.3 (page 52)), but
rather on the clusters of CI-maturity (table 7.5 (page 59))). Such iterative research or
the inclusion of more suitable research questions does simply not conform to the scope of
this thesis.

Data Collection

The collection of CI configurations is performed by custom extraction scripts, which simply
automated the cloning of a repository and the extraction of each version of the .travis.yml

72

8.1. Threats to Validity

file visible on the repository’s Git history. For this only a simple sequence of Git shell
commands are used, thus threats to the correct collection of CI configuration belong
solely in the outer validity (cf. section 8.1.3). For the build results the TravisTorrent
[Traa] data set is used, inheriting the threats of those who supplied it [BGZ17b]).

8.1.2. Inner Validity
The inner validity affects the internal quality of my results, i.e., it concerns how performing
this research and the decisions I made during affect the quality of my results.

Research Performance

Travis CI leaves a lot of freedom in its model, especially through the phases that can
call custom scripts. Research is performed under the assumption that developers use the
Travis CI model appropriately. This means that if beyond simple key value configuration
custom scripts are used, they are assumed to be called in the phase, which they are
semantically destined for. Inappropriate usage can significantly affect the data, e.g.,
would the result of a build process, whose unit tests fail in the INSTALL phase differ
from the models desired result, where the tests should be executed in the SCRIPT phase.
A developers benefit from inappropriate model usage is questionable, yet inappropriate
usage is possible.
Although it is not further investigated to which extend such anomalies occur, for future
research it is only correct that preprocessing is performed under the above assumption,
i.e., preprocessing being conservative. It minimizes distortion from the original data and
enables that such anomalies can be investigate in the future.

Preprocessing tasks are also automated by the use of custom scripts, which handled
the comparison of two consecutive configurations to extract differences. By testing
preprocessing on self-written exemplary configuration files, I am confident that the
preprocessing fully meets the correctness requirement.

In preprocessing the feature of CI-usage period is measured as the time passed since
the start of CI-usage until December 20th, 2016. As I research the usage of CI in OSS,
especially along with the use of the specific CI platform Travis CI, the start of CI-usage
is defined as the start of CI platform usage. Although CI mentality (cf. section 3.2
(page 13)) could have been adopted earlier, it is hard to measure this from the available
data and would also produce a lot of overhead for this research. The usage of Git could
be viewed as the usage of an CI tool but I chose to disregard this. Thus, the start of
CI-usage is the date of the commit that introduced the first version of the .travis.yml.
Analogously the project age is determined by the time that passed since the very first
commit in a project’s Git history.

Keeping the research simple is the guideline presented in research setup (cf. section 8.1.1),
thus simplification in preprocessing took place multiple times introducing small biases.
The grouping of the configuration’s top-level keys to phases and the grouping of phases to

73

8. Conclusion

CI-functionalities (cf. section 4.6 (page 25)) serves the purpose to simplify research per-
formance and extract simple results. However, the information loss through simplification
is rather low.

Lastly a word on the used mining algorithms: I used the algorithms versions as imple-
mented by the Weka tool [FHW16], which is commonly used for mining purposes. For
clustering the SimpleKMeans algorithm is used, for classification the OneR, ZeroR and
J48 algorithms. The following threat is also justified by the simplicity guideline in the
research setup (cf. section 8.1.1):
Why are exactly these algorithms used? It is not the goal of this research to optimize
the clustering and classification applications, but rather to observe if such clustering and
classification is possible and if so, then the evaluation of adequate resulting clusters (cf.
appendix A (page 79) for explanation of clustering approach) and classifiers takes place.
The SimpleKMeans algorithm may be limited to finding cluster of certain geometrical
shape in the feature’s values spaces only (convex volumes), but unusually shaped clusters
were not expected. Thus the simplicity of the SimpleKMeans suffices greatly for this
research. The same simplicity argument holds for the classifiers, as finding an over-fitting
classifier would not be of worth. As seen in the results (cf. section 7.5 (page 65)), the
J48 classification algorithm supplies many good classifiers (precision of 75− 80%), thus
no further classifiers are tested.

Handling Blurriness in Data

A configuration change without a semantic build change is possible by pushing a syntac-
tically incorrect configuration, as it cannot be parsed by the Travis CI platform. This
creates unrecordable change intent. The best way to handle this is by skipping the
syntactically incorrect configuration in the extraction of the change history (cf. sec-
tion 6.2 (page 39)). In all other cases in which the configuration change does not yield
a build change (e.g., by changing a comment) the configuration is not excluded from
preprocessing. However, the existence of non-semantic configuration changes are stored
(cf. section 6.2 (page 39)), so that the data set remains compliant to other meta data
(e.g., total amount of build changes).

Due to changes often being pushed in a multi commit push build results are not always
directly link-able by a Git commit id, as Travis CI issues only one build on behalf of the
latest commit in the push. As a heuristic the chronological next build result is used.

Responsibility for Blurriness in Results

Many of the threats against how I perform the preprocessing and mining are justified
by the conservative and simple nature of my preprocessing and the simple nature of the
mining. Therefore I just wish to point out some of the decision that are made during
this thesis, which may by the cause for some distortion in the results.

74

8.1. Threats to Validity

Default phases in Travis CI introduce two problems: Firstly for projects that do not
explicitly use them and rely on the Travis CI default conventions changes to and usage
of these phases is not recorded. Secondly I observed an anti-pattern listing 7.1 (page 47)
in which phases are only used to explicitly deny their default functionality. Apparently
some developers decide against using defaults in the model. If so, changes and usage
are erroneously recorded. In general only syntactical changes are recorded but yet they
slightly differ from the semantic changes I analyzed. The occurrence of invalid files
together with the such anti-patterns, e.g., denying defaults, pose a threat towards user
intent.

For visualizing change and usage frequency, the projects need to be comparable, thus
the CI-usage period is normalized to [0, 1] and the configuration changing commits are
linked to a relative point in time in this interval. To counteract the distortion caused by
the real age of the commits projects are grouped by age (cf. section 7.3 (page 52)).

For the computation of a CI-functionality adoption measure (cf. section 7.4 (page 57))
there are three aspects worth knowing: Firstly, for the computation of a continuous usage
representation configuration changes are viewed as equidistant events, i.e., the highs and
lows of the discrete usage representation (cf. figure 6.1a (page 38)) are not weighted with
the real temporal distance between two changes. Secondly continuous usage is computed
for each phase separately. Later, when continuous usage for CI-functionality, i.e., a group
of phases, is computed the following is done. A CI-functionality is considered adopted
only if at least of its phases is continuously used, with respect to a certain threshold.
The possibility that the discrete usage of two phases of a CI-functionality complement
each other (thus accumulated the CI-functionality could be seen as continuously used by
combination of two phases), is not considered. Thirdly when having the point of time
from which on a phase is continuously used, the corresponding value in the discrete usage
representation must not be a 1, i.e., the continuous usage can reach the threshold before
the phase is ever really used. Due to the high threshold (90%) such distortion is hardly
decisive.

8.1.3. Outer Validity
The outer validity affects the generalizability and external quality of my findings.

Scope of this Thesis

The generalizability of the findings is mainly limited by the scope and depth of my
research. I only view a subset of 962 (arbitrary) OSS projects, whereby I restrict myself
to the GitHub and Travis CI platforms. Arbitrary because I use a ready-made list
of projects meeting certain basic constraints (cf. section 4.2 (page 19)) given by the
TravisTorrent raw build logs [Traa]. The projects are not further reviewed, so everything
from small custom to big enterprise software projects are included. In retrospective only
four main programming languages are included in this project list (Java, Ruby, Python

75

8. Conclusion

and Go). Furthermore, only the Git master branches is consulted for extracting a CI
configuration history. Unfortunately no non-OSS projects are included in this research.
As CI is a rather modern practice (tool-wise) and Travis CI only emerged after 2011, the
longest CI-usage period recorded is five years.

There is a limit to the depth of my research, as I only regard the direct changes to the CI
configuration. Going deeper and analyzing changes to called scripts and everything that
these call is not part of this research. In contrast to the Travis CI configuration, custom
scripts have no underlying model on which changes can be classified and interpreted as
easily. However, this also evokes an unavoidable threat towards the minimal involvement
theory. It is indeed possible to change the main parts of the build process by only
changing called scripts and letting the configuration as is for a long period.

Data Quality

Lastly some notes on data quality which also affects the generalizability of my findings.
This research is conducted on the naive assumption that the data is complete and
untampered with. Due to the temporal delta between data analysis and preprocessing,
it cannot be ensured that the Git histories were not tampered with by the developers.
Moreover would a tampered Git history obviously not match with the TravisTorrent data
set which holds data on the build results. To which extend this could have happened in
those few months I cannot say but I believe it to be small.

In this thesis only the configuration files of the project’s master branches are of interest.
But this also means that if some branches might have been merged back into the master
branch, their history is integrated into the history of the according master branch. How
vastly merging of branches influences the correct linearity of the CI-configurations cannot
be said at this point either.

Travis CI’s interpretation of the .travis.yml configuration allows for ambiguous definitions
of semantically equivalent build processes. In the following example both configurations
describe a build process which expands to 2 jobs, although the first file does not use the
matrix key (cf. listing 8.1 (page 76)). This implies that build processes are in most cases,
but not in every case, uniquely describable by the usage of the phases.

1 language: ruby
2 rvm:
3 - 1.9.3
4 - 2.1.0
5 env:
6 - DB=mongodb

1 language: ruby
2 matrix:
3 - rvm: 1.9.3
4 env: DB=mongodb
5 - rvm: 2.1.0
6 env: DB=mongodb

Source Code: Ambiguity in Travis CI configurations.

76

8.2. Future Work

Conventions like relying on default phases pose a threat against the CI-maturity measure.
Although such phases do not have to be exclusively used, i.e., indirectly these phases
are used in every build process, it is higher valued if the developers owned their own
SCRIPT and NOTIFICATIONS phase. Also

It is quite possible that this thesis is at an unfortunate point in time to examine the
cross-sections of Travis CI build processes. As seen in figure 6.4b (page 41) most projects
use CI since around half or less of the life time of Travis CI showing a growing trend in
usage of this platform. Results may be blurred by extremely young projects and hard to
generalize for projects that have used CI for a significantly longer period.

8.2. Future Work
This data set provided many useful options for researching usage of Continuous Integration
in OSS projects. This thesis only presented some simple preprocessing of the data and
thus only basic insights. It therefore subjects a lot of research possibilities to deal with
in future work.

Firstly the findings of this thesis should be compared to other CI tools and platforms,
processing their CI configuration in a similar fashion, provided that these tools possess
such configuration files. Secondly research on the Travis CI platform should be continued,
e.g., by

• performing deeper analysis of this data and possibly including new features, e.g.,
for analyzing how build changes go along with software changes (thus analyzing
the true cause for build failures after build changes) or for analyzing changes to
scripts which are defined in the CI configuration but whose internal changes are
not recognized in the configuration’s change history.

• performing analysis on a new or larger set of projects or to a later point in time,
thereby reviewing the generalization of these findings.

• performing dedicated analysis with focus on specific programming languages or
specific project age for instance.

• analyzing how the clusters found under the goal of equivalent usage and the clusters
of CI-maturity relate to specific project typologies.

• performing a more detailed preprocessing of the data, e.g., distinguishing phase
changes by inclusion, exclusion and maintenance to a present phase in the configu-
ration.

• analyzing the usage of anti-patterns in CI configurations, e.g., the explicit deny of
default email notifications or execution of commands via custom scripts in phases
that are not semantically destined for such usage.

• performing an analysis on and comparison to non-OSS projects on the GitHub and
Travis CI platforms.

77

A. Clustering Results

Clustering is performed with the SimpleKMeans clustering algorithm of the Weka data
mining tool [FHW16].

For each clustering task the amount K of clusters to be created is increased progressively
until at least one of the following two criteria matches: Either if the clusters reflect a
sufficiently clear separation of the data, i.e., K is increased until the SME (squared mean
error) does not significantly decrease for larger K. Secondly for each clustering task there
is a expectation of the maximum amount of clusters to find, so that the interpretation of
the resulting clusters remains reasonable. From 2-5 random initial seeds the final clusters
with the lowest total SME are chosen as most suitable result.

Clustering is mostly performed on numerical features. For clustering on binary values,
a hamming distance is used. For clustering on real numbers or mixed value spaces an
euclidean distance is used.

79

A. Clustering Results

C
lu
st
er
#

A
tt
rib

ut
e

Fu
ll
D
at
a

0
1

2
3

4
5

6
7

8
9

10
(1
01

02
.0
)

(3
53

9.
0)

(3
06

.0
)

(1
16

1.
0)

(1
25

4.
0)

(5
0.
0)

(3
59

.0
)

(4
45

.0
)

(9
23

.0
)

(1
15

2.
0)

(7
85

.0
)

(1
28

.0
)

B
EF

O
R
E_

IN
ST

A
LL

_
ch
an

ge
d

0
0

0
1

0
0

1
1

0
0

0
0

IN
ST

A
LL

_
ch
an

ge
d

0
0

0
0

1
0

1
1

0
0

0
0

B
EF

O
R
E_

SC
R
IP

T
_
ch
an

ge
d

0
0

0
0

0
0

0
0

0
0

0
0

SC
R
IP

T
_
ch
an

ge
d

0
0

0
0

0
0

1
1

0
1

0
0

B
EF

O
R
E_

C
A
C
H
E_

ch
an

ge
d

0
0

0
0

0
0

0
0

0
0

0
0

A
FT

ER
_
FA

IL
U
R
E_

ch
an

ge
d

0
0

0
0

0
0

0
0

0
0

0
0

A
FT

ER
_
SU

C
C
ES

S_
ch
an

ge
d

0
0

0
0

0
0

0
0

0
0

0
1

A
FT

ER
_
SC

R
IP

T
_
ch
an

ge
d

0
0

0
0

0
0

0
0

0
0

0
0

B
EF

O
R
E_

D
EP

LO
Y
_
ch
an

ge
d

0
0

0
0

0
0

0
0

0
0

0
0

D
EP

LO
Y
_
ch
an

ge
d

0
0

0
0

0
0

0
0

0
0

0
0

A
FT

ER
_
D
EP

LO
Y
_
ch
an

ge
d

0
0

0
0

0
0

0
0

0
0

0
0

B
U
IL
D
_
ST

A
G
ES

_
ch
an

ge
d

0
0

0
0

0
0

0
0

0
0

0
0

B
U
IL
D
_
M
AT

R
IX

_
ch
an

ge
d

0
0

0
0

0
0

0
1

1
0

0
0

N
O
T
IF

IC
AT

IO
N
S_

ch
an

ge
d

0
0

0
0

0
0

0
0

0
0

0
0

A
D
D
O
N
S_

ch
an

ge
d

0
0

1
0

0
0

0
0

0
0

0
0

C
A
C
H
E_

EN
V
_
ch
an

ge
d

0
0

0
0

0
0

0
0

0
0

0
0

PL
AT

FO
R
M
_
EN

V
_
ch
an

ge
d

0
0

0
0

0
1

0
0

0
0

0
0

G
IT

_
ch
an

ge
d

0
0

0
0

0
0

0
0

0
0

0
0

B
U
IL
D
_
EN

V
_
ch
an

ge
d

0
0

0
0

0
0

1
1

0
0

1
0

LA
N
G
U
A
G
E_

EN
V
_
ch
an

ge
d

0
1

0
0

0
0

1
1

0
0

0
0

Ta
bl
e
A
.1
.:
C
lu
st
er
in
g
re
su
lts

:
ph

as
e
ch
an

ge
s
pr
io
r
to

bu
ild

fa
ilu

re
s.

80

C
lu
st
er
#

A
tt
rib

ut
e

Fu
ll
D
at
a

0
1

2
3

4
5

6
7

8
9

10
11

12
13

(9
62
.0
)

(1
61
.0
)

(6
9.
0)

(3
00
.0
)

(2
7.
0)

(1
5.
0)

(6
9.
0)

(1
34
.0
)

(6
0.
0)

(4
9.
0)

(1
5.
0)

(1
7.
0)

(5
.0
)

(1
8.
0)

(2
3.
0)

PR
E_

EX
EC

0.
98
75

1.
00
62

1
1.
00
33

1.
03
7

1
1

1
1

1
1

1
1

0
1.
13
04

EX
EC

1.
62
27

1.
99
38

2.
05
8

2.
05
33

1.
85
19

0
0

2.
17
91

0
2.
14
29

1.
6

0
2

0
0.
04
35

B
EF

O
R
E_

A
FT

ER
1.
88
77

0
0

2.
94
33

3.
07
41

2
0

2.
91
04

2
3.
95
92

3.
13
33

0
0

0
3

N
O
T
I

1.
09
56

0
2.
94
2

0
0.
07
41

3
0

3.
91
04

0
2.
89
8

3.
66
67

2
0.
6

0
2

D
EP

LO
Y

0.
20
06

0
0

0
3.
85
19

0
0.
05
8

0
0

0
4.
6

0
3.
2

0
0

Ta
bl
e
A
.2
.:
C
lu
st
er
in
g
re
su
lts

:
C
I-
fu
nc

tio
na

lit
y
in
tr
od

uc
tio

n.

81

A. Clustering Results

C
lu
st
er
#

A
tt
rib

ut
e

Fu
ll
D
at
a

0
1

2
3

4
5

6
7

8
(9
62
.0
)

(2
37
.0
)

(1
93
.0
)

(1
27
.0
)

(1
17
.0
)

(8
1.
0)

(8
4.
0)

(5
3.
0)

(5
8.
0)

(1
2.
0)

B
EF

O
R
E_

IN
ST

A
LL

_
us
ed
_
bi
na

ry
1

1
0

1
0

1
1

0
1

0
IN

ST
A
LL

_
us
ed
_
bi
na

ry
1

1
0

0
1

1
1

1
1

1
B
EF

O
R
E_

SC
R
IP

T
_
us
ed
_
bi
na

ry
0

0
0

0
0

0
1

0
0

0
SC

R
IP

T
_
us
ed
_
bi
na

ry
1

1
1

1
1

1
1

1
1

1
B
EF

O
R
E_

C
A
C
H
E_

us
ed
_
bi
na

ry
0

0
0

0
0

0
0

0
0

1
A
FT

ER
_
FA

IL
U
R
E_

us
ed
_
bi
na

ry
0

0
0

0
0

0
0

0
0

0
A
FT

ER
_
SU

C
C
ES

S_
us
ed
_
bi
na

ry
0

0
0

0
0

0
1

0
1

0
A
FT

ER
_
SC

R
IP

T
_
us
ed
_
bi
na

ry
0

0
0

0
0

0
0

0
0

0
B
EF

O
R
E_

D
EP

LO
Y
_
us
ed
_
bi
na

ry
0

0
0

0
0

0
0

0
0

0
D
EP

LO
Y
_
us
ed
_
bi
na

ry
0

0
0

0
0

0
0

0
0

0
A
FT

ER
_
D
EP

LO
Y
_
us
ed
_
bi
na

ry
0

0
0

0
0

0
0

0
0

0
B
U
IL
D
_
ST

A
G
ES

_
us
ed
_
bi
na

ry
0

0
0

0
0

0
0

0
0

0
B
U
IL
D
_
M
AT

R
IX

_
us
ed
_
bi
na

ry
0

0
0

1
0

0
1

0
1

0
N
O
T
IF

IC
AT

IO
N
S_

us
ed
_
bi
na

ry
0

0
0

0
0

1
1

0
0

0
A
D
D
O
N
S_

us
ed
_
bi
na

ry
0

0
0

0
0

0
1

0
1

0
C
A
C
H
E_

EN
V
_
us
ed
_
bi
na

ry
0

0
0

1
0

1
0

0
1

1
PL

AT
FO

R
M
_
EN

V
_
us
ed
_
bi
na

ry
0

0
0

0
0

0
1

0
0

0
G
IT

_
us
ed
_
bi
na

ry
0

0
0

0
0

0
1

0
0

0
B
U
IL
D
_
EN

V
_
us
ed
_
bi
na

ry
1

1
1

1
1

1
1

0
1

1
LA

N
G
U
A
G
E_

EN
V
_
us
ed
_
bi
na

ry
1

1
1

1
1

1
1

1
1

1

Ta
bl
e
A
.3
.:
C
lu
st
er
in
g
re
su
lts

:
ph

as
e
us
ag

e.

82

C
lu
st
er
#

A
tt
rib

ut
e

Fu
ll
D
at
a

0
1

2
3

4
5

(9
62

.0
)

(6
4.
0)

(5
44

.0
)

(5
8.
0)

(2
12

.0
)

(7
4.
0)

(1
0.
0)

B
EF

O
R
E_

IN
ST

A
LL

_
ch
an

ge
d_

ab
so
lu
te

4.
68

61
9.
09

38
1.
57

17
7.
39

66
7.
41

51
8.
04

05
47

.5
IN

ST
A
LL

_
ch
an

ge
d_

ab
so
lu
te

5.
57

59
7.
93

75
2.
21

32
1.
86

21
10

.8
20

8
10

.1
35

1
50

B
EF

O
R
E_

SC
R
IP

T
_
ch
an

ge
d_

ab
so
lu
te

2.
14

03
4.
84

38
0.
40

81
5.
82

76
4.
43

4
1.
90

54
10

.8
SC

R
IP

T
_
ch
an

ge
d_

ab
so
lu
te

7.
11

54
12

.3
75

2.
98

16
7.
03

45
12

.0
18

9
12

.8
24

3
52

.6
B
EF

O
R
E_

C
A
C
H
E_

ch
an

ge
d_

ab
so
lu
te

0.
17

57
1.
03

13
0.
08

46
0.
17

24
0.
14

15
0.
22

97
0

A
FT

ER
_
FA

IL
U
R
E_

ch
an

ge
d_

ab
so
lu
te

0.
22

25
0.
12

5
0.
02

39
0.
20

69
0.
27

36
0.
20

27
10

.8
A
FT

ER
_
SU

C
C
ES

S_
ch
an

ge
d_

ab
so
lu
te

1.
82

54
3.
42

19
0.
83

82
0.
63

79
2.
33

96
3.
82

43
26

.5
A
FT

ER
_
SC

R
IP

T
_
ch
an

ge
d_

ab
so
lu
te

0.
29

94
1.
25

0.
05

88
0.
31

03
0.
58

49
0.
25

68
1.
5

B
EF

O
R
E_

D
EP

LO
Y
_
ch
an

ge
d_

ab
so
lu
te

0.
17

98
0.
09

38
0.
02

02
0

0.
28

3
0.
55

41
5.
5

D
EP

LO
Y
_
ch
an

ge
d_

ab
so
lu
te

0.
58

52
0.
71

88
0.
23

71
0.
27

59
1.
28

3
0.
63

51
5.
3

A
FT

ER
_
D
EP

LO
Y
_
ch
an

ge
d_

ab
so
lu
te

0.
06

03
0

0.
01

29
0

0.
10

38
0.
39

19
0

B
U
IL
D
_
ST

A
G
ES

_
ch
an

ge
d_

ab
so
lu
te

0
0

0
0

0
0

0
B
U
IL
D
_
M
AT

R
IX

_
ch
an

ge
d_

ab
so
lu
te

5.
68

92
5.
01

56
1.
13

97
28

.6
37

9
6.
97

64
10

.2
02

7
63

.7
N
O
T
IF

IC
AT

IO
N
S_

ch
an

ge
d_

ab
so
lu
te

1.
50

52
8.
68

75
0.
46

88
2.
29

31
1.
03

77
2.
40

54
10

.6
A
D
D
O
N
S_

ch
an

ge
d_

ab
so
lu
te

1.
37

11
2.
87

5
0.
28

49
1

2.
36

79
3.
82

43
13

.7
C
A
C
H
E_

EN
V
_
ch
an

ge
d_

ab
so
lu
te

1.
60

91
3.
73

44
0.
50

55
3.
96

55
2.
31

6
2.
36

49
13

.8
PL

AT
FO

R
M
_
EN

V
_
ch
an

ge
d_

ab
so
lu
te

0.
68

4
0.
68

75
0.
18

57
0.
34

48
0.
07

55
5.
90

54
4

G
IT

_
ch
an

ge
d_

ab
so
lu
te

0.
92

2
2.
40

63
0.
33

82
3.
20

69
0.
80

19
1.
33

78
9.
4

B
U
IL
D
_
EN

V
_
ch
an

ge
d_

ab
so
lu
te

6.
71

11
.5
31

3
2.
27

57
13

.4
82

8
10

.5
37

7
10

.6
35

1
67

.6
LA

N
G
U
A
G
E_

EN
V
_
ch
an

ge
d_

ab
so
lu
te

8.
95

63
10

.8
12

5
4.
38

97
34

.2
58

6
11

.9
48

1
9.
95

95
27

.9

Ta
bl
e
A
.4
.:
C
lu
st
er
in
g
re
su
lts

:
ph

as
e
ch
an

ge
s.

83

A. Clustering Results

C
lu
st
er
#

A
tt
rib

ut
e

Fu
ll
D
at
a

0
1

2
3

4
(9
62

.0
)

(1
2.
0)

(4
52

.0
)

(5
5.
0)

(1
46

.0
)

(2
97

.0
)

#
ch
an

ge
s

27
.7
63

18
9.
08

33
7.
36

73
99

.1
45

5
53

.6
43

8
26

.3
43

4

Ta
bl
e
A
.5
.:
C
lu
st
er
in
g
re
su
lts

:
co
nfi

gu
ra
tio

n
ch
an

gi
ng

co
m
m
its

.

84

C
lu
st
er
#

A
tt
rib

ut
e

Fu
ll
D
at
a

0
1

2
3

4
5

(9
62

.0
)

(6
2.
0)

(4
22

.0
)

(2
4.
0)

(6
.0
)

(2
98

.0
)

(1
50

.0
)

ph
as
e_

ch
an

ge
_
de

ns
ity

0.
00

21
0.
00

6
0.
00

06
0.
00

99
0.
01

72
0.
00

18
0.
00

35

AV
G

(in
da

ys
):

A
ph

as
e
ch
an

ge
ev
er
y

19
.8
4

6.
94

69
.4
4

4.
21

2.
42

23
,1
5

11
.9
0

Ta
bl
e
A
.6
.:
C
lu
st
er
in
g
re
su
lts

:
ph

as
e
ch
an

ge
de

ns
ity

.

85

B. Classification Results

(Remark: Classification with J48 was conducted as a 10-fold cross validation.)

Classifier Correctly Classified Instances Classification Attribute
ZeroR 31.19% -
OneR 41.37% NOTIFICATIONS_changed_relative
J48 (2) 78.27% -
J48 (5) 75.36% -
J48 (10) 74.64% -

Table B.1.: Classification results: (All ⇒ CI-Maturity).

Classifier Correctly Classified Instances Classification Attribute
ZeroR 31.19% -
OneR 36.28% phase_change_density
J48 (2) 30.77% -
J48 (10) 36.59% -
J48 (20) 37.84% -
J48 (30) 38.88% -
J48 (40) 36.69% -

Table B.2.: Classification results: (Meta Features ⇒ CI-Maturity).

Classifier Correctly Classified Instances Classification Attribute
ZeroR 31.19% -
OneR 42.83% NOTIFICATIONS_used_absolute
J48 (2) 71.93% -
J48 (10) 70.16% -
J48 (20) 69.65% -

Table B.3.: Classification results: (Absolute Usage ⇒ CI-Maturity).

87

B. Classification Results

(Remark: Classification with J48 was conducted as a 10-fold cross validation.)

Classifier Correctly Classified Instances Classification Attribute
ZeroR 31.19% -
OneR 41.99% NOTIFICATIONS_used_relative
J48 (2) 79.42% -
J48 (5) 78.07% -
J48 (10) 75.88% -

Table B.4.: Classification results: (Relative Usage ⇒ CI-Maturity).

Classifier Correctly Classified Instances Classification Attribute
ZeroR 31.19% -
OneR 41.99% NOTIFICATIONS_used_binary
J48 (2) 70.48% -
J48 (5) 70.79% -
J48 (10) 69.96% -

Table B.5.: Classification results: (Binary Usage ⇒ CI-Maturity).

Classifier Correctly Classified Instances Classification Attribute
ZeroR 31.19% -
OneR 41.48% NOTIFICATIONS_changed _absolute
J48 (2) 67.77% -
J48 (10) 68.61% -
J48 (20) 69.33% -
J48 (30) 69.33% -
J48 (40) 64.97% -

Table B.6.: Classification results: (Absolute Changes ⇒ CI-Maturity).

88

(Remark: Classification with J48 was conducted as a 10-fold cross validation.)

Classifier Correctly Classified Instances Classification Attribute
ZeroR 31.19% -
OneR 41.41% NOTIFICATIONS_changed _absolute
J48 (2) 67.88% -
J48 (10) 70.78% -
J48 (20) 70.79% -
J48 (30) 69.65% -

Table B.7.: Classification results: (Relative Changes ⇒ CI-Maturity).

Classifier Correctly Classified Instances Classification Attribute
ZeroR 31.19% -
OneR 25.88% ci_usage
J48 (2) 22.25% -
J48 (10) 25.88% -
J48 (40) 31.19% -

Table B.8.: Classification results: (Age and CI-Usage ⇒ CI-Maturity).

89

Bibliography

[Arf] Attribute-Relation File Format (ARFF). https://www.cs.waikato.ac.
nz/ml/weka/arff.html. Accessed: 2017-08-10 (cited on page 35).

[Awsa] What is Continuous Integration? https://aws.amazon.com/devops/
continuous-integration/. Accessed: 2017-08-24 (cited on pages 6, 7).

[Awsb] What is DevOps? https://aws.amazon.com/devops/what-is-
devops/. Accessed: 2017-08-24 (cited on page 7).

[BCR94] V. R. Basili, G. Caldiera, and H. D. Rombach. “The Goal Question Metric
Approach”. In: Encyclopedia of Software Engineering. Wiley, 1994 (cited on
pages 10, 11).

[BGZ17a] M. Beller, G. Gousios, and A. Zaidman. “Oops, My Tests Broke the Build: An
Explorative Analysis of Travis CI with GitHub”. In: Proceedings of the 14th
International Conference on Mining Software Repositories. MSR ’17. Buenos
Aires, Argentina: IEEE Press, 2017, pp. 356–367. isbn: 978-1-5386-1544-7.
doi: 10.1109/MSR.2017.62. url: https://doi.org/10.1109/MSR.
2017.62 (cited on pages 16, 72).

[BGZ17b] M. Beller, G. Gousios, and A. Zaidman. “TravisTorrent: Synthesizing Travis
CI and GitHub for Full-Stack Research on Continuous Integration”. In:
Proceedings of the 14th working conference on mining software repositories.
2017 (cited on pages 15, 19, 20, 73).

[Boo91] G. Booch. Object Oriented Design: With Applications. The Benjamin/Cum-
mings Series in Ada and Software Engineering. Benjamin/Cummings Pub.,
1991. isbn: 9780805300918. url: https://books.google.de/books?
id=w5VQAAAAMAAJ (cited on page 6).

[ES00] M. Ester and J. Sander. Knowledge Discovery in Databases: Techniken und
Anwendungen. Springer Berlin Heidelberg, 2000. isbn: 9783540673286. url:
https://books.google.de/books?id=QNat6WM73Q8C (cited on
pages 8, 9).

[FHW16] E. Frank, M. A. Hall, and I. H. Witten. The WEKA Workbench. Online Ap-
pendix for "Data Mining: Practical Machine Learning Tools and Techniques".
Morgan Kaufmann, 2016 (cited on pages 8, 9, 39, 61, 74, 79).

[FPSM92] W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus. “Knowledge Dis-
covery in Databases: An Overview”. In: AI Mag. 13.3 (Sept. 1992), pp. 57–
70. issn: 0738-4602. url: http://dl.acm.org/citation.cfm?id=
140629.140633 (cited on page 8).

91

https://www.cs.waikato.ac.nz/ml/weka/arff.html
https://www.cs.waikato.ac.nz/ml/weka/arff.html
https://aws.amazon.com/devops/continuous-integration/
https://aws.amazon.com/devops/continuous-integration/
https://aws.amazon.com/devops/what-is-devops/
https://aws.amazon.com/devops/what-is-devops/
http://dx.doi.org/10.1109/MSR.2017.62
https://doi.org/10.1109/MSR.2017.62
https://doi.org/10.1109/MSR.2017.62
https://books.google.de/books?id=w5VQAAAAMAAJ
https://books.google.de/books?id=w5VQAAAAMAAJ
https://books.google.de/books?id=QNat6WM73Q8C
http://dl.acm.org/citation.cfm?id=140629.140633
http://dl.acm.org/citation.cfm?id=140629.140633

Bibliography

[FPSS96] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. “Advances in Knowledge
Discovery and Data Mining”. In: ed. by U. M. Fayyad et al. Menlo Park, CA,
USA: American Association for Artificial Intelligence, 1996. Chap. From Data
Mining to Knowledge Discovery: An Overview, pp. 1–34. isbn: 0-262-56097-6.
url: http://dl.acm.org/citation.cfm?id=257938.257942
(cited on page 10).

[Ghua] About GitHub. https://github.com/abou. Accessed: 2017-08-23 (cited
on page 6).

[Ghub] GitHub. https://github.com. Accessed: 2017-08-23 (cited on page 6).
[Ghuc] GitHub Blog - One Thousand Strong. https://github.com/blog/5-

one-thousand-strong. Accessed: 2017-08-23 (cited on page 6).
[Ghud] GitHub Marketplace. https://github.com/marketplace. Accessed:

2017-08-24 (cited on page 6).
[Ghue] The state of the Octoverse 2016. https://octoverse.github.com/.

Accessed: 2017-08-23 (cited on page 6).
[Gita] A Short History of Git. https : / / git - scm . com / book / en / v2 /

Getting-Started-A-Short-History-of-Git. Accessed: 2017-08-23
(cited on page 3).

[Gitb] About Git. https://git-scm.com/about. Accessed: 2017-08-23 (cited
on page 5).

[Gitc] Git - everything is local. https://git-scm.com. Accessed: 2017-08-23
(cited on page 3).

[Gitd] Git Branching - Branches in a Nutshell. https://git-scm.com/book/
en/v2/Git-Branching-Branches-in-a-Nutshell. Accessed: 2017-
09-11 (cited on page 5).

[Gite] Git Internals - Git Objects. https://git-scm.com/book/en/v2/Git-
Internals-Git-Objects. Accessed: 2017-08-23 (cited on page 4).

[Gitf] Integration Manager Workflow. https : / / git - scm . com / about /
distributed. Accessed: 2017-08-23 (cited on page 3).

[GVS17] A. Gautam, S. Vishwasrao, and F. Servant. “An Empirical Study of Ac-
tivity, Popularity, Size, Testing, and Stability in Continuous Integration”.
In: Proceedings of the 14th International Conference on Mining Software
Repositories. MSR ’17. Buenos Aires, Argentina: IEEE Press, 2017, pp. 495–
498. isbn: 978-1-5386-1544-7. doi: 10.1109/MSR.2017.38. url: https:
//doi.org/10.1109/MSR.2017.38 (cited on page 16).

[HF10] J. Humble and D. Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Addison-Wesley Signature
Series (Fowler). Pearson Education, 2010. isbn: 9780321670229. url: https:
//books.google.de/books?id=6ADDuzere-YC (cited on page 24).

92

http://dl.acm.org/citation.cfm?id=257938.257942
https://github.com/abou
https://github.com
https://github.com/blog/5-one-thousand-strong
https://github.com/blog/5-one-thousand-strong
https://github.com/marketplace
https://octoverse.github.com/
https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git
https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git
https://git-scm.com/about
https://git-scm.com
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://git-scm.com/about/distributed
https://git-scm.com/about/distributed
http://dx.doi.org/10.1109/MSR.2017.38
https://doi.org/10.1109/MSR.2017.38
https://doi.org/10.1109/MSR.2017.38
https://books.google.de/books?id=6ADDuzere-YC
https://books.google.de/books?id=6ADDuzere-YC

Bibliography

[Hil+16] M. Hilton et al. “Usage, Costs, and Benefits of Continuous Integration in
Open-source Projects”. In: Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering. ASE 2016. Singa-
pore, Singapore: ACM, 2016, pp. 426–437. isbn: 978-1-4503-3845-5. doi:
10.1145/2970276.2970358. url: http://doi.acm.org/10.1145/
2970276.2970358 (cited on pages 16, 71, 72).

[HKP11] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. 3rd.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011. isbn:
0123814790, 9780123814791 (cited on pages 7–10).

[Iee] INTERNATIONAL STANDARD ISO/IEC/IEEE 24765-2010 - Systems
and software engineering – Vocabulary. http://ieeexplore.ieee.org/
document/5733835/. Accessed: 2017-12-08 (cited on page 10).

[Kdd] KDD2017. http://www.kdd.org/kdd2017/. Accessed: 2017-08-28
(cited on page 10).

[LL13] J. Ludewig and H. Lichter. Software Engineering – Grundlagen, Menschen,
Prozesse, Techniken. 3. Aufl. dpunkt.verlag Heidelberg, 2013. isbn: 978-3-
86490-092-1 (cited on pages 10, 11).

[Msr] MSR 2017 - The 14th International Conference on Mining Software Reposito-
ries. http://2017.msrconf.org/#/home. Accessed: 2017-10-16 (cited
on page 14).

[Proa] Proceedings of the 12th Working Conference on Mining Software Repositories.
https://dl.acm.org/citation.cfm?id=2820518&picked=prox.
Accessed: 2017-10-28 (cited on page 14).

[Prob] Proceedings of the 13th International Conference on Mining Software Reposi-
tories. https://dl.acm.org/citation.cfm?id=2901739&picked=
prox. Accessed: 2017-10-28 (cited on page 14).

[Proc] Proceedings of the 14th International Conference on Mining Software Reposi-
tories. https://dl.acm.org/citation.cfm?id=3104188&picked=
prox. Accessed: 2017-10-28 (cited on page 14).

[Traa] Index of /buildlogs/, howpublished = "https : / / travistorrent .
testroots.org/buildlogs/", note = Accessed: 2017-10-20 (cited on
pages 20, 39, 73, 75).

[Trab] Travis CI - Customizing the Build. https://docs.travis-ci.com/
user / customizing - the - build/. Accessed: 2017-08-24 (cited on
pages 21–23).

[Trac] TravisCI - Test and Deploy with Confidence. https://travis-ci.org.
Accessed: 2017-08-24 (cited on page 7).

[Trad] TravisTorrent - Free and Open Travis Analytics for Everyone. https:
//travistorrent.testroots.org/. Accessed: 2017-10-20 (cited on
page 19).

93

http://dx.doi.org/10.1145/2970276.2970358
http://doi.acm.org/10.1145/2970276.2970358
http://doi.acm.org/10.1145/2970276.2970358
http://ieeexplore.ieee.org/document/5733835/
http://ieeexplore.ieee.org/document/5733835/
http://www.kdd.org/kdd2017/
http://2017.msrconf.org/#/home
https://dl.acm.org/citation.cfm?id=2820518&picked=prox
https://dl.acm.org/citation.cfm?id=2901739&picked=prox
https://dl.acm.org/citation.cfm?id=2901739&picked=prox
https://dl.acm.org/citation.cfm?id=3104188&picked=prox
https://dl.acm.org/citation.cfm?id=3104188&picked=prox
https://travistorrent.testroots.org/buildlogs/
https://travistorrent.testroots.org/buildlogs/
https://docs.travis-ci.com/user/customizing-the-build/
https://docs.travis-ci.com/user/customizing-the-build/
https://travis-ci.org
https://travistorrent.testroots.org/
https://travistorrent.testroots.org/

	Introduction
	Structure of this Thesis

	Background
	Domain-driven Background
	Methodology-driven Background

	Motivation
	Topic of this Thesis
	Why Historic Build Data is Interesting
	The Mining Software Repositories Conference (MSR)
	Mining in the Context of CI
	Purpose of this Thesis
	What to Expect
	Methodology

	Preliminary Data Analysis
	Data Selection
	Build Execution Logs
	Build Configuration in Travis CI
	Conformance to Classic CI
	Research Focus
	Definition of Terms

	Research Goals and Questions
	Goals
	Feature Selection

	Data Preprocessing
	Feature Vector Modeling
	Challenges
	First Observations

	Results and Discussion
	Goal 1: Acceptance of the Travis CI Model
	Goal 2: Robustness of the Travis CI Model
	Goal 3: Build Process Evolution
	Goal 4: Build Process Structure Build-Up
	Goal 5: Equivalent Usage of the Travis CI Model
	Final Discussion

	Conclusion
	Threats to Validity
	Future Work

	Clustering Results
	Classification Results
	Bibliography

