
The present work was submitted to
the Research Group
Software Construction

of the Faculty of Mathematics,
Computer Science, and
Natural Sciences

Master Thesis

Towards a Catalog of
Refactorings for

Microservices

presented by

Vitalii Isaenko

Aachen, June 13, 2019

Examiner

Prof. Dr. rer. nat. Horst Lichter

Prof. Dr. rer. nat. Bernhard Rumpe

Supervisor

Dipl.-Inform. Andreas Steffens

Statutory Declaration in Lieu of an Oath

The present translation is for your convenience only.
Only the German version is legally binding.

I hereby declare in lieu of an oath that I have completed the present Master’s thesis entitled

Towards a Catalog of Refactorings for Microservices

independently and without illegitimate assistance from third parties. I have use no other than
the specified sources and aids. In case that the thesis is additionally submitted in an electronic
format, I declare that the written and electronic versions are fully identical. The thesis has not
been submitted to any examination body in this, or similar, form.

Official Notification

Para. 156 StGB (German Criminal Code): False Statutory Declarations
Whosoever before a public authority competent to administer statutory declarations falsely makes
such a declaration or falsely testifies while referring to such a declaration shall be liable to
imprisonment not exceeding three years or a fine.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to
Negligence
(1) If a person commits one of the offences listed in sections 154 to 156 negligently the penalty
shall be imprisonment not exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time.
The provisions of section 158 (2) and (3) shall apply accordingly.

I have read and understood the above official notification.

Eidesstattliche Versicherung

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Masterarbeit mit dem Titel

Towards a Catalog of Refactorings for Microservices

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf
einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische
Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

Aachen, June 13, 2019 (Vitalii Isaenko)

Belehrung

§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche
Versicherung falsch abgibt oder unter Berufung auf eine solche Versicher ung falsch aussagt, wird
mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt
(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen
worden ist, so tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.
(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die
Vorschriften des § 158 Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen.

Aachen, June 13, 2019 (Vitalii Isaenko)

Acknowledgment

I would like to thank Prof. Dr. rer. nat. Horst Lichter for the possibility to write my
master thesis at the chair. I also thank him and Prof. Dr. rer. nat. Bernhard Rumpe for
reviewing the thesis. I am particularly thankful to my supervisor, Dipl-Inform. Andreas
Steffens for his input and continuous feedback.
I thank my parents for providing me with unfailing support throughout this thesis.

This accomplishment would not have been possible without them.

Vitalii Isaenko

Abstract

Attracted by the competitive advantages of newly emerged architectural style many
organizations have adopted microservices practices in recent years. While the style
has valuable benefits it comes with several tradeoffs. The major problem in adopting
the architectural style is high complexity on the architectural level that leads to severe
problems with system’s maintainability. The thesis presents a catalog of refactoring
techniques that help to cope with degrading software paying off the technical debt.
The evaluation of the results demonstrated validity of the chosen approach as well
as applicability of the proposed refactoring techniques in industry. Chosen approach
guarantees reliability of the techniques as they are based on the proven traditional
refactorings. Overall, the presented catalog is usable in practice and the work brings
value for research and industry due to evaluation results.

Contents

1. Introduction 1
1.1. Structure of the Thesis . 2

2. Background 3
2.1. Microservices . 3
2.2. Technical Debt and Bad Smells . 4
2.3. Refactoring . 6
2.4. Summary . 6

3. Problem Statement 9
3.1. Research Questions . 9
3.2. Challenges and Scope . 10
3.3. Summary . 11

4. Related Work 13
4.1. Microservice Smells Catalog . 13
4.2. Microservices Patterns and Practices . 15

5. Concept 19
5.1. Initial Refactorings Selection Process . 19
5.2. Description template . 27
5.3. Evaluation . 30
5.4. Summary . 31

6. Initial Refactorings Selection 33
6.1. Microservices Smells Matching . 33
6.2. Refactorings Discovering . 37
6.3. Summary . 42

7. Refactoring Catalog 43
7.1. Inline Service . 44
7.2. Replace Parameter with Explicit API Method 48
7.3. Remove Middle Service . 50
7.4. Require Data for API Method . 53
7.5. Encapsulate Responsibility . 56
7.6. Extract Service . 59
7.7. Move Responsibility . 63
7.8. Introduce API Gateway . 66

i

7.9. Summary . 68

8. Evaluation 71
8.1. Questionnaire . 71
8.2. Results . 73
8.3. Discussion . 84
8.4. Summary . 86

9. Conclusion & Future Work 87
9.1. Conclusion . 87
9.2. Future Work . 88

A. Bad Smells Aliases 91

B. Microservices Smells Aliases 93

C. Questionnaire 95

Bibliography 117

List of Tables

4.1. Catalog of Microservices Smells . 15

6.1. Microserivces Smells Matching . 37
6.2. Refactorings Matching . 39
6.3. Refactorings Merge . 42

iii

List of Figures

5.1. Refactorings Selection Process . 23

7.1. Before Inline Service . 47
7.2. After Inline Service . 48
7.3. Before Replace Parameter with Explicit API Methods 50
7.4. After Replace Parameter with Explicit API Methods 51
7.5. After Remove Middle Service . 53
7.6. After Remove Middle Service . 54
7.7. Before Require Data for API Method . 56
7.8. After Require Data for API Method . 57
7.9. Before Encapsulate Responsibility . 59
7.10. After Encapsulate Responsibility . 60
7.11. Before Extract Service . 62
7.12. After Extract Service . 63
7.13. Before Move Responsibility . 66
7.14. After Move Responsibility . 67
7.15. Before Introduce API Gateway . 69
7.16. After Introduce API Gateway . 70

8.1. Position . 73
8.2. Participant’s Experience . 74
8.3. Experience With Microservices . 74
8.4. Approach Assessment . 75
8.5. Encapsulate Responsibility Smells, and Qualities. Inline Service Smells

and Qualities . 76
8.6. Extract Service Smells, and Qualities. Move Responsibility Smells and

Qualities . 77
8.7. Remove Middle Service Smells, and Qualities. Replace Parameter with

Explicit API Method Smells and Qualities 79
8.8. Require Data for API Method Smells, and Qualities. Introduce API

Gateway Smells and Qualities . 80
8.9. Smells Perspective . 82
8.10. Quality Factors Perspective . 83
8.11. Respondents Assessment by Occupation 85
8.12. Respondents Assessment by Experience 85

C.1. Questionnaire page 1 of 22 . 95
C.2. Questionnaire page 2 of 22 . 96

v

C.3. Questionnaire page 3 of 22 . 97
C.4. Questionnaire page 4 of 22 . 98
C.5. Questionnaire page 5 of 22 . 99
C.6. Questionnaire page 6 of 22 . 100
C.7. Questionnaire page 7 of 22 . 101
C.8. Questionnaire page 8 of 22 . 102
C.9. Questionnaire page 9 of 22 . 103
C.10.Questionnaire page 10 of 22 . 104
C.11.Questionnaire page 11 of 22 . 105
C.12.Questionnaire page 12 of 22 . 106
C.13.Questionnaire page 13 of 22 . 107
C.14.Questionnaire page 14 of 22 . 108
C.15.Questionnaire page 15 of 22 . 109
C.16.Questionnaire page 16 of 22 . 110
C.17.Questionnaire page 17 of 22 . 111
C.18.Questionnaire page 18 of 22 . 112
C.19.Questionnaire page 19 of 22 . 113
C.20.Questionnaire page 20 of 22 . 114
C.21.Questionnaire page 21 of 22 . 115
C.22.Questionnaire page 22 of 22 . 116

List of Source Codes

vii

1. Introduction

Contents

1.1. Structure of the Thesis . 2

Martin Fowler gave his opinion on refactoring for microservices in an interview: "This
is a recent trend which does not necessarily have such a big impact. Refactoring affects
monolithic applications as well as microservices. Microservice architectures have an
impact in that it becomes more difficult to make changes beyond the boundaries of
microservices. With monoliths, such changes can be made more straightforward. On the
other hand, it is much easier to make transformations within a small service because
of the smaller code base." [Mfi]. We completely agree with Martin Fowler and claim
that the work has big impact. As he noticed, "it becomes more difficult to make changes
beyond the boundaries of microservices" and that is exactly the gap we are trying to solve
in the thesis. We do not aim to propose refactorings that affect only the service under
refactoring but ones that work on the system level and solve architectural problems. It
also means that most of such techniques involve more that one service.
Refactoring is a crucial concept that is adopted by developers and used heavily on a

daily basis. Refactoring techniques are applied to improve quality of a system without
affecting its external behaviour. There are different refactorings. Some of them work
on different levels - code or design. Many of them consist of several trivial techniques.
There are catalogs that describe existing refactorings. There are books written to collect,
describe and organize them better.
Refactoring is an important and evolving research topic. There exist refactorings for

monolithic systems. With dramatic boost of popularity of microservices architectural
style there are also some new refactorings introduced that help to move from monolithic
to microservices system. However, refactorings for microservices systems are still missing.
The goal of the work is to build a catalog of refactoring for microservices. We try

to refine techniques specifically for this architectural style. We approach the problem
starting with microservices smells. We want the techniques to be reliable, therefore,
we base our work upon existing traditional refactoring catalogs with proven in practice
techniques.
The catalog is inspired by existing catalogs collected by Fowler, Lippert and Roock

and others. The described techniques are used in industry extensively. Great description
of the techniques contribute their use. We aim to make the catalog usable in practice by
developers. Therefore, in the thesis, we create a description template and stick to it to
present all the techniques.

1

1. Introduction

The work includes evaluation of the results. We publish a questionnaire for this purpose
and collect opinions of practitioners, researchers and students.

1.1. Structure of the Thesis
There is much foundation knowledge required to discuss the topic. Therefore, chapter 2
introduces all the necessary base knowledge on microservices, technical debt, bad smells
and refactoring. Chapter 3 defines the scope of the thesis and challenges to tackle. In
the following chapter 4 we discuss work done on microservices smells by now. We also
organize the identified smells into table that is used through the thesis. The next step is
building a concept described in chapter 5. There, we define a process to follow to build a
high quality catalog. We also define a description template. Afterwards, we propose and
choose an approach of refactorings selection. As the last part of concept, we define a
type of evaluation the results. In the chapter 6 we perform the planned in the concept
selection. The main results of the thesis - refactoring techniques for microservices - are
presented in the chapter 7. Each section of the chapter presents one refactoring technique
following the defined template. In the chapter 8 we present a developed questionnaire as
a method of evaluation and analysis of its results. The last chapter - chapter 9 concludes
the work, underlying the main results achieved. It also contains a discussion of possible
future work on the topic.

2

2. Background

Contents

2.1. Microservices . 3
2.2. Technical Debt and Bad Smells . 4
2.3. Refactoring . 6
2.4. Summary . 6

The chapter introduces necessary information for the master thesis.

2.1. Microservices

Microservices or microservice architecture - is an architectural style that structures an
application as a collection of small, autonomous services that work together [New15]
[Wha].
The main feature of microservices system is componentization via services. In most

of the cases when a high level component (library or package) is needed - a service is
created instead. The services in the system communicate via network. Usually REST
communication style is used for this purpose.
One more significant feature that differs applications adopted the style a lot from

monolith applications is decentralized data management. Each of the service has its own
data storage with data required to cover defined business responsibilities [Mic].

Services in a microservices system have certain characteristics [New15]:

• Highly maintainable and testable. All the services should have high quality. It
influences the overall quality of the system.

• Loosely coupled. Each service should be considered as a separate component. To
achieve replaceability of services - they should be loosely coupled.

• Autonomous, independently deployable. The more autonomous the services are - the
more organizational and operational benefits will be achieved. In this case, teams
are able to work in isolation without frequent interventions. The characteristic
allows to reduce time for integration considerably.

• Organized around business capabilities. Single responsibility principle works on
the services level - every service should have only one reason to change. In a
microservices system the reason is the same as everywhere - change of business

3

2. Background

requirements. Therefore, the services should be split based on business capabilities
to increase their autonomy.

• Small, doing one thing well. While size of a service cannot be precisely defined -
it is important to keep service from doing several things. It also correlates with
single responsibility principle.

All the mentioned characteristics bring benefits for the system that is built using mi-
croservices architectural style. The main of them are the following [Ric19]:

• Scaling. Microservices systems are easier and cheaper to scale. Having business
capabilities split clearly among different services there is a possibility to scale only
those parts that need it.

• Resilience. Failing service in a microservices system does not mean the system’s
crash. There are many more opportunities for developers and architects to build
solutions that can handle the failure of a service gracefully.

• Technology heterogeneity. Having several services that communicate with each
other via network, there are no restrictions on used technologies for them internally.
Therefore, development teams can pick the right tool for every task (business
capability) rather than be restricted to use only one technologies stack for the
whole application.

• Ease of deployment. Making changes to one service allows developers to deploy
this only service immediately without large integration overhead. It also makes
deployment less risky - if any problem occurs it can be quickly localized. Smaller
changes that are isolated in one service also allow making a fast rollback.

• Composability. With microservices approach we have an opportunity of better
reusability of the written functionality. Such a system can serve different clients of
any platforms requiring only internet connection.

• Services replaceability. There can be several reasons to replace a service completely
- drastically changed business requirements, legacy code base that is easier to throw
away and rewrite from scratch than refactor or emergence of new better suitable or
more powerful technologies. Having the application split among small services it is
cheaper and easier to complete.

• Organizational alignment. Smaller teams working on smaller codebase tend to be
more productive. In microservices system this benefit is present as the size of each
service is always appropriate for one small team.

2.2. Technical Debt and Bad Smells
Bad smell is a crucial concept for the research. As refactoring helps to improve system’s
quality - it is necessary to identify its disadvantages upfront. The bad smells are indicators
of these disadvantages.

4

2.2. Technical Debt and Bad Smells

There are different levels on which smells can appear. Smell can be seen on code, design
and architecture level. They are all interesting for the research. Fowler gives definition of
smells on code level: "a code smell is a surface indication that usually corresponds to a
deeper problem in the system" [Fow99]. Suryanarayana, Samarthyam, and Sharma give
the following definition of design level smells in their book Refactoring for Software Design
Smells: Managing Technical Debt: "Design smells are certain structures in the code that
indicate violation of fundamental design principles and negatively impact design quality"
[SSS14]. In the article [Gar+09] authors define architectural smell as a "commonly used
architectural decision that negatively impacts system lifecycle qualities"[Gar+09].
A term ’bad smell’ is closely related to technical debt. "Technical debt is the debt

that accrues when you knowingly or unknowingly make wrong or non-optimal design
decisions" [SSS14]. There are different dimension of technical debt. The following are the
most popular:

1. Code debt.

2. Design debt.

3. Architectural debt.

4. Test debt.

5. Documentation debt.

Technical debt appears in every project and for different reasons. The solution that
is provided by developers is not always optimal. It can be due to lack of time, high
domain complexity, delayed refactoring or lack of test suite. As some of the factors are
unavoidable, project gains technical debt with time. There are several means to manage
technical debt in the project. The first step is always the same - increasing awareness
of technical debt including awareness of the concept, its different types, the impact of
technical debt on a system and the main factors that contribute to technical debt. Next,
it is important to prevent accumulation of technical debt. As it is not possible to prevent
it completely due to the factors mentioned above, developers should be able to detect,
analyze and repay technical debt form time to time. On every step there exist useful
tools - for measuring metrics, for technical debt quantification and visualization and for
refactoring. During the analysis, it is useful to create a plan to follow for debt repayment.
Technical debt means degrading quality. There are different qualify factors that can

decrease with time. However, most of the qualify problems that are identified by smells are
maintainability issues. There are understandability, modifiability, extensibility, reusability,
testability quality factors that are degrading with time. In other cases, performance can
be an issue that would drive refactoring process.
The first step to pay the debt and increase quality factors of the system is to find,

identify and analyze bad smells. Afterwards, starting from the smells that reveal problems
for the most important quality factors, refactoring on different levels is performed. It is
required to know what exact parts of the system should be refactored and the smells are
those indicators of problems that developers should focus on.

5

2. Background

2.3. Refactoring

Performing refactoring is the most useful way of technical debt management. Refactoring
(as a noun) is a change made to the internal structure of software to make it easier to
understand and cheaper to modify without changing its observable behavior. [Fow99].
Refactor (as a verb) - restructure software by applying a series of refactorings without
changing its observable behavior [Fow99].
There are several reasons to refactor. First of all, it helps to improve the design of

software [Mot]. The most dangerous kind of technical debt that accumulates with time is
debt on design and architectural level. Bad design decisions and lack of comprehension of
existing design prevent developers from working productively, delay development of new
features and force to use workarounds that adds even more technical debt. Moreover,
decisions made on design and architectural levels cannot be isolated because they form a
framework of the whole application. Refactoring helps to clean up the source code that
clarifies the software structure and makes it easier for developers to evolve [RFG05].
Another reason in favor of refactoring is that it makes software easier to understand.

An important user of the source code is a developer. The ease with which developers
can grasp the code intention defines how much time they spend on maintenance of
existing and implementation of new functionality. Shipping fast is crucial for business
and therefore development speed is an important variable.

Refactoring can also help to find bugs in software. To refactor a piece of code developer
needs to understand it deeply, clarify its intention and also validate their assumptions.
Before beginning refactoring it is necessary to identify problems that are meant to

be tackled. There is a set of common problems that are called bad smells. Bad smells
help to find deeper problems in software. Knowing them helps to perform high quality
refactoring because time spent on identifying problematic code fragments will be reduced
and awareness of higher level problems will help to prioritize refactoring tasks and find a
better solution that solves the root problem.

Since there are different levels of bad smells and technical debt - there are different levels
of refactoring. There are techniques that help to tackle problems on code, design and
architectural level. Usually, higher level techniques are based on lower level refactorings.
Such techniques are called composed techniques.
Testing is closely related to refactoring. To perform safe refactoring it is required to

have tests for components. While during refactoring it is necessary to preserve behaviour,
testing is indeed highly valuable part of the process. Since refactoring is very often
done in legacy systems (that usually implies systems without good test coverage) -
characterization tests can help developers to cope with the problem. [Fea04]

2.4. Summary

This chapter introduces some necessary background information required for the rest of
the thesis. We started with defining what is microservices architectural style, pointed
characteristics of systems with microservices architecture and demonstrated main benefits

6

2.4. Summary

of adopting the style. The next section presented the concepts of bad smell and technical
debt. The terms were defined as well as relation between them. Different types of
technical debt were discussed. The last section discussed refactoring. The main reasons
to refactor software were discussed together with benefits it brings. We also discussed
importance of testing for refactoring.

7

3. Problem Statement

Contents

3.1. Research Questions . 9
3.2. Challenges and Scope . 10
3.3. Summary . 11

While the first chapter was meant to introduce the thesis and in the second chapter
necessary background information was provided, this chapter is meant to detail the
problem that we try to solve.

Each research needs a well-defined goal and a description of a process to follow. In the
thesis we try to build a catalog of refactoring techniques for systems with microservices
architectural style.

However, the questions to be answered are not defined yet and, therefore, the definition
of done for the research is not clear. In the following sections we define research questions
as well as discuss challenges and scope of the thesis.

3.1. Research Questions
The thesis is dedicated to an important research gap - refactoring of microservices systems.
We claim it due to popularity of the architectural style and high attention from researchers
and practitioners to the topic of refactorings of such systems. While refactoring towards
microservices is already discovered well, there are no accepted refactoring catalogs so far
that could be used in industry for refactoring existing microservices systems. The overall
goal is to answer the question - "What are adequate refactorings for microservices?". The
question is complex and consists of several parts. Therefore, we define the following
research questions to build a catalog:

• RQ1: - How to identify potential refactoring techniques?

• RQ2: - How to describe refactorings for microservices?

• RQ3: - What are potential refactorings?

• RQ4: - Which of the identified refactorings are valid?

The first questions is to be answered by providing a reliable approach of refactorings
identification. The approach will determine the reliability of the results - identified
refactorings. The answer for the second research question is necessary element of any

9

3. Problem Statement

catalog - description of the identified techniques. Proposed refactorings should be
understandable by practitioners and researchers. While we will take into consideration
existing description templates, they will most likely require adaptation. The architectural
style has specific aspects that should be reflected in techniques description. An example
would be prerequirements for technique application that are usually not present for
traditional refactorings.
And answer for the third question is based on a chosen approach and has to lead to

the initial catalog of refactorings. The last research question has to be answered to make
sure the catalog is valid and applicable.

3.2. Challenges and Scope

Microservices architectural style is still new and not discovered in all details. One of
the main open questions is the topic of the thesis - refactoring of systems with such
an architecture. The topic is challenging and has different aspects to be considered.
Therefore, in the section we define the challenges and scope of the thesis.

Refactoring is a complex process and besides techniques application there are many
organizational issues present. We do not investigate the issues and work with techniques in
isolation. Moreover, the process itself can be different from the one used for modification
monoliths. We do not define the new process and leave it for future work.

Refactoring is closely related to software testing. Testing is one of the most important
parts of the process that helps to make sure the behaviour of a system has not changed
after techniques application. However, we do not discuss how testing process is changed
for microservices systems while it is an extensive separate topic that requires thorough
investigation.

For traditional refactorings one can observe presence of different supportive automation
tools. Such tools are important in practice helping to avoid errors and increasing
developers’ productivity. Even though we believe that there will be need in such tools for
refactoring microservices systems in the future, we do not propose their implementation
and leave it out of the scope.

Restricting the scope helps us to concentrate on the defined research questions. However,
on the way to answer them we will still face challenges. One of them is testing the
refactoring techniques in industry. Most of the traditional techniques were derived in
practice with time. They were verified by thousands of developers and refined by most
valuable professionals in industry. Creating a catalog that has to be applicable without
pretesting it on different projects involving many professionals is a big challenge.
Another challenge is to make general-purpose refactoring techniques. It is not that

difficult to create a solution for a very specific case. However, it is much more difficult to
propose universal techniques that can be used for any microservices systems independently
from technologies used, existing architecture and other aspects. It is a crucial attribute
for any refactoring technique.
Description of a refactoring should demonstrate how the system is affected by the

technique application. For techniques that work on a design or architectural level it

10

3.3. Summary

is important to discuss what qualities are affected and how they are affected. It is a
challenging question because a practical answer to this requires a thorough analysis of an
existing system where refactoring was applied before and after its application.

3.3. Summary
In the chapter we set the research questions to be answered. We also defined the challenges
and scope of the research. We also discussed main tasks to do and open questions to be
answered in the master thesis. The main challenges to tackle are refactorings selection,
their description and then - evaluation.

11

4. Related Work

Contents

4.1. Microservice Smells Catalog . 13
4.2. Microservices Patterns and Practices 15

4.2.1. API Gateway . 16
4.2.2. API Versioning . 17

The chapter presents related work on the topic. The work is also used in the thesis
later on.

4.1. Microservice Smells Catalog
While developing microservices, as for any other system, developers often get into technical
debt. The main indicators of the debt are bad smells. Microservices systems also have
such indicators. In their article “On the Definition of Microservice Bad Smells”, Taibi and
Lenarduzzi call these smells "Microservice smells" [TL18]. They identified 11 microservices
smells and presented them in the mentioned article. Afterwards, based on this and other
researches, Bogner et al. published their paper “Towards a Collaborative Repository for
the Documentation of Service-Based Antipatterns and Bad Smells” [Bog+19] together
with online catalog [Onl]. Smells from these two main resources are presented in the
table 4.1.

Catalog of Microservice Smells
Microservice smell Description
API Versioning
[TL18]

APIs are not semantically versioned. A lack of semantically
consistent versions of APIs (e.g., v1.1, 1.2, etc.) [TL18]

Cyclic Depen-
dency [TL18]

A cyclic chain of calls between microservices exists. The
existence of cycles of calls between microservices; e.g., A
calls B, B calls C, and C calls back A. [TL18]

ESB Usage [TL18] The microservices communicate via an enterprise service bus
(ESB). An ESB is used for connecting microservices. An ESB
adds complexities for registering and deregistering services
on it. [TL18]

Hard-Coded End-
points [TL18]

Hardcoded IP addresses and ports of the services between
connected microservices exist. [TL18]

13

4. Related Work

Microservice smell Description
Inappropriate
Service Intimacy
[TL18]

The microservice keeps on connecting to private data from
other services instead of dealing with its own data. A request
for private data of other microservices or direct connection
to other microservices’ databases exists. [TL18]

Microservice
Greedy [TL18]

Teams tend to create new microservices for each feature, even
when they are not needed. Common examples are microser-
vices created to serve only one or two static HTML pages.
It leads to microservices with very limited functionalities.
[TL18]

Not Having an
API Gateway
[TL18]

Microservices communicate directly with each other. In the
worst case, the service consumers also communicate directly
with each microservice, increasing the complexity of the
system and decreasing its ease of maintenance. [TL18]

Shared Libraries
[TL18]

Shared libraries between different microservices are used.
[TL18]

Shared Persis-
tency [TL18]

Different microservices access the same relational database.
In the worst case, different services access the same entities
of the same relational database. [TL18]

Too Many Stan-
dards [TL18]

Different development languages, protocols, frameworks, etc.
are used. [TL18]

Wrong Cuts
[TL18]

Microservices are split on the basis of technical layers (pre-
sentation, business, and data layers) instead of business
capabilities. [TL18]

Timeout [TL18] The service consumer cannot connect to the microservice.
Mark Richards recommends using a time-out value for service
responsiveness or sharing the availability and the unavail-
ability of each service through a message bus, so as to avoid
useless calls and potential time-outs due to service unrespon-
siveness. [TL18]

Mega-Service
[TL18]

A service that is responsible for many functionalities and
should be decomposed into separated microservices. [TL18]

Leak of Service
Abstraction
[TL18]

Designing service interfaces for generic purposes and not
specifically for each service. [TL18]

Greed [TL18] Services all belonging to the same team. [TL18]
Sloth [TL18] Creating a distributed monolith due to the lack of indepen-

dence of microservices. [TL18]
Envy [TL18] The shared-single-domain fallacy. [TL18]
Pride [TL18] Testing in the world of transience. [TL18]

14

4.2. Microservices Patterns and Practices

Microservice smell Description
Ambiguous Ser-
vice [Onl]

A service that includes interface elements (e.g., port types,
operations, and messages) with unclear names, i.e. names
that are very short or long, include too general terms, or
even show the improper use of verbs. [Onl]

Bottleneck Ser-
vice [Onl]

A service that is being used by too many consumers and
therefore becomes a bottleneck and single point of failure.
[Onl]

Business Process
Forever [Onl]

Business processes have been strictly defined and are now
static and cannot be easily changed. [Onl]

Chatty Service
[Onl]

A high number of operations is required to complete one
abstraction. Such operations are typically attribute-level
setters or getters. [Onl]

Connector Envy
[Onl]

Services implement large amounts of low-level interaction-
related functionality, e.g. for communication, coordination,
conversation, or facilitation. These functionalities should be
implemented by a connector instead. [Onl]

Low Cohesive Op-
erations [Onl]

A service that provides many low cohesive operations that
are not really related to each other. [Onl]

Scattered Para-
sitic Functionality
[Onl]

Multiple services are responsible for the same concern and
some of these services are also responsible for orthogonal
concerns. [Onl]

Service Chain
[Onl]

A chain of service calls fulfills common functionality. [Onl]

Table 4.1.: Catalog of Microservices Smells

Some of the presented in the catalog microservices smells have aliases. These aliases
are presented in the appendix B.
The most common approach to manage technical debt is refactoring. The biggest

problem caused by technical debt is degrading quality of the system. Refactoring helps
to improve the software quality and pay off the technical debt.

The presented catalog will be used throughout the thesis. The microservice smells will
be attached to the refactoring techniques proposed, so developers will be able to find
an appropriate refactoring technique to manage technical debt based on identified bad
smell.

4.2. Microservices Patterns and Practices
There are several design patterns identified for the systems with microservices architectural
style. Many of them are collected in the book Microservices Patterns by Richardson
[Ric19]. Not all of them are required to know in the thesis. Only the patterns that will be
referenced throughout the catalog are described in the section. Knowing these patterns

15

4. Related Work

will help reader to benefit the most from the proposed catalog.

4.2.1. API Gateway
The are many problems with accessing system’s services directly. It leads to the lack
of encapsulation that misleads developers from changing the service decomposition and
their APIs. It also leads to disadvantages for clients as they have to collect necessary
data from responsible services making multiple requests for one use case.

An API Gateway is a service that is an entry point of a microservices-based application
for external API clients. [Ric19]. The service is usually responsible for various functions
that are listed below.

• Request routing. Key function of an API gateway. All the requests from external
clients first meet the API Gateway. Then it routes the requests to appropriate
services in the system.

• API composition. Encapsulates invocation of multiple API methods of different
services of the system to enable external clients to get their data with single request.

• Protocol translation. API gateway might also let clients use the protocols different
from those used in the system internally.

• Provide client-specific API. API gateway can help developers to provide each client
with own API. This way there will be no problems of general solutions that should
fit every client. It also increases usability of the systems for external clients.

Besides the mentioned main responsibilities typically present in an API gateway, the
service often provides even more functionality. Among those additional responsibilities
that are commonly implemented and also very useful in practice are the following:

• Authentication.

• Authorization.

• Rate limiting.

• Caching.

• Metrics collection.

• Logging.

The main benefit of using the pattern is that it helps to encapsulate internal structure
of the microservices system. In this case, external clients always have only one service to
communicate with. An API Gateway provides clients specific APIs that can reduce the
number of requests and simplifies client code.

Among the drawbacks of the pattern is that there is one service more in the system that
has to be developed and maintained. It can also happen that the API gateway becomes
a development bottleneck in the system. Nevertheless, in most real world applications it
is reasonable to follow the pattern.

16

4.2. Microservices Patterns and Practices

4.2.2. API Versioning
When API of a system starts expanding beyond original intent - there is an option of
exposing a new version of API. The practice to attach versions to APIs of an application
is called API Versioning. Versioning helps to iterate faster when the needed changes are
identified. [Res].
Usually, the point when it becomes necessary to make another version of API is a

milestone of system development. It implies presence of many different changes of the
system, new features or complex structural modifications. However, addition of new
features that do not change existing calls does not require new API version. It happens
as system evolves and part of its natural growth without radical modifications. Those
changes that that absolutely require API to be up-versioned are called "breaking changes".
Among breaking changes are the following:

• changes in the format of the response;

• removing part of API or features;

• renaming or removing data fields/changes of their types in response body or any
other information restructuring in existing resource representation.

The most common approaches to API versioning are: [Bae]

• URI Versioning. The most common approach where version number is present
in URI of the endpoint. It can be version number, date or any other meaningful
identifier.

• Versioning using Custom Request Header. A custom header can be introduced to
make request on different versions of API. Once clients decide to move to use of
new API version - they change the header value.

• Versioning using Accept header. The same idea as in the previous approach, but
using existing header.

17

5. Concept

Contents

5.1. Initial Refactorings Selection Process 19
5.1.1. Abstract Bad Smells to Microservices Smells 20
5.1.2. Match Bad Smells to Microservices Smells 21
5.1.3. Use Identified Microservices Smells 21
5.1.4. Approaches Assessment and Choice 22
5.1.5. Smells Matching . 23
5.1.6. Bad Smells Refactorings Adaptation 26

5.2. Description template . 27
5.2.1. Structure . 27
5.2.2. Sections order . 29

5.3. Evaluation . 30
5.4. Summary . 31

The chapter presents the concept of the thesis. It demonstrates how we will answer the
research questions. To answer the first research question we should define an approach
for refactorings identification. It is done in the first section of the chapter. The second
question - refactorings description - is answered in the second section. We also discuss
an approach of validation of the refactorings in the last section.

5.1. Initial Refactorings Selection Process
To build a useful catalog of refactorings, each technique should solve a specific problem.
The common practice to tackle software quality problems is to detect bad smells first.
Having the problem signifier found, an appropriate refactoring technique should be
applied. This process of tackling the quality issues leads us to the main idea of building
a useful catalog - refactorings should be suggested for bad smells in the system.
However, to achieve the goal there are at least three different approaches to choose

from. The first one makes us consider the existing bad smells first, adapt and abstract
them to microservices and assess their relevance. The existing refactoring techniques
for the smells then will be adapted for microservices on the next step to tackle the
microservices smells. The second approach is to find already identified microservices
smells and match existing bad smells to them that again will require us to adapt original
refactoring techniques. The third approach would be to ignore the existing bad smells
and consider only the microservices smells identified. For each found microservices smell
an appropriate refactoring technique will be invented on the next step of the process.

19

5. Concept

As choosing a way of discovering microservices smells determines how to propose
refactoring techniques, each approach has a name according to the first step. We explain
and assess the three approaches in the section.

5.1.1. Abstract Bad Smells to Microservices Smells
The approach implies starting from described bad smells and abstracting them to find
the applicability on, usually higher, microservices architecture style level. While most of
the existing smells to start with are very concrete and applied on the code level only, they
always signify a higher level design issue. That means that they can be abstracted to
find the general idea of the problem that leads to decreased quality and then they can be
adapted to microservices systems. That is the main concern of the proposed approach, to
discover an appropriate abstraction that represents the same general idea bud does not
go beyond it our of the boundaries. It is important not to overgeneralize and stay within
the same design issue bounds, as later step will be to apply respective refactoring(s) to
tackle the bad smell. Those smells will become our microservices smells. The refactoring
technique will have to be adapted as well to match the new microservices smell. The
adaptation is discussed in subsection 5.1.6.

Steps

The approach can be represented by the following steps:

1. Collect bad smells from defined reliable resources.

2. Take one bad smell from the bank.

3. Extract the general idea of the design issue the bad smell represents.

4. Find a characteristic of microservices that indicates the same design issue as the
original bad smell.

5. Adapt the bad smell to microservices smell based on the identified design issue.

6. Adapt the bad smell refactoring techniques to microservices refactorings.

Research Data

There exist catalogs and individually described bad smells. They form the basis for
the approach. The most famous catalog with widely known code smells is collected by
Fowler in [Fow99]. It has 22 code smells described. There is a catalog by Lippert and
Roock presented in a book Refactoring in Large Software Projects: Performing Complex
Restructurings Successfully [LR06]. Lippert and Roock describes smells that can be faced
on architectural level and proposes refactorings to solve them. Book Refactoring for
Software Design Smells: Managing Technical Debt is dedicated to design smells [SSS14].
Authors divide the smells into categories and also propose some existing techniques to
tackle them.

20

5.1. Initial Refactorings Selection Process

5.1.2. Match Bad Smells to Microservices Smells

The proposed approach suggests to work with existing bad microservices smells in parallel
to identify matches. To find a match, we could use components matching or try to
extract the general design issue the smells represent as in the first approach. After the
matching is identified, the refactoring techniques for the code smell should be adapted to
refactorings for microservices. The main challenges of the approach are the matching
procedure and further refactorings adaptation.

Another important aspect of the approach is to reduce the set of microservices smells
to consider only the relevant ones. Some microservices smells currently identified shift the
problem space towards organizational aspects. As these aspects are beyond the research
scope defined in 3.2 and we consider only software bad smells, there is no matching
between the respective microservices and bad smells. Such preprocessing can help to
save time and concentrate better on potential candidates for matching.

Steps

The described approach requires the following steps to be done:

1. Collect bad smells from defined reliable resources.

2. Collect microservices smells from defined reliable resources.

3. Reduce the set of microservice smells to relevant onces.

4. Match the bad smells to microservices smells.

5. Adapt the bad smells refactorings to microservices refactorings.

Research Data

There is an article on microservices smells [TL18] by Taibi and Lenarduzzi where they
identified and described a set of 11 microservices smells. This catalog could be used
for matching. There is also work from Garcia et al. where some of the microservices
smells mentioned [Gar+09]. Another interesting fresh article is “Towards a Collaborative
Repository for the Documentation of Service-Based Antipatterns and Bad Smells” where
smells for SOA-based systems are collected with separation between traditional SOA
architectural smells and microservices smells [Bog+19]. For the matching resources with
traditional bad smells that were discussed for Abstract Bad Smells to Microservices
Smells approach 5.1.1 can be used.

5.1.3. Use Identified Microservices Smells

The last proposed approach does not require much work with smells. It shifts the most
workload to refactorings exploration. We start with identified and described microservices
smells and on a latter step try to invent a refactoring technique for each of them. It

21

5. Concept

requires a method of inventing the refactoring technique for a bad smell instead of a
guideline for adaptation existing ones.
The same concern as for the previous approach still applies here - we should reduce

the set of microservices smells to relevant ones, as many identified smells represent an
organizational or any other problem that should not be solved by refactoring of a system.

Steps

The approach has the following steps to follow:

1. Collect microservices smells from defined reliable resources.

2. Reduce the set of microservice smells to relevant onces.

3. Invent refactoring techniques for identified microservices smells.

Research Data

For the approach we can use the same articles with identified microservices smells as for
Match Bad Smells to Microservices Smells approach 5.1.2. Resources for traditional bad
smells are the same as presented for the approach Abstract Bad Smells to Microservices
Smells 5.1.1.

5.1.4. Approaches Assessment and Choice
All the three approaches have one important aspect in common. They allow us to
find solutions (refactorings) for specific problems (bad smells), instead of, for instance,
adapting refactoring techniques for a non-existent problem. However, each of the approach
has advantages and disadvantages and analysis will help us to choose the right approach.
The Abstract Bad Smells to Microservices Smells approach requires the most work

with existing code smells and their refactorings. It includes smells’ abstraction and
refactorings’ adaptation. It has many reliable resources, but there is not that much
relevance to microservices systems, while most of the refactorings are very granular -
working on the code level and other smells were discovered only in monoliths.

The Match Bad Smells to Microservices Smells approach helps to solve the problem
and brings more relevance to microservices system. However, it requires smells matching
and adaptation of refactorings that are two big challenges to tackle. Nevertheless, it has
the most resources to work with. It is crucial for any research to have a sound basis.
In opposite, the Find Refactorings for Microservices Smells approach has the least

information to base our work on. Not using the existing refactoring techniques will reduce
the reliability of the research. It also means that the work to do will be shifted from
processing existing to building completely new knowledge.

Based on the assessment, it is decided to choose the Match Bad Smells to Microservices
Smells approach.

Thus, we have the final process established that is demonstrated on the diagram 5.1. A
solid line shows the goal, our main challenge - to find refactorings for microservices smells.

22

5.1. Initial Refactorings Selection Process

The dashed lines show our actual flow to follow. The process starts with matching bad
smells to microservices smells. Then we discover existing refactorings for bad smells that
have the matching with microservices smells. And finally, we adapt these refactorings for
microservices smells. Those steps will lead us to the main goal - we will have refactoring
techniques for microservices smells.

Figure 5.1.: Refactorings Selection Process

As we can see from the diagram and its description above, two steps out of three are
quite challenging. The matching process requires guidelines to follow as there are no
established rules for such matching exist. Discovering code refactorings for bad smells is
straightforward - we will base our work upon existing resources on refactoring that are
mentioned in section 2.3 where refactorings already presented as solutions to the bad
smells. The third step is also unique in our work. The adaptation guidelines should be
established to follow, moving from code to microservices refactorings. The sections below
will fill the gaps in the process.

5.1.5. Smells Matching

To use the previously chosen approach Match Bad Smells to Microservices Smells in
initial refactorings selection process, we have to define a way of matching the smells. It
is important to document the process to be followed in this research as well as for future
work in this direction.

The main part of matching is identifying elements used in smells description that will be
considered equal. For example, a class in a code smell description could be interchanged
with service in microservices smell. To find this, we should consider the common properties
between used elements in existing bad smells description and elements in microservices
smells description. The chosen way is to look at the elements as components.

"A software component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be deployed indepen-
dently and is subject to third-party composition" [Szy02]. In his book, Szyperski defines

23

5. Concept

the following characteristic properties of a component:

• is a unit of independent deployment;

• is a unit of third-party composition;

• has no (externally) observable state.

While we have bad smells identified on different levels (code, design, architecture) we
should consider these specificities. Lau and Di Cola in their book [LD17] define three
main component models:

1. where components are objects;

2. where components are architectural units;

3. where components are encapsulated components.

Following this distinction, we can determine that code smells discuss elements of first
category where some of them (such as methods) are not even under this category. Design
smells also consider elements of the first category, while architectural smells describe
problems related to architectural units - the components of second category. Microservices
smells usually take services and their relation into consideration, therefore we deal with
components from the third category.

Further in the section mappings between elements of different categories are provided
with argumentation. It will help us to match the smells and the refactorings on a latter
step.

First Component Model Matching

The relation between classes and services as the most important components of the first
and the third category is the basis for further mapping. They share the same properties,
having internal implementation, public interface and incoming and outgoing dependencies.
They both can accept and send messages to other classes/services and possess other
characteristics of components.
The second match that was identified is between public methods and services. The

foundation for this matching is the same as for class-service. We cannot say that every
method can be viewed as a component following the formal definition, but there exist
methods that have similar properties with services. They should be public so they
represent a part of interface of a class where they belong to say that there are clients
as in case of services. They can use other methods, private or public of other classes
that represent dependencies of service. They might also accept parameters that is similar
to passing information to service in an abstract way. Methods can also react to events
that is done by subscription as well as for services. All the common characteristics give
us a basis and a good reason to try to match public methods to services aiming to find
matches between existing bad smells and microservices smells.

24

5.1. Initial Refactorings Selection Process

The next match is pretty straightforward that is between public method and API
method of service. They share the most common characteristics.

Another possibly useful observation is a matching between field of class and a piece of
data in a persistance layer of service. This match could be useful in case of moving data
that class or microservice is responsible for while refactoring to tackle a bad smell. They
both represent a piece of data that belong to a class or a service. The only aspect that is
important for us to define is the matching between the class and service that we already
did above. The rest distinction falls down to the implementation details.
The last proposed non-trivial math is parameter to REST message field. There is no

many properties to extract from these two, except that they both represent a piece of
data and accepted from client. However, there are aspects that are common about the
context of their use. In both cases the represented information is used by API method
of service or method in a class. That is why we care about matching between public
method and service that we defined before.

After analysis, the following matches are left considered as the most useful ones in our
context:

• Class to service.

• Public method to service.

• Public method to API method.

• Field to record in persistance of service.

• Parameters of public method to REST Message body.

Elements that represent the same software entity (classes in monolith system and
classes in microservices system, for instance) are possible to use as well during the
smells matching. It does not require any analysis to do, though. However, they are not
considered very useful, as most of the microservices smells concentrate on a system and
architectural level problems rather than problems in each service.

Second Component Model Matching

The next step is to analyze architectural and microservices smells. There are considerably
more similarities between architectural units and the elements in microservices that are
considered to be encapsulated components.
The first identified match is package to service. Packages as architectural units each

representing a part of a larger system that provides certain functionality. Each service in
microservices system falls under the same definition with more restrictions.

The second match that can help in identifying similar architectural and microservices
smells is a subsystem. We can match a subsystem to a separate service that basically
is a subsystem in a microservices system. Moreover, as some piece of functionality in a
system might be split into several microservices, we can match a set of microservices to a
subsystem in monoliths.

25

5. Concept

After analysis, the following matches are proposed to be used:

• Package to service.

• Subsystem to service.

• Subsystem to a set of services.

Other units used in architectural smells but not discussed in the matching to elements
in microservices systems can also be used but on the same level of abstraction. Layer
is one example - we can find layers in monolith systems as well as in each service of a
microservices system. Such matching is not considered useful for the same reason as
described for first component matching above.
The proposed matching comes from the code, design, architectural and microservices

smells analysis. In the first step the most obvious matches were chosen based on common
sense and experience. After that, each of the software elements in each match was
analysed from a component-perspective or based on previously defined match. Viewing
the elements as components brought the most benefits in identifying commonalities.

However, not all the matches are possible to identify only based on the used components.
Sometimes it is necessary to discover the general issue that the bad smells represents.
Particularly in the case of smells that are driven by software design principles violation.

Revealing the main idea for both existing bad smells and microservices smell will help
us to identify a match. To discover the general issue a bad smell represents, the ’problem’
section of it should be examined. Such section usually presents discussion of design issues
bad smells leads to. It is more creative task than matching by components. Most of the
time the communication and connection between the components that leads to a problem
should be examined. Concrete matches derivation will be discussed further in the thesis.

5.1.6. Bad Smells Refactorings Adaptation
The final step in the above defined process of initial refactorings selection is to adapt
bad smells refactorings to microservices refactorings. Those adapted versions will be
evaluated afterwards to decide on their applicability.
The major part of the initial adaptation will rely on the previously defined smells’

elements matching. So the components correlation will be taken into consideration as
the first step of transformation.

To derive motivation of the refactoring, the matched microservices smell will be explored
in details. Parts of description that reveal problems that the bad smell can cause are the
most useful to set the motivation.
Mechanics to follow will be derived from the original technique so that components

will be interchanged with those from matching and the order will stay the same.
Nevertheless, initial adaptation results can differ from the final result. Evaluation

can influence the part of refactoring description that discusses impact of the techniques
application and other sections. Thus, techniques will evolve iteratively during all the
phases of the refactoring selection and evaluation process.

26

5.2. Description template

5.2. Description template
The catalogs of best practices, such as refactoring techniques or design patterns, should be
well organized to be usable. It helps to unify techniques description and has many other
benefits. First of all, user of the technique will have to get used to description template
only once, and after that, working with the catalog will be very easy. The need in grasping
meta information will be eliminated and the reader will be able to concentrate on the
content only. Secondly, this enhances communication among developers. Communication
plays an important role in software development. Team members should be able to
understand each other quickly to work effectively and concentrate on concrete specific
problems to solve instead of explaining general technique each time in details. It is
particularly important in our context, knowing that there is always little time left for
quality. The third reason why defining a sound description template is important is
because its structure can save developers time when well organized. The chosen structure
organization will be thoroughly discussed in sections order passage.

5.2.1. Structure

The proposed template description was derived from existing ones, used in books Refac-
toring: Improving the Design of Existing Code [Fow99], Refactoring for Software Design
Smells: Managing Technical Debt [SSS14] and Refactoring to Patterns [Ker04]. Below,
the template is described. It consists of 6 sections. Their purpose and requirements that
are claimed to content are stated for each section.

Technique name

Name should give the first impression of what the refactoring technique is all about. It
can contain the name of the affected elements (such as service), or more general concept.
It all depends on the intention of the technique. In the same time, to enhance technique
communication and its use, the name should be catchy and concise. Another requirement
to the name is to have similarity with original technique name. It will help developers
that know the original technique when exploring the proposed catalog.

Summary

The section provides a very short summary It consists of a couple of sentences that
remind the reader who is already familiar with the refactoring about what is it about.
It does not have an intention to describe the whose technique for new readers. It also
contains a reference to the original technique giving credit to the author.

Related Microservice Smells

The section provides a set of microservice smells that are related to the refactoring
technique. The set is organized as keywords that reader can look through to match them
to found smells in the system under refactoring.

27

5. Concept

Intent

Intention of the technique answers the question ’what will be done by applying this
technique?’. In a concise way, the main goal of the refactoring should be described. So,
as the section must clarify the results of the technique application, use of concrete terms
and common patterns that the refactoring will lead to is preferable.

Motivation

While in the intent section the reader should get the question ’what?’ answered, motivation
will help to understand ’why?’.

The section presents possible reasons to use the described technique. This should help
to understand whether the motivation of the developer matches any of the described ones.
There can be also several different motivation factors, or reasons, that might encourage
to use the technique.
There are some requirements that the content of the section should meet. First of

all, the motivation factors presented should be very concrete. This way, it will be much
easier for developer to match own motivation with one of those that are stated in the
section. In the same time, it should not be bound to any particular domain. That will
help to not to filter out this technique when it is indeed applicable.

Prerequirements

The section must answer the question ’what is required to use the technique?’. As there
can be conditions present to use the microservices refactoring technique, they should be
well defined. This section is the place for describing a context in which the technique
can possibly be used with all the prerequirements that are claimed to the system. The
prerequirements should be described using common concepts, pattern names and terms.

Impact

The Impact section is indented to demonstrate consequences of the refactoring application.
As the goal of any technique is improving quality of a system, the section is describing
what quality factors are affected and in which way. The section will be organized by
listing the affected quality factors with description of the impact. While the main purpose
of techniques application is improving quality factors, there are always tradeoffs present.
Those tradeoffs are also mentioned in the section under each quality factor. It is important
to know them in advance.

Furthermore, there are different perspectives on quality of microservices systems - from
the overall system’s and from the service under refactoring’s point of view. Thus, they
will be considered separately for each quality factor. In most cases, the tradeoffs happen
to be for the different levels, improving a quality factor from one perspective and worsen
it from another.

28

5.2. Description template

Mechanics

After answering all question that help to decide whether to use the proposed technique,
the mechanics will be demonstrated. The mechanics should be organized as a list of
concrete steps. Those steps, with motivation in mind to tackle some quality issues, within
applicable context, will lead us from a system, that has prerequirements for technique
application towards a modified system that has the defined impact on its quality.

Discussion

The main intention of the section is to give some notes on the use of the refactoring. It
should help to understand its advantages and disadvantages, weight tradeoffs and decide
on its use. The discussion is also meant to bring better understanding of technique’s
consequences in different contexts. The section should reveal situations in which the
refactoring has more advantages or disadvantages. It will also be referring design principles
and best practices when describing known problems of techniques consequences.

Example

In the section a small visual example of the technique application is given. It is crucial
for the reader’s understanding to see a diagram that depicts the initial and refactored
states of the system. The examples are synthetic to keep it very concise and convey only
what is important.

5.2.2. Sections order

The sequence in which the description template is presented is meant to save time for
users of the catalog. The main idea behind is to enable developers to filter out irrelevant
refactoring techniques as quickly as possible. Irrelevant techniques are those that either
do not satisfy developer’s needs or not applicable in the system under refactoring.

The entry point to each refactoring technique is its name. As was discussed previously,
it will already speak its relevance to developers familiar with original refactoring. Right
after the name a short, concise summary will be given. It is not meant to describe the
technique to new readers, but can remind the main idea of the refactoring to people that
used it before. In the summary, there is a reference to original technique. Investigating
it will be interesting for those who will try to find other options of using the technique,
not described in mechanics. It can also inspire developers to further adaptations of the
refactoring. Following the short summary, a set of related microservice smells is given.
It should help reader to match given smells to identified ones in the own system. After
the first impression is given, the intent and motivation sections should clarify whether
technique can solve an existing problem in a system that developer is trying to tackle. At
this point, it is assumed that there are no further questions whether proposed refactoring
can help developer. Then prerequirements passage will present additional conditions to
use the refactoring. In case the system works within applicable context and fulfills all
prerequirements it can be immediately used. Otherwise, only if the motivation to use it is

29

5. Concept

strong enough developer will try to fulfill the requirements. The impact section is meant
to demonstrate the way quality factors affected by the technique application, that is the
main aspect to accept or reject refactoring use. In the following discussion section more
thoughts of the author are presented that might contribute the reader’s understanding
as well as pointing our some aspects not mentioned in any of the previous sections.

5.3. Evaluation

The refactoring applicability and validity is the most important aspect while building a
refactorings catalog. It is pointless how good the description of the technique is or how
good arguments in favor of the refactoring are if it is not applicable. Applicability of
every refactoring technique can be defined only on the evaluation phase.

Except of checking the possibility to apply the technique, evaluation brings many other
benefits. This stage can help to correct mistakes in assumptions about its impact. It
will also help to improve the mechanics description of the collected techniques. All the
results of evaluation will be used to improve the catalog.

There are several different options on how to performs evaluation. The main requirement
for evaluation is presence of expertise. Software professionals on different positions that
have worked or anyhow faces with microservices is the target group that has the necessary
expertise. Therefore, evaluation to be considered valid should include their assessment of
proposed refactoring catalog.

To validate refactoring techniques applicability it is decided to perform questionnaire.
A questionnaire is a research instrument consisting of a series of questions (or other types
of prompts) for the purpose of gathering information from respondents. [Que] The target
group has to consist of professionals in software development on different positions to
assess the refactorings from different perspectives. Therefore, the questionnaire should
have questions on the background of interviewees.
To understand better the interviewee’s expertise - we should also understand what

experience they have. While the information about general experience in software
engineering can be implied from answers on background information questions - the more
detailed experience with microservices should be questioned separately.
The refactoring catalog construction follows the predefined approach. Reliability of

the final results depends on the validity of the approach. Therefore, the questionnaire
should help to assess the chosen approach.
Afterwards, we need the assessment of the main result - refactorings catalog. There

should be questions on each technique providing detailed explanation of each of them.
Besides questions that help to estimate current results validity - we can also benefit from
asking professional an advice. This contribution will support later work on the catalog
and each separate technique improvement.

As the questionnaire is voluntarily - it should be kept short and all the questions should
be possible to omit. It should also increase the validity of answers, as meaningless answers
will not be counted (the questions interviewee has no opinion on will be skipped).

30

5.4. Summary

5.4. Summary
The chapter presented the concept of the thesis. First, the approach to follow was defined
that answers the first research question. There were three different approaches presented.
Then, all the approaches were assessed and the one providing the most reliable results
was chosen. The final process was derived from chosen approach. Afterwards, the most
important and complex approach steps were discussed in details.
Next section demonstrated the description template. Every section of the template

was defined with argumentation of its mission. The chosen section order was discussed
as well.
The last section - evaluation - showed the chosen way to validate the results. The

refactoring catalog and each technique separately was chosen to assess using questionnaire.
The target group and general structure of the questionnaire was presented.

31

6. Initial Refactorings Selection

Contents

6.1. Microservices Smells Matching . 33
6.2. Refactorings Discovering . 37

6.2.1. Refactorings Merge . 41
6.3. Summary . 42

Due to defined process in the chapter 5, the first step in the initial refactorings selection
is matching code smells to microservices smells. It is the most important and creative
step. Depending on the quality of identified matches the resulting catalog of refactoring
techniques will be more or less applicable. The better matches are identified, the less
time will be spent on inapplicable techniques.
We already defined possible ways and gave some instruction on how to perform the

matching in section 5.1.5. In the same section, we also discussed use of bad smells of
different levels. We also defined the catalog of microservices smells in section 4.1 that we
are intended to match to bad smells.

The second step presented in the chapter is discovering refactorings for bad smell.

6.1. Microservices Smells Matching
The matching results are presented in table view. While there can be several different
names for the same bad smell, the matching table does not contain all possible variants.
The aliases to the used smells are provided in appendix A. While some aliases represent
different levels of generality, the most specific ones were chosen for each specific case.
The presented table 6.1 with results of microservices smells to bad smells matching

also has bad smells description. It does not contain all the microservices smells from the
catalog for the reasons mentioned in section 5.1.5. Besides smells that are not related to
the system under development (etc. organizational ones) we also do not include smells
that do not have any matches from set of discovered bad smells. Some of them are Too
Many Standards [TL18], Ambiguous Service [Bog+19] and Connector Envy [Gar+09].
They are too specific and the problems arise only in microservices systems. To identify
refactorings for such smells another approach is required that is part of future work.

33

6. Initial Refactorings Selection

Microserivces Smells Matching
Microservice smell Bad Smells Bad Smells Description
Bottleneck
Service [TL18]

Hub-like Modulariza-
tion [SSS14]

An abstraction has dependencies (both
incoming and outgoing) with large num-
ber of other abstractions

Cyclic
Dependency [TL18]

Cyclically - Depen-
dent Modularization
[SSS14]

Two or more abstractions depend on
each other directly or indirectly (cre-
ating a tight coupling between the ab-
stractions)

Dependency Cycles
Between Packages
[LR06]

Cycles between packages can be created
through use, inheritance, or through a
combination of use and inheritance

Cycles between Sub-
systems [LR06]

Cycles between subsystems can be cre-
ated via use, inheritance or through a
combination of use and inheritance

Inappropriate
Service
Intimacy [TL18]

Inappropriate Inti-
macy [Fow99]

Sometimes classes become far too inti-
mate and spend too much time delving
into each others’ private parts

Deficient Encapsula-
tion [SSS14]

The declared accessibility of one or
more members of an abstraction is more
permissive than actually required

Subsystem - API By-
passed [LR06]

Since the popular programming lan-
guages do not offer generic mecha-
nisms for the definition of subsystems,
projects must fall back on conventions.
Consequently the subsystem’s public
interface – the API – will be defined
through conventions

Feature Envy
[Fow99]

Data and behavior that acts on that
data belong together. When a method
makes too many calls to other classes
to obtain data or functionality, Feature
Envy is in the air

Indecent Exposure
[Ker04]

The smell occurs when methods or
classes that ought not to be visible to
clients are publicly visible to them

Chatty Service [TL18] Broken Modulariza-
tion [SSS14]

Data and/or methods that ideally
should have been localised into a single
abstraction are separated and spread
across multiple abstarctions

Feature Envy
[Fow99]

Described above

34

6.1. Microservices Smells Matching

Microservice smell Bad Smells Bad Smells Description

Microservice
Greedy [TL18]

Middle Man [Fow99] Delegation is good, and one of the key
fundamental features of objects. But
too much of a good thing can lead to
objects that add no value, simply pass-
ing messages on to another object

Lazy Class [Fow99] A class that isn’t doing enough to pay
for itself should be eliminated

Too Small Packages
[LR06]

Packages with one or two classes are
often not worth the effort of introducing
them: the complexity created by the
package is not offset by its additional
structuring

Subsystem Too Smal
[LR06]

Too small subsystems shift complexity
from subsystems into the dependencies
among the subsystems themselves

Broken Modulariza-
tion [SSS14]

Described above

Not Having an
API Gateway [TL18]

Subsystem-API By-
passed [LR06]

Described above

Deficient Encapsula-
tion [SSS14]

Described above

Mega-Service [TL18]

Large class [Fow99] Fowler and Beck note that the presence
of too many instance variables usually
indicates that a class is trying to do too
much. In general, large classes typically
contain too many responsibilities

Long method [Fow99] In their description of this smell, Fowler
and Beck explain several good reasons
why short methods are superior to long
methods. A principal reason involves
the sharing of logic. Two long meth-
ods may very well contain duplicated
code. Yet if you break those methods
into smaller methods, you can often find
ways for the two to share logic. Fowler
and Beck also describe how small meth-
ods help explain code. [Inc05]

Multifaceted Ab-
straction [SSS14]

An abstraction has more than one re-
sponsibility assigned to it [SSS14]

God Class [Rie96] A god class is a class that performs most
of the work, leaving minor details to a
collection of trivial classes

35

6. Initial Refactorings Selection

Microservice smell Bad Smells Bad Smells Description
Too Large Package
[LR06]

Packages with a high number of classes
indicate that they serve more than one
specific responsibility

Subsystem Too Large
[LR06]

The phenomenon that no subsystems
are defined is a special case of too large
subsystems

Subsystem-API Too
Large [LR06]

When the API of a subsystem becomes
too large in relation to the implementa-
tion, the main purpose of the subsystem
is not served

Hub-like Modulariza-
tion [SSS14]

Described above

Leak of Service
Abstraction [TL18]

Overgeneralization
[LR06]

In order to assure that subsystems pro-
vide the greatest extent of reusabil-
ity, they must be flexibly applicable.
This generalization can be overdone
though,which will result in the subsys-
tem’s overgeneralization. It will become
more flexible than it actually needs to
be

Insufficient Modular-
ization [SSS14]

An abstraction (such as a class or in-
terface) exists that has not been com-
pletely decomposed and a further de-
composition could reduce its size, im-
plementation complexity, or both

Low Cohesive
Operations [TL18]

Divergent Change
[Fow99]

Occurs when one class is commonly
changed in different ways for different
reasons

Multifaceted Ab-
straction [SSS14]

Described above

Scattered Parasitic
Functionality [TL18]

Combinatorial Explo-
sion [Ker04]

A subtle form of duplication, this smell
exists when numerous pieces of code do
the same thing using different combina-
tions of data or behavior

Duplicated Code
[Fow99]

Explicit duplication exists in identical
code, while subtle duplication exists in
structures or processing steps that are
outwardly different, yet essentially the
same.

36

6.2. Refactorings Discovering

Microservice smell Bad Smells Bad Smells Description
Solution Sprawl
[Ker04]

When code and/or data used in
performing a responsibility becomes
sprawled across numerous classes, so-
lution sprawl is in the air

Broken Modulariza-
tion [SSS14]

Described above

Service Chain [TL18] Message Chains
[Fow99]

Occur when you see a long sequence of
method calls or temporary variables to
get some data. This chain makes the
code dependent on the relationships be-
tween many potentially unrelated ob-
jects

Wrong Cuts [TL18] Data Class [Fow99] These are classes that have fields, get-
ting and setting methods for the fields,
and nothing else. Such classes are dumb
data holders and are almost certainly
being manipulated in far too much de-
tail by other classes.

Table 6.1.: Microserivces Smells Matching

6.2. Refactorings Discovering

After the smells matching, refactoring techniques for each microservices smell should be
selected for further evaluation. Such filtering helps us to reduce amount of work and
eliminates irrelevant techniques.
Besides the refactorings techniques that were discovered for each matched bad smell,

the resulting set of techniques for microservices smell will include those, that were chosen
based on proposed solution presented in section 4.1 (proposed in “On the Definition of
Microservice Bad Smells”) in front of each smell. It can help us to expand the amount of
techniques to evaluate.
Initially selected refactorings are presented in the table 6.2 with corresponding mi-

croservice smell. While some of the refactorings can be familiar to the reader, other are
not that popular. Therefore, a short summary of each refactoring with some notes is
provided afterwards.

It is worth mentioning that some of the refactorings were filtered out because they do
not work with the same elements that are mentioned in smells they tackle. For example,
Pull Up Method [Fow99] is to be matched to Scattered Parasitic Functionality [TL18]
smell but its application requires to change inheritance relation between components,
while this relation does not exist on an architectural level. Other refactorings work with
OO-patterns. While they may be useful in tackling a problem, they are not chosen
because there are no corresponding patterns exist for microservices. A concrete example

37

6. Initial Refactorings Selection

would be technique called Replace State-Altering Conditionals with State [Ker04] that
is, due to the chosen approach, matches Mega-Service smell [TL18] Adaptation of those
patterns for microservices might be possible, but lie outside of scope of this thesis.

Refactorings Matching
Microservice smell Refactorings
Bottleneck

Service [TL18]
Split responsibilities up across multiple new/old abstractions
[SSS14].
Assign misplaced hub members to appropriate abstractions
[SSS14].

Cyclic
Dependency [TL18]

Break the dependency cycle [SSS14].
The Classic Removing of Cycles [LR06].
Introducing a Dependency Graph Facade [LR06].
Hide Delegate [Fow99].

Inappropriate Service
Intimacy [TL18]

Remove Middle Man [Fow99].
Inline Class [Fow99].
Inline Method [Fow99].
Move Method [Fow99].
Move Field [Fow99].
Change Bidirectional Association to Unidirectional [Fow99].
Extract Class [Fow99].
Extract subset of cohesive members to separate abstraction
[SSS14].
Hide Delegate [Fow99].
Moving Classes [LR06].
Introducing a Dependency Graph Facade [LR06].
Encapsulate Method [SSS14].
Encapsulate Field [Fow99].

Chatty Service [TL18]
Move method [Fow99]
Encapsulate Field [Fow99]

Microservice
Greedy [TL18]

Inline Method [Fow99].
Move Method [Fow99].
Encapsulate Field [Fow99].
Inline Class [Fow99].
Moving Classes [LR06].

Not Having an
API Gateway [TL18]

Introducing a Dependency Graph Facade [LR06]
Encapsulate Field [Fow99].
Encapsulate Method [SSS14].
Introduce Gateway [Fow19].

Mega-Service [TL18]

Moving Classes [LR06].
Extract Class [Fow99].
Extract subset of cohesive members to separate abstraction
[SSS14].

38

6.2. Refactorings Discovering

Microservice smell Refactorings
Extract Method [Fow99].
Compose Method [Ker04].
Introduce Parameter Object [Fow99].
Move Accumulation to collecting parameter [Ker04].
Replace Method with Method object [Fow99].
Introduce private helper methods [SSS14].
Apply ISP to make client-specific interfaces [SSS14]

Leak of Service
Abstraction [TL18]

Replace Parameter with Explicit Method [Fow99].
Apply ISP to make client-specific interfaces [SSS14].

Low Cohesive Opera-
tions [TL18]

Extract class [Fow99]

Scattered Parasitic
Functionality [TL18]

Extract method [Fow99]
Extract class [Fow99]
Move method [Fow99]
Move field [Fow99]

Service Chain [TL18]
Hide Delegate [Fow99]
Extract Method [Fow99]
Move Method [Fow99]

Wrong Cuts [TL18]
Move method [Fow99]
Extract method [Fow99]
Encapsulate field [Fow99]

Table 6.2.: Refactorings Matching

Now we need to introduce refactoring techniques that were identified during the
discovering process. Those refactoring are applicable to original bad smells that were
matched to microservices ones. They will require adaptation later on. Below we give a
short summary for the original refactorings. More complete description can be found in
the original sources.

• Break the dependency cycle [SSS14]. In case one of the dependencies is unnec-
essary and can be safely removed, then remove that dependency. If possible, move
the code that introduces cyclic dependency to an altogether different abstraction.
In case the abstractions involved in the cycle represent a semantically single object,
merge the abstractions into a single abstraction. The refactoring proposes three
different more atomic techniques: remove class, inline class and extract class and
therefore the three will be considered separately for tackling the smell.

• The Classic Removing of Cycles [LR06]. Having artifacts A and B it is
necessary to split one of them (e.g. B) such a way that B1 depends on A and B2
whereas A depends only on B1. The refactoring proposes a technique that uses
more atomic extract class refactoring.

• Introducing a Dependency Graph Facade [LR06]. In order to structure

39

6. Initial Refactorings Selection

dependencies between packages, subsystems and layers hide a number of classes
behind a facade that is employed to simplify the handling of multiple classes, we
can also use a facade to hide a subsystem’s dependency graphs from the client of
that subsystem.

• Hide Delegate [Fow99]. Create methods on the server to hide the delegate.

• Inline Class [Fow99]. Move all classes features into another class and delete the
former one.

• Inline Method [Fow99]. Put the method’s body into the body of its callers and
remove the method.

• Move Method [Fow99]. Create a new method with a similar body in the class
it uses most. Either turn the old method into a simple delegation, or remove it
altogether.

• Move Field [Fow99]. Create a new field in the target class, and change all its
users.

• Change Bidirectional Association to Unidirectional [Fow99]. Drop the
unneeded end of the association.

• Extract Class [Fow99]. Create a new class and move the relevant fields and
methods from the old class into the new class.

• Extract subset of cohesive members to separate abstraction [SSS14]. Take
a cohesive part of members that belong together and extract them.

• Moving Classes [LR06]. Move classes to follow SRP.

• Encapsulate Method [SSS14]. Make the method private (or protected if neces-
sary).

• Encapsulate Field [Fow99]. Make it private and provide accessors.

• Remove Middle Man [Fow99]. Get the client to call the delegate directly.

• Extract Method [Fow99]. Turn the fragment into a method whose name explains
the purpose of the method.

• Introduce Parameter Object [Fow99]. Replace group of parameters that natu-
rally go together. with an object.

• Move Accumulation to collecting parameter [Ker04]. Accumulate results to
a Collecting Parameter that gets passed to extracted methods.

• Replace Method with Method Object [Fow99]. Turn the method into its own
object so that all the local variables become fields on that object.

40

6.2. Refactorings Discovering

• Introduce private helper methods [SSS14]. Introduce private helper methods
that help simplify the code in that method.

• Apply ISP to make client-specific interfaces [SSS14]. Break down the inter-
face of class implementing it into several.

• Replace Parameter with Explicit Method [Fow99]. Create a separate method
for each value of the parameter.

6.2.1. Refactorings Merge
Many of the discovered and presented in the section refactorings also have aliases. They
will be taken into consideration while adapting a technique to use for tackling microservices
smell. Other refactorings are not aliases, but represent the same idea on the architectural
level based on the previously performed components matching in section 5.1. Therefore,
they need to be merged and the table with results of the merge is shown in the table 6.3.
In the table the proposed names of refactorings adaptation are mentioned. They will be
also used in the catalog.

Refactorings Merge
Microservice Refactoring Bad Smells Refactorings

Inline Service
Inline Method
Inline Class
Break the dependency cycle

Extract Service

Extract Class [Fow99]
Extract Method [Fow99]
Extract subset of cohesive members to separate ab-
straction [SSS14]
Introduce private helper methods [SSS14]
Replace Method with Method Object [Fow99]
Split responsibilities up across multiple new/old ab-
stractions [SSS14]
The Classic Removing of Cycles [LR06]
Break the Dependency Cycle [SSS14]

Replace Parameter with
Explicit API Method

Replace Parameter with Explicit Method [Fow99]
Apply ISP to make client-specific interfaces [SSS14]

Move Responsibility

Move Class [Fow99]
Move Method [Fow99]
Move Field [Fow99]
Moving Classes [LR06]
Split responsibilities up across multiple new/old ab-
stractions [SSS14]
Assign misplaced hub members to appropriate abstrac-
tions [SSS14]

41

6. Initial Refactorings Selection

Microservice Refactoring Bad Smells Refactorings

Introduce API Gateway Introducing a Dependency Graph Facade [LR06]
Hide Delegate [Fow99]

Require Data
for API Method

Introduce Parameter Object [Fow99]
Move Accumulation to collecting parameter [Ker04]
Apply ISP to make client-specific interfaces [SSS14]

Encapsulate
Responsibility

Encapsulate Method [SSS14]
Encapsulate Field [Fow99]

Remove Middle Service Remove Middle Man [Fow99]

Table 6.3.: Refactorings Merge

6.3. Summary
In the section we described an execution of the process of initial refactoring selection
defined in the concept chapter earlier. It means that we performed the steps of smells
matching and refactorings discovering that answers the third research question. We
began with the first step - matching bad smells to microservices smells. Afterwards, we
demonstrated the refactorings that were found based on the matchings. We also added
definitions of the refactorings. After that in the Refactorings Merge table we combined
some of the closely related on architectural level refactorings.

42

7. Refactoring Catalog

Contents

7.1. Inline Service . 44
7.1.1. Intent . 45
7.1.2. Motivation . 45
7.1.3. Prerequirements . 45
7.1.4. Impact . 45
7.1.5. Mechanics . 46
7.1.6. Discussion . 47
7.1.7. Example . 47

7.2. Replace Parameter with Explicit API Method 48
7.2.1. Intent . 48
7.2.2. Motivation . 49
7.2.3. Prerequirements . 49
7.2.4. Impact . 49
7.2.5. Mechanics . 49
7.2.6. Discussion . 49
7.2.7. Example . 50

7.3. Remove Middle Service . 50
7.3.1. Intent . 50
7.3.2. Motivation . 51
7.3.3. Prerequirements . 51
7.3.4. Impact . 51
7.3.5. Mechanics . 52
7.3.6. Discussion . 52
7.3.7. Example . 52

7.4. Require Data for API Method . 53
7.4.1. Intent . 53
7.4.2. Motivation . 53
7.4.3. Prerequirements . 54
7.4.4. Impact . 54
7.4.5. Mechanics . 55
7.4.6. Discussion . 55
7.4.7. Example . 55

7.5. Encapsulate Responsibility . 56
7.5.1. Intent . 56
7.5.2. Motivation . 57
7.5.3. Prerequirements . 57
7.5.4. Impact . 58
7.5.5. Mechanics . 58
7.5.6. Discussion . 58

43

7. Refactoring Catalog

7.5.7. Example . 59
7.6. Extract Service . 59

7.6.1. Intent . 60
7.6.2. Motivation . 60
7.6.3. Prerequirements . 60
7.6.4. Impact . 61
7.6.5. Mechanics . 61
7.6.6. Discussion . 62
7.6.7. Example . 62

7.7. Move Responsibility . 63
7.7.1. Intent . 63
7.7.2. Motivation . 64
7.7.3. Prerequirements . 64
7.7.4. Impact . 64
7.7.5. Mechanics . 65
7.7.6. Discussion . 65
7.7.7. Example . 65

7.8. Introduce API Gateway . 66
7.8.1. Intent . 66
7.8.2. Motivation . 66
7.8.3. Prerequirements . 67
7.8.4. Impact . 67
7.8.5. Mechanics . 68
7.8.6. Discussion . 68
7.8.7. Example . 68

7.9. Summary . 68

The chapter presents the main results of the thesis - selected refactoring techniques.
Describing each techniques, we will follow the template defined in the concept chapter.
All the refactorings were selected on the previous step of the general process - initial
selection.
The catalog presents final results of the refactorings adaptation. We defined and

described the whole process of adaptation in section 5.1.6. We already defined matched
smells for each refactoring that are mentioned in the description. We also partially
derive motivation section from the original refactorings, while extending it to consider
microservices-specific cases. The prerequirements section is completely unique for the
catalog. We took into consideration specific aspects of systems with microservices
architectural style to understand what state of the system can allow performing each
refactoring. Impact describes consequences of the technique application and was derived
by analysis and comparison systems state before and after refactoring.

7.1. Inline Service

Inline Service is an adaptation of Inline Class - a refactoring technique proposed by
Fowler in Refactoring: Improving the Design of Existing Code [Fow99]. Its main goal

44

7.1. Inline Service

is to change the scope of services - when all the responsibilities of one service (source
service) are moved to another service (absorbing service).

Inappropriate Service Intimacy, Cyclic Dependency, Microservice Greedy

7.1.1. Intent

Intention of the technique is to merge services that communicate to each other when
serving most of their responsibilities. Smaller service, considered as a delegate is to be
merged into bigger one. The goal is to remove the need of the component to communicate
over network and the need of developers to work with separate services while maintaining
these system’s responsibilities.

7.1.2. Motivation

The use of the technique can have different motivations. First motivation matches the
motivation of the original technique. We use the technique because the source service
does not do much anymore and there is no need or benefits to have it as a separate
service. In other words, it does not deserve to live and more important - be maintained.
Another concern that can motivate to apply the technique is because the service’s scope
and its responsibilities are not well defined. During the work with the service it can
become clear that requirements that affect the service always require changes in another
service as well. That is why it will be beneficial to merge the smaller service (that is our
source service) into bigger one (absorbing service). The third motivation would be to
reduce chattiness. That is, using the technique there will be one less service in the system
for absorbing service to communicate with that will bring performance improvement.

7.1.3. Prerequirements

Having an API Gateway in place is the only prerequirement for this technique. If the
source service is not exposed to any external clients there are no prerequirements for the
technique.

7.1.4. Impact

The main impact of the adapted technique stays the same as in original. It is maintain-
ability that we would like to improve. However, some quality factors that are not affected
while applying Inline Class are among the impact of the Inline Service.

• Maintainability. Moving features from one service to another means affecting
modifiability of the system. In case, when the absorbing service is responsible for
the features the methods provide, will mean that we adhere to CCP. It helps us,
as we will deal only with this one service when requirements change. Having the
two services separately would mean changing the two services for one change in
requirements. It also could mean having work for two different teams that will have

45

7. Refactoring Catalog

to communicate to solve the task. This would reduce speed of introducing func-
tionality for the new requirement. From the service’s perspective, the modifiability
is decreasing, as maintaining thick services is more difficult.
The modification also means testing the changed code that is a concern of system’s
testability. Having two separate services would make it more difficult. In places,
where unit testing would be enough, integration tests will be required.
However, the modularity of the system is decreasing. The services that utilized
one thin service before will now have to deal with thicker service.
Analysability of the code will also benefit from this refactoring. When the CCP
is followed carefully, we always have one service to look at for identifying issues
and only one service to assess the impact of the intended changes. On the other
hand, it could decrease maintainability. This situation is analyzed in the discussion
section.

• Performance efficiency. One of the main motivations to apply Inline Service
is to reduce chattiness in the system. The problem of having too small services
is system’s decreased time behaviour. Using the proposed technique leads to
thicker services, that can increase performance efficiency, but under condition that
the absorbing service used the source service. In other cases, the calls made to
source service will be redirected to the absorbing service that will not bring any
performance benefits.
Another aspect of performance efficiency that is improved is resource utilization.
This aspect of quality is improved while there is less services in the system after
the refactoring technique application.

• Usability. Having thicker services can decrease interoperability. Depending on
thinner services, as following ISP, is always less risky. However, if the two services
were always used together due to their common responsibilities, that is not the
case, as changes in one services would anyway affect both services.
Applying the technique would even bring benefits for learnability, as using the
one service is more intuitive.

7.1.5. Mechanics
1. Declare the api methods of the source service onto the absorbing service. Delegate

all the methods to the source service.

2. Change all references from the source service to the absorbing service across services
in the system.

3. Redirect calls in the API Gateway (if there are any) from the source service to the
absorbing service.

4. Use Move Responsibility to move features from the source service to the absorbing
service.

46

7.1. Inline Service

7.1.6. Discussion
All the motivation factors are reasonable enough to use the described technique. However,
it cannot be guaranteed that the benefits will overcome disadvantages. To win most
from this technique, one should think thoughtfully about services’ responsibilities. The
SRP and CCP are two important principles that can help to decide whether to use this
technique or not. Developers should also consider dangers of Mega-Service smell. It leads
to many disadvantages that are difficult to recover from. Therefore, special techniques
should be applied to reason the use the refactoring.

7.1.7. Example
In the example depicted on figure 7.1 we see the problem mentioned in motivation section
- the service A does not do much work. We also see that service B is the only direct user
of service A. Service B delegates its job to service A to serve the requests that come from
other services.

Figure 7.1.: Before Inline Service

Examining the figure 7.1 one can recognize the microservices greedy smell. There is
not much that is left for service A to do except of handling the only type of request from
service B with its only api method. Application of inline service as shown on figure 7.2
will reduce the number of services by merging service A into service B.

In case when service B accesses the data from service A to serve requests instead of
dealing with its own data, we have an inappropriate service intimacy smell. Applying
inline service for service A will move all the data to service B as demonstrated on figure
7.2 and there will be no need to access other services to answer the requests.

47

7. Refactoring Catalog

If we had a situation when service A sends requests to any of the services from upper
part of the figure 7.1, we would deal with cyclic dependency smell. The proposed
refactoring technique would help to cope with the problem, though not fully solve it.
After merging the services A and B it will be more clear what responsibilities are missing
for service B to keep working. It is likely that some of the services depicted in the upper
part of the figure 7.2 would also require refactoring to fully avoid the cyclic dependencies.

Figure 7.2.: After Inline Service

7.2. Replace Parameter with Explicit API Method

Replace Parameter with Explicit API Method is a specific refactoring technique that
belongs to a group of refactorings where signature of method is changes. Original
technique was proposed by Fowler in his Refactoring: Improving the Design of Existing
Code [Fow99]. The main goal of the refactoring is to make the interface of service more
specific for a client. It also reduces complexity of method. This leads us to a simpler and
clearer interface.

Leak of Service Abstraction

7.2.1. Intent

The technique’s intention is to fight the overgeneralization of the interface of service
under refactoring. Microservices system should have specialized services that have one
responsibility and, therefore, should have specific interface to help its users to understand
and use functionality for this only responsibility.

48

7.2. Replace Parameter with Explicit API Method

7.2.2. Motivation

Use of refactoring has the only motivation - make the service easier to use for its clients.
It is especially important in big microservices systems where many services serve for their
purposes. Overgeneralization misleads the service intention and can lead to its misuse.
While services are encapsulated components - it should be clear what they do from the
interface without looking at internal implementation. Another reason to support the idea
is difficulty to check the internal implementation while using a service. Current IDEs do
not support navigation to methods outside of the project.

7.2.3. Prerequirements

It is required to have an API Gateway in the system to perform the refactoring without
affecting existing clients.

7.2.4. Impact

The major part of the impact of the technique application is related to usability of the
system. However, the maintainability and analysability of the system are affected as well.

• Usability. Having api of service tuned for their clients is increasing interoper-
ability of the service. The more specific the methods are - the easier it is for clients
to get the intention of each method as well as responsibility of the service.
Applying the technique brings benefits for learnability of the service and the
system in general, as all the methods will have more descriptive names with better
communication of their purpose to the client.

7.2.5. Mechanics

1. Create an explicit API method for each value of the parameter.

2. Replace each call of the conditional method with a call to the appropriate new API
method.

3. Replace calls of the conditional method in API gateway with a call to the appropriate
new API method.

4. When all callers are changed, remove the conditional method.

7.2.6. Discussion

While in general this technique helps to improve usability of the service, there are certain
cases when it decreases the maintainability considerably. In such cases parameter could
have too many options and therefore too many separate API methods would have to be
created to serve the same functionality. Keeping all the methods up-to-date and reducing
the code duplication with requirements changes can be much of workload.

49

7. Refactoring Catalog

7.2.7. Example

In the simple example depicted on figure 7.3 we see the problem presented in motivation
section - service has the only method that is serving many different cases based on
parameter value.

Figure 7.3.: Before Replace Parameter with Explicit API Methods

We can see that figure 7.3 demonstrates a Leak of Service Abstraction smell. The
service is too general and therefore its responsibilities are not visible from the interface.
Replacing the parameter with several explicit method solve the issue. As shown on figure
7.4 the enabling clients to grasp the responsibilities of the service easier and use it more
intuitively.

7.3. Remove Middle Service
The refactoring is an adaptation of Remove Middle Man technique described by Fowler
in Refactoring: Improving the Design of Existing Code [Fow99]. The main intention is to
get rid of unnecessary delegation and use the service directly. The refactoring improves
maintainability of the system. It can also improve performance.

Inappropriate Service Intimacy

7.3.1. Intent

The intention of the refactoring is to get the client service to call the delegate service
directly. Service that serves many requests by simply delegating all work to other services

50

7.3. Remove Middle Service

Figure 7.4.: After Replace Parameter with Explicit API Methods

should not be responsible for the requests handling.

7.3.2. Motivation

The main motivation of the technique application is reducing system complexity. We
need to refactor a microservices system once we have a clearer understanding of proper
application decomposition into services. The understanding comes with time and with
system evolution. The separation of responsibilities leads to quality improvements and
decreases operational complexity as well.
Another motivation could be increasing system’s performance. Reducing communi-

cation between services by not passing requests through the middle service can lead to
faster response times.

7.3.3. Prerequirements

In case the service to remove is used by external clients the system should expose its API
via API Gateway to perform the refactoring safely.

7.3.4. Impact

Two main quality factors that the technique is aiming to improve are maintainability,
performance of the system and usability of the service under refactoring.

51

7. Refactoring Catalog

• Maintainability. As the refactoring application leads to the rearrangement of
responsibilities in the system, the maintainability of the system in general improves.
As in the refactored version of the system services that do actual job are responsible
also for requests handling, analysability of the system is increased. Modularity
of the system is also increasing as responsibilities are not spread among different
services anymore, but encapsulated in each service. The service that did simple
delegation will not contain non-relevant to its main responsibilities API methods.

• Performance efficiency. The second main quality attribute that is affected by
the refactoring application is time behaviour. The less communication between
services there are - the faster the requests are handled. Bypassing the middle
service helps to lessen the communication.

• Usability. Applying the technique contributes system’s learnability. It is eas-
ier to learn the system when API methods are provided by responsible services.
Interoperability is increased for the same reason.

7.3.5. Mechanics
1. Move API method from middle service that is provided to use delegate to delegate

service itself

2. For each client using delegate directly replace calls to newly moved API method

3. For each client using middle service change service reference to use delegate.

4. Combine old API method of delegate with newly moved method.

5. Remove old API methods.

7.3.6. Discussion
This technique involves changing an interface of the service. It does bring much benefits
for system quality, but in real world situation might require additional work to be done,
namely application of section 7.7 The combination of the two techniques might help to
achieve better results in separating concerns.

7.3.7. Example
A simple example on figure 7.5 demonstrates a situation where application of proposed
refactoring is reasonable. Service A - the middle service - has an API method that is
used by other microservices but internally simply delegates work to another service -
Service B.

Exploring figure 7.5 we see that method MethodB actually does not belong to Service A
as all it does is delegation to Service B. Therefore, application of the proposed refactoring
will bring us all the benefits described in impact section and will bring us to the state
shown on figure 7.6

52

7.4. Require Data for API Method

Figure 7.5.: After Remove Middle Service

7.4. Require Data for API Method
Require Data for API Method is an adaptation of merge of several refactorings. Original
techniques are Introduce Parameter Object [Fow99], Move Accumulation to Collecting
Parameter [Ker04] and Apply ISP to make client-specific calls [SSS14]. The refactoring
helps to manage responsibilities by removing business logic code from service that is not
responsible for it and make it accept the data that is required for service to serve its
requests.

Mega-Service, Leak of Service Abstraction

7.4.1. Intent

The main intention of the refactoring is to remove business logic code form a service that
the service is not responsible for. We substitute the code that gets and processes some
data for service to work properly by accepting the data from client services.

7.4.2. Motivation

There are several microservices smells that the technique tackles. One of the motivations
is to remove duplicated code that is spread across services. In a situation where service
instead of accepting data from clients try to get and process the data itself, it contains

53

7. Refactoring Catalog

Figure 7.6.: After Remove Middle Service

the same code that is written in services that are actually responsible for this part of
business logic. By concentrating the code only in the responsible service and simply
require the required data by the service under refactoring we get less duplication.

Another motivation is to reduce the number dependencies for service under refactoring.
By publishing a contract of requiring additional data we do not need to care about how
this data will be acquired and do not need a dependency on the responsible service
anymore.

7.4.3. Prerequirements

First prerequirement for the refactoring use is to have an API Gateway in the system.
Secondly, it is also necessary to have a versioning policy for the system. If the service
used only by clients that are under control, these prerequirements are not relevant.

7.4.4. Impact

The main consequences of the refactoring application is increased maintainability and
usability.

54

7.4. Require Data for API Method

• Maintainability. Removing the code duplication leads to increasedmodifiability
of the system. Whenever requirements change, there will be no need to do the
same modifications in several methods, but only one method will be affected.
The same applies to system’s testability. Testing several methods that are
responsible for the same feature means changing these several tests each time
methods change. The maintainability of tests is to be reduced considerably by
applying the technique.

• Usability. Simplifying API affects usability of the system. It means affecting
interoperability and learnability. However, it does not always increase those
factors. It can be the case, that several more concrete methods will be more
intuitive to use for clients, even if they are responsible for the same feature. It
is required to think thoroughly when changing API applying the technique. The
tradeoffs are described in the Discussion section.

7.4.5. Mechanics
1. Create a parameterized method that can be substituted for each repetitive method.

2. Replace one old method with a call to the new method with appropriate parameters
across services of the system under refactoring.

3. Repeat for all the methods under control, testing after each one.

4. Redirect calls in the API Gateway (if there are any) from the old methods to the
new method with appropriate parameters.

7.4.6. Discussion
Trying to reduce code duplication in the system follow the DRY (Don’t Repeat Yourself)
principle. It is an extremely important principle for system’s maintainability. However, it
is important to identify code that is indeed duplicated. For that, we should know where
is fake and where is real duplication [Mar17].
When trying to simplify API by using the proposed refactoring, it is important to

weigh advantages and disadvantages that it could bring. In many cases, it has a positive
influence on system’s usability. However, there are two aspects to consider. First of all,
the achieved API will be more general. You can identify Leak of Service Abstraction
afterwards. Secondly, the api might not match the domain after the modification. Not
everything that has the same code is the same on the domain level. It is crucial to follow
the domain understanding of system’s users while working on public API. This eases the
API use, makes it more intuitive.

7.4.7. Example
In the example depicted on figure 7.7 we see that Service B needs additional data to
serve a request from Service A. However, it is not responsible for the data. It can do the

55

7. Refactoring Catalog

job itself or delegate the job to Service C that is presented on the picture.

Figure 7.7.: Before Require Data for API Method

The figure 7.7 demonstrates an unnecessary coupling between Service B and Service C.
Application of the refactoring can remove this coupling. On the figure 7.8 we see that
Require Data for API Method technique application removes the unnecessary coupling.
In the final state of the system, Service B requires Data C from client to serve the request.
Client is now responsible to provide the data. Most likely, client should go to Service C
to ge the data.

7.5. Encapsulate Responsibility
Encapsulate Responsibility is a technique that comes from merge of Encapsulate Method
[Fow99] and Encapsulate Field [Fow99] techniques adaptation. The main goal of the refac-
toring is to hide method and corresponding data of the service. It increases maintainability
and usability. It can also increase performance efficiency of the system.

Inappropriate Service Intimacy, Chatty Service, Wrong Cuts, Not Having
an API Gateway

7.5.1. Intent
The refactoring’s intention is to hide part of its provided functionality. Sometimes, it is
done to preserve service’s intimacy while other times several methods are hidden providing

56

7.5. Encapsulate Responsibility

Figure 7.8.: After Require Data for API Method

one facade method that helps to achieve the same results as consequent invocations of
those methods.

7.5.2. Motivation

There are several motivations to use the technique. We might want to reduce clients’
confusion about the service use in case of unnecessary publishing methods of the service
under refactoring.
We might want to reduce chattiness in the system in case, when we provide several

methods that cover one functionality. Then, we can encapsulate those methods and
provide clients a single method that will perform the task using those hidden methods
internally.
We might also want to restrict direct access to data of the service. Then, instead of

providing methods which only responsibility is to access the database, methods with
business logic should be added that will use those database accessors internally. The
less work is done with the service’s data by its clients, the less chances are to have code
duplication that increases maintainability.

7.5.3. Prerequirements

It is necessary to have an API Gateway in the system to use the technique.

57

7. Refactoring Catalog

7.5.4. Impact
There are different quality factors affected in different cases of the technique’s application.
Three main factors are maintainability, usability and performance efficiency.

• Maintainability. One of the main benefits of the refactoring is increased modifi-
ability of the system. The technique helps to improve encapsulation of the service
under refactoring that leads to reduced duplication of code throughout the system.
It is easier to modify the service when its internals are not revealed through the
interface.
Testability of the system also increases when shrinking the service’s interface. It
will require less integration tests that involve several services.
Analysability of the system benefits from the refactoring while smaller interfaces
speak the service’s purpose better. It lessen cognitive load while analyzing the
service knowing that there are less possible ways for clients to use the service.

• Performance efficiency. Time behaviour problems arise when service provides
several methods to cover one piece of responsibility. In this case, these methods
are better to encapsulate providing one method.

• Usability. Having thicker services interfaces increases interoperability. It is
easier to work with such services and less integration work is required.
Learnability of the service under refactoring and the system in general also
increase, as there are less public API methods that have higher-level purposes.

7.5.5. Mechanics
1. Make API methods to encapsulate usual class methods

2. Add method that will provide better abstraction to use service’s responsibility

3. Use hidden methods in the new method

4. Change references from previous methods to new one. Change the way it is used.
Remove unused API invocations

5. In the API Gateway change invocations of set of hidden methods to the new method
invocation

7.5.6. Discussion
The main danger of the proposed technique’s application is Leak of Service Abstrac-
tion smell. Before applying the technique, it is important to understand what methods
should be covered with the facade. In the simpler case when methods are not yet used -
the technique is a very good preventative mean to avoid service Inappropriate Service
Intimacy.

58

7.6. Extract Service

7.5.7. Example

On the figure 7.9 we can see that Service B uses three methods of Service A to cover
some functionality. These methods in the example are meant to be executed together to
achieve results. As they are not used separately, it is reasonable to apply the proposed
technique encapsulating those methods and providing a facade method.

Figure 7.9.: Before Encapsulate Responsibility

Figure 7.10 depicts the final state of the system after technique’s application. The
facade method is called Method123 in our case and internally it uses the hidden methods
to provide the same functionality.

7.6. Extract Service

Extract Service is an adaptation of Extract Class - technique proposed by Fowler in
Refactoring: Improving the Design of Existing Code [Fow99]. The main intention of the
refactoring is to extract part of responsibilities from one - source service into another -
extracted service. It leads to increased system’s maintainability due to better separation
of concerns, but has a tradeoff of reduced performance efficiency.

Low Cohesive Operations,Scattered Parasitic Functionality,Service Chain,Bottleneck
Service,Mega-Service,Inappropriate Service Intimacy,Cyclic Dependency

59

7. Refactoring Catalog

Figure 7.10.: After Encapsulate Responsibility

7.6.1. Intent

The intention of the refactoring is to extract responsibilities from service that it is
not responsible for to newly created service. All the methods together with data are
extracted and all the references to these methods are changed to new ones. It makes
sense when SRP is violated and there is no appropriate service that would take those
foreign responsibilities, otherwise Move Responsibility technique would be helpful.

7.6.2. Motivation

The technique helps to tackle many microservices smells. All the smells except of Cyclic
Dependency can be split into two cases - two main motivations. There are either many
services containing the whole or parts of the common responsibility or there is a foreign
responsibility in some service. In the first case we want to improve maintainability of the
system and in the second - maintainability of the service. In case of cyclic dependency
the main motivation is to remove the cycle.

7.6.3. Prerequirements

The first prerequirement for the technique is to have API Gateway in place. Having
an API versioning policy can ease the refactoring application.

60

7.6. Extract Service

7.6.4. Impact
Consequences of the refactoring’s application are increased maintainability of the system
and the service under refactoring and reduced performance efficiency. The technique also
increases usability of the service.

• Maintainability. Increased maintainability is the main goal of the refactoring.
Modifiability of the system and of the service under refactoring is increased.
Extracting common responsibilities from several services in the system leads to
modifications only in this service later on once requirements change. Extracting
foreign responsibilities allows to arrange a separate team for the new service that
helps in case when the service is growing to big.
Testability of the system increases in case of extracting responsibility from several
services as there will be only one set of tests for the responsibility. It becomes to
maintain the tests.
Modularity of the system increases. The number of services in the system increases
where each service has one responsibility.
Analysability of the services in the system increases with the refactoring. It
is easier to identify services and their responsibilities when there is only one
responsibility per service.

• Performance efficiency. The problem of having more services in the system is
decreased time behaviour. In many cases, extracting common responsibility from
several services will lead to more communication in the system. However, in case
of extracting responsibilities from one service time behaviour is not affected.
There is one more aspect of performance efficiency that is worsen - resource
utilization. As we have more services in the system - there will be need for more
resources.

• Usability. Having smaller services with only responsibility in the system increases
interoperability. Such redistribution of responsibilities can help to follow ISP
better.
Learnability aspect of the whole system is worsen by the refactoring’s application,
while for the source services, learnability is improved.

7.6.5. Mechanics
1. Create a new service for responsibility to extract

2. If the responsibilities of the old service no longer match its name, rename the old
service.

3. Use Move Responsibility on each one you wish to move for methods and data.

4. Review and refactor the interfaces of source and extracted services.

61

7. Refactoring Catalog

5. Change links in the API Gateway from the old services to the extracted one.

7.6.6. Discussion
While considering the refactoring’s application it is crucial to avoid Microservice Greedy
smell. The more services there are, the more complexity of the system is pulled up to
operational level. The balance should always be kept to achieve the best maintainability
of the system.

7.6.7. Example
As can be see from the example on figures 7.11 and 7.12, the states of the system before
the refactoring matches the state after inline service refactoring application. The problem
that is shown here is that Service B has two separate responsibilities that decrease
maintainability.

Figure 7.11.: Before Extract Service

There is only one case from motivation depicted on the figure. Another case would be
having several services with same MethodA and Resp. A tbl. As shown on the figure

62

7.7. Move Responsibility

7.12, the method and respective data is moved to Service A by applying the technique.
The final step shows exactly what we were aiming for - the responsibility is extracted
into newly created service.

Figure 7.12.: After Extract Service

7.7. Move Responsibility

The technique is an adaptation based of several existing techniques such as Move Method
[Fow99], Move Class [Fow99] and Move Field [Fow99]. With this refactoring it is intended
to distribute responsibilities in a microservices system properly to follow SRP and CCP.
The refactoring describes atomic steps of moving a responsibility and demonstrates
consequences and possible dangers.

Service Chain, Scattered Parasitic Functionality, Chatty Service, Bottle-
neck Service, Mega-Service, Microservice Greedy, Inappropriate Service In-
timacy, Wrong Cuts

7.7.1. Intent

The refactoring’s intention is to better organize responsibilities distribution among
services. Taking service under refactoring with foreign responsibility, we move its method
and corresponding data that this service should not be responsible for out of it to more
appropriate service.

63

7. Refactoring Catalog

7.7.2. Motivation

Having different smells this refactoring can help to tackle, we can define several motivations
to use it. The main case when application of the technique is beneficial is when the
service under refactoring has foreign responsibilities. It is the most general case and can
be split into several. The service under refactoring might be used by another service to
cover responsibility of the client service. It creates high coupling between the services
and leads to organizational problems requiring more communication and coordination
between teams responsible for the services. There also can be a case when the service
under refactoring is used by external clients but for different reasons. It also leads to
maintainability issues.
Another case is when there is a service that does not do much but provides access

to data in its database. Then other services use it to access this data. To tackle this
problem we can move the data together with data access methods to the client services
of the system.

One more motivation to use the refactoring is to reduce the chattiness between services
in a system. When responsibilities are not distributed right, it is often a case that there
is far too much needless communication.

7.7.3. Prerequirements

API Gateway should be present in the system if the service under refactoring is used by
external clients. API Versioning policy is also beneficial while applying the technique.

7.7.4. Impact

The refactoring affects maintainability, performance efficiency and usability of the system.

• Maintainability. Reorganizing responsibilities affects modifiability of the sys-
tem. Once they are organized well, there is less effort from developers to coordinate
the changes and most of the requirement changes will affect only one team. For
the same reason the testability of the system is increased, it will be possible to
cover more functionality with unit tests instead of involving multiple services for
integration or functional testing.
Analysability of the system is increased with better separation of concerns. It is
easier to understand the cause-effect relation among services as well as between
classes in each separate microservice.

• Performance efficiency. Improved time behaviour of the system is one and of-
ten just side benefit that this refactoring brings. Proper rearranging responsibilities
of the services always leads to less communication between them.

• Usability. Applying the technique contributes system’s learnability. First of all,
is easier to learn the system when API methods are provided by responsible services.
Secondly, assumptions on the service responsibilities based on previous experience

64

7.7. Move Responsibility

with it should be met to increase learnability. Interoperability is increased for
the same reasons.

7.7.5. Mechanics

1. Examine all features used by the source method that are defined on the source
service. Consider whether they also should be moved.

2. Declare the method in the target service.

3. Move the data to the target service if needed.

4. Copy the code from the source method to the target. Adjust the method to make
it work within the new service.

5. Turn the source method into a delegating method.

6. Remove the data from the database of service under refactoring.

7. Remove the source method or retain it as a delegating method.

8. Replace references from API method to newly created one in other services in the
system and in the API Gateway.

7.7.6. Discussion

The main intention of the technique is to fix SRP violation in the system. As SRP is a
principle - it is difficult to say how reasonable it is to apply the refactoring. In the most
cases, there should be a strong reason, as the technique is challenging and quite radical.
A reoccurring maintenance problem in cases described in motivation section could drive
the techniques application.

7.7.7. Example

As there are many cases when the refactoring can be applied, only the abstract general
idea is given below. We see state of the system before on figure 7.13 where the problem
is depicted by naming only. The Service A on the picture has methods and data for
responsibility that belongs to Service B.

Figure 7.14 on the other hand, shows how the violation of SRP can be fixed with the
refactoring. It is a state of the system after the technique’s application. It does not show
how it affects client, because there are too many cases but it shows that now there is
no data and no methods in Service A that it is not responsible for. The change of the
situation has all the quality factors consequences described in impact section.

65

7. Refactoring Catalog

Figure 7.13.: Before Move Responsibility

7.8. Introduce API Gateway

The proposed refactoring is an adaptation of several matched techniques - Introducing a
Dependency Graph Facade [SSS14] and Hide Delegate [Fow99]. The main intention is
to hide complexity of using the system - several services in combination - behind one
single entry-point service. This refactoring technique is towards the pattern API Gateway
described in section 4.2.1.

Not Having an API Gateway, Service Chain, Inappropriate Service Inti-
macy, Cyclic Dependency

7.8.1. Intent

Introduce API Gateway is meant to create a new service in the system that provides
a facade interface for external clients. The service has no business logic and simply
delegates to other services in the system.

7.8.2. Motivation

There are several motivations to use the technique driven by mentioned smells. There
can be a problem of having too difficult API for clients that can be make easier with
gateway. Another case is when a chain of methods possibly form different services should
be invoked to cover some functionality. These methods invocation can be combined in
one method of gateway. In other cases, it is harmful to provide access to some methods
to external clients that might reveal implementation details. Having a cyclic dependency
can be another motivation to use the technique.

66

7.8. Introduce API Gateway

Figure 7.14.: After Move Responsibility

7.8.3. Prerequirements

There are no prerequirements to use the technique. Having an API versioning policy
in place can help to perform the refactoring.

7.8.4. Impact

The refactoring impacts the system’s usability the most. The technique also increases
maintainability and can decrease performance efficiency.

• Maintainability. The proposed technique increases modifiability of the system.
It is much easier to modify the services and their interface when there is the only
facade service that external clients are aware of.

• Performance efficiency. Communication between services within the system
can be faster than between external client and the system. Therefore, when we
combine several methods of different services of the system in one API gateway
service method increases time behaviour of the system. It decreases latency.

Resource utilization is decreased as there is need for one more service to perform
this refactoring.

• Usability. Often, increasing usability of the system in the main reason to use
the refactoring. Proposed technique increases interoperability of the system. It
is easier to work with system when it provides clearer, smaller and client-specific
interface.

For the same reason, learnability of the system increases by the technique appli-
cation.

67

7. Refactoring Catalog

7.8.5. Mechanics
1. Create gateway service

2. Use Encapsulate responsibility for methods of each service that should not be
directly available to clients

7.8.6. Discussion
The API Gateway pattern is meant to solve many problems and involves different concepts
such as authentication or monitoring that is often part of API Gateway in practice. In
the description of the technique we concentrate only on the main responsibility of API
Gateway - introducing a facade for a system.
The refactoring is complex and involves the use of encapsulate responsibility (and

sometimes move responsibility). Intention of the proposed technique is similar to what
encapsulate responsibility is used for, but on a higher - system level.
As the most important quality factor that the refactoring impacts is usability of the

system - it is crucial to develop a good, client-specific API. In some cases, it makes sense
to use the refactoring towards Backends for Frontends.

7.8.7. Example
The example demonstrates the technique application on two services, while it can be
extended to many more. On the figure 7.15 a situation where client works with two
services of a microservice system is demonstrated. It is assumed that requests that client
performs are meant to solve single task. Therefore, it would be easier for the client to
make only one request. It would also increase performance.

The solution is Introduce API Gateway. The state of the system after the refactoring is
depicted on figure 7.16. Here, client easily solves its task with only request and internally,
API Gateway service delegates parts of the task to the Service A and Service B that are
responsible for it.

7.9. Summary
The chapter presented the main results of the thesis - refactoring techniques. We
described each of the selected techniques following the template. We defined their intent,
motivation to use, prerequirements, impact on system’s quality and mechanics. We also
added discussion section where we demonstrated potential problems and tradeoffs. The
last subsection of the refactoring description was an example with visualization of the
technique impact.

68

7.9. Summary

Figure 7.15.: Before Introduce API Gateway

69

7. Refactoring Catalog

Figure 7.16.: After Introduce API Gateway

70

8. Evaluation

Contents

8.1. Questionnaire . 71
8.1.1. Background . 71
8.1.2. Microservices Expertise . 72
8.1.3. Approach . 72
8.1.4. Refactorings Catalog . 72

8.2. Results . 73
8.2.1. Participants . 73
8.2.2. Approach . 74
8.2.3. Refactorings Evaluation . 75
8.2.4. Refactorings to Tackle Smells 81
8.2.5. Refactorings to Improve Quality 83

8.3. Discussion . 84
8.4. Summary . 86

The chapter presents evaluation of the thesis results. The following sections demonstrate
the prepared questionnaire, derived results and the conclusions made.

8.1. Questionnaire
In the chapter 5 it was defined to perform evaluation for the research results using
questionnaire. We also discussed rough structure of it. In the section we demonstrate
prepared questionnaire in details.

The structure is formed of three main sections. These are Background, Microservices
expertise, Approach, and Refactorings Catalog sections.

8.1.1. Background
The section is meant to better understand the interviewee’s background. It helps later
during results analysis phase. Based on the answers it is easier to assess what weight
(multiplier) should be applied to answers of the person on specific questions. For example,
people on research positions might assess the approach with more expertise. At the same
time, answers of the interviewees holding the post that involve much practical experience
will be weighted more for refactoring techniques application questions.

The section consists of questions about experience in software engineering. Specifically,
the amount of years in software engineering and current position are in question. The
current position question is of multiple choice type. There are two reasons for it. First,

71

8. Evaluation

it happens that worker has several responsibilities. Therefore, interviewee can associate
themselves with multiple positions. Secondly, among the options there are some that can
be combined. For example, full-stack developer and mobile developer. Therefore, it is
useful to provide this opportunity to choose several options and also gather the more
specific information.

8.1.2. Microservices Expertise

The questions in the section are meant to understand what smells interviewee has met
before. They also help to discover interviewees’ experience with microservices.
To assess the validity of the main results of the thesis - refactoring techniques appli-

cability - it is necessary to know what is the microservices architectural style in depth.
Especially, it is required to know what disadvantages are common for systems that adopt
the style. The problems are visible on the surface through microservices-specific bad
smells. While the bad smells are not widespread and still much research going on -
the problems exist for quite some time already. Therefore, we present the smells with
description of underlying problem in the section. The smells are used later in the survey
in questions about refactoring catalog, specifically, what smells and to what degree the
presented technique can tackle. The disadvantages come with decreased quality that
refactoring techniques are meant to increase. In the fourth section there will also be
questions about affected quality factors by proposed refactoring.

8.1.3. Approach

In the section we ask interviewees to assess the chosen approach (section 5.1) to build
the refactoring catalog. We ask interviewees to assess the validity and also ask for a
comment. The main importance in our case has the reliability of the chosen approach, as
it is not the main result of the thesis and while we want it to be repeatable and enable
researches to produce the same results with the same initial data, we still need to keep
the survey concise and help interviewees to concentrate on the main results.

8.1.4. Refactorings Catalog

The section is the most valuable - it is meant to assess the main results of the master
thesis. The section has its own structure. In the beginning there is a catalog overview.
It mentions all 8 refactorings and presents the questions structure for each technique.

Every subsection dedicated to one refactoring presents the technique in the beginning.
It consists of summary, mechanics and example sections from the catalog. Afterwards, the
smells the refactoring helps to tackle are listed. For each smell it is asked to estimate how
applicable the refactoring is. Then, the next question asks how the proposed technique
affects listed quality criterion. The last subsection gives an interviewee an opportunity
to leave comments.

72

8.2. Results

8.2. Results

During the survey period we were able to attract 116 respondents having more than
500 clicks in total. We filtered out the cases and found 36 useful ones. We defined the
validation criteria based on the fact that respondent reached the section of refactorings
evaluation giving answers. In the section we demonstrate results of the questionnaire.
We start with analysis of respondents’ background. Then, we present and discuss
evaluation of the approach. Afterwards, we show how the proposed refactoring techniques
were evaluated. In the discussion section, different perspectives on the refactorings
evaluation are be given and given an analysis of free input answers. There, we also
discuss stratification where applicable.

8.2.1. Participants

We reached people with different background. We received feedback from 26 people
from industry, 18 people of them are from development positions and 8 are involved in
management. We also have 6 researchers and 4 students among participants. Worth
noticing that all of the student respondents have work experience and have been working
in software development between one and three years. We demonstrate this gathered
information on participants position with chart 8.1.

Figure 8.1.: Position

We gathered people with different experience levels. Seven people have been working
between one and three years, four people between three and five years. Seven people
have work from 5 to 10 years. Sixteen respondents have work experience more thant ten
years. This data is presented on the chart 8.2.

Exactly 50 percents of the respondents have practical experience with microservices.
Other either investigated on the topic themselves or developed toy programs for different

73

8. Evaluation

Figure 8.2.: Participant’s Experience

microservices concepts. The difference in experience with microservices is demonstrated
on the chart 8.3.

Figure 8.3.: Experience With Microservices

8.2.2. Approach
The approach was evaluated by 33 people. Among them, 15 respondents completely
agreed that the approach is valid and promising. Partially agreed with the approach 11
people. It gives us a very good results of almost 80 percents of respondents supporting
the approach validity. Only four interviewees have doubts that the approach is good

74

8.2. Results

while none of the respondents disagreed with the chosen approach completely. The chart
8.4 presents the information visually.

Figure 8.4.: Approach Assessment

Only few of the respondents were not able to asses the approach. This minor number
demonstrates that the approach is transparent and understandable to people.

It is crucial for the research that the approach is accepted and valid. It is the basis for
master thesis and quality and validity of the approach influences all the following results.
It is also an answer for the first research question "How to identify potential refactoring
techniques?". Based on the analysis we can make a conclusion that the chosen approach
is promising and the results that we gained are reliable.

8.2.3. Refactorings Evaluation

The first question about refactoring was about its applicability to different proposed
smells. As for every technique analysis presented later in the section, we start with
demonstration of the applicability graph that is box plot with depicted median and
weighted average values. The graph shows range where one is the minimum value of
applicability and five is the maximum.

The second question asks participants to assess how different quality factors are affected
by the proposed refactoring. They can be increased as well as decreased by the refactoring
application. As was mentioned in the catalog itself, almost any change in software has
its tradeoffs. So, we will see on the graphs that some of the quality factors are decreased
or not affected at all by a proposed technique. The results are shown with the same
box plot charts with minimum value of -2 (highly decreased) and maximum of 2 (highly
decreased). Value zero means that the quality is not affected by the technique.

75

8. Evaluation

Encapsulate Responsibility

Figure 8.5.: Encapsulate Responsibility Smells, and Qualities. Inline Service Smells and
Qualities

As can be seen on the figure 8.5, the proposed refactoring helps to tackle several smells.
The most appropriate this refactoring is for tackling smell Chatty Service with median
on maximum value - five. The next smell that the proposed refactoring is good for is
Inappropriate Service Intimacy with median on three. While median value is the same
for smell Not Having an API Gateway - the weighted average is smaller and some people
voted that the smell is not applicable at all. Among presented, the refactoring is least
applicable to tackle Wrong Cuts.
The chart 8.5 also demonstrates that encapsulate responsibility refactoring increases

several quality factors. It increases maintainability the most with median on maximum
value - plus two. Usability is also increased considerably by the refactoring application
with median on 1. However, there are different perspectives on how it is affected. From
the free text input we have the following feedback: "Usability of more fine-grained controls
of a service offering might be higher because the service can be controlled on a finer level.
However, then a developer/operator/consultant needs to understand each of the single
methods instead of the big function.". It is indeed a valid argument. As was mentioned
in the catalog, quality factors can be affected differently depending on a concrete case
and implementation.
Performance stays the same having median on one and with weighted average of 0.5

with quite a few responses on quality factor decrease. It differs from the assumption made

76

8.2. Results

in the refactoring description in the catalog. We claimed that performance efficiency is
increased due to less requests from client. On the other hand, time behaviour of this one
new heavy request that combines several encapsulated ones will indeed decrease.

Inline Service

Inline service technique is among the best techniques by its applicability to proposed smells
based on interviewees opinion. It is equally applicable to Inappropriate Service Intimacy
and Microservice Greedy smells with a little less applicability to Cyclic Dependency smell.
As we can see on the graph, respondents had quite different opinions on the technique
applicability to the Cyclic Dependency smell. We can see that it can be due to the given
example in the questionnaire that better demonstrated case for first two microservices
smells.
The refactoring generally affects all the quality factors. It increases maintainability,

performance efficiency and usability. However, due to the chart, respondents were more
sure about increase of maintainability quality factor. During the discussion of the affected
qualities by the refactoring in the catalog, we mentioned that the service’s usability
(specifically - interoperability) can be decreased. However, looking at the system as a
whole, usability is increased and participants of the survey also support the assumption.

Extract Service

Figure 8.6.: Extract Service Smells, and Qualities. Move Responsibility Smells and
Qualities

77

8. Evaluation

Extract service in the catalog is proposed to be used to tackle many different smells.
As the technique is quite universal, it indeed can be used to solve different problems.
However, based on the answers of the survey participants there is a clear separation
between smells that can be tackled by the refactoring better and those that cannot be
completely solved by the refactoring. We see on the chart 8.6 that the refactoring is
not applicable to Inappropriate Service Intimacy at all and barely applicable Bottleneck
Service smell. Cyclic dependency is not solved by this smell either but in the catalog it
was also presented as only one step towards the complete avoidance of such a dependency.
We can also see how different people opinions are on applicability to this smell.

The most applicable the refactoring is to Low Cohesive Operations and all the respon-
dents agreed in that. Mega-Service and Scattered Parasitic Functionality can be tackled
by Move Responsibility as well with high median value of four.

The results of the assessment of the quality factors affected by the refactoring application
go along with the discussion in the catalog. We mentioned that the performance efficiency
is not affected or can even be decreased by the refactoring application. we see that people
agreed having median value of zero. We also have one opinion supporting the discussion
in the catalog that was taken from analysis of free text input "Performance: Now that
the service/method is isolated its performance can be tackled independently from the
original service. This MIGHT increase the performance but not automatically does". On
the graph 8.6 we see that none of the factors have a considerable increase. The most
affected quality factor is maintainability based on the average value.

Move Responsibility

Move responsibility is the most general refactoring technique proposed in the catalog.
Therefore, there are so many smells proposed that the technique could potentially tackle.
We see a split into two groups on the chart 8.6. The first group consists of the smells
Scattered Parasitic Functionality, Mega-Service, Inappropriate Service Intimacy and
Wrong Cuts. Participants assessed the refactoring to be most applicable to those smells
with median value four. The refactoring regarding its applicability to other four smells
was assessed as less applicable, though still not inapplicable at all. The most confusion
among participants was about smell Bottleneck Service. We see that some people have
opinion that Move Responsibility is not applicable to this smell at all.

On the same chart 8.6 we see that maintainability is the main quality factor affected by
the technique. It supports the assumption made in the catalog. All of the three qualities
are increased with the refactoring application while the performance efficiency is affected
the least. We can observe how sure were people about moderate increase of usability
with the technique. It was also mentioned in the refactoring description that having
improved time behaviour of the system is just a side effect and not the main purpose of
the technique.
Analysis of the comments to the refactoring brought us valuable insight. It was

highlighted that "it may require additional work [to perform the refactoring] if services
use different languages or frameworks". It is indeed an important point to consider and
another prerequirement for the technique.

78

8.2. Results

Remove Middle Service

Figure 8.7.: Remove Middle Service Smells, and Qualities. Replace Parameter with
Explicit API Method Smells and Qualities

Remove middle service is a very specific technique. We can see the results on its
applicability and affected quality on figure 8.7 Only one smells is meant to be tackled
with this refactoring. Based on the results that we received, people from industry and
research support its applicability to Inappropriate Service Intimacy smell with median
value four.

The refactoring affects quality factors a lot. The performance is increased due to
less communication in the system as was discussed in the catalog. We see that all
of the respondents were sure about moderate increase with value one. Due to the
fact of having less useless services we see that participants of the survey approve that
maintainability and usability are also improved. However, respondents were quite unsure
about usability. There are interviewees who believe that usability is not affected by
the technique application. Nevertheless, almost none of the people chose the option of
decreasing any of the quality factors.

Replace Parameter with Explicit API Method

The technique is meant to tackle only one smell - leak of service abstraction. We got
approval of the assumption that the refactoring is indeed applicable to solve this specific
smell. People are sure, that is visible on the graph, that the technique is highly applicable.

79

8. Evaluation

Replace Parameter with Explicit API Method increases or slightly increases all the
presented quality factors. It considerably increases maintainability and usability. While
we got the same median values we see that people were more sure about increase in
maintainability of the system. However, in the catalog only usability was mentioned
as the main quality factor that could potentially force people to use the refactoring.
Increased performance efficiency is positive side effect in this case. As can be seen on the
graph people voted for the quality factor being unaffected or only slightly increased.

Require Data for API Method

Figure 8.8.: Require Data for API Method Smells, and Qualities. Introduce API Gateway
Smells and Qualities

On the chart 8.8 we see that the refactoring was assessed by its applicability to Mega-
Service and Leak of Service Abstraction smells. We see that the technique is equally
good applicable to tackle both smells. Even though the median values are the same,
we see that respondents were not that sure about Mega-Service. There are quite a few
respondents that belive that the refactoring is barely applicable to the smell.

While both of the smells are important to get rid of, but tackling mega-service would
give more benefits. It is not expectable to see how good this refactoring is applicable
to solve such an important smell while it was mostly derived to solve Leak of Service
Abstraction. And it is slightly more applicable to this smell as can be seen on the box
plot.
The refactoring increases maintainability of the service. It also leads to moderate

80

8.2. Results

increase of usability. Performance efficiency is not mentioned in the catalog. While we
have a median value of one, there are still many respondents that believe the refactoring
is not affecting performance efficiency. Nevertheless, having opinion with slight increase
of the quality factor on average, it be considered as a positive side effect of refactoring
but not the main driver of its application.

Introduce API Gateway

The refactoring technique has a clear purpose to introduce an API gateway to a system.
The results depicted on the figure 8.8 are also not surprising. The technique is the most
applicable to the corresponding smell - Not Having an API Gateway. Almost all of
the respondents were positive about it and we have a maximum median value of five.
However, based on the free text answers analysis to this refactoring we noticed that some
people misunderstood the concept. The comments include a statement that it is not a
good idea to implement a custom API Gateway. However, as any traditional refactoring,
the technique does not provide a concrete solution and there is no advice given on
implementation. So, it is completely fine to use existing solution for API Gateway that
would still mean following the refactoring.

Respondents agreed that the technique considerably increases usability of the system.
The graph 8.8 demonstrates that maintainability of the system is also increased. Based
on respondents opinion, the performance efficiency slightly increased or not affected by
the technique application. In the catalog we discussed that the benefits in building a
response for the user in an API-gateway will overweight problems related to introducing
a service in between of the user and the rest of the system.
The analysis of the comments gives the following opinion on affecting maintainabil-

ity that has different perspective and therefore different implication "every change in
each service needs to be reflected in the gateway which decreases maintainability and
development speed.".

8.2.4. Refactorings to Tackle Smells

There is a different perspective on the gained results. One of this perspective is effective-
ness of the proposed refactorings for each smell. This perspective is crucial, as software
refactoring has an intention of paying technical debt. Technical dept can be detected
with smells as was discussed in section 2.2. While the main purpose of the questionnaire
is to assess proposed refactorings applicability, we can still have a good assessment and
comparison of their applicability to each involved smell.
In the table presented on the figure 8.9, we see perspective of the refactorings appli-

cability to the smells. Colors define how applicable they are and the number is actual
applicability value.

We mark the highest applicability with dark green color, good applicability with light
green, weak applicability with yellow and no applicability with dark orange.
On the figure 8.9 we see that top three most applicable refactorings to tackle Inap-

propriate Service Intimacy smell are inline service, Remove Middle Service and Move

81

8. Evaluation

Figure 8.9.: Smells Perspective

Responsibility techniques. While inlining a service and moving responsibility are quite
general techniques and have much in common, Remove middle man is specific to only
one case. The least applicable refactoring to solve the mentioned issue is extract service.
Comparison of refactoring techniques for Chatty Service shows that encapsulate

responsibility technique is considered to be more applicable to solve the issue than move
responsibility.
For wrong cuts smell there is a clear separation in respondents opinion on high

applicability of encapsulate responsibility technique and only little applicability of move
responsibility to tackle the smell.

On the figure 8.9 we see that there is only one refactoring in the catalog that claims to
tackle low cohesive operation smell. While there is no comparison to other refactoring,
it is seen with green color that this technique helps to solve the issue effectively. The
next smell - cyclic dependency has three different refactorings claimed to tackle it. The
most applicable refactoring is inline service. Two other techniques - extract service and
introduce api gateway are much less applicable having similar level of relevance.

We can immediately see a clear leader for Not Having an API Gateway smell - introduce
an api gateway. There is a less clear picture for Service Chain smell, however. All the
three smells are not highly applicable to the smell with better results for introduce
api gateway, but no clear leader. The smell is complex and refactorings were derived
indirectly in the catalog. We see that we could not find a specific technique that can
tackle this smell effectively.

Scattered parasitic functionality is solved better by move responsibility refactoring as
we can see in the table. Leak of service abstraction can be effectively solved by both
proposed refactorings - replace parameter with explicit API method and require data for
API method. It is an interesting case because both of the techniques work on the same
level - level of service interface. Such changes are less complex and can be performed
with less effort.

We can see that inline service can solve the Microservice Greedy smell effectively,
while Move Responsibility is less effective. For the Bottleneck Service there is no good

82

8.2. Results

technique found. We can see that both of the refactorings have only yellow color that
means weak applicability. This can be due to the the fact that this smell is common
and often necessary evil with its tradeoffs. The most obvious example is pattern API
gateway. While API gateway has all the issues of bottleneck service smell, it provides
many important benefits.

Applicability of the proposed refactorings to Mega Service smell is quite sound. Extract
service and require data for API method refactoring are equally good applicable to the
smell. While move responsibility technique is less applicable - it still has sound results to
be considered as one of the techniques for the problem solution.

8.2.5. Refactorings to Improve Quality

Another perspective that we find useful to assess is effectiveness of the refactorings to
improve quality factors. There are only three qualities that were present to be assessed
in the questionnaire for each technique - maintainability, performance efficiency and
usability. We have a look at each of the quality factor and all the refactorings. We can
see how good or bad each of the technique helps to improve the quality.

Figure 8.10.: Quality Factors Perspective

We use weighted average value for presenting quality factors matrix 8.10. We mark
great quality improvements (over 1.0) with dark green, weak improvement with light
green and minimum change in quality with yellow.
We will first look at maintainability quality factor. Maintainability is the most

important factor that is often the main driver to perform refactoring. On the figure 8.10
we that there all the eight refactorings influence maintainability positively. We can see
than the quality factor is improved the most by refactorings remove middle service and
move responsibility. Indeed, as wan mentioned in the catalog, move responsibility is very
effective technique that, applied wisely, leads to great maintainability improvements.
The least effective refactorings in terms of improvement system’s maintainability are

extract service and replace parameter with explicit API method. The two techniques
are very different. In case of extract service - maintainability can be decreased on
operation level. We had comments on the technique in the survey results about having
more communication between teams and obligation to support one additional service
that indeed decreases maintainability that can decrease system’s maintainability. As
was mentioned in the catalog, maintainability of the extracted service will be increased,
though. It might be still useful to use the refactoring for important services. Other
refactorings mentioned on the graph moderately improve maintainability approximately

83

8. Evaluation

to the same degree.
The next quality factor is performance efficiency. The results are also demonstrated on

figure 8.10. We see clearly that there are two refactorings that do not affect or can even
decrease performance of the system - introduce API gateway and extract service. It is
obvious why extract service can decrease the performance but for introduce api gateway
technique the situation is more complex. As we discussed in the refactoring results
analysis subsection, performance could potentially be increased by wisely combining
several requests into one.
We see that other refactoring techniques slightly improve the quality factor. Replace

parameter with explicit API method is leader on the chart, though the results might
be inadequate due to questionnaire problems described later in the discussion section.
Remove middle service, extract service and move responsibility can be named as the
most effective technique to increase performance.

Usability is the last quality factor that was presented to participants.It is complex to
assess the quality as there are different perspectives. There is service usability that some
of the respondents had in mind due to the comments and also system usability. Top
three of proposed refactorings that improve the quality factor the most are introduce
API gateway, inline service and remove middle service. We see two refactorings that do
not affect or can even decrease usability. Those are encapsulate responsibility and extract
service. Having inline service as refactoring improving usability and extract service as
one that does not affect or decreases it, we can imply that it is easier for developers to
use bigger services that serve many different requests. We also see that refactorings that
have specific goal of increasing usability, as replace parameter with explicit API method
is not considered that effective and radical changes in arrangement of services.

8.3. Discussion

Conducting a survey we tried to attract people with different occupation. We also
reached people with different levels of experience in their career. As we discussed in
the questionnaire description, the main reason for it is to receive opinions from different
perspectives. It might be interesting to analyse how different were the results given by
people with different background.
On the figure 8.11 we demonstrate respondents ratio within each occupation groups

evaluating techniques applicability. On the axis x we give different options of applicability
level that interviewees could chose and on the axis y there is percentage of people within
each group that chose the option. Options of technique applicability are ranging from 1 -
not applicable to 5 - highly applicable. We can see that respondents from different stratas
show approximately the same evaluation ratio in terms of refactorings applicability. There
are a little more people having management positions that chose highest applicability
level to smells for presented techniques and also more people that gave applicability level
four among students.

The next groups that we derived have different experience level. On the chart 8.12 we
see that we have 5 different groups from those having one to three years of experience

84

8.3. Discussion

Figure 8.11.: Respondents Assessment by Occupation

to those people that have been working for more than 15 years. While we provided an
option with less that one year of experience we did not reach any people within this
group.

Figure 8.12.: Respondents Assessment by Experience

Responses received from group exclusively chosen with specific background might lead
to bias results. We do not have this situation as we were able to reach different groups.
Moreover, their analysis and comparison shows that the responses received from each of
the groups are not radically different.
Besides not having variety among respondents problems can arise because of the

85

8. Evaluation

questionnaire structure and content. We noticed tendency of people giving better
assessment to refactorings that are meant to tackle ony one or two smells. It can be
related to the fact that assessing a refactoring’s applicability to one smell - interviewee
mentally creates a concept that is specific to tackling this smell with the proposed
refactoring. Asking the participant to assess the technique’s applicability to further
smells we risk to receive bias results because they already have a picture of the refactoring
aiming to solve the first smell presented.
The same problem might arise due to a different reason that we consider as a more

valuable factor. For any refactoring with very limited (one or two) smells presented that
it is meant to tackle we were able to give a more specific example for smells, while for
refactorings presented with several smells - only one general example was given that
cannot demonstrate technique’s applicability to every smell equally good.
The last but not least aspect that influences the questionnaire quality of the smells

used. While microservices architectural style is still fresh - the smells are not yet formed
and the catalog that we used cannot be proven to be fully valid. It is also a valid point
that those smells are not common and still not known by most of the participants.

8.4. Summary
In the chapter we presented a method that we used for evaluation of the research results.
The first section demonstrated the developed questionnaire. We described questions
that were asked to respondents. We were concerned about their current experience with
microservices architecture style. We also presented how we were trying to reach different
types of interviewees - with varied background and occupation.
In the results section we discussed what background our actual participants have,

what experience do they have with microservices and how many years they are working
in software engineering. Then, we demonstrated results on the approach that prove
results validity and reliability. Afterwards, we described results on each of the refactoring
presented. We included graphs with applicability of each technique to smells and degree
with which the technique affects quality factors. In the refactorings to tackle smells and
refactorings to improve quality we presented different perspectives on the techniques
assessment. We looked at the most effective and least effective refactorings to tackle
each smell and to improve each quality factor. The last subsection - discussion - revealed
potential problems of the questionnaire that might lead to bias results towards some
of the presented refactorings. We deduced that variety of the respondents did not lead
to bias responses, while structure of the survey might have introduced partially unfair
responses.

86

9. Conclusion & Future Work

Contents

9.1. Conclusion . 87
9.2. Future Work . 88

9.1. Conclusion

This thesis presented a catalog of refactorings for systems with microservices architectural
style. We organized the work starting from background. The background is meant to
make reader familiar with all the basis that we built our work on. We presented the
main points of microservices architecture style, its main characteristics, benefits and
tradeoffs. Then, we discussed a concept of technical debt together with bad smells, as
one of the crucial parts for the further created concept. We also discussed refactoring
and its importance in software development.

After the background was presented (chapter 2), we defined problem statement (chapter
3). We defined three challenges - selection, description and evaluation of refactorings.
We described them in the section to give better understanding of the thesis scope.

The following chapter (chapter 4) presented related work. The main part in the chapter
is the one with microservice smells catalog. It is also part of the further work where we
used the smells extensively. The second section of the chapter describes microservices
patterns and practices used in the research.
The next chapter is called concept (chapter 5). We defined the whole process for

building the catalog. Afterwards, we defined a technique’s description template. We
also discussed initial refactoring selection process where three different approaches were
presented and one of them was chosen after analysis. The last step in the concept was
choosing a way of evaluation.
Chapter Initial Refactoring Selection (chapter 6) contains results of performing the

process defined in concept. We performed matching between existing bad smells and
microservices smells. Then, we demonstrate discovering of the refactoring based on the
matching. The results were presented in tables.

Chapter Refactoring Catalog (chapter 7) contains the main results of the thesis. After
the selection process was done, in the chapter we described all the refactorings following
the template defined in the concept chapter. Each refactoring was presented with an
example.

In the last chapter - evaluation (chapter 8) - we discussed the last step of the process.

87

9. Conclusion & Future Work

To speak of validity and applicability of the refactorings in the catalog, we conducted a
questionnaire as evaluation method. The first part of the chapter describes the created
questionnaire. The following section describes the results collected. We demonstrated
their analysis and attached charts with statistical information. Besides results on the
catalog, we analysed respondents’ opinion on chosen approach as well as deduced rating
of the techniques assessed from different perspectives. In the last section we presented
discussion of the questionnaire potential problems that might have led to bias results for
some of the techniques.
Defined research questions were answered in the thesis. We also reached the goal

of building a valuable and reliable catalog of refactoring techniques for microservices
systems. We found that the results of the thesis are applicable in practice through
evaluation. We also reached a concise description of each technique that contains all the
necessary information and easy to follow. The catalog is technology agnostic and can be
used by developers in practice.

9.2. Future Work

The topic of refactoring of microservices is still barely discovered. Microservices architec-
tural style is relatively new in software engineering. We made the first steps in building
a catalog of refactoring techniques. The results appeared to be valuable and applicable
due to analysis of the evaluation.
There are already two research works on discovering microservices smells “On the

Definition of Microservice Bad Smells” [TL18] and “Towards a Collaborative Repository
for the Documentation of Service-Based Antipatterns and Bad Smells” [Bog+19] that
were used heavily in the thesis. There is still much to do in discovering new microservices
smells. There are different perspectives that can be useful to separate and organize in
separate catalogs. We noticed that there is still very little separation between smells in
services and in the microservice system. The separation, however, is very important as it
is required to use different techniques to tackle those smells. There is still a room for
improvement in differentiating between microservices smells and other service-oriented
architecture smells. Some of them are the same, while others are different because of the
different approaches in organizing the services, their communication and work together.

The catalog itself can be extended by deducing refactorings using different than in the
thesis approaches. With time there is a possibility to extend the catalog with already
used and proven new techniques for microservices instead of building on existing ones.

One of the interesting aspects for practical use in industry in the topic is automation.
There are existing tools that help to detect smells. We can see potential in building such
tools for microservices smells. The analysis might be not that easy to perform, as it
will require monitoring of running system. However, as monitoring is quite common for
microservices systems and the architectural style gains only more attention, there would
be a great benefit in having such tools.

Besides detecting smells, we can also envision tools that help to refactor microservices
systems following described in the catalog techniques. This might be a bigger problem

88

9.2. Future Work

than detecting smells and for sure more difficult to implement than automation of
traditional techniques such as move method and extract class. Nevertheless, we see
potential in the automation that would help developers in industry.
Aside of the refactorings and smells we discussed another important aspect in the

thesis - how the techniques affect quality of the system. Until now there is no commonly
used quality model specifically for microservices systems. It is a complex problem, as
there are two different perspectives - quality of the system in general and quality of each
service that should also be considered. We had examples of refactoring techniques that
led to increased quality factor for system but in the same time it decreases quality of the
service under refactoring.
We also see potential changes in refactoring process. It is common for proposed

refactorings to involve several services. While different services are maintained by
different teams - we assume that refactoring process might include more operational and
organizational work. However, the refactoring process will be changes only on the system
level. Changes in each service might still be performed following existing process.
Testing as a crucial part of refactoring is affected a lot by the architectural style.

While unit testing of units in each service stays the same, integration testing gets more
complicated. It becomes more difficult to isolate only parts of the system that are under
testing. Testing process on the system level might also change as it would involve several
teams.

89

A. Bad Smells Aliases

Bad Smells Aliases
Bad Smell Aliases

Cyclically-dependent
Modularization [SSS14]

Dependency cycles [M.07]
Cyclic dependencies [PJ88]
Cycles [BL03]
Bidirectional relation [CU06]
Cyclic class relationships [MPC99]

Deficient Encapsulation
Hideable public attributes/methods
[Son]
Unencapsulated class [CU06]
Class with unparametrerized methods
[CU06]

Unnecessary Abstraction [SSS14]

Irrelevant class [Uml]
Lazy Class [Fow99]
Freeloader [Kho+12]
Small class [JR92] [CU06]
Mini-class [SSM06]
No responsibility [Bud91]
Agent class [Uml]

Deficient Encapsulation [SSS14]
Hideable public attributes/methods
[Son]
Unencapsulated class [CU06]
Class with unparametrerized methods
[CU06]

Multifaceted Abstraction [SSS14]

Divergent Change [Fow99]
Conceptualization abuse [Tri05]
Large class [Mey88] [Fow99] [CU06]
[Moh+10]
Lack of Cohesion [Sem]

Insufficient Modularization [SSS14]

God class [Rie96]
Fat interface [Mar03]
Blob class [Inf]
Classes with complex control flow [Sem]
Too much responsibility [Bud91]
Local breakable [Str]

Change Function Declaration [Fow19]

Rename Function [Fow19]

91

A. Bad Smells Aliases

Bad Smell Aliases
Rename Method [Fow99]
Add Parameter [Fea04]
Remove Parameter [Fow19] [Ref]
Change Signature [Fow19]

Replace Param with
Explicit Methods [Fow19]

Remove Flag Argument
[Fow19]

Broken Modularization [SSS14]

Feature Envy [Fow99]
Class passively stores data [Sem]
Data Class [Fow99] [Mar03] [CU06] [Inf]
Data records [Str]
Record (class) [Moh+10]
Data Container [RFG05]
Misplaced operations [DDN02]
Misplaced control [Tri05]

Hub-like Modularization [SSS14]
Bottlenecks [Son] [PJ88]
Local hubs [Str]
Man-in-the-middle [RFG05]

92

B. Microservices Smells Aliases

Microservices Smells Aliases
Microservices Smell Aliases
Leak of Service Abstraction [TL18] Ambiguous Interface [Onl]
Mega-Service [TL18] Bloated Service [Onl]
Low Cohesive Operations [TL18] Bloated Service [Onl]

Microservice Greedy [TL18]

Nanoservices [Onl]
Golden Hammer [Onl]
Silver Bullet [Onl]
When in doubt, make it a service [Onl]
Tiny Service [Onl]
Refactor Mercilessly [Onl]
Fine Grained Web Service [Onl]
Fine-Grained Services [Onl]
Fine-Grained Interfaces [Onl]
Web Services Will Fix Our Problems
[Onl]

Sloth [TL18] The Knot [Onl]

Shared Persistency [TL18]
Data ownership [TL18]
Data-Driven Migration [Onl]
Shared Persistence [TL18]

Ambiguous Service [Onl] Ambiguous Web Service [Onl]
Ambiguous Name [Onl]

API Versioning [TL18] Static Contract Pitfall [TL18]
Business Process Forever [Onl] No Businessman Involvement [Onl]
Chatty Service [Onl] Chatty Web Service [Onl]

Hardcoded Endpoints [TL18]
Hardcoded IPs and Ports [Onl]
Point to Point Web Services [Onl]

Mega-Service [TL18]

Multiservice [Onl]
The God Object [Onl]
God Object Web Service [Onl]
Big Ball of Mud [Onl]

Service Chain [Onl] Percolating Process [Onl]
Too Many Standards [TL18] Lust and Gluttony bad practices [TL18]
Timeout [TL18] Dogpiles [TL18]

93

C. Questionnaire

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 1/22

07.06.2019, 10:51microservice-refactorings → base

Page 01

"As an evolving program is continually changed, its complexity, reflecting
deteriorating structure, increases unless work is done to maintain or reduce it." -
Lehman's Law

Welcome to this study,

Microservices are an accepted approach to build modern scalable software systems. Since
2013, when this architectural style emerged, a lot of effort was invested to determine how to

change a monolithic application to a microservice-based architecture.
This migration is hard and costly but when finally finished, the benefits of microservices can be harvested.

Now a lot of microservice-based system are developed and are still under development. As for every software
system a microservice-based software evolves and its technical debt increases over time. Refactoring is a very
effective method to reduce technical debt and improve the quality of a software system.

This survey is part of an ongoing research work on how to refactor microservices-based software systems. We
present a catalogue of refactoring methods based on the known and proven refactorings techniques without
microservices in mind.

To validate our identified refactorings we asked professional software developers and academics to share their
opinion with us. Your assessment of our method and the identified refactorings will lead to valuable insights on how
are microservices can be refactored.
If you are interested in the results of this survey, please leave your e-mail address at the end of this survey! You will
be receiving the results as soon as they are available.

Duration: about 20-30 minutes

Voluntariness and anonymity: Your participation in this survey is voluntary. You are free to cancel your
participation at any time during this study. Your data is confidential, will only be evaluated in an anonymous form,
and not shared with third parties.

Donation: For every usable questionnaire we will donate 2 € to an aid organization. At the end of the survey, you
can specify which organization this should be.

If you have any questions, comments or inquiry, don't hesitate to contact us.
Thank you very much for your participation in advance.
Vitalii Isaenko
Andreas Steffens

Faculty of Mathematics, Computer Science and Natural Sciences
SWC - Computer Science 3 Research Group Software Construction
RWTH Aachen University
Ahornstraße 55
D-52074 Aachen, Germany
phone: +49 241 80-21341
andreas.steffens@swc.rwth-aachen.de

Figure C.1.: Questionnaire page 1 of 22

95

C. Questionnaire

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 2/22

Page 02

1. How many years of experience in Software Engineering do you have?

< 1 year

1 < 3 years

3 < 5 years

5 < 10 years

10 < 15 years

> 15 years

Prefer not to answer

Page 03

2. What is your current position?

Back-end developer

Full-stack developer

Front-end developer

Web applications developer

Mobile developer

Desktop applications developer

Enterprise applications developer

DevOps specialist

QA Engineer

C-suite executive (CEO, CTO, etc.)

Project manager

Educator or academic researcher

Student

Other

Prefer not to answer

Figure C.2.: Questionnaire page 2 of 22

96

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 3/22

Page 04

3. What kind of experience do you have with microservices systems?
Please, choose multiple if applicable

Practical experience with microservices in production

Research experience

Explore by developing toy programs or reading/watching educational materials

No experience

Page 05

Approach to build a catalog of refactorings

The diagram below shows the process to build a catalogue of refactoring techniques for mircoservices-based
systems. At first, microservices smells get matched to existing bad smells (on code, design and architectural levels).
Then, corresponding refactorings for the bad smells are discovered. The last step is adaptation of the techniques to
be applicable to microservices.

4. How would you assess our approach for creating a refactoring catalog for microservices

I agree that the approach is promising.

I partially agree with the approach

I do not completely agree with the approach

I completely disagree with the approach

I cannot assess the approach

5. Please, give your comments on the approach

Figure C.3.: Questionnaire page 3 of 22

97

C. Questionnaire

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 4/22

Page 06

6. Which of the following smells have you met before?
All listed microservices smells are covered with the proposed refactoring catalog whereas each refactoring can
tackle several smells. Please, mark the smells that you are familiar with.

Cyclic Dependency:
A cyclic chain of calls between microservices exists.

Inappropriate Service Intimacy:
The microservice keeps on connecting to private data from other services instead of dealing with its own data.

Microservice Greedy:
Microservices with very limited functionalities

Not Having an API Gateway:
Microservices communicate directly with each other.In the worst case, the service consumers also
communicate directly with each microservice.

Wrong Cuts:
Microservices are split on the basis of technical layers instead of business capabilities.

Mega-Service:
A service that is responsible for many functionalities.

Leak of Service Abstraction:
Designing service interfaces for generic purposes and not specifically for each service.

Bottleneck Service:
A service that is being used by too many consumers and therefore becomes a bottleneck and single point of
failure.

Chatty Service:
A high number of operations is required to complete one abstraction.

Low Cohesive Operations:
A service that provides many low cohesive operations that are not really related to each other.

Scattered Parasitic Functionality:
Multiple services are responsible for the same concern.

Service Chain:
A chain of service calls fulfils common functionality.

Figure C.4.: Questionnaire page 4 of 22

98

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 5/22

Page 07

Microservices refactoring techniques

On the next pages you will assess identified refactorings for microservices.
In sum we found 8 refactorings:

Inline Service
Replace Parameter with Explicit API Method
Remove Middle Service
Require Data for API Method
Encapsulate Responsibility
Extract Service
Move Responsibility
Introduce API Gateway

For every refactoring we will ask you to assess wheatear the certain microservice smells get resolved by proposed
refactoring application and which quality criterion are affected by the refactoring.
At the end you can leave a comment on each proposed refactoring.

Please take your time to read the given description of the refactoring that consists of summary, mechanics and
example sections.

Figure C.5.: Questionnaire page 5 of 22

99

C. Questionnaire

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 6/22

Page 08

Encapsulate Responsibility

Encapsulate Responsibility is a technique that is result of adaptation of Encapsulate Method and Encapsulate Field.
The main goal of the refactoring is to hide method and corresponding data of the service.
Mechanics:

1. Add API method that will provide better abstraction to use service's responsibility to encapsulate other
methods.

2. Use hidden methods in the new method.
3. Change references from previous methods to the new one. If necessary, change the way it is used.
4. Remove unused API invocations.
5. In the API Gateway, substitute invocations of set of hidden methods with the new method invocation.

Example:

7. How applicable is the Encapsulate Responsibility refactoring to the following smells?

Not

applicable

Totally

applicable Not sure

Inappropriate Service Intimacy:
The microservice keeps on connecting to private data from other services
instead of dealing with its own data.

Chatty Service:
A high number of operations is required to complete one abstraction.

Wrong Cuts:
Microservices are split on the basis of technical layers instead of business
capabilities.

Not Having an API Gateway:
Microservices communicate directly with each other.In the worst case, the
service consumers also communicate directly with each microservice.

Inappropriate Service Intimacy:
The microservice keeps on connecting to private data from other services
instead of dealing with its own data.

Figure C.6.: Questionnaire page 6 of 22

100

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 7/22

8. How does the Encapsulate Responsibility refactoring affect the following quality criteriy?
-- - 0 + ++ Not sure

Maintainability

Performance efficiency

Usability

9. Please, give your comments on the proposed refactoring.

Figure C.7.: Questionnaire page 7 of 22

101

C. Questionnaire

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 8/22

Page 09

Move Responsibility

Move Responsibility is an adaptation of Move Method, Move Class and Move Field techniques. With this refactoring
it is intended to distribute responsibilities in a microservices system properly.
Mechanics:

1. Examine all features used by the source method that are defined on the source service. Consider whether
they also should be moved.

2. Declare the method in the target service.
3. Move the data to the target service if needed.
4. Copy the code from the source method to the target. Adjust the method to make it work within the new

service.
5. Turn the source method into a delegating method.
6. Move the data from the database of the source service to the target one.
7. Remove the source method or retain it as a delegating method.
8. Replace references from API method to newly created one in other services in the system and in the API

Gateway.

Example:

Figure C.8.: Questionnaire page 8 of 22

102

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 9/22

Not

applicable

Totally

applicable

10. How applicable is the Move Responsibility refactoring to the following smells?

Not sure

Service Chain:
A chain of service calls fulfils common functionality.

Scattered Parasitic Functionality:
Multiple services are responsible for the same concern.

Chatty Service:
A high number of operations is required to complete one abstraction.

Bottleneck Service:
A service that is being used by too many consumers and therefore
becomes a bottleneck and single point of failure.

Mega-Service:
A service that is responsible for many functionalities.

Microservice Greedy:
Microservices with very limited functionalities

Inappropriate Service Intimacy:
The microservice keeps on connecting to private data from other services
instead of dealing with its own data.

Wrong Cuts:
Microservices are split on the basis of technical layers instead of business
capabilities.

11. How does the Move Responsibility refactoring affect the following quality criteriy?
-- - 0 + ++ Not sure

Maintainability

Performance efficiency

Usability

12. Please, give your comments on the proposed refactoring.

Figure C.9.: Questionnaire page 9 of 22

103

C. Questionnaire

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 10/22

Page 10

Introduce API Gateway

Introduce API Gateway is an adaptation of Introducing a Dependency Graph Facade and Hide Delegate. The main
intention is to hide complexity of using the system - several services in combination - behind one single entry-point
service. It is refactoring towards the pattern API Gateway.
Mechanics:

1. Create gateway service.
2. Use Encapsulate responsibility (described earlier) for methods of each service that should not be directly

available to clients.
3. Use Move Responsibility (described earlier) for the newly created methods and all the methods that should be

public for external clients.

Example:

13. How applicable is the Introduce API Gateway refactoring to the following smells?

Not

applicable

Totally

applicable Not sure

Not Having an API Gateway:
Microservices communicate directly with each other.In the worst case, the
service consumers also communicate directly with each microservice.

Service Chain:
A chain of service calls fulfils common functionality.

Inappropriate Service Intimacy:
The microservice keeps on connecting to private data from other services
instead of dealing with its own data.

Cyclic Dependency:
A cyclic chain of calls between microservices exists.

Figure C.10.: Questionnaire page 10 of 22

104

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 11/22

14. How does the Introduce API Gateway refactoring affect the following quality criteriy?
-- - 0 + ++ Not sure

Maintainability

Performance efficiency

Usability

15. Please, give your comments on the proposed refactoring.

Figure C.11.: Questionnaire page 11 of 22

105

C. Questionnaire

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 12/22

Not

applicable

Totally

applicable

Page 11

Inline Service

Inline Service is an adaptation of Inline Class. Its main goal is to change the scope of services - when all the
responsibilities of source service are moved to absorbing service.
Mechanics:

1. Declare the api methods of the source service onto the absorbing service. Delegate all the methods to the
source service.

2. Change all references from the source service to the absorbing service in the system.
3. Redirect calls in the API Gateway from the source service to the absorbing service.
4. Use Move Responsibility technique (presented earlier) to move features from the source service to the

absorbing service.

Example:

16. How applicable is the Inline Service refactoring to the following smells?

Not sure

Inappropriate Service Intimacy:
The microservice keeps on connecting to private data from other services
instead of dealing with its own data.

Cyclic Dependency:
A cyclic chain of calls between microservices exists.

Microservice Greedy:
Microservices with very limited functionalities

Figure C.12.: Questionnaire page 12 of 22

106

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 13/22

17. How does the Inline Service refactoring affect the following quality criteriy?

18. Please, give your comments on the proposed refactoring.

Maintainability

-- - 0 + ++ Not sure

Performance efficiency

-- - 0 + ++ Not sure

Usability

-- - 0 + ++ Not sure

Figure C.13.: Questionnaire page 13 of 22

107

C. Questionnaire

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 14/22

Not

applicable

Totally

applicable

Page 12

Extract Service

Extract Service is an adaptation of Extract Class. The main intention of the refactoring is to extract part of
responsibilities from source service into the new extracted service.
Mechanics:

1. Create a new service for responsibilities to extract.
2. If the responsibilities of the old service no longer match service's name, rename the old service.
3. Use Move Responsibility (described earlier) on each responsibility.
4. Review and refactor the interfaces of the source and the extracted services.
5. Change links in the API Gateway from the old service to the extracted one.

Example:

19. How applicable is the Extract Service refactoring to the following smells?

Not sure

Low Cohesive Operations:
A service that provides many low cohesive operations that are not really
related to each other.

Scattered Parasitic Functionality:
Multiple services are responsible for the same concern.

Service Chain:
A chain of service calls fulfils common functionality.

Bottleneck Service:
A service that is being used by too many consumers and therefore
becomes a bottleneck and single point of failure.

Mega-Service:
A service that is responsible for many functionalities.

Inappropriate Service Intimacy:
The microservice keeps on connecting to private data from other services
instead of dealing with its own data.

Cyclic Dependency:
A cyclic chain of calls between microservices exists.

Figure C.14.: Questionnaire page 14 of 22

108

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 15/22

20. How does the Extract Service refactoring affect the following quality criteriy?

21. Please, give your comments on the proposed refactoring.

Maintainability

-- - 0 + ++ Not sure

Performance efficiency

-- - 0 + ++ Not sure

Usability

-- - 0 + ++ Not sure

Figure C.15.: Questionnaire page 15 of 22

109

C. Questionnaire

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 16/22

Not

applicable

Totally

applicable

Page 13

Remove Middle Service

Remove Middle Service is an adaptation of Remove Middle Man. The main intention is to get rid of unnecessary
delegation and use the service directly.
Mechanics:

1. Move API method from middle service that is provided to use delegate to delegate service itself.
2. For each client using delegate directly replace calls to newly moved API method.
3. For each client using middle service change service reference to use delegate.
4. Combine old API method of delegate with the new method.
5. Remove old API method from the middle service.

Example:

22. How applicable is the Remove Middle Service refactoring to the following smells?

Not sure

Inappropriate Service Intimacy:
The microservice keeps on connecting to private data from other services
instead of dealing with its own data.

23. How does the Remove Middle Service refactoring affect the following quality criteriy?
-- - 0 + ++ Not sure

Maintainability

Performance efficiency

Usability

Figure C.16.: Questionnaire page 16 of 22

110

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 17/22

24. Please, give your comments on the proposed refactoring.

Figure C.17.: Questionnaire page 17 of 22

111

C. Questionnaire

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 18/22

Not

applicable

Totally

applicable

Page 14

Replace Parameter with Explicit API Method

Replace Parameter with Explicit API Method is an adaptation of Replace Parameter with Explicit Method. The main
goal of the refactoring is to make the interface of service more specific for a client.
Mechanics:

1. Create an explicit API method for each value of the refactored API method's parameter.
2. For each leg of the conditional, call the appropriate new method.
3. Replace each caller of the conditional method with a call to the appropriate new API method.
4. Replace calls of the conditional method in API gateway with a call to the appropriate newly-created API

method.
5. Remove the conditional method.

Example:

25. How applicable is the Replace Parameter with Explicit API Method refactoring to the following smells?

Not sure

Leak of Service Abstraction:
Designing service interfaces for generic purposes and not specifically for
each service.

26. How does the Replace Parameter with Explicit API Method refactoring affect the following quality
criteriy?

-- - 0 + ++ Not sure

Maintainability

Performance efficiency

Usability

Figure C.18.: Questionnaire page 18 of 22

112

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 19/22

27. Please, give your comments on the proposed refactoring.

Figure C.19.: Questionnaire page 19 of 22

113

C. Questionnaire

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 20/22

Not

applicable

Totally

applicable

Page 15

Require Data for API Method

Require Data for API Method is an adaptation of Introduce Parameter Object, Move Accumulation to Collecting
Parameter and Apply ISP to Make Client-Specific Calls. The refactoring helps to manage responsibilities by
removing business logic code from service that is not responsible for it and make it accept the data that is required
for service to work.
Mechanics:

1. Create a parameterized method that can be substituted for each method under refactoring.
2. Replace one old method with a call to the new method with appropriate parameters across services in the

system.
3. Repeat for all the methods under control, testing after each one.
4. Redirect calls in the API Gateway from the old methods to the new method with appropriate parameters.

Example:

28. How applicable is the Require Data for API Method refactoring to the following smells?

Not sure

Mega-Service:
A service that is responsible for many functionalities.

Leak of Service Abstraction:
Designing service interfaces for generic purposes and not specifically for
each service.

29. How does the Require Data for API Method refactoring affect the following quality criteriy?
-- - 0 + ++ Not sure

Maintainability

Performance efficiency

Usability

Figure C.20.: Questionnaire page 20 of 22

114

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 21/22

30. Please, give your comments on the proposed refactoring.

Page 16

31. Choose which aid organization to support
For every usable questionnaire we will donate 2 € to an aid organization You can specify which organization this
should be.

Médecins Sans Frontières – Doctors without borders

WWF – World Wide Fund for Nature

Greenpeace

International Red Cross

Page 17

32. If you are interested in the results of this survey, please leave your e-mail address:

E-mail:

Figure C.21.: Questionnaire page 21 of 22

115

C. Questionnaire

07/06/2019 Print View base (microservice-refactorings) 07.06.2019, 10:51

https://www.soscisurvey.de/admin/preview.php?questionnaire=base&mode=print&filters=off 22/22

Last Page

Thank you for participating in this survey!
We would like to thank you very much for helping us.

If you have any questions, comments or inquiry, don't hesitate to contact us.
Thank you very much for your participation in advance.
Vitalii Isaenko - vitalii.isaenko@rwth-aachen.de
Andreas Steffens - steffens@swc.rwth-aachen.de

Faculty of Mathematics, Computer Science and Natural Sciences
SWC - Computer Science 3 Research Group Software Construction
RWTH Aachen University
Ahornstraße 55
D-52074 Aachen, Germany
phone: +49 241 80-21341
andreas.steffens@swc.rwth-aachen.de

Andreas Steffens, Vitalii Isaenko , Research Group Software Construction –
RWTH Aachen University – 2019

Figure C.22.: Questionnaire page 22 of 22

116

Bibliography

[Bae] Versioning a REST API. 2019. url: https://www.baeldung.com/
rest-versioning (visited on 04/28/2019) (cited on page 17).

[BL03] D. Beyer and C. Lewerentz. “CrocoPat: efficient pattern analysis in object-
oriented programs”. In: 11th IEEE International Workshop on Program Com-
prehension, 2003. 2003, pp. 294–295. doi: 10.1109/WPC.2003.1199220
(cited on page 91).

[Bog+19] J. Bogner et al. “Towards a Collaborative Repository for the Documentation
of Service-Based Antipatterns and Bad Smells”. In: Mar. 2019 (cited on
pages 13, 21, 33, 88).

[Bud91] T. Budd. An Introduction to Object-oriented Programming. Redwood City,
CA, USA: Addison Wesley Longman Publishing Co., Inc., 1991. isbn: 0-201-
54709-0 (cited on page 91).

[CU06] M. Choinzon and Y. Ueda. “Detecting Defects in Object Oriented Designs
Using Design Metrics.” In: Jan. 2006, pp. 61–72 (cited on pages 91, 92).

[DDN02] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object Oriented Reengineering
Patterns. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2002.
isbn: 1558606394 (cited on page 92).

[Fea04] M. Feathers. Working Effectively with Legacy Code. Martin, Robert C. Pren-
tice Hall PTR, 2004. isbn: 9780131177055 (cited on pages 6, 92).

[Fow19] M. Fowler.Online catalog of refactorings. 2019. url: https://refactoring.
com/catalog/ (visited on 01/27/2019) (cited on pages 38, 91, 92).

[Fow99] M. Fowler. Refactoring: Improving the Design of Existing Code. Boston, MA,
USA: Addison-Wesley, 1999. isbn: 0-201-48567-2 (cited on pages 1, 5, 6, 20,
27, 34–42, 44, 48, 50, 53, 56, 59, 63, 66, 91, 92).

[Gar+09] J. Garcia et al. “Toward a Catalogue of Architectural Bad Smells”. In:
Proceedings of the 5th International Conference on the Quality of Software
Architectures: Architectures for Adaptive Software Systems. QoSA ’09. East
Stroudsburg, PA, USA: Springer-Verlag, 2009, pp. 146–162. isbn: 978-3-642-
02350-7. doi: 10.1007/978-3-642-02351-4_10 (cited on pages 5, 21,
33).

[Inc05] I. L. Inc. Smells to Refactorings Cheatsheet. 2005. url: https://www.
industriallogic.com/blog/smells-to-refactorings-cheatsheet/
(visited on 11/26/2018) (cited on page 35).

117

https://www.baeldung.com/rest-versioning
https://www.baeldung.com/rest-versioning
https://doi.org/10.1109/WPC.2003.1199220
https://refactoring.com/catalog/
https://refactoring.com/catalog/
https://doi.org/10.1007/978-3-642-02351-4_10
https://www.industriallogic.com/blog/smells-to-refactorings-cheatsheet/
https://www.industriallogic.com/blog/smells-to-refactorings-cheatsheet/

Bibliography

[Inf] InFusion Hydrogen design flaw detection tool. url: http://www.intooitus.
com/products/infusion (cited on pages 91, 92).

[JR92] P. Johnson and C. Rees. “Reusability Through Fine-grain Inheritance”. In:
Softw. Pract. Exper. 22.12 (Dec. 1992), pp. 1049–1068. issn: 0038-0644. doi:
10.1002/spe.4380221203 (cited on page 91).

[Ker04] J. Kerievsky. Refactoring to Patterns. Pearson Higher Education, 2004. isbn:
0321213351 (cited on pages 27, 34, 36–40, 42, 53).

[Kho+12] F. Khomh et al. “An exploratory study of the impact of antipatterns on
class change- and fault-proneness”. In: Empirical Software Engineering 17.3
(2012), pp. 243–275. issn: 13823256. doi: 10.1007/s10664-011-9171-y
(cited on page 91).

[LD17] K.-K. Lau and S. Di Cola. An Introduction to Component-based Software
Development. English. Singapore: World Scientific Publishing Co. Pte. Ltd.,
2017. isbn: 978-981-3221-87-1 (cited on page 24).

[LR06] M. Lippert and S. Roock. Refactoring in Large Software Projects: Perform-
ing Complex Restructurings Successfully. 1st ed. Wiley, May 2006. isbn:
0470858923 (cited on pages 1, 20, 34–36, 38–42).

[M.07] S. M. Software architecture refactoring. Tutorial. 2007 (cited on page 91).
[Mar03] R. C. Martin. Agile Software Development: Principles, Patterns, and Prac-

tices. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2003. isbn: 0135974445
(cited on pages 91, 92).

[Mar17] R. C. Martin. Clean Architecture: A Craftsman’s Guide to Software Structure
and Design. Robert C. Martin Series. Boston, MA: Prentice Hall, 2017. isbn:
978-0-13-449416-6 (cited on page 55).

[Mey88] B. Meyer. Object-Oriented Software Construction. 1st. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1988. isbn: 0136290493 (cited on page 91).

[Mfi] Martin Fowler: "Refactoring ist heute relevanter als vor zwanzig Jahren".
2018. url: https://www.heise.de/developer/artikel/Martin-
Fowler-Refactoring-ist-heute-relevanter-als-vor-zwanzig-
Jahren-4249380.html (visited on 04/25/2019) (cited on page 1).

[Mic] Microservices. 2019. url: https://martinfowler.com/articles/
microservices.html (visited on 04/06/2019) (cited on page 3).

[Moh+10] N. Moha et al. “DECOR: A Method for the Specification and Detection of
Code and Design Smells”. In: IEEE Transactions on Software Engineering
36 (Jan. 2010), pp. 20–36. doi: 10.1109/TSE.2009.50 (cited on pages 91,
92).

[Mot] Motivation for Software Architecture Refactoring. 2017. url: https://
dzone.com/articles/motivation-for-software-architecture-
refactoring (visited on 04/20/2019) (cited on page 6).

118

http://www.intooitus.com/products/infusion
http://www.intooitus.com/products/infusion
https://doi.org/10.1002/spe.4380221203
https://doi.org/10.1007/s10664-011-9171-y
https://www.heise.de/developer/artikel/Martin-Fowler-Refactoring-ist-heute-relevanter-als-vor-zwanzig-Jahren-4249380.html
https://www.heise.de/developer/artikel/Martin-Fowler-Refactoring-ist-heute-relevanter-als-vor-zwanzig-Jahren-4249380.html
https://www.heise.de/developer/artikel/Martin-Fowler-Refactoring-ist-heute-relevanter-als-vor-zwanzig-Jahren-4249380.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1109/TSE.2009.50
https://dzone.com/articles/motivation-for-software-architecture-refactoring
https://dzone.com/articles/motivation-for-software-architecture-refactoring
https://dzone.com/articles/motivation-for-software-architecture-refactoring

Bibliography

[MPC99] B. K. Miller, Pei Hsia, and Chenho Kung. “Object-oriented architecture
measures”. In: Proceedings of the 32nd Annual Hawaii International Confer-
ence on Systems Sciences. 1999. HICSS-32. Abstracts and CD-ROM of Full
Papers. Vol. Track8. 1999, 10 pp.–. doi: 10.1109/HICSS.1999.773101
(cited on page 91).

[New15] S. Newman. Building Microservices. 1st. O’Reilly Media, Inc., 2015. isbn:
1491950358, 9781491950357 (cited on page 3).

[Onl] Service-Based Antipatterns. 2019. url: https://xjreb.github.io/
service- based- antipatterns/ (visited on 02/17/2019) (cited on
pages 13, 15, 93).

[PJ88] M. Page-Jones. The Practical Guide to Structured Systems Design: 2Nd
Edition. Upper Saddle River, NJ, USA: Yourdon Press, 1988. isbn: 0-13-
690769-5 (cited on pages 91, 92).

[Que] Questionnaire. url: https://en.wikipedia.org/wiki/Questionnaire
(visited on 04/08/2019) (cited on page 30).

[Ref] Refactoring Guru. Remove Parameter. url: https://refactoring.
guru/remove-parameter (cited on page 92).

[Res] REST API Versioning. 2019. url: https://restfulapi.net/versioning/
(visited on 04/28/2019) (cited on page 17).

[RFG05] J. Ratzinger, M. Fischer, and H. Gall. “Improving Evolvability Through
Refactoring”. In: SIGSOFT Softw. Eng. Notes 30.4 (May 2005), pp. 1–5.
issn: 0163-5948. doi: 10.1145/1082983.1083155 (cited on pages 6, 92).

[Ric19] C. Richardson. Microservices Patterns. English. Shelter Island, NY 11964:
Manning Publications Co., 2019. isbn: 978-1-61729-454-9 (cited on pages 4,
15, 16).

[Rie96] A. J. Riel. Object-Oriented Design Heuristics. 1st. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1996. isbn: 020163385X (cited on
pages 35, 91).

[Sem] Semmle Code Tool. url: https://semmle.com/ (cited on pages 91, 92).
[Son] Sonargraph-quality: A tool for assessing and monitoring technical quality.

url: https://www.hello2morrow.com/products/sonargraph/
quality (cited on pages 91, 92).

[SSM06] F. Simon, O. Seng, and T. Mohaupt. Code-Quality-Management - technische
Qualität industrieller Softwaresysteme transparent und vergleichbar gemacht.
dpunkt.verlag, 2006, pp. I–XVII, 1–340. isbn: 978-3-89864-388-7 (cited on
page 91).

[SSS14] G. Suryanarayana, G. Samarthyam, and T. Sharma. Refactoring for Software
Design Smells: Managing Technical Debt. 1st. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2014. isbn: 0128013974, 9780128013977
(cited on pages 5, 20, 27, 34–42, 53, 66, 91, 92).

119

https://doi.org/10.1109/HICSS.1999.773101
https://xjreb.github.io/service-based-antipatterns/
https://xjreb.github.io/service-based-antipatterns/
https://en.wikipedia.org/wiki/Questionnaire
https://refactoring.guru/remove-parameter
https://refactoring.guru/remove-parameter
https://restfulapi.net/versioning/
https://doi.org/10.1145/1082983.1083155
https://semmle.com/
https://www.hello2morrow.com/products/sonargraph/quality
https://www.hello2morrow.com/products/sonargraph/quality

Bibliography

[Str] Structural Analysis for Java Tool (Stan4J. url: http://stan4j.com/
(cited on pages 91, 92).

[Szy02] C. Szyperski. Component Software: Beyond Object-Oriented Programming.
2nd. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002.
isbn: 0201745720 (cited on page 23).

[TL18] D. Taibi and V. Lenarduzzi. “On the Definition of Microservice Bad Smells”.
In: IEEE Software 35.3 (2018), pp. 56–62. issn: 0740-7459. doi: 10.1109/
MS.2018.2141031 (cited on pages 13, 14, 21, 33–39, 88, 93).

[Tri05] A. Trifu. “Automated Strategy Based Restructuring of Object Oriented
Code”. In: (Jan. 2005) (cited on pages 91, 92).

[Uml] UML Specification. url: https://www.omg.org/spec/UML/2.2/
About-UML/ (cited on page 91).

[Wha] What are microservices? 2019. url: https://microservices.io/
(visited on 04/06/2019) (cited on page 3).

120

http://stan4j.com/
https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1109/MS.2018.2141031
https://www.omg.org/spec/UML/2.2/About-UML/
https://www.omg.org/spec/UML/2.2/About-UML/
https://microservices.io/

Bibliography

121

	Introduction
	Structure of the Thesis

	Background
	Microservices
	Technical Debt and Bad Smells
	Refactoring
	Summary

	Problem Statement
	Research Questions
	Challenges and Scope
	Summary

	Related Work
	Microservice Smells Catalog
	Microservices Patterns and Practices

	Concept
	Initial Refactorings Selection Process
	Description template
	Evaluation
	Summary

	Initial Refactorings Selection
	Microservices Smells Matching
	Refactorings Discovering
	Summary

	Refactoring Catalog
	Inline Service
	Replace Parameter with Explicit API Method
	Remove Middle Service
	Require Data for API Method
	Encapsulate Responsibility
	Extract Service
	Move Responsibility
	Introduce API Gateway
	Summary

	Evaluation
	Questionnaire
	Results
	Discussion
	Summary

	Conclusion & Future Work
	Conclusion
	Future Work

	Bad Smells Aliases
	Microservices Smells Aliases
	Questionnaire
	Bibliography

